1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 16 #define BTRFS_DELAYED_WRITEBACK 512 17 #define BTRFS_DELAYED_BACKGROUND 128 18 #define BTRFS_DELAYED_BATCH 16 19 20 static struct kmem_cache *delayed_node_cache; 21 22 int __init btrfs_delayed_inode_init(void) 23 { 24 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 25 sizeof(struct btrfs_delayed_node), 26 0, 27 SLAB_MEM_SPREAD, 28 NULL); 29 if (!delayed_node_cache) 30 return -ENOMEM; 31 return 0; 32 } 33 34 void __cold btrfs_delayed_inode_exit(void) 35 { 36 kmem_cache_destroy(delayed_node_cache); 37 } 38 39 static inline void btrfs_init_delayed_node( 40 struct btrfs_delayed_node *delayed_node, 41 struct btrfs_root *root, u64 inode_id) 42 { 43 delayed_node->root = root; 44 delayed_node->inode_id = inode_id; 45 refcount_set(&delayed_node->refs, 0); 46 delayed_node->ins_root = RB_ROOT_CACHED; 47 delayed_node->del_root = RB_ROOT_CACHED; 48 mutex_init(&delayed_node->mutex); 49 INIT_LIST_HEAD(&delayed_node->n_list); 50 INIT_LIST_HEAD(&delayed_node->p_list); 51 } 52 53 static inline int btrfs_is_continuous_delayed_item( 54 struct btrfs_delayed_item *item1, 55 struct btrfs_delayed_item *item2) 56 { 57 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 58 item1->key.objectid == item2->key.objectid && 59 item1->key.type == item2->key.type && 60 item1->key.offset + 1 == item2->key.offset) 61 return 1; 62 return 0; 63 } 64 65 static struct btrfs_delayed_node *btrfs_get_delayed_node( 66 struct btrfs_inode *btrfs_inode) 67 { 68 struct btrfs_root *root = btrfs_inode->root; 69 u64 ino = btrfs_ino(btrfs_inode); 70 struct btrfs_delayed_node *node; 71 72 node = READ_ONCE(btrfs_inode->delayed_node); 73 if (node) { 74 refcount_inc(&node->refs); 75 return node; 76 } 77 78 spin_lock(&root->inode_lock); 79 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 80 81 if (node) { 82 if (btrfs_inode->delayed_node) { 83 refcount_inc(&node->refs); /* can be accessed */ 84 BUG_ON(btrfs_inode->delayed_node != node); 85 spin_unlock(&root->inode_lock); 86 return node; 87 } 88 89 /* 90 * It's possible that we're racing into the middle of removing 91 * this node from the radix tree. In this case, the refcount 92 * was zero and it should never go back to one. Just return 93 * NULL like it was never in the radix at all; our release 94 * function is in the process of removing it. 95 * 96 * Some implementations of refcount_inc refuse to bump the 97 * refcount once it has hit zero. If we don't do this dance 98 * here, refcount_inc() may decide to just WARN_ONCE() instead 99 * of actually bumping the refcount. 100 * 101 * If this node is properly in the radix, we want to bump the 102 * refcount twice, once for the inode and once for this get 103 * operation. 104 */ 105 if (refcount_inc_not_zero(&node->refs)) { 106 refcount_inc(&node->refs); 107 btrfs_inode->delayed_node = node; 108 } else { 109 node = NULL; 110 } 111 112 spin_unlock(&root->inode_lock); 113 return node; 114 } 115 spin_unlock(&root->inode_lock); 116 117 return NULL; 118 } 119 120 /* Will return either the node or PTR_ERR(-ENOMEM) */ 121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 122 struct btrfs_inode *btrfs_inode) 123 { 124 struct btrfs_delayed_node *node; 125 struct btrfs_root *root = btrfs_inode->root; 126 u64 ino = btrfs_ino(btrfs_inode); 127 int ret; 128 129 again: 130 node = btrfs_get_delayed_node(btrfs_inode); 131 if (node) 132 return node; 133 134 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 135 if (!node) 136 return ERR_PTR(-ENOMEM); 137 btrfs_init_delayed_node(node, root, ino); 138 139 /* cached in the btrfs inode and can be accessed */ 140 refcount_set(&node->refs, 2); 141 142 ret = radix_tree_preload(GFP_NOFS); 143 if (ret) { 144 kmem_cache_free(delayed_node_cache, node); 145 return ERR_PTR(ret); 146 } 147 148 spin_lock(&root->inode_lock); 149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 150 if (ret == -EEXIST) { 151 spin_unlock(&root->inode_lock); 152 kmem_cache_free(delayed_node_cache, node); 153 radix_tree_preload_end(); 154 goto again; 155 } 156 btrfs_inode->delayed_node = node; 157 spin_unlock(&root->inode_lock); 158 radix_tree_preload_end(); 159 160 return node; 161 } 162 163 /* 164 * Call it when holding delayed_node->mutex 165 * 166 * If mod = 1, add this node into the prepared list. 167 */ 168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 169 struct btrfs_delayed_node *node, 170 int mod) 171 { 172 spin_lock(&root->lock); 173 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 174 if (!list_empty(&node->p_list)) 175 list_move_tail(&node->p_list, &root->prepare_list); 176 else if (mod) 177 list_add_tail(&node->p_list, &root->prepare_list); 178 } else { 179 list_add_tail(&node->n_list, &root->node_list); 180 list_add_tail(&node->p_list, &root->prepare_list); 181 refcount_inc(&node->refs); /* inserted into list */ 182 root->nodes++; 183 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 184 } 185 spin_unlock(&root->lock); 186 } 187 188 /* Call it when holding delayed_node->mutex */ 189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 190 struct btrfs_delayed_node *node) 191 { 192 spin_lock(&root->lock); 193 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 194 root->nodes--; 195 refcount_dec(&node->refs); /* not in the list */ 196 list_del_init(&node->n_list); 197 if (!list_empty(&node->p_list)) 198 list_del_init(&node->p_list); 199 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 200 } 201 spin_unlock(&root->lock); 202 } 203 204 static struct btrfs_delayed_node *btrfs_first_delayed_node( 205 struct btrfs_delayed_root *delayed_root) 206 { 207 struct list_head *p; 208 struct btrfs_delayed_node *node = NULL; 209 210 spin_lock(&delayed_root->lock); 211 if (list_empty(&delayed_root->node_list)) 212 goto out; 213 214 p = delayed_root->node_list.next; 215 node = list_entry(p, struct btrfs_delayed_node, n_list); 216 refcount_inc(&node->refs); 217 out: 218 spin_unlock(&delayed_root->lock); 219 220 return node; 221 } 222 223 static struct btrfs_delayed_node *btrfs_next_delayed_node( 224 struct btrfs_delayed_node *node) 225 { 226 struct btrfs_delayed_root *delayed_root; 227 struct list_head *p; 228 struct btrfs_delayed_node *next = NULL; 229 230 delayed_root = node->root->fs_info->delayed_root; 231 spin_lock(&delayed_root->lock); 232 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 233 /* not in the list */ 234 if (list_empty(&delayed_root->node_list)) 235 goto out; 236 p = delayed_root->node_list.next; 237 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 238 goto out; 239 else 240 p = node->n_list.next; 241 242 next = list_entry(p, struct btrfs_delayed_node, n_list); 243 refcount_inc(&next->refs); 244 out: 245 spin_unlock(&delayed_root->lock); 246 247 return next; 248 } 249 250 static void __btrfs_release_delayed_node( 251 struct btrfs_delayed_node *delayed_node, 252 int mod) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 256 if (!delayed_node) 257 return; 258 259 delayed_root = delayed_node->root->fs_info->delayed_root; 260 261 mutex_lock(&delayed_node->mutex); 262 if (delayed_node->count) 263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 264 else 265 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 266 mutex_unlock(&delayed_node->mutex); 267 268 if (refcount_dec_and_test(&delayed_node->refs)) { 269 struct btrfs_root *root = delayed_node->root; 270 271 spin_lock(&root->inode_lock); 272 /* 273 * Once our refcount goes to zero, nobody is allowed to bump it 274 * back up. We can delete it now. 275 */ 276 ASSERT(refcount_read(&delayed_node->refs) == 0); 277 radix_tree_delete(&root->delayed_nodes_tree, 278 delayed_node->inode_id); 279 spin_unlock(&root->inode_lock); 280 kmem_cache_free(delayed_node_cache, delayed_node); 281 } 282 } 283 284 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 285 { 286 __btrfs_release_delayed_node(node, 0); 287 } 288 289 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 290 struct btrfs_delayed_root *delayed_root) 291 { 292 struct list_head *p; 293 struct btrfs_delayed_node *node = NULL; 294 295 spin_lock(&delayed_root->lock); 296 if (list_empty(&delayed_root->prepare_list)) 297 goto out; 298 299 p = delayed_root->prepare_list.next; 300 list_del_init(p); 301 node = list_entry(p, struct btrfs_delayed_node, p_list); 302 refcount_inc(&node->refs); 303 out: 304 spin_unlock(&delayed_root->lock); 305 306 return node; 307 } 308 309 static inline void btrfs_release_prepared_delayed_node( 310 struct btrfs_delayed_node *node) 311 { 312 __btrfs_release_delayed_node(node, 1); 313 } 314 315 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 316 { 317 struct btrfs_delayed_item *item; 318 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 319 if (item) { 320 item->data_len = data_len; 321 item->ins_or_del = 0; 322 item->bytes_reserved = 0; 323 item->delayed_node = NULL; 324 refcount_set(&item->refs, 1); 325 } 326 return item; 327 } 328 329 /* 330 * __btrfs_lookup_delayed_item - look up the delayed item by key 331 * @delayed_node: pointer to the delayed node 332 * @key: the key to look up 333 * @prev: used to store the prev item if the right item isn't found 334 * @next: used to store the next item if the right item isn't found 335 * 336 * Note: if we don't find the right item, we will return the prev item and 337 * the next item. 338 */ 339 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 340 struct rb_root *root, 341 struct btrfs_key *key, 342 struct btrfs_delayed_item **prev, 343 struct btrfs_delayed_item **next) 344 { 345 struct rb_node *node, *prev_node = NULL; 346 struct btrfs_delayed_item *delayed_item = NULL; 347 int ret = 0; 348 349 node = root->rb_node; 350 351 while (node) { 352 delayed_item = rb_entry(node, struct btrfs_delayed_item, 353 rb_node); 354 prev_node = node; 355 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 356 if (ret < 0) 357 node = node->rb_right; 358 else if (ret > 0) 359 node = node->rb_left; 360 else 361 return delayed_item; 362 } 363 364 if (prev) { 365 if (!prev_node) 366 *prev = NULL; 367 else if (ret < 0) 368 *prev = delayed_item; 369 else if ((node = rb_prev(prev_node)) != NULL) { 370 *prev = rb_entry(node, struct btrfs_delayed_item, 371 rb_node); 372 } else 373 *prev = NULL; 374 } 375 376 if (next) { 377 if (!prev_node) 378 *next = NULL; 379 else if (ret > 0) 380 *next = delayed_item; 381 else if ((node = rb_next(prev_node)) != NULL) { 382 *next = rb_entry(node, struct btrfs_delayed_item, 383 rb_node); 384 } else 385 *next = NULL; 386 } 387 return NULL; 388 } 389 390 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 391 struct btrfs_delayed_node *delayed_node, 392 struct btrfs_key *key) 393 { 394 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 395 NULL, NULL); 396 } 397 398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 399 struct btrfs_delayed_item *ins, 400 int action) 401 { 402 struct rb_node **p, *node; 403 struct rb_node *parent_node = NULL; 404 struct rb_root_cached *root; 405 struct btrfs_delayed_item *item; 406 int cmp; 407 bool leftmost = true; 408 409 if (action == BTRFS_DELAYED_INSERTION_ITEM) 410 root = &delayed_node->ins_root; 411 else if (action == BTRFS_DELAYED_DELETION_ITEM) 412 root = &delayed_node->del_root; 413 else 414 BUG(); 415 p = &root->rb_root.rb_node; 416 node = &ins->rb_node; 417 418 while (*p) { 419 parent_node = *p; 420 item = rb_entry(parent_node, struct btrfs_delayed_item, 421 rb_node); 422 423 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 424 if (cmp < 0) { 425 p = &(*p)->rb_right; 426 leftmost = false; 427 } else if (cmp > 0) { 428 p = &(*p)->rb_left; 429 } else { 430 return -EEXIST; 431 } 432 } 433 434 rb_link_node(node, parent_node, p); 435 rb_insert_color_cached(node, root, leftmost); 436 ins->delayed_node = delayed_node; 437 ins->ins_or_del = action; 438 439 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 440 action == BTRFS_DELAYED_INSERTION_ITEM && 441 ins->key.offset >= delayed_node->index_cnt) 442 delayed_node->index_cnt = ins->key.offset + 1; 443 444 delayed_node->count++; 445 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 446 return 0; 447 } 448 449 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 450 struct btrfs_delayed_item *item) 451 { 452 return __btrfs_add_delayed_item(node, item, 453 BTRFS_DELAYED_INSERTION_ITEM); 454 } 455 456 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 457 struct btrfs_delayed_item *item) 458 { 459 return __btrfs_add_delayed_item(node, item, 460 BTRFS_DELAYED_DELETION_ITEM); 461 } 462 463 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 464 { 465 int seq = atomic_inc_return(&delayed_root->items_seq); 466 467 /* atomic_dec_return implies a barrier */ 468 if ((atomic_dec_return(&delayed_root->items) < 469 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 470 cond_wake_up_nomb(&delayed_root->wait); 471 } 472 473 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 474 { 475 struct rb_root_cached *root; 476 struct btrfs_delayed_root *delayed_root; 477 478 /* Not associated with any delayed_node */ 479 if (!delayed_item->delayed_node) 480 return; 481 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 482 483 BUG_ON(!delayed_root); 484 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 485 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 486 487 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 488 root = &delayed_item->delayed_node->ins_root; 489 else 490 root = &delayed_item->delayed_node->del_root; 491 492 rb_erase_cached(&delayed_item->rb_node, root); 493 delayed_item->delayed_node->count--; 494 495 finish_one_item(delayed_root); 496 } 497 498 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 499 { 500 if (item) { 501 __btrfs_remove_delayed_item(item); 502 if (refcount_dec_and_test(&item->refs)) 503 kfree(item); 504 } 505 } 506 507 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 508 struct btrfs_delayed_node *delayed_node) 509 { 510 struct rb_node *p; 511 struct btrfs_delayed_item *item = NULL; 512 513 p = rb_first_cached(&delayed_node->ins_root); 514 if (p) 515 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 516 517 return item; 518 } 519 520 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 521 struct btrfs_delayed_node *delayed_node) 522 { 523 struct rb_node *p; 524 struct btrfs_delayed_item *item = NULL; 525 526 p = rb_first_cached(&delayed_node->del_root); 527 if (p) 528 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 529 530 return item; 531 } 532 533 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 534 struct btrfs_delayed_item *item) 535 { 536 struct rb_node *p; 537 struct btrfs_delayed_item *next = NULL; 538 539 p = rb_next(&item->rb_node); 540 if (p) 541 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 542 543 return next; 544 } 545 546 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 547 struct btrfs_root *root, 548 struct btrfs_delayed_item *item) 549 { 550 struct btrfs_block_rsv *src_rsv; 551 struct btrfs_block_rsv *dst_rsv; 552 struct btrfs_fs_info *fs_info = root->fs_info; 553 u64 num_bytes; 554 int ret; 555 556 if (!trans->bytes_reserved) 557 return 0; 558 559 src_rsv = trans->block_rsv; 560 dst_rsv = &fs_info->delayed_block_rsv; 561 562 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 563 564 /* 565 * Here we migrate space rsv from transaction rsv, since have already 566 * reserved space when starting a transaction. So no need to reserve 567 * qgroup space here. 568 */ 569 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 570 if (!ret) { 571 trace_btrfs_space_reservation(fs_info, "delayed_item", 572 item->key.objectid, 573 num_bytes, 1); 574 item->bytes_reserved = num_bytes; 575 } 576 577 return ret; 578 } 579 580 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 581 struct btrfs_delayed_item *item) 582 { 583 struct btrfs_block_rsv *rsv; 584 struct btrfs_fs_info *fs_info = root->fs_info; 585 586 if (!item->bytes_reserved) 587 return; 588 589 rsv = &fs_info->delayed_block_rsv; 590 /* 591 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 592 * to release/reserve qgroup space. 593 */ 594 trace_btrfs_space_reservation(fs_info, "delayed_item", 595 item->key.objectid, item->bytes_reserved, 596 0); 597 btrfs_block_rsv_release(fs_info, rsv, 598 item->bytes_reserved); 599 } 600 601 static int btrfs_delayed_inode_reserve_metadata( 602 struct btrfs_trans_handle *trans, 603 struct btrfs_root *root, 604 struct btrfs_inode *inode, 605 struct btrfs_delayed_node *node) 606 { 607 struct btrfs_fs_info *fs_info = root->fs_info; 608 struct btrfs_block_rsv *src_rsv; 609 struct btrfs_block_rsv *dst_rsv; 610 u64 num_bytes; 611 int ret; 612 613 src_rsv = trans->block_rsv; 614 dst_rsv = &fs_info->delayed_block_rsv; 615 616 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 617 618 /* 619 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 620 * which doesn't reserve space for speed. This is a problem since we 621 * still need to reserve space for this update, so try to reserve the 622 * space. 623 * 624 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 625 * we always reserve enough to update the inode item. 626 */ 627 if (!src_rsv || (!trans->bytes_reserved && 628 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 629 ret = btrfs_qgroup_reserve_meta_prealloc(root, 630 fs_info->nodesize, true); 631 if (ret < 0) 632 return ret; 633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 634 BTRFS_RESERVE_NO_FLUSH); 635 /* 636 * Since we're under a transaction reserve_metadata_bytes could 637 * try to commit the transaction which will make it return 638 * EAGAIN to make us stop the transaction we have, so return 639 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 640 */ 641 if (ret == -EAGAIN) { 642 ret = -ENOSPC; 643 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 644 } 645 if (!ret) { 646 node->bytes_reserved = num_bytes; 647 trace_btrfs_space_reservation(fs_info, 648 "delayed_inode", 649 btrfs_ino(inode), 650 num_bytes, 1); 651 } else { 652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 653 } 654 return ret; 655 } 656 657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 658 if (!ret) { 659 trace_btrfs_space_reservation(fs_info, "delayed_inode", 660 btrfs_ino(inode), num_bytes, 1); 661 node->bytes_reserved = num_bytes; 662 } 663 664 return ret; 665 } 666 667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 668 struct btrfs_delayed_node *node, 669 bool qgroup_free) 670 { 671 struct btrfs_block_rsv *rsv; 672 673 if (!node->bytes_reserved) 674 return; 675 676 rsv = &fs_info->delayed_block_rsv; 677 trace_btrfs_space_reservation(fs_info, "delayed_inode", 678 node->inode_id, node->bytes_reserved, 0); 679 btrfs_block_rsv_release(fs_info, rsv, 680 node->bytes_reserved); 681 if (qgroup_free) 682 btrfs_qgroup_free_meta_prealloc(node->root, 683 node->bytes_reserved); 684 else 685 btrfs_qgroup_convert_reserved_meta(node->root, 686 node->bytes_reserved); 687 node->bytes_reserved = 0; 688 } 689 690 /* 691 * This helper will insert some continuous items into the same leaf according 692 * to the free space of the leaf. 693 */ 694 static int btrfs_batch_insert_items(struct btrfs_root *root, 695 struct btrfs_path *path, 696 struct btrfs_delayed_item *item) 697 { 698 struct btrfs_delayed_item *curr, *next; 699 int free_space; 700 int total_data_size = 0, total_size = 0; 701 struct extent_buffer *leaf; 702 char *data_ptr; 703 struct btrfs_key *keys; 704 u32 *data_size; 705 struct list_head head; 706 int slot; 707 int nitems; 708 int i; 709 int ret = 0; 710 711 BUG_ON(!path->nodes[0]); 712 713 leaf = path->nodes[0]; 714 free_space = btrfs_leaf_free_space(leaf); 715 INIT_LIST_HEAD(&head); 716 717 next = item; 718 nitems = 0; 719 720 /* 721 * count the number of the continuous items that we can insert in batch 722 */ 723 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 724 free_space) { 725 total_data_size += next->data_len; 726 total_size += next->data_len + sizeof(struct btrfs_item); 727 list_add_tail(&next->tree_list, &head); 728 nitems++; 729 730 curr = next; 731 next = __btrfs_next_delayed_item(curr); 732 if (!next) 733 break; 734 735 if (!btrfs_is_continuous_delayed_item(curr, next)) 736 break; 737 } 738 739 if (!nitems) { 740 ret = 0; 741 goto out; 742 } 743 744 /* 745 * we need allocate some memory space, but it might cause the task 746 * to sleep, so we set all locked nodes in the path to blocking locks 747 * first. 748 */ 749 btrfs_set_path_blocking(path); 750 751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 752 if (!keys) { 753 ret = -ENOMEM; 754 goto out; 755 } 756 757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 758 if (!data_size) { 759 ret = -ENOMEM; 760 goto error; 761 } 762 763 /* get keys of all the delayed items */ 764 i = 0; 765 list_for_each_entry(next, &head, tree_list) { 766 keys[i] = next->key; 767 data_size[i] = next->data_len; 768 i++; 769 } 770 771 /* insert the keys of the items */ 772 setup_items_for_insert(root, path, keys, data_size, 773 total_data_size, total_size, nitems); 774 775 /* insert the dir index items */ 776 slot = path->slots[0]; 777 list_for_each_entry_safe(curr, next, &head, tree_list) { 778 data_ptr = btrfs_item_ptr(leaf, slot, char); 779 write_extent_buffer(leaf, &curr->data, 780 (unsigned long)data_ptr, 781 curr->data_len); 782 slot++; 783 784 btrfs_delayed_item_release_metadata(root, curr); 785 786 list_del(&curr->tree_list); 787 btrfs_release_delayed_item(curr); 788 } 789 790 error: 791 kfree(data_size); 792 kfree(keys); 793 out: 794 return ret; 795 } 796 797 /* 798 * This helper can just do simple insertion that needn't extend item for new 799 * data, such as directory name index insertion, inode insertion. 800 */ 801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 802 struct btrfs_root *root, 803 struct btrfs_path *path, 804 struct btrfs_delayed_item *delayed_item) 805 { 806 struct extent_buffer *leaf; 807 char *ptr; 808 int ret; 809 810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 811 delayed_item->data_len); 812 if (ret < 0 && ret != -EEXIST) 813 return ret; 814 815 leaf = path->nodes[0]; 816 817 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 818 819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 820 delayed_item->data_len); 821 btrfs_mark_buffer_dirty(leaf); 822 823 btrfs_delayed_item_release_metadata(root, delayed_item); 824 return 0; 825 } 826 827 /* 828 * we insert an item first, then if there are some continuous items, we try 829 * to insert those items into the same leaf. 830 */ 831 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 832 struct btrfs_path *path, 833 struct btrfs_root *root, 834 struct btrfs_delayed_node *node) 835 { 836 struct btrfs_delayed_item *curr, *prev; 837 int ret = 0; 838 839 do_again: 840 mutex_lock(&node->mutex); 841 curr = __btrfs_first_delayed_insertion_item(node); 842 if (!curr) 843 goto insert_end; 844 845 ret = btrfs_insert_delayed_item(trans, root, path, curr); 846 if (ret < 0) { 847 btrfs_release_path(path); 848 goto insert_end; 849 } 850 851 prev = curr; 852 curr = __btrfs_next_delayed_item(prev); 853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 854 /* insert the continuous items into the same leaf */ 855 path->slots[0]++; 856 btrfs_batch_insert_items(root, path, curr); 857 } 858 btrfs_release_delayed_item(prev); 859 btrfs_mark_buffer_dirty(path->nodes[0]); 860 861 btrfs_release_path(path); 862 mutex_unlock(&node->mutex); 863 goto do_again; 864 865 insert_end: 866 mutex_unlock(&node->mutex); 867 return ret; 868 } 869 870 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 871 struct btrfs_root *root, 872 struct btrfs_path *path, 873 struct btrfs_delayed_item *item) 874 { 875 struct btrfs_delayed_item *curr, *next; 876 struct extent_buffer *leaf; 877 struct btrfs_key key; 878 struct list_head head; 879 int nitems, i, last_item; 880 int ret = 0; 881 882 BUG_ON(!path->nodes[0]); 883 884 leaf = path->nodes[0]; 885 886 i = path->slots[0]; 887 last_item = btrfs_header_nritems(leaf) - 1; 888 if (i > last_item) 889 return -ENOENT; /* FIXME: Is errno suitable? */ 890 891 next = item; 892 INIT_LIST_HEAD(&head); 893 btrfs_item_key_to_cpu(leaf, &key, i); 894 nitems = 0; 895 /* 896 * count the number of the dir index items that we can delete in batch 897 */ 898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 899 list_add_tail(&next->tree_list, &head); 900 nitems++; 901 902 curr = next; 903 next = __btrfs_next_delayed_item(curr); 904 if (!next) 905 break; 906 907 if (!btrfs_is_continuous_delayed_item(curr, next)) 908 break; 909 910 i++; 911 if (i > last_item) 912 break; 913 btrfs_item_key_to_cpu(leaf, &key, i); 914 } 915 916 if (!nitems) 917 return 0; 918 919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 920 if (ret) 921 goto out; 922 923 list_for_each_entry_safe(curr, next, &head, tree_list) { 924 btrfs_delayed_item_release_metadata(root, curr); 925 list_del(&curr->tree_list); 926 btrfs_release_delayed_item(curr); 927 } 928 929 out: 930 return ret; 931 } 932 933 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 934 struct btrfs_path *path, 935 struct btrfs_root *root, 936 struct btrfs_delayed_node *node) 937 { 938 struct btrfs_delayed_item *curr, *prev; 939 int ret = 0; 940 941 do_again: 942 mutex_lock(&node->mutex); 943 curr = __btrfs_first_delayed_deletion_item(node); 944 if (!curr) 945 goto delete_fail; 946 947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 948 if (ret < 0) 949 goto delete_fail; 950 else if (ret > 0) { 951 /* 952 * can't find the item which the node points to, so this node 953 * is invalid, just drop it. 954 */ 955 prev = curr; 956 curr = __btrfs_next_delayed_item(prev); 957 btrfs_release_delayed_item(prev); 958 ret = 0; 959 btrfs_release_path(path); 960 if (curr) { 961 mutex_unlock(&node->mutex); 962 goto do_again; 963 } else 964 goto delete_fail; 965 } 966 967 btrfs_batch_delete_items(trans, root, path, curr); 968 btrfs_release_path(path); 969 mutex_unlock(&node->mutex); 970 goto do_again; 971 972 delete_fail: 973 btrfs_release_path(path); 974 mutex_unlock(&node->mutex); 975 return ret; 976 } 977 978 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 979 { 980 struct btrfs_delayed_root *delayed_root; 981 982 if (delayed_node && 983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 984 BUG_ON(!delayed_node->root); 985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 986 delayed_node->count--; 987 988 delayed_root = delayed_node->root->fs_info->delayed_root; 989 finish_one_item(delayed_root); 990 } 991 } 992 993 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 994 { 995 struct btrfs_delayed_root *delayed_root; 996 997 ASSERT(delayed_node->root); 998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 999 delayed_node->count--; 1000 1001 delayed_root = delayed_node->root->fs_info->delayed_root; 1002 finish_one_item(delayed_root); 1003 } 1004 1005 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1006 struct btrfs_root *root, 1007 struct btrfs_path *path, 1008 struct btrfs_delayed_node *node) 1009 { 1010 struct btrfs_fs_info *fs_info = root->fs_info; 1011 struct btrfs_key key; 1012 struct btrfs_inode_item *inode_item; 1013 struct extent_buffer *leaf; 1014 int mod; 1015 int ret; 1016 1017 key.objectid = node->inode_id; 1018 key.type = BTRFS_INODE_ITEM_KEY; 1019 key.offset = 0; 1020 1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1022 mod = -1; 1023 else 1024 mod = 1; 1025 1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1027 if (ret > 0) { 1028 btrfs_release_path(path); 1029 return -ENOENT; 1030 } else if (ret < 0) { 1031 return ret; 1032 } 1033 1034 leaf = path->nodes[0]; 1035 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1036 struct btrfs_inode_item); 1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1038 sizeof(struct btrfs_inode_item)); 1039 btrfs_mark_buffer_dirty(leaf); 1040 1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1042 goto no_iref; 1043 1044 path->slots[0]++; 1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1046 goto search; 1047 again: 1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1049 if (key.objectid != node->inode_id) 1050 goto out; 1051 1052 if (key.type != BTRFS_INODE_REF_KEY && 1053 key.type != BTRFS_INODE_EXTREF_KEY) 1054 goto out; 1055 1056 /* 1057 * Delayed iref deletion is for the inode who has only one link, 1058 * so there is only one iref. The case that several irefs are 1059 * in the same item doesn't exist. 1060 */ 1061 btrfs_del_item(trans, root, path); 1062 out: 1063 btrfs_release_delayed_iref(node); 1064 no_iref: 1065 btrfs_release_path(path); 1066 err_out: 1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1068 btrfs_release_delayed_inode(node); 1069 1070 return ret; 1071 1072 search: 1073 btrfs_release_path(path); 1074 1075 key.type = BTRFS_INODE_EXTREF_KEY; 1076 key.offset = -1; 1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1078 if (ret < 0) 1079 goto err_out; 1080 ASSERT(ret); 1081 1082 ret = 0; 1083 leaf = path->nodes[0]; 1084 path->slots[0]--; 1085 goto again; 1086 } 1087 1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, 1090 struct btrfs_path *path, 1091 struct btrfs_delayed_node *node) 1092 { 1093 int ret; 1094 1095 mutex_lock(&node->mutex); 1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1097 mutex_unlock(&node->mutex); 1098 return 0; 1099 } 1100 1101 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1102 mutex_unlock(&node->mutex); 1103 return ret; 1104 } 1105 1106 static inline int 1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1108 struct btrfs_path *path, 1109 struct btrfs_delayed_node *node) 1110 { 1111 int ret; 1112 1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1114 if (ret) 1115 return ret; 1116 1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1118 if (ret) 1119 return ret; 1120 1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1122 return ret; 1123 } 1124 1125 /* 1126 * Called when committing the transaction. 1127 * Returns 0 on success. 1128 * Returns < 0 on error and returns with an aborted transaction with any 1129 * outstanding delayed items cleaned up. 1130 */ 1131 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1132 { 1133 struct btrfs_fs_info *fs_info = trans->fs_info; 1134 struct btrfs_delayed_root *delayed_root; 1135 struct btrfs_delayed_node *curr_node, *prev_node; 1136 struct btrfs_path *path; 1137 struct btrfs_block_rsv *block_rsv; 1138 int ret = 0; 1139 bool count = (nr > 0); 1140 1141 if (trans->aborted) 1142 return -EIO; 1143 1144 path = btrfs_alloc_path(); 1145 if (!path) 1146 return -ENOMEM; 1147 path->leave_spinning = 1; 1148 1149 block_rsv = trans->block_rsv; 1150 trans->block_rsv = &fs_info->delayed_block_rsv; 1151 1152 delayed_root = fs_info->delayed_root; 1153 1154 curr_node = btrfs_first_delayed_node(delayed_root); 1155 while (curr_node && (!count || (count && nr--))) { 1156 ret = __btrfs_commit_inode_delayed_items(trans, path, 1157 curr_node); 1158 if (ret) { 1159 btrfs_release_delayed_node(curr_node); 1160 curr_node = NULL; 1161 btrfs_abort_transaction(trans, ret); 1162 break; 1163 } 1164 1165 prev_node = curr_node; 1166 curr_node = btrfs_next_delayed_node(curr_node); 1167 btrfs_release_delayed_node(prev_node); 1168 } 1169 1170 if (curr_node) 1171 btrfs_release_delayed_node(curr_node); 1172 btrfs_free_path(path); 1173 trans->block_rsv = block_rsv; 1174 1175 return ret; 1176 } 1177 1178 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1179 { 1180 return __btrfs_run_delayed_items(trans, -1); 1181 } 1182 1183 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1184 { 1185 return __btrfs_run_delayed_items(trans, nr); 1186 } 1187 1188 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1189 struct btrfs_inode *inode) 1190 { 1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1192 struct btrfs_path *path; 1193 struct btrfs_block_rsv *block_rsv; 1194 int ret; 1195 1196 if (!delayed_node) 1197 return 0; 1198 1199 mutex_lock(&delayed_node->mutex); 1200 if (!delayed_node->count) { 1201 mutex_unlock(&delayed_node->mutex); 1202 btrfs_release_delayed_node(delayed_node); 1203 return 0; 1204 } 1205 mutex_unlock(&delayed_node->mutex); 1206 1207 path = btrfs_alloc_path(); 1208 if (!path) { 1209 btrfs_release_delayed_node(delayed_node); 1210 return -ENOMEM; 1211 } 1212 path->leave_spinning = 1; 1213 1214 block_rsv = trans->block_rsv; 1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1216 1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1218 1219 btrfs_release_delayed_node(delayed_node); 1220 btrfs_free_path(path); 1221 trans->block_rsv = block_rsv; 1222 1223 return ret; 1224 } 1225 1226 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1227 { 1228 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1229 struct btrfs_trans_handle *trans; 1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1231 struct btrfs_path *path; 1232 struct btrfs_block_rsv *block_rsv; 1233 int ret; 1234 1235 if (!delayed_node) 1236 return 0; 1237 1238 mutex_lock(&delayed_node->mutex); 1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1240 mutex_unlock(&delayed_node->mutex); 1241 btrfs_release_delayed_node(delayed_node); 1242 return 0; 1243 } 1244 mutex_unlock(&delayed_node->mutex); 1245 1246 trans = btrfs_join_transaction(delayed_node->root); 1247 if (IS_ERR(trans)) { 1248 ret = PTR_ERR(trans); 1249 goto out; 1250 } 1251 1252 path = btrfs_alloc_path(); 1253 if (!path) { 1254 ret = -ENOMEM; 1255 goto trans_out; 1256 } 1257 path->leave_spinning = 1; 1258 1259 block_rsv = trans->block_rsv; 1260 trans->block_rsv = &fs_info->delayed_block_rsv; 1261 1262 mutex_lock(&delayed_node->mutex); 1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1265 path, delayed_node); 1266 else 1267 ret = 0; 1268 mutex_unlock(&delayed_node->mutex); 1269 1270 btrfs_free_path(path); 1271 trans->block_rsv = block_rsv; 1272 trans_out: 1273 btrfs_end_transaction(trans); 1274 btrfs_btree_balance_dirty(fs_info); 1275 out: 1276 btrfs_release_delayed_node(delayed_node); 1277 1278 return ret; 1279 } 1280 1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1282 { 1283 struct btrfs_delayed_node *delayed_node; 1284 1285 delayed_node = READ_ONCE(inode->delayed_node); 1286 if (!delayed_node) 1287 return; 1288 1289 inode->delayed_node = NULL; 1290 btrfs_release_delayed_node(delayed_node); 1291 } 1292 1293 struct btrfs_async_delayed_work { 1294 struct btrfs_delayed_root *delayed_root; 1295 int nr; 1296 struct btrfs_work work; 1297 }; 1298 1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1300 { 1301 struct btrfs_async_delayed_work *async_work; 1302 struct btrfs_delayed_root *delayed_root; 1303 struct btrfs_trans_handle *trans; 1304 struct btrfs_path *path; 1305 struct btrfs_delayed_node *delayed_node = NULL; 1306 struct btrfs_root *root; 1307 struct btrfs_block_rsv *block_rsv; 1308 int total_done = 0; 1309 1310 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1311 delayed_root = async_work->delayed_root; 1312 1313 path = btrfs_alloc_path(); 1314 if (!path) 1315 goto out; 1316 1317 do { 1318 if (atomic_read(&delayed_root->items) < 1319 BTRFS_DELAYED_BACKGROUND / 2) 1320 break; 1321 1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1323 if (!delayed_node) 1324 break; 1325 1326 path->leave_spinning = 1; 1327 root = delayed_node->root; 1328 1329 trans = btrfs_join_transaction(root); 1330 if (IS_ERR(trans)) { 1331 btrfs_release_path(path); 1332 btrfs_release_prepared_delayed_node(delayed_node); 1333 total_done++; 1334 continue; 1335 } 1336 1337 block_rsv = trans->block_rsv; 1338 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1339 1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1341 1342 trans->block_rsv = block_rsv; 1343 btrfs_end_transaction(trans); 1344 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1345 1346 btrfs_release_path(path); 1347 btrfs_release_prepared_delayed_node(delayed_node); 1348 total_done++; 1349 1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1351 || total_done < async_work->nr); 1352 1353 btrfs_free_path(path); 1354 out: 1355 wake_up(&delayed_root->wait); 1356 kfree(async_work); 1357 } 1358 1359 1360 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1361 struct btrfs_fs_info *fs_info, int nr) 1362 { 1363 struct btrfs_async_delayed_work *async_work; 1364 1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1366 if (!async_work) 1367 return -ENOMEM; 1368 1369 async_work->delayed_root = delayed_root; 1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1371 btrfs_async_run_delayed_root, NULL, NULL); 1372 async_work->nr = nr; 1373 1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1375 return 0; 1376 } 1377 1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1379 { 1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1381 } 1382 1383 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1384 { 1385 int val = atomic_read(&delayed_root->items_seq); 1386 1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1388 return 1; 1389 1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1391 return 1; 1392 1393 return 0; 1394 } 1395 1396 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1399 1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1402 return; 1403 1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1405 int seq; 1406 int ret; 1407 1408 seq = atomic_read(&delayed_root->items_seq); 1409 1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1411 if (ret) 1412 return; 1413 1414 wait_event_interruptible(delayed_root->wait, 1415 could_end_wait(delayed_root, seq)); 1416 return; 1417 } 1418 1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1420 } 1421 1422 /* Will return 0 or -ENOMEM */ 1423 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1424 const char *name, int name_len, 1425 struct btrfs_inode *dir, 1426 struct btrfs_disk_key *disk_key, u8 type, 1427 u64 index) 1428 { 1429 struct btrfs_delayed_node *delayed_node; 1430 struct btrfs_delayed_item *delayed_item; 1431 struct btrfs_dir_item *dir_item; 1432 int ret; 1433 1434 delayed_node = btrfs_get_or_create_delayed_node(dir); 1435 if (IS_ERR(delayed_node)) 1436 return PTR_ERR(delayed_node); 1437 1438 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1439 if (!delayed_item) { 1440 ret = -ENOMEM; 1441 goto release_node; 1442 } 1443 1444 delayed_item->key.objectid = btrfs_ino(dir); 1445 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1446 delayed_item->key.offset = index; 1447 1448 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1449 dir_item->location = *disk_key; 1450 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1451 btrfs_set_stack_dir_data_len(dir_item, 0); 1452 btrfs_set_stack_dir_name_len(dir_item, name_len); 1453 btrfs_set_stack_dir_type(dir_item, type); 1454 memcpy((char *)(dir_item + 1), name, name_len); 1455 1456 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1457 /* 1458 * we have reserved enough space when we start a new transaction, 1459 * so reserving metadata failure is impossible 1460 */ 1461 BUG_ON(ret); 1462 1463 mutex_lock(&delayed_node->mutex); 1464 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1465 if (unlikely(ret)) { 1466 btrfs_err(trans->fs_info, 1467 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1468 name_len, name, delayed_node->root->root_key.objectid, 1469 delayed_node->inode_id, ret); 1470 BUG(); 1471 } 1472 mutex_unlock(&delayed_node->mutex); 1473 1474 release_node: 1475 btrfs_release_delayed_node(delayed_node); 1476 return ret; 1477 } 1478 1479 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1480 struct btrfs_delayed_node *node, 1481 struct btrfs_key *key) 1482 { 1483 struct btrfs_delayed_item *item; 1484 1485 mutex_lock(&node->mutex); 1486 item = __btrfs_lookup_delayed_insertion_item(node, key); 1487 if (!item) { 1488 mutex_unlock(&node->mutex); 1489 return 1; 1490 } 1491 1492 btrfs_delayed_item_release_metadata(node->root, item); 1493 btrfs_release_delayed_item(item); 1494 mutex_unlock(&node->mutex); 1495 return 0; 1496 } 1497 1498 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1499 struct btrfs_inode *dir, u64 index) 1500 { 1501 struct btrfs_delayed_node *node; 1502 struct btrfs_delayed_item *item; 1503 struct btrfs_key item_key; 1504 int ret; 1505 1506 node = btrfs_get_or_create_delayed_node(dir); 1507 if (IS_ERR(node)) 1508 return PTR_ERR(node); 1509 1510 item_key.objectid = btrfs_ino(dir); 1511 item_key.type = BTRFS_DIR_INDEX_KEY; 1512 item_key.offset = index; 1513 1514 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1515 &item_key); 1516 if (!ret) 1517 goto end; 1518 1519 item = btrfs_alloc_delayed_item(0); 1520 if (!item) { 1521 ret = -ENOMEM; 1522 goto end; 1523 } 1524 1525 item->key = item_key; 1526 1527 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1528 /* 1529 * we have reserved enough space when we start a new transaction, 1530 * so reserving metadata failure is impossible. 1531 */ 1532 if (ret < 0) { 1533 btrfs_err(trans->fs_info, 1534 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1535 btrfs_release_delayed_item(item); 1536 goto end; 1537 } 1538 1539 mutex_lock(&node->mutex); 1540 ret = __btrfs_add_delayed_deletion_item(node, item); 1541 if (unlikely(ret)) { 1542 btrfs_err(trans->fs_info, 1543 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1544 index, node->root->root_key.objectid, 1545 node->inode_id, ret); 1546 btrfs_delayed_item_release_metadata(dir->root, item); 1547 btrfs_release_delayed_item(item); 1548 } 1549 mutex_unlock(&node->mutex); 1550 end: 1551 btrfs_release_delayed_node(node); 1552 return ret; 1553 } 1554 1555 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1556 { 1557 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1558 1559 if (!delayed_node) 1560 return -ENOENT; 1561 1562 /* 1563 * Since we have held i_mutex of this directory, it is impossible that 1564 * a new directory index is added into the delayed node and index_cnt 1565 * is updated now. So we needn't lock the delayed node. 1566 */ 1567 if (!delayed_node->index_cnt) { 1568 btrfs_release_delayed_node(delayed_node); 1569 return -EINVAL; 1570 } 1571 1572 inode->index_cnt = delayed_node->index_cnt; 1573 btrfs_release_delayed_node(delayed_node); 1574 return 0; 1575 } 1576 1577 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1578 struct list_head *ins_list, 1579 struct list_head *del_list) 1580 { 1581 struct btrfs_delayed_node *delayed_node; 1582 struct btrfs_delayed_item *item; 1583 1584 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1585 if (!delayed_node) 1586 return false; 1587 1588 /* 1589 * We can only do one readdir with delayed items at a time because of 1590 * item->readdir_list. 1591 */ 1592 inode_unlock_shared(inode); 1593 inode_lock(inode); 1594 1595 mutex_lock(&delayed_node->mutex); 1596 item = __btrfs_first_delayed_insertion_item(delayed_node); 1597 while (item) { 1598 refcount_inc(&item->refs); 1599 list_add_tail(&item->readdir_list, ins_list); 1600 item = __btrfs_next_delayed_item(item); 1601 } 1602 1603 item = __btrfs_first_delayed_deletion_item(delayed_node); 1604 while (item) { 1605 refcount_inc(&item->refs); 1606 list_add_tail(&item->readdir_list, del_list); 1607 item = __btrfs_next_delayed_item(item); 1608 } 1609 mutex_unlock(&delayed_node->mutex); 1610 /* 1611 * This delayed node is still cached in the btrfs inode, so refs 1612 * must be > 1 now, and we needn't check it is going to be freed 1613 * or not. 1614 * 1615 * Besides that, this function is used to read dir, we do not 1616 * insert/delete delayed items in this period. So we also needn't 1617 * requeue or dequeue this delayed node. 1618 */ 1619 refcount_dec(&delayed_node->refs); 1620 1621 return true; 1622 } 1623 1624 void btrfs_readdir_put_delayed_items(struct inode *inode, 1625 struct list_head *ins_list, 1626 struct list_head *del_list) 1627 { 1628 struct btrfs_delayed_item *curr, *next; 1629 1630 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1631 list_del(&curr->readdir_list); 1632 if (refcount_dec_and_test(&curr->refs)) 1633 kfree(curr); 1634 } 1635 1636 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1637 list_del(&curr->readdir_list); 1638 if (refcount_dec_and_test(&curr->refs)) 1639 kfree(curr); 1640 } 1641 1642 /* 1643 * The VFS is going to do up_read(), so we need to downgrade back to a 1644 * read lock. 1645 */ 1646 downgrade_write(&inode->i_rwsem); 1647 } 1648 1649 int btrfs_should_delete_dir_index(struct list_head *del_list, 1650 u64 index) 1651 { 1652 struct btrfs_delayed_item *curr; 1653 int ret = 0; 1654 1655 list_for_each_entry(curr, del_list, readdir_list) { 1656 if (curr->key.offset > index) 1657 break; 1658 if (curr->key.offset == index) { 1659 ret = 1; 1660 break; 1661 } 1662 } 1663 return ret; 1664 } 1665 1666 /* 1667 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1668 * 1669 */ 1670 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1671 struct list_head *ins_list) 1672 { 1673 struct btrfs_dir_item *di; 1674 struct btrfs_delayed_item *curr, *next; 1675 struct btrfs_key location; 1676 char *name; 1677 int name_len; 1678 int over = 0; 1679 unsigned char d_type; 1680 1681 if (list_empty(ins_list)) 1682 return 0; 1683 1684 /* 1685 * Changing the data of the delayed item is impossible. So 1686 * we needn't lock them. And we have held i_mutex of the 1687 * directory, nobody can delete any directory indexes now. 1688 */ 1689 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1690 list_del(&curr->readdir_list); 1691 1692 if (curr->key.offset < ctx->pos) { 1693 if (refcount_dec_and_test(&curr->refs)) 1694 kfree(curr); 1695 continue; 1696 } 1697 1698 ctx->pos = curr->key.offset; 1699 1700 di = (struct btrfs_dir_item *)curr->data; 1701 name = (char *)(di + 1); 1702 name_len = btrfs_stack_dir_name_len(di); 1703 1704 d_type = fs_ftype_to_dtype(di->type); 1705 btrfs_disk_key_to_cpu(&location, &di->location); 1706 1707 over = !dir_emit(ctx, name, name_len, 1708 location.objectid, d_type); 1709 1710 if (refcount_dec_and_test(&curr->refs)) 1711 kfree(curr); 1712 1713 if (over) 1714 return 1; 1715 ctx->pos++; 1716 } 1717 return 0; 1718 } 1719 1720 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1721 struct btrfs_inode_item *inode_item, 1722 struct inode *inode) 1723 { 1724 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1725 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1726 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1727 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1728 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1729 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1730 btrfs_set_stack_inode_generation(inode_item, 1731 BTRFS_I(inode)->generation); 1732 btrfs_set_stack_inode_sequence(inode_item, 1733 inode_peek_iversion(inode)); 1734 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1735 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1736 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1737 btrfs_set_stack_inode_block_group(inode_item, 0); 1738 1739 btrfs_set_stack_timespec_sec(&inode_item->atime, 1740 inode->i_atime.tv_sec); 1741 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1742 inode->i_atime.tv_nsec); 1743 1744 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1745 inode->i_mtime.tv_sec); 1746 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1747 inode->i_mtime.tv_nsec); 1748 1749 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1750 inode->i_ctime.tv_sec); 1751 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1752 inode->i_ctime.tv_nsec); 1753 1754 btrfs_set_stack_timespec_sec(&inode_item->otime, 1755 BTRFS_I(inode)->i_otime.tv_sec); 1756 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1757 BTRFS_I(inode)->i_otime.tv_nsec); 1758 } 1759 1760 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1761 { 1762 struct btrfs_delayed_node *delayed_node; 1763 struct btrfs_inode_item *inode_item; 1764 1765 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1766 if (!delayed_node) 1767 return -ENOENT; 1768 1769 mutex_lock(&delayed_node->mutex); 1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1771 mutex_unlock(&delayed_node->mutex); 1772 btrfs_release_delayed_node(delayed_node); 1773 return -ENOENT; 1774 } 1775 1776 inode_item = &delayed_node->inode_item; 1777 1778 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1779 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1780 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1781 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1782 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1783 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1784 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1785 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1786 1787 inode_set_iversion_queried(inode, 1788 btrfs_stack_inode_sequence(inode_item)); 1789 inode->i_rdev = 0; 1790 *rdev = btrfs_stack_inode_rdev(inode_item); 1791 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1792 1793 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1794 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1795 1796 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1797 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1798 1799 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1800 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1801 1802 BTRFS_I(inode)->i_otime.tv_sec = 1803 btrfs_stack_timespec_sec(&inode_item->otime); 1804 BTRFS_I(inode)->i_otime.tv_nsec = 1805 btrfs_stack_timespec_nsec(&inode_item->otime); 1806 1807 inode->i_generation = BTRFS_I(inode)->generation; 1808 BTRFS_I(inode)->index_cnt = (u64)-1; 1809 1810 mutex_unlock(&delayed_node->mutex); 1811 btrfs_release_delayed_node(delayed_node); 1812 return 0; 1813 } 1814 1815 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1816 struct btrfs_root *root, struct inode *inode) 1817 { 1818 struct btrfs_delayed_node *delayed_node; 1819 int ret = 0; 1820 1821 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1822 if (IS_ERR(delayed_node)) 1823 return PTR_ERR(delayed_node); 1824 1825 mutex_lock(&delayed_node->mutex); 1826 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1827 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1828 goto release_node; 1829 } 1830 1831 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1832 delayed_node); 1833 if (ret) 1834 goto release_node; 1835 1836 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1837 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1838 delayed_node->count++; 1839 atomic_inc(&root->fs_info->delayed_root->items); 1840 release_node: 1841 mutex_unlock(&delayed_node->mutex); 1842 btrfs_release_delayed_node(delayed_node); 1843 return ret; 1844 } 1845 1846 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1847 { 1848 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1849 struct btrfs_delayed_node *delayed_node; 1850 1851 /* 1852 * we don't do delayed inode updates during log recovery because it 1853 * leads to enospc problems. This means we also can't do 1854 * delayed inode refs 1855 */ 1856 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1857 return -EAGAIN; 1858 1859 delayed_node = btrfs_get_or_create_delayed_node(inode); 1860 if (IS_ERR(delayed_node)) 1861 return PTR_ERR(delayed_node); 1862 1863 /* 1864 * We don't reserve space for inode ref deletion is because: 1865 * - We ONLY do async inode ref deletion for the inode who has only 1866 * one link(i_nlink == 1), it means there is only one inode ref. 1867 * And in most case, the inode ref and the inode item are in the 1868 * same leaf, and we will deal with them at the same time. 1869 * Since we are sure we will reserve the space for the inode item, 1870 * it is unnecessary to reserve space for inode ref deletion. 1871 * - If the inode ref and the inode item are not in the same leaf, 1872 * We also needn't worry about enospc problem, because we reserve 1873 * much more space for the inode update than it needs. 1874 * - At the worst, we can steal some space from the global reservation. 1875 * It is very rare. 1876 */ 1877 mutex_lock(&delayed_node->mutex); 1878 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1879 goto release_node; 1880 1881 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1882 delayed_node->count++; 1883 atomic_inc(&fs_info->delayed_root->items); 1884 release_node: 1885 mutex_unlock(&delayed_node->mutex); 1886 btrfs_release_delayed_node(delayed_node); 1887 return 0; 1888 } 1889 1890 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1891 { 1892 struct btrfs_root *root = delayed_node->root; 1893 struct btrfs_fs_info *fs_info = root->fs_info; 1894 struct btrfs_delayed_item *curr_item, *prev_item; 1895 1896 mutex_lock(&delayed_node->mutex); 1897 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1898 while (curr_item) { 1899 btrfs_delayed_item_release_metadata(root, curr_item); 1900 prev_item = curr_item; 1901 curr_item = __btrfs_next_delayed_item(prev_item); 1902 btrfs_release_delayed_item(prev_item); 1903 } 1904 1905 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1906 while (curr_item) { 1907 btrfs_delayed_item_release_metadata(root, curr_item); 1908 prev_item = curr_item; 1909 curr_item = __btrfs_next_delayed_item(prev_item); 1910 btrfs_release_delayed_item(prev_item); 1911 } 1912 1913 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1914 btrfs_release_delayed_iref(delayed_node); 1915 1916 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1917 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1918 btrfs_release_delayed_inode(delayed_node); 1919 } 1920 mutex_unlock(&delayed_node->mutex); 1921 } 1922 1923 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1924 { 1925 struct btrfs_delayed_node *delayed_node; 1926 1927 delayed_node = btrfs_get_delayed_node(inode); 1928 if (!delayed_node) 1929 return; 1930 1931 __btrfs_kill_delayed_node(delayed_node); 1932 btrfs_release_delayed_node(delayed_node); 1933 } 1934 1935 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1936 { 1937 u64 inode_id = 0; 1938 struct btrfs_delayed_node *delayed_nodes[8]; 1939 int i, n; 1940 1941 while (1) { 1942 spin_lock(&root->inode_lock); 1943 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1944 (void **)delayed_nodes, inode_id, 1945 ARRAY_SIZE(delayed_nodes)); 1946 if (!n) { 1947 spin_unlock(&root->inode_lock); 1948 break; 1949 } 1950 1951 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1952 1953 for (i = 0; i < n; i++) 1954 refcount_inc(&delayed_nodes[i]->refs); 1955 spin_unlock(&root->inode_lock); 1956 1957 for (i = 0; i < n; i++) { 1958 __btrfs_kill_delayed_node(delayed_nodes[i]); 1959 btrfs_release_delayed_node(delayed_nodes[i]); 1960 } 1961 } 1962 } 1963 1964 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1965 { 1966 struct btrfs_delayed_node *curr_node, *prev_node; 1967 1968 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1969 while (curr_node) { 1970 __btrfs_kill_delayed_node(curr_node); 1971 1972 prev_node = curr_node; 1973 curr_node = btrfs_next_delayed_node(curr_node); 1974 btrfs_release_delayed_node(prev_node); 1975 } 1976 } 1977 1978