xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 9dae47aba0a055f761176d9297371d5bb24289ec)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	kmem_cache_destroy(delayed_node_cache);
47 }
48 
49 static inline void btrfs_init_delayed_node(
50 				struct btrfs_delayed_node *delayed_node,
51 				struct btrfs_root *root, u64 inode_id)
52 {
53 	delayed_node->root = root;
54 	delayed_node->inode_id = inode_id;
55 	refcount_set(&delayed_node->refs, 0);
56 	delayed_node->ins_root = RB_ROOT;
57 	delayed_node->del_root = RB_ROOT;
58 	mutex_init(&delayed_node->mutex);
59 	INIT_LIST_HEAD(&delayed_node->n_list);
60 	INIT_LIST_HEAD(&delayed_node->p_list);
61 }
62 
63 static inline int btrfs_is_continuous_delayed_item(
64 					struct btrfs_delayed_item *item1,
65 					struct btrfs_delayed_item *item2)
66 {
67 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
68 	    item1->key.objectid == item2->key.objectid &&
69 	    item1->key.type == item2->key.type &&
70 	    item1->key.offset + 1 == item2->key.offset)
71 		return 1;
72 	return 0;
73 }
74 
75 static struct btrfs_delayed_node *btrfs_get_delayed_node(
76 		struct btrfs_inode *btrfs_inode)
77 {
78 	struct btrfs_root *root = btrfs_inode->root;
79 	u64 ino = btrfs_ino(btrfs_inode);
80 	struct btrfs_delayed_node *node;
81 
82 	node = READ_ONCE(btrfs_inode->delayed_node);
83 	if (node) {
84 		refcount_inc(&node->refs);
85 		return node;
86 	}
87 
88 	spin_lock(&root->inode_lock);
89 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
90 	if (node) {
91 		if (btrfs_inode->delayed_node) {
92 			refcount_inc(&node->refs);	/* can be accessed */
93 			BUG_ON(btrfs_inode->delayed_node != node);
94 			spin_unlock(&root->inode_lock);
95 			return node;
96 		}
97 		btrfs_inode->delayed_node = node;
98 		/* can be accessed and cached in the inode */
99 		refcount_add(2, &node->refs);
100 		spin_unlock(&root->inode_lock);
101 		return node;
102 	}
103 	spin_unlock(&root->inode_lock);
104 
105 	return NULL;
106 }
107 
108 /* Will return either the node or PTR_ERR(-ENOMEM) */
109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
110 		struct btrfs_inode *btrfs_inode)
111 {
112 	struct btrfs_delayed_node *node;
113 	struct btrfs_root *root = btrfs_inode->root;
114 	u64 ino = btrfs_ino(btrfs_inode);
115 	int ret;
116 
117 again:
118 	node = btrfs_get_delayed_node(btrfs_inode);
119 	if (node)
120 		return node;
121 
122 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
123 	if (!node)
124 		return ERR_PTR(-ENOMEM);
125 	btrfs_init_delayed_node(node, root, ino);
126 
127 	/* cached in the btrfs inode and can be accessed */
128 	refcount_set(&node->refs, 2);
129 
130 	ret = radix_tree_preload(GFP_NOFS);
131 	if (ret) {
132 		kmem_cache_free(delayed_node_cache, node);
133 		return ERR_PTR(ret);
134 	}
135 
136 	spin_lock(&root->inode_lock);
137 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
138 	if (ret == -EEXIST) {
139 		spin_unlock(&root->inode_lock);
140 		kmem_cache_free(delayed_node_cache, node);
141 		radix_tree_preload_end();
142 		goto again;
143 	}
144 	btrfs_inode->delayed_node = node;
145 	spin_unlock(&root->inode_lock);
146 	radix_tree_preload_end();
147 
148 	return node;
149 }
150 
151 /*
152  * Call it when holding delayed_node->mutex
153  *
154  * If mod = 1, add this node into the prepared list.
155  */
156 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
157 				     struct btrfs_delayed_node *node,
158 				     int mod)
159 {
160 	spin_lock(&root->lock);
161 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
162 		if (!list_empty(&node->p_list))
163 			list_move_tail(&node->p_list, &root->prepare_list);
164 		else if (mod)
165 			list_add_tail(&node->p_list, &root->prepare_list);
166 	} else {
167 		list_add_tail(&node->n_list, &root->node_list);
168 		list_add_tail(&node->p_list, &root->prepare_list);
169 		refcount_inc(&node->refs);	/* inserted into list */
170 		root->nodes++;
171 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
172 	}
173 	spin_unlock(&root->lock);
174 }
175 
176 /* Call it when holding delayed_node->mutex */
177 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
178 				       struct btrfs_delayed_node *node)
179 {
180 	spin_lock(&root->lock);
181 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
182 		root->nodes--;
183 		refcount_dec(&node->refs);	/* not in the list */
184 		list_del_init(&node->n_list);
185 		if (!list_empty(&node->p_list))
186 			list_del_init(&node->p_list);
187 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
188 	}
189 	spin_unlock(&root->lock);
190 }
191 
192 static struct btrfs_delayed_node *btrfs_first_delayed_node(
193 			struct btrfs_delayed_root *delayed_root)
194 {
195 	struct list_head *p;
196 	struct btrfs_delayed_node *node = NULL;
197 
198 	spin_lock(&delayed_root->lock);
199 	if (list_empty(&delayed_root->node_list))
200 		goto out;
201 
202 	p = delayed_root->node_list.next;
203 	node = list_entry(p, struct btrfs_delayed_node, n_list);
204 	refcount_inc(&node->refs);
205 out:
206 	spin_unlock(&delayed_root->lock);
207 
208 	return node;
209 }
210 
211 static struct btrfs_delayed_node *btrfs_next_delayed_node(
212 						struct btrfs_delayed_node *node)
213 {
214 	struct btrfs_delayed_root *delayed_root;
215 	struct list_head *p;
216 	struct btrfs_delayed_node *next = NULL;
217 
218 	delayed_root = node->root->fs_info->delayed_root;
219 	spin_lock(&delayed_root->lock);
220 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
221 		/* not in the list */
222 		if (list_empty(&delayed_root->node_list))
223 			goto out;
224 		p = delayed_root->node_list.next;
225 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
226 		goto out;
227 	else
228 		p = node->n_list.next;
229 
230 	next = list_entry(p, struct btrfs_delayed_node, n_list);
231 	refcount_inc(&next->refs);
232 out:
233 	spin_unlock(&delayed_root->lock);
234 
235 	return next;
236 }
237 
238 static void __btrfs_release_delayed_node(
239 				struct btrfs_delayed_node *delayed_node,
240 				int mod)
241 {
242 	struct btrfs_delayed_root *delayed_root;
243 
244 	if (!delayed_node)
245 		return;
246 
247 	delayed_root = delayed_node->root->fs_info->delayed_root;
248 
249 	mutex_lock(&delayed_node->mutex);
250 	if (delayed_node->count)
251 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
252 	else
253 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
254 	mutex_unlock(&delayed_node->mutex);
255 
256 	if (refcount_dec_and_test(&delayed_node->refs)) {
257 		bool free = false;
258 		struct btrfs_root *root = delayed_node->root;
259 		spin_lock(&root->inode_lock);
260 		if (refcount_read(&delayed_node->refs) == 0) {
261 			radix_tree_delete(&root->delayed_nodes_tree,
262 					  delayed_node->inode_id);
263 			free = true;
264 		}
265 		spin_unlock(&root->inode_lock);
266 		if (free)
267 			kmem_cache_free(delayed_node_cache, delayed_node);
268 	}
269 }
270 
271 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
272 {
273 	__btrfs_release_delayed_node(node, 0);
274 }
275 
276 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
277 					struct btrfs_delayed_root *delayed_root)
278 {
279 	struct list_head *p;
280 	struct btrfs_delayed_node *node = NULL;
281 
282 	spin_lock(&delayed_root->lock);
283 	if (list_empty(&delayed_root->prepare_list))
284 		goto out;
285 
286 	p = delayed_root->prepare_list.next;
287 	list_del_init(p);
288 	node = list_entry(p, struct btrfs_delayed_node, p_list);
289 	refcount_inc(&node->refs);
290 out:
291 	spin_unlock(&delayed_root->lock);
292 
293 	return node;
294 }
295 
296 static inline void btrfs_release_prepared_delayed_node(
297 					struct btrfs_delayed_node *node)
298 {
299 	__btrfs_release_delayed_node(node, 1);
300 }
301 
302 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
303 {
304 	struct btrfs_delayed_item *item;
305 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
306 	if (item) {
307 		item->data_len = data_len;
308 		item->ins_or_del = 0;
309 		item->bytes_reserved = 0;
310 		item->delayed_node = NULL;
311 		refcount_set(&item->refs, 1);
312 	}
313 	return item;
314 }
315 
316 /*
317  * __btrfs_lookup_delayed_item - look up the delayed item by key
318  * @delayed_node: pointer to the delayed node
319  * @key:	  the key to look up
320  * @prev:	  used to store the prev item if the right item isn't found
321  * @next:	  used to store the next item if the right item isn't found
322  *
323  * Note: if we don't find the right item, we will return the prev item and
324  * the next item.
325  */
326 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
327 				struct rb_root *root,
328 				struct btrfs_key *key,
329 				struct btrfs_delayed_item **prev,
330 				struct btrfs_delayed_item **next)
331 {
332 	struct rb_node *node, *prev_node = NULL;
333 	struct btrfs_delayed_item *delayed_item = NULL;
334 	int ret = 0;
335 
336 	node = root->rb_node;
337 
338 	while (node) {
339 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
340 					rb_node);
341 		prev_node = node;
342 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
343 		if (ret < 0)
344 			node = node->rb_right;
345 		else if (ret > 0)
346 			node = node->rb_left;
347 		else
348 			return delayed_item;
349 	}
350 
351 	if (prev) {
352 		if (!prev_node)
353 			*prev = NULL;
354 		else if (ret < 0)
355 			*prev = delayed_item;
356 		else if ((node = rb_prev(prev_node)) != NULL) {
357 			*prev = rb_entry(node, struct btrfs_delayed_item,
358 					 rb_node);
359 		} else
360 			*prev = NULL;
361 	}
362 
363 	if (next) {
364 		if (!prev_node)
365 			*next = NULL;
366 		else if (ret > 0)
367 			*next = delayed_item;
368 		else if ((node = rb_next(prev_node)) != NULL) {
369 			*next = rb_entry(node, struct btrfs_delayed_item,
370 					 rb_node);
371 		} else
372 			*next = NULL;
373 	}
374 	return NULL;
375 }
376 
377 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
378 					struct btrfs_delayed_node *delayed_node,
379 					struct btrfs_key *key)
380 {
381 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
382 					   NULL, NULL);
383 }
384 
385 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
386 				    struct btrfs_delayed_item *ins,
387 				    int action)
388 {
389 	struct rb_node **p, *node;
390 	struct rb_node *parent_node = NULL;
391 	struct rb_root *root;
392 	struct btrfs_delayed_item *item;
393 	int cmp;
394 
395 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
396 		root = &delayed_node->ins_root;
397 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
398 		root = &delayed_node->del_root;
399 	else
400 		BUG();
401 	p = &root->rb_node;
402 	node = &ins->rb_node;
403 
404 	while (*p) {
405 		parent_node = *p;
406 		item = rb_entry(parent_node, struct btrfs_delayed_item,
407 				 rb_node);
408 
409 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
410 		if (cmp < 0)
411 			p = &(*p)->rb_right;
412 		else if (cmp > 0)
413 			p = &(*p)->rb_left;
414 		else
415 			return -EEXIST;
416 	}
417 
418 	rb_link_node(node, parent_node, p);
419 	rb_insert_color(node, root);
420 	ins->delayed_node = delayed_node;
421 	ins->ins_or_del = action;
422 
423 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
424 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
425 	    ins->key.offset >= delayed_node->index_cnt)
426 			delayed_node->index_cnt = ins->key.offset + 1;
427 
428 	delayed_node->count++;
429 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
430 	return 0;
431 }
432 
433 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
434 					      struct btrfs_delayed_item *item)
435 {
436 	return __btrfs_add_delayed_item(node, item,
437 					BTRFS_DELAYED_INSERTION_ITEM);
438 }
439 
440 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
441 					     struct btrfs_delayed_item *item)
442 {
443 	return __btrfs_add_delayed_item(node, item,
444 					BTRFS_DELAYED_DELETION_ITEM);
445 }
446 
447 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
448 {
449 	int seq = atomic_inc_return(&delayed_root->items_seq);
450 
451 	/*
452 	 * atomic_dec_return implies a barrier for waitqueue_active
453 	 */
454 	if ((atomic_dec_return(&delayed_root->items) <
455 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
456 	    waitqueue_active(&delayed_root->wait))
457 		wake_up(&delayed_root->wait);
458 }
459 
460 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
461 {
462 	struct rb_root *root;
463 	struct btrfs_delayed_root *delayed_root;
464 
465 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
466 
467 	BUG_ON(!delayed_root);
468 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
469 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
470 
471 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
472 		root = &delayed_item->delayed_node->ins_root;
473 	else
474 		root = &delayed_item->delayed_node->del_root;
475 
476 	rb_erase(&delayed_item->rb_node, root);
477 	delayed_item->delayed_node->count--;
478 
479 	finish_one_item(delayed_root);
480 }
481 
482 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
483 {
484 	if (item) {
485 		__btrfs_remove_delayed_item(item);
486 		if (refcount_dec_and_test(&item->refs))
487 			kfree(item);
488 	}
489 }
490 
491 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
492 					struct btrfs_delayed_node *delayed_node)
493 {
494 	struct rb_node *p;
495 	struct btrfs_delayed_item *item = NULL;
496 
497 	p = rb_first(&delayed_node->ins_root);
498 	if (p)
499 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
500 
501 	return item;
502 }
503 
504 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
505 					struct btrfs_delayed_node *delayed_node)
506 {
507 	struct rb_node *p;
508 	struct btrfs_delayed_item *item = NULL;
509 
510 	p = rb_first(&delayed_node->del_root);
511 	if (p)
512 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
513 
514 	return item;
515 }
516 
517 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
518 						struct btrfs_delayed_item *item)
519 {
520 	struct rb_node *p;
521 	struct btrfs_delayed_item *next = NULL;
522 
523 	p = rb_next(&item->rb_node);
524 	if (p)
525 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
526 
527 	return next;
528 }
529 
530 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
531 					       struct btrfs_fs_info *fs_info,
532 					       struct btrfs_delayed_item *item)
533 {
534 	struct btrfs_block_rsv *src_rsv;
535 	struct btrfs_block_rsv *dst_rsv;
536 	u64 num_bytes;
537 	int ret;
538 
539 	if (!trans->bytes_reserved)
540 		return 0;
541 
542 	src_rsv = trans->block_rsv;
543 	dst_rsv = &fs_info->delayed_block_rsv;
544 
545 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
546 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
547 	if (!ret) {
548 		trace_btrfs_space_reservation(fs_info, "delayed_item",
549 					      item->key.objectid,
550 					      num_bytes, 1);
551 		item->bytes_reserved = num_bytes;
552 	}
553 
554 	return ret;
555 }
556 
557 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
558 						struct btrfs_delayed_item *item)
559 {
560 	struct btrfs_block_rsv *rsv;
561 
562 	if (!item->bytes_reserved)
563 		return;
564 
565 	rsv = &fs_info->delayed_block_rsv;
566 	trace_btrfs_space_reservation(fs_info, "delayed_item",
567 				      item->key.objectid, item->bytes_reserved,
568 				      0);
569 	btrfs_block_rsv_release(fs_info, rsv,
570 				item->bytes_reserved);
571 }
572 
573 static int btrfs_delayed_inode_reserve_metadata(
574 					struct btrfs_trans_handle *trans,
575 					struct btrfs_root *root,
576 					struct btrfs_inode *inode,
577 					struct btrfs_delayed_node *node)
578 {
579 	struct btrfs_fs_info *fs_info = root->fs_info;
580 	struct btrfs_block_rsv *src_rsv;
581 	struct btrfs_block_rsv *dst_rsv;
582 	u64 num_bytes;
583 	int ret;
584 
585 	src_rsv = trans->block_rsv;
586 	dst_rsv = &fs_info->delayed_block_rsv;
587 
588 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
589 
590 	/*
591 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
592 	 * which doesn't reserve space for speed.  This is a problem since we
593 	 * still need to reserve space for this update, so try to reserve the
594 	 * space.
595 	 *
596 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
597 	 * we always reserve enough to update the inode item.
598 	 */
599 	if (!src_rsv || (!trans->bytes_reserved &&
600 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
601 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
602 					  BTRFS_RESERVE_NO_FLUSH);
603 		/*
604 		 * Since we're under a transaction reserve_metadata_bytes could
605 		 * try to commit the transaction which will make it return
606 		 * EAGAIN to make us stop the transaction we have, so return
607 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
608 		 */
609 		if (ret == -EAGAIN)
610 			ret = -ENOSPC;
611 		if (!ret) {
612 			node->bytes_reserved = num_bytes;
613 			trace_btrfs_space_reservation(fs_info,
614 						      "delayed_inode",
615 						      btrfs_ino(inode),
616 						      num_bytes, 1);
617 		}
618 		return ret;
619 	}
620 
621 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
622 	if (!ret) {
623 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
624 					      btrfs_ino(inode), num_bytes, 1);
625 		node->bytes_reserved = num_bytes;
626 	}
627 
628 	return ret;
629 }
630 
631 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
632 						struct btrfs_delayed_node *node)
633 {
634 	struct btrfs_block_rsv *rsv;
635 
636 	if (!node->bytes_reserved)
637 		return;
638 
639 	rsv = &fs_info->delayed_block_rsv;
640 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
641 				      node->inode_id, node->bytes_reserved, 0);
642 	btrfs_block_rsv_release(fs_info, rsv,
643 				node->bytes_reserved);
644 	node->bytes_reserved = 0;
645 }
646 
647 /*
648  * This helper will insert some continuous items into the same leaf according
649  * to the free space of the leaf.
650  */
651 static int btrfs_batch_insert_items(struct btrfs_root *root,
652 				    struct btrfs_path *path,
653 				    struct btrfs_delayed_item *item)
654 {
655 	struct btrfs_fs_info *fs_info = root->fs_info;
656 	struct btrfs_delayed_item *curr, *next;
657 	int free_space;
658 	int total_data_size = 0, total_size = 0;
659 	struct extent_buffer *leaf;
660 	char *data_ptr;
661 	struct btrfs_key *keys;
662 	u32 *data_size;
663 	struct list_head head;
664 	int slot;
665 	int nitems;
666 	int i;
667 	int ret = 0;
668 
669 	BUG_ON(!path->nodes[0]);
670 
671 	leaf = path->nodes[0];
672 	free_space = btrfs_leaf_free_space(fs_info, leaf);
673 	INIT_LIST_HEAD(&head);
674 
675 	next = item;
676 	nitems = 0;
677 
678 	/*
679 	 * count the number of the continuous items that we can insert in batch
680 	 */
681 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
682 	       free_space) {
683 		total_data_size += next->data_len;
684 		total_size += next->data_len + sizeof(struct btrfs_item);
685 		list_add_tail(&next->tree_list, &head);
686 		nitems++;
687 
688 		curr = next;
689 		next = __btrfs_next_delayed_item(curr);
690 		if (!next)
691 			break;
692 
693 		if (!btrfs_is_continuous_delayed_item(curr, next))
694 			break;
695 	}
696 
697 	if (!nitems) {
698 		ret = 0;
699 		goto out;
700 	}
701 
702 	/*
703 	 * we need allocate some memory space, but it might cause the task
704 	 * to sleep, so we set all locked nodes in the path to blocking locks
705 	 * first.
706 	 */
707 	btrfs_set_path_blocking(path);
708 
709 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
710 	if (!keys) {
711 		ret = -ENOMEM;
712 		goto out;
713 	}
714 
715 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
716 	if (!data_size) {
717 		ret = -ENOMEM;
718 		goto error;
719 	}
720 
721 	/* get keys of all the delayed items */
722 	i = 0;
723 	list_for_each_entry(next, &head, tree_list) {
724 		keys[i] = next->key;
725 		data_size[i] = next->data_len;
726 		i++;
727 	}
728 
729 	/* reset all the locked nodes in the patch to spinning locks. */
730 	btrfs_clear_path_blocking(path, NULL, 0);
731 
732 	/* insert the keys of the items */
733 	setup_items_for_insert(root, path, keys, data_size,
734 			       total_data_size, total_size, nitems);
735 
736 	/* insert the dir index items */
737 	slot = path->slots[0];
738 	list_for_each_entry_safe(curr, next, &head, tree_list) {
739 		data_ptr = btrfs_item_ptr(leaf, slot, char);
740 		write_extent_buffer(leaf, &curr->data,
741 				    (unsigned long)data_ptr,
742 				    curr->data_len);
743 		slot++;
744 
745 		btrfs_delayed_item_release_metadata(fs_info, curr);
746 
747 		list_del(&curr->tree_list);
748 		btrfs_release_delayed_item(curr);
749 	}
750 
751 error:
752 	kfree(data_size);
753 	kfree(keys);
754 out:
755 	return ret;
756 }
757 
758 /*
759  * This helper can just do simple insertion that needn't extend item for new
760  * data, such as directory name index insertion, inode insertion.
761  */
762 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
763 				     struct btrfs_root *root,
764 				     struct btrfs_path *path,
765 				     struct btrfs_delayed_item *delayed_item)
766 {
767 	struct btrfs_fs_info *fs_info = root->fs_info;
768 	struct extent_buffer *leaf;
769 	char *ptr;
770 	int ret;
771 
772 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
773 				      delayed_item->data_len);
774 	if (ret < 0 && ret != -EEXIST)
775 		return ret;
776 
777 	leaf = path->nodes[0];
778 
779 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
780 
781 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
782 			    delayed_item->data_len);
783 	btrfs_mark_buffer_dirty(leaf);
784 
785 	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
786 	return 0;
787 }
788 
789 /*
790  * we insert an item first, then if there are some continuous items, we try
791  * to insert those items into the same leaf.
792  */
793 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
794 				      struct btrfs_path *path,
795 				      struct btrfs_root *root,
796 				      struct btrfs_delayed_node *node)
797 {
798 	struct btrfs_delayed_item *curr, *prev;
799 	int ret = 0;
800 
801 do_again:
802 	mutex_lock(&node->mutex);
803 	curr = __btrfs_first_delayed_insertion_item(node);
804 	if (!curr)
805 		goto insert_end;
806 
807 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
808 	if (ret < 0) {
809 		btrfs_release_path(path);
810 		goto insert_end;
811 	}
812 
813 	prev = curr;
814 	curr = __btrfs_next_delayed_item(prev);
815 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
816 		/* insert the continuous items into the same leaf */
817 		path->slots[0]++;
818 		btrfs_batch_insert_items(root, path, curr);
819 	}
820 	btrfs_release_delayed_item(prev);
821 	btrfs_mark_buffer_dirty(path->nodes[0]);
822 
823 	btrfs_release_path(path);
824 	mutex_unlock(&node->mutex);
825 	goto do_again;
826 
827 insert_end:
828 	mutex_unlock(&node->mutex);
829 	return ret;
830 }
831 
832 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
833 				    struct btrfs_root *root,
834 				    struct btrfs_path *path,
835 				    struct btrfs_delayed_item *item)
836 {
837 	struct btrfs_fs_info *fs_info = root->fs_info;
838 	struct btrfs_delayed_item *curr, *next;
839 	struct extent_buffer *leaf;
840 	struct btrfs_key key;
841 	struct list_head head;
842 	int nitems, i, last_item;
843 	int ret = 0;
844 
845 	BUG_ON(!path->nodes[0]);
846 
847 	leaf = path->nodes[0];
848 
849 	i = path->slots[0];
850 	last_item = btrfs_header_nritems(leaf) - 1;
851 	if (i > last_item)
852 		return -ENOENT;	/* FIXME: Is errno suitable? */
853 
854 	next = item;
855 	INIT_LIST_HEAD(&head);
856 	btrfs_item_key_to_cpu(leaf, &key, i);
857 	nitems = 0;
858 	/*
859 	 * count the number of the dir index items that we can delete in batch
860 	 */
861 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
862 		list_add_tail(&next->tree_list, &head);
863 		nitems++;
864 
865 		curr = next;
866 		next = __btrfs_next_delayed_item(curr);
867 		if (!next)
868 			break;
869 
870 		if (!btrfs_is_continuous_delayed_item(curr, next))
871 			break;
872 
873 		i++;
874 		if (i > last_item)
875 			break;
876 		btrfs_item_key_to_cpu(leaf, &key, i);
877 	}
878 
879 	if (!nitems)
880 		return 0;
881 
882 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
883 	if (ret)
884 		goto out;
885 
886 	list_for_each_entry_safe(curr, next, &head, tree_list) {
887 		btrfs_delayed_item_release_metadata(fs_info, curr);
888 		list_del(&curr->tree_list);
889 		btrfs_release_delayed_item(curr);
890 	}
891 
892 out:
893 	return ret;
894 }
895 
896 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
897 				      struct btrfs_path *path,
898 				      struct btrfs_root *root,
899 				      struct btrfs_delayed_node *node)
900 {
901 	struct btrfs_delayed_item *curr, *prev;
902 	int ret = 0;
903 
904 do_again:
905 	mutex_lock(&node->mutex);
906 	curr = __btrfs_first_delayed_deletion_item(node);
907 	if (!curr)
908 		goto delete_fail;
909 
910 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
911 	if (ret < 0)
912 		goto delete_fail;
913 	else if (ret > 0) {
914 		/*
915 		 * can't find the item which the node points to, so this node
916 		 * is invalid, just drop it.
917 		 */
918 		prev = curr;
919 		curr = __btrfs_next_delayed_item(prev);
920 		btrfs_release_delayed_item(prev);
921 		ret = 0;
922 		btrfs_release_path(path);
923 		if (curr) {
924 			mutex_unlock(&node->mutex);
925 			goto do_again;
926 		} else
927 			goto delete_fail;
928 	}
929 
930 	btrfs_batch_delete_items(trans, root, path, curr);
931 	btrfs_release_path(path);
932 	mutex_unlock(&node->mutex);
933 	goto do_again;
934 
935 delete_fail:
936 	btrfs_release_path(path);
937 	mutex_unlock(&node->mutex);
938 	return ret;
939 }
940 
941 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
942 {
943 	struct btrfs_delayed_root *delayed_root;
944 
945 	if (delayed_node &&
946 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
947 		BUG_ON(!delayed_node->root);
948 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
949 		delayed_node->count--;
950 
951 		delayed_root = delayed_node->root->fs_info->delayed_root;
952 		finish_one_item(delayed_root);
953 	}
954 }
955 
956 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
957 {
958 	struct btrfs_delayed_root *delayed_root;
959 
960 	ASSERT(delayed_node->root);
961 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
962 	delayed_node->count--;
963 
964 	delayed_root = delayed_node->root->fs_info->delayed_root;
965 	finish_one_item(delayed_root);
966 }
967 
968 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969 					struct btrfs_root *root,
970 					struct btrfs_path *path,
971 					struct btrfs_delayed_node *node)
972 {
973 	struct btrfs_fs_info *fs_info = root->fs_info;
974 	struct btrfs_key key;
975 	struct btrfs_inode_item *inode_item;
976 	struct extent_buffer *leaf;
977 	int mod;
978 	int ret;
979 
980 	key.objectid = node->inode_id;
981 	key.type = BTRFS_INODE_ITEM_KEY;
982 	key.offset = 0;
983 
984 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
985 		mod = -1;
986 	else
987 		mod = 1;
988 
989 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
990 	if (ret > 0) {
991 		btrfs_release_path(path);
992 		return -ENOENT;
993 	} else if (ret < 0) {
994 		return ret;
995 	}
996 
997 	leaf = path->nodes[0];
998 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
999 				    struct btrfs_inode_item);
1000 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1001 			    sizeof(struct btrfs_inode_item));
1002 	btrfs_mark_buffer_dirty(leaf);
1003 
1004 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1005 		goto no_iref;
1006 
1007 	path->slots[0]++;
1008 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1009 		goto search;
1010 again:
1011 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1012 	if (key.objectid != node->inode_id)
1013 		goto out;
1014 
1015 	if (key.type != BTRFS_INODE_REF_KEY &&
1016 	    key.type != BTRFS_INODE_EXTREF_KEY)
1017 		goto out;
1018 
1019 	/*
1020 	 * Delayed iref deletion is for the inode who has only one link,
1021 	 * so there is only one iref. The case that several irefs are
1022 	 * in the same item doesn't exist.
1023 	 */
1024 	btrfs_del_item(trans, root, path);
1025 out:
1026 	btrfs_release_delayed_iref(node);
1027 no_iref:
1028 	btrfs_release_path(path);
1029 err_out:
1030 	btrfs_delayed_inode_release_metadata(fs_info, node);
1031 	btrfs_release_delayed_inode(node);
1032 
1033 	return ret;
1034 
1035 search:
1036 	btrfs_release_path(path);
1037 
1038 	key.type = BTRFS_INODE_EXTREF_KEY;
1039 	key.offset = -1;
1040 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 	if (ret < 0)
1042 		goto err_out;
1043 	ASSERT(ret);
1044 
1045 	ret = 0;
1046 	leaf = path->nodes[0];
1047 	path->slots[0]--;
1048 	goto again;
1049 }
1050 
1051 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1052 					     struct btrfs_root *root,
1053 					     struct btrfs_path *path,
1054 					     struct btrfs_delayed_node *node)
1055 {
1056 	int ret;
1057 
1058 	mutex_lock(&node->mutex);
1059 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1060 		mutex_unlock(&node->mutex);
1061 		return 0;
1062 	}
1063 
1064 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1065 	mutex_unlock(&node->mutex);
1066 	return ret;
1067 }
1068 
1069 static inline int
1070 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1071 				   struct btrfs_path *path,
1072 				   struct btrfs_delayed_node *node)
1073 {
1074 	int ret;
1075 
1076 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1077 	if (ret)
1078 		return ret;
1079 
1080 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1081 	if (ret)
1082 		return ret;
1083 
1084 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1085 	return ret;
1086 }
1087 
1088 /*
1089  * Called when committing the transaction.
1090  * Returns 0 on success.
1091  * Returns < 0 on error and returns with an aborted transaction with any
1092  * outstanding delayed items cleaned up.
1093  */
1094 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1095 				     struct btrfs_fs_info *fs_info, int nr)
1096 {
1097 	struct btrfs_delayed_root *delayed_root;
1098 	struct btrfs_delayed_node *curr_node, *prev_node;
1099 	struct btrfs_path *path;
1100 	struct btrfs_block_rsv *block_rsv;
1101 	int ret = 0;
1102 	bool count = (nr > 0);
1103 
1104 	if (trans->aborted)
1105 		return -EIO;
1106 
1107 	path = btrfs_alloc_path();
1108 	if (!path)
1109 		return -ENOMEM;
1110 	path->leave_spinning = 1;
1111 
1112 	block_rsv = trans->block_rsv;
1113 	trans->block_rsv = &fs_info->delayed_block_rsv;
1114 
1115 	delayed_root = fs_info->delayed_root;
1116 
1117 	curr_node = btrfs_first_delayed_node(delayed_root);
1118 	while (curr_node && (!count || (count && nr--))) {
1119 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1120 							 curr_node);
1121 		if (ret) {
1122 			btrfs_release_delayed_node(curr_node);
1123 			curr_node = NULL;
1124 			btrfs_abort_transaction(trans, ret);
1125 			break;
1126 		}
1127 
1128 		prev_node = curr_node;
1129 		curr_node = btrfs_next_delayed_node(curr_node);
1130 		btrfs_release_delayed_node(prev_node);
1131 	}
1132 
1133 	if (curr_node)
1134 		btrfs_release_delayed_node(curr_node);
1135 	btrfs_free_path(path);
1136 	trans->block_rsv = block_rsv;
1137 
1138 	return ret;
1139 }
1140 
1141 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1142 			    struct btrfs_fs_info *fs_info)
1143 {
1144 	return __btrfs_run_delayed_items(trans, fs_info, -1);
1145 }
1146 
1147 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1148 			       struct btrfs_fs_info *fs_info, int nr)
1149 {
1150 	return __btrfs_run_delayed_items(trans, fs_info, nr);
1151 }
1152 
1153 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1154 				     struct btrfs_inode *inode)
1155 {
1156 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1157 	struct btrfs_path *path;
1158 	struct btrfs_block_rsv *block_rsv;
1159 	int ret;
1160 
1161 	if (!delayed_node)
1162 		return 0;
1163 
1164 	mutex_lock(&delayed_node->mutex);
1165 	if (!delayed_node->count) {
1166 		mutex_unlock(&delayed_node->mutex);
1167 		btrfs_release_delayed_node(delayed_node);
1168 		return 0;
1169 	}
1170 	mutex_unlock(&delayed_node->mutex);
1171 
1172 	path = btrfs_alloc_path();
1173 	if (!path) {
1174 		btrfs_release_delayed_node(delayed_node);
1175 		return -ENOMEM;
1176 	}
1177 	path->leave_spinning = 1;
1178 
1179 	block_rsv = trans->block_rsv;
1180 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1181 
1182 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1183 
1184 	btrfs_release_delayed_node(delayed_node);
1185 	btrfs_free_path(path);
1186 	trans->block_rsv = block_rsv;
1187 
1188 	return ret;
1189 }
1190 
1191 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1192 {
1193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1194 	struct btrfs_trans_handle *trans;
1195 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1196 	struct btrfs_path *path;
1197 	struct btrfs_block_rsv *block_rsv;
1198 	int ret;
1199 
1200 	if (!delayed_node)
1201 		return 0;
1202 
1203 	mutex_lock(&delayed_node->mutex);
1204 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1205 		mutex_unlock(&delayed_node->mutex);
1206 		btrfs_release_delayed_node(delayed_node);
1207 		return 0;
1208 	}
1209 	mutex_unlock(&delayed_node->mutex);
1210 
1211 	trans = btrfs_join_transaction(delayed_node->root);
1212 	if (IS_ERR(trans)) {
1213 		ret = PTR_ERR(trans);
1214 		goto out;
1215 	}
1216 
1217 	path = btrfs_alloc_path();
1218 	if (!path) {
1219 		ret = -ENOMEM;
1220 		goto trans_out;
1221 	}
1222 	path->leave_spinning = 1;
1223 
1224 	block_rsv = trans->block_rsv;
1225 	trans->block_rsv = &fs_info->delayed_block_rsv;
1226 
1227 	mutex_lock(&delayed_node->mutex);
1228 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1229 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1230 						   path, delayed_node);
1231 	else
1232 		ret = 0;
1233 	mutex_unlock(&delayed_node->mutex);
1234 
1235 	btrfs_free_path(path);
1236 	trans->block_rsv = block_rsv;
1237 trans_out:
1238 	btrfs_end_transaction(trans);
1239 	btrfs_btree_balance_dirty(fs_info);
1240 out:
1241 	btrfs_release_delayed_node(delayed_node);
1242 
1243 	return ret;
1244 }
1245 
1246 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1247 {
1248 	struct btrfs_delayed_node *delayed_node;
1249 
1250 	delayed_node = READ_ONCE(inode->delayed_node);
1251 	if (!delayed_node)
1252 		return;
1253 
1254 	inode->delayed_node = NULL;
1255 	btrfs_release_delayed_node(delayed_node);
1256 }
1257 
1258 struct btrfs_async_delayed_work {
1259 	struct btrfs_delayed_root *delayed_root;
1260 	int nr;
1261 	struct btrfs_work work;
1262 };
1263 
1264 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1265 {
1266 	struct btrfs_async_delayed_work *async_work;
1267 	struct btrfs_delayed_root *delayed_root;
1268 	struct btrfs_trans_handle *trans;
1269 	struct btrfs_path *path;
1270 	struct btrfs_delayed_node *delayed_node = NULL;
1271 	struct btrfs_root *root;
1272 	struct btrfs_block_rsv *block_rsv;
1273 	int total_done = 0;
1274 
1275 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1276 	delayed_root = async_work->delayed_root;
1277 
1278 	path = btrfs_alloc_path();
1279 	if (!path)
1280 		goto out;
1281 
1282 again:
1283 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1284 		goto free_path;
1285 
1286 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1287 	if (!delayed_node)
1288 		goto free_path;
1289 
1290 	path->leave_spinning = 1;
1291 	root = delayed_node->root;
1292 
1293 	trans = btrfs_join_transaction(root);
1294 	if (IS_ERR(trans))
1295 		goto release_path;
1296 
1297 	block_rsv = trans->block_rsv;
1298 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1299 
1300 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1301 
1302 	trans->block_rsv = block_rsv;
1303 	btrfs_end_transaction(trans);
1304 	btrfs_btree_balance_dirty_nodelay(root->fs_info);
1305 
1306 release_path:
1307 	btrfs_release_path(path);
1308 	total_done++;
1309 
1310 	btrfs_release_prepared_delayed_node(delayed_node);
1311 	if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) ||
1312 	    total_done < async_work->nr)
1313 		goto again;
1314 
1315 free_path:
1316 	btrfs_free_path(path);
1317 out:
1318 	wake_up(&delayed_root->wait);
1319 	kfree(async_work);
1320 }
1321 
1322 
1323 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1324 				     struct btrfs_fs_info *fs_info, int nr)
1325 {
1326 	struct btrfs_async_delayed_work *async_work;
1327 
1328 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND ||
1329 	    btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1330 		return 0;
1331 
1332 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1333 	if (!async_work)
1334 		return -ENOMEM;
1335 
1336 	async_work->delayed_root = delayed_root;
1337 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1338 			btrfs_async_run_delayed_root, NULL, NULL);
1339 	async_work->nr = nr;
1340 
1341 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1342 	return 0;
1343 }
1344 
1345 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1346 {
1347 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1348 }
1349 
1350 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1351 {
1352 	int val = atomic_read(&delayed_root->items_seq);
1353 
1354 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1355 		return 1;
1356 
1357 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1358 		return 1;
1359 
1360 	return 0;
1361 }
1362 
1363 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1364 {
1365 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1366 
1367 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1368 		return;
1369 
1370 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1371 		int seq;
1372 		int ret;
1373 
1374 		seq = atomic_read(&delayed_root->items_seq);
1375 
1376 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1377 		if (ret)
1378 			return;
1379 
1380 		wait_event_interruptible(delayed_root->wait,
1381 					 could_end_wait(delayed_root, seq));
1382 		return;
1383 	}
1384 
1385 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1386 }
1387 
1388 /* Will return 0 or -ENOMEM */
1389 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1390 				   struct btrfs_fs_info *fs_info,
1391 				   const char *name, int name_len,
1392 				   struct btrfs_inode *dir,
1393 				   struct btrfs_disk_key *disk_key, u8 type,
1394 				   u64 index)
1395 {
1396 	struct btrfs_delayed_node *delayed_node;
1397 	struct btrfs_delayed_item *delayed_item;
1398 	struct btrfs_dir_item *dir_item;
1399 	int ret;
1400 
1401 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1402 	if (IS_ERR(delayed_node))
1403 		return PTR_ERR(delayed_node);
1404 
1405 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1406 	if (!delayed_item) {
1407 		ret = -ENOMEM;
1408 		goto release_node;
1409 	}
1410 
1411 	delayed_item->key.objectid = btrfs_ino(dir);
1412 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1413 	delayed_item->key.offset = index;
1414 
1415 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1416 	dir_item->location = *disk_key;
1417 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1418 	btrfs_set_stack_dir_data_len(dir_item, 0);
1419 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1420 	btrfs_set_stack_dir_type(dir_item, type);
1421 	memcpy((char *)(dir_item + 1), name, name_len);
1422 
1423 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1424 	/*
1425 	 * we have reserved enough space when we start a new transaction,
1426 	 * so reserving metadata failure is impossible
1427 	 */
1428 	BUG_ON(ret);
1429 
1430 
1431 	mutex_lock(&delayed_node->mutex);
1432 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1433 	if (unlikely(ret)) {
1434 		btrfs_err(fs_info,
1435 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1436 			  name_len, name, delayed_node->root->objectid,
1437 			  delayed_node->inode_id, ret);
1438 		BUG();
1439 	}
1440 	mutex_unlock(&delayed_node->mutex);
1441 
1442 release_node:
1443 	btrfs_release_delayed_node(delayed_node);
1444 	return ret;
1445 }
1446 
1447 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1448 					       struct btrfs_delayed_node *node,
1449 					       struct btrfs_key *key)
1450 {
1451 	struct btrfs_delayed_item *item;
1452 
1453 	mutex_lock(&node->mutex);
1454 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1455 	if (!item) {
1456 		mutex_unlock(&node->mutex);
1457 		return 1;
1458 	}
1459 
1460 	btrfs_delayed_item_release_metadata(fs_info, item);
1461 	btrfs_release_delayed_item(item);
1462 	mutex_unlock(&node->mutex);
1463 	return 0;
1464 }
1465 
1466 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1467 				   struct btrfs_fs_info *fs_info,
1468 				   struct btrfs_inode *dir, u64 index)
1469 {
1470 	struct btrfs_delayed_node *node;
1471 	struct btrfs_delayed_item *item;
1472 	struct btrfs_key item_key;
1473 	int ret;
1474 
1475 	node = btrfs_get_or_create_delayed_node(dir);
1476 	if (IS_ERR(node))
1477 		return PTR_ERR(node);
1478 
1479 	item_key.objectid = btrfs_ino(dir);
1480 	item_key.type = BTRFS_DIR_INDEX_KEY;
1481 	item_key.offset = index;
1482 
1483 	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1484 	if (!ret)
1485 		goto end;
1486 
1487 	item = btrfs_alloc_delayed_item(0);
1488 	if (!item) {
1489 		ret = -ENOMEM;
1490 		goto end;
1491 	}
1492 
1493 	item->key = item_key;
1494 
1495 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1496 	/*
1497 	 * we have reserved enough space when we start a new transaction,
1498 	 * so reserving metadata failure is impossible.
1499 	 */
1500 	BUG_ON(ret);
1501 
1502 	mutex_lock(&node->mutex);
1503 	ret = __btrfs_add_delayed_deletion_item(node, item);
1504 	if (unlikely(ret)) {
1505 		btrfs_err(fs_info,
1506 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1507 			  index, node->root->objectid, node->inode_id, ret);
1508 		BUG();
1509 	}
1510 	mutex_unlock(&node->mutex);
1511 end:
1512 	btrfs_release_delayed_node(node);
1513 	return ret;
1514 }
1515 
1516 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1517 {
1518 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1519 
1520 	if (!delayed_node)
1521 		return -ENOENT;
1522 
1523 	/*
1524 	 * Since we have held i_mutex of this directory, it is impossible that
1525 	 * a new directory index is added into the delayed node and index_cnt
1526 	 * is updated now. So we needn't lock the delayed node.
1527 	 */
1528 	if (!delayed_node->index_cnt) {
1529 		btrfs_release_delayed_node(delayed_node);
1530 		return -EINVAL;
1531 	}
1532 
1533 	inode->index_cnt = delayed_node->index_cnt;
1534 	btrfs_release_delayed_node(delayed_node);
1535 	return 0;
1536 }
1537 
1538 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1539 				     struct list_head *ins_list,
1540 				     struct list_head *del_list)
1541 {
1542 	struct btrfs_delayed_node *delayed_node;
1543 	struct btrfs_delayed_item *item;
1544 
1545 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1546 	if (!delayed_node)
1547 		return false;
1548 
1549 	/*
1550 	 * We can only do one readdir with delayed items at a time because of
1551 	 * item->readdir_list.
1552 	 */
1553 	inode_unlock_shared(inode);
1554 	inode_lock(inode);
1555 
1556 	mutex_lock(&delayed_node->mutex);
1557 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1558 	while (item) {
1559 		refcount_inc(&item->refs);
1560 		list_add_tail(&item->readdir_list, ins_list);
1561 		item = __btrfs_next_delayed_item(item);
1562 	}
1563 
1564 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1565 	while (item) {
1566 		refcount_inc(&item->refs);
1567 		list_add_tail(&item->readdir_list, del_list);
1568 		item = __btrfs_next_delayed_item(item);
1569 	}
1570 	mutex_unlock(&delayed_node->mutex);
1571 	/*
1572 	 * This delayed node is still cached in the btrfs inode, so refs
1573 	 * must be > 1 now, and we needn't check it is going to be freed
1574 	 * or not.
1575 	 *
1576 	 * Besides that, this function is used to read dir, we do not
1577 	 * insert/delete delayed items in this period. So we also needn't
1578 	 * requeue or dequeue this delayed node.
1579 	 */
1580 	refcount_dec(&delayed_node->refs);
1581 
1582 	return true;
1583 }
1584 
1585 void btrfs_readdir_put_delayed_items(struct inode *inode,
1586 				     struct list_head *ins_list,
1587 				     struct list_head *del_list)
1588 {
1589 	struct btrfs_delayed_item *curr, *next;
1590 
1591 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1592 		list_del(&curr->readdir_list);
1593 		if (refcount_dec_and_test(&curr->refs))
1594 			kfree(curr);
1595 	}
1596 
1597 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1598 		list_del(&curr->readdir_list);
1599 		if (refcount_dec_and_test(&curr->refs))
1600 			kfree(curr);
1601 	}
1602 
1603 	/*
1604 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1605 	 * read lock.
1606 	 */
1607 	downgrade_write(&inode->i_rwsem);
1608 }
1609 
1610 int btrfs_should_delete_dir_index(struct list_head *del_list,
1611 				  u64 index)
1612 {
1613 	struct btrfs_delayed_item *curr, *next;
1614 	int ret;
1615 
1616 	if (list_empty(del_list))
1617 		return 0;
1618 
1619 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1620 		if (curr->key.offset > index)
1621 			break;
1622 
1623 		list_del(&curr->readdir_list);
1624 		ret = (curr->key.offset == index);
1625 
1626 		if (refcount_dec_and_test(&curr->refs))
1627 			kfree(curr);
1628 
1629 		if (ret)
1630 			return 1;
1631 		else
1632 			continue;
1633 	}
1634 	return 0;
1635 }
1636 
1637 /*
1638  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1639  *
1640  */
1641 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1642 				    struct list_head *ins_list)
1643 {
1644 	struct btrfs_dir_item *di;
1645 	struct btrfs_delayed_item *curr, *next;
1646 	struct btrfs_key location;
1647 	char *name;
1648 	int name_len;
1649 	int over = 0;
1650 	unsigned char d_type;
1651 
1652 	if (list_empty(ins_list))
1653 		return 0;
1654 
1655 	/*
1656 	 * Changing the data of the delayed item is impossible. So
1657 	 * we needn't lock them. And we have held i_mutex of the
1658 	 * directory, nobody can delete any directory indexes now.
1659 	 */
1660 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1661 		list_del(&curr->readdir_list);
1662 
1663 		if (curr->key.offset < ctx->pos) {
1664 			if (refcount_dec_and_test(&curr->refs))
1665 				kfree(curr);
1666 			continue;
1667 		}
1668 
1669 		ctx->pos = curr->key.offset;
1670 
1671 		di = (struct btrfs_dir_item *)curr->data;
1672 		name = (char *)(di + 1);
1673 		name_len = btrfs_stack_dir_name_len(di);
1674 
1675 		d_type = btrfs_filetype_table[di->type];
1676 		btrfs_disk_key_to_cpu(&location, &di->location);
1677 
1678 		over = !dir_emit(ctx, name, name_len,
1679 			       location.objectid, d_type);
1680 
1681 		if (refcount_dec_and_test(&curr->refs))
1682 			kfree(curr);
1683 
1684 		if (over)
1685 			return 1;
1686 		ctx->pos++;
1687 	}
1688 	return 0;
1689 }
1690 
1691 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1692 				  struct btrfs_inode_item *inode_item,
1693 				  struct inode *inode)
1694 {
1695 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1696 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1697 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1698 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1699 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1700 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1701 	btrfs_set_stack_inode_generation(inode_item,
1702 					 BTRFS_I(inode)->generation);
1703 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1704 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1705 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1706 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1707 	btrfs_set_stack_inode_block_group(inode_item, 0);
1708 
1709 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1710 				     inode->i_atime.tv_sec);
1711 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1712 				      inode->i_atime.tv_nsec);
1713 
1714 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1715 				     inode->i_mtime.tv_sec);
1716 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1717 				      inode->i_mtime.tv_nsec);
1718 
1719 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1720 				     inode->i_ctime.tv_sec);
1721 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1722 				      inode->i_ctime.tv_nsec);
1723 
1724 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1725 				     BTRFS_I(inode)->i_otime.tv_sec);
1726 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1727 				     BTRFS_I(inode)->i_otime.tv_nsec);
1728 }
1729 
1730 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1731 {
1732 	struct btrfs_delayed_node *delayed_node;
1733 	struct btrfs_inode_item *inode_item;
1734 
1735 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1736 	if (!delayed_node)
1737 		return -ENOENT;
1738 
1739 	mutex_lock(&delayed_node->mutex);
1740 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1741 		mutex_unlock(&delayed_node->mutex);
1742 		btrfs_release_delayed_node(delayed_node);
1743 		return -ENOENT;
1744 	}
1745 
1746 	inode_item = &delayed_node->inode_item;
1747 
1748 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1749 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1750 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1751 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1752 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1753 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1754 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1755         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1756 
1757 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1758 	inode->i_rdev = 0;
1759 	*rdev = btrfs_stack_inode_rdev(inode_item);
1760 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1761 
1762 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1763 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1764 
1765 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1766 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1767 
1768 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1769 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1770 
1771 	BTRFS_I(inode)->i_otime.tv_sec =
1772 		btrfs_stack_timespec_sec(&inode_item->otime);
1773 	BTRFS_I(inode)->i_otime.tv_nsec =
1774 		btrfs_stack_timespec_nsec(&inode_item->otime);
1775 
1776 	inode->i_generation = BTRFS_I(inode)->generation;
1777 	BTRFS_I(inode)->index_cnt = (u64)-1;
1778 
1779 	mutex_unlock(&delayed_node->mutex);
1780 	btrfs_release_delayed_node(delayed_node);
1781 	return 0;
1782 }
1783 
1784 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1785 			       struct btrfs_root *root, struct inode *inode)
1786 {
1787 	struct btrfs_delayed_node *delayed_node;
1788 	int ret = 0;
1789 
1790 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1791 	if (IS_ERR(delayed_node))
1792 		return PTR_ERR(delayed_node);
1793 
1794 	mutex_lock(&delayed_node->mutex);
1795 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1796 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1797 		goto release_node;
1798 	}
1799 
1800 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1801 						   delayed_node);
1802 	if (ret)
1803 		goto release_node;
1804 
1805 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1806 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1807 	delayed_node->count++;
1808 	atomic_inc(&root->fs_info->delayed_root->items);
1809 release_node:
1810 	mutex_unlock(&delayed_node->mutex);
1811 	btrfs_release_delayed_node(delayed_node);
1812 	return ret;
1813 }
1814 
1815 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1816 {
1817 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1818 	struct btrfs_delayed_node *delayed_node;
1819 
1820 	/*
1821 	 * we don't do delayed inode updates during log recovery because it
1822 	 * leads to enospc problems.  This means we also can't do
1823 	 * delayed inode refs
1824 	 */
1825 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1826 		return -EAGAIN;
1827 
1828 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1829 	if (IS_ERR(delayed_node))
1830 		return PTR_ERR(delayed_node);
1831 
1832 	/*
1833 	 * We don't reserve space for inode ref deletion is because:
1834 	 * - We ONLY do async inode ref deletion for the inode who has only
1835 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1836 	 *   And in most case, the inode ref and the inode item are in the
1837 	 *   same leaf, and we will deal with them at the same time.
1838 	 *   Since we are sure we will reserve the space for the inode item,
1839 	 *   it is unnecessary to reserve space for inode ref deletion.
1840 	 * - If the inode ref and the inode item are not in the same leaf,
1841 	 *   We also needn't worry about enospc problem, because we reserve
1842 	 *   much more space for the inode update than it needs.
1843 	 * - At the worst, we can steal some space from the global reservation.
1844 	 *   It is very rare.
1845 	 */
1846 	mutex_lock(&delayed_node->mutex);
1847 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1848 		goto release_node;
1849 
1850 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1851 	delayed_node->count++;
1852 	atomic_inc(&fs_info->delayed_root->items);
1853 release_node:
1854 	mutex_unlock(&delayed_node->mutex);
1855 	btrfs_release_delayed_node(delayed_node);
1856 	return 0;
1857 }
1858 
1859 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1860 {
1861 	struct btrfs_root *root = delayed_node->root;
1862 	struct btrfs_fs_info *fs_info = root->fs_info;
1863 	struct btrfs_delayed_item *curr_item, *prev_item;
1864 
1865 	mutex_lock(&delayed_node->mutex);
1866 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1867 	while (curr_item) {
1868 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1869 		prev_item = curr_item;
1870 		curr_item = __btrfs_next_delayed_item(prev_item);
1871 		btrfs_release_delayed_item(prev_item);
1872 	}
1873 
1874 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1875 	while (curr_item) {
1876 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1877 		prev_item = curr_item;
1878 		curr_item = __btrfs_next_delayed_item(prev_item);
1879 		btrfs_release_delayed_item(prev_item);
1880 	}
1881 
1882 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1883 		btrfs_release_delayed_iref(delayed_node);
1884 
1885 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1886 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1887 		btrfs_release_delayed_inode(delayed_node);
1888 	}
1889 	mutex_unlock(&delayed_node->mutex);
1890 }
1891 
1892 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1893 {
1894 	struct btrfs_delayed_node *delayed_node;
1895 
1896 	delayed_node = btrfs_get_delayed_node(inode);
1897 	if (!delayed_node)
1898 		return;
1899 
1900 	__btrfs_kill_delayed_node(delayed_node);
1901 	btrfs_release_delayed_node(delayed_node);
1902 }
1903 
1904 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1905 {
1906 	u64 inode_id = 0;
1907 	struct btrfs_delayed_node *delayed_nodes[8];
1908 	int i, n;
1909 
1910 	while (1) {
1911 		spin_lock(&root->inode_lock);
1912 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1913 					   (void **)delayed_nodes, inode_id,
1914 					   ARRAY_SIZE(delayed_nodes));
1915 		if (!n) {
1916 			spin_unlock(&root->inode_lock);
1917 			break;
1918 		}
1919 
1920 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1921 
1922 		for (i = 0; i < n; i++)
1923 			refcount_inc(&delayed_nodes[i]->refs);
1924 		spin_unlock(&root->inode_lock);
1925 
1926 		for (i = 0; i < n; i++) {
1927 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1928 			btrfs_release_delayed_node(delayed_nodes[i]);
1929 		}
1930 	}
1931 }
1932 
1933 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1934 {
1935 	struct btrfs_delayed_node *curr_node, *prev_node;
1936 
1937 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1938 	while (curr_node) {
1939 		__btrfs_kill_delayed_node(curr_node);
1940 
1941 		prev_node = curr_node;
1942 		curr_node = btrfs_next_delayed_node(curr_node);
1943 		btrfs_release_delayed_node(prev_node);
1944 	}
1945 }
1946 
1947