1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "ctree.h" 25 26 #define BTRFS_DELAYED_WRITEBACK 512 27 #define BTRFS_DELAYED_BACKGROUND 128 28 #define BTRFS_DELAYED_BATCH 16 29 30 static struct kmem_cache *delayed_node_cache; 31 32 int __init btrfs_delayed_inode_init(void) 33 { 34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 35 sizeof(struct btrfs_delayed_node), 36 0, 37 SLAB_MEM_SPREAD, 38 NULL); 39 if (!delayed_node_cache) 40 return -ENOMEM; 41 return 0; 42 } 43 44 void btrfs_delayed_inode_exit(void) 45 { 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 refcount_set(&delayed_node->refs, 0); 56 delayed_node->ins_root = RB_ROOT; 57 delayed_node->del_root = RB_ROOT; 58 mutex_init(&delayed_node->mutex); 59 INIT_LIST_HEAD(&delayed_node->n_list); 60 INIT_LIST_HEAD(&delayed_node->p_list); 61 } 62 63 static inline int btrfs_is_continuous_delayed_item( 64 struct btrfs_delayed_item *item1, 65 struct btrfs_delayed_item *item2) 66 { 67 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 68 item1->key.objectid == item2->key.objectid && 69 item1->key.type == item2->key.type && 70 item1->key.offset + 1 == item2->key.offset) 71 return 1; 72 return 0; 73 } 74 75 static struct btrfs_delayed_node *btrfs_get_delayed_node( 76 struct btrfs_inode *btrfs_inode) 77 { 78 struct btrfs_root *root = btrfs_inode->root; 79 u64 ino = btrfs_ino(btrfs_inode); 80 struct btrfs_delayed_node *node; 81 82 node = READ_ONCE(btrfs_inode->delayed_node); 83 if (node) { 84 refcount_inc(&node->refs); 85 return node; 86 } 87 88 spin_lock(&root->inode_lock); 89 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 90 if (node) { 91 if (btrfs_inode->delayed_node) { 92 refcount_inc(&node->refs); /* can be accessed */ 93 BUG_ON(btrfs_inode->delayed_node != node); 94 spin_unlock(&root->inode_lock); 95 return node; 96 } 97 btrfs_inode->delayed_node = node; 98 /* can be accessed and cached in the inode */ 99 refcount_add(2, &node->refs); 100 spin_unlock(&root->inode_lock); 101 return node; 102 } 103 spin_unlock(&root->inode_lock); 104 105 return NULL; 106 } 107 108 /* Will return either the node or PTR_ERR(-ENOMEM) */ 109 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 110 struct btrfs_inode *btrfs_inode) 111 { 112 struct btrfs_delayed_node *node; 113 struct btrfs_root *root = btrfs_inode->root; 114 u64 ino = btrfs_ino(btrfs_inode); 115 int ret; 116 117 again: 118 node = btrfs_get_delayed_node(btrfs_inode); 119 if (node) 120 return node; 121 122 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 123 if (!node) 124 return ERR_PTR(-ENOMEM); 125 btrfs_init_delayed_node(node, root, ino); 126 127 /* cached in the btrfs inode and can be accessed */ 128 refcount_set(&node->refs, 2); 129 130 ret = radix_tree_preload(GFP_NOFS); 131 if (ret) { 132 kmem_cache_free(delayed_node_cache, node); 133 return ERR_PTR(ret); 134 } 135 136 spin_lock(&root->inode_lock); 137 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 138 if (ret == -EEXIST) { 139 spin_unlock(&root->inode_lock); 140 kmem_cache_free(delayed_node_cache, node); 141 radix_tree_preload_end(); 142 goto again; 143 } 144 btrfs_inode->delayed_node = node; 145 spin_unlock(&root->inode_lock); 146 radix_tree_preload_end(); 147 148 return node; 149 } 150 151 /* 152 * Call it when holding delayed_node->mutex 153 * 154 * If mod = 1, add this node into the prepared list. 155 */ 156 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 157 struct btrfs_delayed_node *node, 158 int mod) 159 { 160 spin_lock(&root->lock); 161 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 162 if (!list_empty(&node->p_list)) 163 list_move_tail(&node->p_list, &root->prepare_list); 164 else if (mod) 165 list_add_tail(&node->p_list, &root->prepare_list); 166 } else { 167 list_add_tail(&node->n_list, &root->node_list); 168 list_add_tail(&node->p_list, &root->prepare_list); 169 refcount_inc(&node->refs); /* inserted into list */ 170 root->nodes++; 171 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 172 } 173 spin_unlock(&root->lock); 174 } 175 176 /* Call it when holding delayed_node->mutex */ 177 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 178 struct btrfs_delayed_node *node) 179 { 180 spin_lock(&root->lock); 181 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 182 root->nodes--; 183 refcount_dec(&node->refs); /* not in the list */ 184 list_del_init(&node->n_list); 185 if (!list_empty(&node->p_list)) 186 list_del_init(&node->p_list); 187 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 188 } 189 spin_unlock(&root->lock); 190 } 191 192 static struct btrfs_delayed_node *btrfs_first_delayed_node( 193 struct btrfs_delayed_root *delayed_root) 194 { 195 struct list_head *p; 196 struct btrfs_delayed_node *node = NULL; 197 198 spin_lock(&delayed_root->lock); 199 if (list_empty(&delayed_root->node_list)) 200 goto out; 201 202 p = delayed_root->node_list.next; 203 node = list_entry(p, struct btrfs_delayed_node, n_list); 204 refcount_inc(&node->refs); 205 out: 206 spin_unlock(&delayed_root->lock); 207 208 return node; 209 } 210 211 static struct btrfs_delayed_node *btrfs_next_delayed_node( 212 struct btrfs_delayed_node *node) 213 { 214 struct btrfs_delayed_root *delayed_root; 215 struct list_head *p; 216 struct btrfs_delayed_node *next = NULL; 217 218 delayed_root = node->root->fs_info->delayed_root; 219 spin_lock(&delayed_root->lock); 220 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 221 /* not in the list */ 222 if (list_empty(&delayed_root->node_list)) 223 goto out; 224 p = delayed_root->node_list.next; 225 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 226 goto out; 227 else 228 p = node->n_list.next; 229 230 next = list_entry(p, struct btrfs_delayed_node, n_list); 231 refcount_inc(&next->refs); 232 out: 233 spin_unlock(&delayed_root->lock); 234 235 return next; 236 } 237 238 static void __btrfs_release_delayed_node( 239 struct btrfs_delayed_node *delayed_node, 240 int mod) 241 { 242 struct btrfs_delayed_root *delayed_root; 243 244 if (!delayed_node) 245 return; 246 247 delayed_root = delayed_node->root->fs_info->delayed_root; 248 249 mutex_lock(&delayed_node->mutex); 250 if (delayed_node->count) 251 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 252 else 253 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 254 mutex_unlock(&delayed_node->mutex); 255 256 if (refcount_dec_and_test(&delayed_node->refs)) { 257 bool free = false; 258 struct btrfs_root *root = delayed_node->root; 259 spin_lock(&root->inode_lock); 260 if (refcount_read(&delayed_node->refs) == 0) { 261 radix_tree_delete(&root->delayed_nodes_tree, 262 delayed_node->inode_id); 263 free = true; 264 } 265 spin_unlock(&root->inode_lock); 266 if (free) 267 kmem_cache_free(delayed_node_cache, delayed_node); 268 } 269 } 270 271 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 272 { 273 __btrfs_release_delayed_node(node, 0); 274 } 275 276 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 277 struct btrfs_delayed_root *delayed_root) 278 { 279 struct list_head *p; 280 struct btrfs_delayed_node *node = NULL; 281 282 spin_lock(&delayed_root->lock); 283 if (list_empty(&delayed_root->prepare_list)) 284 goto out; 285 286 p = delayed_root->prepare_list.next; 287 list_del_init(p); 288 node = list_entry(p, struct btrfs_delayed_node, p_list); 289 refcount_inc(&node->refs); 290 out: 291 spin_unlock(&delayed_root->lock); 292 293 return node; 294 } 295 296 static inline void btrfs_release_prepared_delayed_node( 297 struct btrfs_delayed_node *node) 298 { 299 __btrfs_release_delayed_node(node, 1); 300 } 301 302 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 303 { 304 struct btrfs_delayed_item *item; 305 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 306 if (item) { 307 item->data_len = data_len; 308 item->ins_or_del = 0; 309 item->bytes_reserved = 0; 310 item->delayed_node = NULL; 311 refcount_set(&item->refs, 1); 312 } 313 return item; 314 } 315 316 /* 317 * __btrfs_lookup_delayed_item - look up the delayed item by key 318 * @delayed_node: pointer to the delayed node 319 * @key: the key to look up 320 * @prev: used to store the prev item if the right item isn't found 321 * @next: used to store the next item if the right item isn't found 322 * 323 * Note: if we don't find the right item, we will return the prev item and 324 * the next item. 325 */ 326 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 327 struct rb_root *root, 328 struct btrfs_key *key, 329 struct btrfs_delayed_item **prev, 330 struct btrfs_delayed_item **next) 331 { 332 struct rb_node *node, *prev_node = NULL; 333 struct btrfs_delayed_item *delayed_item = NULL; 334 int ret = 0; 335 336 node = root->rb_node; 337 338 while (node) { 339 delayed_item = rb_entry(node, struct btrfs_delayed_item, 340 rb_node); 341 prev_node = node; 342 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 343 if (ret < 0) 344 node = node->rb_right; 345 else if (ret > 0) 346 node = node->rb_left; 347 else 348 return delayed_item; 349 } 350 351 if (prev) { 352 if (!prev_node) 353 *prev = NULL; 354 else if (ret < 0) 355 *prev = delayed_item; 356 else if ((node = rb_prev(prev_node)) != NULL) { 357 *prev = rb_entry(node, struct btrfs_delayed_item, 358 rb_node); 359 } else 360 *prev = NULL; 361 } 362 363 if (next) { 364 if (!prev_node) 365 *next = NULL; 366 else if (ret > 0) 367 *next = delayed_item; 368 else if ((node = rb_next(prev_node)) != NULL) { 369 *next = rb_entry(node, struct btrfs_delayed_item, 370 rb_node); 371 } else 372 *next = NULL; 373 } 374 return NULL; 375 } 376 377 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 378 struct btrfs_delayed_node *delayed_node, 379 struct btrfs_key *key) 380 { 381 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 382 NULL, NULL); 383 } 384 385 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 386 struct btrfs_delayed_item *ins, 387 int action) 388 { 389 struct rb_node **p, *node; 390 struct rb_node *parent_node = NULL; 391 struct rb_root *root; 392 struct btrfs_delayed_item *item; 393 int cmp; 394 395 if (action == BTRFS_DELAYED_INSERTION_ITEM) 396 root = &delayed_node->ins_root; 397 else if (action == BTRFS_DELAYED_DELETION_ITEM) 398 root = &delayed_node->del_root; 399 else 400 BUG(); 401 p = &root->rb_node; 402 node = &ins->rb_node; 403 404 while (*p) { 405 parent_node = *p; 406 item = rb_entry(parent_node, struct btrfs_delayed_item, 407 rb_node); 408 409 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 410 if (cmp < 0) 411 p = &(*p)->rb_right; 412 else if (cmp > 0) 413 p = &(*p)->rb_left; 414 else 415 return -EEXIST; 416 } 417 418 rb_link_node(node, parent_node, p); 419 rb_insert_color(node, root); 420 ins->delayed_node = delayed_node; 421 ins->ins_or_del = action; 422 423 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 424 action == BTRFS_DELAYED_INSERTION_ITEM && 425 ins->key.offset >= delayed_node->index_cnt) 426 delayed_node->index_cnt = ins->key.offset + 1; 427 428 delayed_node->count++; 429 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 430 return 0; 431 } 432 433 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 434 struct btrfs_delayed_item *item) 435 { 436 return __btrfs_add_delayed_item(node, item, 437 BTRFS_DELAYED_INSERTION_ITEM); 438 } 439 440 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 441 struct btrfs_delayed_item *item) 442 { 443 return __btrfs_add_delayed_item(node, item, 444 BTRFS_DELAYED_DELETION_ITEM); 445 } 446 447 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 448 { 449 int seq = atomic_inc_return(&delayed_root->items_seq); 450 451 /* 452 * atomic_dec_return implies a barrier for waitqueue_active 453 */ 454 if ((atomic_dec_return(&delayed_root->items) < 455 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 456 waitqueue_active(&delayed_root->wait)) 457 wake_up(&delayed_root->wait); 458 } 459 460 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 461 { 462 struct rb_root *root; 463 struct btrfs_delayed_root *delayed_root; 464 465 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 466 467 BUG_ON(!delayed_root); 468 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 469 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 470 471 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 472 root = &delayed_item->delayed_node->ins_root; 473 else 474 root = &delayed_item->delayed_node->del_root; 475 476 rb_erase(&delayed_item->rb_node, root); 477 delayed_item->delayed_node->count--; 478 479 finish_one_item(delayed_root); 480 } 481 482 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 483 { 484 if (item) { 485 __btrfs_remove_delayed_item(item); 486 if (refcount_dec_and_test(&item->refs)) 487 kfree(item); 488 } 489 } 490 491 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 492 struct btrfs_delayed_node *delayed_node) 493 { 494 struct rb_node *p; 495 struct btrfs_delayed_item *item = NULL; 496 497 p = rb_first(&delayed_node->ins_root); 498 if (p) 499 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 500 501 return item; 502 } 503 504 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 505 struct btrfs_delayed_node *delayed_node) 506 { 507 struct rb_node *p; 508 struct btrfs_delayed_item *item = NULL; 509 510 p = rb_first(&delayed_node->del_root); 511 if (p) 512 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 513 514 return item; 515 } 516 517 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 518 struct btrfs_delayed_item *item) 519 { 520 struct rb_node *p; 521 struct btrfs_delayed_item *next = NULL; 522 523 p = rb_next(&item->rb_node); 524 if (p) 525 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 526 527 return next; 528 } 529 530 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 531 struct btrfs_fs_info *fs_info, 532 struct btrfs_delayed_item *item) 533 { 534 struct btrfs_block_rsv *src_rsv; 535 struct btrfs_block_rsv *dst_rsv; 536 u64 num_bytes; 537 int ret; 538 539 if (!trans->bytes_reserved) 540 return 0; 541 542 src_rsv = trans->block_rsv; 543 dst_rsv = &fs_info->delayed_block_rsv; 544 545 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 546 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 547 if (!ret) { 548 trace_btrfs_space_reservation(fs_info, "delayed_item", 549 item->key.objectid, 550 num_bytes, 1); 551 item->bytes_reserved = num_bytes; 552 } 553 554 return ret; 555 } 556 557 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info, 558 struct btrfs_delayed_item *item) 559 { 560 struct btrfs_block_rsv *rsv; 561 562 if (!item->bytes_reserved) 563 return; 564 565 rsv = &fs_info->delayed_block_rsv; 566 trace_btrfs_space_reservation(fs_info, "delayed_item", 567 item->key.objectid, item->bytes_reserved, 568 0); 569 btrfs_block_rsv_release(fs_info, rsv, 570 item->bytes_reserved); 571 } 572 573 static int btrfs_delayed_inode_reserve_metadata( 574 struct btrfs_trans_handle *trans, 575 struct btrfs_root *root, 576 struct btrfs_inode *inode, 577 struct btrfs_delayed_node *node) 578 { 579 struct btrfs_fs_info *fs_info = root->fs_info; 580 struct btrfs_block_rsv *src_rsv; 581 struct btrfs_block_rsv *dst_rsv; 582 u64 num_bytes; 583 int ret; 584 585 src_rsv = trans->block_rsv; 586 dst_rsv = &fs_info->delayed_block_rsv; 587 588 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 589 590 /* 591 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 592 * which doesn't reserve space for speed. This is a problem since we 593 * still need to reserve space for this update, so try to reserve the 594 * space. 595 * 596 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 597 * we always reserve enough to update the inode item. 598 */ 599 if (!src_rsv || (!trans->bytes_reserved && 600 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 601 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 602 BTRFS_RESERVE_NO_FLUSH); 603 /* 604 * Since we're under a transaction reserve_metadata_bytes could 605 * try to commit the transaction which will make it return 606 * EAGAIN to make us stop the transaction we have, so return 607 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 608 */ 609 if (ret == -EAGAIN) 610 ret = -ENOSPC; 611 if (!ret) { 612 node->bytes_reserved = num_bytes; 613 trace_btrfs_space_reservation(fs_info, 614 "delayed_inode", 615 btrfs_ino(inode), 616 num_bytes, 1); 617 } 618 return ret; 619 } 620 621 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 622 if (!ret) { 623 trace_btrfs_space_reservation(fs_info, "delayed_inode", 624 btrfs_ino(inode), num_bytes, 1); 625 node->bytes_reserved = num_bytes; 626 } 627 628 return ret; 629 } 630 631 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 632 struct btrfs_delayed_node *node) 633 { 634 struct btrfs_block_rsv *rsv; 635 636 if (!node->bytes_reserved) 637 return; 638 639 rsv = &fs_info->delayed_block_rsv; 640 trace_btrfs_space_reservation(fs_info, "delayed_inode", 641 node->inode_id, node->bytes_reserved, 0); 642 btrfs_block_rsv_release(fs_info, rsv, 643 node->bytes_reserved); 644 node->bytes_reserved = 0; 645 } 646 647 /* 648 * This helper will insert some continuous items into the same leaf according 649 * to the free space of the leaf. 650 */ 651 static int btrfs_batch_insert_items(struct btrfs_root *root, 652 struct btrfs_path *path, 653 struct btrfs_delayed_item *item) 654 { 655 struct btrfs_fs_info *fs_info = root->fs_info; 656 struct btrfs_delayed_item *curr, *next; 657 int free_space; 658 int total_data_size = 0, total_size = 0; 659 struct extent_buffer *leaf; 660 char *data_ptr; 661 struct btrfs_key *keys; 662 u32 *data_size; 663 struct list_head head; 664 int slot; 665 int nitems; 666 int i; 667 int ret = 0; 668 669 BUG_ON(!path->nodes[0]); 670 671 leaf = path->nodes[0]; 672 free_space = btrfs_leaf_free_space(fs_info, leaf); 673 INIT_LIST_HEAD(&head); 674 675 next = item; 676 nitems = 0; 677 678 /* 679 * count the number of the continuous items that we can insert in batch 680 */ 681 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 682 free_space) { 683 total_data_size += next->data_len; 684 total_size += next->data_len + sizeof(struct btrfs_item); 685 list_add_tail(&next->tree_list, &head); 686 nitems++; 687 688 curr = next; 689 next = __btrfs_next_delayed_item(curr); 690 if (!next) 691 break; 692 693 if (!btrfs_is_continuous_delayed_item(curr, next)) 694 break; 695 } 696 697 if (!nitems) { 698 ret = 0; 699 goto out; 700 } 701 702 /* 703 * we need allocate some memory space, but it might cause the task 704 * to sleep, so we set all locked nodes in the path to blocking locks 705 * first. 706 */ 707 btrfs_set_path_blocking(path); 708 709 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 710 if (!keys) { 711 ret = -ENOMEM; 712 goto out; 713 } 714 715 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 716 if (!data_size) { 717 ret = -ENOMEM; 718 goto error; 719 } 720 721 /* get keys of all the delayed items */ 722 i = 0; 723 list_for_each_entry(next, &head, tree_list) { 724 keys[i] = next->key; 725 data_size[i] = next->data_len; 726 i++; 727 } 728 729 /* reset all the locked nodes in the patch to spinning locks. */ 730 btrfs_clear_path_blocking(path, NULL, 0); 731 732 /* insert the keys of the items */ 733 setup_items_for_insert(root, path, keys, data_size, 734 total_data_size, total_size, nitems); 735 736 /* insert the dir index items */ 737 slot = path->slots[0]; 738 list_for_each_entry_safe(curr, next, &head, tree_list) { 739 data_ptr = btrfs_item_ptr(leaf, slot, char); 740 write_extent_buffer(leaf, &curr->data, 741 (unsigned long)data_ptr, 742 curr->data_len); 743 slot++; 744 745 btrfs_delayed_item_release_metadata(fs_info, curr); 746 747 list_del(&curr->tree_list); 748 btrfs_release_delayed_item(curr); 749 } 750 751 error: 752 kfree(data_size); 753 kfree(keys); 754 out: 755 return ret; 756 } 757 758 /* 759 * This helper can just do simple insertion that needn't extend item for new 760 * data, such as directory name index insertion, inode insertion. 761 */ 762 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 763 struct btrfs_root *root, 764 struct btrfs_path *path, 765 struct btrfs_delayed_item *delayed_item) 766 { 767 struct btrfs_fs_info *fs_info = root->fs_info; 768 struct extent_buffer *leaf; 769 char *ptr; 770 int ret; 771 772 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 773 delayed_item->data_len); 774 if (ret < 0 && ret != -EEXIST) 775 return ret; 776 777 leaf = path->nodes[0]; 778 779 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 780 781 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 782 delayed_item->data_len); 783 btrfs_mark_buffer_dirty(leaf); 784 785 btrfs_delayed_item_release_metadata(fs_info, delayed_item); 786 return 0; 787 } 788 789 /* 790 * we insert an item first, then if there are some continuous items, we try 791 * to insert those items into the same leaf. 792 */ 793 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 794 struct btrfs_path *path, 795 struct btrfs_root *root, 796 struct btrfs_delayed_node *node) 797 { 798 struct btrfs_delayed_item *curr, *prev; 799 int ret = 0; 800 801 do_again: 802 mutex_lock(&node->mutex); 803 curr = __btrfs_first_delayed_insertion_item(node); 804 if (!curr) 805 goto insert_end; 806 807 ret = btrfs_insert_delayed_item(trans, root, path, curr); 808 if (ret < 0) { 809 btrfs_release_path(path); 810 goto insert_end; 811 } 812 813 prev = curr; 814 curr = __btrfs_next_delayed_item(prev); 815 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 816 /* insert the continuous items into the same leaf */ 817 path->slots[0]++; 818 btrfs_batch_insert_items(root, path, curr); 819 } 820 btrfs_release_delayed_item(prev); 821 btrfs_mark_buffer_dirty(path->nodes[0]); 822 823 btrfs_release_path(path); 824 mutex_unlock(&node->mutex); 825 goto do_again; 826 827 insert_end: 828 mutex_unlock(&node->mutex); 829 return ret; 830 } 831 832 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 833 struct btrfs_root *root, 834 struct btrfs_path *path, 835 struct btrfs_delayed_item *item) 836 { 837 struct btrfs_fs_info *fs_info = root->fs_info; 838 struct btrfs_delayed_item *curr, *next; 839 struct extent_buffer *leaf; 840 struct btrfs_key key; 841 struct list_head head; 842 int nitems, i, last_item; 843 int ret = 0; 844 845 BUG_ON(!path->nodes[0]); 846 847 leaf = path->nodes[0]; 848 849 i = path->slots[0]; 850 last_item = btrfs_header_nritems(leaf) - 1; 851 if (i > last_item) 852 return -ENOENT; /* FIXME: Is errno suitable? */ 853 854 next = item; 855 INIT_LIST_HEAD(&head); 856 btrfs_item_key_to_cpu(leaf, &key, i); 857 nitems = 0; 858 /* 859 * count the number of the dir index items that we can delete in batch 860 */ 861 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 862 list_add_tail(&next->tree_list, &head); 863 nitems++; 864 865 curr = next; 866 next = __btrfs_next_delayed_item(curr); 867 if (!next) 868 break; 869 870 if (!btrfs_is_continuous_delayed_item(curr, next)) 871 break; 872 873 i++; 874 if (i > last_item) 875 break; 876 btrfs_item_key_to_cpu(leaf, &key, i); 877 } 878 879 if (!nitems) 880 return 0; 881 882 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 883 if (ret) 884 goto out; 885 886 list_for_each_entry_safe(curr, next, &head, tree_list) { 887 btrfs_delayed_item_release_metadata(fs_info, curr); 888 list_del(&curr->tree_list); 889 btrfs_release_delayed_item(curr); 890 } 891 892 out: 893 return ret; 894 } 895 896 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 897 struct btrfs_path *path, 898 struct btrfs_root *root, 899 struct btrfs_delayed_node *node) 900 { 901 struct btrfs_delayed_item *curr, *prev; 902 int ret = 0; 903 904 do_again: 905 mutex_lock(&node->mutex); 906 curr = __btrfs_first_delayed_deletion_item(node); 907 if (!curr) 908 goto delete_fail; 909 910 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 911 if (ret < 0) 912 goto delete_fail; 913 else if (ret > 0) { 914 /* 915 * can't find the item which the node points to, so this node 916 * is invalid, just drop it. 917 */ 918 prev = curr; 919 curr = __btrfs_next_delayed_item(prev); 920 btrfs_release_delayed_item(prev); 921 ret = 0; 922 btrfs_release_path(path); 923 if (curr) { 924 mutex_unlock(&node->mutex); 925 goto do_again; 926 } else 927 goto delete_fail; 928 } 929 930 btrfs_batch_delete_items(trans, root, path, curr); 931 btrfs_release_path(path); 932 mutex_unlock(&node->mutex); 933 goto do_again; 934 935 delete_fail: 936 btrfs_release_path(path); 937 mutex_unlock(&node->mutex); 938 return ret; 939 } 940 941 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 942 { 943 struct btrfs_delayed_root *delayed_root; 944 945 if (delayed_node && 946 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 947 BUG_ON(!delayed_node->root); 948 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 949 delayed_node->count--; 950 951 delayed_root = delayed_node->root->fs_info->delayed_root; 952 finish_one_item(delayed_root); 953 } 954 } 955 956 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 957 { 958 struct btrfs_delayed_root *delayed_root; 959 960 ASSERT(delayed_node->root); 961 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 962 delayed_node->count--; 963 964 delayed_root = delayed_node->root->fs_info->delayed_root; 965 finish_one_item(delayed_root); 966 } 967 968 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 969 struct btrfs_root *root, 970 struct btrfs_path *path, 971 struct btrfs_delayed_node *node) 972 { 973 struct btrfs_fs_info *fs_info = root->fs_info; 974 struct btrfs_key key; 975 struct btrfs_inode_item *inode_item; 976 struct extent_buffer *leaf; 977 int mod; 978 int ret; 979 980 key.objectid = node->inode_id; 981 key.type = BTRFS_INODE_ITEM_KEY; 982 key.offset = 0; 983 984 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 985 mod = -1; 986 else 987 mod = 1; 988 989 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 990 if (ret > 0) { 991 btrfs_release_path(path); 992 return -ENOENT; 993 } else if (ret < 0) { 994 return ret; 995 } 996 997 leaf = path->nodes[0]; 998 inode_item = btrfs_item_ptr(leaf, path->slots[0], 999 struct btrfs_inode_item); 1000 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1001 sizeof(struct btrfs_inode_item)); 1002 btrfs_mark_buffer_dirty(leaf); 1003 1004 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1005 goto no_iref; 1006 1007 path->slots[0]++; 1008 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1009 goto search; 1010 again: 1011 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1012 if (key.objectid != node->inode_id) 1013 goto out; 1014 1015 if (key.type != BTRFS_INODE_REF_KEY && 1016 key.type != BTRFS_INODE_EXTREF_KEY) 1017 goto out; 1018 1019 /* 1020 * Delayed iref deletion is for the inode who has only one link, 1021 * so there is only one iref. The case that several irefs are 1022 * in the same item doesn't exist. 1023 */ 1024 btrfs_del_item(trans, root, path); 1025 out: 1026 btrfs_release_delayed_iref(node); 1027 no_iref: 1028 btrfs_release_path(path); 1029 err_out: 1030 btrfs_delayed_inode_release_metadata(fs_info, node); 1031 btrfs_release_delayed_inode(node); 1032 1033 return ret; 1034 1035 search: 1036 btrfs_release_path(path); 1037 1038 key.type = BTRFS_INODE_EXTREF_KEY; 1039 key.offset = -1; 1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1041 if (ret < 0) 1042 goto err_out; 1043 ASSERT(ret); 1044 1045 ret = 0; 1046 leaf = path->nodes[0]; 1047 path->slots[0]--; 1048 goto again; 1049 } 1050 1051 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1052 struct btrfs_root *root, 1053 struct btrfs_path *path, 1054 struct btrfs_delayed_node *node) 1055 { 1056 int ret; 1057 1058 mutex_lock(&node->mutex); 1059 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1060 mutex_unlock(&node->mutex); 1061 return 0; 1062 } 1063 1064 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1065 mutex_unlock(&node->mutex); 1066 return ret; 1067 } 1068 1069 static inline int 1070 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1071 struct btrfs_path *path, 1072 struct btrfs_delayed_node *node) 1073 { 1074 int ret; 1075 1076 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1077 if (ret) 1078 return ret; 1079 1080 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1081 if (ret) 1082 return ret; 1083 1084 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1085 return ret; 1086 } 1087 1088 /* 1089 * Called when committing the transaction. 1090 * Returns 0 on success. 1091 * Returns < 0 on error and returns with an aborted transaction with any 1092 * outstanding delayed items cleaned up. 1093 */ 1094 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1095 struct btrfs_fs_info *fs_info, int nr) 1096 { 1097 struct btrfs_delayed_root *delayed_root; 1098 struct btrfs_delayed_node *curr_node, *prev_node; 1099 struct btrfs_path *path; 1100 struct btrfs_block_rsv *block_rsv; 1101 int ret = 0; 1102 bool count = (nr > 0); 1103 1104 if (trans->aborted) 1105 return -EIO; 1106 1107 path = btrfs_alloc_path(); 1108 if (!path) 1109 return -ENOMEM; 1110 path->leave_spinning = 1; 1111 1112 block_rsv = trans->block_rsv; 1113 trans->block_rsv = &fs_info->delayed_block_rsv; 1114 1115 delayed_root = fs_info->delayed_root; 1116 1117 curr_node = btrfs_first_delayed_node(delayed_root); 1118 while (curr_node && (!count || (count && nr--))) { 1119 ret = __btrfs_commit_inode_delayed_items(trans, path, 1120 curr_node); 1121 if (ret) { 1122 btrfs_release_delayed_node(curr_node); 1123 curr_node = NULL; 1124 btrfs_abort_transaction(trans, ret); 1125 break; 1126 } 1127 1128 prev_node = curr_node; 1129 curr_node = btrfs_next_delayed_node(curr_node); 1130 btrfs_release_delayed_node(prev_node); 1131 } 1132 1133 if (curr_node) 1134 btrfs_release_delayed_node(curr_node); 1135 btrfs_free_path(path); 1136 trans->block_rsv = block_rsv; 1137 1138 return ret; 1139 } 1140 1141 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1142 struct btrfs_fs_info *fs_info) 1143 { 1144 return __btrfs_run_delayed_items(trans, fs_info, -1); 1145 } 1146 1147 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1148 struct btrfs_fs_info *fs_info, int nr) 1149 { 1150 return __btrfs_run_delayed_items(trans, fs_info, nr); 1151 } 1152 1153 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1154 struct btrfs_inode *inode) 1155 { 1156 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1157 struct btrfs_path *path; 1158 struct btrfs_block_rsv *block_rsv; 1159 int ret; 1160 1161 if (!delayed_node) 1162 return 0; 1163 1164 mutex_lock(&delayed_node->mutex); 1165 if (!delayed_node->count) { 1166 mutex_unlock(&delayed_node->mutex); 1167 btrfs_release_delayed_node(delayed_node); 1168 return 0; 1169 } 1170 mutex_unlock(&delayed_node->mutex); 1171 1172 path = btrfs_alloc_path(); 1173 if (!path) { 1174 btrfs_release_delayed_node(delayed_node); 1175 return -ENOMEM; 1176 } 1177 path->leave_spinning = 1; 1178 1179 block_rsv = trans->block_rsv; 1180 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1181 1182 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1183 1184 btrfs_release_delayed_node(delayed_node); 1185 btrfs_free_path(path); 1186 trans->block_rsv = block_rsv; 1187 1188 return ret; 1189 } 1190 1191 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1192 { 1193 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1194 struct btrfs_trans_handle *trans; 1195 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1196 struct btrfs_path *path; 1197 struct btrfs_block_rsv *block_rsv; 1198 int ret; 1199 1200 if (!delayed_node) 1201 return 0; 1202 1203 mutex_lock(&delayed_node->mutex); 1204 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1205 mutex_unlock(&delayed_node->mutex); 1206 btrfs_release_delayed_node(delayed_node); 1207 return 0; 1208 } 1209 mutex_unlock(&delayed_node->mutex); 1210 1211 trans = btrfs_join_transaction(delayed_node->root); 1212 if (IS_ERR(trans)) { 1213 ret = PTR_ERR(trans); 1214 goto out; 1215 } 1216 1217 path = btrfs_alloc_path(); 1218 if (!path) { 1219 ret = -ENOMEM; 1220 goto trans_out; 1221 } 1222 path->leave_spinning = 1; 1223 1224 block_rsv = trans->block_rsv; 1225 trans->block_rsv = &fs_info->delayed_block_rsv; 1226 1227 mutex_lock(&delayed_node->mutex); 1228 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1229 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1230 path, delayed_node); 1231 else 1232 ret = 0; 1233 mutex_unlock(&delayed_node->mutex); 1234 1235 btrfs_free_path(path); 1236 trans->block_rsv = block_rsv; 1237 trans_out: 1238 btrfs_end_transaction(trans); 1239 btrfs_btree_balance_dirty(fs_info); 1240 out: 1241 btrfs_release_delayed_node(delayed_node); 1242 1243 return ret; 1244 } 1245 1246 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1247 { 1248 struct btrfs_delayed_node *delayed_node; 1249 1250 delayed_node = READ_ONCE(inode->delayed_node); 1251 if (!delayed_node) 1252 return; 1253 1254 inode->delayed_node = NULL; 1255 btrfs_release_delayed_node(delayed_node); 1256 } 1257 1258 struct btrfs_async_delayed_work { 1259 struct btrfs_delayed_root *delayed_root; 1260 int nr; 1261 struct btrfs_work work; 1262 }; 1263 1264 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1265 { 1266 struct btrfs_async_delayed_work *async_work; 1267 struct btrfs_delayed_root *delayed_root; 1268 struct btrfs_trans_handle *trans; 1269 struct btrfs_path *path; 1270 struct btrfs_delayed_node *delayed_node = NULL; 1271 struct btrfs_root *root; 1272 struct btrfs_block_rsv *block_rsv; 1273 int total_done = 0; 1274 1275 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1276 delayed_root = async_work->delayed_root; 1277 1278 path = btrfs_alloc_path(); 1279 if (!path) 1280 goto out; 1281 1282 again: 1283 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1284 goto free_path; 1285 1286 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1287 if (!delayed_node) 1288 goto free_path; 1289 1290 path->leave_spinning = 1; 1291 root = delayed_node->root; 1292 1293 trans = btrfs_join_transaction(root); 1294 if (IS_ERR(trans)) 1295 goto release_path; 1296 1297 block_rsv = trans->block_rsv; 1298 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1299 1300 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1301 1302 trans->block_rsv = block_rsv; 1303 btrfs_end_transaction(trans); 1304 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1305 1306 release_path: 1307 btrfs_release_path(path); 1308 total_done++; 1309 1310 btrfs_release_prepared_delayed_node(delayed_node); 1311 if ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) || 1312 total_done < async_work->nr) 1313 goto again; 1314 1315 free_path: 1316 btrfs_free_path(path); 1317 out: 1318 wake_up(&delayed_root->wait); 1319 kfree(async_work); 1320 } 1321 1322 1323 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1324 struct btrfs_fs_info *fs_info, int nr) 1325 { 1326 struct btrfs_async_delayed_work *async_work; 1327 1328 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND || 1329 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1330 return 0; 1331 1332 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1333 if (!async_work) 1334 return -ENOMEM; 1335 1336 async_work->delayed_root = delayed_root; 1337 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1338 btrfs_async_run_delayed_root, NULL, NULL); 1339 async_work->nr = nr; 1340 1341 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1342 return 0; 1343 } 1344 1345 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1346 { 1347 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1348 } 1349 1350 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1351 { 1352 int val = atomic_read(&delayed_root->items_seq); 1353 1354 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1355 return 1; 1356 1357 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1358 return 1; 1359 1360 return 0; 1361 } 1362 1363 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1364 { 1365 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1366 1367 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1368 return; 1369 1370 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1371 int seq; 1372 int ret; 1373 1374 seq = atomic_read(&delayed_root->items_seq); 1375 1376 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1377 if (ret) 1378 return; 1379 1380 wait_event_interruptible(delayed_root->wait, 1381 could_end_wait(delayed_root, seq)); 1382 return; 1383 } 1384 1385 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1386 } 1387 1388 /* Will return 0 or -ENOMEM */ 1389 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1390 struct btrfs_fs_info *fs_info, 1391 const char *name, int name_len, 1392 struct btrfs_inode *dir, 1393 struct btrfs_disk_key *disk_key, u8 type, 1394 u64 index) 1395 { 1396 struct btrfs_delayed_node *delayed_node; 1397 struct btrfs_delayed_item *delayed_item; 1398 struct btrfs_dir_item *dir_item; 1399 int ret; 1400 1401 delayed_node = btrfs_get_or_create_delayed_node(dir); 1402 if (IS_ERR(delayed_node)) 1403 return PTR_ERR(delayed_node); 1404 1405 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1406 if (!delayed_item) { 1407 ret = -ENOMEM; 1408 goto release_node; 1409 } 1410 1411 delayed_item->key.objectid = btrfs_ino(dir); 1412 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1413 delayed_item->key.offset = index; 1414 1415 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1416 dir_item->location = *disk_key; 1417 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1418 btrfs_set_stack_dir_data_len(dir_item, 0); 1419 btrfs_set_stack_dir_name_len(dir_item, name_len); 1420 btrfs_set_stack_dir_type(dir_item, type); 1421 memcpy((char *)(dir_item + 1), name, name_len); 1422 1423 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item); 1424 /* 1425 * we have reserved enough space when we start a new transaction, 1426 * so reserving metadata failure is impossible 1427 */ 1428 BUG_ON(ret); 1429 1430 1431 mutex_lock(&delayed_node->mutex); 1432 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1433 if (unlikely(ret)) { 1434 btrfs_err(fs_info, 1435 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1436 name_len, name, delayed_node->root->objectid, 1437 delayed_node->inode_id, ret); 1438 BUG(); 1439 } 1440 mutex_unlock(&delayed_node->mutex); 1441 1442 release_node: 1443 btrfs_release_delayed_node(delayed_node); 1444 return ret; 1445 } 1446 1447 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1448 struct btrfs_delayed_node *node, 1449 struct btrfs_key *key) 1450 { 1451 struct btrfs_delayed_item *item; 1452 1453 mutex_lock(&node->mutex); 1454 item = __btrfs_lookup_delayed_insertion_item(node, key); 1455 if (!item) { 1456 mutex_unlock(&node->mutex); 1457 return 1; 1458 } 1459 1460 btrfs_delayed_item_release_metadata(fs_info, item); 1461 btrfs_release_delayed_item(item); 1462 mutex_unlock(&node->mutex); 1463 return 0; 1464 } 1465 1466 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1467 struct btrfs_fs_info *fs_info, 1468 struct btrfs_inode *dir, u64 index) 1469 { 1470 struct btrfs_delayed_node *node; 1471 struct btrfs_delayed_item *item; 1472 struct btrfs_key item_key; 1473 int ret; 1474 1475 node = btrfs_get_or_create_delayed_node(dir); 1476 if (IS_ERR(node)) 1477 return PTR_ERR(node); 1478 1479 item_key.objectid = btrfs_ino(dir); 1480 item_key.type = BTRFS_DIR_INDEX_KEY; 1481 item_key.offset = index; 1482 1483 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); 1484 if (!ret) 1485 goto end; 1486 1487 item = btrfs_alloc_delayed_item(0); 1488 if (!item) { 1489 ret = -ENOMEM; 1490 goto end; 1491 } 1492 1493 item->key = item_key; 1494 1495 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item); 1496 /* 1497 * we have reserved enough space when we start a new transaction, 1498 * so reserving metadata failure is impossible. 1499 */ 1500 BUG_ON(ret); 1501 1502 mutex_lock(&node->mutex); 1503 ret = __btrfs_add_delayed_deletion_item(node, item); 1504 if (unlikely(ret)) { 1505 btrfs_err(fs_info, 1506 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1507 index, node->root->objectid, node->inode_id, ret); 1508 BUG(); 1509 } 1510 mutex_unlock(&node->mutex); 1511 end: 1512 btrfs_release_delayed_node(node); 1513 return ret; 1514 } 1515 1516 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1517 { 1518 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1519 1520 if (!delayed_node) 1521 return -ENOENT; 1522 1523 /* 1524 * Since we have held i_mutex of this directory, it is impossible that 1525 * a new directory index is added into the delayed node and index_cnt 1526 * is updated now. So we needn't lock the delayed node. 1527 */ 1528 if (!delayed_node->index_cnt) { 1529 btrfs_release_delayed_node(delayed_node); 1530 return -EINVAL; 1531 } 1532 1533 inode->index_cnt = delayed_node->index_cnt; 1534 btrfs_release_delayed_node(delayed_node); 1535 return 0; 1536 } 1537 1538 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1539 struct list_head *ins_list, 1540 struct list_head *del_list) 1541 { 1542 struct btrfs_delayed_node *delayed_node; 1543 struct btrfs_delayed_item *item; 1544 1545 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1546 if (!delayed_node) 1547 return false; 1548 1549 /* 1550 * We can only do one readdir with delayed items at a time because of 1551 * item->readdir_list. 1552 */ 1553 inode_unlock_shared(inode); 1554 inode_lock(inode); 1555 1556 mutex_lock(&delayed_node->mutex); 1557 item = __btrfs_first_delayed_insertion_item(delayed_node); 1558 while (item) { 1559 refcount_inc(&item->refs); 1560 list_add_tail(&item->readdir_list, ins_list); 1561 item = __btrfs_next_delayed_item(item); 1562 } 1563 1564 item = __btrfs_first_delayed_deletion_item(delayed_node); 1565 while (item) { 1566 refcount_inc(&item->refs); 1567 list_add_tail(&item->readdir_list, del_list); 1568 item = __btrfs_next_delayed_item(item); 1569 } 1570 mutex_unlock(&delayed_node->mutex); 1571 /* 1572 * This delayed node is still cached in the btrfs inode, so refs 1573 * must be > 1 now, and we needn't check it is going to be freed 1574 * or not. 1575 * 1576 * Besides that, this function is used to read dir, we do not 1577 * insert/delete delayed items in this period. So we also needn't 1578 * requeue or dequeue this delayed node. 1579 */ 1580 refcount_dec(&delayed_node->refs); 1581 1582 return true; 1583 } 1584 1585 void btrfs_readdir_put_delayed_items(struct inode *inode, 1586 struct list_head *ins_list, 1587 struct list_head *del_list) 1588 { 1589 struct btrfs_delayed_item *curr, *next; 1590 1591 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1592 list_del(&curr->readdir_list); 1593 if (refcount_dec_and_test(&curr->refs)) 1594 kfree(curr); 1595 } 1596 1597 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1598 list_del(&curr->readdir_list); 1599 if (refcount_dec_and_test(&curr->refs)) 1600 kfree(curr); 1601 } 1602 1603 /* 1604 * The VFS is going to do up_read(), so we need to downgrade back to a 1605 * read lock. 1606 */ 1607 downgrade_write(&inode->i_rwsem); 1608 } 1609 1610 int btrfs_should_delete_dir_index(struct list_head *del_list, 1611 u64 index) 1612 { 1613 struct btrfs_delayed_item *curr, *next; 1614 int ret; 1615 1616 if (list_empty(del_list)) 1617 return 0; 1618 1619 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1620 if (curr->key.offset > index) 1621 break; 1622 1623 list_del(&curr->readdir_list); 1624 ret = (curr->key.offset == index); 1625 1626 if (refcount_dec_and_test(&curr->refs)) 1627 kfree(curr); 1628 1629 if (ret) 1630 return 1; 1631 else 1632 continue; 1633 } 1634 return 0; 1635 } 1636 1637 /* 1638 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1639 * 1640 */ 1641 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1642 struct list_head *ins_list) 1643 { 1644 struct btrfs_dir_item *di; 1645 struct btrfs_delayed_item *curr, *next; 1646 struct btrfs_key location; 1647 char *name; 1648 int name_len; 1649 int over = 0; 1650 unsigned char d_type; 1651 1652 if (list_empty(ins_list)) 1653 return 0; 1654 1655 /* 1656 * Changing the data of the delayed item is impossible. So 1657 * we needn't lock them. And we have held i_mutex of the 1658 * directory, nobody can delete any directory indexes now. 1659 */ 1660 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1661 list_del(&curr->readdir_list); 1662 1663 if (curr->key.offset < ctx->pos) { 1664 if (refcount_dec_and_test(&curr->refs)) 1665 kfree(curr); 1666 continue; 1667 } 1668 1669 ctx->pos = curr->key.offset; 1670 1671 di = (struct btrfs_dir_item *)curr->data; 1672 name = (char *)(di + 1); 1673 name_len = btrfs_stack_dir_name_len(di); 1674 1675 d_type = btrfs_filetype_table[di->type]; 1676 btrfs_disk_key_to_cpu(&location, &di->location); 1677 1678 over = !dir_emit(ctx, name, name_len, 1679 location.objectid, d_type); 1680 1681 if (refcount_dec_and_test(&curr->refs)) 1682 kfree(curr); 1683 1684 if (over) 1685 return 1; 1686 ctx->pos++; 1687 } 1688 return 0; 1689 } 1690 1691 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1692 struct btrfs_inode_item *inode_item, 1693 struct inode *inode) 1694 { 1695 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1696 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1697 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1698 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1699 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1700 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1701 btrfs_set_stack_inode_generation(inode_item, 1702 BTRFS_I(inode)->generation); 1703 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1704 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1705 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1706 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1707 btrfs_set_stack_inode_block_group(inode_item, 0); 1708 1709 btrfs_set_stack_timespec_sec(&inode_item->atime, 1710 inode->i_atime.tv_sec); 1711 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1712 inode->i_atime.tv_nsec); 1713 1714 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1715 inode->i_mtime.tv_sec); 1716 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1717 inode->i_mtime.tv_nsec); 1718 1719 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1720 inode->i_ctime.tv_sec); 1721 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1722 inode->i_ctime.tv_nsec); 1723 1724 btrfs_set_stack_timespec_sec(&inode_item->otime, 1725 BTRFS_I(inode)->i_otime.tv_sec); 1726 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1727 BTRFS_I(inode)->i_otime.tv_nsec); 1728 } 1729 1730 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1731 { 1732 struct btrfs_delayed_node *delayed_node; 1733 struct btrfs_inode_item *inode_item; 1734 1735 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1736 if (!delayed_node) 1737 return -ENOENT; 1738 1739 mutex_lock(&delayed_node->mutex); 1740 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1741 mutex_unlock(&delayed_node->mutex); 1742 btrfs_release_delayed_node(delayed_node); 1743 return -ENOENT; 1744 } 1745 1746 inode_item = &delayed_node->inode_item; 1747 1748 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1749 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1750 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1751 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1752 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1753 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1754 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1755 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1756 1757 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1758 inode->i_rdev = 0; 1759 *rdev = btrfs_stack_inode_rdev(inode_item); 1760 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1761 1762 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1763 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1764 1765 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1766 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1767 1768 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1769 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1770 1771 BTRFS_I(inode)->i_otime.tv_sec = 1772 btrfs_stack_timespec_sec(&inode_item->otime); 1773 BTRFS_I(inode)->i_otime.tv_nsec = 1774 btrfs_stack_timespec_nsec(&inode_item->otime); 1775 1776 inode->i_generation = BTRFS_I(inode)->generation; 1777 BTRFS_I(inode)->index_cnt = (u64)-1; 1778 1779 mutex_unlock(&delayed_node->mutex); 1780 btrfs_release_delayed_node(delayed_node); 1781 return 0; 1782 } 1783 1784 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1785 struct btrfs_root *root, struct inode *inode) 1786 { 1787 struct btrfs_delayed_node *delayed_node; 1788 int ret = 0; 1789 1790 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1791 if (IS_ERR(delayed_node)) 1792 return PTR_ERR(delayed_node); 1793 1794 mutex_lock(&delayed_node->mutex); 1795 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1796 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1797 goto release_node; 1798 } 1799 1800 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1801 delayed_node); 1802 if (ret) 1803 goto release_node; 1804 1805 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1806 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1807 delayed_node->count++; 1808 atomic_inc(&root->fs_info->delayed_root->items); 1809 release_node: 1810 mutex_unlock(&delayed_node->mutex); 1811 btrfs_release_delayed_node(delayed_node); 1812 return ret; 1813 } 1814 1815 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1816 { 1817 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1818 struct btrfs_delayed_node *delayed_node; 1819 1820 /* 1821 * we don't do delayed inode updates during log recovery because it 1822 * leads to enospc problems. This means we also can't do 1823 * delayed inode refs 1824 */ 1825 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1826 return -EAGAIN; 1827 1828 delayed_node = btrfs_get_or_create_delayed_node(inode); 1829 if (IS_ERR(delayed_node)) 1830 return PTR_ERR(delayed_node); 1831 1832 /* 1833 * We don't reserve space for inode ref deletion is because: 1834 * - We ONLY do async inode ref deletion for the inode who has only 1835 * one link(i_nlink == 1), it means there is only one inode ref. 1836 * And in most case, the inode ref and the inode item are in the 1837 * same leaf, and we will deal with them at the same time. 1838 * Since we are sure we will reserve the space for the inode item, 1839 * it is unnecessary to reserve space for inode ref deletion. 1840 * - If the inode ref and the inode item are not in the same leaf, 1841 * We also needn't worry about enospc problem, because we reserve 1842 * much more space for the inode update than it needs. 1843 * - At the worst, we can steal some space from the global reservation. 1844 * It is very rare. 1845 */ 1846 mutex_lock(&delayed_node->mutex); 1847 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1848 goto release_node; 1849 1850 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1851 delayed_node->count++; 1852 atomic_inc(&fs_info->delayed_root->items); 1853 release_node: 1854 mutex_unlock(&delayed_node->mutex); 1855 btrfs_release_delayed_node(delayed_node); 1856 return 0; 1857 } 1858 1859 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1860 { 1861 struct btrfs_root *root = delayed_node->root; 1862 struct btrfs_fs_info *fs_info = root->fs_info; 1863 struct btrfs_delayed_item *curr_item, *prev_item; 1864 1865 mutex_lock(&delayed_node->mutex); 1866 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1867 while (curr_item) { 1868 btrfs_delayed_item_release_metadata(fs_info, curr_item); 1869 prev_item = curr_item; 1870 curr_item = __btrfs_next_delayed_item(prev_item); 1871 btrfs_release_delayed_item(prev_item); 1872 } 1873 1874 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1875 while (curr_item) { 1876 btrfs_delayed_item_release_metadata(fs_info, curr_item); 1877 prev_item = curr_item; 1878 curr_item = __btrfs_next_delayed_item(prev_item); 1879 btrfs_release_delayed_item(prev_item); 1880 } 1881 1882 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1883 btrfs_release_delayed_iref(delayed_node); 1884 1885 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1886 btrfs_delayed_inode_release_metadata(fs_info, delayed_node); 1887 btrfs_release_delayed_inode(delayed_node); 1888 } 1889 mutex_unlock(&delayed_node->mutex); 1890 } 1891 1892 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1893 { 1894 struct btrfs_delayed_node *delayed_node; 1895 1896 delayed_node = btrfs_get_delayed_node(inode); 1897 if (!delayed_node) 1898 return; 1899 1900 __btrfs_kill_delayed_node(delayed_node); 1901 btrfs_release_delayed_node(delayed_node); 1902 } 1903 1904 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1905 { 1906 u64 inode_id = 0; 1907 struct btrfs_delayed_node *delayed_nodes[8]; 1908 int i, n; 1909 1910 while (1) { 1911 spin_lock(&root->inode_lock); 1912 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1913 (void **)delayed_nodes, inode_id, 1914 ARRAY_SIZE(delayed_nodes)); 1915 if (!n) { 1916 spin_unlock(&root->inode_lock); 1917 break; 1918 } 1919 1920 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1921 1922 for (i = 0; i < n; i++) 1923 refcount_inc(&delayed_nodes[i]->refs); 1924 spin_unlock(&root->inode_lock); 1925 1926 for (i = 0; i < n; i++) { 1927 __btrfs_kill_delayed_node(delayed_nodes[i]); 1928 btrfs_release_delayed_node(delayed_nodes[i]); 1929 } 1930 } 1931 } 1932 1933 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1934 { 1935 struct btrfs_delayed_node *curr_node, *prev_node; 1936 1937 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1938 while (curr_node) { 1939 __btrfs_kill_delayed_node(curr_node); 1940 1941 prev_node = curr_node; 1942 curr_node = btrfs_next_delayed_node(curr_node); 1943 btrfs_release_delayed_node(prev_node); 1944 } 1945 } 1946 1947