1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include <linux/iversion.h> 22 #include "delayed-inode.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "ctree.h" 26 27 #define BTRFS_DELAYED_WRITEBACK 512 28 #define BTRFS_DELAYED_BACKGROUND 128 29 #define BTRFS_DELAYED_BATCH 16 30 31 static struct kmem_cache *delayed_node_cache; 32 33 int __init btrfs_delayed_inode_init(void) 34 { 35 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 36 sizeof(struct btrfs_delayed_node), 37 0, 38 SLAB_MEM_SPREAD, 39 NULL); 40 if (!delayed_node_cache) 41 return -ENOMEM; 42 return 0; 43 } 44 45 void btrfs_delayed_inode_exit(void) 46 { 47 kmem_cache_destroy(delayed_node_cache); 48 } 49 50 static inline void btrfs_init_delayed_node( 51 struct btrfs_delayed_node *delayed_node, 52 struct btrfs_root *root, u64 inode_id) 53 { 54 delayed_node->root = root; 55 delayed_node->inode_id = inode_id; 56 refcount_set(&delayed_node->refs, 0); 57 delayed_node->ins_root = RB_ROOT; 58 delayed_node->del_root = RB_ROOT; 59 mutex_init(&delayed_node->mutex); 60 INIT_LIST_HEAD(&delayed_node->n_list); 61 INIT_LIST_HEAD(&delayed_node->p_list); 62 } 63 64 static inline int btrfs_is_continuous_delayed_item( 65 struct btrfs_delayed_item *item1, 66 struct btrfs_delayed_item *item2) 67 { 68 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 69 item1->key.objectid == item2->key.objectid && 70 item1->key.type == item2->key.type && 71 item1->key.offset + 1 == item2->key.offset) 72 return 1; 73 return 0; 74 } 75 76 static struct btrfs_delayed_node *btrfs_get_delayed_node( 77 struct btrfs_inode *btrfs_inode) 78 { 79 struct btrfs_root *root = btrfs_inode->root; 80 u64 ino = btrfs_ino(btrfs_inode); 81 struct btrfs_delayed_node *node; 82 83 node = READ_ONCE(btrfs_inode->delayed_node); 84 if (node) { 85 refcount_inc(&node->refs); 86 return node; 87 } 88 89 spin_lock(&root->inode_lock); 90 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 91 92 if (node) { 93 if (btrfs_inode->delayed_node) { 94 refcount_inc(&node->refs); /* can be accessed */ 95 BUG_ON(btrfs_inode->delayed_node != node); 96 spin_unlock(&root->inode_lock); 97 return node; 98 } 99 100 /* 101 * It's possible that we're racing into the middle of removing 102 * this node from the radix tree. In this case, the refcount 103 * was zero and it should never go back to one. Just return 104 * NULL like it was never in the radix at all; our release 105 * function is in the process of removing it. 106 * 107 * Some implementations of refcount_inc refuse to bump the 108 * refcount once it has hit zero. If we don't do this dance 109 * here, refcount_inc() may decide to just WARN_ONCE() instead 110 * of actually bumping the refcount. 111 * 112 * If this node is properly in the radix, we want to bump the 113 * refcount twice, once for the inode and once for this get 114 * operation. 115 */ 116 if (refcount_inc_not_zero(&node->refs)) { 117 refcount_inc(&node->refs); 118 btrfs_inode->delayed_node = node; 119 } else { 120 node = NULL; 121 } 122 123 spin_unlock(&root->inode_lock); 124 return node; 125 } 126 spin_unlock(&root->inode_lock); 127 128 return NULL; 129 } 130 131 /* Will return either the node or PTR_ERR(-ENOMEM) */ 132 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 133 struct btrfs_inode *btrfs_inode) 134 { 135 struct btrfs_delayed_node *node; 136 struct btrfs_root *root = btrfs_inode->root; 137 u64 ino = btrfs_ino(btrfs_inode); 138 int ret; 139 140 again: 141 node = btrfs_get_delayed_node(btrfs_inode); 142 if (node) 143 return node; 144 145 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 146 if (!node) 147 return ERR_PTR(-ENOMEM); 148 btrfs_init_delayed_node(node, root, ino); 149 150 /* cached in the btrfs inode and can be accessed */ 151 refcount_set(&node->refs, 2); 152 153 ret = radix_tree_preload(GFP_NOFS); 154 if (ret) { 155 kmem_cache_free(delayed_node_cache, node); 156 return ERR_PTR(ret); 157 } 158 159 spin_lock(&root->inode_lock); 160 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 161 if (ret == -EEXIST) { 162 spin_unlock(&root->inode_lock); 163 kmem_cache_free(delayed_node_cache, node); 164 radix_tree_preload_end(); 165 goto again; 166 } 167 btrfs_inode->delayed_node = node; 168 spin_unlock(&root->inode_lock); 169 radix_tree_preload_end(); 170 171 return node; 172 } 173 174 /* 175 * Call it when holding delayed_node->mutex 176 * 177 * If mod = 1, add this node into the prepared list. 178 */ 179 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 180 struct btrfs_delayed_node *node, 181 int mod) 182 { 183 spin_lock(&root->lock); 184 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 185 if (!list_empty(&node->p_list)) 186 list_move_tail(&node->p_list, &root->prepare_list); 187 else if (mod) 188 list_add_tail(&node->p_list, &root->prepare_list); 189 } else { 190 list_add_tail(&node->n_list, &root->node_list); 191 list_add_tail(&node->p_list, &root->prepare_list); 192 refcount_inc(&node->refs); /* inserted into list */ 193 root->nodes++; 194 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 /* Call it when holding delayed_node->mutex */ 200 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 201 struct btrfs_delayed_node *node) 202 { 203 spin_lock(&root->lock); 204 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 205 root->nodes--; 206 refcount_dec(&node->refs); /* not in the list */ 207 list_del_init(&node->n_list); 208 if (!list_empty(&node->p_list)) 209 list_del_init(&node->p_list); 210 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 211 } 212 spin_unlock(&root->lock); 213 } 214 215 static struct btrfs_delayed_node *btrfs_first_delayed_node( 216 struct btrfs_delayed_root *delayed_root) 217 { 218 struct list_head *p; 219 struct btrfs_delayed_node *node = NULL; 220 221 spin_lock(&delayed_root->lock); 222 if (list_empty(&delayed_root->node_list)) 223 goto out; 224 225 p = delayed_root->node_list.next; 226 node = list_entry(p, struct btrfs_delayed_node, n_list); 227 refcount_inc(&node->refs); 228 out: 229 spin_unlock(&delayed_root->lock); 230 231 return node; 232 } 233 234 static struct btrfs_delayed_node *btrfs_next_delayed_node( 235 struct btrfs_delayed_node *node) 236 { 237 struct btrfs_delayed_root *delayed_root; 238 struct list_head *p; 239 struct btrfs_delayed_node *next = NULL; 240 241 delayed_root = node->root->fs_info->delayed_root; 242 spin_lock(&delayed_root->lock); 243 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 244 /* not in the list */ 245 if (list_empty(&delayed_root->node_list)) 246 goto out; 247 p = delayed_root->node_list.next; 248 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 249 goto out; 250 else 251 p = node->n_list.next; 252 253 next = list_entry(p, struct btrfs_delayed_node, n_list); 254 refcount_inc(&next->refs); 255 out: 256 spin_unlock(&delayed_root->lock); 257 258 return next; 259 } 260 261 static void __btrfs_release_delayed_node( 262 struct btrfs_delayed_node *delayed_node, 263 int mod) 264 { 265 struct btrfs_delayed_root *delayed_root; 266 267 if (!delayed_node) 268 return; 269 270 delayed_root = delayed_node->root->fs_info->delayed_root; 271 272 mutex_lock(&delayed_node->mutex); 273 if (delayed_node->count) 274 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 275 else 276 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 277 mutex_unlock(&delayed_node->mutex); 278 279 if (refcount_dec_and_test(&delayed_node->refs)) { 280 struct btrfs_root *root = delayed_node->root; 281 282 spin_lock(&root->inode_lock); 283 /* 284 * Once our refcount goes to zero, nobody is allowed to bump it 285 * back up. We can delete it now. 286 */ 287 ASSERT(refcount_read(&delayed_node->refs) == 0); 288 radix_tree_delete(&root->delayed_nodes_tree, 289 delayed_node->inode_id); 290 spin_unlock(&root->inode_lock); 291 kmem_cache_free(delayed_node_cache, delayed_node); 292 } 293 } 294 295 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 296 { 297 __btrfs_release_delayed_node(node, 0); 298 } 299 300 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 301 struct btrfs_delayed_root *delayed_root) 302 { 303 struct list_head *p; 304 struct btrfs_delayed_node *node = NULL; 305 306 spin_lock(&delayed_root->lock); 307 if (list_empty(&delayed_root->prepare_list)) 308 goto out; 309 310 p = delayed_root->prepare_list.next; 311 list_del_init(p); 312 node = list_entry(p, struct btrfs_delayed_node, p_list); 313 refcount_inc(&node->refs); 314 out: 315 spin_unlock(&delayed_root->lock); 316 317 return node; 318 } 319 320 static inline void btrfs_release_prepared_delayed_node( 321 struct btrfs_delayed_node *node) 322 { 323 __btrfs_release_delayed_node(node, 1); 324 } 325 326 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 327 { 328 struct btrfs_delayed_item *item; 329 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 330 if (item) { 331 item->data_len = data_len; 332 item->ins_or_del = 0; 333 item->bytes_reserved = 0; 334 item->delayed_node = NULL; 335 refcount_set(&item->refs, 1); 336 } 337 return item; 338 } 339 340 /* 341 * __btrfs_lookup_delayed_item - look up the delayed item by key 342 * @delayed_node: pointer to the delayed node 343 * @key: the key to look up 344 * @prev: used to store the prev item if the right item isn't found 345 * @next: used to store the next item if the right item isn't found 346 * 347 * Note: if we don't find the right item, we will return the prev item and 348 * the next item. 349 */ 350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 351 struct rb_root *root, 352 struct btrfs_key *key, 353 struct btrfs_delayed_item **prev, 354 struct btrfs_delayed_item **next) 355 { 356 struct rb_node *node, *prev_node = NULL; 357 struct btrfs_delayed_item *delayed_item = NULL; 358 int ret = 0; 359 360 node = root->rb_node; 361 362 while (node) { 363 delayed_item = rb_entry(node, struct btrfs_delayed_item, 364 rb_node); 365 prev_node = node; 366 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 367 if (ret < 0) 368 node = node->rb_right; 369 else if (ret > 0) 370 node = node->rb_left; 371 else 372 return delayed_item; 373 } 374 375 if (prev) { 376 if (!prev_node) 377 *prev = NULL; 378 else if (ret < 0) 379 *prev = delayed_item; 380 else if ((node = rb_prev(prev_node)) != NULL) { 381 *prev = rb_entry(node, struct btrfs_delayed_item, 382 rb_node); 383 } else 384 *prev = NULL; 385 } 386 387 if (next) { 388 if (!prev_node) 389 *next = NULL; 390 else if (ret > 0) 391 *next = delayed_item; 392 else if ((node = rb_next(prev_node)) != NULL) { 393 *next = rb_entry(node, struct btrfs_delayed_item, 394 rb_node); 395 } else 396 *next = NULL; 397 } 398 return NULL; 399 } 400 401 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 402 struct btrfs_delayed_node *delayed_node, 403 struct btrfs_key *key) 404 { 405 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 406 NULL, NULL); 407 } 408 409 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 410 struct btrfs_delayed_item *ins, 411 int action) 412 { 413 struct rb_node **p, *node; 414 struct rb_node *parent_node = NULL; 415 struct rb_root *root; 416 struct btrfs_delayed_item *item; 417 int cmp; 418 419 if (action == BTRFS_DELAYED_INSERTION_ITEM) 420 root = &delayed_node->ins_root; 421 else if (action == BTRFS_DELAYED_DELETION_ITEM) 422 root = &delayed_node->del_root; 423 else 424 BUG(); 425 p = &root->rb_node; 426 node = &ins->rb_node; 427 428 while (*p) { 429 parent_node = *p; 430 item = rb_entry(parent_node, struct btrfs_delayed_item, 431 rb_node); 432 433 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 434 if (cmp < 0) 435 p = &(*p)->rb_right; 436 else if (cmp > 0) 437 p = &(*p)->rb_left; 438 else 439 return -EEXIST; 440 } 441 442 rb_link_node(node, parent_node, p); 443 rb_insert_color(node, root); 444 ins->delayed_node = delayed_node; 445 ins->ins_or_del = action; 446 447 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 448 action == BTRFS_DELAYED_INSERTION_ITEM && 449 ins->key.offset >= delayed_node->index_cnt) 450 delayed_node->index_cnt = ins->key.offset + 1; 451 452 delayed_node->count++; 453 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 454 return 0; 455 } 456 457 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 458 struct btrfs_delayed_item *item) 459 { 460 return __btrfs_add_delayed_item(node, item, 461 BTRFS_DELAYED_INSERTION_ITEM); 462 } 463 464 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 465 struct btrfs_delayed_item *item) 466 { 467 return __btrfs_add_delayed_item(node, item, 468 BTRFS_DELAYED_DELETION_ITEM); 469 } 470 471 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 472 { 473 int seq = atomic_inc_return(&delayed_root->items_seq); 474 475 /* 476 * atomic_dec_return implies a barrier for waitqueue_active 477 */ 478 if ((atomic_dec_return(&delayed_root->items) < 479 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 480 waitqueue_active(&delayed_root->wait)) 481 wake_up(&delayed_root->wait); 482 } 483 484 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 485 { 486 struct rb_root *root; 487 struct btrfs_delayed_root *delayed_root; 488 489 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 490 491 BUG_ON(!delayed_root); 492 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 493 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 494 495 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 496 root = &delayed_item->delayed_node->ins_root; 497 else 498 root = &delayed_item->delayed_node->del_root; 499 500 rb_erase(&delayed_item->rb_node, root); 501 delayed_item->delayed_node->count--; 502 503 finish_one_item(delayed_root); 504 } 505 506 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 507 { 508 if (item) { 509 __btrfs_remove_delayed_item(item); 510 if (refcount_dec_and_test(&item->refs)) 511 kfree(item); 512 } 513 } 514 515 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 516 struct btrfs_delayed_node *delayed_node) 517 { 518 struct rb_node *p; 519 struct btrfs_delayed_item *item = NULL; 520 521 p = rb_first(&delayed_node->ins_root); 522 if (p) 523 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 524 525 return item; 526 } 527 528 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 529 struct btrfs_delayed_node *delayed_node) 530 { 531 struct rb_node *p; 532 struct btrfs_delayed_item *item = NULL; 533 534 p = rb_first(&delayed_node->del_root); 535 if (p) 536 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 537 538 return item; 539 } 540 541 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 542 struct btrfs_delayed_item *item) 543 { 544 struct rb_node *p; 545 struct btrfs_delayed_item *next = NULL; 546 547 p = rb_next(&item->rb_node); 548 if (p) 549 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 550 551 return next; 552 } 553 554 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 555 struct btrfs_fs_info *fs_info, 556 struct btrfs_delayed_item *item) 557 { 558 struct btrfs_block_rsv *src_rsv; 559 struct btrfs_block_rsv *dst_rsv; 560 u64 num_bytes; 561 int ret; 562 563 if (!trans->bytes_reserved) 564 return 0; 565 566 src_rsv = trans->block_rsv; 567 dst_rsv = &fs_info->delayed_block_rsv; 568 569 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 571 if (!ret) { 572 trace_btrfs_space_reservation(fs_info, "delayed_item", 573 item->key.objectid, 574 num_bytes, 1); 575 item->bytes_reserved = num_bytes; 576 } 577 578 return ret; 579 } 580 581 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info, 582 struct btrfs_delayed_item *item) 583 { 584 struct btrfs_block_rsv *rsv; 585 586 if (!item->bytes_reserved) 587 return; 588 589 rsv = &fs_info->delayed_block_rsv; 590 trace_btrfs_space_reservation(fs_info, "delayed_item", 591 item->key.objectid, item->bytes_reserved, 592 0); 593 btrfs_block_rsv_release(fs_info, rsv, 594 item->bytes_reserved); 595 } 596 597 static int btrfs_delayed_inode_reserve_metadata( 598 struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_inode *inode, 601 struct btrfs_delayed_node *node) 602 { 603 struct btrfs_fs_info *fs_info = root->fs_info; 604 struct btrfs_block_rsv *src_rsv; 605 struct btrfs_block_rsv *dst_rsv; 606 u64 num_bytes; 607 int ret; 608 609 src_rsv = trans->block_rsv; 610 dst_rsv = &fs_info->delayed_block_rsv; 611 612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 613 614 /* 615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 616 * which doesn't reserve space for speed. This is a problem since we 617 * still need to reserve space for this update, so try to reserve the 618 * space. 619 * 620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 621 * we always reserve enough to update the inode item. 622 */ 623 if (!src_rsv || (!trans->bytes_reserved && 624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 625 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 626 BTRFS_RESERVE_NO_FLUSH); 627 /* 628 * Since we're under a transaction reserve_metadata_bytes could 629 * try to commit the transaction which will make it return 630 * EAGAIN to make us stop the transaction we have, so return 631 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 632 */ 633 if (ret == -EAGAIN) 634 ret = -ENOSPC; 635 if (!ret) { 636 node->bytes_reserved = num_bytes; 637 trace_btrfs_space_reservation(fs_info, 638 "delayed_inode", 639 btrfs_ino(inode), 640 num_bytes, 1); 641 } 642 return ret; 643 } 644 645 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 646 if (!ret) { 647 trace_btrfs_space_reservation(fs_info, "delayed_inode", 648 btrfs_ino(inode), num_bytes, 1); 649 node->bytes_reserved = num_bytes; 650 } 651 652 return ret; 653 } 654 655 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 656 struct btrfs_delayed_node *node) 657 { 658 struct btrfs_block_rsv *rsv; 659 660 if (!node->bytes_reserved) 661 return; 662 663 rsv = &fs_info->delayed_block_rsv; 664 trace_btrfs_space_reservation(fs_info, "delayed_inode", 665 node->inode_id, node->bytes_reserved, 0); 666 btrfs_block_rsv_release(fs_info, rsv, 667 node->bytes_reserved); 668 node->bytes_reserved = 0; 669 } 670 671 /* 672 * This helper will insert some continuous items into the same leaf according 673 * to the free space of the leaf. 674 */ 675 static int btrfs_batch_insert_items(struct btrfs_root *root, 676 struct btrfs_path *path, 677 struct btrfs_delayed_item *item) 678 { 679 struct btrfs_fs_info *fs_info = root->fs_info; 680 struct btrfs_delayed_item *curr, *next; 681 int free_space; 682 int total_data_size = 0, total_size = 0; 683 struct extent_buffer *leaf; 684 char *data_ptr; 685 struct btrfs_key *keys; 686 u32 *data_size; 687 struct list_head head; 688 int slot; 689 int nitems; 690 int i; 691 int ret = 0; 692 693 BUG_ON(!path->nodes[0]); 694 695 leaf = path->nodes[0]; 696 free_space = btrfs_leaf_free_space(fs_info, leaf); 697 INIT_LIST_HEAD(&head); 698 699 next = item; 700 nitems = 0; 701 702 /* 703 * count the number of the continuous items that we can insert in batch 704 */ 705 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 706 free_space) { 707 total_data_size += next->data_len; 708 total_size += next->data_len + sizeof(struct btrfs_item); 709 list_add_tail(&next->tree_list, &head); 710 nitems++; 711 712 curr = next; 713 next = __btrfs_next_delayed_item(curr); 714 if (!next) 715 break; 716 717 if (!btrfs_is_continuous_delayed_item(curr, next)) 718 break; 719 } 720 721 if (!nitems) { 722 ret = 0; 723 goto out; 724 } 725 726 /* 727 * we need allocate some memory space, but it might cause the task 728 * to sleep, so we set all locked nodes in the path to blocking locks 729 * first. 730 */ 731 btrfs_set_path_blocking(path); 732 733 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 734 if (!keys) { 735 ret = -ENOMEM; 736 goto out; 737 } 738 739 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 740 if (!data_size) { 741 ret = -ENOMEM; 742 goto error; 743 } 744 745 /* get keys of all the delayed items */ 746 i = 0; 747 list_for_each_entry(next, &head, tree_list) { 748 keys[i] = next->key; 749 data_size[i] = next->data_len; 750 i++; 751 } 752 753 /* reset all the locked nodes in the patch to spinning locks. */ 754 btrfs_clear_path_blocking(path, NULL, 0); 755 756 /* insert the keys of the items */ 757 setup_items_for_insert(root, path, keys, data_size, 758 total_data_size, total_size, nitems); 759 760 /* insert the dir index items */ 761 slot = path->slots[0]; 762 list_for_each_entry_safe(curr, next, &head, tree_list) { 763 data_ptr = btrfs_item_ptr(leaf, slot, char); 764 write_extent_buffer(leaf, &curr->data, 765 (unsigned long)data_ptr, 766 curr->data_len); 767 slot++; 768 769 btrfs_delayed_item_release_metadata(fs_info, curr); 770 771 list_del(&curr->tree_list); 772 btrfs_release_delayed_item(curr); 773 } 774 775 error: 776 kfree(data_size); 777 kfree(keys); 778 out: 779 return ret; 780 } 781 782 /* 783 * This helper can just do simple insertion that needn't extend item for new 784 * data, such as directory name index insertion, inode insertion. 785 */ 786 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 787 struct btrfs_root *root, 788 struct btrfs_path *path, 789 struct btrfs_delayed_item *delayed_item) 790 { 791 struct btrfs_fs_info *fs_info = root->fs_info; 792 struct extent_buffer *leaf; 793 char *ptr; 794 int ret; 795 796 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 797 delayed_item->data_len); 798 if (ret < 0 && ret != -EEXIST) 799 return ret; 800 801 leaf = path->nodes[0]; 802 803 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 804 805 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 806 delayed_item->data_len); 807 btrfs_mark_buffer_dirty(leaf); 808 809 btrfs_delayed_item_release_metadata(fs_info, delayed_item); 810 return 0; 811 } 812 813 /* 814 * we insert an item first, then if there are some continuous items, we try 815 * to insert those items into the same leaf. 816 */ 817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 818 struct btrfs_path *path, 819 struct btrfs_root *root, 820 struct btrfs_delayed_node *node) 821 { 822 struct btrfs_delayed_item *curr, *prev; 823 int ret = 0; 824 825 do_again: 826 mutex_lock(&node->mutex); 827 curr = __btrfs_first_delayed_insertion_item(node); 828 if (!curr) 829 goto insert_end; 830 831 ret = btrfs_insert_delayed_item(trans, root, path, curr); 832 if (ret < 0) { 833 btrfs_release_path(path); 834 goto insert_end; 835 } 836 837 prev = curr; 838 curr = __btrfs_next_delayed_item(prev); 839 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 840 /* insert the continuous items into the same leaf */ 841 path->slots[0]++; 842 btrfs_batch_insert_items(root, path, curr); 843 } 844 btrfs_release_delayed_item(prev); 845 btrfs_mark_buffer_dirty(path->nodes[0]); 846 847 btrfs_release_path(path); 848 mutex_unlock(&node->mutex); 849 goto do_again; 850 851 insert_end: 852 mutex_unlock(&node->mutex); 853 return ret; 854 } 855 856 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 857 struct btrfs_root *root, 858 struct btrfs_path *path, 859 struct btrfs_delayed_item *item) 860 { 861 struct btrfs_fs_info *fs_info = root->fs_info; 862 struct btrfs_delayed_item *curr, *next; 863 struct extent_buffer *leaf; 864 struct btrfs_key key; 865 struct list_head head; 866 int nitems, i, last_item; 867 int ret = 0; 868 869 BUG_ON(!path->nodes[0]); 870 871 leaf = path->nodes[0]; 872 873 i = path->slots[0]; 874 last_item = btrfs_header_nritems(leaf) - 1; 875 if (i > last_item) 876 return -ENOENT; /* FIXME: Is errno suitable? */ 877 878 next = item; 879 INIT_LIST_HEAD(&head); 880 btrfs_item_key_to_cpu(leaf, &key, i); 881 nitems = 0; 882 /* 883 * count the number of the dir index items that we can delete in batch 884 */ 885 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 886 list_add_tail(&next->tree_list, &head); 887 nitems++; 888 889 curr = next; 890 next = __btrfs_next_delayed_item(curr); 891 if (!next) 892 break; 893 894 if (!btrfs_is_continuous_delayed_item(curr, next)) 895 break; 896 897 i++; 898 if (i > last_item) 899 break; 900 btrfs_item_key_to_cpu(leaf, &key, i); 901 } 902 903 if (!nitems) 904 return 0; 905 906 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 907 if (ret) 908 goto out; 909 910 list_for_each_entry_safe(curr, next, &head, tree_list) { 911 btrfs_delayed_item_release_metadata(fs_info, curr); 912 list_del(&curr->tree_list); 913 btrfs_release_delayed_item(curr); 914 } 915 916 out: 917 return ret; 918 } 919 920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 921 struct btrfs_path *path, 922 struct btrfs_root *root, 923 struct btrfs_delayed_node *node) 924 { 925 struct btrfs_delayed_item *curr, *prev; 926 int ret = 0; 927 928 do_again: 929 mutex_lock(&node->mutex); 930 curr = __btrfs_first_delayed_deletion_item(node); 931 if (!curr) 932 goto delete_fail; 933 934 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 935 if (ret < 0) 936 goto delete_fail; 937 else if (ret > 0) { 938 /* 939 * can't find the item which the node points to, so this node 940 * is invalid, just drop it. 941 */ 942 prev = curr; 943 curr = __btrfs_next_delayed_item(prev); 944 btrfs_release_delayed_item(prev); 945 ret = 0; 946 btrfs_release_path(path); 947 if (curr) { 948 mutex_unlock(&node->mutex); 949 goto do_again; 950 } else 951 goto delete_fail; 952 } 953 954 btrfs_batch_delete_items(trans, root, path, curr); 955 btrfs_release_path(path); 956 mutex_unlock(&node->mutex); 957 goto do_again; 958 959 delete_fail: 960 btrfs_release_path(path); 961 mutex_unlock(&node->mutex); 962 return ret; 963 } 964 965 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 966 { 967 struct btrfs_delayed_root *delayed_root; 968 969 if (delayed_node && 970 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 971 BUG_ON(!delayed_node->root); 972 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 973 delayed_node->count--; 974 975 delayed_root = delayed_node->root->fs_info->delayed_root; 976 finish_one_item(delayed_root); 977 } 978 } 979 980 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 981 { 982 struct btrfs_delayed_root *delayed_root; 983 984 ASSERT(delayed_node->root); 985 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 986 delayed_node->count--; 987 988 delayed_root = delayed_node->root->fs_info->delayed_root; 989 finish_one_item(delayed_root); 990 } 991 992 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 993 struct btrfs_root *root, 994 struct btrfs_path *path, 995 struct btrfs_delayed_node *node) 996 { 997 struct btrfs_fs_info *fs_info = root->fs_info; 998 struct btrfs_key key; 999 struct btrfs_inode_item *inode_item; 1000 struct extent_buffer *leaf; 1001 int mod; 1002 int ret; 1003 1004 key.objectid = node->inode_id; 1005 key.type = BTRFS_INODE_ITEM_KEY; 1006 key.offset = 0; 1007 1008 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1009 mod = -1; 1010 else 1011 mod = 1; 1012 1013 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1014 if (ret > 0) { 1015 btrfs_release_path(path); 1016 return -ENOENT; 1017 } else if (ret < 0) { 1018 return ret; 1019 } 1020 1021 leaf = path->nodes[0]; 1022 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1023 struct btrfs_inode_item); 1024 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1025 sizeof(struct btrfs_inode_item)); 1026 btrfs_mark_buffer_dirty(leaf); 1027 1028 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1029 goto no_iref; 1030 1031 path->slots[0]++; 1032 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1033 goto search; 1034 again: 1035 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1036 if (key.objectid != node->inode_id) 1037 goto out; 1038 1039 if (key.type != BTRFS_INODE_REF_KEY && 1040 key.type != BTRFS_INODE_EXTREF_KEY) 1041 goto out; 1042 1043 /* 1044 * Delayed iref deletion is for the inode who has only one link, 1045 * so there is only one iref. The case that several irefs are 1046 * in the same item doesn't exist. 1047 */ 1048 btrfs_del_item(trans, root, path); 1049 out: 1050 btrfs_release_delayed_iref(node); 1051 no_iref: 1052 btrfs_release_path(path); 1053 err_out: 1054 btrfs_delayed_inode_release_metadata(fs_info, node); 1055 btrfs_release_delayed_inode(node); 1056 1057 return ret; 1058 1059 search: 1060 btrfs_release_path(path); 1061 1062 key.type = BTRFS_INODE_EXTREF_KEY; 1063 key.offset = -1; 1064 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1065 if (ret < 0) 1066 goto err_out; 1067 ASSERT(ret); 1068 1069 ret = 0; 1070 leaf = path->nodes[0]; 1071 path->slots[0]--; 1072 goto again; 1073 } 1074 1075 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1076 struct btrfs_root *root, 1077 struct btrfs_path *path, 1078 struct btrfs_delayed_node *node) 1079 { 1080 int ret; 1081 1082 mutex_lock(&node->mutex); 1083 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1084 mutex_unlock(&node->mutex); 1085 return 0; 1086 } 1087 1088 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1089 mutex_unlock(&node->mutex); 1090 return ret; 1091 } 1092 1093 static inline int 1094 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1095 struct btrfs_path *path, 1096 struct btrfs_delayed_node *node) 1097 { 1098 int ret; 1099 1100 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1101 if (ret) 1102 return ret; 1103 1104 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1105 if (ret) 1106 return ret; 1107 1108 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1109 return ret; 1110 } 1111 1112 /* 1113 * Called when committing the transaction. 1114 * Returns 0 on success. 1115 * Returns < 0 on error and returns with an aborted transaction with any 1116 * outstanding delayed items cleaned up. 1117 */ 1118 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1119 struct btrfs_fs_info *fs_info, int nr) 1120 { 1121 struct btrfs_delayed_root *delayed_root; 1122 struct btrfs_delayed_node *curr_node, *prev_node; 1123 struct btrfs_path *path; 1124 struct btrfs_block_rsv *block_rsv; 1125 int ret = 0; 1126 bool count = (nr > 0); 1127 1128 if (trans->aborted) 1129 return -EIO; 1130 1131 path = btrfs_alloc_path(); 1132 if (!path) 1133 return -ENOMEM; 1134 path->leave_spinning = 1; 1135 1136 block_rsv = trans->block_rsv; 1137 trans->block_rsv = &fs_info->delayed_block_rsv; 1138 1139 delayed_root = fs_info->delayed_root; 1140 1141 curr_node = btrfs_first_delayed_node(delayed_root); 1142 while (curr_node && (!count || (count && nr--))) { 1143 ret = __btrfs_commit_inode_delayed_items(trans, path, 1144 curr_node); 1145 if (ret) { 1146 btrfs_release_delayed_node(curr_node); 1147 curr_node = NULL; 1148 btrfs_abort_transaction(trans, ret); 1149 break; 1150 } 1151 1152 prev_node = curr_node; 1153 curr_node = btrfs_next_delayed_node(curr_node); 1154 btrfs_release_delayed_node(prev_node); 1155 } 1156 1157 if (curr_node) 1158 btrfs_release_delayed_node(curr_node); 1159 btrfs_free_path(path); 1160 trans->block_rsv = block_rsv; 1161 1162 return ret; 1163 } 1164 1165 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1166 struct btrfs_fs_info *fs_info) 1167 { 1168 return __btrfs_run_delayed_items(trans, fs_info, -1); 1169 } 1170 1171 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1172 struct btrfs_fs_info *fs_info, int nr) 1173 { 1174 return __btrfs_run_delayed_items(trans, fs_info, nr); 1175 } 1176 1177 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1178 struct btrfs_inode *inode) 1179 { 1180 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1181 struct btrfs_path *path; 1182 struct btrfs_block_rsv *block_rsv; 1183 int ret; 1184 1185 if (!delayed_node) 1186 return 0; 1187 1188 mutex_lock(&delayed_node->mutex); 1189 if (!delayed_node->count) { 1190 mutex_unlock(&delayed_node->mutex); 1191 btrfs_release_delayed_node(delayed_node); 1192 return 0; 1193 } 1194 mutex_unlock(&delayed_node->mutex); 1195 1196 path = btrfs_alloc_path(); 1197 if (!path) { 1198 btrfs_release_delayed_node(delayed_node); 1199 return -ENOMEM; 1200 } 1201 path->leave_spinning = 1; 1202 1203 block_rsv = trans->block_rsv; 1204 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1205 1206 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1207 1208 btrfs_release_delayed_node(delayed_node); 1209 btrfs_free_path(path); 1210 trans->block_rsv = block_rsv; 1211 1212 return ret; 1213 } 1214 1215 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1216 { 1217 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1218 struct btrfs_trans_handle *trans; 1219 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1220 struct btrfs_path *path; 1221 struct btrfs_block_rsv *block_rsv; 1222 int ret; 1223 1224 if (!delayed_node) 1225 return 0; 1226 1227 mutex_lock(&delayed_node->mutex); 1228 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1229 mutex_unlock(&delayed_node->mutex); 1230 btrfs_release_delayed_node(delayed_node); 1231 return 0; 1232 } 1233 mutex_unlock(&delayed_node->mutex); 1234 1235 trans = btrfs_join_transaction(delayed_node->root); 1236 if (IS_ERR(trans)) { 1237 ret = PTR_ERR(trans); 1238 goto out; 1239 } 1240 1241 path = btrfs_alloc_path(); 1242 if (!path) { 1243 ret = -ENOMEM; 1244 goto trans_out; 1245 } 1246 path->leave_spinning = 1; 1247 1248 block_rsv = trans->block_rsv; 1249 trans->block_rsv = &fs_info->delayed_block_rsv; 1250 1251 mutex_lock(&delayed_node->mutex); 1252 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1253 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1254 path, delayed_node); 1255 else 1256 ret = 0; 1257 mutex_unlock(&delayed_node->mutex); 1258 1259 btrfs_free_path(path); 1260 trans->block_rsv = block_rsv; 1261 trans_out: 1262 btrfs_end_transaction(trans); 1263 btrfs_btree_balance_dirty(fs_info); 1264 out: 1265 btrfs_release_delayed_node(delayed_node); 1266 1267 return ret; 1268 } 1269 1270 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1271 { 1272 struct btrfs_delayed_node *delayed_node; 1273 1274 delayed_node = READ_ONCE(inode->delayed_node); 1275 if (!delayed_node) 1276 return; 1277 1278 inode->delayed_node = NULL; 1279 btrfs_release_delayed_node(delayed_node); 1280 } 1281 1282 struct btrfs_async_delayed_work { 1283 struct btrfs_delayed_root *delayed_root; 1284 int nr; 1285 struct btrfs_work work; 1286 }; 1287 1288 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1289 { 1290 struct btrfs_async_delayed_work *async_work; 1291 struct btrfs_delayed_root *delayed_root; 1292 struct btrfs_trans_handle *trans; 1293 struct btrfs_path *path; 1294 struct btrfs_delayed_node *delayed_node = NULL; 1295 struct btrfs_root *root; 1296 struct btrfs_block_rsv *block_rsv; 1297 int total_done = 0; 1298 1299 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1300 delayed_root = async_work->delayed_root; 1301 1302 path = btrfs_alloc_path(); 1303 if (!path) 1304 goto out; 1305 1306 do { 1307 if (atomic_read(&delayed_root->items) < 1308 BTRFS_DELAYED_BACKGROUND / 2) 1309 break; 1310 1311 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1312 if (!delayed_node) 1313 break; 1314 1315 path->leave_spinning = 1; 1316 root = delayed_node->root; 1317 1318 trans = btrfs_join_transaction(root); 1319 if (IS_ERR(trans)) { 1320 btrfs_release_path(path); 1321 btrfs_release_prepared_delayed_node(delayed_node); 1322 total_done++; 1323 continue; 1324 } 1325 1326 block_rsv = trans->block_rsv; 1327 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1328 1329 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1330 1331 trans->block_rsv = block_rsv; 1332 btrfs_end_transaction(trans); 1333 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1334 1335 btrfs_release_path(path); 1336 btrfs_release_prepared_delayed_node(delayed_node); 1337 total_done++; 1338 1339 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1340 || total_done < async_work->nr); 1341 1342 btrfs_free_path(path); 1343 out: 1344 wake_up(&delayed_root->wait); 1345 kfree(async_work); 1346 } 1347 1348 1349 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1350 struct btrfs_fs_info *fs_info, int nr) 1351 { 1352 struct btrfs_async_delayed_work *async_work; 1353 1354 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1355 if (!async_work) 1356 return -ENOMEM; 1357 1358 async_work->delayed_root = delayed_root; 1359 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1360 btrfs_async_run_delayed_root, NULL, NULL); 1361 async_work->nr = nr; 1362 1363 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1364 return 0; 1365 } 1366 1367 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1368 { 1369 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1370 } 1371 1372 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1373 { 1374 int val = atomic_read(&delayed_root->items_seq); 1375 1376 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1377 return 1; 1378 1379 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1380 return 1; 1381 1382 return 0; 1383 } 1384 1385 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1386 { 1387 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1388 1389 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1390 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1391 return; 1392 1393 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1394 int seq; 1395 int ret; 1396 1397 seq = atomic_read(&delayed_root->items_seq); 1398 1399 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1400 if (ret) 1401 return; 1402 1403 wait_event_interruptible(delayed_root->wait, 1404 could_end_wait(delayed_root, seq)); 1405 return; 1406 } 1407 1408 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1409 } 1410 1411 /* Will return 0 or -ENOMEM */ 1412 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1413 struct btrfs_fs_info *fs_info, 1414 const char *name, int name_len, 1415 struct btrfs_inode *dir, 1416 struct btrfs_disk_key *disk_key, u8 type, 1417 u64 index) 1418 { 1419 struct btrfs_delayed_node *delayed_node; 1420 struct btrfs_delayed_item *delayed_item; 1421 struct btrfs_dir_item *dir_item; 1422 int ret; 1423 1424 delayed_node = btrfs_get_or_create_delayed_node(dir); 1425 if (IS_ERR(delayed_node)) 1426 return PTR_ERR(delayed_node); 1427 1428 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1429 if (!delayed_item) { 1430 ret = -ENOMEM; 1431 goto release_node; 1432 } 1433 1434 delayed_item->key.objectid = btrfs_ino(dir); 1435 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1436 delayed_item->key.offset = index; 1437 1438 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1439 dir_item->location = *disk_key; 1440 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1441 btrfs_set_stack_dir_data_len(dir_item, 0); 1442 btrfs_set_stack_dir_name_len(dir_item, name_len); 1443 btrfs_set_stack_dir_type(dir_item, type); 1444 memcpy((char *)(dir_item + 1), name, name_len); 1445 1446 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item); 1447 /* 1448 * we have reserved enough space when we start a new transaction, 1449 * so reserving metadata failure is impossible 1450 */ 1451 BUG_ON(ret); 1452 1453 1454 mutex_lock(&delayed_node->mutex); 1455 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1456 if (unlikely(ret)) { 1457 btrfs_err(fs_info, 1458 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1459 name_len, name, delayed_node->root->objectid, 1460 delayed_node->inode_id, ret); 1461 BUG(); 1462 } 1463 mutex_unlock(&delayed_node->mutex); 1464 1465 release_node: 1466 btrfs_release_delayed_node(delayed_node); 1467 return ret; 1468 } 1469 1470 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1471 struct btrfs_delayed_node *node, 1472 struct btrfs_key *key) 1473 { 1474 struct btrfs_delayed_item *item; 1475 1476 mutex_lock(&node->mutex); 1477 item = __btrfs_lookup_delayed_insertion_item(node, key); 1478 if (!item) { 1479 mutex_unlock(&node->mutex); 1480 return 1; 1481 } 1482 1483 btrfs_delayed_item_release_metadata(fs_info, item); 1484 btrfs_release_delayed_item(item); 1485 mutex_unlock(&node->mutex); 1486 return 0; 1487 } 1488 1489 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1490 struct btrfs_fs_info *fs_info, 1491 struct btrfs_inode *dir, u64 index) 1492 { 1493 struct btrfs_delayed_node *node; 1494 struct btrfs_delayed_item *item; 1495 struct btrfs_key item_key; 1496 int ret; 1497 1498 node = btrfs_get_or_create_delayed_node(dir); 1499 if (IS_ERR(node)) 1500 return PTR_ERR(node); 1501 1502 item_key.objectid = btrfs_ino(dir); 1503 item_key.type = BTRFS_DIR_INDEX_KEY; 1504 item_key.offset = index; 1505 1506 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); 1507 if (!ret) 1508 goto end; 1509 1510 item = btrfs_alloc_delayed_item(0); 1511 if (!item) { 1512 ret = -ENOMEM; 1513 goto end; 1514 } 1515 1516 item->key = item_key; 1517 1518 ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item); 1519 /* 1520 * we have reserved enough space when we start a new transaction, 1521 * so reserving metadata failure is impossible. 1522 */ 1523 BUG_ON(ret); 1524 1525 mutex_lock(&node->mutex); 1526 ret = __btrfs_add_delayed_deletion_item(node, item); 1527 if (unlikely(ret)) { 1528 btrfs_err(fs_info, 1529 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1530 index, node->root->objectid, node->inode_id, ret); 1531 BUG(); 1532 } 1533 mutex_unlock(&node->mutex); 1534 end: 1535 btrfs_release_delayed_node(node); 1536 return ret; 1537 } 1538 1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1540 { 1541 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1542 1543 if (!delayed_node) 1544 return -ENOENT; 1545 1546 /* 1547 * Since we have held i_mutex of this directory, it is impossible that 1548 * a new directory index is added into the delayed node and index_cnt 1549 * is updated now. So we needn't lock the delayed node. 1550 */ 1551 if (!delayed_node->index_cnt) { 1552 btrfs_release_delayed_node(delayed_node); 1553 return -EINVAL; 1554 } 1555 1556 inode->index_cnt = delayed_node->index_cnt; 1557 btrfs_release_delayed_node(delayed_node); 1558 return 0; 1559 } 1560 1561 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1562 struct list_head *ins_list, 1563 struct list_head *del_list) 1564 { 1565 struct btrfs_delayed_node *delayed_node; 1566 struct btrfs_delayed_item *item; 1567 1568 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1569 if (!delayed_node) 1570 return false; 1571 1572 /* 1573 * We can only do one readdir with delayed items at a time because of 1574 * item->readdir_list. 1575 */ 1576 inode_unlock_shared(inode); 1577 inode_lock(inode); 1578 1579 mutex_lock(&delayed_node->mutex); 1580 item = __btrfs_first_delayed_insertion_item(delayed_node); 1581 while (item) { 1582 refcount_inc(&item->refs); 1583 list_add_tail(&item->readdir_list, ins_list); 1584 item = __btrfs_next_delayed_item(item); 1585 } 1586 1587 item = __btrfs_first_delayed_deletion_item(delayed_node); 1588 while (item) { 1589 refcount_inc(&item->refs); 1590 list_add_tail(&item->readdir_list, del_list); 1591 item = __btrfs_next_delayed_item(item); 1592 } 1593 mutex_unlock(&delayed_node->mutex); 1594 /* 1595 * This delayed node is still cached in the btrfs inode, so refs 1596 * must be > 1 now, and we needn't check it is going to be freed 1597 * or not. 1598 * 1599 * Besides that, this function is used to read dir, we do not 1600 * insert/delete delayed items in this period. So we also needn't 1601 * requeue or dequeue this delayed node. 1602 */ 1603 refcount_dec(&delayed_node->refs); 1604 1605 return true; 1606 } 1607 1608 void btrfs_readdir_put_delayed_items(struct inode *inode, 1609 struct list_head *ins_list, 1610 struct list_head *del_list) 1611 { 1612 struct btrfs_delayed_item *curr, *next; 1613 1614 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1615 list_del(&curr->readdir_list); 1616 if (refcount_dec_and_test(&curr->refs)) 1617 kfree(curr); 1618 } 1619 1620 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1621 list_del(&curr->readdir_list); 1622 if (refcount_dec_and_test(&curr->refs)) 1623 kfree(curr); 1624 } 1625 1626 /* 1627 * The VFS is going to do up_read(), so we need to downgrade back to a 1628 * read lock. 1629 */ 1630 downgrade_write(&inode->i_rwsem); 1631 } 1632 1633 int btrfs_should_delete_dir_index(struct list_head *del_list, 1634 u64 index) 1635 { 1636 struct btrfs_delayed_item *curr; 1637 int ret = 0; 1638 1639 list_for_each_entry(curr, del_list, readdir_list) { 1640 if (curr->key.offset > index) 1641 break; 1642 if (curr->key.offset == index) { 1643 ret = 1; 1644 break; 1645 } 1646 } 1647 return ret; 1648 } 1649 1650 /* 1651 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1652 * 1653 */ 1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1655 struct list_head *ins_list) 1656 { 1657 struct btrfs_dir_item *di; 1658 struct btrfs_delayed_item *curr, *next; 1659 struct btrfs_key location; 1660 char *name; 1661 int name_len; 1662 int over = 0; 1663 unsigned char d_type; 1664 1665 if (list_empty(ins_list)) 1666 return 0; 1667 1668 /* 1669 * Changing the data of the delayed item is impossible. So 1670 * we needn't lock them. And we have held i_mutex of the 1671 * directory, nobody can delete any directory indexes now. 1672 */ 1673 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1674 list_del(&curr->readdir_list); 1675 1676 if (curr->key.offset < ctx->pos) { 1677 if (refcount_dec_and_test(&curr->refs)) 1678 kfree(curr); 1679 continue; 1680 } 1681 1682 ctx->pos = curr->key.offset; 1683 1684 di = (struct btrfs_dir_item *)curr->data; 1685 name = (char *)(di + 1); 1686 name_len = btrfs_stack_dir_name_len(di); 1687 1688 d_type = btrfs_filetype_table[di->type]; 1689 btrfs_disk_key_to_cpu(&location, &di->location); 1690 1691 over = !dir_emit(ctx, name, name_len, 1692 location.objectid, d_type); 1693 1694 if (refcount_dec_and_test(&curr->refs)) 1695 kfree(curr); 1696 1697 if (over) 1698 return 1; 1699 ctx->pos++; 1700 } 1701 return 0; 1702 } 1703 1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1705 struct btrfs_inode_item *inode_item, 1706 struct inode *inode) 1707 { 1708 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1709 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1710 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1711 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1712 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1713 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1714 btrfs_set_stack_inode_generation(inode_item, 1715 BTRFS_I(inode)->generation); 1716 btrfs_set_stack_inode_sequence(inode_item, 1717 inode_peek_iversion(inode)); 1718 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1719 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1720 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1721 btrfs_set_stack_inode_block_group(inode_item, 0); 1722 1723 btrfs_set_stack_timespec_sec(&inode_item->atime, 1724 inode->i_atime.tv_sec); 1725 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1726 inode->i_atime.tv_nsec); 1727 1728 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1729 inode->i_mtime.tv_sec); 1730 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1731 inode->i_mtime.tv_nsec); 1732 1733 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1734 inode->i_ctime.tv_sec); 1735 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1736 inode->i_ctime.tv_nsec); 1737 1738 btrfs_set_stack_timespec_sec(&inode_item->otime, 1739 BTRFS_I(inode)->i_otime.tv_sec); 1740 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1741 BTRFS_I(inode)->i_otime.tv_nsec); 1742 } 1743 1744 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1745 { 1746 struct btrfs_delayed_node *delayed_node; 1747 struct btrfs_inode_item *inode_item; 1748 1749 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1750 if (!delayed_node) 1751 return -ENOENT; 1752 1753 mutex_lock(&delayed_node->mutex); 1754 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1755 mutex_unlock(&delayed_node->mutex); 1756 btrfs_release_delayed_node(delayed_node); 1757 return -ENOENT; 1758 } 1759 1760 inode_item = &delayed_node->inode_item; 1761 1762 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1763 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1764 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1765 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1766 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1767 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1768 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1769 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1770 1771 inode_set_iversion_queried(inode, 1772 btrfs_stack_inode_sequence(inode_item)); 1773 inode->i_rdev = 0; 1774 *rdev = btrfs_stack_inode_rdev(inode_item); 1775 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1776 1777 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1778 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1779 1780 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1781 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1782 1783 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1784 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1785 1786 BTRFS_I(inode)->i_otime.tv_sec = 1787 btrfs_stack_timespec_sec(&inode_item->otime); 1788 BTRFS_I(inode)->i_otime.tv_nsec = 1789 btrfs_stack_timespec_nsec(&inode_item->otime); 1790 1791 inode->i_generation = BTRFS_I(inode)->generation; 1792 BTRFS_I(inode)->index_cnt = (u64)-1; 1793 1794 mutex_unlock(&delayed_node->mutex); 1795 btrfs_release_delayed_node(delayed_node); 1796 return 0; 1797 } 1798 1799 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1800 struct btrfs_root *root, struct inode *inode) 1801 { 1802 struct btrfs_delayed_node *delayed_node; 1803 int ret = 0; 1804 1805 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1806 if (IS_ERR(delayed_node)) 1807 return PTR_ERR(delayed_node); 1808 1809 mutex_lock(&delayed_node->mutex); 1810 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1811 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1812 goto release_node; 1813 } 1814 1815 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1816 delayed_node); 1817 if (ret) 1818 goto release_node; 1819 1820 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1821 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1822 delayed_node->count++; 1823 atomic_inc(&root->fs_info->delayed_root->items); 1824 release_node: 1825 mutex_unlock(&delayed_node->mutex); 1826 btrfs_release_delayed_node(delayed_node); 1827 return ret; 1828 } 1829 1830 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1831 { 1832 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1833 struct btrfs_delayed_node *delayed_node; 1834 1835 /* 1836 * we don't do delayed inode updates during log recovery because it 1837 * leads to enospc problems. This means we also can't do 1838 * delayed inode refs 1839 */ 1840 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1841 return -EAGAIN; 1842 1843 delayed_node = btrfs_get_or_create_delayed_node(inode); 1844 if (IS_ERR(delayed_node)) 1845 return PTR_ERR(delayed_node); 1846 1847 /* 1848 * We don't reserve space for inode ref deletion is because: 1849 * - We ONLY do async inode ref deletion for the inode who has only 1850 * one link(i_nlink == 1), it means there is only one inode ref. 1851 * And in most case, the inode ref and the inode item are in the 1852 * same leaf, and we will deal with them at the same time. 1853 * Since we are sure we will reserve the space for the inode item, 1854 * it is unnecessary to reserve space for inode ref deletion. 1855 * - If the inode ref and the inode item are not in the same leaf, 1856 * We also needn't worry about enospc problem, because we reserve 1857 * much more space for the inode update than it needs. 1858 * - At the worst, we can steal some space from the global reservation. 1859 * It is very rare. 1860 */ 1861 mutex_lock(&delayed_node->mutex); 1862 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1863 goto release_node; 1864 1865 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1866 delayed_node->count++; 1867 atomic_inc(&fs_info->delayed_root->items); 1868 release_node: 1869 mutex_unlock(&delayed_node->mutex); 1870 btrfs_release_delayed_node(delayed_node); 1871 return 0; 1872 } 1873 1874 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1875 { 1876 struct btrfs_root *root = delayed_node->root; 1877 struct btrfs_fs_info *fs_info = root->fs_info; 1878 struct btrfs_delayed_item *curr_item, *prev_item; 1879 1880 mutex_lock(&delayed_node->mutex); 1881 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1882 while (curr_item) { 1883 btrfs_delayed_item_release_metadata(fs_info, curr_item); 1884 prev_item = curr_item; 1885 curr_item = __btrfs_next_delayed_item(prev_item); 1886 btrfs_release_delayed_item(prev_item); 1887 } 1888 1889 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1890 while (curr_item) { 1891 btrfs_delayed_item_release_metadata(fs_info, curr_item); 1892 prev_item = curr_item; 1893 curr_item = __btrfs_next_delayed_item(prev_item); 1894 btrfs_release_delayed_item(prev_item); 1895 } 1896 1897 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1898 btrfs_release_delayed_iref(delayed_node); 1899 1900 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1901 btrfs_delayed_inode_release_metadata(fs_info, delayed_node); 1902 btrfs_release_delayed_inode(delayed_node); 1903 } 1904 mutex_unlock(&delayed_node->mutex); 1905 } 1906 1907 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1908 { 1909 struct btrfs_delayed_node *delayed_node; 1910 1911 delayed_node = btrfs_get_delayed_node(inode); 1912 if (!delayed_node) 1913 return; 1914 1915 __btrfs_kill_delayed_node(delayed_node); 1916 btrfs_release_delayed_node(delayed_node); 1917 } 1918 1919 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1920 { 1921 u64 inode_id = 0; 1922 struct btrfs_delayed_node *delayed_nodes[8]; 1923 int i, n; 1924 1925 while (1) { 1926 spin_lock(&root->inode_lock); 1927 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1928 (void **)delayed_nodes, inode_id, 1929 ARRAY_SIZE(delayed_nodes)); 1930 if (!n) { 1931 spin_unlock(&root->inode_lock); 1932 break; 1933 } 1934 1935 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1936 1937 for (i = 0; i < n; i++) 1938 refcount_inc(&delayed_nodes[i]->refs); 1939 spin_unlock(&root->inode_lock); 1940 1941 for (i = 0; i < n; i++) { 1942 __btrfs_kill_delayed_node(delayed_nodes[i]); 1943 btrfs_release_delayed_node(delayed_nodes[i]); 1944 } 1945 } 1946 } 1947 1948 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1949 { 1950 struct btrfs_delayed_node *curr_node, *prev_node; 1951 1952 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1953 while (curr_node) { 1954 __btrfs_kill_delayed_node(curr_node); 1955 1956 prev_node = curr_node; 1957 curr_node = btrfs_next_delayed_node(curr_node); 1958 btrfs_release_delayed_node(prev_node); 1959 } 1960 } 1961 1962