xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 9977a8c3497a8f7f7f951994f298a8e4d961234f)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include <linux/iversion.h>
22 #include "delayed-inode.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "ctree.h"
26 
27 #define BTRFS_DELAYED_WRITEBACK		512
28 #define BTRFS_DELAYED_BACKGROUND	128
29 #define BTRFS_DELAYED_BATCH		16
30 
31 static struct kmem_cache *delayed_node_cache;
32 
33 int __init btrfs_delayed_inode_init(void)
34 {
35 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
36 					sizeof(struct btrfs_delayed_node),
37 					0,
38 					SLAB_MEM_SPREAD,
39 					NULL);
40 	if (!delayed_node_cache)
41 		return -ENOMEM;
42 	return 0;
43 }
44 
45 void btrfs_delayed_inode_exit(void)
46 {
47 	kmem_cache_destroy(delayed_node_cache);
48 }
49 
50 static inline void btrfs_init_delayed_node(
51 				struct btrfs_delayed_node *delayed_node,
52 				struct btrfs_root *root, u64 inode_id)
53 {
54 	delayed_node->root = root;
55 	delayed_node->inode_id = inode_id;
56 	refcount_set(&delayed_node->refs, 0);
57 	delayed_node->ins_root = RB_ROOT;
58 	delayed_node->del_root = RB_ROOT;
59 	mutex_init(&delayed_node->mutex);
60 	INIT_LIST_HEAD(&delayed_node->n_list);
61 	INIT_LIST_HEAD(&delayed_node->p_list);
62 }
63 
64 static inline int btrfs_is_continuous_delayed_item(
65 					struct btrfs_delayed_item *item1,
66 					struct btrfs_delayed_item *item2)
67 {
68 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
69 	    item1->key.objectid == item2->key.objectid &&
70 	    item1->key.type == item2->key.type &&
71 	    item1->key.offset + 1 == item2->key.offset)
72 		return 1;
73 	return 0;
74 }
75 
76 static struct btrfs_delayed_node *btrfs_get_delayed_node(
77 		struct btrfs_inode *btrfs_inode)
78 {
79 	struct btrfs_root *root = btrfs_inode->root;
80 	u64 ino = btrfs_ino(btrfs_inode);
81 	struct btrfs_delayed_node *node;
82 
83 	node = READ_ONCE(btrfs_inode->delayed_node);
84 	if (node) {
85 		refcount_inc(&node->refs);
86 		return node;
87 	}
88 
89 	spin_lock(&root->inode_lock);
90 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
91 
92 	if (node) {
93 		if (btrfs_inode->delayed_node) {
94 			refcount_inc(&node->refs);	/* can be accessed */
95 			BUG_ON(btrfs_inode->delayed_node != node);
96 			spin_unlock(&root->inode_lock);
97 			return node;
98 		}
99 
100 		/*
101 		 * It's possible that we're racing into the middle of removing
102 		 * this node from the radix tree.  In this case, the refcount
103 		 * was zero and it should never go back to one.  Just return
104 		 * NULL like it was never in the radix at all; our release
105 		 * function is in the process of removing it.
106 		 *
107 		 * Some implementations of refcount_inc refuse to bump the
108 		 * refcount once it has hit zero.  If we don't do this dance
109 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
110 		 * of actually bumping the refcount.
111 		 *
112 		 * If this node is properly in the radix, we want to bump the
113 		 * refcount twice, once for the inode and once for this get
114 		 * operation.
115 		 */
116 		if (refcount_inc_not_zero(&node->refs)) {
117 			refcount_inc(&node->refs);
118 			btrfs_inode->delayed_node = node;
119 		} else {
120 			node = NULL;
121 		}
122 
123 		spin_unlock(&root->inode_lock);
124 		return node;
125 	}
126 	spin_unlock(&root->inode_lock);
127 
128 	return NULL;
129 }
130 
131 /* Will return either the node or PTR_ERR(-ENOMEM) */
132 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
133 		struct btrfs_inode *btrfs_inode)
134 {
135 	struct btrfs_delayed_node *node;
136 	struct btrfs_root *root = btrfs_inode->root;
137 	u64 ino = btrfs_ino(btrfs_inode);
138 	int ret;
139 
140 again:
141 	node = btrfs_get_delayed_node(btrfs_inode);
142 	if (node)
143 		return node;
144 
145 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
146 	if (!node)
147 		return ERR_PTR(-ENOMEM);
148 	btrfs_init_delayed_node(node, root, ino);
149 
150 	/* cached in the btrfs inode and can be accessed */
151 	refcount_set(&node->refs, 2);
152 
153 	ret = radix_tree_preload(GFP_NOFS);
154 	if (ret) {
155 		kmem_cache_free(delayed_node_cache, node);
156 		return ERR_PTR(ret);
157 	}
158 
159 	spin_lock(&root->inode_lock);
160 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
161 	if (ret == -EEXIST) {
162 		spin_unlock(&root->inode_lock);
163 		kmem_cache_free(delayed_node_cache, node);
164 		radix_tree_preload_end();
165 		goto again;
166 	}
167 	btrfs_inode->delayed_node = node;
168 	spin_unlock(&root->inode_lock);
169 	radix_tree_preload_end();
170 
171 	return node;
172 }
173 
174 /*
175  * Call it when holding delayed_node->mutex
176  *
177  * If mod = 1, add this node into the prepared list.
178  */
179 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
180 				     struct btrfs_delayed_node *node,
181 				     int mod)
182 {
183 	spin_lock(&root->lock);
184 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
185 		if (!list_empty(&node->p_list))
186 			list_move_tail(&node->p_list, &root->prepare_list);
187 		else if (mod)
188 			list_add_tail(&node->p_list, &root->prepare_list);
189 	} else {
190 		list_add_tail(&node->n_list, &root->node_list);
191 		list_add_tail(&node->p_list, &root->prepare_list);
192 		refcount_inc(&node->refs);	/* inserted into list */
193 		root->nodes++;
194 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
195 	}
196 	spin_unlock(&root->lock);
197 }
198 
199 /* Call it when holding delayed_node->mutex */
200 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
201 				       struct btrfs_delayed_node *node)
202 {
203 	spin_lock(&root->lock);
204 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
205 		root->nodes--;
206 		refcount_dec(&node->refs);	/* not in the list */
207 		list_del_init(&node->n_list);
208 		if (!list_empty(&node->p_list))
209 			list_del_init(&node->p_list);
210 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
211 	}
212 	spin_unlock(&root->lock);
213 }
214 
215 static struct btrfs_delayed_node *btrfs_first_delayed_node(
216 			struct btrfs_delayed_root *delayed_root)
217 {
218 	struct list_head *p;
219 	struct btrfs_delayed_node *node = NULL;
220 
221 	spin_lock(&delayed_root->lock);
222 	if (list_empty(&delayed_root->node_list))
223 		goto out;
224 
225 	p = delayed_root->node_list.next;
226 	node = list_entry(p, struct btrfs_delayed_node, n_list);
227 	refcount_inc(&node->refs);
228 out:
229 	spin_unlock(&delayed_root->lock);
230 
231 	return node;
232 }
233 
234 static struct btrfs_delayed_node *btrfs_next_delayed_node(
235 						struct btrfs_delayed_node *node)
236 {
237 	struct btrfs_delayed_root *delayed_root;
238 	struct list_head *p;
239 	struct btrfs_delayed_node *next = NULL;
240 
241 	delayed_root = node->root->fs_info->delayed_root;
242 	spin_lock(&delayed_root->lock);
243 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
244 		/* not in the list */
245 		if (list_empty(&delayed_root->node_list))
246 			goto out;
247 		p = delayed_root->node_list.next;
248 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
249 		goto out;
250 	else
251 		p = node->n_list.next;
252 
253 	next = list_entry(p, struct btrfs_delayed_node, n_list);
254 	refcount_inc(&next->refs);
255 out:
256 	spin_unlock(&delayed_root->lock);
257 
258 	return next;
259 }
260 
261 static void __btrfs_release_delayed_node(
262 				struct btrfs_delayed_node *delayed_node,
263 				int mod)
264 {
265 	struct btrfs_delayed_root *delayed_root;
266 
267 	if (!delayed_node)
268 		return;
269 
270 	delayed_root = delayed_node->root->fs_info->delayed_root;
271 
272 	mutex_lock(&delayed_node->mutex);
273 	if (delayed_node->count)
274 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
275 	else
276 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
277 	mutex_unlock(&delayed_node->mutex);
278 
279 	if (refcount_dec_and_test(&delayed_node->refs)) {
280 		struct btrfs_root *root = delayed_node->root;
281 
282 		spin_lock(&root->inode_lock);
283 		/*
284 		 * Once our refcount goes to zero, nobody is allowed to bump it
285 		 * back up.  We can delete it now.
286 		 */
287 		ASSERT(refcount_read(&delayed_node->refs) == 0);
288 		radix_tree_delete(&root->delayed_nodes_tree,
289 				  delayed_node->inode_id);
290 		spin_unlock(&root->inode_lock);
291 		kmem_cache_free(delayed_node_cache, delayed_node);
292 	}
293 }
294 
295 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
296 {
297 	__btrfs_release_delayed_node(node, 0);
298 }
299 
300 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
301 					struct btrfs_delayed_root *delayed_root)
302 {
303 	struct list_head *p;
304 	struct btrfs_delayed_node *node = NULL;
305 
306 	spin_lock(&delayed_root->lock);
307 	if (list_empty(&delayed_root->prepare_list))
308 		goto out;
309 
310 	p = delayed_root->prepare_list.next;
311 	list_del_init(p);
312 	node = list_entry(p, struct btrfs_delayed_node, p_list);
313 	refcount_inc(&node->refs);
314 out:
315 	spin_unlock(&delayed_root->lock);
316 
317 	return node;
318 }
319 
320 static inline void btrfs_release_prepared_delayed_node(
321 					struct btrfs_delayed_node *node)
322 {
323 	__btrfs_release_delayed_node(node, 1);
324 }
325 
326 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
327 {
328 	struct btrfs_delayed_item *item;
329 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
330 	if (item) {
331 		item->data_len = data_len;
332 		item->ins_or_del = 0;
333 		item->bytes_reserved = 0;
334 		item->delayed_node = NULL;
335 		refcount_set(&item->refs, 1);
336 	}
337 	return item;
338 }
339 
340 /*
341  * __btrfs_lookup_delayed_item - look up the delayed item by key
342  * @delayed_node: pointer to the delayed node
343  * @key:	  the key to look up
344  * @prev:	  used to store the prev item if the right item isn't found
345  * @next:	  used to store the next item if the right item isn't found
346  *
347  * Note: if we don't find the right item, we will return the prev item and
348  * the next item.
349  */
350 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
351 				struct rb_root *root,
352 				struct btrfs_key *key,
353 				struct btrfs_delayed_item **prev,
354 				struct btrfs_delayed_item **next)
355 {
356 	struct rb_node *node, *prev_node = NULL;
357 	struct btrfs_delayed_item *delayed_item = NULL;
358 	int ret = 0;
359 
360 	node = root->rb_node;
361 
362 	while (node) {
363 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
364 					rb_node);
365 		prev_node = node;
366 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
367 		if (ret < 0)
368 			node = node->rb_right;
369 		else if (ret > 0)
370 			node = node->rb_left;
371 		else
372 			return delayed_item;
373 	}
374 
375 	if (prev) {
376 		if (!prev_node)
377 			*prev = NULL;
378 		else if (ret < 0)
379 			*prev = delayed_item;
380 		else if ((node = rb_prev(prev_node)) != NULL) {
381 			*prev = rb_entry(node, struct btrfs_delayed_item,
382 					 rb_node);
383 		} else
384 			*prev = NULL;
385 	}
386 
387 	if (next) {
388 		if (!prev_node)
389 			*next = NULL;
390 		else if (ret > 0)
391 			*next = delayed_item;
392 		else if ((node = rb_next(prev_node)) != NULL) {
393 			*next = rb_entry(node, struct btrfs_delayed_item,
394 					 rb_node);
395 		} else
396 			*next = NULL;
397 	}
398 	return NULL;
399 }
400 
401 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
402 					struct btrfs_delayed_node *delayed_node,
403 					struct btrfs_key *key)
404 {
405 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
406 					   NULL, NULL);
407 }
408 
409 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
410 				    struct btrfs_delayed_item *ins,
411 				    int action)
412 {
413 	struct rb_node **p, *node;
414 	struct rb_node *parent_node = NULL;
415 	struct rb_root *root;
416 	struct btrfs_delayed_item *item;
417 	int cmp;
418 
419 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
420 		root = &delayed_node->ins_root;
421 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
422 		root = &delayed_node->del_root;
423 	else
424 		BUG();
425 	p = &root->rb_node;
426 	node = &ins->rb_node;
427 
428 	while (*p) {
429 		parent_node = *p;
430 		item = rb_entry(parent_node, struct btrfs_delayed_item,
431 				 rb_node);
432 
433 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
434 		if (cmp < 0)
435 			p = &(*p)->rb_right;
436 		else if (cmp > 0)
437 			p = &(*p)->rb_left;
438 		else
439 			return -EEXIST;
440 	}
441 
442 	rb_link_node(node, parent_node, p);
443 	rb_insert_color(node, root);
444 	ins->delayed_node = delayed_node;
445 	ins->ins_or_del = action;
446 
447 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
448 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
449 	    ins->key.offset >= delayed_node->index_cnt)
450 			delayed_node->index_cnt = ins->key.offset + 1;
451 
452 	delayed_node->count++;
453 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
454 	return 0;
455 }
456 
457 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
458 					      struct btrfs_delayed_item *item)
459 {
460 	return __btrfs_add_delayed_item(node, item,
461 					BTRFS_DELAYED_INSERTION_ITEM);
462 }
463 
464 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
465 					     struct btrfs_delayed_item *item)
466 {
467 	return __btrfs_add_delayed_item(node, item,
468 					BTRFS_DELAYED_DELETION_ITEM);
469 }
470 
471 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
472 {
473 	int seq = atomic_inc_return(&delayed_root->items_seq);
474 
475 	/*
476 	 * atomic_dec_return implies a barrier for waitqueue_active
477 	 */
478 	if ((atomic_dec_return(&delayed_root->items) <
479 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
480 	    waitqueue_active(&delayed_root->wait))
481 		wake_up(&delayed_root->wait);
482 }
483 
484 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
485 {
486 	struct rb_root *root;
487 	struct btrfs_delayed_root *delayed_root;
488 
489 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
490 
491 	BUG_ON(!delayed_root);
492 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
493 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
494 
495 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
496 		root = &delayed_item->delayed_node->ins_root;
497 	else
498 		root = &delayed_item->delayed_node->del_root;
499 
500 	rb_erase(&delayed_item->rb_node, root);
501 	delayed_item->delayed_node->count--;
502 
503 	finish_one_item(delayed_root);
504 }
505 
506 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
507 {
508 	if (item) {
509 		__btrfs_remove_delayed_item(item);
510 		if (refcount_dec_and_test(&item->refs))
511 			kfree(item);
512 	}
513 }
514 
515 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
516 					struct btrfs_delayed_node *delayed_node)
517 {
518 	struct rb_node *p;
519 	struct btrfs_delayed_item *item = NULL;
520 
521 	p = rb_first(&delayed_node->ins_root);
522 	if (p)
523 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
524 
525 	return item;
526 }
527 
528 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
529 					struct btrfs_delayed_node *delayed_node)
530 {
531 	struct rb_node *p;
532 	struct btrfs_delayed_item *item = NULL;
533 
534 	p = rb_first(&delayed_node->del_root);
535 	if (p)
536 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
537 
538 	return item;
539 }
540 
541 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
542 						struct btrfs_delayed_item *item)
543 {
544 	struct rb_node *p;
545 	struct btrfs_delayed_item *next = NULL;
546 
547 	p = rb_next(&item->rb_node);
548 	if (p)
549 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
550 
551 	return next;
552 }
553 
554 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
555 					       struct btrfs_fs_info *fs_info,
556 					       struct btrfs_delayed_item *item)
557 {
558 	struct btrfs_block_rsv *src_rsv;
559 	struct btrfs_block_rsv *dst_rsv;
560 	u64 num_bytes;
561 	int ret;
562 
563 	if (!trans->bytes_reserved)
564 		return 0;
565 
566 	src_rsv = trans->block_rsv;
567 	dst_rsv = &fs_info->delayed_block_rsv;
568 
569 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
570 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
571 	if (!ret) {
572 		trace_btrfs_space_reservation(fs_info, "delayed_item",
573 					      item->key.objectid,
574 					      num_bytes, 1);
575 		item->bytes_reserved = num_bytes;
576 	}
577 
578 	return ret;
579 }
580 
581 static void btrfs_delayed_item_release_metadata(struct btrfs_fs_info *fs_info,
582 						struct btrfs_delayed_item *item)
583 {
584 	struct btrfs_block_rsv *rsv;
585 
586 	if (!item->bytes_reserved)
587 		return;
588 
589 	rsv = &fs_info->delayed_block_rsv;
590 	trace_btrfs_space_reservation(fs_info, "delayed_item",
591 				      item->key.objectid, item->bytes_reserved,
592 				      0);
593 	btrfs_block_rsv_release(fs_info, rsv,
594 				item->bytes_reserved);
595 }
596 
597 static int btrfs_delayed_inode_reserve_metadata(
598 					struct btrfs_trans_handle *trans,
599 					struct btrfs_root *root,
600 					struct btrfs_inode *inode,
601 					struct btrfs_delayed_node *node)
602 {
603 	struct btrfs_fs_info *fs_info = root->fs_info;
604 	struct btrfs_block_rsv *src_rsv;
605 	struct btrfs_block_rsv *dst_rsv;
606 	u64 num_bytes;
607 	int ret;
608 
609 	src_rsv = trans->block_rsv;
610 	dst_rsv = &fs_info->delayed_block_rsv;
611 
612 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613 
614 	/*
615 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 	 * which doesn't reserve space for speed.  This is a problem since we
617 	 * still need to reserve space for this update, so try to reserve the
618 	 * space.
619 	 *
620 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 	 * we always reserve enough to update the inode item.
622 	 */
623 	if (!src_rsv || (!trans->bytes_reserved &&
624 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
626 					  BTRFS_RESERVE_NO_FLUSH);
627 		/*
628 		 * Since we're under a transaction reserve_metadata_bytes could
629 		 * try to commit the transaction which will make it return
630 		 * EAGAIN to make us stop the transaction we have, so return
631 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
632 		 */
633 		if (ret == -EAGAIN)
634 			ret = -ENOSPC;
635 		if (!ret) {
636 			node->bytes_reserved = num_bytes;
637 			trace_btrfs_space_reservation(fs_info,
638 						      "delayed_inode",
639 						      btrfs_ino(inode),
640 						      num_bytes, 1);
641 		}
642 		return ret;
643 	}
644 
645 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
646 	if (!ret) {
647 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
648 					      btrfs_ino(inode), num_bytes, 1);
649 		node->bytes_reserved = num_bytes;
650 	}
651 
652 	return ret;
653 }
654 
655 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
656 						struct btrfs_delayed_node *node)
657 {
658 	struct btrfs_block_rsv *rsv;
659 
660 	if (!node->bytes_reserved)
661 		return;
662 
663 	rsv = &fs_info->delayed_block_rsv;
664 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
665 				      node->inode_id, node->bytes_reserved, 0);
666 	btrfs_block_rsv_release(fs_info, rsv,
667 				node->bytes_reserved);
668 	node->bytes_reserved = 0;
669 }
670 
671 /*
672  * This helper will insert some continuous items into the same leaf according
673  * to the free space of the leaf.
674  */
675 static int btrfs_batch_insert_items(struct btrfs_root *root,
676 				    struct btrfs_path *path,
677 				    struct btrfs_delayed_item *item)
678 {
679 	struct btrfs_fs_info *fs_info = root->fs_info;
680 	struct btrfs_delayed_item *curr, *next;
681 	int free_space;
682 	int total_data_size = 0, total_size = 0;
683 	struct extent_buffer *leaf;
684 	char *data_ptr;
685 	struct btrfs_key *keys;
686 	u32 *data_size;
687 	struct list_head head;
688 	int slot;
689 	int nitems;
690 	int i;
691 	int ret = 0;
692 
693 	BUG_ON(!path->nodes[0]);
694 
695 	leaf = path->nodes[0];
696 	free_space = btrfs_leaf_free_space(fs_info, leaf);
697 	INIT_LIST_HEAD(&head);
698 
699 	next = item;
700 	nitems = 0;
701 
702 	/*
703 	 * count the number of the continuous items that we can insert in batch
704 	 */
705 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
706 	       free_space) {
707 		total_data_size += next->data_len;
708 		total_size += next->data_len + sizeof(struct btrfs_item);
709 		list_add_tail(&next->tree_list, &head);
710 		nitems++;
711 
712 		curr = next;
713 		next = __btrfs_next_delayed_item(curr);
714 		if (!next)
715 			break;
716 
717 		if (!btrfs_is_continuous_delayed_item(curr, next))
718 			break;
719 	}
720 
721 	if (!nitems) {
722 		ret = 0;
723 		goto out;
724 	}
725 
726 	/*
727 	 * we need allocate some memory space, but it might cause the task
728 	 * to sleep, so we set all locked nodes in the path to blocking locks
729 	 * first.
730 	 */
731 	btrfs_set_path_blocking(path);
732 
733 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
734 	if (!keys) {
735 		ret = -ENOMEM;
736 		goto out;
737 	}
738 
739 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
740 	if (!data_size) {
741 		ret = -ENOMEM;
742 		goto error;
743 	}
744 
745 	/* get keys of all the delayed items */
746 	i = 0;
747 	list_for_each_entry(next, &head, tree_list) {
748 		keys[i] = next->key;
749 		data_size[i] = next->data_len;
750 		i++;
751 	}
752 
753 	/* reset all the locked nodes in the patch to spinning locks. */
754 	btrfs_clear_path_blocking(path, NULL, 0);
755 
756 	/* insert the keys of the items */
757 	setup_items_for_insert(root, path, keys, data_size,
758 			       total_data_size, total_size, nitems);
759 
760 	/* insert the dir index items */
761 	slot = path->slots[0];
762 	list_for_each_entry_safe(curr, next, &head, tree_list) {
763 		data_ptr = btrfs_item_ptr(leaf, slot, char);
764 		write_extent_buffer(leaf, &curr->data,
765 				    (unsigned long)data_ptr,
766 				    curr->data_len);
767 		slot++;
768 
769 		btrfs_delayed_item_release_metadata(fs_info, curr);
770 
771 		list_del(&curr->tree_list);
772 		btrfs_release_delayed_item(curr);
773 	}
774 
775 error:
776 	kfree(data_size);
777 	kfree(keys);
778 out:
779 	return ret;
780 }
781 
782 /*
783  * This helper can just do simple insertion that needn't extend item for new
784  * data, such as directory name index insertion, inode insertion.
785  */
786 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
787 				     struct btrfs_root *root,
788 				     struct btrfs_path *path,
789 				     struct btrfs_delayed_item *delayed_item)
790 {
791 	struct btrfs_fs_info *fs_info = root->fs_info;
792 	struct extent_buffer *leaf;
793 	char *ptr;
794 	int ret;
795 
796 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
797 				      delayed_item->data_len);
798 	if (ret < 0 && ret != -EEXIST)
799 		return ret;
800 
801 	leaf = path->nodes[0];
802 
803 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
804 
805 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
806 			    delayed_item->data_len);
807 	btrfs_mark_buffer_dirty(leaf);
808 
809 	btrfs_delayed_item_release_metadata(fs_info, delayed_item);
810 	return 0;
811 }
812 
813 /*
814  * we insert an item first, then if there are some continuous items, we try
815  * to insert those items into the same leaf.
816  */
817 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
818 				      struct btrfs_path *path,
819 				      struct btrfs_root *root,
820 				      struct btrfs_delayed_node *node)
821 {
822 	struct btrfs_delayed_item *curr, *prev;
823 	int ret = 0;
824 
825 do_again:
826 	mutex_lock(&node->mutex);
827 	curr = __btrfs_first_delayed_insertion_item(node);
828 	if (!curr)
829 		goto insert_end;
830 
831 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
832 	if (ret < 0) {
833 		btrfs_release_path(path);
834 		goto insert_end;
835 	}
836 
837 	prev = curr;
838 	curr = __btrfs_next_delayed_item(prev);
839 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
840 		/* insert the continuous items into the same leaf */
841 		path->slots[0]++;
842 		btrfs_batch_insert_items(root, path, curr);
843 	}
844 	btrfs_release_delayed_item(prev);
845 	btrfs_mark_buffer_dirty(path->nodes[0]);
846 
847 	btrfs_release_path(path);
848 	mutex_unlock(&node->mutex);
849 	goto do_again;
850 
851 insert_end:
852 	mutex_unlock(&node->mutex);
853 	return ret;
854 }
855 
856 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
857 				    struct btrfs_root *root,
858 				    struct btrfs_path *path,
859 				    struct btrfs_delayed_item *item)
860 {
861 	struct btrfs_fs_info *fs_info = root->fs_info;
862 	struct btrfs_delayed_item *curr, *next;
863 	struct extent_buffer *leaf;
864 	struct btrfs_key key;
865 	struct list_head head;
866 	int nitems, i, last_item;
867 	int ret = 0;
868 
869 	BUG_ON(!path->nodes[0]);
870 
871 	leaf = path->nodes[0];
872 
873 	i = path->slots[0];
874 	last_item = btrfs_header_nritems(leaf) - 1;
875 	if (i > last_item)
876 		return -ENOENT;	/* FIXME: Is errno suitable? */
877 
878 	next = item;
879 	INIT_LIST_HEAD(&head);
880 	btrfs_item_key_to_cpu(leaf, &key, i);
881 	nitems = 0;
882 	/*
883 	 * count the number of the dir index items that we can delete in batch
884 	 */
885 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
886 		list_add_tail(&next->tree_list, &head);
887 		nitems++;
888 
889 		curr = next;
890 		next = __btrfs_next_delayed_item(curr);
891 		if (!next)
892 			break;
893 
894 		if (!btrfs_is_continuous_delayed_item(curr, next))
895 			break;
896 
897 		i++;
898 		if (i > last_item)
899 			break;
900 		btrfs_item_key_to_cpu(leaf, &key, i);
901 	}
902 
903 	if (!nitems)
904 		return 0;
905 
906 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
907 	if (ret)
908 		goto out;
909 
910 	list_for_each_entry_safe(curr, next, &head, tree_list) {
911 		btrfs_delayed_item_release_metadata(fs_info, curr);
912 		list_del(&curr->tree_list);
913 		btrfs_release_delayed_item(curr);
914 	}
915 
916 out:
917 	return ret;
918 }
919 
920 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
921 				      struct btrfs_path *path,
922 				      struct btrfs_root *root,
923 				      struct btrfs_delayed_node *node)
924 {
925 	struct btrfs_delayed_item *curr, *prev;
926 	int ret = 0;
927 
928 do_again:
929 	mutex_lock(&node->mutex);
930 	curr = __btrfs_first_delayed_deletion_item(node);
931 	if (!curr)
932 		goto delete_fail;
933 
934 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
935 	if (ret < 0)
936 		goto delete_fail;
937 	else if (ret > 0) {
938 		/*
939 		 * can't find the item which the node points to, so this node
940 		 * is invalid, just drop it.
941 		 */
942 		prev = curr;
943 		curr = __btrfs_next_delayed_item(prev);
944 		btrfs_release_delayed_item(prev);
945 		ret = 0;
946 		btrfs_release_path(path);
947 		if (curr) {
948 			mutex_unlock(&node->mutex);
949 			goto do_again;
950 		} else
951 			goto delete_fail;
952 	}
953 
954 	btrfs_batch_delete_items(trans, root, path, curr);
955 	btrfs_release_path(path);
956 	mutex_unlock(&node->mutex);
957 	goto do_again;
958 
959 delete_fail:
960 	btrfs_release_path(path);
961 	mutex_unlock(&node->mutex);
962 	return ret;
963 }
964 
965 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
966 {
967 	struct btrfs_delayed_root *delayed_root;
968 
969 	if (delayed_node &&
970 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
971 		BUG_ON(!delayed_node->root);
972 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
973 		delayed_node->count--;
974 
975 		delayed_root = delayed_node->root->fs_info->delayed_root;
976 		finish_one_item(delayed_root);
977 	}
978 }
979 
980 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
981 {
982 	struct btrfs_delayed_root *delayed_root;
983 
984 	ASSERT(delayed_node->root);
985 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
986 	delayed_node->count--;
987 
988 	delayed_root = delayed_node->root->fs_info->delayed_root;
989 	finish_one_item(delayed_root);
990 }
991 
992 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
993 					struct btrfs_root *root,
994 					struct btrfs_path *path,
995 					struct btrfs_delayed_node *node)
996 {
997 	struct btrfs_fs_info *fs_info = root->fs_info;
998 	struct btrfs_key key;
999 	struct btrfs_inode_item *inode_item;
1000 	struct extent_buffer *leaf;
1001 	int mod;
1002 	int ret;
1003 
1004 	key.objectid = node->inode_id;
1005 	key.type = BTRFS_INODE_ITEM_KEY;
1006 	key.offset = 0;
1007 
1008 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1009 		mod = -1;
1010 	else
1011 		mod = 1;
1012 
1013 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1014 	if (ret > 0) {
1015 		btrfs_release_path(path);
1016 		return -ENOENT;
1017 	} else if (ret < 0) {
1018 		return ret;
1019 	}
1020 
1021 	leaf = path->nodes[0];
1022 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1023 				    struct btrfs_inode_item);
1024 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1025 			    sizeof(struct btrfs_inode_item));
1026 	btrfs_mark_buffer_dirty(leaf);
1027 
1028 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1029 		goto no_iref;
1030 
1031 	path->slots[0]++;
1032 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1033 		goto search;
1034 again:
1035 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1036 	if (key.objectid != node->inode_id)
1037 		goto out;
1038 
1039 	if (key.type != BTRFS_INODE_REF_KEY &&
1040 	    key.type != BTRFS_INODE_EXTREF_KEY)
1041 		goto out;
1042 
1043 	/*
1044 	 * Delayed iref deletion is for the inode who has only one link,
1045 	 * so there is only one iref. The case that several irefs are
1046 	 * in the same item doesn't exist.
1047 	 */
1048 	btrfs_del_item(trans, root, path);
1049 out:
1050 	btrfs_release_delayed_iref(node);
1051 no_iref:
1052 	btrfs_release_path(path);
1053 err_out:
1054 	btrfs_delayed_inode_release_metadata(fs_info, node);
1055 	btrfs_release_delayed_inode(node);
1056 
1057 	return ret;
1058 
1059 search:
1060 	btrfs_release_path(path);
1061 
1062 	key.type = BTRFS_INODE_EXTREF_KEY;
1063 	key.offset = -1;
1064 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1065 	if (ret < 0)
1066 		goto err_out;
1067 	ASSERT(ret);
1068 
1069 	ret = 0;
1070 	leaf = path->nodes[0];
1071 	path->slots[0]--;
1072 	goto again;
1073 }
1074 
1075 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1076 					     struct btrfs_root *root,
1077 					     struct btrfs_path *path,
1078 					     struct btrfs_delayed_node *node)
1079 {
1080 	int ret;
1081 
1082 	mutex_lock(&node->mutex);
1083 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1084 		mutex_unlock(&node->mutex);
1085 		return 0;
1086 	}
1087 
1088 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1089 	mutex_unlock(&node->mutex);
1090 	return ret;
1091 }
1092 
1093 static inline int
1094 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1095 				   struct btrfs_path *path,
1096 				   struct btrfs_delayed_node *node)
1097 {
1098 	int ret;
1099 
1100 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1101 	if (ret)
1102 		return ret;
1103 
1104 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1105 	if (ret)
1106 		return ret;
1107 
1108 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1109 	return ret;
1110 }
1111 
1112 /*
1113  * Called when committing the transaction.
1114  * Returns 0 on success.
1115  * Returns < 0 on error and returns with an aborted transaction with any
1116  * outstanding delayed items cleaned up.
1117  */
1118 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1119 				     struct btrfs_fs_info *fs_info, int nr)
1120 {
1121 	struct btrfs_delayed_root *delayed_root;
1122 	struct btrfs_delayed_node *curr_node, *prev_node;
1123 	struct btrfs_path *path;
1124 	struct btrfs_block_rsv *block_rsv;
1125 	int ret = 0;
1126 	bool count = (nr > 0);
1127 
1128 	if (trans->aborted)
1129 		return -EIO;
1130 
1131 	path = btrfs_alloc_path();
1132 	if (!path)
1133 		return -ENOMEM;
1134 	path->leave_spinning = 1;
1135 
1136 	block_rsv = trans->block_rsv;
1137 	trans->block_rsv = &fs_info->delayed_block_rsv;
1138 
1139 	delayed_root = fs_info->delayed_root;
1140 
1141 	curr_node = btrfs_first_delayed_node(delayed_root);
1142 	while (curr_node && (!count || (count && nr--))) {
1143 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1144 							 curr_node);
1145 		if (ret) {
1146 			btrfs_release_delayed_node(curr_node);
1147 			curr_node = NULL;
1148 			btrfs_abort_transaction(trans, ret);
1149 			break;
1150 		}
1151 
1152 		prev_node = curr_node;
1153 		curr_node = btrfs_next_delayed_node(curr_node);
1154 		btrfs_release_delayed_node(prev_node);
1155 	}
1156 
1157 	if (curr_node)
1158 		btrfs_release_delayed_node(curr_node);
1159 	btrfs_free_path(path);
1160 	trans->block_rsv = block_rsv;
1161 
1162 	return ret;
1163 }
1164 
1165 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1166 			    struct btrfs_fs_info *fs_info)
1167 {
1168 	return __btrfs_run_delayed_items(trans, fs_info, -1);
1169 }
1170 
1171 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1172 			       struct btrfs_fs_info *fs_info, int nr)
1173 {
1174 	return __btrfs_run_delayed_items(trans, fs_info, nr);
1175 }
1176 
1177 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1178 				     struct btrfs_inode *inode)
1179 {
1180 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1181 	struct btrfs_path *path;
1182 	struct btrfs_block_rsv *block_rsv;
1183 	int ret;
1184 
1185 	if (!delayed_node)
1186 		return 0;
1187 
1188 	mutex_lock(&delayed_node->mutex);
1189 	if (!delayed_node->count) {
1190 		mutex_unlock(&delayed_node->mutex);
1191 		btrfs_release_delayed_node(delayed_node);
1192 		return 0;
1193 	}
1194 	mutex_unlock(&delayed_node->mutex);
1195 
1196 	path = btrfs_alloc_path();
1197 	if (!path) {
1198 		btrfs_release_delayed_node(delayed_node);
1199 		return -ENOMEM;
1200 	}
1201 	path->leave_spinning = 1;
1202 
1203 	block_rsv = trans->block_rsv;
1204 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1205 
1206 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1207 
1208 	btrfs_release_delayed_node(delayed_node);
1209 	btrfs_free_path(path);
1210 	trans->block_rsv = block_rsv;
1211 
1212 	return ret;
1213 }
1214 
1215 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1216 {
1217 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1218 	struct btrfs_trans_handle *trans;
1219 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1220 	struct btrfs_path *path;
1221 	struct btrfs_block_rsv *block_rsv;
1222 	int ret;
1223 
1224 	if (!delayed_node)
1225 		return 0;
1226 
1227 	mutex_lock(&delayed_node->mutex);
1228 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1229 		mutex_unlock(&delayed_node->mutex);
1230 		btrfs_release_delayed_node(delayed_node);
1231 		return 0;
1232 	}
1233 	mutex_unlock(&delayed_node->mutex);
1234 
1235 	trans = btrfs_join_transaction(delayed_node->root);
1236 	if (IS_ERR(trans)) {
1237 		ret = PTR_ERR(trans);
1238 		goto out;
1239 	}
1240 
1241 	path = btrfs_alloc_path();
1242 	if (!path) {
1243 		ret = -ENOMEM;
1244 		goto trans_out;
1245 	}
1246 	path->leave_spinning = 1;
1247 
1248 	block_rsv = trans->block_rsv;
1249 	trans->block_rsv = &fs_info->delayed_block_rsv;
1250 
1251 	mutex_lock(&delayed_node->mutex);
1252 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1253 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1254 						   path, delayed_node);
1255 	else
1256 		ret = 0;
1257 	mutex_unlock(&delayed_node->mutex);
1258 
1259 	btrfs_free_path(path);
1260 	trans->block_rsv = block_rsv;
1261 trans_out:
1262 	btrfs_end_transaction(trans);
1263 	btrfs_btree_balance_dirty(fs_info);
1264 out:
1265 	btrfs_release_delayed_node(delayed_node);
1266 
1267 	return ret;
1268 }
1269 
1270 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1271 {
1272 	struct btrfs_delayed_node *delayed_node;
1273 
1274 	delayed_node = READ_ONCE(inode->delayed_node);
1275 	if (!delayed_node)
1276 		return;
1277 
1278 	inode->delayed_node = NULL;
1279 	btrfs_release_delayed_node(delayed_node);
1280 }
1281 
1282 struct btrfs_async_delayed_work {
1283 	struct btrfs_delayed_root *delayed_root;
1284 	int nr;
1285 	struct btrfs_work work;
1286 };
1287 
1288 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1289 {
1290 	struct btrfs_async_delayed_work *async_work;
1291 	struct btrfs_delayed_root *delayed_root;
1292 	struct btrfs_trans_handle *trans;
1293 	struct btrfs_path *path;
1294 	struct btrfs_delayed_node *delayed_node = NULL;
1295 	struct btrfs_root *root;
1296 	struct btrfs_block_rsv *block_rsv;
1297 	int total_done = 0;
1298 
1299 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1300 	delayed_root = async_work->delayed_root;
1301 
1302 	path = btrfs_alloc_path();
1303 	if (!path)
1304 		goto out;
1305 
1306 	do {
1307 		if (atomic_read(&delayed_root->items) <
1308 		    BTRFS_DELAYED_BACKGROUND / 2)
1309 			break;
1310 
1311 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1312 		if (!delayed_node)
1313 			break;
1314 
1315 		path->leave_spinning = 1;
1316 		root = delayed_node->root;
1317 
1318 		trans = btrfs_join_transaction(root);
1319 		if (IS_ERR(trans)) {
1320 			btrfs_release_path(path);
1321 			btrfs_release_prepared_delayed_node(delayed_node);
1322 			total_done++;
1323 			continue;
1324 		}
1325 
1326 		block_rsv = trans->block_rsv;
1327 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1328 
1329 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1330 
1331 		trans->block_rsv = block_rsv;
1332 		btrfs_end_transaction(trans);
1333 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1334 
1335 		btrfs_release_path(path);
1336 		btrfs_release_prepared_delayed_node(delayed_node);
1337 		total_done++;
1338 
1339 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1340 		 || total_done < async_work->nr);
1341 
1342 	btrfs_free_path(path);
1343 out:
1344 	wake_up(&delayed_root->wait);
1345 	kfree(async_work);
1346 }
1347 
1348 
1349 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1350 				     struct btrfs_fs_info *fs_info, int nr)
1351 {
1352 	struct btrfs_async_delayed_work *async_work;
1353 
1354 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1355 	if (!async_work)
1356 		return -ENOMEM;
1357 
1358 	async_work->delayed_root = delayed_root;
1359 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1360 			btrfs_async_run_delayed_root, NULL, NULL);
1361 	async_work->nr = nr;
1362 
1363 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1364 	return 0;
1365 }
1366 
1367 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1368 {
1369 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1370 }
1371 
1372 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1373 {
1374 	int val = atomic_read(&delayed_root->items_seq);
1375 
1376 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1377 		return 1;
1378 
1379 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1380 		return 1;
1381 
1382 	return 0;
1383 }
1384 
1385 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1386 {
1387 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1388 
1389 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1390 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1391 		return;
1392 
1393 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1394 		int seq;
1395 		int ret;
1396 
1397 		seq = atomic_read(&delayed_root->items_seq);
1398 
1399 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1400 		if (ret)
1401 			return;
1402 
1403 		wait_event_interruptible(delayed_root->wait,
1404 					 could_end_wait(delayed_root, seq));
1405 		return;
1406 	}
1407 
1408 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1409 }
1410 
1411 /* Will return 0 or -ENOMEM */
1412 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1413 				   struct btrfs_fs_info *fs_info,
1414 				   const char *name, int name_len,
1415 				   struct btrfs_inode *dir,
1416 				   struct btrfs_disk_key *disk_key, u8 type,
1417 				   u64 index)
1418 {
1419 	struct btrfs_delayed_node *delayed_node;
1420 	struct btrfs_delayed_item *delayed_item;
1421 	struct btrfs_dir_item *dir_item;
1422 	int ret;
1423 
1424 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 	if (IS_ERR(delayed_node))
1426 		return PTR_ERR(delayed_node);
1427 
1428 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 	if (!delayed_item) {
1430 		ret = -ENOMEM;
1431 		goto release_node;
1432 	}
1433 
1434 	delayed_item->key.objectid = btrfs_ino(dir);
1435 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 	delayed_item->key.offset = index;
1437 
1438 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 	dir_item->location = *disk_key;
1440 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 	btrfs_set_stack_dir_data_len(dir_item, 0);
1442 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 	btrfs_set_stack_dir_type(dir_item, type);
1444 	memcpy((char *)(dir_item + 1), name, name_len);
1445 
1446 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, delayed_item);
1447 	/*
1448 	 * we have reserved enough space when we start a new transaction,
1449 	 * so reserving metadata failure is impossible
1450 	 */
1451 	BUG_ON(ret);
1452 
1453 
1454 	mutex_lock(&delayed_node->mutex);
1455 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1456 	if (unlikely(ret)) {
1457 		btrfs_err(fs_info,
1458 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1459 			  name_len, name, delayed_node->root->objectid,
1460 			  delayed_node->inode_id, ret);
1461 		BUG();
1462 	}
1463 	mutex_unlock(&delayed_node->mutex);
1464 
1465 release_node:
1466 	btrfs_release_delayed_node(delayed_node);
1467 	return ret;
1468 }
1469 
1470 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1471 					       struct btrfs_delayed_node *node,
1472 					       struct btrfs_key *key)
1473 {
1474 	struct btrfs_delayed_item *item;
1475 
1476 	mutex_lock(&node->mutex);
1477 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1478 	if (!item) {
1479 		mutex_unlock(&node->mutex);
1480 		return 1;
1481 	}
1482 
1483 	btrfs_delayed_item_release_metadata(fs_info, item);
1484 	btrfs_release_delayed_item(item);
1485 	mutex_unlock(&node->mutex);
1486 	return 0;
1487 }
1488 
1489 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1490 				   struct btrfs_fs_info *fs_info,
1491 				   struct btrfs_inode *dir, u64 index)
1492 {
1493 	struct btrfs_delayed_node *node;
1494 	struct btrfs_delayed_item *item;
1495 	struct btrfs_key item_key;
1496 	int ret;
1497 
1498 	node = btrfs_get_or_create_delayed_node(dir);
1499 	if (IS_ERR(node))
1500 		return PTR_ERR(node);
1501 
1502 	item_key.objectid = btrfs_ino(dir);
1503 	item_key.type = BTRFS_DIR_INDEX_KEY;
1504 	item_key.offset = index;
1505 
1506 	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1507 	if (!ret)
1508 		goto end;
1509 
1510 	item = btrfs_alloc_delayed_item(0);
1511 	if (!item) {
1512 		ret = -ENOMEM;
1513 		goto end;
1514 	}
1515 
1516 	item->key = item_key;
1517 
1518 	ret = btrfs_delayed_item_reserve_metadata(trans, fs_info, item);
1519 	/*
1520 	 * we have reserved enough space when we start a new transaction,
1521 	 * so reserving metadata failure is impossible.
1522 	 */
1523 	BUG_ON(ret);
1524 
1525 	mutex_lock(&node->mutex);
1526 	ret = __btrfs_add_delayed_deletion_item(node, item);
1527 	if (unlikely(ret)) {
1528 		btrfs_err(fs_info,
1529 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1530 			  index, node->root->objectid, node->inode_id, ret);
1531 		BUG();
1532 	}
1533 	mutex_unlock(&node->mutex);
1534 end:
1535 	btrfs_release_delayed_node(node);
1536 	return ret;
1537 }
1538 
1539 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1540 {
1541 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1542 
1543 	if (!delayed_node)
1544 		return -ENOENT;
1545 
1546 	/*
1547 	 * Since we have held i_mutex of this directory, it is impossible that
1548 	 * a new directory index is added into the delayed node and index_cnt
1549 	 * is updated now. So we needn't lock the delayed node.
1550 	 */
1551 	if (!delayed_node->index_cnt) {
1552 		btrfs_release_delayed_node(delayed_node);
1553 		return -EINVAL;
1554 	}
1555 
1556 	inode->index_cnt = delayed_node->index_cnt;
1557 	btrfs_release_delayed_node(delayed_node);
1558 	return 0;
1559 }
1560 
1561 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1562 				     struct list_head *ins_list,
1563 				     struct list_head *del_list)
1564 {
1565 	struct btrfs_delayed_node *delayed_node;
1566 	struct btrfs_delayed_item *item;
1567 
1568 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1569 	if (!delayed_node)
1570 		return false;
1571 
1572 	/*
1573 	 * We can only do one readdir with delayed items at a time because of
1574 	 * item->readdir_list.
1575 	 */
1576 	inode_unlock_shared(inode);
1577 	inode_lock(inode);
1578 
1579 	mutex_lock(&delayed_node->mutex);
1580 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1581 	while (item) {
1582 		refcount_inc(&item->refs);
1583 		list_add_tail(&item->readdir_list, ins_list);
1584 		item = __btrfs_next_delayed_item(item);
1585 	}
1586 
1587 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1588 	while (item) {
1589 		refcount_inc(&item->refs);
1590 		list_add_tail(&item->readdir_list, del_list);
1591 		item = __btrfs_next_delayed_item(item);
1592 	}
1593 	mutex_unlock(&delayed_node->mutex);
1594 	/*
1595 	 * This delayed node is still cached in the btrfs inode, so refs
1596 	 * must be > 1 now, and we needn't check it is going to be freed
1597 	 * or not.
1598 	 *
1599 	 * Besides that, this function is used to read dir, we do not
1600 	 * insert/delete delayed items in this period. So we also needn't
1601 	 * requeue or dequeue this delayed node.
1602 	 */
1603 	refcount_dec(&delayed_node->refs);
1604 
1605 	return true;
1606 }
1607 
1608 void btrfs_readdir_put_delayed_items(struct inode *inode,
1609 				     struct list_head *ins_list,
1610 				     struct list_head *del_list)
1611 {
1612 	struct btrfs_delayed_item *curr, *next;
1613 
1614 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1615 		list_del(&curr->readdir_list);
1616 		if (refcount_dec_and_test(&curr->refs))
1617 			kfree(curr);
1618 	}
1619 
1620 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1621 		list_del(&curr->readdir_list);
1622 		if (refcount_dec_and_test(&curr->refs))
1623 			kfree(curr);
1624 	}
1625 
1626 	/*
1627 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1628 	 * read lock.
1629 	 */
1630 	downgrade_write(&inode->i_rwsem);
1631 }
1632 
1633 int btrfs_should_delete_dir_index(struct list_head *del_list,
1634 				  u64 index)
1635 {
1636 	struct btrfs_delayed_item *curr;
1637 	int ret = 0;
1638 
1639 	list_for_each_entry(curr, del_list, readdir_list) {
1640 		if (curr->key.offset > index)
1641 			break;
1642 		if (curr->key.offset == index) {
1643 			ret = 1;
1644 			break;
1645 		}
1646 	}
1647 	return ret;
1648 }
1649 
1650 /*
1651  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1652  *
1653  */
1654 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1655 				    struct list_head *ins_list)
1656 {
1657 	struct btrfs_dir_item *di;
1658 	struct btrfs_delayed_item *curr, *next;
1659 	struct btrfs_key location;
1660 	char *name;
1661 	int name_len;
1662 	int over = 0;
1663 	unsigned char d_type;
1664 
1665 	if (list_empty(ins_list))
1666 		return 0;
1667 
1668 	/*
1669 	 * Changing the data of the delayed item is impossible. So
1670 	 * we needn't lock them. And we have held i_mutex of the
1671 	 * directory, nobody can delete any directory indexes now.
1672 	 */
1673 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1674 		list_del(&curr->readdir_list);
1675 
1676 		if (curr->key.offset < ctx->pos) {
1677 			if (refcount_dec_and_test(&curr->refs))
1678 				kfree(curr);
1679 			continue;
1680 		}
1681 
1682 		ctx->pos = curr->key.offset;
1683 
1684 		di = (struct btrfs_dir_item *)curr->data;
1685 		name = (char *)(di + 1);
1686 		name_len = btrfs_stack_dir_name_len(di);
1687 
1688 		d_type = btrfs_filetype_table[di->type];
1689 		btrfs_disk_key_to_cpu(&location, &di->location);
1690 
1691 		over = !dir_emit(ctx, name, name_len,
1692 			       location.objectid, d_type);
1693 
1694 		if (refcount_dec_and_test(&curr->refs))
1695 			kfree(curr);
1696 
1697 		if (over)
1698 			return 1;
1699 		ctx->pos++;
1700 	}
1701 	return 0;
1702 }
1703 
1704 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1705 				  struct btrfs_inode_item *inode_item,
1706 				  struct inode *inode)
1707 {
1708 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1709 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1710 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1711 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1712 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1713 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1714 	btrfs_set_stack_inode_generation(inode_item,
1715 					 BTRFS_I(inode)->generation);
1716 	btrfs_set_stack_inode_sequence(inode_item,
1717 				       inode_peek_iversion(inode));
1718 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1719 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1720 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1721 	btrfs_set_stack_inode_block_group(inode_item, 0);
1722 
1723 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1724 				     inode->i_atime.tv_sec);
1725 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1726 				      inode->i_atime.tv_nsec);
1727 
1728 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1729 				     inode->i_mtime.tv_sec);
1730 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1731 				      inode->i_mtime.tv_nsec);
1732 
1733 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1734 				     inode->i_ctime.tv_sec);
1735 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1736 				      inode->i_ctime.tv_nsec);
1737 
1738 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1739 				     BTRFS_I(inode)->i_otime.tv_sec);
1740 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1741 				     BTRFS_I(inode)->i_otime.tv_nsec);
1742 }
1743 
1744 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1745 {
1746 	struct btrfs_delayed_node *delayed_node;
1747 	struct btrfs_inode_item *inode_item;
1748 
1749 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1750 	if (!delayed_node)
1751 		return -ENOENT;
1752 
1753 	mutex_lock(&delayed_node->mutex);
1754 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1755 		mutex_unlock(&delayed_node->mutex);
1756 		btrfs_release_delayed_node(delayed_node);
1757 		return -ENOENT;
1758 	}
1759 
1760 	inode_item = &delayed_node->inode_item;
1761 
1762 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1763 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1764 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1765 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1766 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1767 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1768 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1769         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1770 
1771 	inode_set_iversion_queried(inode,
1772 				   btrfs_stack_inode_sequence(inode_item));
1773 	inode->i_rdev = 0;
1774 	*rdev = btrfs_stack_inode_rdev(inode_item);
1775 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1776 
1777 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1778 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1779 
1780 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1781 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1782 
1783 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1784 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1785 
1786 	BTRFS_I(inode)->i_otime.tv_sec =
1787 		btrfs_stack_timespec_sec(&inode_item->otime);
1788 	BTRFS_I(inode)->i_otime.tv_nsec =
1789 		btrfs_stack_timespec_nsec(&inode_item->otime);
1790 
1791 	inode->i_generation = BTRFS_I(inode)->generation;
1792 	BTRFS_I(inode)->index_cnt = (u64)-1;
1793 
1794 	mutex_unlock(&delayed_node->mutex);
1795 	btrfs_release_delayed_node(delayed_node);
1796 	return 0;
1797 }
1798 
1799 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1800 			       struct btrfs_root *root, struct inode *inode)
1801 {
1802 	struct btrfs_delayed_node *delayed_node;
1803 	int ret = 0;
1804 
1805 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1806 	if (IS_ERR(delayed_node))
1807 		return PTR_ERR(delayed_node);
1808 
1809 	mutex_lock(&delayed_node->mutex);
1810 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1811 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1812 		goto release_node;
1813 	}
1814 
1815 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1816 						   delayed_node);
1817 	if (ret)
1818 		goto release_node;
1819 
1820 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1821 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1822 	delayed_node->count++;
1823 	atomic_inc(&root->fs_info->delayed_root->items);
1824 release_node:
1825 	mutex_unlock(&delayed_node->mutex);
1826 	btrfs_release_delayed_node(delayed_node);
1827 	return ret;
1828 }
1829 
1830 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1831 {
1832 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1833 	struct btrfs_delayed_node *delayed_node;
1834 
1835 	/*
1836 	 * we don't do delayed inode updates during log recovery because it
1837 	 * leads to enospc problems.  This means we also can't do
1838 	 * delayed inode refs
1839 	 */
1840 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1841 		return -EAGAIN;
1842 
1843 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1844 	if (IS_ERR(delayed_node))
1845 		return PTR_ERR(delayed_node);
1846 
1847 	/*
1848 	 * We don't reserve space for inode ref deletion is because:
1849 	 * - We ONLY do async inode ref deletion for the inode who has only
1850 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1851 	 *   And in most case, the inode ref and the inode item are in the
1852 	 *   same leaf, and we will deal with them at the same time.
1853 	 *   Since we are sure we will reserve the space for the inode item,
1854 	 *   it is unnecessary to reserve space for inode ref deletion.
1855 	 * - If the inode ref and the inode item are not in the same leaf,
1856 	 *   We also needn't worry about enospc problem, because we reserve
1857 	 *   much more space for the inode update than it needs.
1858 	 * - At the worst, we can steal some space from the global reservation.
1859 	 *   It is very rare.
1860 	 */
1861 	mutex_lock(&delayed_node->mutex);
1862 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1863 		goto release_node;
1864 
1865 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1866 	delayed_node->count++;
1867 	atomic_inc(&fs_info->delayed_root->items);
1868 release_node:
1869 	mutex_unlock(&delayed_node->mutex);
1870 	btrfs_release_delayed_node(delayed_node);
1871 	return 0;
1872 }
1873 
1874 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1875 {
1876 	struct btrfs_root *root = delayed_node->root;
1877 	struct btrfs_fs_info *fs_info = root->fs_info;
1878 	struct btrfs_delayed_item *curr_item, *prev_item;
1879 
1880 	mutex_lock(&delayed_node->mutex);
1881 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1882 	while (curr_item) {
1883 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1884 		prev_item = curr_item;
1885 		curr_item = __btrfs_next_delayed_item(prev_item);
1886 		btrfs_release_delayed_item(prev_item);
1887 	}
1888 
1889 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1890 	while (curr_item) {
1891 		btrfs_delayed_item_release_metadata(fs_info, curr_item);
1892 		prev_item = curr_item;
1893 		curr_item = __btrfs_next_delayed_item(prev_item);
1894 		btrfs_release_delayed_item(prev_item);
1895 	}
1896 
1897 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1898 		btrfs_release_delayed_iref(delayed_node);
1899 
1900 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1901 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node);
1902 		btrfs_release_delayed_inode(delayed_node);
1903 	}
1904 	mutex_unlock(&delayed_node->mutex);
1905 }
1906 
1907 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1908 {
1909 	struct btrfs_delayed_node *delayed_node;
1910 
1911 	delayed_node = btrfs_get_delayed_node(inode);
1912 	if (!delayed_node)
1913 		return;
1914 
1915 	__btrfs_kill_delayed_node(delayed_node);
1916 	btrfs_release_delayed_node(delayed_node);
1917 }
1918 
1919 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1920 {
1921 	u64 inode_id = 0;
1922 	struct btrfs_delayed_node *delayed_nodes[8];
1923 	int i, n;
1924 
1925 	while (1) {
1926 		spin_lock(&root->inode_lock);
1927 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1928 					   (void **)delayed_nodes, inode_id,
1929 					   ARRAY_SIZE(delayed_nodes));
1930 		if (!n) {
1931 			spin_unlock(&root->inode_lock);
1932 			break;
1933 		}
1934 
1935 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1936 
1937 		for (i = 0; i < n; i++)
1938 			refcount_inc(&delayed_nodes[i]->refs);
1939 		spin_unlock(&root->inode_lock);
1940 
1941 		for (i = 0; i < n; i++) {
1942 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1943 			btrfs_release_delayed_node(delayed_nodes[i]);
1944 		}
1945 	}
1946 }
1947 
1948 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1949 {
1950 	struct btrfs_delayed_node *curr_node, *prev_node;
1951 
1952 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1953 	while (curr_node) {
1954 		__btrfs_kill_delayed_node(curr_node);
1955 
1956 		prev_node = curr_node;
1957 		curr_node = btrfs_next_delayed_node(curr_node);
1958 		btrfs_release_delayed_node(prev_node);
1959 	}
1960 }
1961 
1962