1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 25 #define BTRFS_DELAYED_WRITEBACK 512 26 #define BTRFS_DELAYED_BACKGROUND 128 27 #define BTRFS_DELAYED_BATCH 16 28 29 static struct kmem_cache *delayed_node_cache; 30 31 int __init btrfs_delayed_inode_init(void) 32 { 33 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 34 sizeof(struct btrfs_delayed_node), 35 0, 36 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 37 NULL); 38 if (!delayed_node_cache) 39 return -ENOMEM; 40 return 0; 41 } 42 43 void btrfs_delayed_inode_exit(void) 44 { 45 if (delayed_node_cache) 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 atomic_set(&delayed_node->refs, 0); 56 delayed_node->count = 0; 57 delayed_node->in_list = 0; 58 delayed_node->inode_dirty = 0; 59 delayed_node->ins_root = RB_ROOT; 60 delayed_node->del_root = RB_ROOT; 61 mutex_init(&delayed_node->mutex); 62 delayed_node->index_cnt = 0; 63 INIT_LIST_HEAD(&delayed_node->n_list); 64 INIT_LIST_HEAD(&delayed_node->p_list); 65 delayed_node->bytes_reserved = 0; 66 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item)); 67 } 68 69 static inline int btrfs_is_continuous_delayed_item( 70 struct btrfs_delayed_item *item1, 71 struct btrfs_delayed_item *item2) 72 { 73 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 74 item1->key.objectid == item2->key.objectid && 75 item1->key.type == item2->key.type && 76 item1->key.offset + 1 == item2->key.offset) 77 return 1; 78 return 0; 79 } 80 81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 82 struct btrfs_root *root) 83 { 84 return root->fs_info->delayed_root; 85 } 86 87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 88 { 89 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 90 struct btrfs_root *root = btrfs_inode->root; 91 u64 ino = btrfs_ino(inode); 92 struct btrfs_delayed_node *node; 93 94 node = ACCESS_ONCE(btrfs_inode->delayed_node); 95 if (node) { 96 atomic_inc(&node->refs); 97 return node; 98 } 99 100 spin_lock(&root->inode_lock); 101 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 102 if (node) { 103 if (btrfs_inode->delayed_node) { 104 atomic_inc(&node->refs); /* can be accessed */ 105 BUG_ON(btrfs_inode->delayed_node != node); 106 spin_unlock(&root->inode_lock); 107 return node; 108 } 109 btrfs_inode->delayed_node = node; 110 atomic_inc(&node->refs); /* can be accessed */ 111 atomic_inc(&node->refs); /* cached in the inode */ 112 spin_unlock(&root->inode_lock); 113 return node; 114 } 115 spin_unlock(&root->inode_lock); 116 117 return NULL; 118 } 119 120 /* Will return either the node or PTR_ERR(-ENOMEM) */ 121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 122 struct inode *inode) 123 { 124 struct btrfs_delayed_node *node; 125 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 126 struct btrfs_root *root = btrfs_inode->root; 127 u64 ino = btrfs_ino(inode); 128 int ret; 129 130 again: 131 node = btrfs_get_delayed_node(inode); 132 if (node) 133 return node; 134 135 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); 136 if (!node) 137 return ERR_PTR(-ENOMEM); 138 btrfs_init_delayed_node(node, root, ino); 139 140 atomic_inc(&node->refs); /* cached in the btrfs inode */ 141 atomic_inc(&node->refs); /* can be accessed */ 142 143 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 144 if (ret) { 145 kmem_cache_free(delayed_node_cache, node); 146 return ERR_PTR(ret); 147 } 148 149 spin_lock(&root->inode_lock); 150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 151 if (ret == -EEXIST) { 152 kmem_cache_free(delayed_node_cache, node); 153 spin_unlock(&root->inode_lock); 154 radix_tree_preload_end(); 155 goto again; 156 } 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 radix_tree_preload_end(); 160 161 return node; 162 } 163 164 /* 165 * Call it when holding delayed_node->mutex 166 * 167 * If mod = 1, add this node into the prepared list. 168 */ 169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 170 struct btrfs_delayed_node *node, 171 int mod) 172 { 173 spin_lock(&root->lock); 174 if (node->in_list) { 175 if (!list_empty(&node->p_list)) 176 list_move_tail(&node->p_list, &root->prepare_list); 177 else if (mod) 178 list_add_tail(&node->p_list, &root->prepare_list); 179 } else { 180 list_add_tail(&node->n_list, &root->node_list); 181 list_add_tail(&node->p_list, &root->prepare_list); 182 atomic_inc(&node->refs); /* inserted into list */ 183 root->nodes++; 184 node->in_list = 1; 185 } 186 spin_unlock(&root->lock); 187 } 188 189 /* Call it when holding delayed_node->mutex */ 190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 191 struct btrfs_delayed_node *node) 192 { 193 spin_lock(&root->lock); 194 if (node->in_list) { 195 root->nodes--; 196 atomic_dec(&node->refs); /* not in the list */ 197 list_del_init(&node->n_list); 198 if (!list_empty(&node->p_list)) 199 list_del_init(&node->p_list); 200 node->in_list = 0; 201 } 202 spin_unlock(&root->lock); 203 } 204 205 struct btrfs_delayed_node *btrfs_first_delayed_node( 206 struct btrfs_delayed_root *delayed_root) 207 { 208 struct list_head *p; 209 struct btrfs_delayed_node *node = NULL; 210 211 spin_lock(&delayed_root->lock); 212 if (list_empty(&delayed_root->node_list)) 213 goto out; 214 215 p = delayed_root->node_list.next; 216 node = list_entry(p, struct btrfs_delayed_node, n_list); 217 atomic_inc(&node->refs); 218 out: 219 spin_unlock(&delayed_root->lock); 220 221 return node; 222 } 223 224 struct btrfs_delayed_node *btrfs_next_delayed_node( 225 struct btrfs_delayed_node *node) 226 { 227 struct btrfs_delayed_root *delayed_root; 228 struct list_head *p; 229 struct btrfs_delayed_node *next = NULL; 230 231 delayed_root = node->root->fs_info->delayed_root; 232 spin_lock(&delayed_root->lock); 233 if (!node->in_list) { /* not in the list */ 234 if (list_empty(&delayed_root->node_list)) 235 goto out; 236 p = delayed_root->node_list.next; 237 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 238 goto out; 239 else 240 p = node->n_list.next; 241 242 next = list_entry(p, struct btrfs_delayed_node, n_list); 243 atomic_inc(&next->refs); 244 out: 245 spin_unlock(&delayed_root->lock); 246 247 return next; 248 } 249 250 static void __btrfs_release_delayed_node( 251 struct btrfs_delayed_node *delayed_node, 252 int mod) 253 { 254 struct btrfs_delayed_root *delayed_root; 255 256 if (!delayed_node) 257 return; 258 259 delayed_root = delayed_node->root->fs_info->delayed_root; 260 261 mutex_lock(&delayed_node->mutex); 262 if (delayed_node->count) 263 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 264 else 265 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 266 mutex_unlock(&delayed_node->mutex); 267 268 if (atomic_dec_and_test(&delayed_node->refs)) { 269 struct btrfs_root *root = delayed_node->root; 270 spin_lock(&root->inode_lock); 271 if (atomic_read(&delayed_node->refs) == 0) { 272 radix_tree_delete(&root->delayed_nodes_tree, 273 delayed_node->inode_id); 274 kmem_cache_free(delayed_node_cache, delayed_node); 275 } 276 spin_unlock(&root->inode_lock); 277 } 278 } 279 280 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 281 { 282 __btrfs_release_delayed_node(node, 0); 283 } 284 285 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 286 struct btrfs_delayed_root *delayed_root) 287 { 288 struct list_head *p; 289 struct btrfs_delayed_node *node = NULL; 290 291 spin_lock(&delayed_root->lock); 292 if (list_empty(&delayed_root->prepare_list)) 293 goto out; 294 295 p = delayed_root->prepare_list.next; 296 list_del_init(p); 297 node = list_entry(p, struct btrfs_delayed_node, p_list); 298 atomic_inc(&node->refs); 299 out: 300 spin_unlock(&delayed_root->lock); 301 302 return node; 303 } 304 305 static inline void btrfs_release_prepared_delayed_node( 306 struct btrfs_delayed_node *node) 307 { 308 __btrfs_release_delayed_node(node, 1); 309 } 310 311 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 312 { 313 struct btrfs_delayed_item *item; 314 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 315 if (item) { 316 item->data_len = data_len; 317 item->ins_or_del = 0; 318 item->bytes_reserved = 0; 319 item->delayed_node = NULL; 320 atomic_set(&item->refs, 1); 321 } 322 return item; 323 } 324 325 /* 326 * __btrfs_lookup_delayed_item - look up the delayed item by key 327 * @delayed_node: pointer to the delayed node 328 * @key: the key to look up 329 * @prev: used to store the prev item if the right item isn't found 330 * @next: used to store the next item if the right item isn't found 331 * 332 * Note: if we don't find the right item, we will return the prev item and 333 * the next item. 334 */ 335 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 336 struct rb_root *root, 337 struct btrfs_key *key, 338 struct btrfs_delayed_item **prev, 339 struct btrfs_delayed_item **next) 340 { 341 struct rb_node *node, *prev_node = NULL; 342 struct btrfs_delayed_item *delayed_item = NULL; 343 int ret = 0; 344 345 node = root->rb_node; 346 347 while (node) { 348 delayed_item = rb_entry(node, struct btrfs_delayed_item, 349 rb_node); 350 prev_node = node; 351 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 352 if (ret < 0) 353 node = node->rb_right; 354 else if (ret > 0) 355 node = node->rb_left; 356 else 357 return delayed_item; 358 } 359 360 if (prev) { 361 if (!prev_node) 362 *prev = NULL; 363 else if (ret < 0) 364 *prev = delayed_item; 365 else if ((node = rb_prev(prev_node)) != NULL) { 366 *prev = rb_entry(node, struct btrfs_delayed_item, 367 rb_node); 368 } else 369 *prev = NULL; 370 } 371 372 if (next) { 373 if (!prev_node) 374 *next = NULL; 375 else if (ret > 0) 376 *next = delayed_item; 377 else if ((node = rb_next(prev_node)) != NULL) { 378 *next = rb_entry(node, struct btrfs_delayed_item, 379 rb_node); 380 } else 381 *next = NULL; 382 } 383 return NULL; 384 } 385 386 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 387 struct btrfs_delayed_node *delayed_node, 388 struct btrfs_key *key) 389 { 390 struct btrfs_delayed_item *item; 391 392 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 393 NULL, NULL); 394 return item; 395 } 396 397 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item( 398 struct btrfs_delayed_node *delayed_node, 399 struct btrfs_key *key) 400 { 401 struct btrfs_delayed_item *item; 402 403 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 404 NULL, NULL); 405 return item; 406 } 407 408 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item( 409 struct btrfs_delayed_node *delayed_node, 410 struct btrfs_key *key) 411 { 412 struct btrfs_delayed_item *item, *next; 413 414 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 415 NULL, &next); 416 if (!item) 417 item = next; 418 419 return item; 420 } 421 422 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item( 423 struct btrfs_delayed_node *delayed_node, 424 struct btrfs_key *key) 425 { 426 struct btrfs_delayed_item *item, *next; 427 428 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 429 NULL, &next); 430 if (!item) 431 item = next; 432 433 return item; 434 } 435 436 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 437 struct btrfs_delayed_item *ins, 438 int action) 439 { 440 struct rb_node **p, *node; 441 struct rb_node *parent_node = NULL; 442 struct rb_root *root; 443 struct btrfs_delayed_item *item; 444 int cmp; 445 446 if (action == BTRFS_DELAYED_INSERTION_ITEM) 447 root = &delayed_node->ins_root; 448 else if (action == BTRFS_DELAYED_DELETION_ITEM) 449 root = &delayed_node->del_root; 450 else 451 BUG(); 452 p = &root->rb_node; 453 node = &ins->rb_node; 454 455 while (*p) { 456 parent_node = *p; 457 item = rb_entry(parent_node, struct btrfs_delayed_item, 458 rb_node); 459 460 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 461 if (cmp < 0) 462 p = &(*p)->rb_right; 463 else if (cmp > 0) 464 p = &(*p)->rb_left; 465 else 466 return -EEXIST; 467 } 468 469 rb_link_node(node, parent_node, p); 470 rb_insert_color(node, root); 471 ins->delayed_node = delayed_node; 472 ins->ins_or_del = action; 473 474 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 475 action == BTRFS_DELAYED_INSERTION_ITEM && 476 ins->key.offset >= delayed_node->index_cnt) 477 delayed_node->index_cnt = ins->key.offset + 1; 478 479 delayed_node->count++; 480 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 481 return 0; 482 } 483 484 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 485 struct btrfs_delayed_item *item) 486 { 487 return __btrfs_add_delayed_item(node, item, 488 BTRFS_DELAYED_INSERTION_ITEM); 489 } 490 491 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 492 struct btrfs_delayed_item *item) 493 { 494 return __btrfs_add_delayed_item(node, item, 495 BTRFS_DELAYED_DELETION_ITEM); 496 } 497 498 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 499 { 500 int seq = atomic_inc_return(&delayed_root->items_seq); 501 if ((atomic_dec_return(&delayed_root->items) < 502 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 503 waitqueue_active(&delayed_root->wait)) 504 wake_up(&delayed_root->wait); 505 } 506 507 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 508 { 509 struct rb_root *root; 510 struct btrfs_delayed_root *delayed_root; 511 512 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 513 514 BUG_ON(!delayed_root); 515 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 516 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 517 518 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 519 root = &delayed_item->delayed_node->ins_root; 520 else 521 root = &delayed_item->delayed_node->del_root; 522 523 rb_erase(&delayed_item->rb_node, root); 524 delayed_item->delayed_node->count--; 525 526 finish_one_item(delayed_root); 527 } 528 529 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 530 { 531 if (item) { 532 __btrfs_remove_delayed_item(item); 533 if (atomic_dec_and_test(&item->refs)) 534 kfree(item); 535 } 536 } 537 538 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 539 struct btrfs_delayed_node *delayed_node) 540 { 541 struct rb_node *p; 542 struct btrfs_delayed_item *item = NULL; 543 544 p = rb_first(&delayed_node->ins_root); 545 if (p) 546 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 547 548 return item; 549 } 550 551 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 552 struct btrfs_delayed_node *delayed_node) 553 { 554 struct rb_node *p; 555 struct btrfs_delayed_item *item = NULL; 556 557 p = rb_first(&delayed_node->del_root); 558 if (p) 559 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 560 561 return item; 562 } 563 564 struct btrfs_delayed_item *__btrfs_next_delayed_item( 565 struct btrfs_delayed_item *item) 566 { 567 struct rb_node *p; 568 struct btrfs_delayed_item *next = NULL; 569 570 p = rb_next(&item->rb_node); 571 if (p) 572 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 573 574 return next; 575 } 576 577 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, 578 u64 root_id) 579 { 580 struct btrfs_key root_key; 581 582 if (root->objectid == root_id) 583 return root; 584 585 root_key.objectid = root_id; 586 root_key.type = BTRFS_ROOT_ITEM_KEY; 587 root_key.offset = (u64)-1; 588 return btrfs_read_fs_root_no_name(root->fs_info, &root_key); 589 } 590 591 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 592 struct btrfs_root *root, 593 struct btrfs_delayed_item *item) 594 { 595 struct btrfs_block_rsv *src_rsv; 596 struct btrfs_block_rsv *dst_rsv; 597 u64 num_bytes; 598 int ret; 599 600 if (!trans->bytes_reserved) 601 return 0; 602 603 src_rsv = trans->block_rsv; 604 dst_rsv = &root->fs_info->delayed_block_rsv; 605 606 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 607 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 608 if (!ret) { 609 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 610 item->key.objectid, 611 num_bytes, 1); 612 item->bytes_reserved = num_bytes; 613 } 614 615 return ret; 616 } 617 618 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 619 struct btrfs_delayed_item *item) 620 { 621 struct btrfs_block_rsv *rsv; 622 623 if (!item->bytes_reserved) 624 return; 625 626 rsv = &root->fs_info->delayed_block_rsv; 627 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 628 item->key.objectid, item->bytes_reserved, 629 0); 630 btrfs_block_rsv_release(root, rsv, 631 item->bytes_reserved); 632 } 633 634 static int btrfs_delayed_inode_reserve_metadata( 635 struct btrfs_trans_handle *trans, 636 struct btrfs_root *root, 637 struct inode *inode, 638 struct btrfs_delayed_node *node) 639 { 640 struct btrfs_block_rsv *src_rsv; 641 struct btrfs_block_rsv *dst_rsv; 642 u64 num_bytes; 643 int ret; 644 bool release = false; 645 646 src_rsv = trans->block_rsv; 647 dst_rsv = &root->fs_info->delayed_block_rsv; 648 649 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 650 651 /* 652 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 653 * which doesn't reserve space for speed. This is a problem since we 654 * still need to reserve space for this update, so try to reserve the 655 * space. 656 * 657 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 658 * we're accounted for. 659 */ 660 if (!src_rsv || (!trans->bytes_reserved && 661 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 662 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 663 BTRFS_RESERVE_NO_FLUSH); 664 /* 665 * Since we're under a transaction reserve_metadata_bytes could 666 * try to commit the transaction which will make it return 667 * EAGAIN to make us stop the transaction we have, so return 668 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 669 */ 670 if (ret == -EAGAIN) 671 ret = -ENOSPC; 672 if (!ret) { 673 node->bytes_reserved = num_bytes; 674 trace_btrfs_space_reservation(root->fs_info, 675 "delayed_inode", 676 btrfs_ino(inode), 677 num_bytes, 1); 678 } 679 return ret; 680 } else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { 681 spin_lock(&BTRFS_I(inode)->lock); 682 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 683 &BTRFS_I(inode)->runtime_flags)) { 684 spin_unlock(&BTRFS_I(inode)->lock); 685 release = true; 686 goto migrate; 687 } 688 spin_unlock(&BTRFS_I(inode)->lock); 689 690 /* Ok we didn't have space pre-reserved. This shouldn't happen 691 * too often but it can happen if we do delalloc to an existing 692 * inode which gets dirtied because of the time update, and then 693 * isn't touched again until after the transaction commits and 694 * then we try to write out the data. First try to be nice and 695 * reserve something strictly for us. If not be a pain and try 696 * to steal from the delalloc block rsv. 697 */ 698 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 699 BTRFS_RESERVE_NO_FLUSH); 700 if (!ret) 701 goto out; 702 703 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 704 if (!ret) 705 goto out; 706 707 /* 708 * Ok this is a problem, let's just steal from the global rsv 709 * since this really shouldn't happen that often. 710 */ 711 WARN_ON(1); 712 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 713 dst_rsv, num_bytes); 714 goto out; 715 } 716 717 migrate: 718 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 719 720 out: 721 /* 722 * Migrate only takes a reservation, it doesn't touch the size of the 723 * block_rsv. This is to simplify people who don't normally have things 724 * migrated from their block rsv. If they go to release their 725 * reservation, that will decrease the size as well, so if migrate 726 * reduced size we'd end up with a negative size. But for the 727 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 728 * but we could in fact do this reserve/migrate dance several times 729 * between the time we did the original reservation and we'd clean it 730 * up. So to take care of this, release the space for the meta 731 * reservation here. I think it may be time for a documentation page on 732 * how block rsvs. work. 733 */ 734 if (!ret) { 735 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 736 btrfs_ino(inode), num_bytes, 1); 737 node->bytes_reserved = num_bytes; 738 } 739 740 if (release) { 741 trace_btrfs_space_reservation(root->fs_info, "delalloc", 742 btrfs_ino(inode), num_bytes, 0); 743 btrfs_block_rsv_release(root, src_rsv, num_bytes); 744 } 745 746 return ret; 747 } 748 749 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 750 struct btrfs_delayed_node *node) 751 { 752 struct btrfs_block_rsv *rsv; 753 754 if (!node->bytes_reserved) 755 return; 756 757 rsv = &root->fs_info->delayed_block_rsv; 758 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 759 node->inode_id, node->bytes_reserved, 0); 760 btrfs_block_rsv_release(root, rsv, 761 node->bytes_reserved); 762 node->bytes_reserved = 0; 763 } 764 765 /* 766 * This helper will insert some continuous items into the same leaf according 767 * to the free space of the leaf. 768 */ 769 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans, 770 struct btrfs_root *root, 771 struct btrfs_path *path, 772 struct btrfs_delayed_item *item) 773 { 774 struct btrfs_delayed_item *curr, *next; 775 int free_space; 776 int total_data_size = 0, total_size = 0; 777 struct extent_buffer *leaf; 778 char *data_ptr; 779 struct btrfs_key *keys; 780 u32 *data_size; 781 struct list_head head; 782 int slot; 783 int nitems; 784 int i; 785 int ret = 0; 786 787 BUG_ON(!path->nodes[0]); 788 789 leaf = path->nodes[0]; 790 free_space = btrfs_leaf_free_space(root, leaf); 791 INIT_LIST_HEAD(&head); 792 793 next = item; 794 nitems = 0; 795 796 /* 797 * count the number of the continuous items that we can insert in batch 798 */ 799 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 800 free_space) { 801 total_data_size += next->data_len; 802 total_size += next->data_len + sizeof(struct btrfs_item); 803 list_add_tail(&next->tree_list, &head); 804 nitems++; 805 806 curr = next; 807 next = __btrfs_next_delayed_item(curr); 808 if (!next) 809 break; 810 811 if (!btrfs_is_continuous_delayed_item(curr, next)) 812 break; 813 } 814 815 if (!nitems) { 816 ret = 0; 817 goto out; 818 } 819 820 /* 821 * we need allocate some memory space, but it might cause the task 822 * to sleep, so we set all locked nodes in the path to blocking locks 823 * first. 824 */ 825 btrfs_set_path_blocking(path); 826 827 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); 828 if (!keys) { 829 ret = -ENOMEM; 830 goto out; 831 } 832 833 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); 834 if (!data_size) { 835 ret = -ENOMEM; 836 goto error; 837 } 838 839 /* get keys of all the delayed items */ 840 i = 0; 841 list_for_each_entry(next, &head, tree_list) { 842 keys[i] = next->key; 843 data_size[i] = next->data_len; 844 i++; 845 } 846 847 /* reset all the locked nodes in the patch to spinning locks. */ 848 btrfs_clear_path_blocking(path, NULL, 0); 849 850 /* insert the keys of the items */ 851 setup_items_for_insert(trans, root, path, keys, data_size, 852 total_data_size, total_size, nitems); 853 854 /* insert the dir index items */ 855 slot = path->slots[0]; 856 list_for_each_entry_safe(curr, next, &head, tree_list) { 857 data_ptr = btrfs_item_ptr(leaf, slot, char); 858 write_extent_buffer(leaf, &curr->data, 859 (unsigned long)data_ptr, 860 curr->data_len); 861 slot++; 862 863 btrfs_delayed_item_release_metadata(root, curr); 864 865 list_del(&curr->tree_list); 866 btrfs_release_delayed_item(curr); 867 } 868 869 error: 870 kfree(data_size); 871 kfree(keys); 872 out: 873 return ret; 874 } 875 876 /* 877 * This helper can just do simple insertion that needn't extend item for new 878 * data, such as directory name index insertion, inode insertion. 879 */ 880 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 881 struct btrfs_root *root, 882 struct btrfs_path *path, 883 struct btrfs_delayed_item *delayed_item) 884 { 885 struct extent_buffer *leaf; 886 char *ptr; 887 int ret; 888 889 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 890 delayed_item->data_len); 891 if (ret < 0 && ret != -EEXIST) 892 return ret; 893 894 leaf = path->nodes[0]; 895 896 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 897 898 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 899 delayed_item->data_len); 900 btrfs_mark_buffer_dirty(leaf); 901 902 btrfs_delayed_item_release_metadata(root, delayed_item); 903 return 0; 904 } 905 906 /* 907 * we insert an item first, then if there are some continuous items, we try 908 * to insert those items into the same leaf. 909 */ 910 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 911 struct btrfs_path *path, 912 struct btrfs_root *root, 913 struct btrfs_delayed_node *node) 914 { 915 struct btrfs_delayed_item *curr, *prev; 916 int ret = 0; 917 918 do_again: 919 mutex_lock(&node->mutex); 920 curr = __btrfs_first_delayed_insertion_item(node); 921 if (!curr) 922 goto insert_end; 923 924 ret = btrfs_insert_delayed_item(trans, root, path, curr); 925 if (ret < 0) { 926 btrfs_release_path(path); 927 goto insert_end; 928 } 929 930 prev = curr; 931 curr = __btrfs_next_delayed_item(prev); 932 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 933 /* insert the continuous items into the same leaf */ 934 path->slots[0]++; 935 btrfs_batch_insert_items(trans, root, path, curr); 936 } 937 btrfs_release_delayed_item(prev); 938 btrfs_mark_buffer_dirty(path->nodes[0]); 939 940 btrfs_release_path(path); 941 mutex_unlock(&node->mutex); 942 goto do_again; 943 944 insert_end: 945 mutex_unlock(&node->mutex); 946 return ret; 947 } 948 949 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 950 struct btrfs_root *root, 951 struct btrfs_path *path, 952 struct btrfs_delayed_item *item) 953 { 954 struct btrfs_delayed_item *curr, *next; 955 struct extent_buffer *leaf; 956 struct btrfs_key key; 957 struct list_head head; 958 int nitems, i, last_item; 959 int ret = 0; 960 961 BUG_ON(!path->nodes[0]); 962 963 leaf = path->nodes[0]; 964 965 i = path->slots[0]; 966 last_item = btrfs_header_nritems(leaf) - 1; 967 if (i > last_item) 968 return -ENOENT; /* FIXME: Is errno suitable? */ 969 970 next = item; 971 INIT_LIST_HEAD(&head); 972 btrfs_item_key_to_cpu(leaf, &key, i); 973 nitems = 0; 974 /* 975 * count the number of the dir index items that we can delete in batch 976 */ 977 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 978 list_add_tail(&next->tree_list, &head); 979 nitems++; 980 981 curr = next; 982 next = __btrfs_next_delayed_item(curr); 983 if (!next) 984 break; 985 986 if (!btrfs_is_continuous_delayed_item(curr, next)) 987 break; 988 989 i++; 990 if (i > last_item) 991 break; 992 btrfs_item_key_to_cpu(leaf, &key, i); 993 } 994 995 if (!nitems) 996 return 0; 997 998 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 999 if (ret) 1000 goto out; 1001 1002 list_for_each_entry_safe(curr, next, &head, tree_list) { 1003 btrfs_delayed_item_release_metadata(root, curr); 1004 list_del(&curr->tree_list); 1005 btrfs_release_delayed_item(curr); 1006 } 1007 1008 out: 1009 return ret; 1010 } 1011 1012 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 1013 struct btrfs_path *path, 1014 struct btrfs_root *root, 1015 struct btrfs_delayed_node *node) 1016 { 1017 struct btrfs_delayed_item *curr, *prev; 1018 int ret = 0; 1019 1020 do_again: 1021 mutex_lock(&node->mutex); 1022 curr = __btrfs_first_delayed_deletion_item(node); 1023 if (!curr) 1024 goto delete_fail; 1025 1026 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 1027 if (ret < 0) 1028 goto delete_fail; 1029 else if (ret > 0) { 1030 /* 1031 * can't find the item which the node points to, so this node 1032 * is invalid, just drop it. 1033 */ 1034 prev = curr; 1035 curr = __btrfs_next_delayed_item(prev); 1036 btrfs_release_delayed_item(prev); 1037 ret = 0; 1038 btrfs_release_path(path); 1039 if (curr) { 1040 mutex_unlock(&node->mutex); 1041 goto do_again; 1042 } else 1043 goto delete_fail; 1044 } 1045 1046 btrfs_batch_delete_items(trans, root, path, curr); 1047 btrfs_release_path(path); 1048 mutex_unlock(&node->mutex); 1049 goto do_again; 1050 1051 delete_fail: 1052 btrfs_release_path(path); 1053 mutex_unlock(&node->mutex); 1054 return ret; 1055 } 1056 1057 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1058 { 1059 struct btrfs_delayed_root *delayed_root; 1060 1061 if (delayed_node && delayed_node->inode_dirty) { 1062 BUG_ON(!delayed_node->root); 1063 delayed_node->inode_dirty = 0; 1064 delayed_node->count--; 1065 1066 delayed_root = delayed_node->root->fs_info->delayed_root; 1067 finish_one_item(delayed_root); 1068 } 1069 } 1070 1071 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1072 struct btrfs_root *root, 1073 struct btrfs_path *path, 1074 struct btrfs_delayed_node *node) 1075 { 1076 struct btrfs_key key; 1077 struct btrfs_inode_item *inode_item; 1078 struct extent_buffer *leaf; 1079 int ret; 1080 1081 key.objectid = node->inode_id; 1082 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 1083 key.offset = 0; 1084 1085 ret = btrfs_lookup_inode(trans, root, path, &key, 1); 1086 if (ret > 0) { 1087 btrfs_release_path(path); 1088 return -ENOENT; 1089 } else if (ret < 0) { 1090 return ret; 1091 } 1092 1093 btrfs_unlock_up_safe(path, 1); 1094 leaf = path->nodes[0]; 1095 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1096 struct btrfs_inode_item); 1097 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1098 sizeof(struct btrfs_inode_item)); 1099 btrfs_mark_buffer_dirty(leaf); 1100 btrfs_release_path(path); 1101 1102 btrfs_delayed_inode_release_metadata(root, node); 1103 btrfs_release_delayed_inode(node); 1104 1105 return 0; 1106 } 1107 1108 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1109 struct btrfs_root *root, 1110 struct btrfs_path *path, 1111 struct btrfs_delayed_node *node) 1112 { 1113 int ret; 1114 1115 mutex_lock(&node->mutex); 1116 if (!node->inode_dirty) { 1117 mutex_unlock(&node->mutex); 1118 return 0; 1119 } 1120 1121 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1122 mutex_unlock(&node->mutex); 1123 return ret; 1124 } 1125 1126 static inline int 1127 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1128 struct btrfs_path *path, 1129 struct btrfs_delayed_node *node) 1130 { 1131 int ret; 1132 1133 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1134 if (ret) 1135 return ret; 1136 1137 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1138 if (ret) 1139 return ret; 1140 1141 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1142 return ret; 1143 } 1144 1145 /* 1146 * Called when committing the transaction. 1147 * Returns 0 on success. 1148 * Returns < 0 on error and returns with an aborted transaction with any 1149 * outstanding delayed items cleaned up. 1150 */ 1151 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1152 struct btrfs_root *root, int nr) 1153 { 1154 struct btrfs_delayed_root *delayed_root; 1155 struct btrfs_delayed_node *curr_node, *prev_node; 1156 struct btrfs_path *path; 1157 struct btrfs_block_rsv *block_rsv; 1158 int ret = 0; 1159 bool count = (nr > 0); 1160 1161 if (trans->aborted) 1162 return -EIO; 1163 1164 path = btrfs_alloc_path(); 1165 if (!path) 1166 return -ENOMEM; 1167 path->leave_spinning = 1; 1168 1169 block_rsv = trans->block_rsv; 1170 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1171 1172 delayed_root = btrfs_get_delayed_root(root); 1173 1174 curr_node = btrfs_first_delayed_node(delayed_root); 1175 while (curr_node && (!count || (count && nr--))) { 1176 ret = __btrfs_commit_inode_delayed_items(trans, path, 1177 curr_node); 1178 if (ret) { 1179 btrfs_release_delayed_node(curr_node); 1180 curr_node = NULL; 1181 btrfs_abort_transaction(trans, root, ret); 1182 break; 1183 } 1184 1185 prev_node = curr_node; 1186 curr_node = btrfs_next_delayed_node(curr_node); 1187 btrfs_release_delayed_node(prev_node); 1188 } 1189 1190 if (curr_node) 1191 btrfs_release_delayed_node(curr_node); 1192 btrfs_free_path(path); 1193 trans->block_rsv = block_rsv; 1194 1195 return ret; 1196 } 1197 1198 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1199 struct btrfs_root *root) 1200 { 1201 return __btrfs_run_delayed_items(trans, root, -1); 1202 } 1203 1204 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1205 struct btrfs_root *root, int nr) 1206 { 1207 return __btrfs_run_delayed_items(trans, root, nr); 1208 } 1209 1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1211 struct inode *inode) 1212 { 1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1214 struct btrfs_path *path; 1215 struct btrfs_block_rsv *block_rsv; 1216 int ret; 1217 1218 if (!delayed_node) 1219 return 0; 1220 1221 mutex_lock(&delayed_node->mutex); 1222 if (!delayed_node->count) { 1223 mutex_unlock(&delayed_node->mutex); 1224 btrfs_release_delayed_node(delayed_node); 1225 return 0; 1226 } 1227 mutex_unlock(&delayed_node->mutex); 1228 1229 path = btrfs_alloc_path(); 1230 if (!path) 1231 return -ENOMEM; 1232 path->leave_spinning = 1; 1233 1234 block_rsv = trans->block_rsv; 1235 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1236 1237 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1238 1239 btrfs_release_delayed_node(delayed_node); 1240 btrfs_free_path(path); 1241 trans->block_rsv = block_rsv; 1242 1243 return ret; 1244 } 1245 1246 int btrfs_commit_inode_delayed_inode(struct inode *inode) 1247 { 1248 struct btrfs_trans_handle *trans; 1249 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1250 struct btrfs_path *path; 1251 struct btrfs_block_rsv *block_rsv; 1252 int ret; 1253 1254 if (!delayed_node) 1255 return 0; 1256 1257 mutex_lock(&delayed_node->mutex); 1258 if (!delayed_node->inode_dirty) { 1259 mutex_unlock(&delayed_node->mutex); 1260 btrfs_release_delayed_node(delayed_node); 1261 return 0; 1262 } 1263 mutex_unlock(&delayed_node->mutex); 1264 1265 trans = btrfs_join_transaction(delayed_node->root); 1266 if (IS_ERR(trans)) { 1267 ret = PTR_ERR(trans); 1268 goto out; 1269 } 1270 1271 path = btrfs_alloc_path(); 1272 if (!path) { 1273 ret = -ENOMEM; 1274 goto trans_out; 1275 } 1276 path->leave_spinning = 1; 1277 1278 block_rsv = trans->block_rsv; 1279 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1280 1281 mutex_lock(&delayed_node->mutex); 1282 if (delayed_node->inode_dirty) 1283 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1284 path, delayed_node); 1285 else 1286 ret = 0; 1287 mutex_unlock(&delayed_node->mutex); 1288 1289 btrfs_free_path(path); 1290 trans->block_rsv = block_rsv; 1291 trans_out: 1292 btrfs_end_transaction(trans, delayed_node->root); 1293 btrfs_btree_balance_dirty(delayed_node->root); 1294 out: 1295 btrfs_release_delayed_node(delayed_node); 1296 1297 return ret; 1298 } 1299 1300 void btrfs_remove_delayed_node(struct inode *inode) 1301 { 1302 struct btrfs_delayed_node *delayed_node; 1303 1304 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1305 if (!delayed_node) 1306 return; 1307 1308 BTRFS_I(inode)->delayed_node = NULL; 1309 btrfs_release_delayed_node(delayed_node); 1310 } 1311 1312 struct btrfs_async_delayed_work { 1313 struct btrfs_delayed_root *delayed_root; 1314 int nr; 1315 struct btrfs_work work; 1316 }; 1317 1318 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1319 { 1320 struct btrfs_async_delayed_work *async_work; 1321 struct btrfs_delayed_root *delayed_root; 1322 struct btrfs_trans_handle *trans; 1323 struct btrfs_path *path; 1324 struct btrfs_delayed_node *delayed_node = NULL; 1325 struct btrfs_root *root; 1326 struct btrfs_block_rsv *block_rsv; 1327 int total_done = 0; 1328 1329 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1330 delayed_root = async_work->delayed_root; 1331 1332 path = btrfs_alloc_path(); 1333 if (!path) 1334 goto out; 1335 1336 again: 1337 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1338 goto free_path; 1339 1340 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1341 if (!delayed_node) 1342 goto free_path; 1343 1344 path->leave_spinning = 1; 1345 root = delayed_node->root; 1346 1347 trans = btrfs_join_transaction(root); 1348 if (IS_ERR(trans)) 1349 goto release_path; 1350 1351 block_rsv = trans->block_rsv; 1352 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1353 1354 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1355 /* 1356 * Maybe new delayed items have been inserted, so we need requeue 1357 * the work. Besides that, we must dequeue the empty delayed nodes 1358 * to avoid the race between delayed items balance and the worker. 1359 * The race like this: 1360 * Task1 Worker thread 1361 * count == 0, needn't requeue 1362 * also needn't insert the 1363 * delayed node into prepare 1364 * list again. 1365 * add lots of delayed items 1366 * queue the delayed node 1367 * already in the list, 1368 * and not in the prepare 1369 * list, it means the delayed 1370 * node is being dealt with 1371 * by the worker. 1372 * do delayed items balance 1373 * the delayed node is being 1374 * dealt with by the worker 1375 * now, just wait. 1376 * the worker goto idle. 1377 * Task1 will sleep until the transaction is commited. 1378 */ 1379 mutex_lock(&delayed_node->mutex); 1380 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node); 1381 mutex_unlock(&delayed_node->mutex); 1382 1383 trans->block_rsv = block_rsv; 1384 btrfs_end_transaction_dmeta(trans, root); 1385 btrfs_btree_balance_dirty_nodelay(root); 1386 1387 release_path: 1388 btrfs_release_path(path); 1389 total_done++; 1390 1391 btrfs_release_prepared_delayed_node(delayed_node); 1392 if (async_work->nr == 0 || total_done < async_work->nr) 1393 goto again; 1394 1395 free_path: 1396 btrfs_free_path(path); 1397 out: 1398 wake_up(&delayed_root->wait); 1399 kfree(async_work); 1400 } 1401 1402 1403 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1404 struct btrfs_root *root, int nr) 1405 { 1406 struct btrfs_async_delayed_work *async_work; 1407 1408 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1409 return 0; 1410 1411 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1412 if (!async_work) 1413 return -ENOMEM; 1414 1415 async_work->delayed_root = delayed_root; 1416 async_work->work.func = btrfs_async_run_delayed_root; 1417 async_work->work.flags = 0; 1418 async_work->nr = nr; 1419 1420 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work); 1421 return 0; 1422 } 1423 1424 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1425 { 1426 struct btrfs_delayed_root *delayed_root; 1427 delayed_root = btrfs_get_delayed_root(root); 1428 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1429 } 1430 1431 static int refs_newer(struct btrfs_delayed_root *delayed_root, 1432 int seq, int count) 1433 { 1434 int val = atomic_read(&delayed_root->items_seq); 1435 1436 if (val < seq || val >= seq + count) 1437 return 1; 1438 return 0; 1439 } 1440 1441 void btrfs_balance_delayed_items(struct btrfs_root *root) 1442 { 1443 struct btrfs_delayed_root *delayed_root; 1444 int seq; 1445 1446 delayed_root = btrfs_get_delayed_root(root); 1447 1448 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1449 return; 1450 1451 seq = atomic_read(&delayed_root->items_seq); 1452 1453 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1454 int ret; 1455 DEFINE_WAIT(__wait); 1456 1457 ret = btrfs_wq_run_delayed_node(delayed_root, root, 0); 1458 if (ret) 1459 return; 1460 1461 while (1) { 1462 prepare_to_wait(&delayed_root->wait, &__wait, 1463 TASK_INTERRUPTIBLE); 1464 1465 if (refs_newer(delayed_root, seq, 1466 BTRFS_DELAYED_BATCH) || 1467 atomic_read(&delayed_root->items) < 1468 BTRFS_DELAYED_BACKGROUND) { 1469 break; 1470 } 1471 if (!signal_pending(current)) 1472 schedule(); 1473 else 1474 break; 1475 } 1476 finish_wait(&delayed_root->wait, &__wait); 1477 } 1478 1479 btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH); 1480 } 1481 1482 /* Will return 0 or -ENOMEM */ 1483 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1484 struct btrfs_root *root, const char *name, 1485 int name_len, struct inode *dir, 1486 struct btrfs_disk_key *disk_key, u8 type, 1487 u64 index) 1488 { 1489 struct btrfs_delayed_node *delayed_node; 1490 struct btrfs_delayed_item *delayed_item; 1491 struct btrfs_dir_item *dir_item; 1492 int ret; 1493 1494 delayed_node = btrfs_get_or_create_delayed_node(dir); 1495 if (IS_ERR(delayed_node)) 1496 return PTR_ERR(delayed_node); 1497 1498 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1499 if (!delayed_item) { 1500 ret = -ENOMEM; 1501 goto release_node; 1502 } 1503 1504 delayed_item->key.objectid = btrfs_ino(dir); 1505 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); 1506 delayed_item->key.offset = index; 1507 1508 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1509 dir_item->location = *disk_key; 1510 dir_item->transid = cpu_to_le64(trans->transid); 1511 dir_item->data_len = 0; 1512 dir_item->name_len = cpu_to_le16(name_len); 1513 dir_item->type = type; 1514 memcpy((char *)(dir_item + 1), name, name_len); 1515 1516 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1517 /* 1518 * we have reserved enough space when we start a new transaction, 1519 * so reserving metadata failure is impossible 1520 */ 1521 BUG_ON(ret); 1522 1523 1524 mutex_lock(&delayed_node->mutex); 1525 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1526 if (unlikely(ret)) { 1527 printk(KERN_ERR "err add delayed dir index item(name: %s) into " 1528 "the insertion tree of the delayed node" 1529 "(root id: %llu, inode id: %llu, errno: %d)\n", 1530 name, 1531 (unsigned long long)delayed_node->root->objectid, 1532 (unsigned long long)delayed_node->inode_id, 1533 ret); 1534 BUG(); 1535 } 1536 mutex_unlock(&delayed_node->mutex); 1537 1538 release_node: 1539 btrfs_release_delayed_node(delayed_node); 1540 return ret; 1541 } 1542 1543 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1544 struct btrfs_delayed_node *node, 1545 struct btrfs_key *key) 1546 { 1547 struct btrfs_delayed_item *item; 1548 1549 mutex_lock(&node->mutex); 1550 item = __btrfs_lookup_delayed_insertion_item(node, key); 1551 if (!item) { 1552 mutex_unlock(&node->mutex); 1553 return 1; 1554 } 1555 1556 btrfs_delayed_item_release_metadata(root, item); 1557 btrfs_release_delayed_item(item); 1558 mutex_unlock(&node->mutex); 1559 return 0; 1560 } 1561 1562 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1563 struct btrfs_root *root, struct inode *dir, 1564 u64 index) 1565 { 1566 struct btrfs_delayed_node *node; 1567 struct btrfs_delayed_item *item; 1568 struct btrfs_key item_key; 1569 int ret; 1570 1571 node = btrfs_get_or_create_delayed_node(dir); 1572 if (IS_ERR(node)) 1573 return PTR_ERR(node); 1574 1575 item_key.objectid = btrfs_ino(dir); 1576 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); 1577 item_key.offset = index; 1578 1579 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1580 if (!ret) 1581 goto end; 1582 1583 item = btrfs_alloc_delayed_item(0); 1584 if (!item) { 1585 ret = -ENOMEM; 1586 goto end; 1587 } 1588 1589 item->key = item_key; 1590 1591 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1592 /* 1593 * we have reserved enough space when we start a new transaction, 1594 * so reserving metadata failure is impossible. 1595 */ 1596 BUG_ON(ret); 1597 1598 mutex_lock(&node->mutex); 1599 ret = __btrfs_add_delayed_deletion_item(node, item); 1600 if (unlikely(ret)) { 1601 printk(KERN_ERR "err add delayed dir index item(index: %llu) " 1602 "into the deletion tree of the delayed node" 1603 "(root id: %llu, inode id: %llu, errno: %d)\n", 1604 (unsigned long long)index, 1605 (unsigned long long)node->root->objectid, 1606 (unsigned long long)node->inode_id, 1607 ret); 1608 BUG(); 1609 } 1610 mutex_unlock(&node->mutex); 1611 end: 1612 btrfs_release_delayed_node(node); 1613 return ret; 1614 } 1615 1616 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1617 { 1618 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1619 1620 if (!delayed_node) 1621 return -ENOENT; 1622 1623 /* 1624 * Since we have held i_mutex of this directory, it is impossible that 1625 * a new directory index is added into the delayed node and index_cnt 1626 * is updated now. So we needn't lock the delayed node. 1627 */ 1628 if (!delayed_node->index_cnt) { 1629 btrfs_release_delayed_node(delayed_node); 1630 return -EINVAL; 1631 } 1632 1633 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1634 btrfs_release_delayed_node(delayed_node); 1635 return 0; 1636 } 1637 1638 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, 1639 struct list_head *del_list) 1640 { 1641 struct btrfs_delayed_node *delayed_node; 1642 struct btrfs_delayed_item *item; 1643 1644 delayed_node = btrfs_get_delayed_node(inode); 1645 if (!delayed_node) 1646 return; 1647 1648 mutex_lock(&delayed_node->mutex); 1649 item = __btrfs_first_delayed_insertion_item(delayed_node); 1650 while (item) { 1651 atomic_inc(&item->refs); 1652 list_add_tail(&item->readdir_list, ins_list); 1653 item = __btrfs_next_delayed_item(item); 1654 } 1655 1656 item = __btrfs_first_delayed_deletion_item(delayed_node); 1657 while (item) { 1658 atomic_inc(&item->refs); 1659 list_add_tail(&item->readdir_list, del_list); 1660 item = __btrfs_next_delayed_item(item); 1661 } 1662 mutex_unlock(&delayed_node->mutex); 1663 /* 1664 * This delayed node is still cached in the btrfs inode, so refs 1665 * must be > 1 now, and we needn't check it is going to be freed 1666 * or not. 1667 * 1668 * Besides that, this function is used to read dir, we do not 1669 * insert/delete delayed items in this period. So we also needn't 1670 * requeue or dequeue this delayed node. 1671 */ 1672 atomic_dec(&delayed_node->refs); 1673 } 1674 1675 void btrfs_put_delayed_items(struct list_head *ins_list, 1676 struct list_head *del_list) 1677 { 1678 struct btrfs_delayed_item *curr, *next; 1679 1680 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1681 list_del(&curr->readdir_list); 1682 if (atomic_dec_and_test(&curr->refs)) 1683 kfree(curr); 1684 } 1685 1686 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1687 list_del(&curr->readdir_list); 1688 if (atomic_dec_and_test(&curr->refs)) 1689 kfree(curr); 1690 } 1691 } 1692 1693 int btrfs_should_delete_dir_index(struct list_head *del_list, 1694 u64 index) 1695 { 1696 struct btrfs_delayed_item *curr, *next; 1697 int ret; 1698 1699 if (list_empty(del_list)) 1700 return 0; 1701 1702 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1703 if (curr->key.offset > index) 1704 break; 1705 1706 list_del(&curr->readdir_list); 1707 ret = (curr->key.offset == index); 1708 1709 if (atomic_dec_and_test(&curr->refs)) 1710 kfree(curr); 1711 1712 if (ret) 1713 return 1; 1714 else 1715 continue; 1716 } 1717 return 0; 1718 } 1719 1720 /* 1721 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1722 * 1723 */ 1724 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, 1725 filldir_t filldir, 1726 struct list_head *ins_list) 1727 { 1728 struct btrfs_dir_item *di; 1729 struct btrfs_delayed_item *curr, *next; 1730 struct btrfs_key location; 1731 char *name; 1732 int name_len; 1733 int over = 0; 1734 unsigned char d_type; 1735 1736 if (list_empty(ins_list)) 1737 return 0; 1738 1739 /* 1740 * Changing the data of the delayed item is impossible. So 1741 * we needn't lock them. And we have held i_mutex of the 1742 * directory, nobody can delete any directory indexes now. 1743 */ 1744 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1745 list_del(&curr->readdir_list); 1746 1747 if (curr->key.offset < filp->f_pos) { 1748 if (atomic_dec_and_test(&curr->refs)) 1749 kfree(curr); 1750 continue; 1751 } 1752 1753 filp->f_pos = curr->key.offset; 1754 1755 di = (struct btrfs_dir_item *)curr->data; 1756 name = (char *)(di + 1); 1757 name_len = le16_to_cpu(di->name_len); 1758 1759 d_type = btrfs_filetype_table[di->type]; 1760 btrfs_disk_key_to_cpu(&location, &di->location); 1761 1762 over = filldir(dirent, name, name_len, curr->key.offset, 1763 location.objectid, d_type); 1764 1765 if (atomic_dec_and_test(&curr->refs)) 1766 kfree(curr); 1767 1768 if (over) 1769 return 1; 1770 } 1771 return 0; 1772 } 1773 1774 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1775 generation, 64); 1776 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1777 sequence, 64); 1778 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1779 transid, 64); 1780 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1781 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1782 nbytes, 64); 1783 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1784 block_group, 64); 1785 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1786 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1787 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1788 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1789 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1790 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1791 1792 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1793 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1794 1795 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1796 struct btrfs_inode_item *inode_item, 1797 struct inode *inode) 1798 { 1799 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1800 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1801 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1802 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1803 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1804 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1805 btrfs_set_stack_inode_generation(inode_item, 1806 BTRFS_I(inode)->generation); 1807 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1808 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1809 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1810 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1811 btrfs_set_stack_inode_block_group(inode_item, 0); 1812 1813 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), 1814 inode->i_atime.tv_sec); 1815 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), 1816 inode->i_atime.tv_nsec); 1817 1818 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), 1819 inode->i_mtime.tv_sec); 1820 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), 1821 inode->i_mtime.tv_nsec); 1822 1823 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), 1824 inode->i_ctime.tv_sec); 1825 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), 1826 inode->i_ctime.tv_nsec); 1827 } 1828 1829 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1830 { 1831 struct btrfs_delayed_node *delayed_node; 1832 struct btrfs_inode_item *inode_item; 1833 struct btrfs_timespec *tspec; 1834 1835 delayed_node = btrfs_get_delayed_node(inode); 1836 if (!delayed_node) 1837 return -ENOENT; 1838 1839 mutex_lock(&delayed_node->mutex); 1840 if (!delayed_node->inode_dirty) { 1841 mutex_unlock(&delayed_node->mutex); 1842 btrfs_release_delayed_node(delayed_node); 1843 return -ENOENT; 1844 } 1845 1846 inode_item = &delayed_node->inode_item; 1847 1848 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1849 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1850 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1851 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1852 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1853 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1854 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1855 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1856 inode->i_rdev = 0; 1857 *rdev = btrfs_stack_inode_rdev(inode_item); 1858 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1859 1860 tspec = btrfs_inode_atime(inode_item); 1861 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); 1862 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1863 1864 tspec = btrfs_inode_mtime(inode_item); 1865 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); 1866 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1867 1868 tspec = btrfs_inode_ctime(inode_item); 1869 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); 1870 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1871 1872 inode->i_generation = BTRFS_I(inode)->generation; 1873 BTRFS_I(inode)->index_cnt = (u64)-1; 1874 1875 mutex_unlock(&delayed_node->mutex); 1876 btrfs_release_delayed_node(delayed_node); 1877 return 0; 1878 } 1879 1880 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1881 struct btrfs_root *root, struct inode *inode) 1882 { 1883 struct btrfs_delayed_node *delayed_node; 1884 int ret = 0; 1885 1886 delayed_node = btrfs_get_or_create_delayed_node(inode); 1887 if (IS_ERR(delayed_node)) 1888 return PTR_ERR(delayed_node); 1889 1890 mutex_lock(&delayed_node->mutex); 1891 if (delayed_node->inode_dirty) { 1892 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1893 goto release_node; 1894 } 1895 1896 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1897 delayed_node); 1898 if (ret) 1899 goto release_node; 1900 1901 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1902 delayed_node->inode_dirty = 1; 1903 delayed_node->count++; 1904 atomic_inc(&root->fs_info->delayed_root->items); 1905 release_node: 1906 mutex_unlock(&delayed_node->mutex); 1907 btrfs_release_delayed_node(delayed_node); 1908 return ret; 1909 } 1910 1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1912 { 1913 struct btrfs_root *root = delayed_node->root; 1914 struct btrfs_delayed_item *curr_item, *prev_item; 1915 1916 mutex_lock(&delayed_node->mutex); 1917 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1918 while (curr_item) { 1919 btrfs_delayed_item_release_metadata(root, curr_item); 1920 prev_item = curr_item; 1921 curr_item = __btrfs_next_delayed_item(prev_item); 1922 btrfs_release_delayed_item(prev_item); 1923 } 1924 1925 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1926 while (curr_item) { 1927 btrfs_delayed_item_release_metadata(root, curr_item); 1928 prev_item = curr_item; 1929 curr_item = __btrfs_next_delayed_item(prev_item); 1930 btrfs_release_delayed_item(prev_item); 1931 } 1932 1933 if (delayed_node->inode_dirty) { 1934 btrfs_delayed_inode_release_metadata(root, delayed_node); 1935 btrfs_release_delayed_inode(delayed_node); 1936 } 1937 mutex_unlock(&delayed_node->mutex); 1938 } 1939 1940 void btrfs_kill_delayed_inode_items(struct inode *inode) 1941 { 1942 struct btrfs_delayed_node *delayed_node; 1943 1944 delayed_node = btrfs_get_delayed_node(inode); 1945 if (!delayed_node) 1946 return; 1947 1948 __btrfs_kill_delayed_node(delayed_node); 1949 btrfs_release_delayed_node(delayed_node); 1950 } 1951 1952 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1953 { 1954 u64 inode_id = 0; 1955 struct btrfs_delayed_node *delayed_nodes[8]; 1956 int i, n; 1957 1958 while (1) { 1959 spin_lock(&root->inode_lock); 1960 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1961 (void **)delayed_nodes, inode_id, 1962 ARRAY_SIZE(delayed_nodes)); 1963 if (!n) { 1964 spin_unlock(&root->inode_lock); 1965 break; 1966 } 1967 1968 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1969 1970 for (i = 0; i < n; i++) 1971 atomic_inc(&delayed_nodes[i]->refs); 1972 spin_unlock(&root->inode_lock); 1973 1974 for (i = 0; i < n; i++) { 1975 __btrfs_kill_delayed_node(delayed_nodes[i]); 1976 btrfs_release_delayed_node(delayed_nodes[i]); 1977 } 1978 } 1979 } 1980 1981 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1982 { 1983 struct btrfs_delayed_root *delayed_root; 1984 struct btrfs_delayed_node *curr_node, *prev_node; 1985 1986 delayed_root = btrfs_get_delayed_root(root); 1987 1988 curr_node = btrfs_first_delayed_node(delayed_root); 1989 while (curr_node) { 1990 __btrfs_kill_delayed_node(curr_node); 1991 1992 prev_node = curr_node; 1993 curr_node = btrfs_next_delayed_node(curr_node); 1994 btrfs_release_delayed_node(prev_node); 1995 } 1996 } 1997 1998