1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "delayed-inode.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "ctree.h" 15 #include "qgroup.h" 16 #include "locking.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the radix tree. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the radix at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the radix, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 again: 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* cached in the btrfs inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 ret = radix_tree_preload(GFP_NOFS); 145 if (ret) { 146 kmem_cache_free(delayed_node_cache, node); 147 return ERR_PTR(ret); 148 } 149 150 spin_lock(&root->inode_lock); 151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 152 if (ret == -EEXIST) { 153 spin_unlock(&root->inode_lock); 154 kmem_cache_free(delayed_node_cache, node); 155 radix_tree_preload_end(); 156 goto again; 157 } 158 btrfs_inode->delayed_node = node; 159 spin_unlock(&root->inode_lock); 160 radix_tree_preload_end(); 161 162 return node; 163 } 164 165 /* 166 * Call it when holding delayed_node->mutex 167 * 168 * If mod = 1, add this node into the prepared list. 169 */ 170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 171 struct btrfs_delayed_node *node, 172 int mod) 173 { 174 spin_lock(&root->lock); 175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 176 if (!list_empty(&node->p_list)) 177 list_move_tail(&node->p_list, &root->prepare_list); 178 else if (mod) 179 list_add_tail(&node->p_list, &root->prepare_list); 180 } else { 181 list_add_tail(&node->n_list, &root->node_list); 182 list_add_tail(&node->p_list, &root->prepare_list); 183 refcount_inc(&node->refs); /* inserted into list */ 184 root->nodes++; 185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 186 } 187 spin_unlock(&root->lock); 188 } 189 190 /* Call it when holding delayed_node->mutex */ 191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 192 struct btrfs_delayed_node *node) 193 { 194 spin_lock(&root->lock); 195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 196 root->nodes--; 197 refcount_dec(&node->refs); /* not in the list */ 198 list_del_init(&node->n_list); 199 if (!list_empty(&node->p_list)) 200 list_del_init(&node->p_list); 201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 202 } 203 spin_unlock(&root->lock); 204 } 205 206 static struct btrfs_delayed_node *btrfs_first_delayed_node( 207 struct btrfs_delayed_root *delayed_root) 208 { 209 struct list_head *p; 210 struct btrfs_delayed_node *node = NULL; 211 212 spin_lock(&delayed_root->lock); 213 if (list_empty(&delayed_root->node_list)) 214 goto out; 215 216 p = delayed_root->node_list.next; 217 node = list_entry(p, struct btrfs_delayed_node, n_list); 218 refcount_inc(&node->refs); 219 out: 220 spin_unlock(&delayed_root->lock); 221 222 return node; 223 } 224 225 static struct btrfs_delayed_node *btrfs_next_delayed_node( 226 struct btrfs_delayed_node *node) 227 { 228 struct btrfs_delayed_root *delayed_root; 229 struct list_head *p; 230 struct btrfs_delayed_node *next = NULL; 231 232 delayed_root = node->root->fs_info->delayed_root; 233 spin_lock(&delayed_root->lock); 234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 235 /* not in the list */ 236 if (list_empty(&delayed_root->node_list)) 237 goto out; 238 p = delayed_root->node_list.next; 239 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 240 goto out; 241 else 242 p = node->n_list.next; 243 244 next = list_entry(p, struct btrfs_delayed_node, n_list); 245 refcount_inc(&next->refs); 246 out: 247 spin_unlock(&delayed_root->lock); 248 249 return next; 250 } 251 252 static void __btrfs_release_delayed_node( 253 struct btrfs_delayed_node *delayed_node, 254 int mod) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 258 if (!delayed_node) 259 return; 260 261 delayed_root = delayed_node->root->fs_info->delayed_root; 262 263 mutex_lock(&delayed_node->mutex); 264 if (delayed_node->count) 265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 266 else 267 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 268 mutex_unlock(&delayed_node->mutex); 269 270 if (refcount_dec_and_test(&delayed_node->refs)) { 271 struct btrfs_root *root = delayed_node->root; 272 273 spin_lock(&root->inode_lock); 274 /* 275 * Once our refcount goes to zero, nobody is allowed to bump it 276 * back up. We can delete it now. 277 */ 278 ASSERT(refcount_read(&delayed_node->refs) == 0); 279 radix_tree_delete(&root->delayed_nodes_tree, 280 delayed_node->inode_id); 281 spin_unlock(&root->inode_lock); 282 kmem_cache_free(delayed_node_cache, delayed_node); 283 } 284 } 285 286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 287 { 288 __btrfs_release_delayed_node(node, 0); 289 } 290 291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 292 struct btrfs_delayed_root *delayed_root) 293 { 294 struct list_head *p; 295 struct btrfs_delayed_node *node = NULL; 296 297 spin_lock(&delayed_root->lock); 298 if (list_empty(&delayed_root->prepare_list)) 299 goto out; 300 301 p = delayed_root->prepare_list.next; 302 list_del_init(p); 303 node = list_entry(p, struct btrfs_delayed_node, p_list); 304 refcount_inc(&node->refs); 305 out: 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 318 { 319 struct btrfs_delayed_item *item; 320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->ins_or_del = 0; 324 item->bytes_reserved = 0; 325 item->delayed_node = NULL; 326 refcount_set(&item->refs, 1); 327 } 328 return item; 329 } 330 331 /* 332 * __btrfs_lookup_delayed_item - look up the delayed item by key 333 * @delayed_node: pointer to the delayed node 334 * @key: the key to look up 335 * @prev: used to store the prev item if the right item isn't found 336 * @next: used to store the next item if the right item isn't found 337 * 338 * Note: if we don't find the right item, we will return the prev item and 339 * the next item. 340 */ 341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 342 struct rb_root *root, 343 struct btrfs_key *key, 344 struct btrfs_delayed_item **prev, 345 struct btrfs_delayed_item **next) 346 { 347 struct rb_node *node, *prev_node = NULL; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 int ret = 0; 350 351 node = root->rb_node; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 prev_node = node; 357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 358 if (ret < 0) 359 node = node->rb_right; 360 else if (ret > 0) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 if (prev) { 367 if (!prev_node) 368 *prev = NULL; 369 else if (ret < 0) 370 *prev = delayed_item; 371 else if ((node = rb_prev(prev_node)) != NULL) { 372 *prev = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *prev = NULL; 376 } 377 378 if (next) { 379 if (!prev_node) 380 *next = NULL; 381 else if (ret > 0) 382 *next = delayed_item; 383 else if ((node = rb_next(prev_node)) != NULL) { 384 *next = rb_entry(node, struct btrfs_delayed_item, 385 rb_node); 386 } else 387 *next = NULL; 388 } 389 return NULL; 390 } 391 392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 393 struct btrfs_delayed_node *delayed_node, 394 struct btrfs_key *key) 395 { 396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 397 NULL, NULL); 398 } 399 400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 401 struct btrfs_delayed_item *ins, 402 int action) 403 { 404 struct rb_node **p, *node; 405 struct rb_node *parent_node = NULL; 406 struct rb_root_cached *root; 407 struct btrfs_delayed_item *item; 408 int cmp; 409 bool leftmost = true; 410 411 if (action == BTRFS_DELAYED_INSERTION_ITEM) 412 root = &delayed_node->ins_root; 413 else if (action == BTRFS_DELAYED_DELETION_ITEM) 414 root = &delayed_node->del_root; 415 else 416 BUG(); 417 p = &root->rb_root.rb_node; 418 node = &ins->rb_node; 419 420 while (*p) { 421 parent_node = *p; 422 item = rb_entry(parent_node, struct btrfs_delayed_item, 423 rb_node); 424 425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 426 if (cmp < 0) { 427 p = &(*p)->rb_right; 428 leftmost = false; 429 } else if (cmp > 0) { 430 p = &(*p)->rb_left; 431 } else { 432 return -EEXIST; 433 } 434 } 435 436 rb_link_node(node, parent_node, p); 437 rb_insert_color_cached(node, root, leftmost); 438 ins->delayed_node = delayed_node; 439 ins->ins_or_del = action; 440 441 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 442 action == BTRFS_DELAYED_INSERTION_ITEM && 443 ins->key.offset >= delayed_node->index_cnt) 444 delayed_node->index_cnt = ins->key.offset + 1; 445 446 delayed_node->count++; 447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 448 return 0; 449 } 450 451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_INSERTION_ITEM); 456 } 457 458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_DELETION_ITEM); 463 } 464 465 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 466 { 467 int seq = atomic_inc_return(&delayed_root->items_seq); 468 469 /* atomic_dec_return implies a barrier */ 470 if ((atomic_dec_return(&delayed_root->items) < 471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 472 cond_wake_up_nomb(&delayed_root->wait); 473 } 474 475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 476 { 477 struct rb_root_cached *root; 478 struct btrfs_delayed_root *delayed_root; 479 480 /* Not associated with any delayed_node */ 481 if (!delayed_item->delayed_node) 482 return; 483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 484 485 BUG_ON(!delayed_root); 486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 488 489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 490 root = &delayed_item->delayed_node->ins_root; 491 else 492 root = &delayed_item->delayed_node->del_root; 493 494 rb_erase_cached(&delayed_item->rb_node, root); 495 delayed_item->delayed_node->count--; 496 497 finish_one_item(delayed_root); 498 } 499 500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 501 { 502 if (item) { 503 __btrfs_remove_delayed_item(item); 504 if (refcount_dec_and_test(&item->refs)) 505 kfree(item); 506 } 507 } 508 509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 510 struct btrfs_delayed_node *delayed_node) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *item = NULL; 514 515 p = rb_first_cached(&delayed_node->ins_root); 516 if (p) 517 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return item; 520 } 521 522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 523 struct btrfs_delayed_node *delayed_node) 524 { 525 struct rb_node *p; 526 struct btrfs_delayed_item *item = NULL; 527 528 p = rb_first_cached(&delayed_node->del_root); 529 if (p) 530 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 531 532 return item; 533 } 534 535 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 536 struct btrfs_delayed_item *item) 537 { 538 struct rb_node *p; 539 struct btrfs_delayed_item *next = NULL; 540 541 p = rb_next(&item->rb_node); 542 if (p) 543 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 544 545 return next; 546 } 547 548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 549 struct btrfs_root *root, 550 struct btrfs_delayed_item *item) 551 { 552 struct btrfs_block_rsv *src_rsv; 553 struct btrfs_block_rsv *dst_rsv; 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 u64 num_bytes; 556 int ret; 557 558 if (!trans->bytes_reserved) 559 return 0; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 566 /* 567 * Here we migrate space rsv from transaction rsv, since have already 568 * reserved space when starting a transaction. So no need to reserve 569 * qgroup space here. 570 */ 571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 572 if (!ret) { 573 trace_btrfs_space_reservation(fs_info, "delayed_item", 574 item->key.objectid, 575 num_bytes, 1); 576 item->bytes_reserved = num_bytes; 577 } 578 579 return ret; 580 } 581 582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *rsv; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 588 if (!item->bytes_reserved) 589 return; 590 591 rsv = &fs_info->delayed_block_rsv; 592 /* 593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 594 * to release/reserve qgroup space. 595 */ 596 trace_btrfs_space_reservation(fs_info, "delayed_item", 597 item->key.objectid, item->bytes_reserved, 598 0); 599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_inode *inode, 606 struct btrfs_delayed_node *node) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_block_rsv *src_rsv; 610 struct btrfs_block_rsv *dst_rsv; 611 u64 num_bytes; 612 int ret; 613 614 src_rsv = trans->block_rsv; 615 dst_rsv = &fs_info->delayed_block_rsv; 616 617 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 618 619 /* 620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 621 * which doesn't reserve space for speed. This is a problem since we 622 * still need to reserve space for this update, so try to reserve the 623 * space. 624 * 625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 626 * we always reserve enough to update the inode item. 627 */ 628 if (!src_rsv || (!trans->bytes_reserved && 629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 630 ret = btrfs_qgroup_reserve_meta_prealloc(root, 631 fs_info->nodesize, true); 632 if (ret < 0) 633 return ret; 634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 635 BTRFS_RESERVE_NO_FLUSH); 636 /* 637 * Since we're under a transaction reserve_metadata_bytes could 638 * try to commit the transaction which will make it return 639 * EAGAIN to make us stop the transaction we have, so return 640 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 641 */ 642 if (ret == -EAGAIN) { 643 ret = -ENOSPC; 644 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 645 } 646 if (!ret) { 647 node->bytes_reserved = num_bytes; 648 trace_btrfs_space_reservation(fs_info, 649 "delayed_inode", 650 btrfs_ino(inode), 651 num_bytes, 1); 652 } else { 653 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 654 } 655 return ret; 656 } 657 658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 659 if (!ret) { 660 trace_btrfs_space_reservation(fs_info, "delayed_inode", 661 btrfs_ino(inode), num_bytes, 1); 662 node->bytes_reserved = num_bytes; 663 } 664 665 return ret; 666 } 667 668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 669 struct btrfs_delayed_node *node, 670 bool qgroup_free) 671 { 672 struct btrfs_block_rsv *rsv; 673 674 if (!node->bytes_reserved) 675 return; 676 677 rsv = &fs_info->delayed_block_rsv; 678 trace_btrfs_space_reservation(fs_info, "delayed_inode", 679 node->inode_id, node->bytes_reserved, 0); 680 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 681 if (qgroup_free) 682 btrfs_qgroup_free_meta_prealloc(node->root, 683 node->bytes_reserved); 684 else 685 btrfs_qgroup_convert_reserved_meta(node->root, 686 node->bytes_reserved); 687 node->bytes_reserved = 0; 688 } 689 690 /* 691 * This helper will insert some continuous items into the same leaf according 692 * to the free space of the leaf. 693 */ 694 static int btrfs_batch_insert_items(struct btrfs_root *root, 695 struct btrfs_path *path, 696 struct btrfs_delayed_item *item) 697 { 698 struct btrfs_delayed_item *curr, *next; 699 int free_space; 700 int total_data_size = 0, total_size = 0; 701 struct extent_buffer *leaf; 702 char *data_ptr; 703 struct btrfs_key *keys; 704 u32 *data_size; 705 struct list_head head; 706 int slot; 707 int nitems; 708 int i; 709 int ret = 0; 710 711 BUG_ON(!path->nodes[0]); 712 713 leaf = path->nodes[0]; 714 free_space = btrfs_leaf_free_space(leaf); 715 INIT_LIST_HEAD(&head); 716 717 next = item; 718 nitems = 0; 719 720 /* 721 * count the number of the continuous items that we can insert in batch 722 */ 723 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 724 free_space) { 725 total_data_size += next->data_len; 726 total_size += next->data_len + sizeof(struct btrfs_item); 727 list_add_tail(&next->tree_list, &head); 728 nitems++; 729 730 curr = next; 731 next = __btrfs_next_delayed_item(curr); 732 if (!next) 733 break; 734 735 if (!btrfs_is_continuous_delayed_item(curr, next)) 736 break; 737 } 738 739 if (!nitems) { 740 ret = 0; 741 goto out; 742 } 743 744 /* 745 * we need allocate some memory space, but it might cause the task 746 * to sleep, so we set all locked nodes in the path to blocking locks 747 * first. 748 */ 749 btrfs_set_path_blocking(path); 750 751 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 752 if (!keys) { 753 ret = -ENOMEM; 754 goto out; 755 } 756 757 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 758 if (!data_size) { 759 ret = -ENOMEM; 760 goto error; 761 } 762 763 /* get keys of all the delayed items */ 764 i = 0; 765 list_for_each_entry(next, &head, tree_list) { 766 keys[i] = next->key; 767 data_size[i] = next->data_len; 768 i++; 769 } 770 771 /* insert the keys of the items */ 772 setup_items_for_insert(root, path, keys, data_size, 773 total_data_size, total_size, nitems); 774 775 /* insert the dir index items */ 776 slot = path->slots[0]; 777 list_for_each_entry_safe(curr, next, &head, tree_list) { 778 data_ptr = btrfs_item_ptr(leaf, slot, char); 779 write_extent_buffer(leaf, &curr->data, 780 (unsigned long)data_ptr, 781 curr->data_len); 782 slot++; 783 784 btrfs_delayed_item_release_metadata(root, curr); 785 786 list_del(&curr->tree_list); 787 btrfs_release_delayed_item(curr); 788 } 789 790 error: 791 kfree(data_size); 792 kfree(keys); 793 out: 794 return ret; 795 } 796 797 /* 798 * This helper can just do simple insertion that needn't extend item for new 799 * data, such as directory name index insertion, inode insertion. 800 */ 801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 802 struct btrfs_root *root, 803 struct btrfs_path *path, 804 struct btrfs_delayed_item *delayed_item) 805 { 806 struct extent_buffer *leaf; 807 unsigned int nofs_flag; 808 char *ptr; 809 int ret; 810 811 nofs_flag = memalloc_nofs_save(); 812 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 813 delayed_item->data_len); 814 memalloc_nofs_restore(nofs_flag); 815 if (ret < 0 && ret != -EEXIST) 816 return ret; 817 818 leaf = path->nodes[0]; 819 820 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 821 822 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 823 delayed_item->data_len); 824 btrfs_mark_buffer_dirty(leaf); 825 826 btrfs_delayed_item_release_metadata(root, delayed_item); 827 return 0; 828 } 829 830 /* 831 * we insert an item first, then if there are some continuous items, we try 832 * to insert those items into the same leaf. 833 */ 834 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 835 struct btrfs_path *path, 836 struct btrfs_root *root, 837 struct btrfs_delayed_node *node) 838 { 839 struct btrfs_delayed_item *curr, *prev; 840 int ret = 0; 841 842 do_again: 843 mutex_lock(&node->mutex); 844 curr = __btrfs_first_delayed_insertion_item(node); 845 if (!curr) 846 goto insert_end; 847 848 ret = btrfs_insert_delayed_item(trans, root, path, curr); 849 if (ret < 0) { 850 btrfs_release_path(path); 851 goto insert_end; 852 } 853 854 prev = curr; 855 curr = __btrfs_next_delayed_item(prev); 856 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 857 /* insert the continuous items into the same leaf */ 858 path->slots[0]++; 859 btrfs_batch_insert_items(root, path, curr); 860 } 861 btrfs_release_delayed_item(prev); 862 btrfs_mark_buffer_dirty(path->nodes[0]); 863 864 btrfs_release_path(path); 865 mutex_unlock(&node->mutex); 866 goto do_again; 867 868 insert_end: 869 mutex_unlock(&node->mutex); 870 return ret; 871 } 872 873 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, 875 struct btrfs_path *path, 876 struct btrfs_delayed_item *item) 877 { 878 struct btrfs_delayed_item *curr, *next; 879 struct extent_buffer *leaf; 880 struct btrfs_key key; 881 struct list_head head; 882 int nitems, i, last_item; 883 int ret = 0; 884 885 BUG_ON(!path->nodes[0]); 886 887 leaf = path->nodes[0]; 888 889 i = path->slots[0]; 890 last_item = btrfs_header_nritems(leaf) - 1; 891 if (i > last_item) 892 return -ENOENT; /* FIXME: Is errno suitable? */ 893 894 next = item; 895 INIT_LIST_HEAD(&head); 896 btrfs_item_key_to_cpu(leaf, &key, i); 897 nitems = 0; 898 /* 899 * count the number of the dir index items that we can delete in batch 900 */ 901 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 902 list_add_tail(&next->tree_list, &head); 903 nitems++; 904 905 curr = next; 906 next = __btrfs_next_delayed_item(curr); 907 if (!next) 908 break; 909 910 if (!btrfs_is_continuous_delayed_item(curr, next)) 911 break; 912 913 i++; 914 if (i > last_item) 915 break; 916 btrfs_item_key_to_cpu(leaf, &key, i); 917 } 918 919 if (!nitems) 920 return 0; 921 922 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 923 if (ret) 924 goto out; 925 926 list_for_each_entry_safe(curr, next, &head, tree_list) { 927 btrfs_delayed_item_release_metadata(root, curr); 928 list_del(&curr->tree_list); 929 btrfs_release_delayed_item(curr); 930 } 931 932 out: 933 return ret; 934 } 935 936 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 937 struct btrfs_path *path, 938 struct btrfs_root *root, 939 struct btrfs_delayed_node *node) 940 { 941 struct btrfs_delayed_item *curr, *prev; 942 unsigned int nofs_flag; 943 int ret = 0; 944 945 do_again: 946 mutex_lock(&node->mutex); 947 curr = __btrfs_first_delayed_deletion_item(node); 948 if (!curr) 949 goto delete_fail; 950 951 nofs_flag = memalloc_nofs_save(); 952 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 953 memalloc_nofs_restore(nofs_flag); 954 if (ret < 0) 955 goto delete_fail; 956 else if (ret > 0) { 957 /* 958 * can't find the item which the node points to, so this node 959 * is invalid, just drop it. 960 */ 961 prev = curr; 962 curr = __btrfs_next_delayed_item(prev); 963 btrfs_release_delayed_item(prev); 964 ret = 0; 965 btrfs_release_path(path); 966 if (curr) { 967 mutex_unlock(&node->mutex); 968 goto do_again; 969 } else 970 goto delete_fail; 971 } 972 973 btrfs_batch_delete_items(trans, root, path, curr); 974 btrfs_release_path(path); 975 mutex_unlock(&node->mutex); 976 goto do_again; 977 978 delete_fail: 979 btrfs_release_path(path); 980 mutex_unlock(&node->mutex); 981 return ret; 982 } 983 984 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 985 { 986 struct btrfs_delayed_root *delayed_root; 987 988 if (delayed_node && 989 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 990 BUG_ON(!delayed_node->root); 991 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 992 delayed_node->count--; 993 994 delayed_root = delayed_node->root->fs_info->delayed_root; 995 finish_one_item(delayed_root); 996 } 997 } 998 999 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 1000 { 1001 struct btrfs_delayed_root *delayed_root; 1002 1003 ASSERT(delayed_node->root); 1004 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1005 delayed_node->count--; 1006 1007 delayed_root = delayed_node->root->fs_info->delayed_root; 1008 finish_one_item(delayed_root); 1009 } 1010 1011 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1012 struct btrfs_root *root, 1013 struct btrfs_path *path, 1014 struct btrfs_delayed_node *node) 1015 { 1016 struct btrfs_fs_info *fs_info = root->fs_info; 1017 struct btrfs_key key; 1018 struct btrfs_inode_item *inode_item; 1019 struct extent_buffer *leaf; 1020 unsigned int nofs_flag; 1021 int mod; 1022 int ret; 1023 1024 key.objectid = node->inode_id; 1025 key.type = BTRFS_INODE_ITEM_KEY; 1026 key.offset = 0; 1027 1028 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1029 mod = -1; 1030 else 1031 mod = 1; 1032 1033 nofs_flag = memalloc_nofs_save(); 1034 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1035 memalloc_nofs_restore(nofs_flag); 1036 if (ret > 0) { 1037 btrfs_release_path(path); 1038 return -ENOENT; 1039 } else if (ret < 0) { 1040 return ret; 1041 } 1042 1043 leaf = path->nodes[0]; 1044 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1045 struct btrfs_inode_item); 1046 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1047 sizeof(struct btrfs_inode_item)); 1048 btrfs_mark_buffer_dirty(leaf); 1049 1050 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1051 goto no_iref; 1052 1053 path->slots[0]++; 1054 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1055 goto search; 1056 again: 1057 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1058 if (key.objectid != node->inode_id) 1059 goto out; 1060 1061 if (key.type != BTRFS_INODE_REF_KEY && 1062 key.type != BTRFS_INODE_EXTREF_KEY) 1063 goto out; 1064 1065 /* 1066 * Delayed iref deletion is for the inode who has only one link, 1067 * so there is only one iref. The case that several irefs are 1068 * in the same item doesn't exist. 1069 */ 1070 btrfs_del_item(trans, root, path); 1071 out: 1072 btrfs_release_delayed_iref(node); 1073 no_iref: 1074 btrfs_release_path(path); 1075 err_out: 1076 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1077 btrfs_release_delayed_inode(node); 1078 1079 return ret; 1080 1081 search: 1082 btrfs_release_path(path); 1083 1084 key.type = BTRFS_INODE_EXTREF_KEY; 1085 key.offset = -1; 1086 1087 nofs_flag = memalloc_nofs_save(); 1088 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1089 memalloc_nofs_restore(nofs_flag); 1090 if (ret < 0) 1091 goto err_out; 1092 ASSERT(ret); 1093 1094 ret = 0; 1095 leaf = path->nodes[0]; 1096 path->slots[0]--; 1097 goto again; 1098 } 1099 1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1101 struct btrfs_root *root, 1102 struct btrfs_path *path, 1103 struct btrfs_delayed_node *node) 1104 { 1105 int ret; 1106 1107 mutex_lock(&node->mutex); 1108 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1109 mutex_unlock(&node->mutex); 1110 return 0; 1111 } 1112 1113 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1114 mutex_unlock(&node->mutex); 1115 return ret; 1116 } 1117 1118 static inline int 1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1120 struct btrfs_path *path, 1121 struct btrfs_delayed_node *node) 1122 { 1123 int ret; 1124 1125 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1126 if (ret) 1127 return ret; 1128 1129 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1130 if (ret) 1131 return ret; 1132 1133 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1134 return ret; 1135 } 1136 1137 /* 1138 * Called when committing the transaction. 1139 * Returns 0 on success. 1140 * Returns < 0 on error and returns with an aborted transaction with any 1141 * outstanding delayed items cleaned up. 1142 */ 1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1144 { 1145 struct btrfs_fs_info *fs_info = trans->fs_info; 1146 struct btrfs_delayed_root *delayed_root; 1147 struct btrfs_delayed_node *curr_node, *prev_node; 1148 struct btrfs_path *path; 1149 struct btrfs_block_rsv *block_rsv; 1150 int ret = 0; 1151 bool count = (nr > 0); 1152 1153 if (TRANS_ABORTED(trans)) 1154 return -EIO; 1155 1156 path = btrfs_alloc_path(); 1157 if (!path) 1158 return -ENOMEM; 1159 path->leave_spinning = 1; 1160 1161 block_rsv = trans->block_rsv; 1162 trans->block_rsv = &fs_info->delayed_block_rsv; 1163 1164 delayed_root = fs_info->delayed_root; 1165 1166 curr_node = btrfs_first_delayed_node(delayed_root); 1167 while (curr_node && (!count || (count && nr--))) { 1168 ret = __btrfs_commit_inode_delayed_items(trans, path, 1169 curr_node); 1170 if (ret) { 1171 btrfs_release_delayed_node(curr_node); 1172 curr_node = NULL; 1173 btrfs_abort_transaction(trans, ret); 1174 break; 1175 } 1176 1177 prev_node = curr_node; 1178 curr_node = btrfs_next_delayed_node(curr_node); 1179 btrfs_release_delayed_node(prev_node); 1180 } 1181 1182 if (curr_node) 1183 btrfs_release_delayed_node(curr_node); 1184 btrfs_free_path(path); 1185 trans->block_rsv = block_rsv; 1186 1187 return ret; 1188 } 1189 1190 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1191 { 1192 return __btrfs_run_delayed_items(trans, -1); 1193 } 1194 1195 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1196 { 1197 return __btrfs_run_delayed_items(trans, nr); 1198 } 1199 1200 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1201 struct btrfs_inode *inode) 1202 { 1203 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1204 struct btrfs_path *path; 1205 struct btrfs_block_rsv *block_rsv; 1206 int ret; 1207 1208 if (!delayed_node) 1209 return 0; 1210 1211 mutex_lock(&delayed_node->mutex); 1212 if (!delayed_node->count) { 1213 mutex_unlock(&delayed_node->mutex); 1214 btrfs_release_delayed_node(delayed_node); 1215 return 0; 1216 } 1217 mutex_unlock(&delayed_node->mutex); 1218 1219 path = btrfs_alloc_path(); 1220 if (!path) { 1221 btrfs_release_delayed_node(delayed_node); 1222 return -ENOMEM; 1223 } 1224 path->leave_spinning = 1; 1225 1226 block_rsv = trans->block_rsv; 1227 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1228 1229 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1230 1231 btrfs_release_delayed_node(delayed_node); 1232 btrfs_free_path(path); 1233 trans->block_rsv = block_rsv; 1234 1235 return ret; 1236 } 1237 1238 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1239 { 1240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1241 struct btrfs_trans_handle *trans; 1242 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1243 struct btrfs_path *path; 1244 struct btrfs_block_rsv *block_rsv; 1245 int ret; 1246 1247 if (!delayed_node) 1248 return 0; 1249 1250 mutex_lock(&delayed_node->mutex); 1251 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1252 mutex_unlock(&delayed_node->mutex); 1253 btrfs_release_delayed_node(delayed_node); 1254 return 0; 1255 } 1256 mutex_unlock(&delayed_node->mutex); 1257 1258 trans = btrfs_join_transaction(delayed_node->root); 1259 if (IS_ERR(trans)) { 1260 ret = PTR_ERR(trans); 1261 goto out; 1262 } 1263 1264 path = btrfs_alloc_path(); 1265 if (!path) { 1266 ret = -ENOMEM; 1267 goto trans_out; 1268 } 1269 path->leave_spinning = 1; 1270 1271 block_rsv = trans->block_rsv; 1272 trans->block_rsv = &fs_info->delayed_block_rsv; 1273 1274 mutex_lock(&delayed_node->mutex); 1275 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1276 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1277 path, delayed_node); 1278 else 1279 ret = 0; 1280 mutex_unlock(&delayed_node->mutex); 1281 1282 btrfs_free_path(path); 1283 trans->block_rsv = block_rsv; 1284 trans_out: 1285 btrfs_end_transaction(trans); 1286 btrfs_btree_balance_dirty(fs_info); 1287 out: 1288 btrfs_release_delayed_node(delayed_node); 1289 1290 return ret; 1291 } 1292 1293 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1294 { 1295 struct btrfs_delayed_node *delayed_node; 1296 1297 delayed_node = READ_ONCE(inode->delayed_node); 1298 if (!delayed_node) 1299 return; 1300 1301 inode->delayed_node = NULL; 1302 btrfs_release_delayed_node(delayed_node); 1303 } 1304 1305 struct btrfs_async_delayed_work { 1306 struct btrfs_delayed_root *delayed_root; 1307 int nr; 1308 struct btrfs_work work; 1309 }; 1310 1311 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1312 { 1313 struct btrfs_async_delayed_work *async_work; 1314 struct btrfs_delayed_root *delayed_root; 1315 struct btrfs_trans_handle *trans; 1316 struct btrfs_path *path; 1317 struct btrfs_delayed_node *delayed_node = NULL; 1318 struct btrfs_root *root; 1319 struct btrfs_block_rsv *block_rsv; 1320 int total_done = 0; 1321 1322 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1323 delayed_root = async_work->delayed_root; 1324 1325 path = btrfs_alloc_path(); 1326 if (!path) 1327 goto out; 1328 1329 do { 1330 if (atomic_read(&delayed_root->items) < 1331 BTRFS_DELAYED_BACKGROUND / 2) 1332 break; 1333 1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1335 if (!delayed_node) 1336 break; 1337 1338 path->leave_spinning = 1; 1339 root = delayed_node->root; 1340 1341 trans = btrfs_join_transaction(root); 1342 if (IS_ERR(trans)) { 1343 btrfs_release_path(path); 1344 btrfs_release_prepared_delayed_node(delayed_node); 1345 total_done++; 1346 continue; 1347 } 1348 1349 block_rsv = trans->block_rsv; 1350 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1351 1352 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1353 1354 trans->block_rsv = block_rsv; 1355 btrfs_end_transaction(trans); 1356 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1357 1358 btrfs_release_path(path); 1359 btrfs_release_prepared_delayed_node(delayed_node); 1360 total_done++; 1361 1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1363 || total_done < async_work->nr); 1364 1365 btrfs_free_path(path); 1366 out: 1367 wake_up(&delayed_root->wait); 1368 kfree(async_work); 1369 } 1370 1371 1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1373 struct btrfs_fs_info *fs_info, int nr) 1374 { 1375 struct btrfs_async_delayed_work *async_work; 1376 1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1378 if (!async_work) 1379 return -ENOMEM; 1380 1381 async_work->delayed_root = delayed_root; 1382 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1383 NULL); 1384 async_work->nr = nr; 1385 1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1387 return 0; 1388 } 1389 1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1391 { 1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1393 } 1394 1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1396 { 1397 int val = atomic_read(&delayed_root->items_seq); 1398 1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1400 return 1; 1401 1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1403 return 1; 1404 1405 return 0; 1406 } 1407 1408 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1409 { 1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1411 1412 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1413 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1414 return; 1415 1416 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1417 int seq; 1418 int ret; 1419 1420 seq = atomic_read(&delayed_root->items_seq); 1421 1422 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1423 if (ret) 1424 return; 1425 1426 wait_event_interruptible(delayed_root->wait, 1427 could_end_wait(delayed_root, seq)); 1428 return; 1429 } 1430 1431 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1432 } 1433 1434 /* Will return 0 or -ENOMEM */ 1435 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1436 const char *name, int name_len, 1437 struct btrfs_inode *dir, 1438 struct btrfs_disk_key *disk_key, u8 type, 1439 u64 index) 1440 { 1441 struct btrfs_delayed_node *delayed_node; 1442 struct btrfs_delayed_item *delayed_item; 1443 struct btrfs_dir_item *dir_item; 1444 int ret; 1445 1446 delayed_node = btrfs_get_or_create_delayed_node(dir); 1447 if (IS_ERR(delayed_node)) 1448 return PTR_ERR(delayed_node); 1449 1450 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1451 if (!delayed_item) { 1452 ret = -ENOMEM; 1453 goto release_node; 1454 } 1455 1456 delayed_item->key.objectid = btrfs_ino(dir); 1457 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1458 delayed_item->key.offset = index; 1459 1460 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1461 dir_item->location = *disk_key; 1462 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1463 btrfs_set_stack_dir_data_len(dir_item, 0); 1464 btrfs_set_stack_dir_name_len(dir_item, name_len); 1465 btrfs_set_stack_dir_type(dir_item, type); 1466 memcpy((char *)(dir_item + 1), name, name_len); 1467 1468 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1469 /* 1470 * we have reserved enough space when we start a new transaction, 1471 * so reserving metadata failure is impossible 1472 */ 1473 BUG_ON(ret); 1474 1475 mutex_lock(&delayed_node->mutex); 1476 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1477 if (unlikely(ret)) { 1478 btrfs_err(trans->fs_info, 1479 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1480 name_len, name, delayed_node->root->root_key.objectid, 1481 delayed_node->inode_id, ret); 1482 BUG(); 1483 } 1484 mutex_unlock(&delayed_node->mutex); 1485 1486 release_node: 1487 btrfs_release_delayed_node(delayed_node); 1488 return ret; 1489 } 1490 1491 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1492 struct btrfs_delayed_node *node, 1493 struct btrfs_key *key) 1494 { 1495 struct btrfs_delayed_item *item; 1496 1497 mutex_lock(&node->mutex); 1498 item = __btrfs_lookup_delayed_insertion_item(node, key); 1499 if (!item) { 1500 mutex_unlock(&node->mutex); 1501 return 1; 1502 } 1503 1504 btrfs_delayed_item_release_metadata(node->root, item); 1505 btrfs_release_delayed_item(item); 1506 mutex_unlock(&node->mutex); 1507 return 0; 1508 } 1509 1510 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1511 struct btrfs_inode *dir, u64 index) 1512 { 1513 struct btrfs_delayed_node *node; 1514 struct btrfs_delayed_item *item; 1515 struct btrfs_key item_key; 1516 int ret; 1517 1518 node = btrfs_get_or_create_delayed_node(dir); 1519 if (IS_ERR(node)) 1520 return PTR_ERR(node); 1521 1522 item_key.objectid = btrfs_ino(dir); 1523 item_key.type = BTRFS_DIR_INDEX_KEY; 1524 item_key.offset = index; 1525 1526 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1527 &item_key); 1528 if (!ret) 1529 goto end; 1530 1531 item = btrfs_alloc_delayed_item(0); 1532 if (!item) { 1533 ret = -ENOMEM; 1534 goto end; 1535 } 1536 1537 item->key = item_key; 1538 1539 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1540 /* 1541 * we have reserved enough space when we start a new transaction, 1542 * so reserving metadata failure is impossible. 1543 */ 1544 if (ret < 0) { 1545 btrfs_err(trans->fs_info, 1546 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1547 btrfs_release_delayed_item(item); 1548 goto end; 1549 } 1550 1551 mutex_lock(&node->mutex); 1552 ret = __btrfs_add_delayed_deletion_item(node, item); 1553 if (unlikely(ret)) { 1554 btrfs_err(trans->fs_info, 1555 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1556 index, node->root->root_key.objectid, 1557 node->inode_id, ret); 1558 btrfs_delayed_item_release_metadata(dir->root, item); 1559 btrfs_release_delayed_item(item); 1560 } 1561 mutex_unlock(&node->mutex); 1562 end: 1563 btrfs_release_delayed_node(node); 1564 return ret; 1565 } 1566 1567 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1568 { 1569 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1570 1571 if (!delayed_node) 1572 return -ENOENT; 1573 1574 /* 1575 * Since we have held i_mutex of this directory, it is impossible that 1576 * a new directory index is added into the delayed node and index_cnt 1577 * is updated now. So we needn't lock the delayed node. 1578 */ 1579 if (!delayed_node->index_cnt) { 1580 btrfs_release_delayed_node(delayed_node); 1581 return -EINVAL; 1582 } 1583 1584 inode->index_cnt = delayed_node->index_cnt; 1585 btrfs_release_delayed_node(delayed_node); 1586 return 0; 1587 } 1588 1589 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1590 struct list_head *ins_list, 1591 struct list_head *del_list) 1592 { 1593 struct btrfs_delayed_node *delayed_node; 1594 struct btrfs_delayed_item *item; 1595 1596 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1597 if (!delayed_node) 1598 return false; 1599 1600 /* 1601 * We can only do one readdir with delayed items at a time because of 1602 * item->readdir_list. 1603 */ 1604 inode_unlock_shared(inode); 1605 inode_lock(inode); 1606 1607 mutex_lock(&delayed_node->mutex); 1608 item = __btrfs_first_delayed_insertion_item(delayed_node); 1609 while (item) { 1610 refcount_inc(&item->refs); 1611 list_add_tail(&item->readdir_list, ins_list); 1612 item = __btrfs_next_delayed_item(item); 1613 } 1614 1615 item = __btrfs_first_delayed_deletion_item(delayed_node); 1616 while (item) { 1617 refcount_inc(&item->refs); 1618 list_add_tail(&item->readdir_list, del_list); 1619 item = __btrfs_next_delayed_item(item); 1620 } 1621 mutex_unlock(&delayed_node->mutex); 1622 /* 1623 * This delayed node is still cached in the btrfs inode, so refs 1624 * must be > 1 now, and we needn't check it is going to be freed 1625 * or not. 1626 * 1627 * Besides that, this function is used to read dir, we do not 1628 * insert/delete delayed items in this period. So we also needn't 1629 * requeue or dequeue this delayed node. 1630 */ 1631 refcount_dec(&delayed_node->refs); 1632 1633 return true; 1634 } 1635 1636 void btrfs_readdir_put_delayed_items(struct inode *inode, 1637 struct list_head *ins_list, 1638 struct list_head *del_list) 1639 { 1640 struct btrfs_delayed_item *curr, *next; 1641 1642 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1643 list_del(&curr->readdir_list); 1644 if (refcount_dec_and_test(&curr->refs)) 1645 kfree(curr); 1646 } 1647 1648 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1649 list_del(&curr->readdir_list); 1650 if (refcount_dec_and_test(&curr->refs)) 1651 kfree(curr); 1652 } 1653 1654 /* 1655 * The VFS is going to do up_read(), so we need to downgrade back to a 1656 * read lock. 1657 */ 1658 downgrade_write(&inode->i_rwsem); 1659 } 1660 1661 int btrfs_should_delete_dir_index(struct list_head *del_list, 1662 u64 index) 1663 { 1664 struct btrfs_delayed_item *curr; 1665 int ret = 0; 1666 1667 list_for_each_entry(curr, del_list, readdir_list) { 1668 if (curr->key.offset > index) 1669 break; 1670 if (curr->key.offset == index) { 1671 ret = 1; 1672 break; 1673 } 1674 } 1675 return ret; 1676 } 1677 1678 /* 1679 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1680 * 1681 */ 1682 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1683 struct list_head *ins_list) 1684 { 1685 struct btrfs_dir_item *di; 1686 struct btrfs_delayed_item *curr, *next; 1687 struct btrfs_key location; 1688 char *name; 1689 int name_len; 1690 int over = 0; 1691 unsigned char d_type; 1692 1693 if (list_empty(ins_list)) 1694 return 0; 1695 1696 /* 1697 * Changing the data of the delayed item is impossible. So 1698 * we needn't lock them. And we have held i_mutex of the 1699 * directory, nobody can delete any directory indexes now. 1700 */ 1701 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1702 list_del(&curr->readdir_list); 1703 1704 if (curr->key.offset < ctx->pos) { 1705 if (refcount_dec_and_test(&curr->refs)) 1706 kfree(curr); 1707 continue; 1708 } 1709 1710 ctx->pos = curr->key.offset; 1711 1712 di = (struct btrfs_dir_item *)curr->data; 1713 name = (char *)(di + 1); 1714 name_len = btrfs_stack_dir_name_len(di); 1715 1716 d_type = fs_ftype_to_dtype(di->type); 1717 btrfs_disk_key_to_cpu(&location, &di->location); 1718 1719 over = !dir_emit(ctx, name, name_len, 1720 location.objectid, d_type); 1721 1722 if (refcount_dec_and_test(&curr->refs)) 1723 kfree(curr); 1724 1725 if (over) 1726 return 1; 1727 ctx->pos++; 1728 } 1729 return 0; 1730 } 1731 1732 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1733 struct btrfs_inode_item *inode_item, 1734 struct inode *inode) 1735 { 1736 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1737 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1738 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1739 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1740 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1741 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1742 btrfs_set_stack_inode_generation(inode_item, 1743 BTRFS_I(inode)->generation); 1744 btrfs_set_stack_inode_sequence(inode_item, 1745 inode_peek_iversion(inode)); 1746 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1747 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1748 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1749 btrfs_set_stack_inode_block_group(inode_item, 0); 1750 1751 btrfs_set_stack_timespec_sec(&inode_item->atime, 1752 inode->i_atime.tv_sec); 1753 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1754 inode->i_atime.tv_nsec); 1755 1756 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1757 inode->i_mtime.tv_sec); 1758 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1759 inode->i_mtime.tv_nsec); 1760 1761 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1762 inode->i_ctime.tv_sec); 1763 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1764 inode->i_ctime.tv_nsec); 1765 1766 btrfs_set_stack_timespec_sec(&inode_item->otime, 1767 BTRFS_I(inode)->i_otime.tv_sec); 1768 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1769 BTRFS_I(inode)->i_otime.tv_nsec); 1770 } 1771 1772 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1773 { 1774 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1775 struct btrfs_delayed_node *delayed_node; 1776 struct btrfs_inode_item *inode_item; 1777 1778 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1779 if (!delayed_node) 1780 return -ENOENT; 1781 1782 mutex_lock(&delayed_node->mutex); 1783 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1784 mutex_unlock(&delayed_node->mutex); 1785 btrfs_release_delayed_node(delayed_node); 1786 return -ENOENT; 1787 } 1788 1789 inode_item = &delayed_node->inode_item; 1790 1791 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1792 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1793 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1794 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1795 round_up(i_size_read(inode), fs_info->sectorsize)); 1796 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1797 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1798 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1799 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1800 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1801 1802 inode_set_iversion_queried(inode, 1803 btrfs_stack_inode_sequence(inode_item)); 1804 inode->i_rdev = 0; 1805 *rdev = btrfs_stack_inode_rdev(inode_item); 1806 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1807 1808 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1809 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1810 1811 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1812 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1813 1814 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1815 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1816 1817 BTRFS_I(inode)->i_otime.tv_sec = 1818 btrfs_stack_timespec_sec(&inode_item->otime); 1819 BTRFS_I(inode)->i_otime.tv_nsec = 1820 btrfs_stack_timespec_nsec(&inode_item->otime); 1821 1822 inode->i_generation = BTRFS_I(inode)->generation; 1823 BTRFS_I(inode)->index_cnt = (u64)-1; 1824 1825 mutex_unlock(&delayed_node->mutex); 1826 btrfs_release_delayed_node(delayed_node); 1827 return 0; 1828 } 1829 1830 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1831 struct btrfs_root *root, struct inode *inode) 1832 { 1833 struct btrfs_delayed_node *delayed_node; 1834 int ret = 0; 1835 1836 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1837 if (IS_ERR(delayed_node)) 1838 return PTR_ERR(delayed_node); 1839 1840 mutex_lock(&delayed_node->mutex); 1841 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1842 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1843 goto release_node; 1844 } 1845 1846 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1847 delayed_node); 1848 if (ret) 1849 goto release_node; 1850 1851 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1852 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1853 delayed_node->count++; 1854 atomic_inc(&root->fs_info->delayed_root->items); 1855 release_node: 1856 mutex_unlock(&delayed_node->mutex); 1857 btrfs_release_delayed_node(delayed_node); 1858 return ret; 1859 } 1860 1861 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1862 { 1863 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1864 struct btrfs_delayed_node *delayed_node; 1865 1866 /* 1867 * we don't do delayed inode updates during log recovery because it 1868 * leads to enospc problems. This means we also can't do 1869 * delayed inode refs 1870 */ 1871 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1872 return -EAGAIN; 1873 1874 delayed_node = btrfs_get_or_create_delayed_node(inode); 1875 if (IS_ERR(delayed_node)) 1876 return PTR_ERR(delayed_node); 1877 1878 /* 1879 * We don't reserve space for inode ref deletion is because: 1880 * - We ONLY do async inode ref deletion for the inode who has only 1881 * one link(i_nlink == 1), it means there is only one inode ref. 1882 * And in most case, the inode ref and the inode item are in the 1883 * same leaf, and we will deal with them at the same time. 1884 * Since we are sure we will reserve the space for the inode item, 1885 * it is unnecessary to reserve space for inode ref deletion. 1886 * - If the inode ref and the inode item are not in the same leaf, 1887 * We also needn't worry about enospc problem, because we reserve 1888 * much more space for the inode update than it needs. 1889 * - At the worst, we can steal some space from the global reservation. 1890 * It is very rare. 1891 */ 1892 mutex_lock(&delayed_node->mutex); 1893 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1894 goto release_node; 1895 1896 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1897 delayed_node->count++; 1898 atomic_inc(&fs_info->delayed_root->items); 1899 release_node: 1900 mutex_unlock(&delayed_node->mutex); 1901 btrfs_release_delayed_node(delayed_node); 1902 return 0; 1903 } 1904 1905 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1906 { 1907 struct btrfs_root *root = delayed_node->root; 1908 struct btrfs_fs_info *fs_info = root->fs_info; 1909 struct btrfs_delayed_item *curr_item, *prev_item; 1910 1911 mutex_lock(&delayed_node->mutex); 1912 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1913 while (curr_item) { 1914 btrfs_delayed_item_release_metadata(root, curr_item); 1915 prev_item = curr_item; 1916 curr_item = __btrfs_next_delayed_item(prev_item); 1917 btrfs_release_delayed_item(prev_item); 1918 } 1919 1920 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1921 while (curr_item) { 1922 btrfs_delayed_item_release_metadata(root, curr_item); 1923 prev_item = curr_item; 1924 curr_item = __btrfs_next_delayed_item(prev_item); 1925 btrfs_release_delayed_item(prev_item); 1926 } 1927 1928 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1929 btrfs_release_delayed_iref(delayed_node); 1930 1931 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1932 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1933 btrfs_release_delayed_inode(delayed_node); 1934 } 1935 mutex_unlock(&delayed_node->mutex); 1936 } 1937 1938 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1939 { 1940 struct btrfs_delayed_node *delayed_node; 1941 1942 delayed_node = btrfs_get_delayed_node(inode); 1943 if (!delayed_node) 1944 return; 1945 1946 __btrfs_kill_delayed_node(delayed_node); 1947 btrfs_release_delayed_node(delayed_node); 1948 } 1949 1950 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1951 { 1952 u64 inode_id = 0; 1953 struct btrfs_delayed_node *delayed_nodes[8]; 1954 int i, n; 1955 1956 while (1) { 1957 spin_lock(&root->inode_lock); 1958 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1959 (void **)delayed_nodes, inode_id, 1960 ARRAY_SIZE(delayed_nodes)); 1961 if (!n) { 1962 spin_unlock(&root->inode_lock); 1963 break; 1964 } 1965 1966 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1967 for (i = 0; i < n; i++) { 1968 /* 1969 * Don't increase refs in case the node is dead and 1970 * about to be removed from the tree in the loop below 1971 */ 1972 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1973 delayed_nodes[i] = NULL; 1974 } 1975 spin_unlock(&root->inode_lock); 1976 1977 for (i = 0; i < n; i++) { 1978 if (!delayed_nodes[i]) 1979 continue; 1980 __btrfs_kill_delayed_node(delayed_nodes[i]); 1981 btrfs_release_delayed_node(delayed_nodes[i]); 1982 } 1983 } 1984 } 1985 1986 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1987 { 1988 struct btrfs_delayed_node *curr_node, *prev_node; 1989 1990 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1991 while (curr_node) { 1992 __btrfs_kill_delayed_node(curr_node); 1993 1994 prev_node = curr_node; 1995 curr_node = btrfs_next_delayed_node(curr_node); 1996 btrfs_release_delayed_node(prev_node); 1997 } 1998 } 1999 2000