xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
66 }
67 
68 static inline int btrfs_is_continuous_delayed_item(
69 					struct btrfs_delayed_item *item1,
70 					struct btrfs_delayed_item *item2)
71 {
72 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
73 	    item1->key.objectid == item2->key.objectid &&
74 	    item1->key.type == item2->key.type &&
75 	    item1->key.offset + 1 == item2->key.offset)
76 		return 1;
77 	return 0;
78 }
79 
80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
81 							struct btrfs_root *root)
82 {
83 	return root->fs_info->delayed_root;
84 }
85 
86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 {
88 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
89 	struct btrfs_root *root = btrfs_inode->root;
90 	u64 ino = btrfs_ino(inode);
91 	struct btrfs_delayed_node *node;
92 
93 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
94 	if (node) {
95 		atomic_inc(&node->refs);
96 		return node;
97 	}
98 
99 	spin_lock(&root->inode_lock);
100 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
101 	if (node) {
102 		if (btrfs_inode->delayed_node) {
103 			atomic_inc(&node->refs);	/* can be accessed */
104 			BUG_ON(btrfs_inode->delayed_node != node);
105 			spin_unlock(&root->inode_lock);
106 			return node;
107 		}
108 		btrfs_inode->delayed_node = node;
109 		atomic_inc(&node->refs);	/* can be accessed */
110 		atomic_inc(&node->refs);	/* cached in the inode */
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 							struct inode *inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
125 	struct btrfs_root *root = btrfs_inode->root;
126 	u64 ino = btrfs_ino(inode);
127 	int ret;
128 
129 again:
130 	node = btrfs_get_delayed_node(inode);
131 	if (node)
132 		return node;
133 
134 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
135 	if (!node)
136 		return ERR_PTR(-ENOMEM);
137 	btrfs_init_delayed_node(node, root, ino);
138 
139 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
140 	atomic_inc(&node->refs);	/* can be accessed */
141 
142 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
143 	if (ret) {
144 		kmem_cache_free(delayed_node_cache, node);
145 		return ERR_PTR(ret);
146 	}
147 
148 	spin_lock(&root->inode_lock);
149 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 	if (ret == -EEXIST) {
151 		kmem_cache_free(delayed_node_cache, node);
152 		spin_unlock(&root->inode_lock);
153 		radix_tree_preload_end();
154 		goto again;
155 	}
156 	btrfs_inode->delayed_node = node;
157 	spin_unlock(&root->inode_lock);
158 	radix_tree_preload_end();
159 
160 	return node;
161 }
162 
163 /*
164  * Call it when holding delayed_node->mutex
165  *
166  * If mod = 1, add this node into the prepared list.
167  */
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 				     struct btrfs_delayed_node *node,
170 				     int mod)
171 {
172 	spin_lock(&root->lock);
173 	if (node->in_list) {
174 		if (!list_empty(&node->p_list))
175 			list_move_tail(&node->p_list, &root->prepare_list);
176 		else if (mod)
177 			list_add_tail(&node->p_list, &root->prepare_list);
178 	} else {
179 		list_add_tail(&node->n_list, &root->node_list);
180 		list_add_tail(&node->p_list, &root->prepare_list);
181 		atomic_inc(&node->refs);	/* inserted into list */
182 		root->nodes++;
183 		node->in_list = 1;
184 	}
185 	spin_unlock(&root->lock);
186 }
187 
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 				       struct btrfs_delayed_node *node)
191 {
192 	spin_lock(&root->lock);
193 	if (node->in_list) {
194 		root->nodes--;
195 		atomic_dec(&node->refs);	/* not in the list */
196 		list_del_init(&node->n_list);
197 		if (!list_empty(&node->p_list))
198 			list_del_init(&node->p_list);
199 		node->in_list = 0;
200 	}
201 	spin_unlock(&root->lock);
202 }
203 
204 struct btrfs_delayed_node *btrfs_first_delayed_node(
205 			struct btrfs_delayed_root *delayed_root)
206 {
207 	struct list_head *p;
208 	struct btrfs_delayed_node *node = NULL;
209 
210 	spin_lock(&delayed_root->lock);
211 	if (list_empty(&delayed_root->node_list))
212 		goto out;
213 
214 	p = delayed_root->node_list.next;
215 	node = list_entry(p, struct btrfs_delayed_node, n_list);
216 	atomic_inc(&node->refs);
217 out:
218 	spin_unlock(&delayed_root->lock);
219 
220 	return node;
221 }
222 
223 struct btrfs_delayed_node *btrfs_next_delayed_node(
224 						struct btrfs_delayed_node *node)
225 {
226 	struct btrfs_delayed_root *delayed_root;
227 	struct list_head *p;
228 	struct btrfs_delayed_node *next = NULL;
229 
230 	delayed_root = node->root->fs_info->delayed_root;
231 	spin_lock(&delayed_root->lock);
232 	if (!node->in_list) {	/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	atomic_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (atomic_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 		spin_lock(&root->inode_lock);
270 		if (atomic_read(&delayed_node->refs) == 0) {
271 			radix_tree_delete(&root->delayed_nodes_tree,
272 					  delayed_node->inode_id);
273 			kmem_cache_free(delayed_node_cache, delayed_node);
274 		}
275 		spin_unlock(&root->inode_lock);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	atomic_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 	struct btrfs_delayed_item *item;
313 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 	if (item) {
315 		item->data_len = data_len;
316 		item->ins_or_del = 0;
317 		item->bytes_reserved = 0;
318 		item->delayed_node = NULL;
319 		atomic_set(&item->refs, 1);
320 	}
321 	return item;
322 }
323 
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:	  the key to look up
328  * @prev:	  used to store the prev item if the right item isn't found
329  * @next:	  used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 				struct rb_root *root,
336 				struct btrfs_key *key,
337 				struct btrfs_delayed_item **prev,
338 				struct btrfs_delayed_item **next)
339 {
340 	struct rb_node *node, *prev_node = NULL;
341 	struct btrfs_delayed_item *delayed_item = NULL;
342 	int ret = 0;
343 
344 	node = root->rb_node;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		prev_node = node;
350 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 		if (ret < 0)
352 			node = node->rb_right;
353 		else if (ret > 0)
354 			node = node->rb_left;
355 		else
356 			return delayed_item;
357 	}
358 
359 	if (prev) {
360 		if (!prev_node)
361 			*prev = NULL;
362 		else if (ret < 0)
363 			*prev = delayed_item;
364 		else if ((node = rb_prev(prev_node)) != NULL) {
365 			*prev = rb_entry(node, struct btrfs_delayed_item,
366 					 rb_node);
367 		} else
368 			*prev = NULL;
369 	}
370 
371 	if (next) {
372 		if (!prev_node)
373 			*next = NULL;
374 		else if (ret > 0)
375 			*next = delayed_item;
376 		else if ((node = rb_next(prev_node)) != NULL) {
377 			*next = rb_entry(node, struct btrfs_delayed_item,
378 					 rb_node);
379 		} else
380 			*next = NULL;
381 	}
382 	return NULL;
383 }
384 
385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 					struct btrfs_delayed_node *delayed_node,
387 					struct btrfs_key *key)
388 {
389 	struct btrfs_delayed_item *item;
390 
391 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 					   NULL, NULL);
393 	return item;
394 }
395 
396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
397 					struct btrfs_delayed_node *delayed_node,
398 					struct btrfs_key *key)
399 {
400 	struct btrfs_delayed_item *item;
401 
402 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
403 					   NULL, NULL);
404 	return item;
405 }
406 
407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
408 					struct btrfs_delayed_node *delayed_node,
409 					struct btrfs_key *key)
410 {
411 	struct btrfs_delayed_item *item, *next;
412 
413 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
414 					   NULL, &next);
415 	if (!item)
416 		item = next;
417 
418 	return item;
419 }
420 
421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
422 					struct btrfs_delayed_node *delayed_node,
423 					struct btrfs_key *key)
424 {
425 	struct btrfs_delayed_item *item, *next;
426 
427 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
428 					   NULL, &next);
429 	if (!item)
430 		item = next;
431 
432 	return item;
433 }
434 
435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
436 				    struct btrfs_delayed_item *ins,
437 				    int action)
438 {
439 	struct rb_node **p, *node;
440 	struct rb_node *parent_node = NULL;
441 	struct rb_root *root;
442 	struct btrfs_delayed_item *item;
443 	int cmp;
444 
445 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
446 		root = &delayed_node->ins_root;
447 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
448 		root = &delayed_node->del_root;
449 	else
450 		BUG();
451 	p = &root->rb_node;
452 	node = &ins->rb_node;
453 
454 	while (*p) {
455 		parent_node = *p;
456 		item = rb_entry(parent_node, struct btrfs_delayed_item,
457 				 rb_node);
458 
459 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
460 		if (cmp < 0)
461 			p = &(*p)->rb_right;
462 		else if (cmp > 0)
463 			p = &(*p)->rb_left;
464 		else
465 			return -EEXIST;
466 	}
467 
468 	rb_link_node(node, parent_node, p);
469 	rb_insert_color(node, root);
470 	ins->delayed_node = delayed_node;
471 	ins->ins_or_del = action;
472 
473 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
474 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
475 	    ins->key.offset >= delayed_node->index_cnt)
476 			delayed_node->index_cnt = ins->key.offset + 1;
477 
478 	delayed_node->count++;
479 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
480 	return 0;
481 }
482 
483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
484 					      struct btrfs_delayed_item *item)
485 {
486 	return __btrfs_add_delayed_item(node, item,
487 					BTRFS_DELAYED_INSERTION_ITEM);
488 }
489 
490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
491 					     struct btrfs_delayed_item *item)
492 {
493 	return __btrfs_add_delayed_item(node, item,
494 					BTRFS_DELAYED_DELETION_ITEM);
495 }
496 
497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 {
499 	struct rb_root *root;
500 	struct btrfs_delayed_root *delayed_root;
501 
502 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503 
504 	BUG_ON(!delayed_root);
505 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
506 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507 
508 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
509 		root = &delayed_item->delayed_node->ins_root;
510 	else
511 		root = &delayed_item->delayed_node->del_root;
512 
513 	rb_erase(&delayed_item->rb_node, root);
514 	delayed_item->delayed_node->count--;
515 	if (atomic_dec_return(&delayed_root->items) <
516 	    BTRFS_DELAYED_BACKGROUND &&
517 	    waitqueue_active(&delayed_root->wait))
518 		wake_up(&delayed_root->wait);
519 }
520 
521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 {
523 	if (item) {
524 		__btrfs_remove_delayed_item(item);
525 		if (atomic_dec_and_test(&item->refs))
526 			kfree(item);
527 	}
528 }
529 
530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
531 					struct btrfs_delayed_node *delayed_node)
532 {
533 	struct rb_node *p;
534 	struct btrfs_delayed_item *item = NULL;
535 
536 	p = rb_first(&delayed_node->ins_root);
537 	if (p)
538 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539 
540 	return item;
541 }
542 
543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
544 					struct btrfs_delayed_node *delayed_node)
545 {
546 	struct rb_node *p;
547 	struct btrfs_delayed_item *item = NULL;
548 
549 	p = rb_first(&delayed_node->del_root);
550 	if (p)
551 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552 
553 	return item;
554 }
555 
556 struct btrfs_delayed_item *__btrfs_next_delayed_item(
557 						struct btrfs_delayed_item *item)
558 {
559 	struct rb_node *p;
560 	struct btrfs_delayed_item *next = NULL;
561 
562 	p = rb_next(&item->rb_node);
563 	if (p)
564 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565 
566 	return next;
567 }
568 
569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
570 						   u64 root_id)
571 {
572 	struct btrfs_key root_key;
573 
574 	if (root->objectid == root_id)
575 		return root;
576 
577 	root_key.objectid = root_id;
578 	root_key.type = BTRFS_ROOT_ITEM_KEY;
579 	root_key.offset = (u64)-1;
580 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 }
582 
583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
584 					       struct btrfs_root *root,
585 					       struct btrfs_delayed_item *item)
586 {
587 	struct btrfs_block_rsv *src_rsv;
588 	struct btrfs_block_rsv *dst_rsv;
589 	u64 num_bytes;
590 	int ret;
591 
592 	if (!trans->bytes_reserved)
593 		return 0;
594 
595 	src_rsv = trans->block_rsv;
596 	dst_rsv = &root->fs_info->delayed_block_rsv;
597 
598 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
600 	if (!ret) {
601 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
602 					      item->key.objectid,
603 					      num_bytes, 1);
604 		item->bytes_reserved = num_bytes;
605 	}
606 
607 	return ret;
608 }
609 
610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
611 						struct btrfs_delayed_item *item)
612 {
613 	struct btrfs_block_rsv *rsv;
614 
615 	if (!item->bytes_reserved)
616 		return;
617 
618 	rsv = &root->fs_info->delayed_block_rsv;
619 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
620 				      item->key.objectid, item->bytes_reserved,
621 				      0);
622 	btrfs_block_rsv_release(root, rsv,
623 				item->bytes_reserved);
624 }
625 
626 static int btrfs_delayed_inode_reserve_metadata(
627 					struct btrfs_trans_handle *trans,
628 					struct btrfs_root *root,
629 					struct inode *inode,
630 					struct btrfs_delayed_node *node)
631 {
632 	struct btrfs_block_rsv *src_rsv;
633 	struct btrfs_block_rsv *dst_rsv;
634 	u64 num_bytes;
635 	int ret;
636 	bool release = false;
637 
638 	src_rsv = trans->block_rsv;
639 	dst_rsv = &root->fs_info->delayed_block_rsv;
640 
641 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
642 
643 	/*
644 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
645 	 * which doesn't reserve space for speed.  This is a problem since we
646 	 * still need to reserve space for this update, so try to reserve the
647 	 * space.
648 	 *
649 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
650 	 * we're accounted for.
651 	 */
652 	if (!src_rsv || (!trans->bytes_reserved &&
653 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
654 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
655 					  BTRFS_RESERVE_NO_FLUSH);
656 		/*
657 		 * Since we're under a transaction reserve_metadata_bytes could
658 		 * try to commit the transaction which will make it return
659 		 * EAGAIN to make us stop the transaction we have, so return
660 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
661 		 */
662 		if (ret == -EAGAIN)
663 			ret = -ENOSPC;
664 		if (!ret) {
665 			node->bytes_reserved = num_bytes;
666 			trace_btrfs_space_reservation(root->fs_info,
667 						      "delayed_inode",
668 						      btrfs_ino(inode),
669 						      num_bytes, 1);
670 		}
671 		return ret;
672 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
673 		spin_lock(&BTRFS_I(inode)->lock);
674 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
675 				       &BTRFS_I(inode)->runtime_flags)) {
676 			spin_unlock(&BTRFS_I(inode)->lock);
677 			release = true;
678 			goto migrate;
679 		}
680 		spin_unlock(&BTRFS_I(inode)->lock);
681 
682 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
683 		 * too often but it can happen if we do delalloc to an existing
684 		 * inode which gets dirtied because of the time update, and then
685 		 * isn't touched again until after the transaction commits and
686 		 * then we try to write out the data.  First try to be nice and
687 		 * reserve something strictly for us.  If not be a pain and try
688 		 * to steal from the delalloc block rsv.
689 		 */
690 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
691 					  BTRFS_RESERVE_NO_FLUSH);
692 		if (!ret)
693 			goto out;
694 
695 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
696 		if (!ret)
697 			goto out;
698 
699 		/*
700 		 * Ok this is a problem, let's just steal from the global rsv
701 		 * since this really shouldn't happen that often.
702 		 */
703 		WARN_ON(1);
704 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
705 					      dst_rsv, num_bytes);
706 		goto out;
707 	}
708 
709 migrate:
710 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
711 
712 out:
713 	/*
714 	 * Migrate only takes a reservation, it doesn't touch the size of the
715 	 * block_rsv.  This is to simplify people who don't normally have things
716 	 * migrated from their block rsv.  If they go to release their
717 	 * reservation, that will decrease the size as well, so if migrate
718 	 * reduced size we'd end up with a negative size.  But for the
719 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
720 	 * but we could in fact do this reserve/migrate dance several times
721 	 * between the time we did the original reservation and we'd clean it
722 	 * up.  So to take care of this, release the space for the meta
723 	 * reservation here.  I think it may be time for a documentation page on
724 	 * how block rsvs. work.
725 	 */
726 	if (!ret) {
727 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
728 					      btrfs_ino(inode), num_bytes, 1);
729 		node->bytes_reserved = num_bytes;
730 	}
731 
732 	if (release) {
733 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
734 					      btrfs_ino(inode), num_bytes, 0);
735 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
736 	}
737 
738 	return ret;
739 }
740 
741 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
742 						struct btrfs_delayed_node *node)
743 {
744 	struct btrfs_block_rsv *rsv;
745 
746 	if (!node->bytes_reserved)
747 		return;
748 
749 	rsv = &root->fs_info->delayed_block_rsv;
750 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
751 				      node->inode_id, node->bytes_reserved, 0);
752 	btrfs_block_rsv_release(root, rsv,
753 				node->bytes_reserved);
754 	node->bytes_reserved = 0;
755 }
756 
757 /*
758  * This helper will insert some continuous items into the same leaf according
759  * to the free space of the leaf.
760  */
761 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
762 				struct btrfs_root *root,
763 				struct btrfs_path *path,
764 				struct btrfs_delayed_item *item)
765 {
766 	struct btrfs_delayed_item *curr, *next;
767 	int free_space;
768 	int total_data_size = 0, total_size = 0;
769 	struct extent_buffer *leaf;
770 	char *data_ptr;
771 	struct btrfs_key *keys;
772 	u32 *data_size;
773 	struct list_head head;
774 	int slot;
775 	int nitems;
776 	int i;
777 	int ret = 0;
778 
779 	BUG_ON(!path->nodes[0]);
780 
781 	leaf = path->nodes[0];
782 	free_space = btrfs_leaf_free_space(root, leaf);
783 	INIT_LIST_HEAD(&head);
784 
785 	next = item;
786 	nitems = 0;
787 
788 	/*
789 	 * count the number of the continuous items that we can insert in batch
790 	 */
791 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
792 	       free_space) {
793 		total_data_size += next->data_len;
794 		total_size += next->data_len + sizeof(struct btrfs_item);
795 		list_add_tail(&next->tree_list, &head);
796 		nitems++;
797 
798 		curr = next;
799 		next = __btrfs_next_delayed_item(curr);
800 		if (!next)
801 			break;
802 
803 		if (!btrfs_is_continuous_delayed_item(curr, next))
804 			break;
805 	}
806 
807 	if (!nitems) {
808 		ret = 0;
809 		goto out;
810 	}
811 
812 	/*
813 	 * we need allocate some memory space, but it might cause the task
814 	 * to sleep, so we set all locked nodes in the path to blocking locks
815 	 * first.
816 	 */
817 	btrfs_set_path_blocking(path);
818 
819 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
820 	if (!keys) {
821 		ret = -ENOMEM;
822 		goto out;
823 	}
824 
825 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
826 	if (!data_size) {
827 		ret = -ENOMEM;
828 		goto error;
829 	}
830 
831 	/* get keys of all the delayed items */
832 	i = 0;
833 	list_for_each_entry(next, &head, tree_list) {
834 		keys[i] = next->key;
835 		data_size[i] = next->data_len;
836 		i++;
837 	}
838 
839 	/* reset all the locked nodes in the patch to spinning locks. */
840 	btrfs_clear_path_blocking(path, NULL, 0);
841 
842 	/* insert the keys of the items */
843 	setup_items_for_insert(trans, root, path, keys, data_size,
844 			       total_data_size, total_size, nitems);
845 
846 	/* insert the dir index items */
847 	slot = path->slots[0];
848 	list_for_each_entry_safe(curr, next, &head, tree_list) {
849 		data_ptr = btrfs_item_ptr(leaf, slot, char);
850 		write_extent_buffer(leaf, &curr->data,
851 				    (unsigned long)data_ptr,
852 				    curr->data_len);
853 		slot++;
854 
855 		btrfs_delayed_item_release_metadata(root, curr);
856 
857 		list_del(&curr->tree_list);
858 		btrfs_release_delayed_item(curr);
859 	}
860 
861 error:
862 	kfree(data_size);
863 	kfree(keys);
864 out:
865 	return ret;
866 }
867 
868 /*
869  * This helper can just do simple insertion that needn't extend item for new
870  * data, such as directory name index insertion, inode insertion.
871  */
872 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
873 				     struct btrfs_root *root,
874 				     struct btrfs_path *path,
875 				     struct btrfs_delayed_item *delayed_item)
876 {
877 	struct extent_buffer *leaf;
878 	char *ptr;
879 	int ret;
880 
881 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
882 				      delayed_item->data_len);
883 	if (ret < 0 && ret != -EEXIST)
884 		return ret;
885 
886 	leaf = path->nodes[0];
887 
888 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
889 
890 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
891 			    delayed_item->data_len);
892 	btrfs_mark_buffer_dirty(leaf);
893 
894 	btrfs_delayed_item_release_metadata(root, delayed_item);
895 	return 0;
896 }
897 
898 /*
899  * we insert an item first, then if there are some continuous items, we try
900  * to insert those items into the same leaf.
901  */
902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
903 				      struct btrfs_path *path,
904 				      struct btrfs_root *root,
905 				      struct btrfs_delayed_node *node)
906 {
907 	struct btrfs_delayed_item *curr, *prev;
908 	int ret = 0;
909 
910 do_again:
911 	mutex_lock(&node->mutex);
912 	curr = __btrfs_first_delayed_insertion_item(node);
913 	if (!curr)
914 		goto insert_end;
915 
916 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
917 	if (ret < 0) {
918 		btrfs_release_path(path);
919 		goto insert_end;
920 	}
921 
922 	prev = curr;
923 	curr = __btrfs_next_delayed_item(prev);
924 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
925 		/* insert the continuous items into the same leaf */
926 		path->slots[0]++;
927 		btrfs_batch_insert_items(trans, root, path, curr);
928 	}
929 	btrfs_release_delayed_item(prev);
930 	btrfs_mark_buffer_dirty(path->nodes[0]);
931 
932 	btrfs_release_path(path);
933 	mutex_unlock(&node->mutex);
934 	goto do_again;
935 
936 insert_end:
937 	mutex_unlock(&node->mutex);
938 	return ret;
939 }
940 
941 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
942 				    struct btrfs_root *root,
943 				    struct btrfs_path *path,
944 				    struct btrfs_delayed_item *item)
945 {
946 	struct btrfs_delayed_item *curr, *next;
947 	struct extent_buffer *leaf;
948 	struct btrfs_key key;
949 	struct list_head head;
950 	int nitems, i, last_item;
951 	int ret = 0;
952 
953 	BUG_ON(!path->nodes[0]);
954 
955 	leaf = path->nodes[0];
956 
957 	i = path->slots[0];
958 	last_item = btrfs_header_nritems(leaf) - 1;
959 	if (i > last_item)
960 		return -ENOENT;	/* FIXME: Is errno suitable? */
961 
962 	next = item;
963 	INIT_LIST_HEAD(&head);
964 	btrfs_item_key_to_cpu(leaf, &key, i);
965 	nitems = 0;
966 	/*
967 	 * count the number of the dir index items that we can delete in batch
968 	 */
969 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
970 		list_add_tail(&next->tree_list, &head);
971 		nitems++;
972 
973 		curr = next;
974 		next = __btrfs_next_delayed_item(curr);
975 		if (!next)
976 			break;
977 
978 		if (!btrfs_is_continuous_delayed_item(curr, next))
979 			break;
980 
981 		i++;
982 		if (i > last_item)
983 			break;
984 		btrfs_item_key_to_cpu(leaf, &key, i);
985 	}
986 
987 	if (!nitems)
988 		return 0;
989 
990 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
991 	if (ret)
992 		goto out;
993 
994 	list_for_each_entry_safe(curr, next, &head, tree_list) {
995 		btrfs_delayed_item_release_metadata(root, curr);
996 		list_del(&curr->tree_list);
997 		btrfs_release_delayed_item(curr);
998 	}
999 
1000 out:
1001 	return ret;
1002 }
1003 
1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1005 				      struct btrfs_path *path,
1006 				      struct btrfs_root *root,
1007 				      struct btrfs_delayed_node *node)
1008 {
1009 	struct btrfs_delayed_item *curr, *prev;
1010 	int ret = 0;
1011 
1012 do_again:
1013 	mutex_lock(&node->mutex);
1014 	curr = __btrfs_first_delayed_deletion_item(node);
1015 	if (!curr)
1016 		goto delete_fail;
1017 
1018 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1019 	if (ret < 0)
1020 		goto delete_fail;
1021 	else if (ret > 0) {
1022 		/*
1023 		 * can't find the item which the node points to, so this node
1024 		 * is invalid, just drop it.
1025 		 */
1026 		prev = curr;
1027 		curr = __btrfs_next_delayed_item(prev);
1028 		btrfs_release_delayed_item(prev);
1029 		ret = 0;
1030 		btrfs_release_path(path);
1031 		if (curr) {
1032 			mutex_unlock(&node->mutex);
1033 			goto do_again;
1034 		} else
1035 			goto delete_fail;
1036 	}
1037 
1038 	btrfs_batch_delete_items(trans, root, path, curr);
1039 	btrfs_release_path(path);
1040 	mutex_unlock(&node->mutex);
1041 	goto do_again;
1042 
1043 delete_fail:
1044 	btrfs_release_path(path);
1045 	mutex_unlock(&node->mutex);
1046 	return ret;
1047 }
1048 
1049 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1050 {
1051 	struct btrfs_delayed_root *delayed_root;
1052 
1053 	if (delayed_node && delayed_node->inode_dirty) {
1054 		BUG_ON(!delayed_node->root);
1055 		delayed_node->inode_dirty = 0;
1056 		delayed_node->count--;
1057 
1058 		delayed_root = delayed_node->root->fs_info->delayed_root;
1059 		if (atomic_dec_return(&delayed_root->items) <
1060 		    BTRFS_DELAYED_BACKGROUND &&
1061 		    waitqueue_active(&delayed_root->wait))
1062 			wake_up(&delayed_root->wait);
1063 	}
1064 }
1065 
1066 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1067 					struct btrfs_root *root,
1068 					struct btrfs_path *path,
1069 					struct btrfs_delayed_node *node)
1070 {
1071 	struct btrfs_key key;
1072 	struct btrfs_inode_item *inode_item;
1073 	struct extent_buffer *leaf;
1074 	int ret;
1075 
1076 	key.objectid = node->inode_id;
1077 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1078 	key.offset = 0;
1079 
1080 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1081 	if (ret > 0) {
1082 		btrfs_release_path(path);
1083 		return -ENOENT;
1084 	} else if (ret < 0) {
1085 		return ret;
1086 	}
1087 
1088 	btrfs_unlock_up_safe(path, 1);
1089 	leaf = path->nodes[0];
1090 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1091 				    struct btrfs_inode_item);
1092 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1093 			    sizeof(struct btrfs_inode_item));
1094 	btrfs_mark_buffer_dirty(leaf);
1095 	btrfs_release_path(path);
1096 
1097 	btrfs_delayed_inode_release_metadata(root, node);
1098 	btrfs_release_delayed_inode(node);
1099 
1100 	return 0;
1101 }
1102 
1103 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1104 					     struct btrfs_root *root,
1105 					     struct btrfs_path *path,
1106 					     struct btrfs_delayed_node *node)
1107 {
1108 	int ret;
1109 
1110 	mutex_lock(&node->mutex);
1111 	if (!node->inode_dirty) {
1112 		mutex_unlock(&node->mutex);
1113 		return 0;
1114 	}
1115 
1116 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1117 	mutex_unlock(&node->mutex);
1118 	return ret;
1119 }
1120 
1121 static inline int
1122 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1123 				   struct btrfs_path *path,
1124 				   struct btrfs_delayed_node *node)
1125 {
1126 	int ret;
1127 
1128 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1133 	if (ret)
1134 		return ret;
1135 
1136 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1137 	return ret;
1138 }
1139 
1140 /*
1141  * Called when committing the transaction.
1142  * Returns 0 on success.
1143  * Returns < 0 on error and returns with an aborted transaction with any
1144  * outstanding delayed items cleaned up.
1145  */
1146 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1147 				     struct btrfs_root *root, int nr)
1148 {
1149 	struct btrfs_delayed_root *delayed_root;
1150 	struct btrfs_delayed_node *curr_node, *prev_node;
1151 	struct btrfs_path *path;
1152 	struct btrfs_block_rsv *block_rsv;
1153 	int ret = 0;
1154 	bool count = (nr > 0);
1155 
1156 	if (trans->aborted)
1157 		return -EIO;
1158 
1159 	path = btrfs_alloc_path();
1160 	if (!path)
1161 		return -ENOMEM;
1162 	path->leave_spinning = 1;
1163 
1164 	block_rsv = trans->block_rsv;
1165 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1166 
1167 	delayed_root = btrfs_get_delayed_root(root);
1168 
1169 	curr_node = btrfs_first_delayed_node(delayed_root);
1170 	while (curr_node && (!count || (count && nr--))) {
1171 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1172 							 curr_node);
1173 		if (ret) {
1174 			btrfs_release_delayed_node(curr_node);
1175 			curr_node = NULL;
1176 			btrfs_abort_transaction(trans, root, ret);
1177 			break;
1178 		}
1179 
1180 		prev_node = curr_node;
1181 		curr_node = btrfs_next_delayed_node(curr_node);
1182 		btrfs_release_delayed_node(prev_node);
1183 	}
1184 
1185 	if (curr_node)
1186 		btrfs_release_delayed_node(curr_node);
1187 	btrfs_free_path(path);
1188 	trans->block_rsv = block_rsv;
1189 
1190 	return ret;
1191 }
1192 
1193 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1194 			    struct btrfs_root *root)
1195 {
1196 	return __btrfs_run_delayed_items(trans, root, -1);
1197 }
1198 
1199 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1200 			       struct btrfs_root *root, int nr)
1201 {
1202 	return __btrfs_run_delayed_items(trans, root, nr);
1203 }
1204 
1205 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1206 				     struct inode *inode)
1207 {
1208 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1209 	struct btrfs_path *path;
1210 	struct btrfs_block_rsv *block_rsv;
1211 	int ret;
1212 
1213 	if (!delayed_node)
1214 		return 0;
1215 
1216 	mutex_lock(&delayed_node->mutex);
1217 	if (!delayed_node->count) {
1218 		mutex_unlock(&delayed_node->mutex);
1219 		btrfs_release_delayed_node(delayed_node);
1220 		return 0;
1221 	}
1222 	mutex_unlock(&delayed_node->mutex);
1223 
1224 	path = btrfs_alloc_path();
1225 	if (!path)
1226 		return -ENOMEM;
1227 	path->leave_spinning = 1;
1228 
1229 	block_rsv = trans->block_rsv;
1230 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1231 
1232 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1233 
1234 	btrfs_release_delayed_node(delayed_node);
1235 	btrfs_free_path(path);
1236 	trans->block_rsv = block_rsv;
1237 
1238 	return ret;
1239 }
1240 
1241 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1242 {
1243 	struct btrfs_trans_handle *trans;
1244 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1245 	struct btrfs_path *path;
1246 	struct btrfs_block_rsv *block_rsv;
1247 	int ret;
1248 
1249 	if (!delayed_node)
1250 		return 0;
1251 
1252 	mutex_lock(&delayed_node->mutex);
1253 	if (!delayed_node->inode_dirty) {
1254 		mutex_unlock(&delayed_node->mutex);
1255 		btrfs_release_delayed_node(delayed_node);
1256 		return 0;
1257 	}
1258 	mutex_unlock(&delayed_node->mutex);
1259 
1260 	trans = btrfs_join_transaction(delayed_node->root);
1261 	if (IS_ERR(trans)) {
1262 		ret = PTR_ERR(trans);
1263 		goto out;
1264 	}
1265 
1266 	path = btrfs_alloc_path();
1267 	if (!path) {
1268 		ret = -ENOMEM;
1269 		goto trans_out;
1270 	}
1271 	path->leave_spinning = 1;
1272 
1273 	block_rsv = trans->block_rsv;
1274 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1275 
1276 	mutex_lock(&delayed_node->mutex);
1277 	if (delayed_node->inode_dirty)
1278 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1279 						   path, delayed_node);
1280 	else
1281 		ret = 0;
1282 	mutex_unlock(&delayed_node->mutex);
1283 
1284 	btrfs_free_path(path);
1285 	trans->block_rsv = block_rsv;
1286 trans_out:
1287 	btrfs_end_transaction(trans, delayed_node->root);
1288 	btrfs_btree_balance_dirty(delayed_node->root);
1289 out:
1290 	btrfs_release_delayed_node(delayed_node);
1291 
1292 	return ret;
1293 }
1294 
1295 void btrfs_remove_delayed_node(struct inode *inode)
1296 {
1297 	struct btrfs_delayed_node *delayed_node;
1298 
1299 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1300 	if (!delayed_node)
1301 		return;
1302 
1303 	BTRFS_I(inode)->delayed_node = NULL;
1304 	btrfs_release_delayed_node(delayed_node);
1305 }
1306 
1307 struct btrfs_async_delayed_node {
1308 	struct btrfs_root *root;
1309 	struct btrfs_delayed_node *delayed_node;
1310 	struct btrfs_work work;
1311 };
1312 
1313 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1314 {
1315 	struct btrfs_async_delayed_node *async_node;
1316 	struct btrfs_trans_handle *trans;
1317 	struct btrfs_path *path;
1318 	struct btrfs_delayed_node *delayed_node = NULL;
1319 	struct btrfs_root *root;
1320 	struct btrfs_block_rsv *block_rsv;
1321 	int need_requeue = 0;
1322 
1323 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1324 
1325 	path = btrfs_alloc_path();
1326 	if (!path)
1327 		goto out;
1328 	path->leave_spinning = 1;
1329 
1330 	delayed_node = async_node->delayed_node;
1331 	root = delayed_node->root;
1332 
1333 	trans = btrfs_join_transaction(root);
1334 	if (IS_ERR(trans))
1335 		goto free_path;
1336 
1337 	block_rsv = trans->block_rsv;
1338 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339 
1340 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341 	/*
1342 	 * Maybe new delayed items have been inserted, so we need requeue
1343 	 * the work. Besides that, we must dequeue the empty delayed nodes
1344 	 * to avoid the race between delayed items balance and the worker.
1345 	 * The race like this:
1346 	 * 	Task1				Worker thread
1347 	 * 					count == 0, needn't requeue
1348 	 * 					  also needn't insert the
1349 	 * 					  delayed node into prepare
1350 	 * 					  list again.
1351 	 * 	add lots of delayed items
1352 	 * 	queue the delayed node
1353 	 * 	  already in the list,
1354 	 * 	  and not in the prepare
1355 	 * 	  list, it means the delayed
1356 	 * 	  node is being dealt with
1357 	 * 	  by the worker.
1358 	 * 	do delayed items balance
1359 	 * 	  the delayed node is being
1360 	 * 	  dealt with by the worker
1361 	 * 	  now, just wait.
1362 	 * 	  				the worker goto idle.
1363 	 * Task1 will sleep until the transaction is commited.
1364 	 */
1365 	mutex_lock(&delayed_node->mutex);
1366 	if (delayed_node->count)
1367 		need_requeue = 1;
1368 	else
1369 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1370 					   delayed_node);
1371 	mutex_unlock(&delayed_node->mutex);
1372 
1373 	trans->block_rsv = block_rsv;
1374 	btrfs_end_transaction_dmeta(trans, root);
1375 	btrfs_btree_balance_dirty_nodelay(root);
1376 free_path:
1377 	btrfs_free_path(path);
1378 out:
1379 	if (need_requeue)
1380 		btrfs_requeue_work(&async_node->work);
1381 	else {
1382 		btrfs_release_prepared_delayed_node(delayed_node);
1383 		kfree(async_node);
1384 	}
1385 }
1386 
1387 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1388 				     struct btrfs_root *root, int all)
1389 {
1390 	struct btrfs_async_delayed_node *async_node;
1391 	struct btrfs_delayed_node *curr;
1392 	int count = 0;
1393 
1394 again:
1395 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1396 	if (!curr)
1397 		return 0;
1398 
1399 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1400 	if (!async_node) {
1401 		btrfs_release_prepared_delayed_node(curr);
1402 		return -ENOMEM;
1403 	}
1404 
1405 	async_node->root = root;
1406 	async_node->delayed_node = curr;
1407 
1408 	async_node->work.func = btrfs_async_run_delayed_node_done;
1409 	async_node->work.flags = 0;
1410 
1411 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1412 	count++;
1413 
1414 	if (all || count < 4)
1415 		goto again;
1416 
1417 	return 0;
1418 }
1419 
1420 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1421 {
1422 	struct btrfs_delayed_root *delayed_root;
1423 	delayed_root = btrfs_get_delayed_root(root);
1424 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1425 }
1426 
1427 void btrfs_balance_delayed_items(struct btrfs_root *root)
1428 {
1429 	struct btrfs_delayed_root *delayed_root;
1430 
1431 	delayed_root = btrfs_get_delayed_root(root);
1432 
1433 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1434 		return;
1435 
1436 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1437 		int ret;
1438 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1439 		if (ret)
1440 			return;
1441 
1442 		wait_event_interruptible_timeout(
1443 				delayed_root->wait,
1444 				(atomic_read(&delayed_root->items) <
1445 				 BTRFS_DELAYED_BACKGROUND),
1446 				HZ);
1447 		return;
1448 	}
1449 
1450 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1451 }
1452 
1453 /* Will return 0 or -ENOMEM */
1454 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1455 				   struct btrfs_root *root, const char *name,
1456 				   int name_len, struct inode *dir,
1457 				   struct btrfs_disk_key *disk_key, u8 type,
1458 				   u64 index)
1459 {
1460 	struct btrfs_delayed_node *delayed_node;
1461 	struct btrfs_delayed_item *delayed_item;
1462 	struct btrfs_dir_item *dir_item;
1463 	int ret;
1464 
1465 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1466 	if (IS_ERR(delayed_node))
1467 		return PTR_ERR(delayed_node);
1468 
1469 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1470 	if (!delayed_item) {
1471 		ret = -ENOMEM;
1472 		goto release_node;
1473 	}
1474 
1475 	delayed_item->key.objectid = btrfs_ino(dir);
1476 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1477 	delayed_item->key.offset = index;
1478 
1479 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1480 	dir_item->location = *disk_key;
1481 	dir_item->transid = cpu_to_le64(trans->transid);
1482 	dir_item->data_len = 0;
1483 	dir_item->name_len = cpu_to_le16(name_len);
1484 	dir_item->type = type;
1485 	memcpy((char *)(dir_item + 1), name, name_len);
1486 
1487 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1488 	/*
1489 	 * we have reserved enough space when we start a new transaction,
1490 	 * so reserving metadata failure is impossible
1491 	 */
1492 	BUG_ON(ret);
1493 
1494 
1495 	mutex_lock(&delayed_node->mutex);
1496 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1497 	if (unlikely(ret)) {
1498 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1499 				"the insertion tree of the delayed node"
1500 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1501 				name,
1502 				(unsigned long long)delayed_node->root->objectid,
1503 				(unsigned long long)delayed_node->inode_id,
1504 				ret);
1505 		BUG();
1506 	}
1507 	mutex_unlock(&delayed_node->mutex);
1508 
1509 release_node:
1510 	btrfs_release_delayed_node(delayed_node);
1511 	return ret;
1512 }
1513 
1514 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1515 					       struct btrfs_delayed_node *node,
1516 					       struct btrfs_key *key)
1517 {
1518 	struct btrfs_delayed_item *item;
1519 
1520 	mutex_lock(&node->mutex);
1521 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1522 	if (!item) {
1523 		mutex_unlock(&node->mutex);
1524 		return 1;
1525 	}
1526 
1527 	btrfs_delayed_item_release_metadata(root, item);
1528 	btrfs_release_delayed_item(item);
1529 	mutex_unlock(&node->mutex);
1530 	return 0;
1531 }
1532 
1533 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1534 				   struct btrfs_root *root, struct inode *dir,
1535 				   u64 index)
1536 {
1537 	struct btrfs_delayed_node *node;
1538 	struct btrfs_delayed_item *item;
1539 	struct btrfs_key item_key;
1540 	int ret;
1541 
1542 	node = btrfs_get_or_create_delayed_node(dir);
1543 	if (IS_ERR(node))
1544 		return PTR_ERR(node);
1545 
1546 	item_key.objectid = btrfs_ino(dir);
1547 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1548 	item_key.offset = index;
1549 
1550 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1551 	if (!ret)
1552 		goto end;
1553 
1554 	item = btrfs_alloc_delayed_item(0);
1555 	if (!item) {
1556 		ret = -ENOMEM;
1557 		goto end;
1558 	}
1559 
1560 	item->key = item_key;
1561 
1562 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1563 	/*
1564 	 * we have reserved enough space when we start a new transaction,
1565 	 * so reserving metadata failure is impossible.
1566 	 */
1567 	BUG_ON(ret);
1568 
1569 	mutex_lock(&node->mutex);
1570 	ret = __btrfs_add_delayed_deletion_item(node, item);
1571 	if (unlikely(ret)) {
1572 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1573 				"into the deletion tree of the delayed node"
1574 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1575 				(unsigned long long)index,
1576 				(unsigned long long)node->root->objectid,
1577 				(unsigned long long)node->inode_id,
1578 				ret);
1579 		BUG();
1580 	}
1581 	mutex_unlock(&node->mutex);
1582 end:
1583 	btrfs_release_delayed_node(node);
1584 	return ret;
1585 }
1586 
1587 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1588 {
1589 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1590 
1591 	if (!delayed_node)
1592 		return -ENOENT;
1593 
1594 	/*
1595 	 * Since we have held i_mutex of this directory, it is impossible that
1596 	 * a new directory index is added into the delayed node and index_cnt
1597 	 * is updated now. So we needn't lock the delayed node.
1598 	 */
1599 	if (!delayed_node->index_cnt) {
1600 		btrfs_release_delayed_node(delayed_node);
1601 		return -EINVAL;
1602 	}
1603 
1604 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1605 	btrfs_release_delayed_node(delayed_node);
1606 	return 0;
1607 }
1608 
1609 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1610 			     struct list_head *del_list)
1611 {
1612 	struct btrfs_delayed_node *delayed_node;
1613 	struct btrfs_delayed_item *item;
1614 
1615 	delayed_node = btrfs_get_delayed_node(inode);
1616 	if (!delayed_node)
1617 		return;
1618 
1619 	mutex_lock(&delayed_node->mutex);
1620 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1621 	while (item) {
1622 		atomic_inc(&item->refs);
1623 		list_add_tail(&item->readdir_list, ins_list);
1624 		item = __btrfs_next_delayed_item(item);
1625 	}
1626 
1627 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1628 	while (item) {
1629 		atomic_inc(&item->refs);
1630 		list_add_tail(&item->readdir_list, del_list);
1631 		item = __btrfs_next_delayed_item(item);
1632 	}
1633 	mutex_unlock(&delayed_node->mutex);
1634 	/*
1635 	 * This delayed node is still cached in the btrfs inode, so refs
1636 	 * must be > 1 now, and we needn't check it is going to be freed
1637 	 * or not.
1638 	 *
1639 	 * Besides that, this function is used to read dir, we do not
1640 	 * insert/delete delayed items in this period. So we also needn't
1641 	 * requeue or dequeue this delayed node.
1642 	 */
1643 	atomic_dec(&delayed_node->refs);
1644 }
1645 
1646 void btrfs_put_delayed_items(struct list_head *ins_list,
1647 			     struct list_head *del_list)
1648 {
1649 	struct btrfs_delayed_item *curr, *next;
1650 
1651 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1652 		list_del(&curr->readdir_list);
1653 		if (atomic_dec_and_test(&curr->refs))
1654 			kfree(curr);
1655 	}
1656 
1657 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1658 		list_del(&curr->readdir_list);
1659 		if (atomic_dec_and_test(&curr->refs))
1660 			kfree(curr);
1661 	}
1662 }
1663 
1664 int btrfs_should_delete_dir_index(struct list_head *del_list,
1665 				  u64 index)
1666 {
1667 	struct btrfs_delayed_item *curr, *next;
1668 	int ret;
1669 
1670 	if (list_empty(del_list))
1671 		return 0;
1672 
1673 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1674 		if (curr->key.offset > index)
1675 			break;
1676 
1677 		list_del(&curr->readdir_list);
1678 		ret = (curr->key.offset == index);
1679 
1680 		if (atomic_dec_and_test(&curr->refs))
1681 			kfree(curr);
1682 
1683 		if (ret)
1684 			return 1;
1685 		else
1686 			continue;
1687 	}
1688 	return 0;
1689 }
1690 
1691 /*
1692  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1693  *
1694  */
1695 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1696 				    filldir_t filldir,
1697 				    struct list_head *ins_list)
1698 {
1699 	struct btrfs_dir_item *di;
1700 	struct btrfs_delayed_item *curr, *next;
1701 	struct btrfs_key location;
1702 	char *name;
1703 	int name_len;
1704 	int over = 0;
1705 	unsigned char d_type;
1706 
1707 	if (list_empty(ins_list))
1708 		return 0;
1709 
1710 	/*
1711 	 * Changing the data of the delayed item is impossible. So
1712 	 * we needn't lock them. And we have held i_mutex of the
1713 	 * directory, nobody can delete any directory indexes now.
1714 	 */
1715 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1716 		list_del(&curr->readdir_list);
1717 
1718 		if (curr->key.offset < filp->f_pos) {
1719 			if (atomic_dec_and_test(&curr->refs))
1720 				kfree(curr);
1721 			continue;
1722 		}
1723 
1724 		filp->f_pos = curr->key.offset;
1725 
1726 		di = (struct btrfs_dir_item *)curr->data;
1727 		name = (char *)(di + 1);
1728 		name_len = le16_to_cpu(di->name_len);
1729 
1730 		d_type = btrfs_filetype_table[di->type];
1731 		btrfs_disk_key_to_cpu(&location, &di->location);
1732 
1733 		over = filldir(dirent, name, name_len, curr->key.offset,
1734 			       location.objectid, d_type);
1735 
1736 		if (atomic_dec_and_test(&curr->refs))
1737 			kfree(curr);
1738 
1739 		if (over)
1740 			return 1;
1741 	}
1742 	return 0;
1743 }
1744 
1745 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1746 			 generation, 64);
1747 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1748 			 sequence, 64);
1749 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1750 			 transid, 64);
1751 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1752 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1753 			 nbytes, 64);
1754 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1755 			 block_group, 64);
1756 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1757 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1758 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1759 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1760 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1761 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1762 
1763 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1764 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1765 
1766 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1767 				  struct btrfs_inode_item *inode_item,
1768 				  struct inode *inode)
1769 {
1770 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1771 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1772 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1773 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1774 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1775 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1776 	btrfs_set_stack_inode_generation(inode_item,
1777 					 BTRFS_I(inode)->generation);
1778 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1779 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1780 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1781 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1782 	btrfs_set_stack_inode_block_group(inode_item, 0);
1783 
1784 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1785 				     inode->i_atime.tv_sec);
1786 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1787 				      inode->i_atime.tv_nsec);
1788 
1789 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1790 				     inode->i_mtime.tv_sec);
1791 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1792 				      inode->i_mtime.tv_nsec);
1793 
1794 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1795 				     inode->i_ctime.tv_sec);
1796 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1797 				      inode->i_ctime.tv_nsec);
1798 }
1799 
1800 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1801 {
1802 	struct btrfs_delayed_node *delayed_node;
1803 	struct btrfs_inode_item *inode_item;
1804 	struct btrfs_timespec *tspec;
1805 
1806 	delayed_node = btrfs_get_delayed_node(inode);
1807 	if (!delayed_node)
1808 		return -ENOENT;
1809 
1810 	mutex_lock(&delayed_node->mutex);
1811 	if (!delayed_node->inode_dirty) {
1812 		mutex_unlock(&delayed_node->mutex);
1813 		btrfs_release_delayed_node(delayed_node);
1814 		return -ENOENT;
1815 	}
1816 
1817 	inode_item = &delayed_node->inode_item;
1818 
1819 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1820 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1821 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1822 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1823 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1824 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1825 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1826 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1827 	inode->i_rdev = 0;
1828 	*rdev = btrfs_stack_inode_rdev(inode_item);
1829 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1830 
1831 	tspec = btrfs_inode_atime(inode_item);
1832 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1833 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1834 
1835 	tspec = btrfs_inode_mtime(inode_item);
1836 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1837 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1838 
1839 	tspec = btrfs_inode_ctime(inode_item);
1840 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1841 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1842 
1843 	inode->i_generation = BTRFS_I(inode)->generation;
1844 	BTRFS_I(inode)->index_cnt = (u64)-1;
1845 
1846 	mutex_unlock(&delayed_node->mutex);
1847 	btrfs_release_delayed_node(delayed_node);
1848 	return 0;
1849 }
1850 
1851 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1852 			       struct btrfs_root *root, struct inode *inode)
1853 {
1854 	struct btrfs_delayed_node *delayed_node;
1855 	int ret = 0;
1856 
1857 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1858 	if (IS_ERR(delayed_node))
1859 		return PTR_ERR(delayed_node);
1860 
1861 	mutex_lock(&delayed_node->mutex);
1862 	if (delayed_node->inode_dirty) {
1863 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1864 		goto release_node;
1865 	}
1866 
1867 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1868 						   delayed_node);
1869 	if (ret)
1870 		goto release_node;
1871 
1872 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1873 	delayed_node->inode_dirty = 1;
1874 	delayed_node->count++;
1875 	atomic_inc(&root->fs_info->delayed_root->items);
1876 release_node:
1877 	mutex_unlock(&delayed_node->mutex);
1878 	btrfs_release_delayed_node(delayed_node);
1879 	return ret;
1880 }
1881 
1882 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1883 {
1884 	struct btrfs_root *root = delayed_node->root;
1885 	struct btrfs_delayed_item *curr_item, *prev_item;
1886 
1887 	mutex_lock(&delayed_node->mutex);
1888 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1889 	while (curr_item) {
1890 		btrfs_delayed_item_release_metadata(root, curr_item);
1891 		prev_item = curr_item;
1892 		curr_item = __btrfs_next_delayed_item(prev_item);
1893 		btrfs_release_delayed_item(prev_item);
1894 	}
1895 
1896 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1897 	while (curr_item) {
1898 		btrfs_delayed_item_release_metadata(root, curr_item);
1899 		prev_item = curr_item;
1900 		curr_item = __btrfs_next_delayed_item(prev_item);
1901 		btrfs_release_delayed_item(prev_item);
1902 	}
1903 
1904 	if (delayed_node->inode_dirty) {
1905 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1906 		btrfs_release_delayed_inode(delayed_node);
1907 	}
1908 	mutex_unlock(&delayed_node->mutex);
1909 }
1910 
1911 void btrfs_kill_delayed_inode_items(struct inode *inode)
1912 {
1913 	struct btrfs_delayed_node *delayed_node;
1914 
1915 	delayed_node = btrfs_get_delayed_node(inode);
1916 	if (!delayed_node)
1917 		return;
1918 
1919 	__btrfs_kill_delayed_node(delayed_node);
1920 	btrfs_release_delayed_node(delayed_node);
1921 }
1922 
1923 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1924 {
1925 	u64 inode_id = 0;
1926 	struct btrfs_delayed_node *delayed_nodes[8];
1927 	int i, n;
1928 
1929 	while (1) {
1930 		spin_lock(&root->inode_lock);
1931 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1932 					   (void **)delayed_nodes, inode_id,
1933 					   ARRAY_SIZE(delayed_nodes));
1934 		if (!n) {
1935 			spin_unlock(&root->inode_lock);
1936 			break;
1937 		}
1938 
1939 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1940 
1941 		for (i = 0; i < n; i++)
1942 			atomic_inc(&delayed_nodes[i]->refs);
1943 		spin_unlock(&root->inode_lock);
1944 
1945 		for (i = 0; i < n; i++) {
1946 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1947 			btrfs_release_delayed_node(delayed_nodes[i]);
1948 		}
1949 	}
1950 }
1951 
1952 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1953 {
1954 	struct btrfs_delayed_root *delayed_root;
1955 	struct btrfs_delayed_node *curr_node, *prev_node;
1956 
1957 	delayed_root = btrfs_get_delayed_root(root);
1958 
1959 	curr_node = btrfs_first_delayed_node(delayed_root);
1960 	while (curr_node) {
1961 		__btrfs_kill_delayed_node(curr_node);
1962 
1963 		prev_node = curr_node;
1964 		curr_node = btrfs_next_delayed_node(curr_node);
1965 		btrfs_release_delayed_node(prev_node);
1966 	}
1967 }
1968 
1969