xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 83a530e1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14 
15 #define BTRFS_DELAYED_WRITEBACK		512
16 #define BTRFS_DELAYED_BACKGROUND	128
17 #define BTRFS_DELAYED_BATCH		16
18 
19 static struct kmem_cache *delayed_node_cache;
20 
21 int __init btrfs_delayed_inode_init(void)
22 {
23 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 					sizeof(struct btrfs_delayed_node),
25 					0,
26 					SLAB_MEM_SPREAD,
27 					NULL);
28 	if (!delayed_node_cache)
29 		return -ENOMEM;
30 	return 0;
31 }
32 
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35 	kmem_cache_destroy(delayed_node_cache);
36 }
37 
38 static inline void btrfs_init_delayed_node(
39 				struct btrfs_delayed_node *delayed_node,
40 				struct btrfs_root *root, u64 inode_id)
41 {
42 	delayed_node->root = root;
43 	delayed_node->inode_id = inode_id;
44 	refcount_set(&delayed_node->refs, 0);
45 	delayed_node->ins_root = RB_ROOT;
46 	delayed_node->del_root = RB_ROOT;
47 	mutex_init(&delayed_node->mutex);
48 	INIT_LIST_HEAD(&delayed_node->n_list);
49 	INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51 
52 static inline int btrfs_is_continuous_delayed_item(
53 					struct btrfs_delayed_item *item1,
54 					struct btrfs_delayed_item *item2)
55 {
56 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 	    item1->key.objectid == item2->key.objectid &&
58 	    item1->key.type == item2->key.type &&
59 	    item1->key.offset + 1 == item2->key.offset)
60 		return 1;
61 	return 0;
62 }
63 
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 		struct btrfs_inode *btrfs_inode)
66 {
67 	struct btrfs_root *root = btrfs_inode->root;
68 	u64 ino = btrfs_ino(btrfs_inode);
69 	struct btrfs_delayed_node *node;
70 
71 	node = READ_ONCE(btrfs_inode->delayed_node);
72 	if (node) {
73 		refcount_inc(&node->refs);
74 		return node;
75 	}
76 
77 	spin_lock(&root->inode_lock);
78 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79 
80 	if (node) {
81 		if (btrfs_inode->delayed_node) {
82 			refcount_inc(&node->refs);	/* can be accessed */
83 			BUG_ON(btrfs_inode->delayed_node != node);
84 			spin_unlock(&root->inode_lock);
85 			return node;
86 		}
87 
88 		/*
89 		 * It's possible that we're racing into the middle of removing
90 		 * this node from the radix tree.  In this case, the refcount
91 		 * was zero and it should never go back to one.  Just return
92 		 * NULL like it was never in the radix at all; our release
93 		 * function is in the process of removing it.
94 		 *
95 		 * Some implementations of refcount_inc refuse to bump the
96 		 * refcount once it has hit zero.  If we don't do this dance
97 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 		 * of actually bumping the refcount.
99 		 *
100 		 * If this node is properly in the radix, we want to bump the
101 		 * refcount twice, once for the inode and once for this get
102 		 * operation.
103 		 */
104 		if (refcount_inc_not_zero(&node->refs)) {
105 			refcount_inc(&node->refs);
106 			btrfs_inode->delayed_node = node;
107 		} else {
108 			node = NULL;
109 		}
110 
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 		struct btrfs_inode *btrfs_inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_root *root = btrfs_inode->root;
125 	u64 ino = btrfs_ino(btrfs_inode);
126 	int ret;
127 
128 again:
129 	node = btrfs_get_delayed_node(btrfs_inode);
130 	if (node)
131 		return node;
132 
133 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 	if (!node)
135 		return ERR_PTR(-ENOMEM);
136 	btrfs_init_delayed_node(node, root, ino);
137 
138 	/* cached in the btrfs inode and can be accessed */
139 	refcount_set(&node->refs, 2);
140 
141 	ret = radix_tree_preload(GFP_NOFS);
142 	if (ret) {
143 		kmem_cache_free(delayed_node_cache, node);
144 		return ERR_PTR(ret);
145 	}
146 
147 	spin_lock(&root->inode_lock);
148 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 	if (ret == -EEXIST) {
150 		spin_unlock(&root->inode_lock);
151 		kmem_cache_free(delayed_node_cache, node);
152 		radix_tree_preload_end();
153 		goto again;
154 	}
155 	btrfs_inode->delayed_node = node;
156 	spin_unlock(&root->inode_lock);
157 	radix_tree_preload_end();
158 
159 	return node;
160 }
161 
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 				     struct btrfs_delayed_node *node,
169 				     int mod)
170 {
171 	spin_lock(&root->lock);
172 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 		if (!list_empty(&node->p_list))
174 			list_move_tail(&node->p_list, &root->prepare_list);
175 		else if (mod)
176 			list_add_tail(&node->p_list, &root->prepare_list);
177 	} else {
178 		list_add_tail(&node->n_list, &root->node_list);
179 		list_add_tail(&node->p_list, &root->prepare_list);
180 		refcount_inc(&node->refs);	/* inserted into list */
181 		root->nodes++;
182 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 	}
184 	spin_unlock(&root->lock);
185 }
186 
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 				       struct btrfs_delayed_node *node)
190 {
191 	spin_lock(&root->lock);
192 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 		root->nodes--;
194 		refcount_dec(&node->refs);	/* not in the list */
195 		list_del_init(&node->n_list);
196 		if (!list_empty(&node->p_list))
197 			list_del_init(&node->p_list);
198 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 	}
200 	spin_unlock(&root->lock);
201 }
202 
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 			struct btrfs_delayed_root *delayed_root)
205 {
206 	struct list_head *p;
207 	struct btrfs_delayed_node *node = NULL;
208 
209 	spin_lock(&delayed_root->lock);
210 	if (list_empty(&delayed_root->node_list))
211 		goto out;
212 
213 	p = delayed_root->node_list.next;
214 	node = list_entry(p, struct btrfs_delayed_node, n_list);
215 	refcount_inc(&node->refs);
216 out:
217 	spin_unlock(&delayed_root->lock);
218 
219 	return node;
220 }
221 
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 						struct btrfs_delayed_node *node)
224 {
225 	struct btrfs_delayed_root *delayed_root;
226 	struct list_head *p;
227 	struct btrfs_delayed_node *next = NULL;
228 
229 	delayed_root = node->root->fs_info->delayed_root;
230 	spin_lock(&delayed_root->lock);
231 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 		/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	refcount_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (refcount_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 
270 		spin_lock(&root->inode_lock);
271 		/*
272 		 * Once our refcount goes to zero, nobody is allowed to bump it
273 		 * back up.  We can delete it now.
274 		 */
275 		ASSERT(refcount_read(&delayed_node->refs) == 0);
276 		radix_tree_delete(&root->delayed_nodes_tree,
277 				  delayed_node->inode_id);
278 		spin_unlock(&root->inode_lock);
279 		kmem_cache_free(delayed_node_cache, delayed_node);
280 	}
281 }
282 
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285 	__btrfs_release_delayed_node(node, 0);
286 }
287 
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 					struct btrfs_delayed_root *delayed_root)
290 {
291 	struct list_head *p;
292 	struct btrfs_delayed_node *node = NULL;
293 
294 	spin_lock(&delayed_root->lock);
295 	if (list_empty(&delayed_root->prepare_list))
296 		goto out;
297 
298 	p = delayed_root->prepare_list.next;
299 	list_del_init(p);
300 	node = list_entry(p, struct btrfs_delayed_node, p_list);
301 	refcount_inc(&node->refs);
302 out:
303 	spin_unlock(&delayed_root->lock);
304 
305 	return node;
306 }
307 
308 static inline void btrfs_release_prepared_delayed_node(
309 					struct btrfs_delayed_node *node)
310 {
311 	__btrfs_release_delayed_node(node, 1);
312 }
313 
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316 	struct btrfs_delayed_item *item;
317 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 	if (item) {
319 		item->data_len = data_len;
320 		item->ins_or_del = 0;
321 		item->bytes_reserved = 0;
322 		item->delayed_node = NULL;
323 		refcount_set(&item->refs, 1);
324 	}
325 	return item;
326 }
327 
328 /*
329  * __btrfs_lookup_delayed_item - look up the delayed item by key
330  * @delayed_node: pointer to the delayed node
331  * @key:	  the key to look up
332  * @prev:	  used to store the prev item if the right item isn't found
333  * @next:	  used to store the next item if the right item isn't found
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 				struct rb_root *root,
340 				struct btrfs_key *key,
341 				struct btrfs_delayed_item **prev,
342 				struct btrfs_delayed_item **next)
343 {
344 	struct rb_node *node, *prev_node = NULL;
345 	struct btrfs_delayed_item *delayed_item = NULL;
346 	int ret = 0;
347 
348 	node = root->rb_node;
349 
350 	while (node) {
351 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 					rb_node);
353 		prev_node = node;
354 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 		if (ret < 0)
356 			node = node->rb_right;
357 		else if (ret > 0)
358 			node = node->rb_left;
359 		else
360 			return delayed_item;
361 	}
362 
363 	if (prev) {
364 		if (!prev_node)
365 			*prev = NULL;
366 		else if (ret < 0)
367 			*prev = delayed_item;
368 		else if ((node = rb_prev(prev_node)) != NULL) {
369 			*prev = rb_entry(node, struct btrfs_delayed_item,
370 					 rb_node);
371 		} else
372 			*prev = NULL;
373 	}
374 
375 	if (next) {
376 		if (!prev_node)
377 			*next = NULL;
378 		else if (ret > 0)
379 			*next = delayed_item;
380 		else if ((node = rb_next(prev_node)) != NULL) {
381 			*next = rb_entry(node, struct btrfs_delayed_item,
382 					 rb_node);
383 		} else
384 			*next = NULL;
385 	}
386 	return NULL;
387 }
388 
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 					struct btrfs_delayed_node *delayed_node,
391 					struct btrfs_key *key)
392 {
393 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 					   NULL, NULL);
395 }
396 
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 				    struct btrfs_delayed_item *ins,
399 				    int action)
400 {
401 	struct rb_node **p, *node;
402 	struct rb_node *parent_node = NULL;
403 	struct rb_root *root;
404 	struct btrfs_delayed_item *item;
405 	int cmp;
406 
407 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
408 		root = &delayed_node->ins_root;
409 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
410 		root = &delayed_node->del_root;
411 	else
412 		BUG();
413 	p = &root->rb_node;
414 	node = &ins->rb_node;
415 
416 	while (*p) {
417 		parent_node = *p;
418 		item = rb_entry(parent_node, struct btrfs_delayed_item,
419 				 rb_node);
420 
421 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
422 		if (cmp < 0)
423 			p = &(*p)->rb_right;
424 		else if (cmp > 0)
425 			p = &(*p)->rb_left;
426 		else
427 			return -EEXIST;
428 	}
429 
430 	rb_link_node(node, parent_node, p);
431 	rb_insert_color(node, root);
432 	ins->delayed_node = delayed_node;
433 	ins->ins_or_del = action;
434 
435 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
436 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
437 	    ins->key.offset >= delayed_node->index_cnt)
438 			delayed_node->index_cnt = ins->key.offset + 1;
439 
440 	delayed_node->count++;
441 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
442 	return 0;
443 }
444 
445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
446 					      struct btrfs_delayed_item *item)
447 {
448 	return __btrfs_add_delayed_item(node, item,
449 					BTRFS_DELAYED_INSERTION_ITEM);
450 }
451 
452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
453 					     struct btrfs_delayed_item *item)
454 {
455 	return __btrfs_add_delayed_item(node, item,
456 					BTRFS_DELAYED_DELETION_ITEM);
457 }
458 
459 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
460 {
461 	int seq = atomic_inc_return(&delayed_root->items_seq);
462 
463 	/*
464 	 * atomic_dec_return implies a barrier for waitqueue_active
465 	 */
466 	if ((atomic_dec_return(&delayed_root->items) <
467 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
468 	    waitqueue_active(&delayed_root->wait))
469 		wake_up(&delayed_root->wait);
470 }
471 
472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 {
474 	struct rb_root *root;
475 	struct btrfs_delayed_root *delayed_root;
476 
477 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478 
479 	BUG_ON(!delayed_root);
480 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482 
483 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 		root = &delayed_item->delayed_node->ins_root;
485 	else
486 		root = &delayed_item->delayed_node->del_root;
487 
488 	rb_erase(&delayed_item->rb_node, root);
489 	delayed_item->delayed_node->count--;
490 
491 	finish_one_item(delayed_root);
492 }
493 
494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 {
496 	if (item) {
497 		__btrfs_remove_delayed_item(item);
498 		if (refcount_dec_and_test(&item->refs))
499 			kfree(item);
500 	}
501 }
502 
503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 					struct btrfs_delayed_node *delayed_node)
505 {
506 	struct rb_node *p;
507 	struct btrfs_delayed_item *item = NULL;
508 
509 	p = rb_first(&delayed_node->ins_root);
510 	if (p)
511 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512 
513 	return item;
514 }
515 
516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 					struct btrfs_delayed_node *delayed_node)
518 {
519 	struct rb_node *p;
520 	struct btrfs_delayed_item *item = NULL;
521 
522 	p = rb_first(&delayed_node->del_root);
523 	if (p)
524 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 
526 	return item;
527 }
528 
529 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 						struct btrfs_delayed_item *item)
531 {
532 	struct rb_node *p;
533 	struct btrfs_delayed_item *next = NULL;
534 
535 	p = rb_next(&item->rb_node);
536 	if (p)
537 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 
539 	return next;
540 }
541 
542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 					       struct btrfs_root *root,
544 					       struct btrfs_delayed_item *item)
545 {
546 	struct btrfs_block_rsv *src_rsv;
547 	struct btrfs_block_rsv *dst_rsv;
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 	u64 num_bytes;
550 	int ret;
551 
552 	if (!trans->bytes_reserved)
553 		return 0;
554 
555 	src_rsv = trans->block_rsv;
556 	dst_rsv = &fs_info->delayed_block_rsv;
557 
558 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559 
560 	/*
561 	 * Here we migrate space rsv from transaction rsv, since have already
562 	 * reserved space when starting a transaction.  So no need to reserve
563 	 * qgroup space here.
564 	 */
565 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
566 	if (!ret) {
567 		trace_btrfs_space_reservation(fs_info, "delayed_item",
568 					      item->key.objectid,
569 					      num_bytes, 1);
570 		item->bytes_reserved = num_bytes;
571 	}
572 
573 	return ret;
574 }
575 
576 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 						struct btrfs_delayed_item *item)
578 {
579 	struct btrfs_block_rsv *rsv;
580 	struct btrfs_fs_info *fs_info = root->fs_info;
581 
582 	if (!item->bytes_reserved)
583 		return;
584 
585 	rsv = &fs_info->delayed_block_rsv;
586 	/*
587 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588 	 * to release/reserve qgroup space.
589 	 */
590 	trace_btrfs_space_reservation(fs_info, "delayed_item",
591 				      item->key.objectid, item->bytes_reserved,
592 				      0);
593 	btrfs_block_rsv_release(fs_info, rsv,
594 				item->bytes_reserved);
595 }
596 
597 static int btrfs_delayed_inode_reserve_metadata(
598 					struct btrfs_trans_handle *trans,
599 					struct btrfs_root *root,
600 					struct btrfs_inode *inode,
601 					struct btrfs_delayed_node *node)
602 {
603 	struct btrfs_fs_info *fs_info = root->fs_info;
604 	struct btrfs_block_rsv *src_rsv;
605 	struct btrfs_block_rsv *dst_rsv;
606 	u64 num_bytes;
607 	int ret;
608 
609 	src_rsv = trans->block_rsv;
610 	dst_rsv = &fs_info->delayed_block_rsv;
611 
612 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613 
614 	/*
615 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 	 * which doesn't reserve space for speed.  This is a problem since we
617 	 * still need to reserve space for this update, so try to reserve the
618 	 * space.
619 	 *
620 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 	 * we always reserve enough to update the inode item.
622 	 */
623 	if (!src_rsv || (!trans->bytes_reserved &&
624 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
626 				fs_info->nodesize, true);
627 		if (ret < 0)
628 			return ret;
629 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 					  BTRFS_RESERVE_NO_FLUSH);
631 		/*
632 		 * Since we're under a transaction reserve_metadata_bytes could
633 		 * try to commit the transaction which will make it return
634 		 * EAGAIN to make us stop the transaction we have, so return
635 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 		 */
637 		if (ret == -EAGAIN) {
638 			ret = -ENOSPC;
639 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 		}
641 		if (!ret) {
642 			node->bytes_reserved = num_bytes;
643 			trace_btrfs_space_reservation(fs_info,
644 						      "delayed_inode",
645 						      btrfs_ino(inode),
646 						      num_bytes, 1);
647 		} else {
648 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 		}
650 		return ret;
651 	}
652 
653 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
654 	if (!ret) {
655 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 					      btrfs_ino(inode), num_bytes, 1);
657 		node->bytes_reserved = num_bytes;
658 	}
659 
660 	return ret;
661 }
662 
663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 						struct btrfs_delayed_node *node,
665 						bool qgroup_free)
666 {
667 	struct btrfs_block_rsv *rsv;
668 
669 	if (!node->bytes_reserved)
670 		return;
671 
672 	rsv = &fs_info->delayed_block_rsv;
673 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 				      node->inode_id, node->bytes_reserved, 0);
675 	btrfs_block_rsv_release(fs_info, rsv,
676 				node->bytes_reserved);
677 	if (qgroup_free)
678 		btrfs_qgroup_free_meta_prealloc(node->root,
679 				node->bytes_reserved);
680 	else
681 		btrfs_qgroup_convert_reserved_meta(node->root,
682 				node->bytes_reserved);
683 	node->bytes_reserved = 0;
684 }
685 
686 /*
687  * This helper will insert some continuous items into the same leaf according
688  * to the free space of the leaf.
689  */
690 static int btrfs_batch_insert_items(struct btrfs_root *root,
691 				    struct btrfs_path *path,
692 				    struct btrfs_delayed_item *item)
693 {
694 	struct btrfs_fs_info *fs_info = root->fs_info;
695 	struct btrfs_delayed_item *curr, *next;
696 	int free_space;
697 	int total_data_size = 0, total_size = 0;
698 	struct extent_buffer *leaf;
699 	char *data_ptr;
700 	struct btrfs_key *keys;
701 	u32 *data_size;
702 	struct list_head head;
703 	int slot;
704 	int nitems;
705 	int i;
706 	int ret = 0;
707 
708 	BUG_ON(!path->nodes[0]);
709 
710 	leaf = path->nodes[0];
711 	free_space = btrfs_leaf_free_space(fs_info, leaf);
712 	INIT_LIST_HEAD(&head);
713 
714 	next = item;
715 	nitems = 0;
716 
717 	/*
718 	 * count the number of the continuous items that we can insert in batch
719 	 */
720 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721 	       free_space) {
722 		total_data_size += next->data_len;
723 		total_size += next->data_len + sizeof(struct btrfs_item);
724 		list_add_tail(&next->tree_list, &head);
725 		nitems++;
726 
727 		curr = next;
728 		next = __btrfs_next_delayed_item(curr);
729 		if (!next)
730 			break;
731 
732 		if (!btrfs_is_continuous_delayed_item(curr, next))
733 			break;
734 	}
735 
736 	if (!nitems) {
737 		ret = 0;
738 		goto out;
739 	}
740 
741 	/*
742 	 * we need allocate some memory space, but it might cause the task
743 	 * to sleep, so we set all locked nodes in the path to blocking locks
744 	 * first.
745 	 */
746 	btrfs_set_path_blocking(path);
747 
748 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 	if (!keys) {
750 		ret = -ENOMEM;
751 		goto out;
752 	}
753 
754 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 	if (!data_size) {
756 		ret = -ENOMEM;
757 		goto error;
758 	}
759 
760 	/* get keys of all the delayed items */
761 	i = 0;
762 	list_for_each_entry(next, &head, tree_list) {
763 		keys[i] = next->key;
764 		data_size[i] = next->data_len;
765 		i++;
766 	}
767 
768 	/* reset all the locked nodes in the patch to spinning locks. */
769 	btrfs_clear_path_blocking(path, NULL, 0);
770 
771 	/* insert the keys of the items */
772 	setup_items_for_insert(root, path, keys, data_size,
773 			       total_data_size, total_size, nitems);
774 
775 	/* insert the dir index items */
776 	slot = path->slots[0];
777 	list_for_each_entry_safe(curr, next, &head, tree_list) {
778 		data_ptr = btrfs_item_ptr(leaf, slot, char);
779 		write_extent_buffer(leaf, &curr->data,
780 				    (unsigned long)data_ptr,
781 				    curr->data_len);
782 		slot++;
783 
784 		btrfs_delayed_item_release_metadata(root, curr);
785 
786 		list_del(&curr->tree_list);
787 		btrfs_release_delayed_item(curr);
788 	}
789 
790 error:
791 	kfree(data_size);
792 	kfree(keys);
793 out:
794 	return ret;
795 }
796 
797 /*
798  * This helper can just do simple insertion that needn't extend item for new
799  * data, such as directory name index insertion, inode insertion.
800  */
801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
802 				     struct btrfs_root *root,
803 				     struct btrfs_path *path,
804 				     struct btrfs_delayed_item *delayed_item)
805 {
806 	struct extent_buffer *leaf;
807 	char *ptr;
808 	int ret;
809 
810 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
811 				      delayed_item->data_len);
812 	if (ret < 0 && ret != -EEXIST)
813 		return ret;
814 
815 	leaf = path->nodes[0];
816 
817 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
818 
819 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
820 			    delayed_item->data_len);
821 	btrfs_mark_buffer_dirty(leaf);
822 
823 	btrfs_delayed_item_release_metadata(root, delayed_item);
824 	return 0;
825 }
826 
827 /*
828  * we insert an item first, then if there are some continuous items, we try
829  * to insert those items into the same leaf.
830  */
831 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
832 				      struct btrfs_path *path,
833 				      struct btrfs_root *root,
834 				      struct btrfs_delayed_node *node)
835 {
836 	struct btrfs_delayed_item *curr, *prev;
837 	int ret = 0;
838 
839 do_again:
840 	mutex_lock(&node->mutex);
841 	curr = __btrfs_first_delayed_insertion_item(node);
842 	if (!curr)
843 		goto insert_end;
844 
845 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
846 	if (ret < 0) {
847 		btrfs_release_path(path);
848 		goto insert_end;
849 	}
850 
851 	prev = curr;
852 	curr = __btrfs_next_delayed_item(prev);
853 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
854 		/* insert the continuous items into the same leaf */
855 		path->slots[0]++;
856 		btrfs_batch_insert_items(root, path, curr);
857 	}
858 	btrfs_release_delayed_item(prev);
859 	btrfs_mark_buffer_dirty(path->nodes[0]);
860 
861 	btrfs_release_path(path);
862 	mutex_unlock(&node->mutex);
863 	goto do_again;
864 
865 insert_end:
866 	mutex_unlock(&node->mutex);
867 	return ret;
868 }
869 
870 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
871 				    struct btrfs_root *root,
872 				    struct btrfs_path *path,
873 				    struct btrfs_delayed_item *item)
874 {
875 	struct btrfs_delayed_item *curr, *next;
876 	struct extent_buffer *leaf;
877 	struct btrfs_key key;
878 	struct list_head head;
879 	int nitems, i, last_item;
880 	int ret = 0;
881 
882 	BUG_ON(!path->nodes[0]);
883 
884 	leaf = path->nodes[0];
885 
886 	i = path->slots[0];
887 	last_item = btrfs_header_nritems(leaf) - 1;
888 	if (i > last_item)
889 		return -ENOENT;	/* FIXME: Is errno suitable? */
890 
891 	next = item;
892 	INIT_LIST_HEAD(&head);
893 	btrfs_item_key_to_cpu(leaf, &key, i);
894 	nitems = 0;
895 	/*
896 	 * count the number of the dir index items that we can delete in batch
897 	 */
898 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
899 		list_add_tail(&next->tree_list, &head);
900 		nitems++;
901 
902 		curr = next;
903 		next = __btrfs_next_delayed_item(curr);
904 		if (!next)
905 			break;
906 
907 		if (!btrfs_is_continuous_delayed_item(curr, next))
908 			break;
909 
910 		i++;
911 		if (i > last_item)
912 			break;
913 		btrfs_item_key_to_cpu(leaf, &key, i);
914 	}
915 
916 	if (!nitems)
917 		return 0;
918 
919 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
920 	if (ret)
921 		goto out;
922 
923 	list_for_each_entry_safe(curr, next, &head, tree_list) {
924 		btrfs_delayed_item_release_metadata(root, curr);
925 		list_del(&curr->tree_list);
926 		btrfs_release_delayed_item(curr);
927 	}
928 
929 out:
930 	return ret;
931 }
932 
933 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
934 				      struct btrfs_path *path,
935 				      struct btrfs_root *root,
936 				      struct btrfs_delayed_node *node)
937 {
938 	struct btrfs_delayed_item *curr, *prev;
939 	int ret = 0;
940 
941 do_again:
942 	mutex_lock(&node->mutex);
943 	curr = __btrfs_first_delayed_deletion_item(node);
944 	if (!curr)
945 		goto delete_fail;
946 
947 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
948 	if (ret < 0)
949 		goto delete_fail;
950 	else if (ret > 0) {
951 		/*
952 		 * can't find the item which the node points to, so this node
953 		 * is invalid, just drop it.
954 		 */
955 		prev = curr;
956 		curr = __btrfs_next_delayed_item(prev);
957 		btrfs_release_delayed_item(prev);
958 		ret = 0;
959 		btrfs_release_path(path);
960 		if (curr) {
961 			mutex_unlock(&node->mutex);
962 			goto do_again;
963 		} else
964 			goto delete_fail;
965 	}
966 
967 	btrfs_batch_delete_items(trans, root, path, curr);
968 	btrfs_release_path(path);
969 	mutex_unlock(&node->mutex);
970 	goto do_again;
971 
972 delete_fail:
973 	btrfs_release_path(path);
974 	mutex_unlock(&node->mutex);
975 	return ret;
976 }
977 
978 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
979 {
980 	struct btrfs_delayed_root *delayed_root;
981 
982 	if (delayed_node &&
983 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
984 		BUG_ON(!delayed_node->root);
985 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
986 		delayed_node->count--;
987 
988 		delayed_root = delayed_node->root->fs_info->delayed_root;
989 		finish_one_item(delayed_root);
990 	}
991 }
992 
993 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
994 {
995 	struct btrfs_delayed_root *delayed_root;
996 
997 	ASSERT(delayed_node->root);
998 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
999 	delayed_node->count--;
1000 
1001 	delayed_root = delayed_node->root->fs_info->delayed_root;
1002 	finish_one_item(delayed_root);
1003 }
1004 
1005 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1006 					struct btrfs_root *root,
1007 					struct btrfs_path *path,
1008 					struct btrfs_delayed_node *node)
1009 {
1010 	struct btrfs_fs_info *fs_info = root->fs_info;
1011 	struct btrfs_key key;
1012 	struct btrfs_inode_item *inode_item;
1013 	struct extent_buffer *leaf;
1014 	int mod;
1015 	int ret;
1016 
1017 	key.objectid = node->inode_id;
1018 	key.type = BTRFS_INODE_ITEM_KEY;
1019 	key.offset = 0;
1020 
1021 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1022 		mod = -1;
1023 	else
1024 		mod = 1;
1025 
1026 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1027 	if (ret > 0) {
1028 		btrfs_release_path(path);
1029 		return -ENOENT;
1030 	} else if (ret < 0) {
1031 		return ret;
1032 	}
1033 
1034 	leaf = path->nodes[0];
1035 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 				    struct btrfs_inode_item);
1037 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 			    sizeof(struct btrfs_inode_item));
1039 	btrfs_mark_buffer_dirty(leaf);
1040 
1041 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 		goto no_iref;
1043 
1044 	path->slots[0]++;
1045 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 		goto search;
1047 again:
1048 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 	if (key.objectid != node->inode_id)
1050 		goto out;
1051 
1052 	if (key.type != BTRFS_INODE_REF_KEY &&
1053 	    key.type != BTRFS_INODE_EXTREF_KEY)
1054 		goto out;
1055 
1056 	/*
1057 	 * Delayed iref deletion is for the inode who has only one link,
1058 	 * so there is only one iref. The case that several irefs are
1059 	 * in the same item doesn't exist.
1060 	 */
1061 	btrfs_del_item(trans, root, path);
1062 out:
1063 	btrfs_release_delayed_iref(node);
1064 no_iref:
1065 	btrfs_release_path(path);
1066 err_out:
1067 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 	btrfs_release_delayed_inode(node);
1069 
1070 	return ret;
1071 
1072 search:
1073 	btrfs_release_path(path);
1074 
1075 	key.type = BTRFS_INODE_EXTREF_KEY;
1076 	key.offset = -1;
1077 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1078 	if (ret < 0)
1079 		goto err_out;
1080 	ASSERT(ret);
1081 
1082 	ret = 0;
1083 	leaf = path->nodes[0];
1084 	path->slots[0]--;
1085 	goto again;
1086 }
1087 
1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1089 					     struct btrfs_root *root,
1090 					     struct btrfs_path *path,
1091 					     struct btrfs_delayed_node *node)
1092 {
1093 	int ret;
1094 
1095 	mutex_lock(&node->mutex);
1096 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1097 		mutex_unlock(&node->mutex);
1098 		return 0;
1099 	}
1100 
1101 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1102 	mutex_unlock(&node->mutex);
1103 	return ret;
1104 }
1105 
1106 static inline int
1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1108 				   struct btrfs_path *path,
1109 				   struct btrfs_delayed_node *node)
1110 {
1111 	int ret;
1112 
1113 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1114 	if (ret)
1115 		return ret;
1116 
1117 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1118 	if (ret)
1119 		return ret;
1120 
1121 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1122 	return ret;
1123 }
1124 
1125 /*
1126  * Called when committing the transaction.
1127  * Returns 0 on success.
1128  * Returns < 0 on error and returns with an aborted transaction with any
1129  * outstanding delayed items cleaned up.
1130  */
1131 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1132 {
1133 	struct btrfs_fs_info *fs_info = trans->fs_info;
1134 	struct btrfs_delayed_root *delayed_root;
1135 	struct btrfs_delayed_node *curr_node, *prev_node;
1136 	struct btrfs_path *path;
1137 	struct btrfs_block_rsv *block_rsv;
1138 	int ret = 0;
1139 	bool count = (nr > 0);
1140 
1141 	if (trans->aborted)
1142 		return -EIO;
1143 
1144 	path = btrfs_alloc_path();
1145 	if (!path)
1146 		return -ENOMEM;
1147 	path->leave_spinning = 1;
1148 
1149 	block_rsv = trans->block_rsv;
1150 	trans->block_rsv = &fs_info->delayed_block_rsv;
1151 
1152 	delayed_root = fs_info->delayed_root;
1153 
1154 	curr_node = btrfs_first_delayed_node(delayed_root);
1155 	while (curr_node && (!count || (count && nr--))) {
1156 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1157 							 curr_node);
1158 		if (ret) {
1159 			btrfs_release_delayed_node(curr_node);
1160 			curr_node = NULL;
1161 			btrfs_abort_transaction(trans, ret);
1162 			break;
1163 		}
1164 
1165 		prev_node = curr_node;
1166 		curr_node = btrfs_next_delayed_node(curr_node);
1167 		btrfs_release_delayed_node(prev_node);
1168 	}
1169 
1170 	if (curr_node)
1171 		btrfs_release_delayed_node(curr_node);
1172 	btrfs_free_path(path);
1173 	trans->block_rsv = block_rsv;
1174 
1175 	return ret;
1176 }
1177 
1178 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1179 {
1180 	return __btrfs_run_delayed_items(trans, -1);
1181 }
1182 
1183 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1184 {
1185 	return __btrfs_run_delayed_items(trans, nr);
1186 }
1187 
1188 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1189 				     struct btrfs_inode *inode)
1190 {
1191 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1192 	struct btrfs_path *path;
1193 	struct btrfs_block_rsv *block_rsv;
1194 	int ret;
1195 
1196 	if (!delayed_node)
1197 		return 0;
1198 
1199 	mutex_lock(&delayed_node->mutex);
1200 	if (!delayed_node->count) {
1201 		mutex_unlock(&delayed_node->mutex);
1202 		btrfs_release_delayed_node(delayed_node);
1203 		return 0;
1204 	}
1205 	mutex_unlock(&delayed_node->mutex);
1206 
1207 	path = btrfs_alloc_path();
1208 	if (!path) {
1209 		btrfs_release_delayed_node(delayed_node);
1210 		return -ENOMEM;
1211 	}
1212 	path->leave_spinning = 1;
1213 
1214 	block_rsv = trans->block_rsv;
1215 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1216 
1217 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1218 
1219 	btrfs_release_delayed_node(delayed_node);
1220 	btrfs_free_path(path);
1221 	trans->block_rsv = block_rsv;
1222 
1223 	return ret;
1224 }
1225 
1226 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1227 {
1228 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1229 	struct btrfs_trans_handle *trans;
1230 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1231 	struct btrfs_path *path;
1232 	struct btrfs_block_rsv *block_rsv;
1233 	int ret;
1234 
1235 	if (!delayed_node)
1236 		return 0;
1237 
1238 	mutex_lock(&delayed_node->mutex);
1239 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1240 		mutex_unlock(&delayed_node->mutex);
1241 		btrfs_release_delayed_node(delayed_node);
1242 		return 0;
1243 	}
1244 	mutex_unlock(&delayed_node->mutex);
1245 
1246 	trans = btrfs_join_transaction(delayed_node->root);
1247 	if (IS_ERR(trans)) {
1248 		ret = PTR_ERR(trans);
1249 		goto out;
1250 	}
1251 
1252 	path = btrfs_alloc_path();
1253 	if (!path) {
1254 		ret = -ENOMEM;
1255 		goto trans_out;
1256 	}
1257 	path->leave_spinning = 1;
1258 
1259 	block_rsv = trans->block_rsv;
1260 	trans->block_rsv = &fs_info->delayed_block_rsv;
1261 
1262 	mutex_lock(&delayed_node->mutex);
1263 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 						   path, delayed_node);
1266 	else
1267 		ret = 0;
1268 	mutex_unlock(&delayed_node->mutex);
1269 
1270 	btrfs_free_path(path);
1271 	trans->block_rsv = block_rsv;
1272 trans_out:
1273 	btrfs_end_transaction(trans);
1274 	btrfs_btree_balance_dirty(fs_info);
1275 out:
1276 	btrfs_release_delayed_node(delayed_node);
1277 
1278 	return ret;
1279 }
1280 
1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282 {
1283 	struct btrfs_delayed_node *delayed_node;
1284 
1285 	delayed_node = READ_ONCE(inode->delayed_node);
1286 	if (!delayed_node)
1287 		return;
1288 
1289 	inode->delayed_node = NULL;
1290 	btrfs_release_delayed_node(delayed_node);
1291 }
1292 
1293 struct btrfs_async_delayed_work {
1294 	struct btrfs_delayed_root *delayed_root;
1295 	int nr;
1296 	struct btrfs_work work;
1297 };
1298 
1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300 {
1301 	struct btrfs_async_delayed_work *async_work;
1302 	struct btrfs_delayed_root *delayed_root;
1303 	struct btrfs_trans_handle *trans;
1304 	struct btrfs_path *path;
1305 	struct btrfs_delayed_node *delayed_node = NULL;
1306 	struct btrfs_root *root;
1307 	struct btrfs_block_rsv *block_rsv;
1308 	int total_done = 0;
1309 
1310 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 	delayed_root = async_work->delayed_root;
1312 
1313 	path = btrfs_alloc_path();
1314 	if (!path)
1315 		goto out;
1316 
1317 	do {
1318 		if (atomic_read(&delayed_root->items) <
1319 		    BTRFS_DELAYED_BACKGROUND / 2)
1320 			break;
1321 
1322 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 		if (!delayed_node)
1324 			break;
1325 
1326 		path->leave_spinning = 1;
1327 		root = delayed_node->root;
1328 
1329 		trans = btrfs_join_transaction(root);
1330 		if (IS_ERR(trans)) {
1331 			btrfs_release_path(path);
1332 			btrfs_release_prepared_delayed_node(delayed_node);
1333 			total_done++;
1334 			continue;
1335 		}
1336 
1337 		block_rsv = trans->block_rsv;
1338 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1339 
1340 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1341 
1342 		trans->block_rsv = block_rsv;
1343 		btrfs_end_transaction(trans);
1344 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1345 
1346 		btrfs_release_path(path);
1347 		btrfs_release_prepared_delayed_node(delayed_node);
1348 		total_done++;
1349 
1350 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1351 		 || total_done < async_work->nr);
1352 
1353 	btrfs_free_path(path);
1354 out:
1355 	wake_up(&delayed_root->wait);
1356 	kfree(async_work);
1357 }
1358 
1359 
1360 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1361 				     struct btrfs_fs_info *fs_info, int nr)
1362 {
1363 	struct btrfs_async_delayed_work *async_work;
1364 
1365 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1366 	if (!async_work)
1367 		return -ENOMEM;
1368 
1369 	async_work->delayed_root = delayed_root;
1370 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1371 			btrfs_async_run_delayed_root, NULL, NULL);
1372 	async_work->nr = nr;
1373 
1374 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1375 	return 0;
1376 }
1377 
1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1379 {
1380 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1381 }
1382 
1383 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1384 {
1385 	int val = atomic_read(&delayed_root->items_seq);
1386 
1387 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1388 		return 1;
1389 
1390 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1391 		return 1;
1392 
1393 	return 0;
1394 }
1395 
1396 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1397 {
1398 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1399 
1400 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1401 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1402 		return;
1403 
1404 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1405 		int seq;
1406 		int ret;
1407 
1408 		seq = atomic_read(&delayed_root->items_seq);
1409 
1410 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1411 		if (ret)
1412 			return;
1413 
1414 		wait_event_interruptible(delayed_root->wait,
1415 					 could_end_wait(delayed_root, seq));
1416 		return;
1417 	}
1418 
1419 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1420 }
1421 
1422 /* Will return 0 or -ENOMEM */
1423 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1424 				   struct btrfs_fs_info *fs_info,
1425 				   const char *name, int name_len,
1426 				   struct btrfs_inode *dir,
1427 				   struct btrfs_disk_key *disk_key, u8 type,
1428 				   u64 index)
1429 {
1430 	struct btrfs_delayed_node *delayed_node;
1431 	struct btrfs_delayed_item *delayed_item;
1432 	struct btrfs_dir_item *dir_item;
1433 	int ret;
1434 
1435 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1436 	if (IS_ERR(delayed_node))
1437 		return PTR_ERR(delayed_node);
1438 
1439 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1440 	if (!delayed_item) {
1441 		ret = -ENOMEM;
1442 		goto release_node;
1443 	}
1444 
1445 	delayed_item->key.objectid = btrfs_ino(dir);
1446 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1447 	delayed_item->key.offset = index;
1448 
1449 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1450 	dir_item->location = *disk_key;
1451 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1452 	btrfs_set_stack_dir_data_len(dir_item, 0);
1453 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1454 	btrfs_set_stack_dir_type(dir_item, type);
1455 	memcpy((char *)(dir_item + 1), name, name_len);
1456 
1457 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1458 	/*
1459 	 * we have reserved enough space when we start a new transaction,
1460 	 * so reserving metadata failure is impossible
1461 	 */
1462 	BUG_ON(ret);
1463 
1464 
1465 	mutex_lock(&delayed_node->mutex);
1466 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1467 	if (unlikely(ret)) {
1468 		btrfs_err(fs_info,
1469 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1470 			  name_len, name, delayed_node->root->objectid,
1471 			  delayed_node->inode_id, ret);
1472 		BUG();
1473 	}
1474 	mutex_unlock(&delayed_node->mutex);
1475 
1476 release_node:
1477 	btrfs_release_delayed_node(delayed_node);
1478 	return ret;
1479 }
1480 
1481 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1482 					       struct btrfs_delayed_node *node,
1483 					       struct btrfs_key *key)
1484 {
1485 	struct btrfs_delayed_item *item;
1486 
1487 	mutex_lock(&node->mutex);
1488 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1489 	if (!item) {
1490 		mutex_unlock(&node->mutex);
1491 		return 1;
1492 	}
1493 
1494 	btrfs_delayed_item_release_metadata(node->root, item);
1495 	btrfs_release_delayed_item(item);
1496 	mutex_unlock(&node->mutex);
1497 	return 0;
1498 }
1499 
1500 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1501 				   struct btrfs_fs_info *fs_info,
1502 				   struct btrfs_inode *dir, u64 index)
1503 {
1504 	struct btrfs_delayed_node *node;
1505 	struct btrfs_delayed_item *item;
1506 	struct btrfs_key item_key;
1507 	int ret;
1508 
1509 	node = btrfs_get_or_create_delayed_node(dir);
1510 	if (IS_ERR(node))
1511 		return PTR_ERR(node);
1512 
1513 	item_key.objectid = btrfs_ino(dir);
1514 	item_key.type = BTRFS_DIR_INDEX_KEY;
1515 	item_key.offset = index;
1516 
1517 	ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key);
1518 	if (!ret)
1519 		goto end;
1520 
1521 	item = btrfs_alloc_delayed_item(0);
1522 	if (!item) {
1523 		ret = -ENOMEM;
1524 		goto end;
1525 	}
1526 
1527 	item->key = item_key;
1528 
1529 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1530 	/*
1531 	 * we have reserved enough space when we start a new transaction,
1532 	 * so reserving metadata failure is impossible.
1533 	 */
1534 	BUG_ON(ret);
1535 
1536 	mutex_lock(&node->mutex);
1537 	ret = __btrfs_add_delayed_deletion_item(node, item);
1538 	if (unlikely(ret)) {
1539 		btrfs_err(fs_info,
1540 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1541 			  index, node->root->objectid, node->inode_id, ret);
1542 		BUG();
1543 	}
1544 	mutex_unlock(&node->mutex);
1545 end:
1546 	btrfs_release_delayed_node(node);
1547 	return ret;
1548 }
1549 
1550 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1551 {
1552 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1553 
1554 	if (!delayed_node)
1555 		return -ENOENT;
1556 
1557 	/*
1558 	 * Since we have held i_mutex of this directory, it is impossible that
1559 	 * a new directory index is added into the delayed node and index_cnt
1560 	 * is updated now. So we needn't lock the delayed node.
1561 	 */
1562 	if (!delayed_node->index_cnt) {
1563 		btrfs_release_delayed_node(delayed_node);
1564 		return -EINVAL;
1565 	}
1566 
1567 	inode->index_cnt = delayed_node->index_cnt;
1568 	btrfs_release_delayed_node(delayed_node);
1569 	return 0;
1570 }
1571 
1572 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1573 				     struct list_head *ins_list,
1574 				     struct list_head *del_list)
1575 {
1576 	struct btrfs_delayed_node *delayed_node;
1577 	struct btrfs_delayed_item *item;
1578 
1579 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1580 	if (!delayed_node)
1581 		return false;
1582 
1583 	/*
1584 	 * We can only do one readdir with delayed items at a time because of
1585 	 * item->readdir_list.
1586 	 */
1587 	inode_unlock_shared(inode);
1588 	inode_lock(inode);
1589 
1590 	mutex_lock(&delayed_node->mutex);
1591 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1592 	while (item) {
1593 		refcount_inc(&item->refs);
1594 		list_add_tail(&item->readdir_list, ins_list);
1595 		item = __btrfs_next_delayed_item(item);
1596 	}
1597 
1598 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1599 	while (item) {
1600 		refcount_inc(&item->refs);
1601 		list_add_tail(&item->readdir_list, del_list);
1602 		item = __btrfs_next_delayed_item(item);
1603 	}
1604 	mutex_unlock(&delayed_node->mutex);
1605 	/*
1606 	 * This delayed node is still cached in the btrfs inode, so refs
1607 	 * must be > 1 now, and we needn't check it is going to be freed
1608 	 * or not.
1609 	 *
1610 	 * Besides that, this function is used to read dir, we do not
1611 	 * insert/delete delayed items in this period. So we also needn't
1612 	 * requeue or dequeue this delayed node.
1613 	 */
1614 	refcount_dec(&delayed_node->refs);
1615 
1616 	return true;
1617 }
1618 
1619 void btrfs_readdir_put_delayed_items(struct inode *inode,
1620 				     struct list_head *ins_list,
1621 				     struct list_head *del_list)
1622 {
1623 	struct btrfs_delayed_item *curr, *next;
1624 
1625 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1626 		list_del(&curr->readdir_list);
1627 		if (refcount_dec_and_test(&curr->refs))
1628 			kfree(curr);
1629 	}
1630 
1631 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1632 		list_del(&curr->readdir_list);
1633 		if (refcount_dec_and_test(&curr->refs))
1634 			kfree(curr);
1635 	}
1636 
1637 	/*
1638 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1639 	 * read lock.
1640 	 */
1641 	downgrade_write(&inode->i_rwsem);
1642 }
1643 
1644 int btrfs_should_delete_dir_index(struct list_head *del_list,
1645 				  u64 index)
1646 {
1647 	struct btrfs_delayed_item *curr;
1648 	int ret = 0;
1649 
1650 	list_for_each_entry(curr, del_list, readdir_list) {
1651 		if (curr->key.offset > index)
1652 			break;
1653 		if (curr->key.offset == index) {
1654 			ret = 1;
1655 			break;
1656 		}
1657 	}
1658 	return ret;
1659 }
1660 
1661 /*
1662  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1663  *
1664  */
1665 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1666 				    struct list_head *ins_list)
1667 {
1668 	struct btrfs_dir_item *di;
1669 	struct btrfs_delayed_item *curr, *next;
1670 	struct btrfs_key location;
1671 	char *name;
1672 	int name_len;
1673 	int over = 0;
1674 	unsigned char d_type;
1675 
1676 	if (list_empty(ins_list))
1677 		return 0;
1678 
1679 	/*
1680 	 * Changing the data of the delayed item is impossible. So
1681 	 * we needn't lock them. And we have held i_mutex of the
1682 	 * directory, nobody can delete any directory indexes now.
1683 	 */
1684 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1685 		list_del(&curr->readdir_list);
1686 
1687 		if (curr->key.offset < ctx->pos) {
1688 			if (refcount_dec_and_test(&curr->refs))
1689 				kfree(curr);
1690 			continue;
1691 		}
1692 
1693 		ctx->pos = curr->key.offset;
1694 
1695 		di = (struct btrfs_dir_item *)curr->data;
1696 		name = (char *)(di + 1);
1697 		name_len = btrfs_stack_dir_name_len(di);
1698 
1699 		d_type = btrfs_filetype_table[di->type];
1700 		btrfs_disk_key_to_cpu(&location, &di->location);
1701 
1702 		over = !dir_emit(ctx, name, name_len,
1703 			       location.objectid, d_type);
1704 
1705 		if (refcount_dec_and_test(&curr->refs))
1706 			kfree(curr);
1707 
1708 		if (over)
1709 			return 1;
1710 		ctx->pos++;
1711 	}
1712 	return 0;
1713 }
1714 
1715 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1716 				  struct btrfs_inode_item *inode_item,
1717 				  struct inode *inode)
1718 {
1719 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1720 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1721 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1722 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1723 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1724 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1725 	btrfs_set_stack_inode_generation(inode_item,
1726 					 BTRFS_I(inode)->generation);
1727 	btrfs_set_stack_inode_sequence(inode_item,
1728 				       inode_peek_iversion(inode));
1729 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1730 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1731 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1732 	btrfs_set_stack_inode_block_group(inode_item, 0);
1733 
1734 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1735 				     inode->i_atime.tv_sec);
1736 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1737 				      inode->i_atime.tv_nsec);
1738 
1739 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1740 				     inode->i_mtime.tv_sec);
1741 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1742 				      inode->i_mtime.tv_nsec);
1743 
1744 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1745 				     inode->i_ctime.tv_sec);
1746 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1747 				      inode->i_ctime.tv_nsec);
1748 
1749 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1750 				     BTRFS_I(inode)->i_otime.tv_sec);
1751 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1752 				     BTRFS_I(inode)->i_otime.tv_nsec);
1753 }
1754 
1755 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1756 {
1757 	struct btrfs_delayed_node *delayed_node;
1758 	struct btrfs_inode_item *inode_item;
1759 
1760 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1761 	if (!delayed_node)
1762 		return -ENOENT;
1763 
1764 	mutex_lock(&delayed_node->mutex);
1765 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1766 		mutex_unlock(&delayed_node->mutex);
1767 		btrfs_release_delayed_node(delayed_node);
1768 		return -ENOENT;
1769 	}
1770 
1771 	inode_item = &delayed_node->inode_item;
1772 
1773 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1774 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1775 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1776 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1777 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1778 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1779 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1780         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1781 
1782 	inode_set_iversion_queried(inode,
1783 				   btrfs_stack_inode_sequence(inode_item));
1784 	inode->i_rdev = 0;
1785 	*rdev = btrfs_stack_inode_rdev(inode_item);
1786 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1787 
1788 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1789 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1790 
1791 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1792 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1793 
1794 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1795 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1796 
1797 	BTRFS_I(inode)->i_otime.tv_sec =
1798 		btrfs_stack_timespec_sec(&inode_item->otime);
1799 	BTRFS_I(inode)->i_otime.tv_nsec =
1800 		btrfs_stack_timespec_nsec(&inode_item->otime);
1801 
1802 	inode->i_generation = BTRFS_I(inode)->generation;
1803 	BTRFS_I(inode)->index_cnt = (u64)-1;
1804 
1805 	mutex_unlock(&delayed_node->mutex);
1806 	btrfs_release_delayed_node(delayed_node);
1807 	return 0;
1808 }
1809 
1810 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1811 			       struct btrfs_root *root, struct inode *inode)
1812 {
1813 	struct btrfs_delayed_node *delayed_node;
1814 	int ret = 0;
1815 
1816 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1817 	if (IS_ERR(delayed_node))
1818 		return PTR_ERR(delayed_node);
1819 
1820 	mutex_lock(&delayed_node->mutex);
1821 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1822 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1823 		goto release_node;
1824 	}
1825 
1826 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1827 						   delayed_node);
1828 	if (ret)
1829 		goto release_node;
1830 
1831 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1832 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1833 	delayed_node->count++;
1834 	atomic_inc(&root->fs_info->delayed_root->items);
1835 release_node:
1836 	mutex_unlock(&delayed_node->mutex);
1837 	btrfs_release_delayed_node(delayed_node);
1838 	return ret;
1839 }
1840 
1841 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1842 {
1843 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1844 	struct btrfs_delayed_node *delayed_node;
1845 
1846 	/*
1847 	 * we don't do delayed inode updates during log recovery because it
1848 	 * leads to enospc problems.  This means we also can't do
1849 	 * delayed inode refs
1850 	 */
1851 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1852 		return -EAGAIN;
1853 
1854 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1855 	if (IS_ERR(delayed_node))
1856 		return PTR_ERR(delayed_node);
1857 
1858 	/*
1859 	 * We don't reserve space for inode ref deletion is because:
1860 	 * - We ONLY do async inode ref deletion for the inode who has only
1861 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1862 	 *   And in most case, the inode ref and the inode item are in the
1863 	 *   same leaf, and we will deal with them at the same time.
1864 	 *   Since we are sure we will reserve the space for the inode item,
1865 	 *   it is unnecessary to reserve space for inode ref deletion.
1866 	 * - If the inode ref and the inode item are not in the same leaf,
1867 	 *   We also needn't worry about enospc problem, because we reserve
1868 	 *   much more space for the inode update than it needs.
1869 	 * - At the worst, we can steal some space from the global reservation.
1870 	 *   It is very rare.
1871 	 */
1872 	mutex_lock(&delayed_node->mutex);
1873 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1874 		goto release_node;
1875 
1876 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1877 	delayed_node->count++;
1878 	atomic_inc(&fs_info->delayed_root->items);
1879 release_node:
1880 	mutex_unlock(&delayed_node->mutex);
1881 	btrfs_release_delayed_node(delayed_node);
1882 	return 0;
1883 }
1884 
1885 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1886 {
1887 	struct btrfs_root *root = delayed_node->root;
1888 	struct btrfs_fs_info *fs_info = root->fs_info;
1889 	struct btrfs_delayed_item *curr_item, *prev_item;
1890 
1891 	mutex_lock(&delayed_node->mutex);
1892 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1893 	while (curr_item) {
1894 		btrfs_delayed_item_release_metadata(root, curr_item);
1895 		prev_item = curr_item;
1896 		curr_item = __btrfs_next_delayed_item(prev_item);
1897 		btrfs_release_delayed_item(prev_item);
1898 	}
1899 
1900 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1901 	while (curr_item) {
1902 		btrfs_delayed_item_release_metadata(root, curr_item);
1903 		prev_item = curr_item;
1904 		curr_item = __btrfs_next_delayed_item(prev_item);
1905 		btrfs_release_delayed_item(prev_item);
1906 	}
1907 
1908 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1909 		btrfs_release_delayed_iref(delayed_node);
1910 
1911 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1912 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1913 		btrfs_release_delayed_inode(delayed_node);
1914 	}
1915 	mutex_unlock(&delayed_node->mutex);
1916 }
1917 
1918 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1919 {
1920 	struct btrfs_delayed_node *delayed_node;
1921 
1922 	delayed_node = btrfs_get_delayed_node(inode);
1923 	if (!delayed_node)
1924 		return;
1925 
1926 	__btrfs_kill_delayed_node(delayed_node);
1927 	btrfs_release_delayed_node(delayed_node);
1928 }
1929 
1930 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1931 {
1932 	u64 inode_id = 0;
1933 	struct btrfs_delayed_node *delayed_nodes[8];
1934 	int i, n;
1935 
1936 	while (1) {
1937 		spin_lock(&root->inode_lock);
1938 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1939 					   (void **)delayed_nodes, inode_id,
1940 					   ARRAY_SIZE(delayed_nodes));
1941 		if (!n) {
1942 			spin_unlock(&root->inode_lock);
1943 			break;
1944 		}
1945 
1946 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1947 
1948 		for (i = 0; i < n; i++)
1949 			refcount_inc(&delayed_nodes[i]->refs);
1950 		spin_unlock(&root->inode_lock);
1951 
1952 		for (i = 0; i < n; i++) {
1953 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1954 			btrfs_release_delayed_node(delayed_nodes[i]);
1955 		}
1956 	}
1957 }
1958 
1959 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1960 {
1961 	struct btrfs_delayed_node *curr_node, *prev_node;
1962 
1963 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1964 	while (curr_node) {
1965 		__btrfs_kill_delayed_node(curr_node);
1966 
1967 		prev_node = curr_node;
1968 		curr_node = btrfs_next_delayed_node(curr_node);
1969 		btrfs_release_delayed_node(prev_node);
1970 	}
1971 }
1972 
1973