1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "delayed-inode.h" 10 #include "disk-io.h" 11 #include "transaction.h" 12 #include "ctree.h" 13 #include "qgroup.h" 14 15 #define BTRFS_DELAYED_WRITEBACK 512 16 #define BTRFS_DELAYED_BACKGROUND 128 17 #define BTRFS_DELAYED_BATCH 16 18 19 static struct kmem_cache *delayed_node_cache; 20 21 int __init btrfs_delayed_inode_init(void) 22 { 23 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 24 sizeof(struct btrfs_delayed_node), 25 0, 26 SLAB_MEM_SPREAD, 27 NULL); 28 if (!delayed_node_cache) 29 return -ENOMEM; 30 return 0; 31 } 32 33 void __cold btrfs_delayed_inode_exit(void) 34 { 35 kmem_cache_destroy(delayed_node_cache); 36 } 37 38 static inline void btrfs_init_delayed_node( 39 struct btrfs_delayed_node *delayed_node, 40 struct btrfs_root *root, u64 inode_id) 41 { 42 delayed_node->root = root; 43 delayed_node->inode_id = inode_id; 44 refcount_set(&delayed_node->refs, 0); 45 delayed_node->ins_root = RB_ROOT; 46 delayed_node->del_root = RB_ROOT; 47 mutex_init(&delayed_node->mutex); 48 INIT_LIST_HEAD(&delayed_node->n_list); 49 INIT_LIST_HEAD(&delayed_node->p_list); 50 } 51 52 static inline int btrfs_is_continuous_delayed_item( 53 struct btrfs_delayed_item *item1, 54 struct btrfs_delayed_item *item2) 55 { 56 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 57 item1->key.objectid == item2->key.objectid && 58 item1->key.type == item2->key.type && 59 item1->key.offset + 1 == item2->key.offset) 60 return 1; 61 return 0; 62 } 63 64 static struct btrfs_delayed_node *btrfs_get_delayed_node( 65 struct btrfs_inode *btrfs_inode) 66 { 67 struct btrfs_root *root = btrfs_inode->root; 68 u64 ino = btrfs_ino(btrfs_inode); 69 struct btrfs_delayed_node *node; 70 71 node = READ_ONCE(btrfs_inode->delayed_node); 72 if (node) { 73 refcount_inc(&node->refs); 74 return node; 75 } 76 77 spin_lock(&root->inode_lock); 78 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 79 80 if (node) { 81 if (btrfs_inode->delayed_node) { 82 refcount_inc(&node->refs); /* can be accessed */ 83 BUG_ON(btrfs_inode->delayed_node != node); 84 spin_unlock(&root->inode_lock); 85 return node; 86 } 87 88 /* 89 * It's possible that we're racing into the middle of removing 90 * this node from the radix tree. In this case, the refcount 91 * was zero and it should never go back to one. Just return 92 * NULL like it was never in the radix at all; our release 93 * function is in the process of removing it. 94 * 95 * Some implementations of refcount_inc refuse to bump the 96 * refcount once it has hit zero. If we don't do this dance 97 * here, refcount_inc() may decide to just WARN_ONCE() instead 98 * of actually bumping the refcount. 99 * 100 * If this node is properly in the radix, we want to bump the 101 * refcount twice, once for the inode and once for this get 102 * operation. 103 */ 104 if (refcount_inc_not_zero(&node->refs)) { 105 refcount_inc(&node->refs); 106 btrfs_inode->delayed_node = node; 107 } else { 108 node = NULL; 109 } 110 111 spin_unlock(&root->inode_lock); 112 return node; 113 } 114 spin_unlock(&root->inode_lock); 115 116 return NULL; 117 } 118 119 /* Will return either the node or PTR_ERR(-ENOMEM) */ 120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 121 struct btrfs_inode *btrfs_inode) 122 { 123 struct btrfs_delayed_node *node; 124 struct btrfs_root *root = btrfs_inode->root; 125 u64 ino = btrfs_ino(btrfs_inode); 126 int ret; 127 128 again: 129 node = btrfs_get_delayed_node(btrfs_inode); 130 if (node) 131 return node; 132 133 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 134 if (!node) 135 return ERR_PTR(-ENOMEM); 136 btrfs_init_delayed_node(node, root, ino); 137 138 /* cached in the btrfs inode and can be accessed */ 139 refcount_set(&node->refs, 2); 140 141 ret = radix_tree_preload(GFP_NOFS); 142 if (ret) { 143 kmem_cache_free(delayed_node_cache, node); 144 return ERR_PTR(ret); 145 } 146 147 spin_lock(&root->inode_lock); 148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 149 if (ret == -EEXIST) { 150 spin_unlock(&root->inode_lock); 151 kmem_cache_free(delayed_node_cache, node); 152 radix_tree_preload_end(); 153 goto again; 154 } 155 btrfs_inode->delayed_node = node; 156 spin_unlock(&root->inode_lock); 157 radix_tree_preload_end(); 158 159 return node; 160 } 161 162 /* 163 * Call it when holding delayed_node->mutex 164 * 165 * If mod = 1, add this node into the prepared list. 166 */ 167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 168 struct btrfs_delayed_node *node, 169 int mod) 170 { 171 spin_lock(&root->lock); 172 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 173 if (!list_empty(&node->p_list)) 174 list_move_tail(&node->p_list, &root->prepare_list); 175 else if (mod) 176 list_add_tail(&node->p_list, &root->prepare_list); 177 } else { 178 list_add_tail(&node->n_list, &root->node_list); 179 list_add_tail(&node->p_list, &root->prepare_list); 180 refcount_inc(&node->refs); /* inserted into list */ 181 root->nodes++; 182 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 183 } 184 spin_unlock(&root->lock); 185 } 186 187 /* Call it when holding delayed_node->mutex */ 188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 189 struct btrfs_delayed_node *node) 190 { 191 spin_lock(&root->lock); 192 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 193 root->nodes--; 194 refcount_dec(&node->refs); /* not in the list */ 195 list_del_init(&node->n_list); 196 if (!list_empty(&node->p_list)) 197 list_del_init(&node->p_list); 198 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 199 } 200 spin_unlock(&root->lock); 201 } 202 203 static struct btrfs_delayed_node *btrfs_first_delayed_node( 204 struct btrfs_delayed_root *delayed_root) 205 { 206 struct list_head *p; 207 struct btrfs_delayed_node *node = NULL; 208 209 spin_lock(&delayed_root->lock); 210 if (list_empty(&delayed_root->node_list)) 211 goto out; 212 213 p = delayed_root->node_list.next; 214 node = list_entry(p, struct btrfs_delayed_node, n_list); 215 refcount_inc(&node->refs); 216 out: 217 spin_unlock(&delayed_root->lock); 218 219 return node; 220 } 221 222 static struct btrfs_delayed_node *btrfs_next_delayed_node( 223 struct btrfs_delayed_node *node) 224 { 225 struct btrfs_delayed_root *delayed_root; 226 struct list_head *p; 227 struct btrfs_delayed_node *next = NULL; 228 229 delayed_root = node->root->fs_info->delayed_root; 230 spin_lock(&delayed_root->lock); 231 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 232 /* not in the list */ 233 if (list_empty(&delayed_root->node_list)) 234 goto out; 235 p = delayed_root->node_list.next; 236 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 237 goto out; 238 else 239 p = node->n_list.next; 240 241 next = list_entry(p, struct btrfs_delayed_node, n_list); 242 refcount_inc(&next->refs); 243 out: 244 spin_unlock(&delayed_root->lock); 245 246 return next; 247 } 248 249 static void __btrfs_release_delayed_node( 250 struct btrfs_delayed_node *delayed_node, 251 int mod) 252 { 253 struct btrfs_delayed_root *delayed_root; 254 255 if (!delayed_node) 256 return; 257 258 delayed_root = delayed_node->root->fs_info->delayed_root; 259 260 mutex_lock(&delayed_node->mutex); 261 if (delayed_node->count) 262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 263 else 264 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 265 mutex_unlock(&delayed_node->mutex); 266 267 if (refcount_dec_and_test(&delayed_node->refs)) { 268 struct btrfs_root *root = delayed_node->root; 269 270 spin_lock(&root->inode_lock); 271 /* 272 * Once our refcount goes to zero, nobody is allowed to bump it 273 * back up. We can delete it now. 274 */ 275 ASSERT(refcount_read(&delayed_node->refs) == 0); 276 radix_tree_delete(&root->delayed_nodes_tree, 277 delayed_node->inode_id); 278 spin_unlock(&root->inode_lock); 279 kmem_cache_free(delayed_node_cache, delayed_node); 280 } 281 } 282 283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 284 { 285 __btrfs_release_delayed_node(node, 0); 286 } 287 288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 289 struct btrfs_delayed_root *delayed_root) 290 { 291 struct list_head *p; 292 struct btrfs_delayed_node *node = NULL; 293 294 spin_lock(&delayed_root->lock); 295 if (list_empty(&delayed_root->prepare_list)) 296 goto out; 297 298 p = delayed_root->prepare_list.next; 299 list_del_init(p); 300 node = list_entry(p, struct btrfs_delayed_node, p_list); 301 refcount_inc(&node->refs); 302 out: 303 spin_unlock(&delayed_root->lock); 304 305 return node; 306 } 307 308 static inline void btrfs_release_prepared_delayed_node( 309 struct btrfs_delayed_node *node) 310 { 311 __btrfs_release_delayed_node(node, 1); 312 } 313 314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 315 { 316 struct btrfs_delayed_item *item; 317 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 318 if (item) { 319 item->data_len = data_len; 320 item->ins_or_del = 0; 321 item->bytes_reserved = 0; 322 item->delayed_node = NULL; 323 refcount_set(&item->refs, 1); 324 } 325 return item; 326 } 327 328 /* 329 * __btrfs_lookup_delayed_item - look up the delayed item by key 330 * @delayed_node: pointer to the delayed node 331 * @key: the key to look up 332 * @prev: used to store the prev item if the right item isn't found 333 * @next: used to store the next item if the right item isn't found 334 * 335 * Note: if we don't find the right item, we will return the prev item and 336 * the next item. 337 */ 338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 339 struct rb_root *root, 340 struct btrfs_key *key, 341 struct btrfs_delayed_item **prev, 342 struct btrfs_delayed_item **next) 343 { 344 struct rb_node *node, *prev_node = NULL; 345 struct btrfs_delayed_item *delayed_item = NULL; 346 int ret = 0; 347 348 node = root->rb_node; 349 350 while (node) { 351 delayed_item = rb_entry(node, struct btrfs_delayed_item, 352 rb_node); 353 prev_node = node; 354 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 355 if (ret < 0) 356 node = node->rb_right; 357 else if (ret > 0) 358 node = node->rb_left; 359 else 360 return delayed_item; 361 } 362 363 if (prev) { 364 if (!prev_node) 365 *prev = NULL; 366 else if (ret < 0) 367 *prev = delayed_item; 368 else if ((node = rb_prev(prev_node)) != NULL) { 369 *prev = rb_entry(node, struct btrfs_delayed_item, 370 rb_node); 371 } else 372 *prev = NULL; 373 } 374 375 if (next) { 376 if (!prev_node) 377 *next = NULL; 378 else if (ret > 0) 379 *next = delayed_item; 380 else if ((node = rb_next(prev_node)) != NULL) { 381 *next = rb_entry(node, struct btrfs_delayed_item, 382 rb_node); 383 } else 384 *next = NULL; 385 } 386 return NULL; 387 } 388 389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 390 struct btrfs_delayed_node *delayed_node, 391 struct btrfs_key *key) 392 { 393 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 394 NULL, NULL); 395 } 396 397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 398 struct btrfs_delayed_item *ins, 399 int action) 400 { 401 struct rb_node **p, *node; 402 struct rb_node *parent_node = NULL; 403 struct rb_root *root; 404 struct btrfs_delayed_item *item; 405 int cmp; 406 407 if (action == BTRFS_DELAYED_INSERTION_ITEM) 408 root = &delayed_node->ins_root; 409 else if (action == BTRFS_DELAYED_DELETION_ITEM) 410 root = &delayed_node->del_root; 411 else 412 BUG(); 413 p = &root->rb_node; 414 node = &ins->rb_node; 415 416 while (*p) { 417 parent_node = *p; 418 item = rb_entry(parent_node, struct btrfs_delayed_item, 419 rb_node); 420 421 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 422 if (cmp < 0) 423 p = &(*p)->rb_right; 424 else if (cmp > 0) 425 p = &(*p)->rb_left; 426 else 427 return -EEXIST; 428 } 429 430 rb_link_node(node, parent_node, p); 431 rb_insert_color(node, root); 432 ins->delayed_node = delayed_node; 433 ins->ins_or_del = action; 434 435 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 436 action == BTRFS_DELAYED_INSERTION_ITEM && 437 ins->key.offset >= delayed_node->index_cnt) 438 delayed_node->index_cnt = ins->key.offset + 1; 439 440 delayed_node->count++; 441 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 442 return 0; 443 } 444 445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 446 struct btrfs_delayed_item *item) 447 { 448 return __btrfs_add_delayed_item(node, item, 449 BTRFS_DELAYED_INSERTION_ITEM); 450 } 451 452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 453 struct btrfs_delayed_item *item) 454 { 455 return __btrfs_add_delayed_item(node, item, 456 BTRFS_DELAYED_DELETION_ITEM); 457 } 458 459 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 460 { 461 int seq = atomic_inc_return(&delayed_root->items_seq); 462 463 /* 464 * atomic_dec_return implies a barrier for waitqueue_active 465 */ 466 if ((atomic_dec_return(&delayed_root->items) < 467 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 468 waitqueue_active(&delayed_root->wait)) 469 wake_up(&delayed_root->wait); 470 } 471 472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 473 { 474 struct rb_root *root; 475 struct btrfs_delayed_root *delayed_root; 476 477 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 478 479 BUG_ON(!delayed_root); 480 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 481 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 482 483 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 484 root = &delayed_item->delayed_node->ins_root; 485 else 486 root = &delayed_item->delayed_node->del_root; 487 488 rb_erase(&delayed_item->rb_node, root); 489 delayed_item->delayed_node->count--; 490 491 finish_one_item(delayed_root); 492 } 493 494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 495 { 496 if (item) { 497 __btrfs_remove_delayed_item(item); 498 if (refcount_dec_and_test(&item->refs)) 499 kfree(item); 500 } 501 } 502 503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 504 struct btrfs_delayed_node *delayed_node) 505 { 506 struct rb_node *p; 507 struct btrfs_delayed_item *item = NULL; 508 509 p = rb_first(&delayed_node->ins_root); 510 if (p) 511 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 512 513 return item; 514 } 515 516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 517 struct btrfs_delayed_node *delayed_node) 518 { 519 struct rb_node *p; 520 struct btrfs_delayed_item *item = NULL; 521 522 p = rb_first(&delayed_node->del_root); 523 if (p) 524 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 525 526 return item; 527 } 528 529 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 530 struct btrfs_delayed_item *item) 531 { 532 struct rb_node *p; 533 struct btrfs_delayed_item *next = NULL; 534 535 p = rb_next(&item->rb_node); 536 if (p) 537 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 538 539 return next; 540 } 541 542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 543 struct btrfs_root *root, 544 struct btrfs_delayed_item *item) 545 { 546 struct btrfs_block_rsv *src_rsv; 547 struct btrfs_block_rsv *dst_rsv; 548 struct btrfs_fs_info *fs_info = root->fs_info; 549 u64 num_bytes; 550 int ret; 551 552 if (!trans->bytes_reserved) 553 return 0; 554 555 src_rsv = trans->block_rsv; 556 dst_rsv = &fs_info->delayed_block_rsv; 557 558 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 559 560 /* 561 * Here we migrate space rsv from transaction rsv, since have already 562 * reserved space when starting a transaction. So no need to reserve 563 * qgroup space here. 564 */ 565 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 566 if (!ret) { 567 trace_btrfs_space_reservation(fs_info, "delayed_item", 568 item->key.objectid, 569 num_bytes, 1); 570 item->bytes_reserved = num_bytes; 571 } 572 573 return ret; 574 } 575 576 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 577 struct btrfs_delayed_item *item) 578 { 579 struct btrfs_block_rsv *rsv; 580 struct btrfs_fs_info *fs_info = root->fs_info; 581 582 if (!item->bytes_reserved) 583 return; 584 585 rsv = &fs_info->delayed_block_rsv; 586 /* 587 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 588 * to release/reserve qgroup space. 589 */ 590 trace_btrfs_space_reservation(fs_info, "delayed_item", 591 item->key.objectid, item->bytes_reserved, 592 0); 593 btrfs_block_rsv_release(fs_info, rsv, 594 item->bytes_reserved); 595 } 596 597 static int btrfs_delayed_inode_reserve_metadata( 598 struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, 600 struct btrfs_inode *inode, 601 struct btrfs_delayed_node *node) 602 { 603 struct btrfs_fs_info *fs_info = root->fs_info; 604 struct btrfs_block_rsv *src_rsv; 605 struct btrfs_block_rsv *dst_rsv; 606 u64 num_bytes; 607 int ret; 608 609 src_rsv = trans->block_rsv; 610 dst_rsv = &fs_info->delayed_block_rsv; 611 612 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 613 614 /* 615 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 616 * which doesn't reserve space for speed. This is a problem since we 617 * still need to reserve space for this update, so try to reserve the 618 * space. 619 * 620 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 621 * we always reserve enough to update the inode item. 622 */ 623 if (!src_rsv || (!trans->bytes_reserved && 624 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 625 ret = btrfs_qgroup_reserve_meta_prealloc(root, 626 fs_info->nodesize, true); 627 if (ret < 0) 628 return ret; 629 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 630 BTRFS_RESERVE_NO_FLUSH); 631 /* 632 * Since we're under a transaction reserve_metadata_bytes could 633 * try to commit the transaction which will make it return 634 * EAGAIN to make us stop the transaction we have, so return 635 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 636 */ 637 if (ret == -EAGAIN) { 638 ret = -ENOSPC; 639 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 640 } 641 if (!ret) { 642 node->bytes_reserved = num_bytes; 643 trace_btrfs_space_reservation(fs_info, 644 "delayed_inode", 645 btrfs_ino(inode), 646 num_bytes, 1); 647 } else { 648 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 649 } 650 return ret; 651 } 652 653 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 654 if (!ret) { 655 trace_btrfs_space_reservation(fs_info, "delayed_inode", 656 btrfs_ino(inode), num_bytes, 1); 657 node->bytes_reserved = num_bytes; 658 } 659 660 return ret; 661 } 662 663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 664 struct btrfs_delayed_node *node, 665 bool qgroup_free) 666 { 667 struct btrfs_block_rsv *rsv; 668 669 if (!node->bytes_reserved) 670 return; 671 672 rsv = &fs_info->delayed_block_rsv; 673 trace_btrfs_space_reservation(fs_info, "delayed_inode", 674 node->inode_id, node->bytes_reserved, 0); 675 btrfs_block_rsv_release(fs_info, rsv, 676 node->bytes_reserved); 677 if (qgroup_free) 678 btrfs_qgroup_free_meta_prealloc(node->root, 679 node->bytes_reserved); 680 else 681 btrfs_qgroup_convert_reserved_meta(node->root, 682 node->bytes_reserved); 683 node->bytes_reserved = 0; 684 } 685 686 /* 687 * This helper will insert some continuous items into the same leaf according 688 * to the free space of the leaf. 689 */ 690 static int btrfs_batch_insert_items(struct btrfs_root *root, 691 struct btrfs_path *path, 692 struct btrfs_delayed_item *item) 693 { 694 struct btrfs_fs_info *fs_info = root->fs_info; 695 struct btrfs_delayed_item *curr, *next; 696 int free_space; 697 int total_data_size = 0, total_size = 0; 698 struct extent_buffer *leaf; 699 char *data_ptr; 700 struct btrfs_key *keys; 701 u32 *data_size; 702 struct list_head head; 703 int slot; 704 int nitems; 705 int i; 706 int ret = 0; 707 708 BUG_ON(!path->nodes[0]); 709 710 leaf = path->nodes[0]; 711 free_space = btrfs_leaf_free_space(fs_info, leaf); 712 INIT_LIST_HEAD(&head); 713 714 next = item; 715 nitems = 0; 716 717 /* 718 * count the number of the continuous items that we can insert in batch 719 */ 720 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 721 free_space) { 722 total_data_size += next->data_len; 723 total_size += next->data_len + sizeof(struct btrfs_item); 724 list_add_tail(&next->tree_list, &head); 725 nitems++; 726 727 curr = next; 728 next = __btrfs_next_delayed_item(curr); 729 if (!next) 730 break; 731 732 if (!btrfs_is_continuous_delayed_item(curr, next)) 733 break; 734 } 735 736 if (!nitems) { 737 ret = 0; 738 goto out; 739 } 740 741 /* 742 * we need allocate some memory space, but it might cause the task 743 * to sleep, so we set all locked nodes in the path to blocking locks 744 * first. 745 */ 746 btrfs_set_path_blocking(path); 747 748 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 749 if (!keys) { 750 ret = -ENOMEM; 751 goto out; 752 } 753 754 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 755 if (!data_size) { 756 ret = -ENOMEM; 757 goto error; 758 } 759 760 /* get keys of all the delayed items */ 761 i = 0; 762 list_for_each_entry(next, &head, tree_list) { 763 keys[i] = next->key; 764 data_size[i] = next->data_len; 765 i++; 766 } 767 768 /* reset all the locked nodes in the patch to spinning locks. */ 769 btrfs_clear_path_blocking(path, NULL, 0); 770 771 /* insert the keys of the items */ 772 setup_items_for_insert(root, path, keys, data_size, 773 total_data_size, total_size, nitems); 774 775 /* insert the dir index items */ 776 slot = path->slots[0]; 777 list_for_each_entry_safe(curr, next, &head, tree_list) { 778 data_ptr = btrfs_item_ptr(leaf, slot, char); 779 write_extent_buffer(leaf, &curr->data, 780 (unsigned long)data_ptr, 781 curr->data_len); 782 slot++; 783 784 btrfs_delayed_item_release_metadata(root, curr); 785 786 list_del(&curr->tree_list); 787 btrfs_release_delayed_item(curr); 788 } 789 790 error: 791 kfree(data_size); 792 kfree(keys); 793 out: 794 return ret; 795 } 796 797 /* 798 * This helper can just do simple insertion that needn't extend item for new 799 * data, such as directory name index insertion, inode insertion. 800 */ 801 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 802 struct btrfs_root *root, 803 struct btrfs_path *path, 804 struct btrfs_delayed_item *delayed_item) 805 { 806 struct extent_buffer *leaf; 807 char *ptr; 808 int ret; 809 810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 811 delayed_item->data_len); 812 if (ret < 0 && ret != -EEXIST) 813 return ret; 814 815 leaf = path->nodes[0]; 816 817 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 818 819 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 820 delayed_item->data_len); 821 btrfs_mark_buffer_dirty(leaf); 822 823 btrfs_delayed_item_release_metadata(root, delayed_item); 824 return 0; 825 } 826 827 /* 828 * we insert an item first, then if there are some continuous items, we try 829 * to insert those items into the same leaf. 830 */ 831 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 832 struct btrfs_path *path, 833 struct btrfs_root *root, 834 struct btrfs_delayed_node *node) 835 { 836 struct btrfs_delayed_item *curr, *prev; 837 int ret = 0; 838 839 do_again: 840 mutex_lock(&node->mutex); 841 curr = __btrfs_first_delayed_insertion_item(node); 842 if (!curr) 843 goto insert_end; 844 845 ret = btrfs_insert_delayed_item(trans, root, path, curr); 846 if (ret < 0) { 847 btrfs_release_path(path); 848 goto insert_end; 849 } 850 851 prev = curr; 852 curr = __btrfs_next_delayed_item(prev); 853 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 854 /* insert the continuous items into the same leaf */ 855 path->slots[0]++; 856 btrfs_batch_insert_items(root, path, curr); 857 } 858 btrfs_release_delayed_item(prev); 859 btrfs_mark_buffer_dirty(path->nodes[0]); 860 861 btrfs_release_path(path); 862 mutex_unlock(&node->mutex); 863 goto do_again; 864 865 insert_end: 866 mutex_unlock(&node->mutex); 867 return ret; 868 } 869 870 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 871 struct btrfs_root *root, 872 struct btrfs_path *path, 873 struct btrfs_delayed_item *item) 874 { 875 struct btrfs_delayed_item *curr, *next; 876 struct extent_buffer *leaf; 877 struct btrfs_key key; 878 struct list_head head; 879 int nitems, i, last_item; 880 int ret = 0; 881 882 BUG_ON(!path->nodes[0]); 883 884 leaf = path->nodes[0]; 885 886 i = path->slots[0]; 887 last_item = btrfs_header_nritems(leaf) - 1; 888 if (i > last_item) 889 return -ENOENT; /* FIXME: Is errno suitable? */ 890 891 next = item; 892 INIT_LIST_HEAD(&head); 893 btrfs_item_key_to_cpu(leaf, &key, i); 894 nitems = 0; 895 /* 896 * count the number of the dir index items that we can delete in batch 897 */ 898 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 899 list_add_tail(&next->tree_list, &head); 900 nitems++; 901 902 curr = next; 903 next = __btrfs_next_delayed_item(curr); 904 if (!next) 905 break; 906 907 if (!btrfs_is_continuous_delayed_item(curr, next)) 908 break; 909 910 i++; 911 if (i > last_item) 912 break; 913 btrfs_item_key_to_cpu(leaf, &key, i); 914 } 915 916 if (!nitems) 917 return 0; 918 919 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 920 if (ret) 921 goto out; 922 923 list_for_each_entry_safe(curr, next, &head, tree_list) { 924 btrfs_delayed_item_release_metadata(root, curr); 925 list_del(&curr->tree_list); 926 btrfs_release_delayed_item(curr); 927 } 928 929 out: 930 return ret; 931 } 932 933 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 934 struct btrfs_path *path, 935 struct btrfs_root *root, 936 struct btrfs_delayed_node *node) 937 { 938 struct btrfs_delayed_item *curr, *prev; 939 int ret = 0; 940 941 do_again: 942 mutex_lock(&node->mutex); 943 curr = __btrfs_first_delayed_deletion_item(node); 944 if (!curr) 945 goto delete_fail; 946 947 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 948 if (ret < 0) 949 goto delete_fail; 950 else if (ret > 0) { 951 /* 952 * can't find the item which the node points to, so this node 953 * is invalid, just drop it. 954 */ 955 prev = curr; 956 curr = __btrfs_next_delayed_item(prev); 957 btrfs_release_delayed_item(prev); 958 ret = 0; 959 btrfs_release_path(path); 960 if (curr) { 961 mutex_unlock(&node->mutex); 962 goto do_again; 963 } else 964 goto delete_fail; 965 } 966 967 btrfs_batch_delete_items(trans, root, path, curr); 968 btrfs_release_path(path); 969 mutex_unlock(&node->mutex); 970 goto do_again; 971 972 delete_fail: 973 btrfs_release_path(path); 974 mutex_unlock(&node->mutex); 975 return ret; 976 } 977 978 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 979 { 980 struct btrfs_delayed_root *delayed_root; 981 982 if (delayed_node && 983 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 984 BUG_ON(!delayed_node->root); 985 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 986 delayed_node->count--; 987 988 delayed_root = delayed_node->root->fs_info->delayed_root; 989 finish_one_item(delayed_root); 990 } 991 } 992 993 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 994 { 995 struct btrfs_delayed_root *delayed_root; 996 997 ASSERT(delayed_node->root); 998 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 999 delayed_node->count--; 1000 1001 delayed_root = delayed_node->root->fs_info->delayed_root; 1002 finish_one_item(delayed_root); 1003 } 1004 1005 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1006 struct btrfs_root *root, 1007 struct btrfs_path *path, 1008 struct btrfs_delayed_node *node) 1009 { 1010 struct btrfs_fs_info *fs_info = root->fs_info; 1011 struct btrfs_key key; 1012 struct btrfs_inode_item *inode_item; 1013 struct extent_buffer *leaf; 1014 int mod; 1015 int ret; 1016 1017 key.objectid = node->inode_id; 1018 key.type = BTRFS_INODE_ITEM_KEY; 1019 key.offset = 0; 1020 1021 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1022 mod = -1; 1023 else 1024 mod = 1; 1025 1026 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1027 if (ret > 0) { 1028 btrfs_release_path(path); 1029 return -ENOENT; 1030 } else if (ret < 0) { 1031 return ret; 1032 } 1033 1034 leaf = path->nodes[0]; 1035 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1036 struct btrfs_inode_item); 1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1038 sizeof(struct btrfs_inode_item)); 1039 btrfs_mark_buffer_dirty(leaf); 1040 1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1042 goto no_iref; 1043 1044 path->slots[0]++; 1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1046 goto search; 1047 again: 1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1049 if (key.objectid != node->inode_id) 1050 goto out; 1051 1052 if (key.type != BTRFS_INODE_REF_KEY && 1053 key.type != BTRFS_INODE_EXTREF_KEY) 1054 goto out; 1055 1056 /* 1057 * Delayed iref deletion is for the inode who has only one link, 1058 * so there is only one iref. The case that several irefs are 1059 * in the same item doesn't exist. 1060 */ 1061 btrfs_del_item(trans, root, path); 1062 out: 1063 btrfs_release_delayed_iref(node); 1064 no_iref: 1065 btrfs_release_path(path); 1066 err_out: 1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1068 btrfs_release_delayed_inode(node); 1069 1070 return ret; 1071 1072 search: 1073 btrfs_release_path(path); 1074 1075 key.type = BTRFS_INODE_EXTREF_KEY; 1076 key.offset = -1; 1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1078 if (ret < 0) 1079 goto err_out; 1080 ASSERT(ret); 1081 1082 ret = 0; 1083 leaf = path->nodes[0]; 1084 path->slots[0]--; 1085 goto again; 1086 } 1087 1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, 1090 struct btrfs_path *path, 1091 struct btrfs_delayed_node *node) 1092 { 1093 int ret; 1094 1095 mutex_lock(&node->mutex); 1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1097 mutex_unlock(&node->mutex); 1098 return 0; 1099 } 1100 1101 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1102 mutex_unlock(&node->mutex); 1103 return ret; 1104 } 1105 1106 static inline int 1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1108 struct btrfs_path *path, 1109 struct btrfs_delayed_node *node) 1110 { 1111 int ret; 1112 1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1114 if (ret) 1115 return ret; 1116 1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1118 if (ret) 1119 return ret; 1120 1121 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1122 return ret; 1123 } 1124 1125 /* 1126 * Called when committing the transaction. 1127 * Returns 0 on success. 1128 * Returns < 0 on error and returns with an aborted transaction with any 1129 * outstanding delayed items cleaned up. 1130 */ 1131 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1132 { 1133 struct btrfs_fs_info *fs_info = trans->fs_info; 1134 struct btrfs_delayed_root *delayed_root; 1135 struct btrfs_delayed_node *curr_node, *prev_node; 1136 struct btrfs_path *path; 1137 struct btrfs_block_rsv *block_rsv; 1138 int ret = 0; 1139 bool count = (nr > 0); 1140 1141 if (trans->aborted) 1142 return -EIO; 1143 1144 path = btrfs_alloc_path(); 1145 if (!path) 1146 return -ENOMEM; 1147 path->leave_spinning = 1; 1148 1149 block_rsv = trans->block_rsv; 1150 trans->block_rsv = &fs_info->delayed_block_rsv; 1151 1152 delayed_root = fs_info->delayed_root; 1153 1154 curr_node = btrfs_first_delayed_node(delayed_root); 1155 while (curr_node && (!count || (count && nr--))) { 1156 ret = __btrfs_commit_inode_delayed_items(trans, path, 1157 curr_node); 1158 if (ret) { 1159 btrfs_release_delayed_node(curr_node); 1160 curr_node = NULL; 1161 btrfs_abort_transaction(trans, ret); 1162 break; 1163 } 1164 1165 prev_node = curr_node; 1166 curr_node = btrfs_next_delayed_node(curr_node); 1167 btrfs_release_delayed_node(prev_node); 1168 } 1169 1170 if (curr_node) 1171 btrfs_release_delayed_node(curr_node); 1172 btrfs_free_path(path); 1173 trans->block_rsv = block_rsv; 1174 1175 return ret; 1176 } 1177 1178 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1179 { 1180 return __btrfs_run_delayed_items(trans, -1); 1181 } 1182 1183 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1184 { 1185 return __btrfs_run_delayed_items(trans, nr); 1186 } 1187 1188 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1189 struct btrfs_inode *inode) 1190 { 1191 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1192 struct btrfs_path *path; 1193 struct btrfs_block_rsv *block_rsv; 1194 int ret; 1195 1196 if (!delayed_node) 1197 return 0; 1198 1199 mutex_lock(&delayed_node->mutex); 1200 if (!delayed_node->count) { 1201 mutex_unlock(&delayed_node->mutex); 1202 btrfs_release_delayed_node(delayed_node); 1203 return 0; 1204 } 1205 mutex_unlock(&delayed_node->mutex); 1206 1207 path = btrfs_alloc_path(); 1208 if (!path) { 1209 btrfs_release_delayed_node(delayed_node); 1210 return -ENOMEM; 1211 } 1212 path->leave_spinning = 1; 1213 1214 block_rsv = trans->block_rsv; 1215 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1216 1217 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1218 1219 btrfs_release_delayed_node(delayed_node); 1220 btrfs_free_path(path); 1221 trans->block_rsv = block_rsv; 1222 1223 return ret; 1224 } 1225 1226 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1227 { 1228 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1229 struct btrfs_trans_handle *trans; 1230 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1231 struct btrfs_path *path; 1232 struct btrfs_block_rsv *block_rsv; 1233 int ret; 1234 1235 if (!delayed_node) 1236 return 0; 1237 1238 mutex_lock(&delayed_node->mutex); 1239 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1240 mutex_unlock(&delayed_node->mutex); 1241 btrfs_release_delayed_node(delayed_node); 1242 return 0; 1243 } 1244 mutex_unlock(&delayed_node->mutex); 1245 1246 trans = btrfs_join_transaction(delayed_node->root); 1247 if (IS_ERR(trans)) { 1248 ret = PTR_ERR(trans); 1249 goto out; 1250 } 1251 1252 path = btrfs_alloc_path(); 1253 if (!path) { 1254 ret = -ENOMEM; 1255 goto trans_out; 1256 } 1257 path->leave_spinning = 1; 1258 1259 block_rsv = trans->block_rsv; 1260 trans->block_rsv = &fs_info->delayed_block_rsv; 1261 1262 mutex_lock(&delayed_node->mutex); 1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1265 path, delayed_node); 1266 else 1267 ret = 0; 1268 mutex_unlock(&delayed_node->mutex); 1269 1270 btrfs_free_path(path); 1271 trans->block_rsv = block_rsv; 1272 trans_out: 1273 btrfs_end_transaction(trans); 1274 btrfs_btree_balance_dirty(fs_info); 1275 out: 1276 btrfs_release_delayed_node(delayed_node); 1277 1278 return ret; 1279 } 1280 1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1282 { 1283 struct btrfs_delayed_node *delayed_node; 1284 1285 delayed_node = READ_ONCE(inode->delayed_node); 1286 if (!delayed_node) 1287 return; 1288 1289 inode->delayed_node = NULL; 1290 btrfs_release_delayed_node(delayed_node); 1291 } 1292 1293 struct btrfs_async_delayed_work { 1294 struct btrfs_delayed_root *delayed_root; 1295 int nr; 1296 struct btrfs_work work; 1297 }; 1298 1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1300 { 1301 struct btrfs_async_delayed_work *async_work; 1302 struct btrfs_delayed_root *delayed_root; 1303 struct btrfs_trans_handle *trans; 1304 struct btrfs_path *path; 1305 struct btrfs_delayed_node *delayed_node = NULL; 1306 struct btrfs_root *root; 1307 struct btrfs_block_rsv *block_rsv; 1308 int total_done = 0; 1309 1310 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1311 delayed_root = async_work->delayed_root; 1312 1313 path = btrfs_alloc_path(); 1314 if (!path) 1315 goto out; 1316 1317 do { 1318 if (atomic_read(&delayed_root->items) < 1319 BTRFS_DELAYED_BACKGROUND / 2) 1320 break; 1321 1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1323 if (!delayed_node) 1324 break; 1325 1326 path->leave_spinning = 1; 1327 root = delayed_node->root; 1328 1329 trans = btrfs_join_transaction(root); 1330 if (IS_ERR(trans)) { 1331 btrfs_release_path(path); 1332 btrfs_release_prepared_delayed_node(delayed_node); 1333 total_done++; 1334 continue; 1335 } 1336 1337 block_rsv = trans->block_rsv; 1338 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1339 1340 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1341 1342 trans->block_rsv = block_rsv; 1343 btrfs_end_transaction(trans); 1344 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1345 1346 btrfs_release_path(path); 1347 btrfs_release_prepared_delayed_node(delayed_node); 1348 total_done++; 1349 1350 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1351 || total_done < async_work->nr); 1352 1353 btrfs_free_path(path); 1354 out: 1355 wake_up(&delayed_root->wait); 1356 kfree(async_work); 1357 } 1358 1359 1360 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1361 struct btrfs_fs_info *fs_info, int nr) 1362 { 1363 struct btrfs_async_delayed_work *async_work; 1364 1365 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1366 if (!async_work) 1367 return -ENOMEM; 1368 1369 async_work->delayed_root = delayed_root; 1370 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1371 btrfs_async_run_delayed_root, NULL, NULL); 1372 async_work->nr = nr; 1373 1374 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1375 return 0; 1376 } 1377 1378 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1379 { 1380 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1381 } 1382 1383 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1384 { 1385 int val = atomic_read(&delayed_root->items_seq); 1386 1387 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1388 return 1; 1389 1390 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1391 return 1; 1392 1393 return 0; 1394 } 1395 1396 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1397 { 1398 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1399 1400 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1401 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1402 return; 1403 1404 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1405 int seq; 1406 int ret; 1407 1408 seq = atomic_read(&delayed_root->items_seq); 1409 1410 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1411 if (ret) 1412 return; 1413 1414 wait_event_interruptible(delayed_root->wait, 1415 could_end_wait(delayed_root, seq)); 1416 return; 1417 } 1418 1419 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1420 } 1421 1422 /* Will return 0 or -ENOMEM */ 1423 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1424 struct btrfs_fs_info *fs_info, 1425 const char *name, int name_len, 1426 struct btrfs_inode *dir, 1427 struct btrfs_disk_key *disk_key, u8 type, 1428 u64 index) 1429 { 1430 struct btrfs_delayed_node *delayed_node; 1431 struct btrfs_delayed_item *delayed_item; 1432 struct btrfs_dir_item *dir_item; 1433 int ret; 1434 1435 delayed_node = btrfs_get_or_create_delayed_node(dir); 1436 if (IS_ERR(delayed_node)) 1437 return PTR_ERR(delayed_node); 1438 1439 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1440 if (!delayed_item) { 1441 ret = -ENOMEM; 1442 goto release_node; 1443 } 1444 1445 delayed_item->key.objectid = btrfs_ino(dir); 1446 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1447 delayed_item->key.offset = index; 1448 1449 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1450 dir_item->location = *disk_key; 1451 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1452 btrfs_set_stack_dir_data_len(dir_item, 0); 1453 btrfs_set_stack_dir_name_len(dir_item, name_len); 1454 btrfs_set_stack_dir_type(dir_item, type); 1455 memcpy((char *)(dir_item + 1), name, name_len); 1456 1457 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1458 /* 1459 * we have reserved enough space when we start a new transaction, 1460 * so reserving metadata failure is impossible 1461 */ 1462 BUG_ON(ret); 1463 1464 1465 mutex_lock(&delayed_node->mutex); 1466 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1467 if (unlikely(ret)) { 1468 btrfs_err(fs_info, 1469 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1470 name_len, name, delayed_node->root->objectid, 1471 delayed_node->inode_id, ret); 1472 BUG(); 1473 } 1474 mutex_unlock(&delayed_node->mutex); 1475 1476 release_node: 1477 btrfs_release_delayed_node(delayed_node); 1478 return ret; 1479 } 1480 1481 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1482 struct btrfs_delayed_node *node, 1483 struct btrfs_key *key) 1484 { 1485 struct btrfs_delayed_item *item; 1486 1487 mutex_lock(&node->mutex); 1488 item = __btrfs_lookup_delayed_insertion_item(node, key); 1489 if (!item) { 1490 mutex_unlock(&node->mutex); 1491 return 1; 1492 } 1493 1494 btrfs_delayed_item_release_metadata(node->root, item); 1495 btrfs_release_delayed_item(item); 1496 mutex_unlock(&node->mutex); 1497 return 0; 1498 } 1499 1500 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1501 struct btrfs_fs_info *fs_info, 1502 struct btrfs_inode *dir, u64 index) 1503 { 1504 struct btrfs_delayed_node *node; 1505 struct btrfs_delayed_item *item; 1506 struct btrfs_key item_key; 1507 int ret; 1508 1509 node = btrfs_get_or_create_delayed_node(dir); 1510 if (IS_ERR(node)) 1511 return PTR_ERR(node); 1512 1513 item_key.objectid = btrfs_ino(dir); 1514 item_key.type = BTRFS_DIR_INDEX_KEY; 1515 item_key.offset = index; 1516 1517 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); 1518 if (!ret) 1519 goto end; 1520 1521 item = btrfs_alloc_delayed_item(0); 1522 if (!item) { 1523 ret = -ENOMEM; 1524 goto end; 1525 } 1526 1527 item->key = item_key; 1528 1529 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1530 /* 1531 * we have reserved enough space when we start a new transaction, 1532 * so reserving metadata failure is impossible. 1533 */ 1534 BUG_ON(ret); 1535 1536 mutex_lock(&node->mutex); 1537 ret = __btrfs_add_delayed_deletion_item(node, item); 1538 if (unlikely(ret)) { 1539 btrfs_err(fs_info, 1540 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1541 index, node->root->objectid, node->inode_id, ret); 1542 BUG(); 1543 } 1544 mutex_unlock(&node->mutex); 1545 end: 1546 btrfs_release_delayed_node(node); 1547 return ret; 1548 } 1549 1550 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1551 { 1552 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1553 1554 if (!delayed_node) 1555 return -ENOENT; 1556 1557 /* 1558 * Since we have held i_mutex of this directory, it is impossible that 1559 * a new directory index is added into the delayed node and index_cnt 1560 * is updated now. So we needn't lock the delayed node. 1561 */ 1562 if (!delayed_node->index_cnt) { 1563 btrfs_release_delayed_node(delayed_node); 1564 return -EINVAL; 1565 } 1566 1567 inode->index_cnt = delayed_node->index_cnt; 1568 btrfs_release_delayed_node(delayed_node); 1569 return 0; 1570 } 1571 1572 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1573 struct list_head *ins_list, 1574 struct list_head *del_list) 1575 { 1576 struct btrfs_delayed_node *delayed_node; 1577 struct btrfs_delayed_item *item; 1578 1579 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1580 if (!delayed_node) 1581 return false; 1582 1583 /* 1584 * We can only do one readdir with delayed items at a time because of 1585 * item->readdir_list. 1586 */ 1587 inode_unlock_shared(inode); 1588 inode_lock(inode); 1589 1590 mutex_lock(&delayed_node->mutex); 1591 item = __btrfs_first_delayed_insertion_item(delayed_node); 1592 while (item) { 1593 refcount_inc(&item->refs); 1594 list_add_tail(&item->readdir_list, ins_list); 1595 item = __btrfs_next_delayed_item(item); 1596 } 1597 1598 item = __btrfs_first_delayed_deletion_item(delayed_node); 1599 while (item) { 1600 refcount_inc(&item->refs); 1601 list_add_tail(&item->readdir_list, del_list); 1602 item = __btrfs_next_delayed_item(item); 1603 } 1604 mutex_unlock(&delayed_node->mutex); 1605 /* 1606 * This delayed node is still cached in the btrfs inode, so refs 1607 * must be > 1 now, and we needn't check it is going to be freed 1608 * or not. 1609 * 1610 * Besides that, this function is used to read dir, we do not 1611 * insert/delete delayed items in this period. So we also needn't 1612 * requeue or dequeue this delayed node. 1613 */ 1614 refcount_dec(&delayed_node->refs); 1615 1616 return true; 1617 } 1618 1619 void btrfs_readdir_put_delayed_items(struct inode *inode, 1620 struct list_head *ins_list, 1621 struct list_head *del_list) 1622 { 1623 struct btrfs_delayed_item *curr, *next; 1624 1625 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1626 list_del(&curr->readdir_list); 1627 if (refcount_dec_and_test(&curr->refs)) 1628 kfree(curr); 1629 } 1630 1631 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1632 list_del(&curr->readdir_list); 1633 if (refcount_dec_and_test(&curr->refs)) 1634 kfree(curr); 1635 } 1636 1637 /* 1638 * The VFS is going to do up_read(), so we need to downgrade back to a 1639 * read lock. 1640 */ 1641 downgrade_write(&inode->i_rwsem); 1642 } 1643 1644 int btrfs_should_delete_dir_index(struct list_head *del_list, 1645 u64 index) 1646 { 1647 struct btrfs_delayed_item *curr; 1648 int ret = 0; 1649 1650 list_for_each_entry(curr, del_list, readdir_list) { 1651 if (curr->key.offset > index) 1652 break; 1653 if (curr->key.offset == index) { 1654 ret = 1; 1655 break; 1656 } 1657 } 1658 return ret; 1659 } 1660 1661 /* 1662 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1663 * 1664 */ 1665 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1666 struct list_head *ins_list) 1667 { 1668 struct btrfs_dir_item *di; 1669 struct btrfs_delayed_item *curr, *next; 1670 struct btrfs_key location; 1671 char *name; 1672 int name_len; 1673 int over = 0; 1674 unsigned char d_type; 1675 1676 if (list_empty(ins_list)) 1677 return 0; 1678 1679 /* 1680 * Changing the data of the delayed item is impossible. So 1681 * we needn't lock them. And we have held i_mutex of the 1682 * directory, nobody can delete any directory indexes now. 1683 */ 1684 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1685 list_del(&curr->readdir_list); 1686 1687 if (curr->key.offset < ctx->pos) { 1688 if (refcount_dec_and_test(&curr->refs)) 1689 kfree(curr); 1690 continue; 1691 } 1692 1693 ctx->pos = curr->key.offset; 1694 1695 di = (struct btrfs_dir_item *)curr->data; 1696 name = (char *)(di + 1); 1697 name_len = btrfs_stack_dir_name_len(di); 1698 1699 d_type = btrfs_filetype_table[di->type]; 1700 btrfs_disk_key_to_cpu(&location, &di->location); 1701 1702 over = !dir_emit(ctx, name, name_len, 1703 location.objectid, d_type); 1704 1705 if (refcount_dec_and_test(&curr->refs)) 1706 kfree(curr); 1707 1708 if (over) 1709 return 1; 1710 ctx->pos++; 1711 } 1712 return 0; 1713 } 1714 1715 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1716 struct btrfs_inode_item *inode_item, 1717 struct inode *inode) 1718 { 1719 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1720 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1721 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1722 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1723 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1724 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1725 btrfs_set_stack_inode_generation(inode_item, 1726 BTRFS_I(inode)->generation); 1727 btrfs_set_stack_inode_sequence(inode_item, 1728 inode_peek_iversion(inode)); 1729 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1730 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1731 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1732 btrfs_set_stack_inode_block_group(inode_item, 0); 1733 1734 btrfs_set_stack_timespec_sec(&inode_item->atime, 1735 inode->i_atime.tv_sec); 1736 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1737 inode->i_atime.tv_nsec); 1738 1739 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1740 inode->i_mtime.tv_sec); 1741 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1742 inode->i_mtime.tv_nsec); 1743 1744 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1745 inode->i_ctime.tv_sec); 1746 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1747 inode->i_ctime.tv_nsec); 1748 1749 btrfs_set_stack_timespec_sec(&inode_item->otime, 1750 BTRFS_I(inode)->i_otime.tv_sec); 1751 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1752 BTRFS_I(inode)->i_otime.tv_nsec); 1753 } 1754 1755 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1756 { 1757 struct btrfs_delayed_node *delayed_node; 1758 struct btrfs_inode_item *inode_item; 1759 1760 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1761 if (!delayed_node) 1762 return -ENOENT; 1763 1764 mutex_lock(&delayed_node->mutex); 1765 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1766 mutex_unlock(&delayed_node->mutex); 1767 btrfs_release_delayed_node(delayed_node); 1768 return -ENOENT; 1769 } 1770 1771 inode_item = &delayed_node->inode_item; 1772 1773 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1774 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1775 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1776 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1777 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1778 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1779 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1780 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1781 1782 inode_set_iversion_queried(inode, 1783 btrfs_stack_inode_sequence(inode_item)); 1784 inode->i_rdev = 0; 1785 *rdev = btrfs_stack_inode_rdev(inode_item); 1786 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1787 1788 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1789 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1790 1791 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1792 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1793 1794 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1795 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1796 1797 BTRFS_I(inode)->i_otime.tv_sec = 1798 btrfs_stack_timespec_sec(&inode_item->otime); 1799 BTRFS_I(inode)->i_otime.tv_nsec = 1800 btrfs_stack_timespec_nsec(&inode_item->otime); 1801 1802 inode->i_generation = BTRFS_I(inode)->generation; 1803 BTRFS_I(inode)->index_cnt = (u64)-1; 1804 1805 mutex_unlock(&delayed_node->mutex); 1806 btrfs_release_delayed_node(delayed_node); 1807 return 0; 1808 } 1809 1810 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1811 struct btrfs_root *root, struct inode *inode) 1812 { 1813 struct btrfs_delayed_node *delayed_node; 1814 int ret = 0; 1815 1816 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1817 if (IS_ERR(delayed_node)) 1818 return PTR_ERR(delayed_node); 1819 1820 mutex_lock(&delayed_node->mutex); 1821 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1822 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1823 goto release_node; 1824 } 1825 1826 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1827 delayed_node); 1828 if (ret) 1829 goto release_node; 1830 1831 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1832 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1833 delayed_node->count++; 1834 atomic_inc(&root->fs_info->delayed_root->items); 1835 release_node: 1836 mutex_unlock(&delayed_node->mutex); 1837 btrfs_release_delayed_node(delayed_node); 1838 return ret; 1839 } 1840 1841 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1842 { 1843 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1844 struct btrfs_delayed_node *delayed_node; 1845 1846 /* 1847 * we don't do delayed inode updates during log recovery because it 1848 * leads to enospc problems. This means we also can't do 1849 * delayed inode refs 1850 */ 1851 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1852 return -EAGAIN; 1853 1854 delayed_node = btrfs_get_or_create_delayed_node(inode); 1855 if (IS_ERR(delayed_node)) 1856 return PTR_ERR(delayed_node); 1857 1858 /* 1859 * We don't reserve space for inode ref deletion is because: 1860 * - We ONLY do async inode ref deletion for the inode who has only 1861 * one link(i_nlink == 1), it means there is only one inode ref. 1862 * And in most case, the inode ref and the inode item are in the 1863 * same leaf, and we will deal with them at the same time. 1864 * Since we are sure we will reserve the space for the inode item, 1865 * it is unnecessary to reserve space for inode ref deletion. 1866 * - If the inode ref and the inode item are not in the same leaf, 1867 * We also needn't worry about enospc problem, because we reserve 1868 * much more space for the inode update than it needs. 1869 * - At the worst, we can steal some space from the global reservation. 1870 * It is very rare. 1871 */ 1872 mutex_lock(&delayed_node->mutex); 1873 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1874 goto release_node; 1875 1876 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1877 delayed_node->count++; 1878 atomic_inc(&fs_info->delayed_root->items); 1879 release_node: 1880 mutex_unlock(&delayed_node->mutex); 1881 btrfs_release_delayed_node(delayed_node); 1882 return 0; 1883 } 1884 1885 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1886 { 1887 struct btrfs_root *root = delayed_node->root; 1888 struct btrfs_fs_info *fs_info = root->fs_info; 1889 struct btrfs_delayed_item *curr_item, *prev_item; 1890 1891 mutex_lock(&delayed_node->mutex); 1892 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1893 while (curr_item) { 1894 btrfs_delayed_item_release_metadata(root, curr_item); 1895 prev_item = curr_item; 1896 curr_item = __btrfs_next_delayed_item(prev_item); 1897 btrfs_release_delayed_item(prev_item); 1898 } 1899 1900 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1901 while (curr_item) { 1902 btrfs_delayed_item_release_metadata(root, curr_item); 1903 prev_item = curr_item; 1904 curr_item = __btrfs_next_delayed_item(prev_item); 1905 btrfs_release_delayed_item(prev_item); 1906 } 1907 1908 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1909 btrfs_release_delayed_iref(delayed_node); 1910 1911 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1912 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1913 btrfs_release_delayed_inode(delayed_node); 1914 } 1915 mutex_unlock(&delayed_node->mutex); 1916 } 1917 1918 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1919 { 1920 struct btrfs_delayed_node *delayed_node; 1921 1922 delayed_node = btrfs_get_delayed_node(inode); 1923 if (!delayed_node) 1924 return; 1925 1926 __btrfs_kill_delayed_node(delayed_node); 1927 btrfs_release_delayed_node(delayed_node); 1928 } 1929 1930 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1931 { 1932 u64 inode_id = 0; 1933 struct btrfs_delayed_node *delayed_nodes[8]; 1934 int i, n; 1935 1936 while (1) { 1937 spin_lock(&root->inode_lock); 1938 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1939 (void **)delayed_nodes, inode_id, 1940 ARRAY_SIZE(delayed_nodes)); 1941 if (!n) { 1942 spin_unlock(&root->inode_lock); 1943 break; 1944 } 1945 1946 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1947 1948 for (i = 0; i < n; i++) 1949 refcount_inc(&delayed_nodes[i]->refs); 1950 spin_unlock(&root->inode_lock); 1951 1952 for (i = 0; i < n; i++) { 1953 __btrfs_kill_delayed_node(delayed_nodes[i]); 1954 btrfs_release_delayed_node(delayed_nodes[i]); 1955 } 1956 } 1957 } 1958 1959 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1960 { 1961 struct btrfs_delayed_node *curr_node, *prev_node; 1962 1963 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1964 while (curr_node) { 1965 __btrfs_kill_delayed_node(curr_node); 1966 1967 prev_node = curr_node; 1968 curr_node = btrfs_next_delayed_node(curr_node); 1969 btrfs_release_delayed_node(prev_node); 1970 } 1971 } 1972 1973