1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "ctree.h" 25 26 #define BTRFS_DELAYED_WRITEBACK 512 27 #define BTRFS_DELAYED_BACKGROUND 128 28 #define BTRFS_DELAYED_BATCH 16 29 30 static struct kmem_cache *delayed_node_cache; 31 32 int __init btrfs_delayed_inode_init(void) 33 { 34 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 35 sizeof(struct btrfs_delayed_node), 36 0, 37 SLAB_MEM_SPREAD, 38 NULL); 39 if (!delayed_node_cache) 40 return -ENOMEM; 41 return 0; 42 } 43 44 void btrfs_delayed_inode_exit(void) 45 { 46 kmem_cache_destroy(delayed_node_cache); 47 } 48 49 static inline void btrfs_init_delayed_node( 50 struct btrfs_delayed_node *delayed_node, 51 struct btrfs_root *root, u64 inode_id) 52 { 53 delayed_node->root = root; 54 delayed_node->inode_id = inode_id; 55 atomic_set(&delayed_node->refs, 0); 56 delayed_node->ins_root = RB_ROOT; 57 delayed_node->del_root = RB_ROOT; 58 mutex_init(&delayed_node->mutex); 59 INIT_LIST_HEAD(&delayed_node->n_list); 60 INIT_LIST_HEAD(&delayed_node->p_list); 61 } 62 63 static inline int btrfs_is_continuous_delayed_item( 64 struct btrfs_delayed_item *item1, 65 struct btrfs_delayed_item *item2) 66 { 67 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 68 item1->key.objectid == item2->key.objectid && 69 item1->key.type == item2->key.type && 70 item1->key.offset + 1 == item2->key.offset) 71 return 1; 72 return 0; 73 } 74 75 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 76 struct btrfs_root *root) 77 { 78 return root->fs_info->delayed_root; 79 } 80 81 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 82 { 83 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 84 struct btrfs_root *root = btrfs_inode->root; 85 u64 ino = btrfs_ino(inode); 86 struct btrfs_delayed_node *node; 87 88 node = ACCESS_ONCE(btrfs_inode->delayed_node); 89 if (node) { 90 atomic_inc(&node->refs); 91 return node; 92 } 93 94 spin_lock(&root->inode_lock); 95 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 96 if (node) { 97 if (btrfs_inode->delayed_node) { 98 atomic_inc(&node->refs); /* can be accessed */ 99 BUG_ON(btrfs_inode->delayed_node != node); 100 spin_unlock(&root->inode_lock); 101 return node; 102 } 103 btrfs_inode->delayed_node = node; 104 /* can be accessed and cached in the inode */ 105 atomic_add(2, &node->refs); 106 spin_unlock(&root->inode_lock); 107 return node; 108 } 109 spin_unlock(&root->inode_lock); 110 111 return NULL; 112 } 113 114 /* Will return either the node or PTR_ERR(-ENOMEM) */ 115 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 116 struct inode *inode) 117 { 118 struct btrfs_delayed_node *node; 119 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(inode); 122 int ret; 123 124 again: 125 node = btrfs_get_delayed_node(inode); 126 if (node) 127 return node; 128 129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 130 if (!node) 131 return ERR_PTR(-ENOMEM); 132 btrfs_init_delayed_node(node, root, ino); 133 134 /* cached in the btrfs inode and can be accessed */ 135 atomic_add(2, &node->refs); 136 137 ret = radix_tree_preload(GFP_NOFS); 138 if (ret) { 139 kmem_cache_free(delayed_node_cache, node); 140 return ERR_PTR(ret); 141 } 142 143 spin_lock(&root->inode_lock); 144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 145 if (ret == -EEXIST) { 146 spin_unlock(&root->inode_lock); 147 kmem_cache_free(delayed_node_cache, node); 148 radix_tree_preload_end(); 149 goto again; 150 } 151 btrfs_inode->delayed_node = node; 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 155 return node; 156 } 157 158 /* 159 * Call it when holding delayed_node->mutex 160 * 161 * If mod = 1, add this node into the prepared list. 162 */ 163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 164 struct btrfs_delayed_node *node, 165 int mod) 166 { 167 spin_lock(&root->lock); 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 169 if (!list_empty(&node->p_list)) 170 list_move_tail(&node->p_list, &root->prepare_list); 171 else if (mod) 172 list_add_tail(&node->p_list, &root->prepare_list); 173 } else { 174 list_add_tail(&node->n_list, &root->node_list); 175 list_add_tail(&node->p_list, &root->prepare_list); 176 atomic_inc(&node->refs); /* inserted into list */ 177 root->nodes++; 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 179 } 180 spin_unlock(&root->lock); 181 } 182 183 /* Call it when holding delayed_node->mutex */ 184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 185 struct btrfs_delayed_node *node) 186 { 187 spin_lock(&root->lock); 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 189 root->nodes--; 190 atomic_dec(&node->refs); /* not in the list */ 191 list_del_init(&node->n_list); 192 if (!list_empty(&node->p_list)) 193 list_del_init(&node->p_list); 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 static struct btrfs_delayed_node *btrfs_first_delayed_node( 200 struct btrfs_delayed_root *delayed_root) 201 { 202 struct list_head *p; 203 struct btrfs_delayed_node *node = NULL; 204 205 spin_lock(&delayed_root->lock); 206 if (list_empty(&delayed_root->node_list)) 207 goto out; 208 209 p = delayed_root->node_list.next; 210 node = list_entry(p, struct btrfs_delayed_node, n_list); 211 atomic_inc(&node->refs); 212 out: 213 spin_unlock(&delayed_root->lock); 214 215 return node; 216 } 217 218 static struct btrfs_delayed_node *btrfs_next_delayed_node( 219 struct btrfs_delayed_node *node) 220 { 221 struct btrfs_delayed_root *delayed_root; 222 struct list_head *p; 223 struct btrfs_delayed_node *next = NULL; 224 225 delayed_root = node->root->fs_info->delayed_root; 226 spin_lock(&delayed_root->lock); 227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 228 /* not in the list */ 229 if (list_empty(&delayed_root->node_list)) 230 goto out; 231 p = delayed_root->node_list.next; 232 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 233 goto out; 234 else 235 p = node->n_list.next; 236 237 next = list_entry(p, struct btrfs_delayed_node, n_list); 238 atomic_inc(&next->refs); 239 out: 240 spin_unlock(&delayed_root->lock); 241 242 return next; 243 } 244 245 static void __btrfs_release_delayed_node( 246 struct btrfs_delayed_node *delayed_node, 247 int mod) 248 { 249 struct btrfs_delayed_root *delayed_root; 250 251 if (!delayed_node) 252 return; 253 254 delayed_root = delayed_node->root->fs_info->delayed_root; 255 256 mutex_lock(&delayed_node->mutex); 257 if (delayed_node->count) 258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 259 else 260 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 261 mutex_unlock(&delayed_node->mutex); 262 263 if (atomic_dec_and_test(&delayed_node->refs)) { 264 bool free = false; 265 struct btrfs_root *root = delayed_node->root; 266 spin_lock(&root->inode_lock); 267 if (atomic_read(&delayed_node->refs) == 0) { 268 radix_tree_delete(&root->delayed_nodes_tree, 269 delayed_node->inode_id); 270 free = true; 271 } 272 spin_unlock(&root->inode_lock); 273 if (free) 274 kmem_cache_free(delayed_node_cache, delayed_node); 275 } 276 } 277 278 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 279 { 280 __btrfs_release_delayed_node(node, 0); 281 } 282 283 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 284 struct btrfs_delayed_root *delayed_root) 285 { 286 struct list_head *p; 287 struct btrfs_delayed_node *node = NULL; 288 289 spin_lock(&delayed_root->lock); 290 if (list_empty(&delayed_root->prepare_list)) 291 goto out; 292 293 p = delayed_root->prepare_list.next; 294 list_del_init(p); 295 node = list_entry(p, struct btrfs_delayed_node, p_list); 296 atomic_inc(&node->refs); 297 out: 298 spin_unlock(&delayed_root->lock); 299 300 return node; 301 } 302 303 static inline void btrfs_release_prepared_delayed_node( 304 struct btrfs_delayed_node *node) 305 { 306 __btrfs_release_delayed_node(node, 1); 307 } 308 309 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 310 { 311 struct btrfs_delayed_item *item; 312 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 313 if (item) { 314 item->data_len = data_len; 315 item->ins_or_del = 0; 316 item->bytes_reserved = 0; 317 item->delayed_node = NULL; 318 atomic_set(&item->refs, 1); 319 } 320 return item; 321 } 322 323 /* 324 * __btrfs_lookup_delayed_item - look up the delayed item by key 325 * @delayed_node: pointer to the delayed node 326 * @key: the key to look up 327 * @prev: used to store the prev item if the right item isn't found 328 * @next: used to store the next item if the right item isn't found 329 * 330 * Note: if we don't find the right item, we will return the prev item and 331 * the next item. 332 */ 333 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 334 struct rb_root *root, 335 struct btrfs_key *key, 336 struct btrfs_delayed_item **prev, 337 struct btrfs_delayed_item **next) 338 { 339 struct rb_node *node, *prev_node = NULL; 340 struct btrfs_delayed_item *delayed_item = NULL; 341 int ret = 0; 342 343 node = root->rb_node; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 prev_node = node; 349 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 350 if (ret < 0) 351 node = node->rb_right; 352 else if (ret > 0) 353 node = node->rb_left; 354 else 355 return delayed_item; 356 } 357 358 if (prev) { 359 if (!prev_node) 360 *prev = NULL; 361 else if (ret < 0) 362 *prev = delayed_item; 363 else if ((node = rb_prev(prev_node)) != NULL) { 364 *prev = rb_entry(node, struct btrfs_delayed_item, 365 rb_node); 366 } else 367 *prev = NULL; 368 } 369 370 if (next) { 371 if (!prev_node) 372 *next = NULL; 373 else if (ret > 0) 374 *next = delayed_item; 375 else if ((node = rb_next(prev_node)) != NULL) { 376 *next = rb_entry(node, struct btrfs_delayed_item, 377 rb_node); 378 } else 379 *next = NULL; 380 } 381 return NULL; 382 } 383 384 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 385 struct btrfs_delayed_node *delayed_node, 386 struct btrfs_key *key) 387 { 388 struct btrfs_delayed_item *item; 389 390 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 391 NULL, NULL); 392 return item; 393 } 394 395 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 396 struct btrfs_delayed_item *ins, 397 int action) 398 { 399 struct rb_node **p, *node; 400 struct rb_node *parent_node = NULL; 401 struct rb_root *root; 402 struct btrfs_delayed_item *item; 403 int cmp; 404 405 if (action == BTRFS_DELAYED_INSERTION_ITEM) 406 root = &delayed_node->ins_root; 407 else if (action == BTRFS_DELAYED_DELETION_ITEM) 408 root = &delayed_node->del_root; 409 else 410 BUG(); 411 p = &root->rb_node; 412 node = &ins->rb_node; 413 414 while (*p) { 415 parent_node = *p; 416 item = rb_entry(parent_node, struct btrfs_delayed_item, 417 rb_node); 418 419 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 420 if (cmp < 0) 421 p = &(*p)->rb_right; 422 else if (cmp > 0) 423 p = &(*p)->rb_left; 424 else 425 return -EEXIST; 426 } 427 428 rb_link_node(node, parent_node, p); 429 rb_insert_color(node, root); 430 ins->delayed_node = delayed_node; 431 ins->ins_or_del = action; 432 433 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 434 action == BTRFS_DELAYED_INSERTION_ITEM && 435 ins->key.offset >= delayed_node->index_cnt) 436 delayed_node->index_cnt = ins->key.offset + 1; 437 438 delayed_node->count++; 439 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 440 return 0; 441 } 442 443 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 444 struct btrfs_delayed_item *item) 445 { 446 return __btrfs_add_delayed_item(node, item, 447 BTRFS_DELAYED_INSERTION_ITEM); 448 } 449 450 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 451 struct btrfs_delayed_item *item) 452 { 453 return __btrfs_add_delayed_item(node, item, 454 BTRFS_DELAYED_DELETION_ITEM); 455 } 456 457 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 458 { 459 int seq = atomic_inc_return(&delayed_root->items_seq); 460 461 /* 462 * atomic_dec_return implies a barrier for waitqueue_active 463 */ 464 if ((atomic_dec_return(&delayed_root->items) < 465 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) && 466 waitqueue_active(&delayed_root->wait)) 467 wake_up(&delayed_root->wait); 468 } 469 470 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 471 { 472 struct rb_root *root; 473 struct btrfs_delayed_root *delayed_root; 474 475 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 476 477 BUG_ON(!delayed_root); 478 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 479 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 480 481 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 482 root = &delayed_item->delayed_node->ins_root; 483 else 484 root = &delayed_item->delayed_node->del_root; 485 486 rb_erase(&delayed_item->rb_node, root); 487 delayed_item->delayed_node->count--; 488 489 finish_one_item(delayed_root); 490 } 491 492 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 493 { 494 if (item) { 495 __btrfs_remove_delayed_item(item); 496 if (atomic_dec_and_test(&item->refs)) 497 kfree(item); 498 } 499 } 500 501 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 502 struct btrfs_delayed_node *delayed_node) 503 { 504 struct rb_node *p; 505 struct btrfs_delayed_item *item = NULL; 506 507 p = rb_first(&delayed_node->ins_root); 508 if (p) 509 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 510 511 return item; 512 } 513 514 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 515 struct btrfs_delayed_node *delayed_node) 516 { 517 struct rb_node *p; 518 struct btrfs_delayed_item *item = NULL; 519 520 p = rb_first(&delayed_node->del_root); 521 if (p) 522 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 523 524 return item; 525 } 526 527 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 528 struct btrfs_delayed_item *item) 529 { 530 struct rb_node *p; 531 struct btrfs_delayed_item *next = NULL; 532 533 p = rb_next(&item->rb_node); 534 if (p) 535 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 536 537 return next; 538 } 539 540 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 541 struct btrfs_root *root, 542 struct btrfs_delayed_item *item) 543 { 544 struct btrfs_block_rsv *src_rsv; 545 struct btrfs_block_rsv *dst_rsv; 546 u64 num_bytes; 547 int ret; 548 549 if (!trans->bytes_reserved) 550 return 0; 551 552 src_rsv = trans->block_rsv; 553 dst_rsv = &root->fs_info->delayed_block_rsv; 554 555 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 556 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 557 if (!ret) { 558 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 559 item->key.objectid, 560 num_bytes, 1); 561 item->bytes_reserved = num_bytes; 562 } 563 564 return ret; 565 } 566 567 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 568 struct btrfs_delayed_item *item) 569 { 570 struct btrfs_block_rsv *rsv; 571 572 if (!item->bytes_reserved) 573 return; 574 575 rsv = &root->fs_info->delayed_block_rsv; 576 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 577 item->key.objectid, item->bytes_reserved, 578 0); 579 btrfs_block_rsv_release(root, rsv, 580 item->bytes_reserved); 581 } 582 583 static int btrfs_delayed_inode_reserve_metadata( 584 struct btrfs_trans_handle *trans, 585 struct btrfs_root *root, 586 struct inode *inode, 587 struct btrfs_delayed_node *node) 588 { 589 struct btrfs_block_rsv *src_rsv; 590 struct btrfs_block_rsv *dst_rsv; 591 u64 num_bytes; 592 int ret; 593 bool release = false; 594 595 src_rsv = trans->block_rsv; 596 dst_rsv = &root->fs_info->delayed_block_rsv; 597 598 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 599 600 /* 601 * If our block_rsv is the delalloc block reserve then check and see if 602 * we have our extra reservation for updating the inode. If not fall 603 * through and try to reserve space quickly. 604 * 605 * We used to try and steal from the delalloc block rsv or the global 606 * reserve, but we'd steal a full reservation, which isn't kind. We are 607 * here through delalloc which means we've likely just cowed down close 608 * to the leaf that contains the inode, so we would steal less just 609 * doing the fallback inode update, so if we do end up having to steal 610 * from the global block rsv we hopefully only steal one or two blocks 611 * worth which is less likely to hurt us. 612 */ 613 if (src_rsv && src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) { 614 spin_lock(&BTRFS_I(inode)->lock); 615 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 616 &BTRFS_I(inode)->runtime_flags)) 617 release = true; 618 else 619 src_rsv = NULL; 620 spin_unlock(&BTRFS_I(inode)->lock); 621 } 622 623 /* 624 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 625 * which doesn't reserve space for speed. This is a problem since we 626 * still need to reserve space for this update, so try to reserve the 627 * space. 628 * 629 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 630 * we're accounted for. 631 */ 632 if (!src_rsv || (!trans->bytes_reserved && 633 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 635 BTRFS_RESERVE_NO_FLUSH); 636 /* 637 * Since we're under a transaction reserve_metadata_bytes could 638 * try to commit the transaction which will make it return 639 * EAGAIN to make us stop the transaction we have, so return 640 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 641 */ 642 if (ret == -EAGAIN) 643 ret = -ENOSPC; 644 if (!ret) { 645 node->bytes_reserved = num_bytes; 646 trace_btrfs_space_reservation(root->fs_info, 647 "delayed_inode", 648 btrfs_ino(inode), 649 num_bytes, 1); 650 } 651 return ret; 652 } 653 654 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 655 656 /* 657 * Migrate only takes a reservation, it doesn't touch the size of the 658 * block_rsv. This is to simplify people who don't normally have things 659 * migrated from their block rsv. If they go to release their 660 * reservation, that will decrease the size as well, so if migrate 661 * reduced size we'd end up with a negative size. But for the 662 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 663 * but we could in fact do this reserve/migrate dance several times 664 * between the time we did the original reservation and we'd clean it 665 * up. So to take care of this, release the space for the meta 666 * reservation here. I think it may be time for a documentation page on 667 * how block rsvs. work. 668 */ 669 if (!ret) { 670 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 671 btrfs_ino(inode), num_bytes, 1); 672 node->bytes_reserved = num_bytes; 673 } 674 675 if (release) { 676 trace_btrfs_space_reservation(root->fs_info, "delalloc", 677 btrfs_ino(inode), num_bytes, 0); 678 btrfs_block_rsv_release(root, src_rsv, num_bytes); 679 } 680 681 return ret; 682 } 683 684 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 685 struct btrfs_delayed_node *node) 686 { 687 struct btrfs_block_rsv *rsv; 688 689 if (!node->bytes_reserved) 690 return; 691 692 rsv = &root->fs_info->delayed_block_rsv; 693 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 694 node->inode_id, node->bytes_reserved, 0); 695 btrfs_block_rsv_release(root, rsv, 696 node->bytes_reserved); 697 node->bytes_reserved = 0; 698 } 699 700 /* 701 * This helper will insert some continuous items into the same leaf according 702 * to the free space of the leaf. 703 */ 704 static int btrfs_batch_insert_items(struct btrfs_root *root, 705 struct btrfs_path *path, 706 struct btrfs_delayed_item *item) 707 { 708 struct btrfs_delayed_item *curr, *next; 709 int free_space; 710 int total_data_size = 0, total_size = 0; 711 struct extent_buffer *leaf; 712 char *data_ptr; 713 struct btrfs_key *keys; 714 u32 *data_size; 715 struct list_head head; 716 int slot; 717 int nitems; 718 int i; 719 int ret = 0; 720 721 BUG_ON(!path->nodes[0]); 722 723 leaf = path->nodes[0]; 724 free_space = btrfs_leaf_free_space(root, leaf); 725 INIT_LIST_HEAD(&head); 726 727 next = item; 728 nitems = 0; 729 730 /* 731 * count the number of the continuous items that we can insert in batch 732 */ 733 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 734 free_space) { 735 total_data_size += next->data_len; 736 total_size += next->data_len + sizeof(struct btrfs_item); 737 list_add_tail(&next->tree_list, &head); 738 nitems++; 739 740 curr = next; 741 next = __btrfs_next_delayed_item(curr); 742 if (!next) 743 break; 744 745 if (!btrfs_is_continuous_delayed_item(curr, next)) 746 break; 747 } 748 749 if (!nitems) { 750 ret = 0; 751 goto out; 752 } 753 754 /* 755 * we need allocate some memory space, but it might cause the task 756 * to sleep, so we set all locked nodes in the path to blocking locks 757 * first. 758 */ 759 btrfs_set_path_blocking(path); 760 761 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 762 if (!keys) { 763 ret = -ENOMEM; 764 goto out; 765 } 766 767 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 768 if (!data_size) { 769 ret = -ENOMEM; 770 goto error; 771 } 772 773 /* get keys of all the delayed items */ 774 i = 0; 775 list_for_each_entry(next, &head, tree_list) { 776 keys[i] = next->key; 777 data_size[i] = next->data_len; 778 i++; 779 } 780 781 /* reset all the locked nodes in the patch to spinning locks. */ 782 btrfs_clear_path_blocking(path, NULL, 0); 783 784 /* insert the keys of the items */ 785 setup_items_for_insert(root, path, keys, data_size, 786 total_data_size, total_size, nitems); 787 788 /* insert the dir index items */ 789 slot = path->slots[0]; 790 list_for_each_entry_safe(curr, next, &head, tree_list) { 791 data_ptr = btrfs_item_ptr(leaf, slot, char); 792 write_extent_buffer(leaf, &curr->data, 793 (unsigned long)data_ptr, 794 curr->data_len); 795 slot++; 796 797 btrfs_delayed_item_release_metadata(root, curr); 798 799 list_del(&curr->tree_list); 800 btrfs_release_delayed_item(curr); 801 } 802 803 error: 804 kfree(data_size); 805 kfree(keys); 806 out: 807 return ret; 808 } 809 810 /* 811 * This helper can just do simple insertion that needn't extend item for new 812 * data, such as directory name index insertion, inode insertion. 813 */ 814 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 815 struct btrfs_root *root, 816 struct btrfs_path *path, 817 struct btrfs_delayed_item *delayed_item) 818 { 819 struct extent_buffer *leaf; 820 char *ptr; 821 int ret; 822 823 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 824 delayed_item->data_len); 825 if (ret < 0 && ret != -EEXIST) 826 return ret; 827 828 leaf = path->nodes[0]; 829 830 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 831 832 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 833 delayed_item->data_len); 834 btrfs_mark_buffer_dirty(leaf); 835 836 btrfs_delayed_item_release_metadata(root, delayed_item); 837 return 0; 838 } 839 840 /* 841 * we insert an item first, then if there are some continuous items, we try 842 * to insert those items into the same leaf. 843 */ 844 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 845 struct btrfs_path *path, 846 struct btrfs_root *root, 847 struct btrfs_delayed_node *node) 848 { 849 struct btrfs_delayed_item *curr, *prev; 850 int ret = 0; 851 852 do_again: 853 mutex_lock(&node->mutex); 854 curr = __btrfs_first_delayed_insertion_item(node); 855 if (!curr) 856 goto insert_end; 857 858 ret = btrfs_insert_delayed_item(trans, root, path, curr); 859 if (ret < 0) { 860 btrfs_release_path(path); 861 goto insert_end; 862 } 863 864 prev = curr; 865 curr = __btrfs_next_delayed_item(prev); 866 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 867 /* insert the continuous items into the same leaf */ 868 path->slots[0]++; 869 btrfs_batch_insert_items(root, path, curr); 870 } 871 btrfs_release_delayed_item(prev); 872 btrfs_mark_buffer_dirty(path->nodes[0]); 873 874 btrfs_release_path(path); 875 mutex_unlock(&node->mutex); 876 goto do_again; 877 878 insert_end: 879 mutex_unlock(&node->mutex); 880 return ret; 881 } 882 883 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 884 struct btrfs_root *root, 885 struct btrfs_path *path, 886 struct btrfs_delayed_item *item) 887 { 888 struct btrfs_delayed_item *curr, *next; 889 struct extent_buffer *leaf; 890 struct btrfs_key key; 891 struct list_head head; 892 int nitems, i, last_item; 893 int ret = 0; 894 895 BUG_ON(!path->nodes[0]); 896 897 leaf = path->nodes[0]; 898 899 i = path->slots[0]; 900 last_item = btrfs_header_nritems(leaf) - 1; 901 if (i > last_item) 902 return -ENOENT; /* FIXME: Is errno suitable? */ 903 904 next = item; 905 INIT_LIST_HEAD(&head); 906 btrfs_item_key_to_cpu(leaf, &key, i); 907 nitems = 0; 908 /* 909 * count the number of the dir index items that we can delete in batch 910 */ 911 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 912 list_add_tail(&next->tree_list, &head); 913 nitems++; 914 915 curr = next; 916 next = __btrfs_next_delayed_item(curr); 917 if (!next) 918 break; 919 920 if (!btrfs_is_continuous_delayed_item(curr, next)) 921 break; 922 923 i++; 924 if (i > last_item) 925 break; 926 btrfs_item_key_to_cpu(leaf, &key, i); 927 } 928 929 if (!nitems) 930 return 0; 931 932 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 933 if (ret) 934 goto out; 935 936 list_for_each_entry_safe(curr, next, &head, tree_list) { 937 btrfs_delayed_item_release_metadata(root, curr); 938 list_del(&curr->tree_list); 939 btrfs_release_delayed_item(curr); 940 } 941 942 out: 943 return ret; 944 } 945 946 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 947 struct btrfs_path *path, 948 struct btrfs_root *root, 949 struct btrfs_delayed_node *node) 950 { 951 struct btrfs_delayed_item *curr, *prev; 952 int ret = 0; 953 954 do_again: 955 mutex_lock(&node->mutex); 956 curr = __btrfs_first_delayed_deletion_item(node); 957 if (!curr) 958 goto delete_fail; 959 960 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 961 if (ret < 0) 962 goto delete_fail; 963 else if (ret > 0) { 964 /* 965 * can't find the item which the node points to, so this node 966 * is invalid, just drop it. 967 */ 968 prev = curr; 969 curr = __btrfs_next_delayed_item(prev); 970 btrfs_release_delayed_item(prev); 971 ret = 0; 972 btrfs_release_path(path); 973 if (curr) { 974 mutex_unlock(&node->mutex); 975 goto do_again; 976 } else 977 goto delete_fail; 978 } 979 980 btrfs_batch_delete_items(trans, root, path, curr); 981 btrfs_release_path(path); 982 mutex_unlock(&node->mutex); 983 goto do_again; 984 985 delete_fail: 986 btrfs_release_path(path); 987 mutex_unlock(&node->mutex); 988 return ret; 989 } 990 991 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 992 { 993 struct btrfs_delayed_root *delayed_root; 994 995 if (delayed_node && 996 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 997 BUG_ON(!delayed_node->root); 998 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 999 delayed_node->count--; 1000 1001 delayed_root = delayed_node->root->fs_info->delayed_root; 1002 finish_one_item(delayed_root); 1003 } 1004 } 1005 1006 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 1007 { 1008 struct btrfs_delayed_root *delayed_root; 1009 1010 ASSERT(delayed_node->root); 1011 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1012 delayed_node->count--; 1013 1014 delayed_root = delayed_node->root->fs_info->delayed_root; 1015 finish_one_item(delayed_root); 1016 } 1017 1018 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1019 struct btrfs_root *root, 1020 struct btrfs_path *path, 1021 struct btrfs_delayed_node *node) 1022 { 1023 struct btrfs_key key; 1024 struct btrfs_inode_item *inode_item; 1025 struct extent_buffer *leaf; 1026 int mod; 1027 int ret; 1028 1029 key.objectid = node->inode_id; 1030 key.type = BTRFS_INODE_ITEM_KEY; 1031 key.offset = 0; 1032 1033 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1034 mod = -1; 1035 else 1036 mod = 1; 1037 1038 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1039 if (ret > 0) { 1040 btrfs_release_path(path); 1041 return -ENOENT; 1042 } else if (ret < 0) { 1043 return ret; 1044 } 1045 1046 leaf = path->nodes[0]; 1047 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1048 struct btrfs_inode_item); 1049 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1050 sizeof(struct btrfs_inode_item)); 1051 btrfs_mark_buffer_dirty(leaf); 1052 1053 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1054 goto no_iref; 1055 1056 path->slots[0]++; 1057 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1058 goto search; 1059 again: 1060 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1061 if (key.objectid != node->inode_id) 1062 goto out; 1063 1064 if (key.type != BTRFS_INODE_REF_KEY && 1065 key.type != BTRFS_INODE_EXTREF_KEY) 1066 goto out; 1067 1068 /* 1069 * Delayed iref deletion is for the inode who has only one link, 1070 * so there is only one iref. The case that several irefs are 1071 * in the same item doesn't exist. 1072 */ 1073 btrfs_del_item(trans, root, path); 1074 out: 1075 btrfs_release_delayed_iref(node); 1076 no_iref: 1077 btrfs_release_path(path); 1078 err_out: 1079 btrfs_delayed_inode_release_metadata(root, node); 1080 btrfs_release_delayed_inode(node); 1081 1082 return ret; 1083 1084 search: 1085 btrfs_release_path(path); 1086 1087 key.type = BTRFS_INODE_EXTREF_KEY; 1088 key.offset = -1; 1089 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1090 if (ret < 0) 1091 goto err_out; 1092 ASSERT(ret); 1093 1094 ret = 0; 1095 leaf = path->nodes[0]; 1096 path->slots[0]--; 1097 goto again; 1098 } 1099 1100 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1101 struct btrfs_root *root, 1102 struct btrfs_path *path, 1103 struct btrfs_delayed_node *node) 1104 { 1105 int ret; 1106 1107 mutex_lock(&node->mutex); 1108 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1109 mutex_unlock(&node->mutex); 1110 return 0; 1111 } 1112 1113 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1114 mutex_unlock(&node->mutex); 1115 return ret; 1116 } 1117 1118 static inline int 1119 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1120 struct btrfs_path *path, 1121 struct btrfs_delayed_node *node) 1122 { 1123 int ret; 1124 1125 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1126 if (ret) 1127 return ret; 1128 1129 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1130 if (ret) 1131 return ret; 1132 1133 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1134 return ret; 1135 } 1136 1137 /* 1138 * Called when committing the transaction. 1139 * Returns 0 on success. 1140 * Returns < 0 on error and returns with an aborted transaction with any 1141 * outstanding delayed items cleaned up. 1142 */ 1143 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1144 struct btrfs_root *root, int nr) 1145 { 1146 struct btrfs_delayed_root *delayed_root; 1147 struct btrfs_delayed_node *curr_node, *prev_node; 1148 struct btrfs_path *path; 1149 struct btrfs_block_rsv *block_rsv; 1150 int ret = 0; 1151 bool count = (nr > 0); 1152 1153 if (trans->aborted) 1154 return -EIO; 1155 1156 path = btrfs_alloc_path(); 1157 if (!path) 1158 return -ENOMEM; 1159 path->leave_spinning = 1; 1160 1161 block_rsv = trans->block_rsv; 1162 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1163 1164 delayed_root = btrfs_get_delayed_root(root); 1165 1166 curr_node = btrfs_first_delayed_node(delayed_root); 1167 while (curr_node && (!count || (count && nr--))) { 1168 ret = __btrfs_commit_inode_delayed_items(trans, path, 1169 curr_node); 1170 if (ret) { 1171 btrfs_release_delayed_node(curr_node); 1172 curr_node = NULL; 1173 btrfs_abort_transaction(trans, ret); 1174 break; 1175 } 1176 1177 prev_node = curr_node; 1178 curr_node = btrfs_next_delayed_node(curr_node); 1179 btrfs_release_delayed_node(prev_node); 1180 } 1181 1182 if (curr_node) 1183 btrfs_release_delayed_node(curr_node); 1184 btrfs_free_path(path); 1185 trans->block_rsv = block_rsv; 1186 1187 return ret; 1188 } 1189 1190 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1191 struct btrfs_root *root) 1192 { 1193 return __btrfs_run_delayed_items(trans, root, -1); 1194 } 1195 1196 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1197 struct btrfs_root *root, int nr) 1198 { 1199 return __btrfs_run_delayed_items(trans, root, nr); 1200 } 1201 1202 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1203 struct inode *inode) 1204 { 1205 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1206 struct btrfs_path *path; 1207 struct btrfs_block_rsv *block_rsv; 1208 int ret; 1209 1210 if (!delayed_node) 1211 return 0; 1212 1213 mutex_lock(&delayed_node->mutex); 1214 if (!delayed_node->count) { 1215 mutex_unlock(&delayed_node->mutex); 1216 btrfs_release_delayed_node(delayed_node); 1217 return 0; 1218 } 1219 mutex_unlock(&delayed_node->mutex); 1220 1221 path = btrfs_alloc_path(); 1222 if (!path) { 1223 btrfs_release_delayed_node(delayed_node); 1224 return -ENOMEM; 1225 } 1226 path->leave_spinning = 1; 1227 1228 block_rsv = trans->block_rsv; 1229 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1230 1231 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1232 1233 btrfs_release_delayed_node(delayed_node); 1234 btrfs_free_path(path); 1235 trans->block_rsv = block_rsv; 1236 1237 return ret; 1238 } 1239 1240 int btrfs_commit_inode_delayed_inode(struct inode *inode) 1241 { 1242 struct btrfs_trans_handle *trans; 1243 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1244 struct btrfs_path *path; 1245 struct btrfs_block_rsv *block_rsv; 1246 int ret; 1247 1248 if (!delayed_node) 1249 return 0; 1250 1251 mutex_lock(&delayed_node->mutex); 1252 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1253 mutex_unlock(&delayed_node->mutex); 1254 btrfs_release_delayed_node(delayed_node); 1255 return 0; 1256 } 1257 mutex_unlock(&delayed_node->mutex); 1258 1259 trans = btrfs_join_transaction(delayed_node->root); 1260 if (IS_ERR(trans)) { 1261 ret = PTR_ERR(trans); 1262 goto out; 1263 } 1264 1265 path = btrfs_alloc_path(); 1266 if (!path) { 1267 ret = -ENOMEM; 1268 goto trans_out; 1269 } 1270 path->leave_spinning = 1; 1271 1272 block_rsv = trans->block_rsv; 1273 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1274 1275 mutex_lock(&delayed_node->mutex); 1276 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1277 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1278 path, delayed_node); 1279 else 1280 ret = 0; 1281 mutex_unlock(&delayed_node->mutex); 1282 1283 btrfs_free_path(path); 1284 trans->block_rsv = block_rsv; 1285 trans_out: 1286 btrfs_end_transaction(trans, delayed_node->root); 1287 btrfs_btree_balance_dirty(delayed_node->root); 1288 out: 1289 btrfs_release_delayed_node(delayed_node); 1290 1291 return ret; 1292 } 1293 1294 void btrfs_remove_delayed_node(struct inode *inode) 1295 { 1296 struct btrfs_delayed_node *delayed_node; 1297 1298 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1299 if (!delayed_node) 1300 return; 1301 1302 BTRFS_I(inode)->delayed_node = NULL; 1303 btrfs_release_delayed_node(delayed_node); 1304 } 1305 1306 struct btrfs_async_delayed_work { 1307 struct btrfs_delayed_root *delayed_root; 1308 int nr; 1309 struct btrfs_work work; 1310 }; 1311 1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1313 { 1314 struct btrfs_async_delayed_work *async_work; 1315 struct btrfs_delayed_root *delayed_root; 1316 struct btrfs_trans_handle *trans; 1317 struct btrfs_path *path; 1318 struct btrfs_delayed_node *delayed_node = NULL; 1319 struct btrfs_root *root; 1320 struct btrfs_block_rsv *block_rsv; 1321 int total_done = 0; 1322 1323 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1324 delayed_root = async_work->delayed_root; 1325 1326 path = btrfs_alloc_path(); 1327 if (!path) 1328 goto out; 1329 1330 again: 1331 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2) 1332 goto free_path; 1333 1334 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1335 if (!delayed_node) 1336 goto free_path; 1337 1338 path->leave_spinning = 1; 1339 root = delayed_node->root; 1340 1341 trans = btrfs_join_transaction(root); 1342 if (IS_ERR(trans)) 1343 goto release_path; 1344 1345 block_rsv = trans->block_rsv; 1346 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1347 1348 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1349 1350 trans->block_rsv = block_rsv; 1351 btrfs_end_transaction(trans, root); 1352 btrfs_btree_balance_dirty_nodelay(root); 1353 1354 release_path: 1355 btrfs_release_path(path); 1356 total_done++; 1357 1358 btrfs_release_prepared_delayed_node(delayed_node); 1359 if (async_work->nr == 0 || total_done < async_work->nr) 1360 goto again; 1361 1362 free_path: 1363 btrfs_free_path(path); 1364 out: 1365 wake_up(&delayed_root->wait); 1366 kfree(async_work); 1367 } 1368 1369 1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1371 struct btrfs_fs_info *fs_info, int nr) 1372 { 1373 struct btrfs_async_delayed_work *async_work; 1374 1375 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1376 return 0; 1377 1378 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1379 if (!async_work) 1380 return -ENOMEM; 1381 1382 async_work->delayed_root = delayed_root; 1383 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1384 btrfs_async_run_delayed_root, NULL, NULL); 1385 async_work->nr = nr; 1386 1387 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1388 return 0; 1389 } 1390 1391 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1392 { 1393 struct btrfs_delayed_root *delayed_root; 1394 delayed_root = btrfs_get_delayed_root(root); 1395 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1396 } 1397 1398 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1399 { 1400 int val = atomic_read(&delayed_root->items_seq); 1401 1402 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1403 return 1; 1404 1405 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1406 return 1; 1407 1408 return 0; 1409 } 1410 1411 void btrfs_balance_delayed_items(struct btrfs_root *root) 1412 { 1413 struct btrfs_delayed_root *delayed_root; 1414 struct btrfs_fs_info *fs_info = root->fs_info; 1415 1416 delayed_root = btrfs_get_delayed_root(root); 1417 1418 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1419 return; 1420 1421 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1422 int seq; 1423 int ret; 1424 1425 seq = atomic_read(&delayed_root->items_seq); 1426 1427 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1428 if (ret) 1429 return; 1430 1431 wait_event_interruptible(delayed_root->wait, 1432 could_end_wait(delayed_root, seq)); 1433 return; 1434 } 1435 1436 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1437 } 1438 1439 /* Will return 0 or -ENOMEM */ 1440 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1441 struct btrfs_root *root, const char *name, 1442 int name_len, struct inode *dir, 1443 struct btrfs_disk_key *disk_key, u8 type, 1444 u64 index) 1445 { 1446 struct btrfs_delayed_node *delayed_node; 1447 struct btrfs_delayed_item *delayed_item; 1448 struct btrfs_dir_item *dir_item; 1449 int ret; 1450 1451 delayed_node = btrfs_get_or_create_delayed_node(dir); 1452 if (IS_ERR(delayed_node)) 1453 return PTR_ERR(delayed_node); 1454 1455 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1456 if (!delayed_item) { 1457 ret = -ENOMEM; 1458 goto release_node; 1459 } 1460 1461 delayed_item->key.objectid = btrfs_ino(dir); 1462 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1463 delayed_item->key.offset = index; 1464 1465 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1466 dir_item->location = *disk_key; 1467 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1468 btrfs_set_stack_dir_data_len(dir_item, 0); 1469 btrfs_set_stack_dir_name_len(dir_item, name_len); 1470 btrfs_set_stack_dir_type(dir_item, type); 1471 memcpy((char *)(dir_item + 1), name, name_len); 1472 1473 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1474 /* 1475 * we have reserved enough space when we start a new transaction, 1476 * so reserving metadata failure is impossible 1477 */ 1478 BUG_ON(ret); 1479 1480 1481 mutex_lock(&delayed_node->mutex); 1482 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1483 if (unlikely(ret)) { 1484 btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) " 1485 "into the insertion tree of the delayed node" 1486 "(root id: %llu, inode id: %llu, errno: %d)", 1487 name_len, name, delayed_node->root->objectid, 1488 delayed_node->inode_id, ret); 1489 BUG(); 1490 } 1491 mutex_unlock(&delayed_node->mutex); 1492 1493 release_node: 1494 btrfs_release_delayed_node(delayed_node); 1495 return ret; 1496 } 1497 1498 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1499 struct btrfs_delayed_node *node, 1500 struct btrfs_key *key) 1501 { 1502 struct btrfs_delayed_item *item; 1503 1504 mutex_lock(&node->mutex); 1505 item = __btrfs_lookup_delayed_insertion_item(node, key); 1506 if (!item) { 1507 mutex_unlock(&node->mutex); 1508 return 1; 1509 } 1510 1511 btrfs_delayed_item_release_metadata(root, item); 1512 btrfs_release_delayed_item(item); 1513 mutex_unlock(&node->mutex); 1514 return 0; 1515 } 1516 1517 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1518 struct btrfs_root *root, struct inode *dir, 1519 u64 index) 1520 { 1521 struct btrfs_delayed_node *node; 1522 struct btrfs_delayed_item *item; 1523 struct btrfs_key item_key; 1524 int ret; 1525 1526 node = btrfs_get_or_create_delayed_node(dir); 1527 if (IS_ERR(node)) 1528 return PTR_ERR(node); 1529 1530 item_key.objectid = btrfs_ino(dir); 1531 item_key.type = BTRFS_DIR_INDEX_KEY; 1532 item_key.offset = index; 1533 1534 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1535 if (!ret) 1536 goto end; 1537 1538 item = btrfs_alloc_delayed_item(0); 1539 if (!item) { 1540 ret = -ENOMEM; 1541 goto end; 1542 } 1543 1544 item->key = item_key; 1545 1546 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1547 /* 1548 * we have reserved enough space when we start a new transaction, 1549 * so reserving metadata failure is impossible. 1550 */ 1551 BUG_ON(ret); 1552 1553 mutex_lock(&node->mutex); 1554 ret = __btrfs_add_delayed_deletion_item(node, item); 1555 if (unlikely(ret)) { 1556 btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) " 1557 "into the deletion tree of the delayed node" 1558 "(root id: %llu, inode id: %llu, errno: %d)", 1559 index, node->root->objectid, node->inode_id, 1560 ret); 1561 BUG(); 1562 } 1563 mutex_unlock(&node->mutex); 1564 end: 1565 btrfs_release_delayed_node(node); 1566 return ret; 1567 } 1568 1569 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1570 { 1571 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1572 1573 if (!delayed_node) 1574 return -ENOENT; 1575 1576 /* 1577 * Since we have held i_mutex of this directory, it is impossible that 1578 * a new directory index is added into the delayed node and index_cnt 1579 * is updated now. So we needn't lock the delayed node. 1580 */ 1581 if (!delayed_node->index_cnt) { 1582 btrfs_release_delayed_node(delayed_node); 1583 return -EINVAL; 1584 } 1585 1586 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1587 btrfs_release_delayed_node(delayed_node); 1588 return 0; 1589 } 1590 1591 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1592 struct list_head *ins_list, 1593 struct list_head *del_list) 1594 { 1595 struct btrfs_delayed_node *delayed_node; 1596 struct btrfs_delayed_item *item; 1597 1598 delayed_node = btrfs_get_delayed_node(inode); 1599 if (!delayed_node) 1600 return false; 1601 1602 /* 1603 * We can only do one readdir with delayed items at a time because of 1604 * item->readdir_list. 1605 */ 1606 inode_unlock_shared(inode); 1607 inode_lock(inode); 1608 1609 mutex_lock(&delayed_node->mutex); 1610 item = __btrfs_first_delayed_insertion_item(delayed_node); 1611 while (item) { 1612 atomic_inc(&item->refs); 1613 list_add_tail(&item->readdir_list, ins_list); 1614 item = __btrfs_next_delayed_item(item); 1615 } 1616 1617 item = __btrfs_first_delayed_deletion_item(delayed_node); 1618 while (item) { 1619 atomic_inc(&item->refs); 1620 list_add_tail(&item->readdir_list, del_list); 1621 item = __btrfs_next_delayed_item(item); 1622 } 1623 mutex_unlock(&delayed_node->mutex); 1624 /* 1625 * This delayed node is still cached in the btrfs inode, so refs 1626 * must be > 1 now, and we needn't check it is going to be freed 1627 * or not. 1628 * 1629 * Besides that, this function is used to read dir, we do not 1630 * insert/delete delayed items in this period. So we also needn't 1631 * requeue or dequeue this delayed node. 1632 */ 1633 atomic_dec(&delayed_node->refs); 1634 1635 return true; 1636 } 1637 1638 void btrfs_readdir_put_delayed_items(struct inode *inode, 1639 struct list_head *ins_list, 1640 struct list_head *del_list) 1641 { 1642 struct btrfs_delayed_item *curr, *next; 1643 1644 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1645 list_del(&curr->readdir_list); 1646 if (atomic_dec_and_test(&curr->refs)) 1647 kfree(curr); 1648 } 1649 1650 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1651 list_del(&curr->readdir_list); 1652 if (atomic_dec_and_test(&curr->refs)) 1653 kfree(curr); 1654 } 1655 1656 /* 1657 * The VFS is going to do up_read(), so we need to downgrade back to a 1658 * read lock. 1659 */ 1660 downgrade_write(&inode->i_rwsem); 1661 } 1662 1663 int btrfs_should_delete_dir_index(struct list_head *del_list, 1664 u64 index) 1665 { 1666 struct btrfs_delayed_item *curr, *next; 1667 int ret; 1668 1669 if (list_empty(del_list)) 1670 return 0; 1671 1672 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1673 if (curr->key.offset > index) 1674 break; 1675 1676 list_del(&curr->readdir_list); 1677 ret = (curr->key.offset == index); 1678 1679 if (atomic_dec_and_test(&curr->refs)) 1680 kfree(curr); 1681 1682 if (ret) 1683 return 1; 1684 else 1685 continue; 1686 } 1687 return 0; 1688 } 1689 1690 /* 1691 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1692 * 1693 */ 1694 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1695 struct list_head *ins_list, bool *emitted) 1696 { 1697 struct btrfs_dir_item *di; 1698 struct btrfs_delayed_item *curr, *next; 1699 struct btrfs_key location; 1700 char *name; 1701 int name_len; 1702 int over = 0; 1703 unsigned char d_type; 1704 1705 if (list_empty(ins_list)) 1706 return 0; 1707 1708 /* 1709 * Changing the data of the delayed item is impossible. So 1710 * we needn't lock them. And we have held i_mutex of the 1711 * directory, nobody can delete any directory indexes now. 1712 */ 1713 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1714 list_del(&curr->readdir_list); 1715 1716 if (curr->key.offset < ctx->pos) { 1717 if (atomic_dec_and_test(&curr->refs)) 1718 kfree(curr); 1719 continue; 1720 } 1721 1722 ctx->pos = curr->key.offset; 1723 1724 di = (struct btrfs_dir_item *)curr->data; 1725 name = (char *)(di + 1); 1726 name_len = btrfs_stack_dir_name_len(di); 1727 1728 d_type = btrfs_filetype_table[di->type]; 1729 btrfs_disk_key_to_cpu(&location, &di->location); 1730 1731 over = !dir_emit(ctx, name, name_len, 1732 location.objectid, d_type); 1733 1734 if (atomic_dec_and_test(&curr->refs)) 1735 kfree(curr); 1736 1737 if (over) 1738 return 1; 1739 *emitted = true; 1740 } 1741 return 0; 1742 } 1743 1744 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1745 struct btrfs_inode_item *inode_item, 1746 struct inode *inode) 1747 { 1748 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1749 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1750 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1751 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1752 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1753 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1754 btrfs_set_stack_inode_generation(inode_item, 1755 BTRFS_I(inode)->generation); 1756 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1757 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1758 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1759 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1760 btrfs_set_stack_inode_block_group(inode_item, 0); 1761 1762 btrfs_set_stack_timespec_sec(&inode_item->atime, 1763 inode->i_atime.tv_sec); 1764 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1765 inode->i_atime.tv_nsec); 1766 1767 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1768 inode->i_mtime.tv_sec); 1769 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1770 inode->i_mtime.tv_nsec); 1771 1772 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1773 inode->i_ctime.tv_sec); 1774 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1775 inode->i_ctime.tv_nsec); 1776 1777 btrfs_set_stack_timespec_sec(&inode_item->otime, 1778 BTRFS_I(inode)->i_otime.tv_sec); 1779 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1780 BTRFS_I(inode)->i_otime.tv_nsec); 1781 } 1782 1783 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1784 { 1785 struct btrfs_delayed_node *delayed_node; 1786 struct btrfs_inode_item *inode_item; 1787 1788 delayed_node = btrfs_get_delayed_node(inode); 1789 if (!delayed_node) 1790 return -ENOENT; 1791 1792 mutex_lock(&delayed_node->mutex); 1793 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1794 mutex_unlock(&delayed_node->mutex); 1795 btrfs_release_delayed_node(delayed_node); 1796 return -ENOENT; 1797 } 1798 1799 inode_item = &delayed_node->inode_item; 1800 1801 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1802 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1803 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1804 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1805 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1806 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1807 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1808 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1809 1810 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1811 inode->i_rdev = 0; 1812 *rdev = btrfs_stack_inode_rdev(inode_item); 1813 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1814 1815 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1816 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1817 1818 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1819 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1820 1821 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1822 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1823 1824 BTRFS_I(inode)->i_otime.tv_sec = 1825 btrfs_stack_timespec_sec(&inode_item->otime); 1826 BTRFS_I(inode)->i_otime.tv_nsec = 1827 btrfs_stack_timespec_nsec(&inode_item->otime); 1828 1829 inode->i_generation = BTRFS_I(inode)->generation; 1830 BTRFS_I(inode)->index_cnt = (u64)-1; 1831 1832 mutex_unlock(&delayed_node->mutex); 1833 btrfs_release_delayed_node(delayed_node); 1834 return 0; 1835 } 1836 1837 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1838 struct btrfs_root *root, struct inode *inode) 1839 { 1840 struct btrfs_delayed_node *delayed_node; 1841 int ret = 0; 1842 1843 delayed_node = btrfs_get_or_create_delayed_node(inode); 1844 if (IS_ERR(delayed_node)) 1845 return PTR_ERR(delayed_node); 1846 1847 mutex_lock(&delayed_node->mutex); 1848 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1850 goto release_node; 1851 } 1852 1853 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1854 delayed_node); 1855 if (ret) 1856 goto release_node; 1857 1858 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1859 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1860 delayed_node->count++; 1861 atomic_inc(&root->fs_info->delayed_root->items); 1862 release_node: 1863 mutex_unlock(&delayed_node->mutex); 1864 btrfs_release_delayed_node(delayed_node); 1865 return ret; 1866 } 1867 1868 int btrfs_delayed_delete_inode_ref(struct inode *inode) 1869 { 1870 struct btrfs_delayed_node *delayed_node; 1871 1872 /* 1873 * we don't do delayed inode updates during log recovery because it 1874 * leads to enospc problems. This means we also can't do 1875 * delayed inode refs 1876 */ 1877 if (BTRFS_I(inode)->root->fs_info->log_root_recovering) 1878 return -EAGAIN; 1879 1880 delayed_node = btrfs_get_or_create_delayed_node(inode); 1881 if (IS_ERR(delayed_node)) 1882 return PTR_ERR(delayed_node); 1883 1884 /* 1885 * We don't reserve space for inode ref deletion is because: 1886 * - We ONLY do async inode ref deletion for the inode who has only 1887 * one link(i_nlink == 1), it means there is only one inode ref. 1888 * And in most case, the inode ref and the inode item are in the 1889 * same leaf, and we will deal with them at the same time. 1890 * Since we are sure we will reserve the space for the inode item, 1891 * it is unnecessary to reserve space for inode ref deletion. 1892 * - If the inode ref and the inode item are not in the same leaf, 1893 * We also needn't worry about enospc problem, because we reserve 1894 * much more space for the inode update than it needs. 1895 * - At the worst, we can steal some space from the global reservation. 1896 * It is very rare. 1897 */ 1898 mutex_lock(&delayed_node->mutex); 1899 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1900 goto release_node; 1901 1902 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1903 delayed_node->count++; 1904 atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items); 1905 release_node: 1906 mutex_unlock(&delayed_node->mutex); 1907 btrfs_release_delayed_node(delayed_node); 1908 return 0; 1909 } 1910 1911 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1912 { 1913 struct btrfs_root *root = delayed_node->root; 1914 struct btrfs_delayed_item *curr_item, *prev_item; 1915 1916 mutex_lock(&delayed_node->mutex); 1917 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1918 while (curr_item) { 1919 btrfs_delayed_item_release_metadata(root, curr_item); 1920 prev_item = curr_item; 1921 curr_item = __btrfs_next_delayed_item(prev_item); 1922 btrfs_release_delayed_item(prev_item); 1923 } 1924 1925 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1926 while (curr_item) { 1927 btrfs_delayed_item_release_metadata(root, curr_item); 1928 prev_item = curr_item; 1929 curr_item = __btrfs_next_delayed_item(prev_item); 1930 btrfs_release_delayed_item(prev_item); 1931 } 1932 1933 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1934 btrfs_release_delayed_iref(delayed_node); 1935 1936 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1937 btrfs_delayed_inode_release_metadata(root, delayed_node); 1938 btrfs_release_delayed_inode(delayed_node); 1939 } 1940 mutex_unlock(&delayed_node->mutex); 1941 } 1942 1943 void btrfs_kill_delayed_inode_items(struct inode *inode) 1944 { 1945 struct btrfs_delayed_node *delayed_node; 1946 1947 delayed_node = btrfs_get_delayed_node(inode); 1948 if (!delayed_node) 1949 return; 1950 1951 __btrfs_kill_delayed_node(delayed_node); 1952 btrfs_release_delayed_node(delayed_node); 1953 } 1954 1955 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1956 { 1957 u64 inode_id = 0; 1958 struct btrfs_delayed_node *delayed_nodes[8]; 1959 int i, n; 1960 1961 while (1) { 1962 spin_lock(&root->inode_lock); 1963 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1964 (void **)delayed_nodes, inode_id, 1965 ARRAY_SIZE(delayed_nodes)); 1966 if (!n) { 1967 spin_unlock(&root->inode_lock); 1968 break; 1969 } 1970 1971 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1972 1973 for (i = 0; i < n; i++) 1974 atomic_inc(&delayed_nodes[i]->refs); 1975 spin_unlock(&root->inode_lock); 1976 1977 for (i = 0; i < n; i++) { 1978 __btrfs_kill_delayed_node(delayed_nodes[i]); 1979 btrfs_release_delayed_node(delayed_nodes[i]); 1980 } 1981 } 1982 } 1983 1984 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1985 { 1986 struct btrfs_delayed_root *delayed_root; 1987 struct btrfs_delayed_node *curr_node, *prev_node; 1988 1989 delayed_root = btrfs_get_delayed_root(root); 1990 1991 curr_node = btrfs_first_delayed_node(delayed_root); 1992 while (curr_node) { 1993 __btrfs_kill_delayed_node(curr_node); 1994 1995 prev_node = curr_node; 1996 curr_node = btrfs_next_delayed_node(curr_node); 1997 btrfs_release_delayed_node(prev_node); 1998 } 1999 } 2000 2001