1 /* 2 * Copyright (C) 2011 Fujitsu. All rights reserved. 3 * Written by Miao Xie <miaox@cn.fujitsu.com> 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public 7 * License v2 as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 12 * General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public 15 * License along with this program; if not, write to the 16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 17 * Boston, MA 021110-1307, USA. 18 */ 19 20 #include <linux/slab.h> 21 #include "delayed-inode.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 25 #define BTRFS_DELAYED_WRITEBACK 400 26 #define BTRFS_DELAYED_BACKGROUND 100 27 28 static struct kmem_cache *delayed_node_cache; 29 30 int __init btrfs_delayed_inode_init(void) 31 { 32 delayed_node_cache = kmem_cache_create("delayed_node", 33 sizeof(struct btrfs_delayed_node), 34 0, 35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 36 NULL); 37 if (!delayed_node_cache) 38 return -ENOMEM; 39 return 0; 40 } 41 42 void btrfs_delayed_inode_exit(void) 43 { 44 if (delayed_node_cache) 45 kmem_cache_destroy(delayed_node_cache); 46 } 47 48 static inline void btrfs_init_delayed_node( 49 struct btrfs_delayed_node *delayed_node, 50 struct btrfs_root *root, u64 inode_id) 51 { 52 delayed_node->root = root; 53 delayed_node->inode_id = inode_id; 54 atomic_set(&delayed_node->refs, 0); 55 delayed_node->count = 0; 56 delayed_node->in_list = 0; 57 delayed_node->inode_dirty = 0; 58 delayed_node->ins_root = RB_ROOT; 59 delayed_node->del_root = RB_ROOT; 60 mutex_init(&delayed_node->mutex); 61 delayed_node->index_cnt = 0; 62 INIT_LIST_HEAD(&delayed_node->n_list); 63 INIT_LIST_HEAD(&delayed_node->p_list); 64 delayed_node->bytes_reserved = 0; 65 memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item)); 66 } 67 68 static inline int btrfs_is_continuous_delayed_item( 69 struct btrfs_delayed_item *item1, 70 struct btrfs_delayed_item *item2) 71 { 72 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 73 item1->key.objectid == item2->key.objectid && 74 item1->key.type == item2->key.type && 75 item1->key.offset + 1 == item2->key.offset) 76 return 1; 77 return 0; 78 } 79 80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root( 81 struct btrfs_root *root) 82 { 83 return root->fs_info->delayed_root; 84 } 85 86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode) 87 { 88 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 89 struct btrfs_root *root = btrfs_inode->root; 90 u64 ino = btrfs_ino(inode); 91 struct btrfs_delayed_node *node; 92 93 node = ACCESS_ONCE(btrfs_inode->delayed_node); 94 if (node) { 95 atomic_inc(&node->refs); 96 return node; 97 } 98 99 spin_lock(&root->inode_lock); 100 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 101 if (node) { 102 if (btrfs_inode->delayed_node) { 103 atomic_inc(&node->refs); /* can be accessed */ 104 BUG_ON(btrfs_inode->delayed_node != node); 105 spin_unlock(&root->inode_lock); 106 return node; 107 } 108 btrfs_inode->delayed_node = node; 109 atomic_inc(&node->refs); /* can be accessed */ 110 atomic_inc(&node->refs); /* cached in the inode */ 111 spin_unlock(&root->inode_lock); 112 return node; 113 } 114 spin_unlock(&root->inode_lock); 115 116 return NULL; 117 } 118 119 /* Will return either the node or PTR_ERR(-ENOMEM) */ 120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 121 struct inode *inode) 122 { 123 struct btrfs_delayed_node *node; 124 struct btrfs_inode *btrfs_inode = BTRFS_I(inode); 125 struct btrfs_root *root = btrfs_inode->root; 126 u64 ino = btrfs_ino(inode); 127 int ret; 128 129 again: 130 node = btrfs_get_delayed_node(inode); 131 if (node) 132 return node; 133 134 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS); 135 if (!node) 136 return ERR_PTR(-ENOMEM); 137 btrfs_init_delayed_node(node, root, ino); 138 139 atomic_inc(&node->refs); /* cached in the btrfs inode */ 140 atomic_inc(&node->refs); /* can be accessed */ 141 142 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 143 if (ret) { 144 kmem_cache_free(delayed_node_cache, node); 145 return ERR_PTR(ret); 146 } 147 148 spin_lock(&root->inode_lock); 149 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 150 if (ret == -EEXIST) { 151 kmem_cache_free(delayed_node_cache, node); 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 goto again; 155 } 156 btrfs_inode->delayed_node = node; 157 spin_unlock(&root->inode_lock); 158 radix_tree_preload_end(); 159 160 return node; 161 } 162 163 /* 164 * Call it when holding delayed_node->mutex 165 * 166 * If mod = 1, add this node into the prepared list. 167 */ 168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 169 struct btrfs_delayed_node *node, 170 int mod) 171 { 172 spin_lock(&root->lock); 173 if (node->in_list) { 174 if (!list_empty(&node->p_list)) 175 list_move_tail(&node->p_list, &root->prepare_list); 176 else if (mod) 177 list_add_tail(&node->p_list, &root->prepare_list); 178 } else { 179 list_add_tail(&node->n_list, &root->node_list); 180 list_add_tail(&node->p_list, &root->prepare_list); 181 atomic_inc(&node->refs); /* inserted into list */ 182 root->nodes++; 183 node->in_list = 1; 184 } 185 spin_unlock(&root->lock); 186 } 187 188 /* Call it when holding delayed_node->mutex */ 189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 190 struct btrfs_delayed_node *node) 191 { 192 spin_lock(&root->lock); 193 if (node->in_list) { 194 root->nodes--; 195 atomic_dec(&node->refs); /* not in the list */ 196 list_del_init(&node->n_list); 197 if (!list_empty(&node->p_list)) 198 list_del_init(&node->p_list); 199 node->in_list = 0; 200 } 201 spin_unlock(&root->lock); 202 } 203 204 struct btrfs_delayed_node *btrfs_first_delayed_node( 205 struct btrfs_delayed_root *delayed_root) 206 { 207 struct list_head *p; 208 struct btrfs_delayed_node *node = NULL; 209 210 spin_lock(&delayed_root->lock); 211 if (list_empty(&delayed_root->node_list)) 212 goto out; 213 214 p = delayed_root->node_list.next; 215 node = list_entry(p, struct btrfs_delayed_node, n_list); 216 atomic_inc(&node->refs); 217 out: 218 spin_unlock(&delayed_root->lock); 219 220 return node; 221 } 222 223 struct btrfs_delayed_node *btrfs_next_delayed_node( 224 struct btrfs_delayed_node *node) 225 { 226 struct btrfs_delayed_root *delayed_root; 227 struct list_head *p; 228 struct btrfs_delayed_node *next = NULL; 229 230 delayed_root = node->root->fs_info->delayed_root; 231 spin_lock(&delayed_root->lock); 232 if (!node->in_list) { /* not in the list */ 233 if (list_empty(&delayed_root->node_list)) 234 goto out; 235 p = delayed_root->node_list.next; 236 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 237 goto out; 238 else 239 p = node->n_list.next; 240 241 next = list_entry(p, struct btrfs_delayed_node, n_list); 242 atomic_inc(&next->refs); 243 out: 244 spin_unlock(&delayed_root->lock); 245 246 return next; 247 } 248 249 static void __btrfs_release_delayed_node( 250 struct btrfs_delayed_node *delayed_node, 251 int mod) 252 { 253 struct btrfs_delayed_root *delayed_root; 254 255 if (!delayed_node) 256 return; 257 258 delayed_root = delayed_node->root->fs_info->delayed_root; 259 260 mutex_lock(&delayed_node->mutex); 261 if (delayed_node->count) 262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 263 else 264 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 265 mutex_unlock(&delayed_node->mutex); 266 267 if (atomic_dec_and_test(&delayed_node->refs)) { 268 struct btrfs_root *root = delayed_node->root; 269 spin_lock(&root->inode_lock); 270 if (atomic_read(&delayed_node->refs) == 0) { 271 radix_tree_delete(&root->delayed_nodes_tree, 272 delayed_node->inode_id); 273 kmem_cache_free(delayed_node_cache, delayed_node); 274 } 275 spin_unlock(&root->inode_lock); 276 } 277 } 278 279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 280 { 281 __btrfs_release_delayed_node(node, 0); 282 } 283 284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 285 struct btrfs_delayed_root *delayed_root) 286 { 287 struct list_head *p; 288 struct btrfs_delayed_node *node = NULL; 289 290 spin_lock(&delayed_root->lock); 291 if (list_empty(&delayed_root->prepare_list)) 292 goto out; 293 294 p = delayed_root->prepare_list.next; 295 list_del_init(p); 296 node = list_entry(p, struct btrfs_delayed_node, p_list); 297 atomic_inc(&node->refs); 298 out: 299 spin_unlock(&delayed_root->lock); 300 301 return node; 302 } 303 304 static inline void btrfs_release_prepared_delayed_node( 305 struct btrfs_delayed_node *node) 306 { 307 __btrfs_release_delayed_node(node, 1); 308 } 309 310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 311 { 312 struct btrfs_delayed_item *item; 313 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 314 if (item) { 315 item->data_len = data_len; 316 item->ins_or_del = 0; 317 item->bytes_reserved = 0; 318 item->delayed_node = NULL; 319 atomic_set(&item->refs, 1); 320 } 321 return item; 322 } 323 324 /* 325 * __btrfs_lookup_delayed_item - look up the delayed item by key 326 * @delayed_node: pointer to the delayed node 327 * @key: the key to look up 328 * @prev: used to store the prev item if the right item isn't found 329 * @next: used to store the next item if the right item isn't found 330 * 331 * Note: if we don't find the right item, we will return the prev item and 332 * the next item. 333 */ 334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 335 struct rb_root *root, 336 struct btrfs_key *key, 337 struct btrfs_delayed_item **prev, 338 struct btrfs_delayed_item **next) 339 { 340 struct rb_node *node, *prev_node = NULL; 341 struct btrfs_delayed_item *delayed_item = NULL; 342 int ret = 0; 343 344 node = root->rb_node; 345 346 while (node) { 347 delayed_item = rb_entry(node, struct btrfs_delayed_item, 348 rb_node); 349 prev_node = node; 350 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 351 if (ret < 0) 352 node = node->rb_right; 353 else if (ret > 0) 354 node = node->rb_left; 355 else 356 return delayed_item; 357 } 358 359 if (prev) { 360 if (!prev_node) 361 *prev = NULL; 362 else if (ret < 0) 363 *prev = delayed_item; 364 else if ((node = rb_prev(prev_node)) != NULL) { 365 *prev = rb_entry(node, struct btrfs_delayed_item, 366 rb_node); 367 } else 368 *prev = NULL; 369 } 370 371 if (next) { 372 if (!prev_node) 373 *next = NULL; 374 else if (ret > 0) 375 *next = delayed_item; 376 else if ((node = rb_next(prev_node)) != NULL) { 377 *next = rb_entry(node, struct btrfs_delayed_item, 378 rb_node); 379 } else 380 *next = NULL; 381 } 382 return NULL; 383 } 384 385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 386 struct btrfs_delayed_node *delayed_node, 387 struct btrfs_key *key) 388 { 389 struct btrfs_delayed_item *item; 390 391 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 392 NULL, NULL); 393 return item; 394 } 395 396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item( 397 struct btrfs_delayed_node *delayed_node, 398 struct btrfs_key *key) 399 { 400 struct btrfs_delayed_item *item; 401 402 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 403 NULL, NULL); 404 return item; 405 } 406 407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item( 408 struct btrfs_delayed_node *delayed_node, 409 struct btrfs_key *key) 410 { 411 struct btrfs_delayed_item *item, *next; 412 413 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 414 NULL, &next); 415 if (!item) 416 item = next; 417 418 return item; 419 } 420 421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item( 422 struct btrfs_delayed_node *delayed_node, 423 struct btrfs_key *key) 424 { 425 struct btrfs_delayed_item *item, *next; 426 427 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key, 428 NULL, &next); 429 if (!item) 430 item = next; 431 432 return item; 433 } 434 435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 436 struct btrfs_delayed_item *ins, 437 int action) 438 { 439 struct rb_node **p, *node; 440 struct rb_node *parent_node = NULL; 441 struct rb_root *root; 442 struct btrfs_delayed_item *item; 443 int cmp; 444 445 if (action == BTRFS_DELAYED_INSERTION_ITEM) 446 root = &delayed_node->ins_root; 447 else if (action == BTRFS_DELAYED_DELETION_ITEM) 448 root = &delayed_node->del_root; 449 else 450 BUG(); 451 p = &root->rb_node; 452 node = &ins->rb_node; 453 454 while (*p) { 455 parent_node = *p; 456 item = rb_entry(parent_node, struct btrfs_delayed_item, 457 rb_node); 458 459 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 460 if (cmp < 0) 461 p = &(*p)->rb_right; 462 else if (cmp > 0) 463 p = &(*p)->rb_left; 464 else 465 return -EEXIST; 466 } 467 468 rb_link_node(node, parent_node, p); 469 rb_insert_color(node, root); 470 ins->delayed_node = delayed_node; 471 ins->ins_or_del = action; 472 473 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 474 action == BTRFS_DELAYED_INSERTION_ITEM && 475 ins->key.offset >= delayed_node->index_cnt) 476 delayed_node->index_cnt = ins->key.offset + 1; 477 478 delayed_node->count++; 479 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 480 return 0; 481 } 482 483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 484 struct btrfs_delayed_item *item) 485 { 486 return __btrfs_add_delayed_item(node, item, 487 BTRFS_DELAYED_INSERTION_ITEM); 488 } 489 490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 491 struct btrfs_delayed_item *item) 492 { 493 return __btrfs_add_delayed_item(node, item, 494 BTRFS_DELAYED_DELETION_ITEM); 495 } 496 497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 498 { 499 struct rb_root *root; 500 struct btrfs_delayed_root *delayed_root; 501 502 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 503 504 BUG_ON(!delayed_root); 505 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 506 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 507 508 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 509 root = &delayed_item->delayed_node->ins_root; 510 else 511 root = &delayed_item->delayed_node->del_root; 512 513 rb_erase(&delayed_item->rb_node, root); 514 delayed_item->delayed_node->count--; 515 atomic_dec(&delayed_root->items); 516 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND && 517 waitqueue_active(&delayed_root->wait)) 518 wake_up(&delayed_root->wait); 519 } 520 521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 522 { 523 if (item) { 524 __btrfs_remove_delayed_item(item); 525 if (atomic_dec_and_test(&item->refs)) 526 kfree(item); 527 } 528 } 529 530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 531 struct btrfs_delayed_node *delayed_node) 532 { 533 struct rb_node *p; 534 struct btrfs_delayed_item *item = NULL; 535 536 p = rb_first(&delayed_node->ins_root); 537 if (p) 538 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 539 540 return item; 541 } 542 543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 544 struct btrfs_delayed_node *delayed_node) 545 { 546 struct rb_node *p; 547 struct btrfs_delayed_item *item = NULL; 548 549 p = rb_first(&delayed_node->del_root); 550 if (p) 551 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 552 553 return item; 554 } 555 556 struct btrfs_delayed_item *__btrfs_next_delayed_item( 557 struct btrfs_delayed_item *item) 558 { 559 struct rb_node *p; 560 struct btrfs_delayed_item *next = NULL; 561 562 p = rb_next(&item->rb_node); 563 if (p) 564 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 565 566 return next; 567 } 568 569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root, 570 u64 root_id) 571 { 572 struct btrfs_key root_key; 573 574 if (root->objectid == root_id) 575 return root; 576 577 root_key.objectid = root_id; 578 root_key.type = BTRFS_ROOT_ITEM_KEY; 579 root_key.offset = (u64)-1; 580 return btrfs_read_fs_root_no_name(root->fs_info, &root_key); 581 } 582 583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 584 struct btrfs_root *root, 585 struct btrfs_delayed_item *item) 586 { 587 struct btrfs_block_rsv *src_rsv; 588 struct btrfs_block_rsv *dst_rsv; 589 u64 num_bytes; 590 int ret; 591 592 if (!trans->bytes_reserved) 593 return 0; 594 595 src_rsv = trans->block_rsv; 596 dst_rsv = &root->fs_info->delayed_block_rsv; 597 598 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 599 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 600 if (!ret) { 601 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 602 item->key.objectid, 603 num_bytes, 1); 604 item->bytes_reserved = num_bytes; 605 } 606 607 return ret; 608 } 609 610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 611 struct btrfs_delayed_item *item) 612 { 613 struct btrfs_block_rsv *rsv; 614 615 if (!item->bytes_reserved) 616 return; 617 618 rsv = &root->fs_info->delayed_block_rsv; 619 trace_btrfs_space_reservation(root->fs_info, "delayed_item", 620 item->key.objectid, item->bytes_reserved, 621 0); 622 btrfs_block_rsv_release(root, rsv, 623 item->bytes_reserved); 624 } 625 626 static int btrfs_delayed_inode_reserve_metadata( 627 struct btrfs_trans_handle *trans, 628 struct btrfs_root *root, 629 struct inode *inode, 630 struct btrfs_delayed_node *node) 631 { 632 struct btrfs_block_rsv *src_rsv; 633 struct btrfs_block_rsv *dst_rsv; 634 u64 num_bytes; 635 int ret; 636 bool release = false; 637 638 src_rsv = trans->block_rsv; 639 dst_rsv = &root->fs_info->delayed_block_rsv; 640 641 num_bytes = btrfs_calc_trans_metadata_size(root, 1); 642 643 /* 644 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 645 * which doesn't reserve space for speed. This is a problem since we 646 * still need to reserve space for this update, so try to reserve the 647 * space. 648 * 649 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 650 * we're accounted for. 651 */ 652 if (!src_rsv || (!trans->bytes_reserved && 653 src_rsv != &root->fs_info->delalloc_block_rsv)) { 654 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 655 /* 656 * Since we're under a transaction reserve_metadata_bytes could 657 * try to commit the transaction which will make it return 658 * EAGAIN to make us stop the transaction we have, so return 659 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 660 */ 661 if (ret == -EAGAIN) 662 ret = -ENOSPC; 663 if (!ret) { 664 node->bytes_reserved = num_bytes; 665 trace_btrfs_space_reservation(root->fs_info, 666 "delayed_inode", 667 btrfs_ino(inode), 668 num_bytes, 1); 669 } 670 return ret; 671 } else if (src_rsv == &root->fs_info->delalloc_block_rsv) { 672 spin_lock(&BTRFS_I(inode)->lock); 673 if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED, 674 &BTRFS_I(inode)->runtime_flags)) { 675 spin_unlock(&BTRFS_I(inode)->lock); 676 release = true; 677 goto migrate; 678 } 679 spin_unlock(&BTRFS_I(inode)->lock); 680 681 /* Ok we didn't have space pre-reserved. This shouldn't happen 682 * too often but it can happen if we do delalloc to an existing 683 * inode which gets dirtied because of the time update, and then 684 * isn't touched again until after the transaction commits and 685 * then we try to write out the data. First try to be nice and 686 * reserve something strictly for us. If not be a pain and try 687 * to steal from the delalloc block rsv. 688 */ 689 ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes); 690 if (!ret) 691 goto out; 692 693 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 694 if (!ret) 695 goto out; 696 697 /* 698 * Ok this is a problem, let's just steal from the global rsv 699 * since this really shouldn't happen that often. 700 */ 701 WARN_ON(1); 702 ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv, 703 dst_rsv, num_bytes); 704 goto out; 705 } 706 707 migrate: 708 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes); 709 710 out: 711 /* 712 * Migrate only takes a reservation, it doesn't touch the size of the 713 * block_rsv. This is to simplify people who don't normally have things 714 * migrated from their block rsv. If they go to release their 715 * reservation, that will decrease the size as well, so if migrate 716 * reduced size we'd end up with a negative size. But for the 717 * delalloc_meta_reserved stuff we will only know to drop 1 reservation, 718 * but we could in fact do this reserve/migrate dance several times 719 * between the time we did the original reservation and we'd clean it 720 * up. So to take care of this, release the space for the meta 721 * reservation here. I think it may be time for a documentation page on 722 * how block rsvs. work. 723 */ 724 if (!ret) { 725 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 726 btrfs_ino(inode), num_bytes, 1); 727 node->bytes_reserved = num_bytes; 728 } 729 730 if (release) { 731 trace_btrfs_space_reservation(root->fs_info, "delalloc", 732 btrfs_ino(inode), num_bytes, 0); 733 btrfs_block_rsv_release(root, src_rsv, num_bytes); 734 } 735 736 return ret; 737 } 738 739 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root, 740 struct btrfs_delayed_node *node) 741 { 742 struct btrfs_block_rsv *rsv; 743 744 if (!node->bytes_reserved) 745 return; 746 747 rsv = &root->fs_info->delayed_block_rsv; 748 trace_btrfs_space_reservation(root->fs_info, "delayed_inode", 749 node->inode_id, node->bytes_reserved, 0); 750 btrfs_block_rsv_release(root, rsv, 751 node->bytes_reserved); 752 node->bytes_reserved = 0; 753 } 754 755 /* 756 * This helper will insert some continuous items into the same leaf according 757 * to the free space of the leaf. 758 */ 759 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans, 760 struct btrfs_root *root, 761 struct btrfs_path *path, 762 struct btrfs_delayed_item *item) 763 { 764 struct btrfs_delayed_item *curr, *next; 765 int free_space; 766 int total_data_size = 0, total_size = 0; 767 struct extent_buffer *leaf; 768 char *data_ptr; 769 struct btrfs_key *keys; 770 u32 *data_size; 771 struct list_head head; 772 int slot; 773 int nitems; 774 int i; 775 int ret = 0; 776 777 BUG_ON(!path->nodes[0]); 778 779 leaf = path->nodes[0]; 780 free_space = btrfs_leaf_free_space(root, leaf); 781 INIT_LIST_HEAD(&head); 782 783 next = item; 784 nitems = 0; 785 786 /* 787 * count the number of the continuous items that we can insert in batch 788 */ 789 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 790 free_space) { 791 total_data_size += next->data_len; 792 total_size += next->data_len + sizeof(struct btrfs_item); 793 list_add_tail(&next->tree_list, &head); 794 nitems++; 795 796 curr = next; 797 next = __btrfs_next_delayed_item(curr); 798 if (!next) 799 break; 800 801 if (!btrfs_is_continuous_delayed_item(curr, next)) 802 break; 803 } 804 805 if (!nitems) { 806 ret = 0; 807 goto out; 808 } 809 810 /* 811 * we need allocate some memory space, but it might cause the task 812 * to sleep, so we set all locked nodes in the path to blocking locks 813 * first. 814 */ 815 btrfs_set_path_blocking(path); 816 817 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS); 818 if (!keys) { 819 ret = -ENOMEM; 820 goto out; 821 } 822 823 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS); 824 if (!data_size) { 825 ret = -ENOMEM; 826 goto error; 827 } 828 829 /* get keys of all the delayed items */ 830 i = 0; 831 list_for_each_entry(next, &head, tree_list) { 832 keys[i] = next->key; 833 data_size[i] = next->data_len; 834 i++; 835 } 836 837 /* reset all the locked nodes in the patch to spinning locks. */ 838 btrfs_clear_path_blocking(path, NULL, 0); 839 840 /* insert the keys of the items */ 841 setup_items_for_insert(trans, root, path, keys, data_size, 842 total_data_size, total_size, nitems); 843 844 /* insert the dir index items */ 845 slot = path->slots[0]; 846 list_for_each_entry_safe(curr, next, &head, tree_list) { 847 data_ptr = btrfs_item_ptr(leaf, slot, char); 848 write_extent_buffer(leaf, &curr->data, 849 (unsigned long)data_ptr, 850 curr->data_len); 851 slot++; 852 853 btrfs_delayed_item_release_metadata(root, curr); 854 855 list_del(&curr->tree_list); 856 btrfs_release_delayed_item(curr); 857 } 858 859 error: 860 kfree(data_size); 861 kfree(keys); 862 out: 863 return ret; 864 } 865 866 /* 867 * This helper can just do simple insertion that needn't extend item for new 868 * data, such as directory name index insertion, inode insertion. 869 */ 870 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 871 struct btrfs_root *root, 872 struct btrfs_path *path, 873 struct btrfs_delayed_item *delayed_item) 874 { 875 struct extent_buffer *leaf; 876 struct btrfs_item *item; 877 char *ptr; 878 int ret; 879 880 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 881 delayed_item->data_len); 882 if (ret < 0 && ret != -EEXIST) 883 return ret; 884 885 leaf = path->nodes[0]; 886 887 item = btrfs_item_nr(leaf, path->slots[0]); 888 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 889 890 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 891 delayed_item->data_len); 892 btrfs_mark_buffer_dirty(leaf); 893 894 btrfs_delayed_item_release_metadata(root, delayed_item); 895 return 0; 896 } 897 898 /* 899 * we insert an item first, then if there are some continuous items, we try 900 * to insert those items into the same leaf. 901 */ 902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 903 struct btrfs_path *path, 904 struct btrfs_root *root, 905 struct btrfs_delayed_node *node) 906 { 907 struct btrfs_delayed_item *curr, *prev; 908 int ret = 0; 909 910 do_again: 911 mutex_lock(&node->mutex); 912 curr = __btrfs_first_delayed_insertion_item(node); 913 if (!curr) 914 goto insert_end; 915 916 ret = btrfs_insert_delayed_item(trans, root, path, curr); 917 if (ret < 0) { 918 btrfs_release_path(path); 919 goto insert_end; 920 } 921 922 prev = curr; 923 curr = __btrfs_next_delayed_item(prev); 924 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 925 /* insert the continuous items into the same leaf */ 926 path->slots[0]++; 927 btrfs_batch_insert_items(trans, root, path, curr); 928 } 929 btrfs_release_delayed_item(prev); 930 btrfs_mark_buffer_dirty(path->nodes[0]); 931 932 btrfs_release_path(path); 933 mutex_unlock(&node->mutex); 934 goto do_again; 935 936 insert_end: 937 mutex_unlock(&node->mutex); 938 return ret; 939 } 940 941 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 942 struct btrfs_root *root, 943 struct btrfs_path *path, 944 struct btrfs_delayed_item *item) 945 { 946 struct btrfs_delayed_item *curr, *next; 947 struct extent_buffer *leaf; 948 struct btrfs_key key; 949 struct list_head head; 950 int nitems, i, last_item; 951 int ret = 0; 952 953 BUG_ON(!path->nodes[0]); 954 955 leaf = path->nodes[0]; 956 957 i = path->slots[0]; 958 last_item = btrfs_header_nritems(leaf) - 1; 959 if (i > last_item) 960 return -ENOENT; /* FIXME: Is errno suitable? */ 961 962 next = item; 963 INIT_LIST_HEAD(&head); 964 btrfs_item_key_to_cpu(leaf, &key, i); 965 nitems = 0; 966 /* 967 * count the number of the dir index items that we can delete in batch 968 */ 969 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 970 list_add_tail(&next->tree_list, &head); 971 nitems++; 972 973 curr = next; 974 next = __btrfs_next_delayed_item(curr); 975 if (!next) 976 break; 977 978 if (!btrfs_is_continuous_delayed_item(curr, next)) 979 break; 980 981 i++; 982 if (i > last_item) 983 break; 984 btrfs_item_key_to_cpu(leaf, &key, i); 985 } 986 987 if (!nitems) 988 return 0; 989 990 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 991 if (ret) 992 goto out; 993 994 list_for_each_entry_safe(curr, next, &head, tree_list) { 995 btrfs_delayed_item_release_metadata(root, curr); 996 list_del(&curr->tree_list); 997 btrfs_release_delayed_item(curr); 998 } 999 1000 out: 1001 return ret; 1002 } 1003 1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 1005 struct btrfs_path *path, 1006 struct btrfs_root *root, 1007 struct btrfs_delayed_node *node) 1008 { 1009 struct btrfs_delayed_item *curr, *prev; 1010 int ret = 0; 1011 1012 do_again: 1013 mutex_lock(&node->mutex); 1014 curr = __btrfs_first_delayed_deletion_item(node); 1015 if (!curr) 1016 goto delete_fail; 1017 1018 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 1019 if (ret < 0) 1020 goto delete_fail; 1021 else if (ret > 0) { 1022 /* 1023 * can't find the item which the node points to, so this node 1024 * is invalid, just drop it. 1025 */ 1026 prev = curr; 1027 curr = __btrfs_next_delayed_item(prev); 1028 btrfs_release_delayed_item(prev); 1029 ret = 0; 1030 btrfs_release_path(path); 1031 if (curr) 1032 goto do_again; 1033 else 1034 goto delete_fail; 1035 } 1036 1037 btrfs_batch_delete_items(trans, root, path, curr); 1038 btrfs_release_path(path); 1039 mutex_unlock(&node->mutex); 1040 goto do_again; 1041 1042 delete_fail: 1043 btrfs_release_path(path); 1044 mutex_unlock(&node->mutex); 1045 return ret; 1046 } 1047 1048 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 1049 { 1050 struct btrfs_delayed_root *delayed_root; 1051 1052 if (delayed_node && delayed_node->inode_dirty) { 1053 BUG_ON(!delayed_node->root); 1054 delayed_node->inode_dirty = 0; 1055 delayed_node->count--; 1056 1057 delayed_root = delayed_node->root->fs_info->delayed_root; 1058 atomic_dec(&delayed_root->items); 1059 if (atomic_read(&delayed_root->items) < 1060 BTRFS_DELAYED_BACKGROUND && 1061 waitqueue_active(&delayed_root->wait)) 1062 wake_up(&delayed_root->wait); 1063 } 1064 } 1065 1066 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1067 struct btrfs_root *root, 1068 struct btrfs_path *path, 1069 struct btrfs_delayed_node *node) 1070 { 1071 struct btrfs_key key; 1072 struct btrfs_inode_item *inode_item; 1073 struct extent_buffer *leaf; 1074 int ret; 1075 1076 mutex_lock(&node->mutex); 1077 if (!node->inode_dirty) { 1078 mutex_unlock(&node->mutex); 1079 return 0; 1080 } 1081 1082 key.objectid = node->inode_id; 1083 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY); 1084 key.offset = 0; 1085 ret = btrfs_lookup_inode(trans, root, path, &key, 1); 1086 if (ret > 0) { 1087 btrfs_release_path(path); 1088 mutex_unlock(&node->mutex); 1089 return -ENOENT; 1090 } else if (ret < 0) { 1091 mutex_unlock(&node->mutex); 1092 return ret; 1093 } 1094 1095 btrfs_unlock_up_safe(path, 1); 1096 leaf = path->nodes[0]; 1097 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1098 struct btrfs_inode_item); 1099 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1100 sizeof(struct btrfs_inode_item)); 1101 btrfs_mark_buffer_dirty(leaf); 1102 btrfs_release_path(path); 1103 1104 btrfs_delayed_inode_release_metadata(root, node); 1105 btrfs_release_delayed_inode(node); 1106 mutex_unlock(&node->mutex); 1107 1108 return 0; 1109 } 1110 1111 /* 1112 * Called when committing the transaction. 1113 * Returns 0 on success. 1114 * Returns < 0 on error and returns with an aborted transaction with any 1115 * outstanding delayed items cleaned up. 1116 */ 1117 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1118 struct btrfs_root *root, int nr) 1119 { 1120 struct btrfs_root *curr_root = root; 1121 struct btrfs_delayed_root *delayed_root; 1122 struct btrfs_delayed_node *curr_node, *prev_node; 1123 struct btrfs_path *path; 1124 struct btrfs_block_rsv *block_rsv; 1125 int ret = 0; 1126 bool count = (nr > 0); 1127 1128 if (trans->aborted) 1129 return -EIO; 1130 1131 path = btrfs_alloc_path(); 1132 if (!path) 1133 return -ENOMEM; 1134 path->leave_spinning = 1; 1135 1136 block_rsv = trans->block_rsv; 1137 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1138 1139 delayed_root = btrfs_get_delayed_root(root); 1140 1141 curr_node = btrfs_first_delayed_node(delayed_root); 1142 while (curr_node && (!count || (count && nr--))) { 1143 curr_root = curr_node->root; 1144 ret = btrfs_insert_delayed_items(trans, path, curr_root, 1145 curr_node); 1146 if (!ret) 1147 ret = btrfs_delete_delayed_items(trans, path, 1148 curr_root, curr_node); 1149 if (!ret) 1150 ret = btrfs_update_delayed_inode(trans, curr_root, 1151 path, curr_node); 1152 if (ret) { 1153 btrfs_release_delayed_node(curr_node); 1154 curr_node = NULL; 1155 btrfs_abort_transaction(trans, root, ret); 1156 break; 1157 } 1158 1159 prev_node = curr_node; 1160 curr_node = btrfs_next_delayed_node(curr_node); 1161 btrfs_release_delayed_node(prev_node); 1162 } 1163 1164 if (curr_node) 1165 btrfs_release_delayed_node(curr_node); 1166 btrfs_free_path(path); 1167 trans->block_rsv = block_rsv; 1168 1169 return ret; 1170 } 1171 1172 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans, 1173 struct btrfs_root *root) 1174 { 1175 return __btrfs_run_delayed_items(trans, root, -1); 1176 } 1177 1178 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, 1179 struct btrfs_root *root, int nr) 1180 { 1181 return __btrfs_run_delayed_items(trans, root, nr); 1182 } 1183 1184 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1185 struct btrfs_delayed_node *node) 1186 { 1187 struct btrfs_path *path; 1188 struct btrfs_block_rsv *block_rsv; 1189 int ret; 1190 1191 path = btrfs_alloc_path(); 1192 if (!path) 1193 return -ENOMEM; 1194 path->leave_spinning = 1; 1195 1196 block_rsv = trans->block_rsv; 1197 trans->block_rsv = &node->root->fs_info->delayed_block_rsv; 1198 1199 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1200 if (!ret) 1201 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1202 if (!ret) 1203 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1204 btrfs_free_path(path); 1205 1206 trans->block_rsv = block_rsv; 1207 return ret; 1208 } 1209 1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1211 struct inode *inode) 1212 { 1213 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1214 int ret; 1215 1216 if (!delayed_node) 1217 return 0; 1218 1219 mutex_lock(&delayed_node->mutex); 1220 if (!delayed_node->count) { 1221 mutex_unlock(&delayed_node->mutex); 1222 btrfs_release_delayed_node(delayed_node); 1223 return 0; 1224 } 1225 mutex_unlock(&delayed_node->mutex); 1226 1227 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node); 1228 btrfs_release_delayed_node(delayed_node); 1229 return ret; 1230 } 1231 1232 void btrfs_remove_delayed_node(struct inode *inode) 1233 { 1234 struct btrfs_delayed_node *delayed_node; 1235 1236 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node); 1237 if (!delayed_node) 1238 return; 1239 1240 BTRFS_I(inode)->delayed_node = NULL; 1241 btrfs_release_delayed_node(delayed_node); 1242 } 1243 1244 struct btrfs_async_delayed_node { 1245 struct btrfs_root *root; 1246 struct btrfs_delayed_node *delayed_node; 1247 struct btrfs_work work; 1248 }; 1249 1250 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work) 1251 { 1252 struct btrfs_async_delayed_node *async_node; 1253 struct btrfs_trans_handle *trans; 1254 struct btrfs_path *path; 1255 struct btrfs_delayed_node *delayed_node = NULL; 1256 struct btrfs_root *root; 1257 struct btrfs_block_rsv *block_rsv; 1258 unsigned long nr = 0; 1259 int need_requeue = 0; 1260 int ret; 1261 1262 async_node = container_of(work, struct btrfs_async_delayed_node, work); 1263 1264 path = btrfs_alloc_path(); 1265 if (!path) 1266 goto out; 1267 path->leave_spinning = 1; 1268 1269 delayed_node = async_node->delayed_node; 1270 root = delayed_node->root; 1271 1272 trans = btrfs_join_transaction(root); 1273 if (IS_ERR(trans)) 1274 goto free_path; 1275 1276 block_rsv = trans->block_rsv; 1277 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1278 1279 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node); 1280 if (!ret) 1281 ret = btrfs_delete_delayed_items(trans, path, root, 1282 delayed_node); 1283 1284 if (!ret) 1285 btrfs_update_delayed_inode(trans, root, path, delayed_node); 1286 1287 /* 1288 * Maybe new delayed items have been inserted, so we need requeue 1289 * the work. Besides that, we must dequeue the empty delayed nodes 1290 * to avoid the race between delayed items balance and the worker. 1291 * The race like this: 1292 * Task1 Worker thread 1293 * count == 0, needn't requeue 1294 * also needn't insert the 1295 * delayed node into prepare 1296 * list again. 1297 * add lots of delayed items 1298 * queue the delayed node 1299 * already in the list, 1300 * and not in the prepare 1301 * list, it means the delayed 1302 * node is being dealt with 1303 * by the worker. 1304 * do delayed items balance 1305 * the delayed node is being 1306 * dealt with by the worker 1307 * now, just wait. 1308 * the worker goto idle. 1309 * Task1 will sleep until the transaction is commited. 1310 */ 1311 mutex_lock(&delayed_node->mutex); 1312 if (delayed_node->count) 1313 need_requeue = 1; 1314 else 1315 btrfs_dequeue_delayed_node(root->fs_info->delayed_root, 1316 delayed_node); 1317 mutex_unlock(&delayed_node->mutex); 1318 1319 nr = trans->blocks_used; 1320 1321 trans->block_rsv = block_rsv; 1322 btrfs_end_transaction_dmeta(trans, root); 1323 __btrfs_btree_balance_dirty(root, nr); 1324 free_path: 1325 btrfs_free_path(path); 1326 out: 1327 if (need_requeue) 1328 btrfs_requeue_work(&async_node->work); 1329 else { 1330 btrfs_release_prepared_delayed_node(delayed_node); 1331 kfree(async_node); 1332 } 1333 } 1334 1335 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1336 struct btrfs_root *root, int all) 1337 { 1338 struct btrfs_async_delayed_node *async_node; 1339 struct btrfs_delayed_node *curr; 1340 int count = 0; 1341 1342 again: 1343 curr = btrfs_first_prepared_delayed_node(delayed_root); 1344 if (!curr) 1345 return 0; 1346 1347 async_node = kmalloc(sizeof(*async_node), GFP_NOFS); 1348 if (!async_node) { 1349 btrfs_release_prepared_delayed_node(curr); 1350 return -ENOMEM; 1351 } 1352 1353 async_node->root = root; 1354 async_node->delayed_node = curr; 1355 1356 async_node->work.func = btrfs_async_run_delayed_node_done; 1357 async_node->work.flags = 0; 1358 1359 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work); 1360 count++; 1361 1362 if (all || count < 4) 1363 goto again; 1364 1365 return 0; 1366 } 1367 1368 void btrfs_assert_delayed_root_empty(struct btrfs_root *root) 1369 { 1370 struct btrfs_delayed_root *delayed_root; 1371 delayed_root = btrfs_get_delayed_root(root); 1372 WARN_ON(btrfs_first_delayed_node(delayed_root)); 1373 } 1374 1375 void btrfs_balance_delayed_items(struct btrfs_root *root) 1376 { 1377 struct btrfs_delayed_root *delayed_root; 1378 1379 delayed_root = btrfs_get_delayed_root(root); 1380 1381 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1382 return; 1383 1384 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1385 int ret; 1386 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1); 1387 if (ret) 1388 return; 1389 1390 wait_event_interruptible_timeout( 1391 delayed_root->wait, 1392 (atomic_read(&delayed_root->items) < 1393 BTRFS_DELAYED_BACKGROUND), 1394 HZ); 1395 return; 1396 } 1397 1398 btrfs_wq_run_delayed_node(delayed_root, root, 0); 1399 } 1400 1401 /* Will return 0 or -ENOMEM */ 1402 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1403 struct btrfs_root *root, const char *name, 1404 int name_len, struct inode *dir, 1405 struct btrfs_disk_key *disk_key, u8 type, 1406 u64 index) 1407 { 1408 struct btrfs_delayed_node *delayed_node; 1409 struct btrfs_delayed_item *delayed_item; 1410 struct btrfs_dir_item *dir_item; 1411 int ret; 1412 1413 delayed_node = btrfs_get_or_create_delayed_node(dir); 1414 if (IS_ERR(delayed_node)) 1415 return PTR_ERR(delayed_node); 1416 1417 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1418 if (!delayed_item) { 1419 ret = -ENOMEM; 1420 goto release_node; 1421 } 1422 1423 delayed_item->key.objectid = btrfs_ino(dir); 1424 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY); 1425 delayed_item->key.offset = index; 1426 1427 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1428 dir_item->location = *disk_key; 1429 dir_item->transid = cpu_to_le64(trans->transid); 1430 dir_item->data_len = 0; 1431 dir_item->name_len = cpu_to_le16(name_len); 1432 dir_item->type = type; 1433 memcpy((char *)(dir_item + 1), name, name_len); 1434 1435 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item); 1436 /* 1437 * we have reserved enough space when we start a new transaction, 1438 * so reserving metadata failure is impossible 1439 */ 1440 BUG_ON(ret); 1441 1442 1443 mutex_lock(&delayed_node->mutex); 1444 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1445 if (unlikely(ret)) { 1446 printk(KERN_ERR "err add delayed dir index item(name: %s) into " 1447 "the insertion tree of the delayed node" 1448 "(root id: %llu, inode id: %llu, errno: %d)\n", 1449 name, 1450 (unsigned long long)delayed_node->root->objectid, 1451 (unsigned long long)delayed_node->inode_id, 1452 ret); 1453 BUG(); 1454 } 1455 mutex_unlock(&delayed_node->mutex); 1456 1457 release_node: 1458 btrfs_release_delayed_node(delayed_node); 1459 return ret; 1460 } 1461 1462 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root, 1463 struct btrfs_delayed_node *node, 1464 struct btrfs_key *key) 1465 { 1466 struct btrfs_delayed_item *item; 1467 1468 mutex_lock(&node->mutex); 1469 item = __btrfs_lookup_delayed_insertion_item(node, key); 1470 if (!item) { 1471 mutex_unlock(&node->mutex); 1472 return 1; 1473 } 1474 1475 btrfs_delayed_item_release_metadata(root, item); 1476 btrfs_release_delayed_item(item); 1477 mutex_unlock(&node->mutex); 1478 return 0; 1479 } 1480 1481 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1482 struct btrfs_root *root, struct inode *dir, 1483 u64 index) 1484 { 1485 struct btrfs_delayed_node *node; 1486 struct btrfs_delayed_item *item; 1487 struct btrfs_key item_key; 1488 int ret; 1489 1490 node = btrfs_get_or_create_delayed_node(dir); 1491 if (IS_ERR(node)) 1492 return PTR_ERR(node); 1493 1494 item_key.objectid = btrfs_ino(dir); 1495 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY); 1496 item_key.offset = index; 1497 1498 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key); 1499 if (!ret) 1500 goto end; 1501 1502 item = btrfs_alloc_delayed_item(0); 1503 if (!item) { 1504 ret = -ENOMEM; 1505 goto end; 1506 } 1507 1508 item->key = item_key; 1509 1510 ret = btrfs_delayed_item_reserve_metadata(trans, root, item); 1511 /* 1512 * we have reserved enough space when we start a new transaction, 1513 * so reserving metadata failure is impossible. 1514 */ 1515 BUG_ON(ret); 1516 1517 mutex_lock(&node->mutex); 1518 ret = __btrfs_add_delayed_deletion_item(node, item); 1519 if (unlikely(ret)) { 1520 printk(KERN_ERR "err add delayed dir index item(index: %llu) " 1521 "into the deletion tree of the delayed node" 1522 "(root id: %llu, inode id: %llu, errno: %d)\n", 1523 (unsigned long long)index, 1524 (unsigned long long)node->root->objectid, 1525 (unsigned long long)node->inode_id, 1526 ret); 1527 BUG(); 1528 } 1529 mutex_unlock(&node->mutex); 1530 end: 1531 btrfs_release_delayed_node(node); 1532 return ret; 1533 } 1534 1535 int btrfs_inode_delayed_dir_index_count(struct inode *inode) 1536 { 1537 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1538 1539 if (!delayed_node) 1540 return -ENOENT; 1541 1542 /* 1543 * Since we have held i_mutex of this directory, it is impossible that 1544 * a new directory index is added into the delayed node and index_cnt 1545 * is updated now. So we needn't lock the delayed node. 1546 */ 1547 if (!delayed_node->index_cnt) { 1548 btrfs_release_delayed_node(delayed_node); 1549 return -EINVAL; 1550 } 1551 1552 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt; 1553 btrfs_release_delayed_node(delayed_node); 1554 return 0; 1555 } 1556 1557 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list, 1558 struct list_head *del_list) 1559 { 1560 struct btrfs_delayed_node *delayed_node; 1561 struct btrfs_delayed_item *item; 1562 1563 delayed_node = btrfs_get_delayed_node(inode); 1564 if (!delayed_node) 1565 return; 1566 1567 mutex_lock(&delayed_node->mutex); 1568 item = __btrfs_first_delayed_insertion_item(delayed_node); 1569 while (item) { 1570 atomic_inc(&item->refs); 1571 list_add_tail(&item->readdir_list, ins_list); 1572 item = __btrfs_next_delayed_item(item); 1573 } 1574 1575 item = __btrfs_first_delayed_deletion_item(delayed_node); 1576 while (item) { 1577 atomic_inc(&item->refs); 1578 list_add_tail(&item->readdir_list, del_list); 1579 item = __btrfs_next_delayed_item(item); 1580 } 1581 mutex_unlock(&delayed_node->mutex); 1582 /* 1583 * This delayed node is still cached in the btrfs inode, so refs 1584 * must be > 1 now, and we needn't check it is going to be freed 1585 * or not. 1586 * 1587 * Besides that, this function is used to read dir, we do not 1588 * insert/delete delayed items in this period. So we also needn't 1589 * requeue or dequeue this delayed node. 1590 */ 1591 atomic_dec(&delayed_node->refs); 1592 } 1593 1594 void btrfs_put_delayed_items(struct list_head *ins_list, 1595 struct list_head *del_list) 1596 { 1597 struct btrfs_delayed_item *curr, *next; 1598 1599 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1600 list_del(&curr->readdir_list); 1601 if (atomic_dec_and_test(&curr->refs)) 1602 kfree(curr); 1603 } 1604 1605 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1606 list_del(&curr->readdir_list); 1607 if (atomic_dec_and_test(&curr->refs)) 1608 kfree(curr); 1609 } 1610 } 1611 1612 int btrfs_should_delete_dir_index(struct list_head *del_list, 1613 u64 index) 1614 { 1615 struct btrfs_delayed_item *curr, *next; 1616 int ret; 1617 1618 if (list_empty(del_list)) 1619 return 0; 1620 1621 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1622 if (curr->key.offset > index) 1623 break; 1624 1625 list_del(&curr->readdir_list); 1626 ret = (curr->key.offset == index); 1627 1628 if (atomic_dec_and_test(&curr->refs)) 1629 kfree(curr); 1630 1631 if (ret) 1632 return 1; 1633 else 1634 continue; 1635 } 1636 return 0; 1637 } 1638 1639 /* 1640 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1641 * 1642 */ 1643 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent, 1644 filldir_t filldir, 1645 struct list_head *ins_list) 1646 { 1647 struct btrfs_dir_item *di; 1648 struct btrfs_delayed_item *curr, *next; 1649 struct btrfs_key location; 1650 char *name; 1651 int name_len; 1652 int over = 0; 1653 unsigned char d_type; 1654 1655 if (list_empty(ins_list)) 1656 return 0; 1657 1658 /* 1659 * Changing the data of the delayed item is impossible. So 1660 * we needn't lock them. And we have held i_mutex of the 1661 * directory, nobody can delete any directory indexes now. 1662 */ 1663 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1664 list_del(&curr->readdir_list); 1665 1666 if (curr->key.offset < filp->f_pos) { 1667 if (atomic_dec_and_test(&curr->refs)) 1668 kfree(curr); 1669 continue; 1670 } 1671 1672 filp->f_pos = curr->key.offset; 1673 1674 di = (struct btrfs_dir_item *)curr->data; 1675 name = (char *)(di + 1); 1676 name_len = le16_to_cpu(di->name_len); 1677 1678 d_type = btrfs_filetype_table[di->type]; 1679 btrfs_disk_key_to_cpu(&location, &di->location); 1680 1681 over = filldir(dirent, name, name_len, curr->key.offset, 1682 location.objectid, d_type); 1683 1684 if (atomic_dec_and_test(&curr->refs)) 1685 kfree(curr); 1686 1687 if (over) 1688 return 1; 1689 } 1690 return 0; 1691 } 1692 1693 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1694 generation, 64); 1695 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1696 sequence, 64); 1697 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1698 transid, 64); 1699 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1700 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1701 nbytes, 64); 1702 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1703 block_group, 64); 1704 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1705 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1706 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1707 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1708 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1709 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1710 1711 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1712 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1713 1714 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1715 struct btrfs_inode_item *inode_item, 1716 struct inode *inode) 1717 { 1718 btrfs_set_stack_inode_uid(inode_item, inode->i_uid); 1719 btrfs_set_stack_inode_gid(inode_item, inode->i_gid); 1720 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1721 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1722 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1723 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1724 btrfs_set_stack_inode_generation(inode_item, 1725 BTRFS_I(inode)->generation); 1726 btrfs_set_stack_inode_sequence(inode_item, inode->i_version); 1727 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1728 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1729 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1730 btrfs_set_stack_inode_block_group(inode_item, 0); 1731 1732 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item), 1733 inode->i_atime.tv_sec); 1734 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item), 1735 inode->i_atime.tv_nsec); 1736 1737 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item), 1738 inode->i_mtime.tv_sec); 1739 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item), 1740 inode->i_mtime.tv_nsec); 1741 1742 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item), 1743 inode->i_ctime.tv_sec); 1744 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item), 1745 inode->i_ctime.tv_nsec); 1746 } 1747 1748 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1749 { 1750 struct btrfs_delayed_node *delayed_node; 1751 struct btrfs_inode_item *inode_item; 1752 struct btrfs_timespec *tspec; 1753 1754 delayed_node = btrfs_get_delayed_node(inode); 1755 if (!delayed_node) 1756 return -ENOENT; 1757 1758 mutex_lock(&delayed_node->mutex); 1759 if (!delayed_node->inode_dirty) { 1760 mutex_unlock(&delayed_node->mutex); 1761 btrfs_release_delayed_node(delayed_node); 1762 return -ENOENT; 1763 } 1764 1765 inode_item = &delayed_node->inode_item; 1766 1767 inode->i_uid = btrfs_stack_inode_uid(inode_item); 1768 inode->i_gid = btrfs_stack_inode_gid(inode_item); 1769 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item)); 1770 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1771 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1772 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1773 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1774 inode->i_version = btrfs_stack_inode_sequence(inode_item); 1775 inode->i_rdev = 0; 1776 *rdev = btrfs_stack_inode_rdev(inode_item); 1777 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1778 1779 tspec = btrfs_inode_atime(inode_item); 1780 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec); 1781 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1782 1783 tspec = btrfs_inode_mtime(inode_item); 1784 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec); 1785 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1786 1787 tspec = btrfs_inode_ctime(inode_item); 1788 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec); 1789 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec); 1790 1791 inode->i_generation = BTRFS_I(inode)->generation; 1792 BTRFS_I(inode)->index_cnt = (u64)-1; 1793 1794 mutex_unlock(&delayed_node->mutex); 1795 btrfs_release_delayed_node(delayed_node); 1796 return 0; 1797 } 1798 1799 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1800 struct btrfs_root *root, struct inode *inode) 1801 { 1802 struct btrfs_delayed_node *delayed_node; 1803 int ret = 0; 1804 1805 delayed_node = btrfs_get_or_create_delayed_node(inode); 1806 if (IS_ERR(delayed_node)) 1807 return PTR_ERR(delayed_node); 1808 1809 mutex_lock(&delayed_node->mutex); 1810 if (delayed_node->inode_dirty) { 1811 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1812 goto release_node; 1813 } 1814 1815 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1816 delayed_node); 1817 if (ret) 1818 goto release_node; 1819 1820 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1821 delayed_node->inode_dirty = 1; 1822 delayed_node->count++; 1823 atomic_inc(&root->fs_info->delayed_root->items); 1824 release_node: 1825 mutex_unlock(&delayed_node->mutex); 1826 btrfs_release_delayed_node(delayed_node); 1827 return ret; 1828 } 1829 1830 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1831 { 1832 struct btrfs_root *root = delayed_node->root; 1833 struct btrfs_delayed_item *curr_item, *prev_item; 1834 1835 mutex_lock(&delayed_node->mutex); 1836 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1837 while (curr_item) { 1838 btrfs_delayed_item_release_metadata(root, curr_item); 1839 prev_item = curr_item; 1840 curr_item = __btrfs_next_delayed_item(prev_item); 1841 btrfs_release_delayed_item(prev_item); 1842 } 1843 1844 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1845 while (curr_item) { 1846 btrfs_delayed_item_release_metadata(root, curr_item); 1847 prev_item = curr_item; 1848 curr_item = __btrfs_next_delayed_item(prev_item); 1849 btrfs_release_delayed_item(prev_item); 1850 } 1851 1852 if (delayed_node->inode_dirty) { 1853 btrfs_delayed_inode_release_metadata(root, delayed_node); 1854 btrfs_release_delayed_inode(delayed_node); 1855 } 1856 mutex_unlock(&delayed_node->mutex); 1857 } 1858 1859 void btrfs_kill_delayed_inode_items(struct inode *inode) 1860 { 1861 struct btrfs_delayed_node *delayed_node; 1862 1863 delayed_node = btrfs_get_delayed_node(inode); 1864 if (!delayed_node) 1865 return; 1866 1867 __btrfs_kill_delayed_node(delayed_node); 1868 btrfs_release_delayed_node(delayed_node); 1869 } 1870 1871 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1872 { 1873 u64 inode_id = 0; 1874 struct btrfs_delayed_node *delayed_nodes[8]; 1875 int i, n; 1876 1877 while (1) { 1878 spin_lock(&root->inode_lock); 1879 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1880 (void **)delayed_nodes, inode_id, 1881 ARRAY_SIZE(delayed_nodes)); 1882 if (!n) { 1883 spin_unlock(&root->inode_lock); 1884 break; 1885 } 1886 1887 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1888 1889 for (i = 0; i < n; i++) 1890 atomic_inc(&delayed_nodes[i]->refs); 1891 spin_unlock(&root->inode_lock); 1892 1893 for (i = 0; i < n; i++) { 1894 __btrfs_kill_delayed_node(delayed_nodes[i]); 1895 btrfs_release_delayed_node(delayed_nodes[i]); 1896 } 1897 } 1898 } 1899 1900 void btrfs_destroy_delayed_inodes(struct btrfs_root *root) 1901 { 1902 struct btrfs_delayed_root *delayed_root; 1903 struct btrfs_delayed_node *curr_node, *prev_node; 1904 1905 delayed_root = btrfs_get_delayed_root(root); 1906 1907 curr_node = btrfs_first_delayed_node(delayed_root); 1908 while (curr_node) { 1909 __btrfs_kill_delayed_node(curr_node); 1910 1911 prev_node = curr_node; 1912 curr_node = btrfs_next_delayed_node(curr_node); 1913 btrfs_release_delayed_node(prev_node); 1914 } 1915 } 1916 1917