xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 7e035230)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 
25 #define BTRFS_DELAYED_WRITEBACK		400
26 #define BTRFS_DELAYED_BACKGROUND	100
27 
28 static struct kmem_cache *delayed_node_cache;
29 
30 int __init btrfs_delayed_inode_init(void)
31 {
32 	delayed_node_cache = kmem_cache_create("delayed_node",
33 					sizeof(struct btrfs_delayed_node),
34 					0,
35 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 					NULL);
37 	if (!delayed_node_cache)
38 		return -ENOMEM;
39 	return 0;
40 }
41 
42 void btrfs_delayed_inode_exit(void)
43 {
44 	if (delayed_node_cache)
45 		kmem_cache_destroy(delayed_node_cache);
46 }
47 
48 static inline void btrfs_init_delayed_node(
49 				struct btrfs_delayed_node *delayed_node,
50 				struct btrfs_root *root, u64 inode_id)
51 {
52 	delayed_node->root = root;
53 	delayed_node->inode_id = inode_id;
54 	atomic_set(&delayed_node->refs, 0);
55 	delayed_node->count = 0;
56 	delayed_node->in_list = 0;
57 	delayed_node->inode_dirty = 0;
58 	delayed_node->ins_root = RB_ROOT;
59 	delayed_node->del_root = RB_ROOT;
60 	mutex_init(&delayed_node->mutex);
61 	delayed_node->index_cnt = 0;
62 	INIT_LIST_HEAD(&delayed_node->n_list);
63 	INIT_LIST_HEAD(&delayed_node->p_list);
64 	delayed_node->bytes_reserved = 0;
65 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
66 }
67 
68 static inline int btrfs_is_continuous_delayed_item(
69 					struct btrfs_delayed_item *item1,
70 					struct btrfs_delayed_item *item2)
71 {
72 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
73 	    item1->key.objectid == item2->key.objectid &&
74 	    item1->key.type == item2->key.type &&
75 	    item1->key.offset + 1 == item2->key.offset)
76 		return 1;
77 	return 0;
78 }
79 
80 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
81 							struct btrfs_root *root)
82 {
83 	return root->fs_info->delayed_root;
84 }
85 
86 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 {
88 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
89 	struct btrfs_root *root = btrfs_inode->root;
90 	u64 ino = btrfs_ino(inode);
91 	struct btrfs_delayed_node *node;
92 
93 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
94 	if (node) {
95 		atomic_inc(&node->refs);
96 		return node;
97 	}
98 
99 	spin_lock(&root->inode_lock);
100 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
101 	if (node) {
102 		if (btrfs_inode->delayed_node) {
103 			atomic_inc(&node->refs);	/* can be accessed */
104 			BUG_ON(btrfs_inode->delayed_node != node);
105 			spin_unlock(&root->inode_lock);
106 			return node;
107 		}
108 		btrfs_inode->delayed_node = node;
109 		atomic_inc(&node->refs);	/* can be accessed */
110 		atomic_inc(&node->refs);	/* cached in the inode */
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 							struct inode *inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
125 	struct btrfs_root *root = btrfs_inode->root;
126 	u64 ino = btrfs_ino(inode);
127 	int ret;
128 
129 again:
130 	node = btrfs_get_delayed_node(inode);
131 	if (node)
132 		return node;
133 
134 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
135 	if (!node)
136 		return ERR_PTR(-ENOMEM);
137 	btrfs_init_delayed_node(node, root, ino);
138 
139 	atomic_inc(&node->refs);	/* cached in the btrfs inode */
140 	atomic_inc(&node->refs);	/* can be accessed */
141 
142 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
143 	if (ret) {
144 		kmem_cache_free(delayed_node_cache, node);
145 		return ERR_PTR(ret);
146 	}
147 
148 	spin_lock(&root->inode_lock);
149 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
150 	if (ret == -EEXIST) {
151 		kmem_cache_free(delayed_node_cache, node);
152 		spin_unlock(&root->inode_lock);
153 		radix_tree_preload_end();
154 		goto again;
155 	}
156 	btrfs_inode->delayed_node = node;
157 	spin_unlock(&root->inode_lock);
158 	radix_tree_preload_end();
159 
160 	return node;
161 }
162 
163 /*
164  * Call it when holding delayed_node->mutex
165  *
166  * If mod = 1, add this node into the prepared list.
167  */
168 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
169 				     struct btrfs_delayed_node *node,
170 				     int mod)
171 {
172 	spin_lock(&root->lock);
173 	if (node->in_list) {
174 		if (!list_empty(&node->p_list))
175 			list_move_tail(&node->p_list, &root->prepare_list);
176 		else if (mod)
177 			list_add_tail(&node->p_list, &root->prepare_list);
178 	} else {
179 		list_add_tail(&node->n_list, &root->node_list);
180 		list_add_tail(&node->p_list, &root->prepare_list);
181 		atomic_inc(&node->refs);	/* inserted into list */
182 		root->nodes++;
183 		node->in_list = 1;
184 	}
185 	spin_unlock(&root->lock);
186 }
187 
188 /* Call it when holding delayed_node->mutex */
189 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
190 				       struct btrfs_delayed_node *node)
191 {
192 	spin_lock(&root->lock);
193 	if (node->in_list) {
194 		root->nodes--;
195 		atomic_dec(&node->refs);	/* not in the list */
196 		list_del_init(&node->n_list);
197 		if (!list_empty(&node->p_list))
198 			list_del_init(&node->p_list);
199 		node->in_list = 0;
200 	}
201 	spin_unlock(&root->lock);
202 }
203 
204 struct btrfs_delayed_node *btrfs_first_delayed_node(
205 			struct btrfs_delayed_root *delayed_root)
206 {
207 	struct list_head *p;
208 	struct btrfs_delayed_node *node = NULL;
209 
210 	spin_lock(&delayed_root->lock);
211 	if (list_empty(&delayed_root->node_list))
212 		goto out;
213 
214 	p = delayed_root->node_list.next;
215 	node = list_entry(p, struct btrfs_delayed_node, n_list);
216 	atomic_inc(&node->refs);
217 out:
218 	spin_unlock(&delayed_root->lock);
219 
220 	return node;
221 }
222 
223 struct btrfs_delayed_node *btrfs_next_delayed_node(
224 						struct btrfs_delayed_node *node)
225 {
226 	struct btrfs_delayed_root *delayed_root;
227 	struct list_head *p;
228 	struct btrfs_delayed_node *next = NULL;
229 
230 	delayed_root = node->root->fs_info->delayed_root;
231 	spin_lock(&delayed_root->lock);
232 	if (!node->in_list) {	/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	atomic_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (atomic_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 		spin_lock(&root->inode_lock);
270 		if (atomic_read(&delayed_node->refs) == 0) {
271 			radix_tree_delete(&root->delayed_nodes_tree,
272 					  delayed_node->inode_id);
273 			kmem_cache_free(delayed_node_cache, delayed_node);
274 		}
275 		spin_unlock(&root->inode_lock);
276 	}
277 }
278 
279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
280 {
281 	__btrfs_release_delayed_node(node, 0);
282 }
283 
284 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
285 					struct btrfs_delayed_root *delayed_root)
286 {
287 	struct list_head *p;
288 	struct btrfs_delayed_node *node = NULL;
289 
290 	spin_lock(&delayed_root->lock);
291 	if (list_empty(&delayed_root->prepare_list))
292 		goto out;
293 
294 	p = delayed_root->prepare_list.next;
295 	list_del_init(p);
296 	node = list_entry(p, struct btrfs_delayed_node, p_list);
297 	atomic_inc(&node->refs);
298 out:
299 	spin_unlock(&delayed_root->lock);
300 
301 	return node;
302 }
303 
304 static inline void btrfs_release_prepared_delayed_node(
305 					struct btrfs_delayed_node *node)
306 {
307 	__btrfs_release_delayed_node(node, 1);
308 }
309 
310 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
311 {
312 	struct btrfs_delayed_item *item;
313 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
314 	if (item) {
315 		item->data_len = data_len;
316 		item->ins_or_del = 0;
317 		item->bytes_reserved = 0;
318 		item->delayed_node = NULL;
319 		atomic_set(&item->refs, 1);
320 	}
321 	return item;
322 }
323 
324 /*
325  * __btrfs_lookup_delayed_item - look up the delayed item by key
326  * @delayed_node: pointer to the delayed node
327  * @key:	  the key to look up
328  * @prev:	  used to store the prev item if the right item isn't found
329  * @next:	  used to store the next item if the right item isn't found
330  *
331  * Note: if we don't find the right item, we will return the prev item and
332  * the next item.
333  */
334 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
335 				struct rb_root *root,
336 				struct btrfs_key *key,
337 				struct btrfs_delayed_item **prev,
338 				struct btrfs_delayed_item **next)
339 {
340 	struct rb_node *node, *prev_node = NULL;
341 	struct btrfs_delayed_item *delayed_item = NULL;
342 	int ret = 0;
343 
344 	node = root->rb_node;
345 
346 	while (node) {
347 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
348 					rb_node);
349 		prev_node = node;
350 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
351 		if (ret < 0)
352 			node = node->rb_right;
353 		else if (ret > 0)
354 			node = node->rb_left;
355 		else
356 			return delayed_item;
357 	}
358 
359 	if (prev) {
360 		if (!prev_node)
361 			*prev = NULL;
362 		else if (ret < 0)
363 			*prev = delayed_item;
364 		else if ((node = rb_prev(prev_node)) != NULL) {
365 			*prev = rb_entry(node, struct btrfs_delayed_item,
366 					 rb_node);
367 		} else
368 			*prev = NULL;
369 	}
370 
371 	if (next) {
372 		if (!prev_node)
373 			*next = NULL;
374 		else if (ret > 0)
375 			*next = delayed_item;
376 		else if ((node = rb_next(prev_node)) != NULL) {
377 			*next = rb_entry(node, struct btrfs_delayed_item,
378 					 rb_node);
379 		} else
380 			*next = NULL;
381 	}
382 	return NULL;
383 }
384 
385 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
386 					struct btrfs_delayed_node *delayed_node,
387 					struct btrfs_key *key)
388 {
389 	struct btrfs_delayed_item *item;
390 
391 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
392 					   NULL, NULL);
393 	return item;
394 }
395 
396 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
397 					struct btrfs_delayed_node *delayed_node,
398 					struct btrfs_key *key)
399 {
400 	struct btrfs_delayed_item *item;
401 
402 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
403 					   NULL, NULL);
404 	return item;
405 }
406 
407 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
408 					struct btrfs_delayed_node *delayed_node,
409 					struct btrfs_key *key)
410 {
411 	struct btrfs_delayed_item *item, *next;
412 
413 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
414 					   NULL, &next);
415 	if (!item)
416 		item = next;
417 
418 	return item;
419 }
420 
421 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
422 					struct btrfs_delayed_node *delayed_node,
423 					struct btrfs_key *key)
424 {
425 	struct btrfs_delayed_item *item, *next;
426 
427 	item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
428 					   NULL, &next);
429 	if (!item)
430 		item = next;
431 
432 	return item;
433 }
434 
435 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
436 				    struct btrfs_delayed_item *ins,
437 				    int action)
438 {
439 	struct rb_node **p, *node;
440 	struct rb_node *parent_node = NULL;
441 	struct rb_root *root;
442 	struct btrfs_delayed_item *item;
443 	int cmp;
444 
445 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
446 		root = &delayed_node->ins_root;
447 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
448 		root = &delayed_node->del_root;
449 	else
450 		BUG();
451 	p = &root->rb_node;
452 	node = &ins->rb_node;
453 
454 	while (*p) {
455 		parent_node = *p;
456 		item = rb_entry(parent_node, struct btrfs_delayed_item,
457 				 rb_node);
458 
459 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
460 		if (cmp < 0)
461 			p = &(*p)->rb_right;
462 		else if (cmp > 0)
463 			p = &(*p)->rb_left;
464 		else
465 			return -EEXIST;
466 	}
467 
468 	rb_link_node(node, parent_node, p);
469 	rb_insert_color(node, root);
470 	ins->delayed_node = delayed_node;
471 	ins->ins_or_del = action;
472 
473 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
474 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
475 	    ins->key.offset >= delayed_node->index_cnt)
476 			delayed_node->index_cnt = ins->key.offset + 1;
477 
478 	delayed_node->count++;
479 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
480 	return 0;
481 }
482 
483 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
484 					      struct btrfs_delayed_item *item)
485 {
486 	return __btrfs_add_delayed_item(node, item,
487 					BTRFS_DELAYED_INSERTION_ITEM);
488 }
489 
490 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
491 					     struct btrfs_delayed_item *item)
492 {
493 	return __btrfs_add_delayed_item(node, item,
494 					BTRFS_DELAYED_DELETION_ITEM);
495 }
496 
497 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
498 {
499 	struct rb_root *root;
500 	struct btrfs_delayed_root *delayed_root;
501 
502 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
503 
504 	BUG_ON(!delayed_root);
505 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
506 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
507 
508 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
509 		root = &delayed_item->delayed_node->ins_root;
510 	else
511 		root = &delayed_item->delayed_node->del_root;
512 
513 	rb_erase(&delayed_item->rb_node, root);
514 	delayed_item->delayed_node->count--;
515 	atomic_dec(&delayed_root->items);
516 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
517 	    waitqueue_active(&delayed_root->wait))
518 		wake_up(&delayed_root->wait);
519 }
520 
521 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
522 {
523 	if (item) {
524 		__btrfs_remove_delayed_item(item);
525 		if (atomic_dec_and_test(&item->refs))
526 			kfree(item);
527 	}
528 }
529 
530 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
531 					struct btrfs_delayed_node *delayed_node)
532 {
533 	struct rb_node *p;
534 	struct btrfs_delayed_item *item = NULL;
535 
536 	p = rb_first(&delayed_node->ins_root);
537 	if (p)
538 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
539 
540 	return item;
541 }
542 
543 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
544 					struct btrfs_delayed_node *delayed_node)
545 {
546 	struct rb_node *p;
547 	struct btrfs_delayed_item *item = NULL;
548 
549 	p = rb_first(&delayed_node->del_root);
550 	if (p)
551 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
552 
553 	return item;
554 }
555 
556 struct btrfs_delayed_item *__btrfs_next_delayed_item(
557 						struct btrfs_delayed_item *item)
558 {
559 	struct rb_node *p;
560 	struct btrfs_delayed_item *next = NULL;
561 
562 	p = rb_next(&item->rb_node);
563 	if (p)
564 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
565 
566 	return next;
567 }
568 
569 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
570 						   u64 root_id)
571 {
572 	struct btrfs_key root_key;
573 
574 	if (root->objectid == root_id)
575 		return root;
576 
577 	root_key.objectid = root_id;
578 	root_key.type = BTRFS_ROOT_ITEM_KEY;
579 	root_key.offset = (u64)-1;
580 	return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 }
582 
583 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
584 					       struct btrfs_root *root,
585 					       struct btrfs_delayed_item *item)
586 {
587 	struct btrfs_block_rsv *src_rsv;
588 	struct btrfs_block_rsv *dst_rsv;
589 	u64 num_bytes;
590 	int ret;
591 
592 	if (!trans->bytes_reserved)
593 		return 0;
594 
595 	src_rsv = trans->block_rsv;
596 	dst_rsv = &root->fs_info->delayed_block_rsv;
597 
598 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
599 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
600 	if (!ret) {
601 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
602 					      item->key.objectid,
603 					      num_bytes, 1);
604 		item->bytes_reserved = num_bytes;
605 	}
606 
607 	return ret;
608 }
609 
610 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
611 						struct btrfs_delayed_item *item)
612 {
613 	struct btrfs_block_rsv *rsv;
614 
615 	if (!item->bytes_reserved)
616 		return;
617 
618 	rsv = &root->fs_info->delayed_block_rsv;
619 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
620 				      item->key.objectid, item->bytes_reserved,
621 				      0);
622 	btrfs_block_rsv_release(root, rsv,
623 				item->bytes_reserved);
624 }
625 
626 static int btrfs_delayed_inode_reserve_metadata(
627 					struct btrfs_trans_handle *trans,
628 					struct btrfs_root *root,
629 					struct inode *inode,
630 					struct btrfs_delayed_node *node)
631 {
632 	struct btrfs_block_rsv *src_rsv;
633 	struct btrfs_block_rsv *dst_rsv;
634 	u64 num_bytes;
635 	int ret;
636 	bool release = false;
637 
638 	src_rsv = trans->block_rsv;
639 	dst_rsv = &root->fs_info->delayed_block_rsv;
640 
641 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
642 
643 	/*
644 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
645 	 * which doesn't reserve space for speed.  This is a problem since we
646 	 * still need to reserve space for this update, so try to reserve the
647 	 * space.
648 	 *
649 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
650 	 * we're accounted for.
651 	 */
652 	if (!src_rsv || (!trans->bytes_reserved &&
653 	    src_rsv != &root->fs_info->delalloc_block_rsv)) {
654 		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
655 		/*
656 		 * Since we're under a transaction reserve_metadata_bytes could
657 		 * try to commit the transaction which will make it return
658 		 * EAGAIN to make us stop the transaction we have, so return
659 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
660 		 */
661 		if (ret == -EAGAIN)
662 			ret = -ENOSPC;
663 		if (!ret) {
664 			node->bytes_reserved = num_bytes;
665 			trace_btrfs_space_reservation(root->fs_info,
666 						      "delayed_inode",
667 						      btrfs_ino(inode),
668 						      num_bytes, 1);
669 		}
670 		return ret;
671 	} else if (src_rsv == &root->fs_info->delalloc_block_rsv) {
672 		spin_lock(&BTRFS_I(inode)->lock);
673 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
674 				       &BTRFS_I(inode)->runtime_flags)) {
675 			spin_unlock(&BTRFS_I(inode)->lock);
676 			release = true;
677 			goto migrate;
678 		}
679 		spin_unlock(&BTRFS_I(inode)->lock);
680 
681 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
682 		 * too often but it can happen if we do delalloc to an existing
683 		 * inode which gets dirtied because of the time update, and then
684 		 * isn't touched again until after the transaction commits and
685 		 * then we try to write out the data.  First try to be nice and
686 		 * reserve something strictly for us.  If not be a pain and try
687 		 * to steal from the delalloc block rsv.
688 		 */
689 		ret = btrfs_block_rsv_add_noflush(root, dst_rsv, num_bytes);
690 		if (!ret)
691 			goto out;
692 
693 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
694 		if (!ret)
695 			goto out;
696 
697 		/*
698 		 * Ok this is a problem, let's just steal from the global rsv
699 		 * since this really shouldn't happen that often.
700 		 */
701 		WARN_ON(1);
702 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
703 					      dst_rsv, num_bytes);
704 		goto out;
705 	}
706 
707 migrate:
708 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
709 
710 out:
711 	/*
712 	 * Migrate only takes a reservation, it doesn't touch the size of the
713 	 * block_rsv.  This is to simplify people who don't normally have things
714 	 * migrated from their block rsv.  If they go to release their
715 	 * reservation, that will decrease the size as well, so if migrate
716 	 * reduced size we'd end up with a negative size.  But for the
717 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
718 	 * but we could in fact do this reserve/migrate dance several times
719 	 * between the time we did the original reservation and we'd clean it
720 	 * up.  So to take care of this, release the space for the meta
721 	 * reservation here.  I think it may be time for a documentation page on
722 	 * how block rsvs. work.
723 	 */
724 	if (!ret) {
725 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
726 					      btrfs_ino(inode), num_bytes, 1);
727 		node->bytes_reserved = num_bytes;
728 	}
729 
730 	if (release) {
731 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
732 					      btrfs_ino(inode), num_bytes, 0);
733 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
734 	}
735 
736 	return ret;
737 }
738 
739 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
740 						struct btrfs_delayed_node *node)
741 {
742 	struct btrfs_block_rsv *rsv;
743 
744 	if (!node->bytes_reserved)
745 		return;
746 
747 	rsv = &root->fs_info->delayed_block_rsv;
748 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
749 				      node->inode_id, node->bytes_reserved, 0);
750 	btrfs_block_rsv_release(root, rsv,
751 				node->bytes_reserved);
752 	node->bytes_reserved = 0;
753 }
754 
755 /*
756  * This helper will insert some continuous items into the same leaf according
757  * to the free space of the leaf.
758  */
759 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
760 				struct btrfs_root *root,
761 				struct btrfs_path *path,
762 				struct btrfs_delayed_item *item)
763 {
764 	struct btrfs_delayed_item *curr, *next;
765 	int free_space;
766 	int total_data_size = 0, total_size = 0;
767 	struct extent_buffer *leaf;
768 	char *data_ptr;
769 	struct btrfs_key *keys;
770 	u32 *data_size;
771 	struct list_head head;
772 	int slot;
773 	int nitems;
774 	int i;
775 	int ret = 0;
776 
777 	BUG_ON(!path->nodes[0]);
778 
779 	leaf = path->nodes[0];
780 	free_space = btrfs_leaf_free_space(root, leaf);
781 	INIT_LIST_HEAD(&head);
782 
783 	next = item;
784 	nitems = 0;
785 
786 	/*
787 	 * count the number of the continuous items that we can insert in batch
788 	 */
789 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
790 	       free_space) {
791 		total_data_size += next->data_len;
792 		total_size += next->data_len + sizeof(struct btrfs_item);
793 		list_add_tail(&next->tree_list, &head);
794 		nitems++;
795 
796 		curr = next;
797 		next = __btrfs_next_delayed_item(curr);
798 		if (!next)
799 			break;
800 
801 		if (!btrfs_is_continuous_delayed_item(curr, next))
802 			break;
803 	}
804 
805 	if (!nitems) {
806 		ret = 0;
807 		goto out;
808 	}
809 
810 	/*
811 	 * we need allocate some memory space, but it might cause the task
812 	 * to sleep, so we set all locked nodes in the path to blocking locks
813 	 * first.
814 	 */
815 	btrfs_set_path_blocking(path);
816 
817 	keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
818 	if (!keys) {
819 		ret = -ENOMEM;
820 		goto out;
821 	}
822 
823 	data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
824 	if (!data_size) {
825 		ret = -ENOMEM;
826 		goto error;
827 	}
828 
829 	/* get keys of all the delayed items */
830 	i = 0;
831 	list_for_each_entry(next, &head, tree_list) {
832 		keys[i] = next->key;
833 		data_size[i] = next->data_len;
834 		i++;
835 	}
836 
837 	/* reset all the locked nodes in the patch to spinning locks. */
838 	btrfs_clear_path_blocking(path, NULL, 0);
839 
840 	/* insert the keys of the items */
841 	setup_items_for_insert(trans, root, path, keys, data_size,
842 			       total_data_size, total_size, nitems);
843 
844 	/* insert the dir index items */
845 	slot = path->slots[0];
846 	list_for_each_entry_safe(curr, next, &head, tree_list) {
847 		data_ptr = btrfs_item_ptr(leaf, slot, char);
848 		write_extent_buffer(leaf, &curr->data,
849 				    (unsigned long)data_ptr,
850 				    curr->data_len);
851 		slot++;
852 
853 		btrfs_delayed_item_release_metadata(root, curr);
854 
855 		list_del(&curr->tree_list);
856 		btrfs_release_delayed_item(curr);
857 	}
858 
859 error:
860 	kfree(data_size);
861 	kfree(keys);
862 out:
863 	return ret;
864 }
865 
866 /*
867  * This helper can just do simple insertion that needn't extend item for new
868  * data, such as directory name index insertion, inode insertion.
869  */
870 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
871 				     struct btrfs_root *root,
872 				     struct btrfs_path *path,
873 				     struct btrfs_delayed_item *delayed_item)
874 {
875 	struct extent_buffer *leaf;
876 	struct btrfs_item *item;
877 	char *ptr;
878 	int ret;
879 
880 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
881 				      delayed_item->data_len);
882 	if (ret < 0 && ret != -EEXIST)
883 		return ret;
884 
885 	leaf = path->nodes[0];
886 
887 	item = btrfs_item_nr(leaf, path->slots[0]);
888 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
889 
890 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
891 			    delayed_item->data_len);
892 	btrfs_mark_buffer_dirty(leaf);
893 
894 	btrfs_delayed_item_release_metadata(root, delayed_item);
895 	return 0;
896 }
897 
898 /*
899  * we insert an item first, then if there are some continuous items, we try
900  * to insert those items into the same leaf.
901  */
902 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
903 				      struct btrfs_path *path,
904 				      struct btrfs_root *root,
905 				      struct btrfs_delayed_node *node)
906 {
907 	struct btrfs_delayed_item *curr, *prev;
908 	int ret = 0;
909 
910 do_again:
911 	mutex_lock(&node->mutex);
912 	curr = __btrfs_first_delayed_insertion_item(node);
913 	if (!curr)
914 		goto insert_end;
915 
916 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
917 	if (ret < 0) {
918 		btrfs_release_path(path);
919 		goto insert_end;
920 	}
921 
922 	prev = curr;
923 	curr = __btrfs_next_delayed_item(prev);
924 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
925 		/* insert the continuous items into the same leaf */
926 		path->slots[0]++;
927 		btrfs_batch_insert_items(trans, root, path, curr);
928 	}
929 	btrfs_release_delayed_item(prev);
930 	btrfs_mark_buffer_dirty(path->nodes[0]);
931 
932 	btrfs_release_path(path);
933 	mutex_unlock(&node->mutex);
934 	goto do_again;
935 
936 insert_end:
937 	mutex_unlock(&node->mutex);
938 	return ret;
939 }
940 
941 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
942 				    struct btrfs_root *root,
943 				    struct btrfs_path *path,
944 				    struct btrfs_delayed_item *item)
945 {
946 	struct btrfs_delayed_item *curr, *next;
947 	struct extent_buffer *leaf;
948 	struct btrfs_key key;
949 	struct list_head head;
950 	int nitems, i, last_item;
951 	int ret = 0;
952 
953 	BUG_ON(!path->nodes[0]);
954 
955 	leaf = path->nodes[0];
956 
957 	i = path->slots[0];
958 	last_item = btrfs_header_nritems(leaf) - 1;
959 	if (i > last_item)
960 		return -ENOENT;	/* FIXME: Is errno suitable? */
961 
962 	next = item;
963 	INIT_LIST_HEAD(&head);
964 	btrfs_item_key_to_cpu(leaf, &key, i);
965 	nitems = 0;
966 	/*
967 	 * count the number of the dir index items that we can delete in batch
968 	 */
969 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
970 		list_add_tail(&next->tree_list, &head);
971 		nitems++;
972 
973 		curr = next;
974 		next = __btrfs_next_delayed_item(curr);
975 		if (!next)
976 			break;
977 
978 		if (!btrfs_is_continuous_delayed_item(curr, next))
979 			break;
980 
981 		i++;
982 		if (i > last_item)
983 			break;
984 		btrfs_item_key_to_cpu(leaf, &key, i);
985 	}
986 
987 	if (!nitems)
988 		return 0;
989 
990 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
991 	if (ret)
992 		goto out;
993 
994 	list_for_each_entry_safe(curr, next, &head, tree_list) {
995 		btrfs_delayed_item_release_metadata(root, curr);
996 		list_del(&curr->tree_list);
997 		btrfs_release_delayed_item(curr);
998 	}
999 
1000 out:
1001 	return ret;
1002 }
1003 
1004 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
1005 				      struct btrfs_path *path,
1006 				      struct btrfs_root *root,
1007 				      struct btrfs_delayed_node *node)
1008 {
1009 	struct btrfs_delayed_item *curr, *prev;
1010 	int ret = 0;
1011 
1012 do_again:
1013 	mutex_lock(&node->mutex);
1014 	curr = __btrfs_first_delayed_deletion_item(node);
1015 	if (!curr)
1016 		goto delete_fail;
1017 
1018 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
1019 	if (ret < 0)
1020 		goto delete_fail;
1021 	else if (ret > 0) {
1022 		/*
1023 		 * can't find the item which the node points to, so this node
1024 		 * is invalid, just drop it.
1025 		 */
1026 		prev = curr;
1027 		curr = __btrfs_next_delayed_item(prev);
1028 		btrfs_release_delayed_item(prev);
1029 		ret = 0;
1030 		btrfs_release_path(path);
1031 		if (curr)
1032 			goto do_again;
1033 		else
1034 			goto delete_fail;
1035 	}
1036 
1037 	btrfs_batch_delete_items(trans, root, path, curr);
1038 	btrfs_release_path(path);
1039 	mutex_unlock(&node->mutex);
1040 	goto do_again;
1041 
1042 delete_fail:
1043 	btrfs_release_path(path);
1044 	mutex_unlock(&node->mutex);
1045 	return ret;
1046 }
1047 
1048 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1049 {
1050 	struct btrfs_delayed_root *delayed_root;
1051 
1052 	if (delayed_node && delayed_node->inode_dirty) {
1053 		BUG_ON(!delayed_node->root);
1054 		delayed_node->inode_dirty = 0;
1055 		delayed_node->count--;
1056 
1057 		delayed_root = delayed_node->root->fs_info->delayed_root;
1058 		atomic_dec(&delayed_root->items);
1059 		if (atomic_read(&delayed_root->items) <
1060 		    BTRFS_DELAYED_BACKGROUND &&
1061 		    waitqueue_active(&delayed_root->wait))
1062 			wake_up(&delayed_root->wait);
1063 	}
1064 }
1065 
1066 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1067 				      struct btrfs_root *root,
1068 				      struct btrfs_path *path,
1069 				      struct btrfs_delayed_node *node)
1070 {
1071 	struct btrfs_key key;
1072 	struct btrfs_inode_item *inode_item;
1073 	struct extent_buffer *leaf;
1074 	int ret;
1075 
1076 	mutex_lock(&node->mutex);
1077 	if (!node->inode_dirty) {
1078 		mutex_unlock(&node->mutex);
1079 		return 0;
1080 	}
1081 
1082 	key.objectid = node->inode_id;
1083 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1084 	key.offset = 0;
1085 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1086 	if (ret > 0) {
1087 		btrfs_release_path(path);
1088 		mutex_unlock(&node->mutex);
1089 		return -ENOENT;
1090 	} else if (ret < 0) {
1091 		mutex_unlock(&node->mutex);
1092 		return ret;
1093 	}
1094 
1095 	btrfs_unlock_up_safe(path, 1);
1096 	leaf = path->nodes[0];
1097 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1098 				    struct btrfs_inode_item);
1099 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1100 			    sizeof(struct btrfs_inode_item));
1101 	btrfs_mark_buffer_dirty(leaf);
1102 	btrfs_release_path(path);
1103 
1104 	btrfs_delayed_inode_release_metadata(root, node);
1105 	btrfs_release_delayed_inode(node);
1106 	mutex_unlock(&node->mutex);
1107 
1108 	return 0;
1109 }
1110 
1111 /*
1112  * Called when committing the transaction.
1113  * Returns 0 on success.
1114  * Returns < 0 on error and returns with an aborted transaction with any
1115  * outstanding delayed items cleaned up.
1116  */
1117 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1118 				     struct btrfs_root *root, int nr)
1119 {
1120 	struct btrfs_root *curr_root = root;
1121 	struct btrfs_delayed_root *delayed_root;
1122 	struct btrfs_delayed_node *curr_node, *prev_node;
1123 	struct btrfs_path *path;
1124 	struct btrfs_block_rsv *block_rsv;
1125 	int ret = 0;
1126 	bool count = (nr > 0);
1127 
1128 	if (trans->aborted)
1129 		return -EIO;
1130 
1131 	path = btrfs_alloc_path();
1132 	if (!path)
1133 		return -ENOMEM;
1134 	path->leave_spinning = 1;
1135 
1136 	block_rsv = trans->block_rsv;
1137 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1138 
1139 	delayed_root = btrfs_get_delayed_root(root);
1140 
1141 	curr_node = btrfs_first_delayed_node(delayed_root);
1142 	while (curr_node && (!count || (count && nr--))) {
1143 		curr_root = curr_node->root;
1144 		ret = btrfs_insert_delayed_items(trans, path, curr_root,
1145 						 curr_node);
1146 		if (!ret)
1147 			ret = btrfs_delete_delayed_items(trans, path,
1148 						curr_root, curr_node);
1149 		if (!ret)
1150 			ret = btrfs_update_delayed_inode(trans, curr_root,
1151 						path, curr_node);
1152 		if (ret) {
1153 			btrfs_release_delayed_node(curr_node);
1154 			curr_node = NULL;
1155 			btrfs_abort_transaction(trans, root, ret);
1156 			break;
1157 		}
1158 
1159 		prev_node = curr_node;
1160 		curr_node = btrfs_next_delayed_node(curr_node);
1161 		btrfs_release_delayed_node(prev_node);
1162 	}
1163 
1164 	if (curr_node)
1165 		btrfs_release_delayed_node(curr_node);
1166 	btrfs_free_path(path);
1167 	trans->block_rsv = block_rsv;
1168 
1169 	return ret;
1170 }
1171 
1172 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1173 			    struct btrfs_root *root)
1174 {
1175 	return __btrfs_run_delayed_items(trans, root, -1);
1176 }
1177 
1178 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1179 			       struct btrfs_root *root, int nr)
1180 {
1181 	return __btrfs_run_delayed_items(trans, root, nr);
1182 }
1183 
1184 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1185 					      struct btrfs_delayed_node *node)
1186 {
1187 	struct btrfs_path *path;
1188 	struct btrfs_block_rsv *block_rsv;
1189 	int ret;
1190 
1191 	path = btrfs_alloc_path();
1192 	if (!path)
1193 		return -ENOMEM;
1194 	path->leave_spinning = 1;
1195 
1196 	block_rsv = trans->block_rsv;
1197 	trans->block_rsv = &node->root->fs_info->delayed_block_rsv;
1198 
1199 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1200 	if (!ret)
1201 		ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1202 	if (!ret)
1203 		ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1204 	btrfs_free_path(path);
1205 
1206 	trans->block_rsv = block_rsv;
1207 	return ret;
1208 }
1209 
1210 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1211 				     struct inode *inode)
1212 {
1213 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1214 	int ret;
1215 
1216 	if (!delayed_node)
1217 		return 0;
1218 
1219 	mutex_lock(&delayed_node->mutex);
1220 	if (!delayed_node->count) {
1221 		mutex_unlock(&delayed_node->mutex);
1222 		btrfs_release_delayed_node(delayed_node);
1223 		return 0;
1224 	}
1225 	mutex_unlock(&delayed_node->mutex);
1226 
1227 	ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1228 	btrfs_release_delayed_node(delayed_node);
1229 	return ret;
1230 }
1231 
1232 void btrfs_remove_delayed_node(struct inode *inode)
1233 {
1234 	struct btrfs_delayed_node *delayed_node;
1235 
1236 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1237 	if (!delayed_node)
1238 		return;
1239 
1240 	BTRFS_I(inode)->delayed_node = NULL;
1241 	btrfs_release_delayed_node(delayed_node);
1242 }
1243 
1244 struct btrfs_async_delayed_node {
1245 	struct btrfs_root *root;
1246 	struct btrfs_delayed_node *delayed_node;
1247 	struct btrfs_work work;
1248 };
1249 
1250 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1251 {
1252 	struct btrfs_async_delayed_node *async_node;
1253 	struct btrfs_trans_handle *trans;
1254 	struct btrfs_path *path;
1255 	struct btrfs_delayed_node *delayed_node = NULL;
1256 	struct btrfs_root *root;
1257 	struct btrfs_block_rsv *block_rsv;
1258 	unsigned long nr = 0;
1259 	int need_requeue = 0;
1260 	int ret;
1261 
1262 	async_node = container_of(work, struct btrfs_async_delayed_node, work);
1263 
1264 	path = btrfs_alloc_path();
1265 	if (!path)
1266 		goto out;
1267 	path->leave_spinning = 1;
1268 
1269 	delayed_node = async_node->delayed_node;
1270 	root = delayed_node->root;
1271 
1272 	trans = btrfs_join_transaction(root);
1273 	if (IS_ERR(trans))
1274 		goto free_path;
1275 
1276 	block_rsv = trans->block_rsv;
1277 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1278 
1279 	ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1280 	if (!ret)
1281 		ret = btrfs_delete_delayed_items(trans, path, root,
1282 						 delayed_node);
1283 
1284 	if (!ret)
1285 		btrfs_update_delayed_inode(trans, root, path, delayed_node);
1286 
1287 	/*
1288 	 * Maybe new delayed items have been inserted, so we need requeue
1289 	 * the work. Besides that, we must dequeue the empty delayed nodes
1290 	 * to avoid the race between delayed items balance and the worker.
1291 	 * The race like this:
1292 	 * 	Task1				Worker thread
1293 	 * 					count == 0, needn't requeue
1294 	 * 					  also needn't insert the
1295 	 * 					  delayed node into prepare
1296 	 * 					  list again.
1297 	 * 	add lots of delayed items
1298 	 * 	queue the delayed node
1299 	 * 	  already in the list,
1300 	 * 	  and not in the prepare
1301 	 * 	  list, it means the delayed
1302 	 * 	  node is being dealt with
1303 	 * 	  by the worker.
1304 	 * 	do delayed items balance
1305 	 * 	  the delayed node is being
1306 	 * 	  dealt with by the worker
1307 	 * 	  now, just wait.
1308 	 * 	  				the worker goto idle.
1309 	 * Task1 will sleep until the transaction is commited.
1310 	 */
1311 	mutex_lock(&delayed_node->mutex);
1312 	if (delayed_node->count)
1313 		need_requeue = 1;
1314 	else
1315 		btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1316 					   delayed_node);
1317 	mutex_unlock(&delayed_node->mutex);
1318 
1319 	nr = trans->blocks_used;
1320 
1321 	trans->block_rsv = block_rsv;
1322 	btrfs_end_transaction_dmeta(trans, root);
1323 	__btrfs_btree_balance_dirty(root, nr);
1324 free_path:
1325 	btrfs_free_path(path);
1326 out:
1327 	if (need_requeue)
1328 		btrfs_requeue_work(&async_node->work);
1329 	else {
1330 		btrfs_release_prepared_delayed_node(delayed_node);
1331 		kfree(async_node);
1332 	}
1333 }
1334 
1335 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1336 				     struct btrfs_root *root, int all)
1337 {
1338 	struct btrfs_async_delayed_node *async_node;
1339 	struct btrfs_delayed_node *curr;
1340 	int count = 0;
1341 
1342 again:
1343 	curr = btrfs_first_prepared_delayed_node(delayed_root);
1344 	if (!curr)
1345 		return 0;
1346 
1347 	async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1348 	if (!async_node) {
1349 		btrfs_release_prepared_delayed_node(curr);
1350 		return -ENOMEM;
1351 	}
1352 
1353 	async_node->root = root;
1354 	async_node->delayed_node = curr;
1355 
1356 	async_node->work.func = btrfs_async_run_delayed_node_done;
1357 	async_node->work.flags = 0;
1358 
1359 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1360 	count++;
1361 
1362 	if (all || count < 4)
1363 		goto again;
1364 
1365 	return 0;
1366 }
1367 
1368 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1369 {
1370 	struct btrfs_delayed_root *delayed_root;
1371 	delayed_root = btrfs_get_delayed_root(root);
1372 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1373 }
1374 
1375 void btrfs_balance_delayed_items(struct btrfs_root *root)
1376 {
1377 	struct btrfs_delayed_root *delayed_root;
1378 
1379 	delayed_root = btrfs_get_delayed_root(root);
1380 
1381 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1382 		return;
1383 
1384 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1385 		int ret;
1386 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1387 		if (ret)
1388 			return;
1389 
1390 		wait_event_interruptible_timeout(
1391 				delayed_root->wait,
1392 				(atomic_read(&delayed_root->items) <
1393 				 BTRFS_DELAYED_BACKGROUND),
1394 				HZ);
1395 		return;
1396 	}
1397 
1398 	btrfs_wq_run_delayed_node(delayed_root, root, 0);
1399 }
1400 
1401 /* Will return 0 or -ENOMEM */
1402 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1403 				   struct btrfs_root *root, const char *name,
1404 				   int name_len, struct inode *dir,
1405 				   struct btrfs_disk_key *disk_key, u8 type,
1406 				   u64 index)
1407 {
1408 	struct btrfs_delayed_node *delayed_node;
1409 	struct btrfs_delayed_item *delayed_item;
1410 	struct btrfs_dir_item *dir_item;
1411 	int ret;
1412 
1413 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1414 	if (IS_ERR(delayed_node))
1415 		return PTR_ERR(delayed_node);
1416 
1417 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1418 	if (!delayed_item) {
1419 		ret = -ENOMEM;
1420 		goto release_node;
1421 	}
1422 
1423 	delayed_item->key.objectid = btrfs_ino(dir);
1424 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1425 	delayed_item->key.offset = index;
1426 
1427 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1428 	dir_item->location = *disk_key;
1429 	dir_item->transid = cpu_to_le64(trans->transid);
1430 	dir_item->data_len = 0;
1431 	dir_item->name_len = cpu_to_le16(name_len);
1432 	dir_item->type = type;
1433 	memcpy((char *)(dir_item + 1), name, name_len);
1434 
1435 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1436 	/*
1437 	 * we have reserved enough space when we start a new transaction,
1438 	 * so reserving metadata failure is impossible
1439 	 */
1440 	BUG_ON(ret);
1441 
1442 
1443 	mutex_lock(&delayed_node->mutex);
1444 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1445 	if (unlikely(ret)) {
1446 		printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1447 				"the insertion tree of the delayed node"
1448 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1449 				name,
1450 				(unsigned long long)delayed_node->root->objectid,
1451 				(unsigned long long)delayed_node->inode_id,
1452 				ret);
1453 		BUG();
1454 	}
1455 	mutex_unlock(&delayed_node->mutex);
1456 
1457 release_node:
1458 	btrfs_release_delayed_node(delayed_node);
1459 	return ret;
1460 }
1461 
1462 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1463 					       struct btrfs_delayed_node *node,
1464 					       struct btrfs_key *key)
1465 {
1466 	struct btrfs_delayed_item *item;
1467 
1468 	mutex_lock(&node->mutex);
1469 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1470 	if (!item) {
1471 		mutex_unlock(&node->mutex);
1472 		return 1;
1473 	}
1474 
1475 	btrfs_delayed_item_release_metadata(root, item);
1476 	btrfs_release_delayed_item(item);
1477 	mutex_unlock(&node->mutex);
1478 	return 0;
1479 }
1480 
1481 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1482 				   struct btrfs_root *root, struct inode *dir,
1483 				   u64 index)
1484 {
1485 	struct btrfs_delayed_node *node;
1486 	struct btrfs_delayed_item *item;
1487 	struct btrfs_key item_key;
1488 	int ret;
1489 
1490 	node = btrfs_get_or_create_delayed_node(dir);
1491 	if (IS_ERR(node))
1492 		return PTR_ERR(node);
1493 
1494 	item_key.objectid = btrfs_ino(dir);
1495 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1496 	item_key.offset = index;
1497 
1498 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1499 	if (!ret)
1500 		goto end;
1501 
1502 	item = btrfs_alloc_delayed_item(0);
1503 	if (!item) {
1504 		ret = -ENOMEM;
1505 		goto end;
1506 	}
1507 
1508 	item->key = item_key;
1509 
1510 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1511 	/*
1512 	 * we have reserved enough space when we start a new transaction,
1513 	 * so reserving metadata failure is impossible.
1514 	 */
1515 	BUG_ON(ret);
1516 
1517 	mutex_lock(&node->mutex);
1518 	ret = __btrfs_add_delayed_deletion_item(node, item);
1519 	if (unlikely(ret)) {
1520 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1521 				"into the deletion tree of the delayed node"
1522 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1523 				(unsigned long long)index,
1524 				(unsigned long long)node->root->objectid,
1525 				(unsigned long long)node->inode_id,
1526 				ret);
1527 		BUG();
1528 	}
1529 	mutex_unlock(&node->mutex);
1530 end:
1531 	btrfs_release_delayed_node(node);
1532 	return ret;
1533 }
1534 
1535 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1536 {
1537 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1538 
1539 	if (!delayed_node)
1540 		return -ENOENT;
1541 
1542 	/*
1543 	 * Since we have held i_mutex of this directory, it is impossible that
1544 	 * a new directory index is added into the delayed node and index_cnt
1545 	 * is updated now. So we needn't lock the delayed node.
1546 	 */
1547 	if (!delayed_node->index_cnt) {
1548 		btrfs_release_delayed_node(delayed_node);
1549 		return -EINVAL;
1550 	}
1551 
1552 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1553 	btrfs_release_delayed_node(delayed_node);
1554 	return 0;
1555 }
1556 
1557 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1558 			     struct list_head *del_list)
1559 {
1560 	struct btrfs_delayed_node *delayed_node;
1561 	struct btrfs_delayed_item *item;
1562 
1563 	delayed_node = btrfs_get_delayed_node(inode);
1564 	if (!delayed_node)
1565 		return;
1566 
1567 	mutex_lock(&delayed_node->mutex);
1568 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1569 	while (item) {
1570 		atomic_inc(&item->refs);
1571 		list_add_tail(&item->readdir_list, ins_list);
1572 		item = __btrfs_next_delayed_item(item);
1573 	}
1574 
1575 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1576 	while (item) {
1577 		atomic_inc(&item->refs);
1578 		list_add_tail(&item->readdir_list, del_list);
1579 		item = __btrfs_next_delayed_item(item);
1580 	}
1581 	mutex_unlock(&delayed_node->mutex);
1582 	/*
1583 	 * This delayed node is still cached in the btrfs inode, so refs
1584 	 * must be > 1 now, and we needn't check it is going to be freed
1585 	 * or not.
1586 	 *
1587 	 * Besides that, this function is used to read dir, we do not
1588 	 * insert/delete delayed items in this period. So we also needn't
1589 	 * requeue or dequeue this delayed node.
1590 	 */
1591 	atomic_dec(&delayed_node->refs);
1592 }
1593 
1594 void btrfs_put_delayed_items(struct list_head *ins_list,
1595 			     struct list_head *del_list)
1596 {
1597 	struct btrfs_delayed_item *curr, *next;
1598 
1599 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1600 		list_del(&curr->readdir_list);
1601 		if (atomic_dec_and_test(&curr->refs))
1602 			kfree(curr);
1603 	}
1604 
1605 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1606 		list_del(&curr->readdir_list);
1607 		if (atomic_dec_and_test(&curr->refs))
1608 			kfree(curr);
1609 	}
1610 }
1611 
1612 int btrfs_should_delete_dir_index(struct list_head *del_list,
1613 				  u64 index)
1614 {
1615 	struct btrfs_delayed_item *curr, *next;
1616 	int ret;
1617 
1618 	if (list_empty(del_list))
1619 		return 0;
1620 
1621 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1622 		if (curr->key.offset > index)
1623 			break;
1624 
1625 		list_del(&curr->readdir_list);
1626 		ret = (curr->key.offset == index);
1627 
1628 		if (atomic_dec_and_test(&curr->refs))
1629 			kfree(curr);
1630 
1631 		if (ret)
1632 			return 1;
1633 		else
1634 			continue;
1635 	}
1636 	return 0;
1637 }
1638 
1639 /*
1640  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1641  *
1642  */
1643 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1644 				    filldir_t filldir,
1645 				    struct list_head *ins_list)
1646 {
1647 	struct btrfs_dir_item *di;
1648 	struct btrfs_delayed_item *curr, *next;
1649 	struct btrfs_key location;
1650 	char *name;
1651 	int name_len;
1652 	int over = 0;
1653 	unsigned char d_type;
1654 
1655 	if (list_empty(ins_list))
1656 		return 0;
1657 
1658 	/*
1659 	 * Changing the data of the delayed item is impossible. So
1660 	 * we needn't lock them. And we have held i_mutex of the
1661 	 * directory, nobody can delete any directory indexes now.
1662 	 */
1663 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1664 		list_del(&curr->readdir_list);
1665 
1666 		if (curr->key.offset < filp->f_pos) {
1667 			if (atomic_dec_and_test(&curr->refs))
1668 				kfree(curr);
1669 			continue;
1670 		}
1671 
1672 		filp->f_pos = curr->key.offset;
1673 
1674 		di = (struct btrfs_dir_item *)curr->data;
1675 		name = (char *)(di + 1);
1676 		name_len = le16_to_cpu(di->name_len);
1677 
1678 		d_type = btrfs_filetype_table[di->type];
1679 		btrfs_disk_key_to_cpu(&location, &di->location);
1680 
1681 		over = filldir(dirent, name, name_len, curr->key.offset,
1682 			       location.objectid, d_type);
1683 
1684 		if (atomic_dec_and_test(&curr->refs))
1685 			kfree(curr);
1686 
1687 		if (over)
1688 			return 1;
1689 	}
1690 	return 0;
1691 }
1692 
1693 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1694 			 generation, 64);
1695 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1696 			 sequence, 64);
1697 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1698 			 transid, 64);
1699 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1700 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1701 			 nbytes, 64);
1702 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1703 			 block_group, 64);
1704 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1705 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1706 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1707 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1708 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1709 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1710 
1711 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1712 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1713 
1714 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1715 				  struct btrfs_inode_item *inode_item,
1716 				  struct inode *inode)
1717 {
1718 	btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1719 	btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1720 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1721 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1722 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1723 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1724 	btrfs_set_stack_inode_generation(inode_item,
1725 					 BTRFS_I(inode)->generation);
1726 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1727 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1728 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1729 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1730 	btrfs_set_stack_inode_block_group(inode_item, 0);
1731 
1732 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1733 				     inode->i_atime.tv_sec);
1734 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1735 				      inode->i_atime.tv_nsec);
1736 
1737 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1738 				     inode->i_mtime.tv_sec);
1739 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1740 				      inode->i_mtime.tv_nsec);
1741 
1742 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1743 				     inode->i_ctime.tv_sec);
1744 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1745 				      inode->i_ctime.tv_nsec);
1746 }
1747 
1748 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1749 {
1750 	struct btrfs_delayed_node *delayed_node;
1751 	struct btrfs_inode_item *inode_item;
1752 	struct btrfs_timespec *tspec;
1753 
1754 	delayed_node = btrfs_get_delayed_node(inode);
1755 	if (!delayed_node)
1756 		return -ENOENT;
1757 
1758 	mutex_lock(&delayed_node->mutex);
1759 	if (!delayed_node->inode_dirty) {
1760 		mutex_unlock(&delayed_node->mutex);
1761 		btrfs_release_delayed_node(delayed_node);
1762 		return -ENOENT;
1763 	}
1764 
1765 	inode_item = &delayed_node->inode_item;
1766 
1767 	inode->i_uid = btrfs_stack_inode_uid(inode_item);
1768 	inode->i_gid = btrfs_stack_inode_gid(inode_item);
1769 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1770 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1771 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1772 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1773 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1774 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1775 	inode->i_rdev = 0;
1776 	*rdev = btrfs_stack_inode_rdev(inode_item);
1777 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1778 
1779 	tspec = btrfs_inode_atime(inode_item);
1780 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1781 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1782 
1783 	tspec = btrfs_inode_mtime(inode_item);
1784 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1785 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1786 
1787 	tspec = btrfs_inode_ctime(inode_item);
1788 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1789 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1790 
1791 	inode->i_generation = BTRFS_I(inode)->generation;
1792 	BTRFS_I(inode)->index_cnt = (u64)-1;
1793 
1794 	mutex_unlock(&delayed_node->mutex);
1795 	btrfs_release_delayed_node(delayed_node);
1796 	return 0;
1797 }
1798 
1799 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1800 			       struct btrfs_root *root, struct inode *inode)
1801 {
1802 	struct btrfs_delayed_node *delayed_node;
1803 	int ret = 0;
1804 
1805 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1806 	if (IS_ERR(delayed_node))
1807 		return PTR_ERR(delayed_node);
1808 
1809 	mutex_lock(&delayed_node->mutex);
1810 	if (delayed_node->inode_dirty) {
1811 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1812 		goto release_node;
1813 	}
1814 
1815 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1816 						   delayed_node);
1817 	if (ret)
1818 		goto release_node;
1819 
1820 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1821 	delayed_node->inode_dirty = 1;
1822 	delayed_node->count++;
1823 	atomic_inc(&root->fs_info->delayed_root->items);
1824 release_node:
1825 	mutex_unlock(&delayed_node->mutex);
1826 	btrfs_release_delayed_node(delayed_node);
1827 	return ret;
1828 }
1829 
1830 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1831 {
1832 	struct btrfs_root *root = delayed_node->root;
1833 	struct btrfs_delayed_item *curr_item, *prev_item;
1834 
1835 	mutex_lock(&delayed_node->mutex);
1836 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1837 	while (curr_item) {
1838 		btrfs_delayed_item_release_metadata(root, curr_item);
1839 		prev_item = curr_item;
1840 		curr_item = __btrfs_next_delayed_item(prev_item);
1841 		btrfs_release_delayed_item(prev_item);
1842 	}
1843 
1844 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1845 	while (curr_item) {
1846 		btrfs_delayed_item_release_metadata(root, curr_item);
1847 		prev_item = curr_item;
1848 		curr_item = __btrfs_next_delayed_item(prev_item);
1849 		btrfs_release_delayed_item(prev_item);
1850 	}
1851 
1852 	if (delayed_node->inode_dirty) {
1853 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1854 		btrfs_release_delayed_inode(delayed_node);
1855 	}
1856 	mutex_unlock(&delayed_node->mutex);
1857 }
1858 
1859 void btrfs_kill_delayed_inode_items(struct inode *inode)
1860 {
1861 	struct btrfs_delayed_node *delayed_node;
1862 
1863 	delayed_node = btrfs_get_delayed_node(inode);
1864 	if (!delayed_node)
1865 		return;
1866 
1867 	__btrfs_kill_delayed_node(delayed_node);
1868 	btrfs_release_delayed_node(delayed_node);
1869 }
1870 
1871 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1872 {
1873 	u64 inode_id = 0;
1874 	struct btrfs_delayed_node *delayed_nodes[8];
1875 	int i, n;
1876 
1877 	while (1) {
1878 		spin_lock(&root->inode_lock);
1879 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1880 					   (void **)delayed_nodes, inode_id,
1881 					   ARRAY_SIZE(delayed_nodes));
1882 		if (!n) {
1883 			spin_unlock(&root->inode_lock);
1884 			break;
1885 		}
1886 
1887 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1888 
1889 		for (i = 0; i < n; i++)
1890 			atomic_inc(&delayed_nodes[i]->refs);
1891 		spin_unlock(&root->inode_lock);
1892 
1893 		for (i = 0; i < n; i++) {
1894 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1895 			btrfs_release_delayed_node(delayed_nodes[i]);
1896 		}
1897 	}
1898 }
1899 
1900 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1901 {
1902 	struct btrfs_delayed_root *delayed_root;
1903 	struct btrfs_delayed_node *curr_node, *prev_node;
1904 
1905 	delayed_root = btrfs_get_delayed_root(root);
1906 
1907 	curr_node = btrfs_first_delayed_node(delayed_root);
1908 	while (curr_node) {
1909 		__btrfs_kill_delayed_node(curr_node);
1910 
1911 		prev_node = curr_node;
1912 		curr_node = btrfs_next_delayed_node(curr_node);
1913 		btrfs_release_delayed_node(prev_node);
1914 	}
1915 }
1916 
1917