xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 77d84ff8)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	if (delayed_node_cache)
47 		kmem_cache_destroy(delayed_node_cache);
48 }
49 
50 static inline void btrfs_init_delayed_node(
51 				struct btrfs_delayed_node *delayed_node,
52 				struct btrfs_root *root, u64 inode_id)
53 {
54 	delayed_node->root = root;
55 	delayed_node->inode_id = inode_id;
56 	atomic_set(&delayed_node->refs, 0);
57 	delayed_node->count = 0;
58 	delayed_node->in_list = 0;
59 	delayed_node->inode_dirty = 0;
60 	delayed_node->ins_root = RB_ROOT;
61 	delayed_node->del_root = RB_ROOT;
62 	mutex_init(&delayed_node->mutex);
63 	delayed_node->index_cnt = 0;
64 	INIT_LIST_HEAD(&delayed_node->n_list);
65 	INIT_LIST_HEAD(&delayed_node->p_list);
66 	delayed_node->bytes_reserved = 0;
67 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
68 }
69 
70 static inline int btrfs_is_continuous_delayed_item(
71 					struct btrfs_delayed_item *item1,
72 					struct btrfs_delayed_item *item2)
73 {
74 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
75 	    item1->key.objectid == item2->key.objectid &&
76 	    item1->key.type == item2->key.type &&
77 	    item1->key.offset + 1 == item2->key.offset)
78 		return 1;
79 	return 0;
80 }
81 
82 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
83 							struct btrfs_root *root)
84 {
85 	return root->fs_info->delayed_root;
86 }
87 
88 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
89 {
90 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
91 	struct btrfs_root *root = btrfs_inode->root;
92 	u64 ino = btrfs_ino(inode);
93 	struct btrfs_delayed_node *node;
94 
95 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
96 	if (node) {
97 		atomic_inc(&node->refs);
98 		return node;
99 	}
100 
101 	spin_lock(&root->inode_lock);
102 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
103 	if (node) {
104 		if (btrfs_inode->delayed_node) {
105 			atomic_inc(&node->refs);	/* can be accessed */
106 			BUG_ON(btrfs_inode->delayed_node != node);
107 			spin_unlock(&root->inode_lock);
108 			return node;
109 		}
110 		btrfs_inode->delayed_node = node;
111 		/* can be accessed and cached in the inode */
112 		atomic_add(2, &node->refs);
113 		spin_unlock(&root->inode_lock);
114 		return node;
115 	}
116 	spin_unlock(&root->inode_lock);
117 
118 	return NULL;
119 }
120 
121 /* Will return either the node or PTR_ERR(-ENOMEM) */
122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
123 							struct inode *inode)
124 {
125 	struct btrfs_delayed_node *node;
126 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(inode);
129 	int ret;
130 
131 again:
132 	node = btrfs_get_delayed_node(inode);
133 	if (node)
134 		return node;
135 
136 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
137 	if (!node)
138 		return ERR_PTR(-ENOMEM);
139 	btrfs_init_delayed_node(node, root, ino);
140 
141 	/* cached in the btrfs inode and can be accessed */
142 	atomic_add(2, &node->refs);
143 
144 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
145 	if (ret) {
146 		kmem_cache_free(delayed_node_cache, node);
147 		return ERR_PTR(ret);
148 	}
149 
150 	spin_lock(&root->inode_lock);
151 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 	if (ret == -EEXIST) {
153 		kmem_cache_free(delayed_node_cache, node);
154 		spin_unlock(&root->inode_lock);
155 		radix_tree_preload_end();
156 		goto again;
157 	}
158 	btrfs_inode->delayed_node = node;
159 	spin_unlock(&root->inode_lock);
160 	radix_tree_preload_end();
161 
162 	return node;
163 }
164 
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 				     struct btrfs_delayed_node *node,
172 				     int mod)
173 {
174 	spin_lock(&root->lock);
175 	if (node->in_list) {
176 		if (!list_empty(&node->p_list))
177 			list_move_tail(&node->p_list, &root->prepare_list);
178 		else if (mod)
179 			list_add_tail(&node->p_list, &root->prepare_list);
180 	} else {
181 		list_add_tail(&node->n_list, &root->node_list);
182 		list_add_tail(&node->p_list, &root->prepare_list);
183 		atomic_inc(&node->refs);	/* inserted into list */
184 		root->nodes++;
185 		node->in_list = 1;
186 	}
187 	spin_unlock(&root->lock);
188 }
189 
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 				       struct btrfs_delayed_node *node)
193 {
194 	spin_lock(&root->lock);
195 	if (node->in_list) {
196 		root->nodes--;
197 		atomic_dec(&node->refs);	/* not in the list */
198 		list_del_init(&node->n_list);
199 		if (!list_empty(&node->p_list))
200 			list_del_init(&node->p_list);
201 		node->in_list = 0;
202 	}
203 	spin_unlock(&root->lock);
204 }
205 
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 			struct btrfs_delayed_root *delayed_root)
208 {
209 	struct list_head *p;
210 	struct btrfs_delayed_node *node = NULL;
211 
212 	spin_lock(&delayed_root->lock);
213 	if (list_empty(&delayed_root->node_list))
214 		goto out;
215 
216 	p = delayed_root->node_list.next;
217 	node = list_entry(p, struct btrfs_delayed_node, n_list);
218 	atomic_inc(&node->refs);
219 out:
220 	spin_unlock(&delayed_root->lock);
221 
222 	return node;
223 }
224 
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 						struct btrfs_delayed_node *node)
227 {
228 	struct btrfs_delayed_root *delayed_root;
229 	struct list_head *p;
230 	struct btrfs_delayed_node *next = NULL;
231 
232 	delayed_root = node->root->fs_info->delayed_root;
233 	spin_lock(&delayed_root->lock);
234 	if (!node->in_list) {	/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	atomic_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (atomic_dec_and_test(&delayed_node->refs)) {
270 		struct btrfs_root *root = delayed_node->root;
271 		spin_lock(&root->inode_lock);
272 		if (atomic_read(&delayed_node->refs) == 0) {
273 			radix_tree_delete(&root->delayed_nodes_tree,
274 					  delayed_node->inode_id);
275 			kmem_cache_free(delayed_node_cache, delayed_node);
276 		}
277 		spin_unlock(&root->inode_lock);
278 	}
279 }
280 
281 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
282 {
283 	__btrfs_release_delayed_node(node, 0);
284 }
285 
286 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
287 					struct btrfs_delayed_root *delayed_root)
288 {
289 	struct list_head *p;
290 	struct btrfs_delayed_node *node = NULL;
291 
292 	spin_lock(&delayed_root->lock);
293 	if (list_empty(&delayed_root->prepare_list))
294 		goto out;
295 
296 	p = delayed_root->prepare_list.next;
297 	list_del_init(p);
298 	node = list_entry(p, struct btrfs_delayed_node, p_list);
299 	atomic_inc(&node->refs);
300 out:
301 	spin_unlock(&delayed_root->lock);
302 
303 	return node;
304 }
305 
306 static inline void btrfs_release_prepared_delayed_node(
307 					struct btrfs_delayed_node *node)
308 {
309 	__btrfs_release_delayed_node(node, 1);
310 }
311 
312 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
313 {
314 	struct btrfs_delayed_item *item;
315 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
316 	if (item) {
317 		item->data_len = data_len;
318 		item->ins_or_del = 0;
319 		item->bytes_reserved = 0;
320 		item->delayed_node = NULL;
321 		atomic_set(&item->refs, 1);
322 	}
323 	return item;
324 }
325 
326 /*
327  * __btrfs_lookup_delayed_item - look up the delayed item by key
328  * @delayed_node: pointer to the delayed node
329  * @key:	  the key to look up
330  * @prev:	  used to store the prev item if the right item isn't found
331  * @next:	  used to store the next item if the right item isn't found
332  *
333  * Note: if we don't find the right item, we will return the prev item and
334  * the next item.
335  */
336 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
337 				struct rb_root *root,
338 				struct btrfs_key *key,
339 				struct btrfs_delayed_item **prev,
340 				struct btrfs_delayed_item **next)
341 {
342 	struct rb_node *node, *prev_node = NULL;
343 	struct btrfs_delayed_item *delayed_item = NULL;
344 	int ret = 0;
345 
346 	node = root->rb_node;
347 
348 	while (node) {
349 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
350 					rb_node);
351 		prev_node = node;
352 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
353 		if (ret < 0)
354 			node = node->rb_right;
355 		else if (ret > 0)
356 			node = node->rb_left;
357 		else
358 			return delayed_item;
359 	}
360 
361 	if (prev) {
362 		if (!prev_node)
363 			*prev = NULL;
364 		else if (ret < 0)
365 			*prev = delayed_item;
366 		else if ((node = rb_prev(prev_node)) != NULL) {
367 			*prev = rb_entry(node, struct btrfs_delayed_item,
368 					 rb_node);
369 		} else
370 			*prev = NULL;
371 	}
372 
373 	if (next) {
374 		if (!prev_node)
375 			*next = NULL;
376 		else if (ret > 0)
377 			*next = delayed_item;
378 		else if ((node = rb_next(prev_node)) != NULL) {
379 			*next = rb_entry(node, struct btrfs_delayed_item,
380 					 rb_node);
381 		} else
382 			*next = NULL;
383 	}
384 	return NULL;
385 }
386 
387 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
388 					struct btrfs_delayed_node *delayed_node,
389 					struct btrfs_key *key)
390 {
391 	struct btrfs_delayed_item *item;
392 
393 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
394 					   NULL, NULL);
395 	return item;
396 }
397 
398 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
399 				    struct btrfs_delayed_item *ins,
400 				    int action)
401 {
402 	struct rb_node **p, *node;
403 	struct rb_node *parent_node = NULL;
404 	struct rb_root *root;
405 	struct btrfs_delayed_item *item;
406 	int cmp;
407 
408 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 		root = &delayed_node->ins_root;
410 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 		root = &delayed_node->del_root;
412 	else
413 		BUG();
414 	p = &root->rb_node;
415 	node = &ins->rb_node;
416 
417 	while (*p) {
418 		parent_node = *p;
419 		item = rb_entry(parent_node, struct btrfs_delayed_item,
420 				 rb_node);
421 
422 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 		if (cmp < 0)
424 			p = &(*p)->rb_right;
425 		else if (cmp > 0)
426 			p = &(*p)->rb_left;
427 		else
428 			return -EEXIST;
429 	}
430 
431 	rb_link_node(node, parent_node, p);
432 	rb_insert_color(node, root);
433 	ins->delayed_node = delayed_node;
434 	ins->ins_or_del = action;
435 
436 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
437 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
438 	    ins->key.offset >= delayed_node->index_cnt)
439 			delayed_node->index_cnt = ins->key.offset + 1;
440 
441 	delayed_node->count++;
442 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
443 	return 0;
444 }
445 
446 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
447 					      struct btrfs_delayed_item *item)
448 {
449 	return __btrfs_add_delayed_item(node, item,
450 					BTRFS_DELAYED_INSERTION_ITEM);
451 }
452 
453 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
454 					     struct btrfs_delayed_item *item)
455 {
456 	return __btrfs_add_delayed_item(node, item,
457 					BTRFS_DELAYED_DELETION_ITEM);
458 }
459 
460 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
461 {
462 	int seq = atomic_inc_return(&delayed_root->items_seq);
463 	if ((atomic_dec_return(&delayed_root->items) <
464 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
465 	    waitqueue_active(&delayed_root->wait))
466 		wake_up(&delayed_root->wait);
467 }
468 
469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
470 {
471 	struct rb_root *root;
472 	struct btrfs_delayed_root *delayed_root;
473 
474 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
475 
476 	BUG_ON(!delayed_root);
477 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
478 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
479 
480 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
481 		root = &delayed_item->delayed_node->ins_root;
482 	else
483 		root = &delayed_item->delayed_node->del_root;
484 
485 	rb_erase(&delayed_item->rb_node, root);
486 	delayed_item->delayed_node->count--;
487 
488 	finish_one_item(delayed_root);
489 }
490 
491 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
492 {
493 	if (item) {
494 		__btrfs_remove_delayed_item(item);
495 		if (atomic_dec_and_test(&item->refs))
496 			kfree(item);
497 	}
498 }
499 
500 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
501 					struct btrfs_delayed_node *delayed_node)
502 {
503 	struct rb_node *p;
504 	struct btrfs_delayed_item *item = NULL;
505 
506 	p = rb_first(&delayed_node->ins_root);
507 	if (p)
508 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
509 
510 	return item;
511 }
512 
513 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
514 					struct btrfs_delayed_node *delayed_node)
515 {
516 	struct rb_node *p;
517 	struct btrfs_delayed_item *item = NULL;
518 
519 	p = rb_first(&delayed_node->del_root);
520 	if (p)
521 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
522 
523 	return item;
524 }
525 
526 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
527 						struct btrfs_delayed_item *item)
528 {
529 	struct rb_node *p;
530 	struct btrfs_delayed_item *next = NULL;
531 
532 	p = rb_next(&item->rb_node);
533 	if (p)
534 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
535 
536 	return next;
537 }
538 
539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
540 					       struct btrfs_root *root,
541 					       struct btrfs_delayed_item *item)
542 {
543 	struct btrfs_block_rsv *src_rsv;
544 	struct btrfs_block_rsv *dst_rsv;
545 	u64 num_bytes;
546 	int ret;
547 
548 	if (!trans->bytes_reserved)
549 		return 0;
550 
551 	src_rsv = trans->block_rsv;
552 	dst_rsv = &root->fs_info->delayed_block_rsv;
553 
554 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
555 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
556 	if (!ret) {
557 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
558 					      item->key.objectid,
559 					      num_bytes, 1);
560 		item->bytes_reserved = num_bytes;
561 	}
562 
563 	return ret;
564 }
565 
566 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
567 						struct btrfs_delayed_item *item)
568 {
569 	struct btrfs_block_rsv *rsv;
570 
571 	if (!item->bytes_reserved)
572 		return;
573 
574 	rsv = &root->fs_info->delayed_block_rsv;
575 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
576 				      item->key.objectid, item->bytes_reserved,
577 				      0);
578 	btrfs_block_rsv_release(root, rsv,
579 				item->bytes_reserved);
580 }
581 
582 static int btrfs_delayed_inode_reserve_metadata(
583 					struct btrfs_trans_handle *trans,
584 					struct btrfs_root *root,
585 					struct inode *inode,
586 					struct btrfs_delayed_node *node)
587 {
588 	struct btrfs_block_rsv *src_rsv;
589 	struct btrfs_block_rsv *dst_rsv;
590 	u64 num_bytes;
591 	int ret;
592 	bool release = false;
593 
594 	src_rsv = trans->block_rsv;
595 	dst_rsv = &root->fs_info->delayed_block_rsv;
596 
597 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
598 
599 	/*
600 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
601 	 * which doesn't reserve space for speed.  This is a problem since we
602 	 * still need to reserve space for this update, so try to reserve the
603 	 * space.
604 	 *
605 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
606 	 * we're accounted for.
607 	 */
608 	if (!src_rsv || (!trans->bytes_reserved &&
609 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
610 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
611 					  BTRFS_RESERVE_NO_FLUSH);
612 		/*
613 		 * Since we're under a transaction reserve_metadata_bytes could
614 		 * try to commit the transaction which will make it return
615 		 * EAGAIN to make us stop the transaction we have, so return
616 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
617 		 */
618 		if (ret == -EAGAIN)
619 			ret = -ENOSPC;
620 		if (!ret) {
621 			node->bytes_reserved = num_bytes;
622 			trace_btrfs_space_reservation(root->fs_info,
623 						      "delayed_inode",
624 						      btrfs_ino(inode),
625 						      num_bytes, 1);
626 		}
627 		return ret;
628 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
629 		spin_lock(&BTRFS_I(inode)->lock);
630 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
631 				       &BTRFS_I(inode)->runtime_flags)) {
632 			spin_unlock(&BTRFS_I(inode)->lock);
633 			release = true;
634 			goto migrate;
635 		}
636 		spin_unlock(&BTRFS_I(inode)->lock);
637 
638 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
639 		 * too often but it can happen if we do delalloc to an existing
640 		 * inode which gets dirtied because of the time update, and then
641 		 * isn't touched again until after the transaction commits and
642 		 * then we try to write out the data.  First try to be nice and
643 		 * reserve something strictly for us.  If not be a pain and try
644 		 * to steal from the delalloc block rsv.
645 		 */
646 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
647 					  BTRFS_RESERVE_NO_FLUSH);
648 		if (!ret)
649 			goto out;
650 
651 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
652 		if (!WARN_ON(ret))
653 			goto out;
654 
655 		/*
656 		 * Ok this is a problem, let's just steal from the global rsv
657 		 * since this really shouldn't happen that often.
658 		 */
659 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
660 					      dst_rsv, num_bytes);
661 		goto out;
662 	}
663 
664 migrate:
665 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
666 
667 out:
668 	/*
669 	 * Migrate only takes a reservation, it doesn't touch the size of the
670 	 * block_rsv.  This is to simplify people who don't normally have things
671 	 * migrated from their block rsv.  If they go to release their
672 	 * reservation, that will decrease the size as well, so if migrate
673 	 * reduced size we'd end up with a negative size.  But for the
674 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
675 	 * but we could in fact do this reserve/migrate dance several times
676 	 * between the time we did the original reservation and we'd clean it
677 	 * up.  So to take care of this, release the space for the meta
678 	 * reservation here.  I think it may be time for a documentation page on
679 	 * how block rsvs. work.
680 	 */
681 	if (!ret) {
682 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
683 					      btrfs_ino(inode), num_bytes, 1);
684 		node->bytes_reserved = num_bytes;
685 	}
686 
687 	if (release) {
688 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
689 					      btrfs_ino(inode), num_bytes, 0);
690 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
691 	}
692 
693 	return ret;
694 }
695 
696 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
697 						struct btrfs_delayed_node *node)
698 {
699 	struct btrfs_block_rsv *rsv;
700 
701 	if (!node->bytes_reserved)
702 		return;
703 
704 	rsv = &root->fs_info->delayed_block_rsv;
705 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
706 				      node->inode_id, node->bytes_reserved, 0);
707 	btrfs_block_rsv_release(root, rsv,
708 				node->bytes_reserved);
709 	node->bytes_reserved = 0;
710 }
711 
712 /*
713  * This helper will insert some continuous items into the same leaf according
714  * to the free space of the leaf.
715  */
716 static int btrfs_batch_insert_items(struct btrfs_root *root,
717 				    struct btrfs_path *path,
718 				    struct btrfs_delayed_item *item)
719 {
720 	struct btrfs_delayed_item *curr, *next;
721 	int free_space;
722 	int total_data_size = 0, total_size = 0;
723 	struct extent_buffer *leaf;
724 	char *data_ptr;
725 	struct btrfs_key *keys;
726 	u32 *data_size;
727 	struct list_head head;
728 	int slot;
729 	int nitems;
730 	int i;
731 	int ret = 0;
732 
733 	BUG_ON(!path->nodes[0]);
734 
735 	leaf = path->nodes[0];
736 	free_space = btrfs_leaf_free_space(root, leaf);
737 	INIT_LIST_HEAD(&head);
738 
739 	next = item;
740 	nitems = 0;
741 
742 	/*
743 	 * count the number of the continuous items that we can insert in batch
744 	 */
745 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
746 	       free_space) {
747 		total_data_size += next->data_len;
748 		total_size += next->data_len + sizeof(struct btrfs_item);
749 		list_add_tail(&next->tree_list, &head);
750 		nitems++;
751 
752 		curr = next;
753 		next = __btrfs_next_delayed_item(curr);
754 		if (!next)
755 			break;
756 
757 		if (!btrfs_is_continuous_delayed_item(curr, next))
758 			break;
759 	}
760 
761 	if (!nitems) {
762 		ret = 0;
763 		goto out;
764 	}
765 
766 	/*
767 	 * we need allocate some memory space, but it might cause the task
768 	 * to sleep, so we set all locked nodes in the path to blocking locks
769 	 * first.
770 	 */
771 	btrfs_set_path_blocking(path);
772 
773 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
774 	if (!keys) {
775 		ret = -ENOMEM;
776 		goto out;
777 	}
778 
779 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
780 	if (!data_size) {
781 		ret = -ENOMEM;
782 		goto error;
783 	}
784 
785 	/* get keys of all the delayed items */
786 	i = 0;
787 	list_for_each_entry(next, &head, tree_list) {
788 		keys[i] = next->key;
789 		data_size[i] = next->data_len;
790 		i++;
791 	}
792 
793 	/* reset all the locked nodes in the patch to spinning locks. */
794 	btrfs_clear_path_blocking(path, NULL, 0);
795 
796 	/* insert the keys of the items */
797 	setup_items_for_insert(root, path, keys, data_size,
798 			       total_data_size, total_size, nitems);
799 
800 	/* insert the dir index items */
801 	slot = path->slots[0];
802 	list_for_each_entry_safe(curr, next, &head, tree_list) {
803 		data_ptr = btrfs_item_ptr(leaf, slot, char);
804 		write_extent_buffer(leaf, &curr->data,
805 				    (unsigned long)data_ptr,
806 				    curr->data_len);
807 		slot++;
808 
809 		btrfs_delayed_item_release_metadata(root, curr);
810 
811 		list_del(&curr->tree_list);
812 		btrfs_release_delayed_item(curr);
813 	}
814 
815 error:
816 	kfree(data_size);
817 	kfree(keys);
818 out:
819 	return ret;
820 }
821 
822 /*
823  * This helper can just do simple insertion that needn't extend item for new
824  * data, such as directory name index insertion, inode insertion.
825  */
826 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
827 				     struct btrfs_root *root,
828 				     struct btrfs_path *path,
829 				     struct btrfs_delayed_item *delayed_item)
830 {
831 	struct extent_buffer *leaf;
832 	char *ptr;
833 	int ret;
834 
835 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
836 				      delayed_item->data_len);
837 	if (ret < 0 && ret != -EEXIST)
838 		return ret;
839 
840 	leaf = path->nodes[0];
841 
842 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
843 
844 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
845 			    delayed_item->data_len);
846 	btrfs_mark_buffer_dirty(leaf);
847 
848 	btrfs_delayed_item_release_metadata(root, delayed_item);
849 	return 0;
850 }
851 
852 /*
853  * we insert an item first, then if there are some continuous items, we try
854  * to insert those items into the same leaf.
855  */
856 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
857 				      struct btrfs_path *path,
858 				      struct btrfs_root *root,
859 				      struct btrfs_delayed_node *node)
860 {
861 	struct btrfs_delayed_item *curr, *prev;
862 	int ret = 0;
863 
864 do_again:
865 	mutex_lock(&node->mutex);
866 	curr = __btrfs_first_delayed_insertion_item(node);
867 	if (!curr)
868 		goto insert_end;
869 
870 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
871 	if (ret < 0) {
872 		btrfs_release_path(path);
873 		goto insert_end;
874 	}
875 
876 	prev = curr;
877 	curr = __btrfs_next_delayed_item(prev);
878 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
879 		/* insert the continuous items into the same leaf */
880 		path->slots[0]++;
881 		btrfs_batch_insert_items(root, path, curr);
882 	}
883 	btrfs_release_delayed_item(prev);
884 	btrfs_mark_buffer_dirty(path->nodes[0]);
885 
886 	btrfs_release_path(path);
887 	mutex_unlock(&node->mutex);
888 	goto do_again;
889 
890 insert_end:
891 	mutex_unlock(&node->mutex);
892 	return ret;
893 }
894 
895 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
896 				    struct btrfs_root *root,
897 				    struct btrfs_path *path,
898 				    struct btrfs_delayed_item *item)
899 {
900 	struct btrfs_delayed_item *curr, *next;
901 	struct extent_buffer *leaf;
902 	struct btrfs_key key;
903 	struct list_head head;
904 	int nitems, i, last_item;
905 	int ret = 0;
906 
907 	BUG_ON(!path->nodes[0]);
908 
909 	leaf = path->nodes[0];
910 
911 	i = path->slots[0];
912 	last_item = btrfs_header_nritems(leaf) - 1;
913 	if (i > last_item)
914 		return -ENOENT;	/* FIXME: Is errno suitable? */
915 
916 	next = item;
917 	INIT_LIST_HEAD(&head);
918 	btrfs_item_key_to_cpu(leaf, &key, i);
919 	nitems = 0;
920 	/*
921 	 * count the number of the dir index items that we can delete in batch
922 	 */
923 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
924 		list_add_tail(&next->tree_list, &head);
925 		nitems++;
926 
927 		curr = next;
928 		next = __btrfs_next_delayed_item(curr);
929 		if (!next)
930 			break;
931 
932 		if (!btrfs_is_continuous_delayed_item(curr, next))
933 			break;
934 
935 		i++;
936 		if (i > last_item)
937 			break;
938 		btrfs_item_key_to_cpu(leaf, &key, i);
939 	}
940 
941 	if (!nitems)
942 		return 0;
943 
944 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
945 	if (ret)
946 		goto out;
947 
948 	list_for_each_entry_safe(curr, next, &head, tree_list) {
949 		btrfs_delayed_item_release_metadata(root, curr);
950 		list_del(&curr->tree_list);
951 		btrfs_release_delayed_item(curr);
952 	}
953 
954 out:
955 	return ret;
956 }
957 
958 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
959 				      struct btrfs_path *path,
960 				      struct btrfs_root *root,
961 				      struct btrfs_delayed_node *node)
962 {
963 	struct btrfs_delayed_item *curr, *prev;
964 	int ret = 0;
965 
966 do_again:
967 	mutex_lock(&node->mutex);
968 	curr = __btrfs_first_delayed_deletion_item(node);
969 	if (!curr)
970 		goto delete_fail;
971 
972 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
973 	if (ret < 0)
974 		goto delete_fail;
975 	else if (ret > 0) {
976 		/*
977 		 * can't find the item which the node points to, so this node
978 		 * is invalid, just drop it.
979 		 */
980 		prev = curr;
981 		curr = __btrfs_next_delayed_item(prev);
982 		btrfs_release_delayed_item(prev);
983 		ret = 0;
984 		btrfs_release_path(path);
985 		if (curr) {
986 			mutex_unlock(&node->mutex);
987 			goto do_again;
988 		} else
989 			goto delete_fail;
990 	}
991 
992 	btrfs_batch_delete_items(trans, root, path, curr);
993 	btrfs_release_path(path);
994 	mutex_unlock(&node->mutex);
995 	goto do_again;
996 
997 delete_fail:
998 	btrfs_release_path(path);
999 	mutex_unlock(&node->mutex);
1000 	return ret;
1001 }
1002 
1003 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1004 {
1005 	struct btrfs_delayed_root *delayed_root;
1006 
1007 	if (delayed_node && delayed_node->inode_dirty) {
1008 		BUG_ON(!delayed_node->root);
1009 		delayed_node->inode_dirty = 0;
1010 		delayed_node->count--;
1011 
1012 		delayed_root = delayed_node->root->fs_info->delayed_root;
1013 		finish_one_item(delayed_root);
1014 	}
1015 }
1016 
1017 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1018 					struct btrfs_root *root,
1019 					struct btrfs_path *path,
1020 					struct btrfs_delayed_node *node)
1021 {
1022 	struct btrfs_key key;
1023 	struct btrfs_inode_item *inode_item;
1024 	struct extent_buffer *leaf;
1025 	int ret;
1026 
1027 	key.objectid = node->inode_id;
1028 	btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
1029 	key.offset = 0;
1030 
1031 	ret = btrfs_lookup_inode(trans, root, path, &key, 1);
1032 	if (ret > 0) {
1033 		btrfs_release_path(path);
1034 		return -ENOENT;
1035 	} else if (ret < 0) {
1036 		return ret;
1037 	}
1038 
1039 	btrfs_unlock_up_safe(path, 1);
1040 	leaf = path->nodes[0];
1041 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1042 				    struct btrfs_inode_item);
1043 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1044 			    sizeof(struct btrfs_inode_item));
1045 	btrfs_mark_buffer_dirty(leaf);
1046 	btrfs_release_path(path);
1047 
1048 	btrfs_delayed_inode_release_metadata(root, node);
1049 	btrfs_release_delayed_inode(node);
1050 
1051 	return 0;
1052 }
1053 
1054 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1055 					     struct btrfs_root *root,
1056 					     struct btrfs_path *path,
1057 					     struct btrfs_delayed_node *node)
1058 {
1059 	int ret;
1060 
1061 	mutex_lock(&node->mutex);
1062 	if (!node->inode_dirty) {
1063 		mutex_unlock(&node->mutex);
1064 		return 0;
1065 	}
1066 
1067 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1068 	mutex_unlock(&node->mutex);
1069 	return ret;
1070 }
1071 
1072 static inline int
1073 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1074 				   struct btrfs_path *path,
1075 				   struct btrfs_delayed_node *node)
1076 {
1077 	int ret;
1078 
1079 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1080 	if (ret)
1081 		return ret;
1082 
1083 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1084 	if (ret)
1085 		return ret;
1086 
1087 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Called when committing the transaction.
1093  * Returns 0 on success.
1094  * Returns < 0 on error and returns with an aborted transaction with any
1095  * outstanding delayed items cleaned up.
1096  */
1097 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1098 				     struct btrfs_root *root, int nr)
1099 {
1100 	struct btrfs_delayed_root *delayed_root;
1101 	struct btrfs_delayed_node *curr_node, *prev_node;
1102 	struct btrfs_path *path;
1103 	struct btrfs_block_rsv *block_rsv;
1104 	int ret = 0;
1105 	bool count = (nr > 0);
1106 
1107 	if (trans->aborted)
1108 		return -EIO;
1109 
1110 	path = btrfs_alloc_path();
1111 	if (!path)
1112 		return -ENOMEM;
1113 	path->leave_spinning = 1;
1114 
1115 	block_rsv = trans->block_rsv;
1116 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1117 
1118 	delayed_root = btrfs_get_delayed_root(root);
1119 
1120 	curr_node = btrfs_first_delayed_node(delayed_root);
1121 	while (curr_node && (!count || (count && nr--))) {
1122 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1123 							 curr_node);
1124 		if (ret) {
1125 			btrfs_release_delayed_node(curr_node);
1126 			curr_node = NULL;
1127 			btrfs_abort_transaction(trans, root, ret);
1128 			break;
1129 		}
1130 
1131 		prev_node = curr_node;
1132 		curr_node = btrfs_next_delayed_node(curr_node);
1133 		btrfs_release_delayed_node(prev_node);
1134 	}
1135 
1136 	if (curr_node)
1137 		btrfs_release_delayed_node(curr_node);
1138 	btrfs_free_path(path);
1139 	trans->block_rsv = block_rsv;
1140 
1141 	return ret;
1142 }
1143 
1144 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1145 			    struct btrfs_root *root)
1146 {
1147 	return __btrfs_run_delayed_items(trans, root, -1);
1148 }
1149 
1150 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1151 			       struct btrfs_root *root, int nr)
1152 {
1153 	return __btrfs_run_delayed_items(trans, root, nr);
1154 }
1155 
1156 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1157 				     struct inode *inode)
1158 {
1159 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1160 	struct btrfs_path *path;
1161 	struct btrfs_block_rsv *block_rsv;
1162 	int ret;
1163 
1164 	if (!delayed_node)
1165 		return 0;
1166 
1167 	mutex_lock(&delayed_node->mutex);
1168 	if (!delayed_node->count) {
1169 		mutex_unlock(&delayed_node->mutex);
1170 		btrfs_release_delayed_node(delayed_node);
1171 		return 0;
1172 	}
1173 	mutex_unlock(&delayed_node->mutex);
1174 
1175 	path = btrfs_alloc_path();
1176 	if (!path) {
1177 		btrfs_release_delayed_node(delayed_node);
1178 		return -ENOMEM;
1179 	}
1180 	path->leave_spinning = 1;
1181 
1182 	block_rsv = trans->block_rsv;
1183 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1184 
1185 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1186 
1187 	btrfs_release_delayed_node(delayed_node);
1188 	btrfs_free_path(path);
1189 	trans->block_rsv = block_rsv;
1190 
1191 	return ret;
1192 }
1193 
1194 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1195 {
1196 	struct btrfs_trans_handle *trans;
1197 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1198 	struct btrfs_path *path;
1199 	struct btrfs_block_rsv *block_rsv;
1200 	int ret;
1201 
1202 	if (!delayed_node)
1203 		return 0;
1204 
1205 	mutex_lock(&delayed_node->mutex);
1206 	if (!delayed_node->inode_dirty) {
1207 		mutex_unlock(&delayed_node->mutex);
1208 		btrfs_release_delayed_node(delayed_node);
1209 		return 0;
1210 	}
1211 	mutex_unlock(&delayed_node->mutex);
1212 
1213 	trans = btrfs_join_transaction(delayed_node->root);
1214 	if (IS_ERR(trans)) {
1215 		ret = PTR_ERR(trans);
1216 		goto out;
1217 	}
1218 
1219 	path = btrfs_alloc_path();
1220 	if (!path) {
1221 		ret = -ENOMEM;
1222 		goto trans_out;
1223 	}
1224 	path->leave_spinning = 1;
1225 
1226 	block_rsv = trans->block_rsv;
1227 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1228 
1229 	mutex_lock(&delayed_node->mutex);
1230 	if (delayed_node->inode_dirty)
1231 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1232 						   path, delayed_node);
1233 	else
1234 		ret = 0;
1235 	mutex_unlock(&delayed_node->mutex);
1236 
1237 	btrfs_free_path(path);
1238 	trans->block_rsv = block_rsv;
1239 trans_out:
1240 	btrfs_end_transaction(trans, delayed_node->root);
1241 	btrfs_btree_balance_dirty(delayed_node->root);
1242 out:
1243 	btrfs_release_delayed_node(delayed_node);
1244 
1245 	return ret;
1246 }
1247 
1248 void btrfs_remove_delayed_node(struct inode *inode)
1249 {
1250 	struct btrfs_delayed_node *delayed_node;
1251 
1252 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1253 	if (!delayed_node)
1254 		return;
1255 
1256 	BTRFS_I(inode)->delayed_node = NULL;
1257 	btrfs_release_delayed_node(delayed_node);
1258 }
1259 
1260 struct btrfs_async_delayed_work {
1261 	struct btrfs_delayed_root *delayed_root;
1262 	int nr;
1263 	struct btrfs_work work;
1264 };
1265 
1266 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1267 {
1268 	struct btrfs_async_delayed_work *async_work;
1269 	struct btrfs_delayed_root *delayed_root;
1270 	struct btrfs_trans_handle *trans;
1271 	struct btrfs_path *path;
1272 	struct btrfs_delayed_node *delayed_node = NULL;
1273 	struct btrfs_root *root;
1274 	struct btrfs_block_rsv *block_rsv;
1275 	int total_done = 0;
1276 
1277 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1278 	delayed_root = async_work->delayed_root;
1279 
1280 	path = btrfs_alloc_path();
1281 	if (!path)
1282 		goto out;
1283 
1284 again:
1285 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1286 		goto free_path;
1287 
1288 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1289 	if (!delayed_node)
1290 		goto free_path;
1291 
1292 	path->leave_spinning = 1;
1293 	root = delayed_node->root;
1294 
1295 	trans = btrfs_join_transaction(root);
1296 	if (IS_ERR(trans))
1297 		goto release_path;
1298 
1299 	block_rsv = trans->block_rsv;
1300 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1301 
1302 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1303 	/*
1304 	 * Maybe new delayed items have been inserted, so we need requeue
1305 	 * the work. Besides that, we must dequeue the empty delayed nodes
1306 	 * to avoid the race between delayed items balance and the worker.
1307 	 * The race like this:
1308 	 * 	Task1				Worker thread
1309 	 * 					count == 0, needn't requeue
1310 	 * 					  also needn't insert the
1311 	 * 					  delayed node into prepare
1312 	 * 					  list again.
1313 	 * 	add lots of delayed items
1314 	 * 	queue the delayed node
1315 	 * 	  already in the list,
1316 	 * 	  and not in the prepare
1317 	 * 	  list, it means the delayed
1318 	 * 	  node is being dealt with
1319 	 * 	  by the worker.
1320 	 * 	do delayed items balance
1321 	 * 	  the delayed node is being
1322 	 * 	  dealt with by the worker
1323 	 * 	  now, just wait.
1324 	 * 	  				the worker goto idle.
1325 	 * Task1 will sleep until the transaction is commited.
1326 	 */
1327 	mutex_lock(&delayed_node->mutex);
1328 	btrfs_dequeue_delayed_node(root->fs_info->delayed_root, delayed_node);
1329 	mutex_unlock(&delayed_node->mutex);
1330 
1331 	trans->block_rsv = block_rsv;
1332 	btrfs_end_transaction_dmeta(trans, root);
1333 	btrfs_btree_balance_dirty_nodelay(root);
1334 
1335 release_path:
1336 	btrfs_release_path(path);
1337 	total_done++;
1338 
1339 	btrfs_release_prepared_delayed_node(delayed_node);
1340 	if (async_work->nr == 0 || total_done < async_work->nr)
1341 		goto again;
1342 
1343 free_path:
1344 	btrfs_free_path(path);
1345 out:
1346 	wake_up(&delayed_root->wait);
1347 	kfree(async_work);
1348 }
1349 
1350 
1351 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1352 				     struct btrfs_root *root, int nr)
1353 {
1354 	struct btrfs_async_delayed_work *async_work;
1355 
1356 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1357 		return 0;
1358 
1359 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1360 	if (!async_work)
1361 		return -ENOMEM;
1362 
1363 	async_work->delayed_root = delayed_root;
1364 	async_work->work.func = btrfs_async_run_delayed_root;
1365 	async_work->work.flags = 0;
1366 	async_work->nr = nr;
1367 
1368 	btrfs_queue_worker(&root->fs_info->delayed_workers, &async_work->work);
1369 	return 0;
1370 }
1371 
1372 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1373 {
1374 	struct btrfs_delayed_root *delayed_root;
1375 	delayed_root = btrfs_get_delayed_root(root);
1376 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1377 }
1378 
1379 static int refs_newer(struct btrfs_delayed_root *delayed_root,
1380 		      int seq, int count)
1381 {
1382 	int val = atomic_read(&delayed_root->items_seq);
1383 
1384 	if (val < seq || val >= seq + count)
1385 		return 1;
1386 	return 0;
1387 }
1388 
1389 void btrfs_balance_delayed_items(struct btrfs_root *root)
1390 {
1391 	struct btrfs_delayed_root *delayed_root;
1392 	int seq;
1393 
1394 	delayed_root = btrfs_get_delayed_root(root);
1395 
1396 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1397 		return;
1398 
1399 	seq = atomic_read(&delayed_root->items_seq);
1400 
1401 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1402 		int ret;
1403 		DEFINE_WAIT(__wait);
1404 
1405 		ret = btrfs_wq_run_delayed_node(delayed_root, root, 0);
1406 		if (ret)
1407 			return;
1408 
1409 		while (1) {
1410 			prepare_to_wait(&delayed_root->wait, &__wait,
1411 					TASK_INTERRUPTIBLE);
1412 
1413 			if (refs_newer(delayed_root, seq,
1414 				       BTRFS_DELAYED_BATCH) ||
1415 			    atomic_read(&delayed_root->items) <
1416 			    BTRFS_DELAYED_BACKGROUND) {
1417 				break;
1418 			}
1419 			if (!signal_pending(current))
1420 				schedule();
1421 			else
1422 				break;
1423 		}
1424 		finish_wait(&delayed_root->wait, &__wait);
1425 	}
1426 
1427 	btrfs_wq_run_delayed_node(delayed_root, root, BTRFS_DELAYED_BATCH);
1428 }
1429 
1430 /* Will return 0 or -ENOMEM */
1431 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1432 				   struct btrfs_root *root, const char *name,
1433 				   int name_len, struct inode *dir,
1434 				   struct btrfs_disk_key *disk_key, u8 type,
1435 				   u64 index)
1436 {
1437 	struct btrfs_delayed_node *delayed_node;
1438 	struct btrfs_delayed_item *delayed_item;
1439 	struct btrfs_dir_item *dir_item;
1440 	int ret;
1441 
1442 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1443 	if (IS_ERR(delayed_node))
1444 		return PTR_ERR(delayed_node);
1445 
1446 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1447 	if (!delayed_item) {
1448 		ret = -ENOMEM;
1449 		goto release_node;
1450 	}
1451 
1452 	delayed_item->key.objectid = btrfs_ino(dir);
1453 	btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1454 	delayed_item->key.offset = index;
1455 
1456 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1457 	dir_item->location = *disk_key;
1458 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1459 	btrfs_set_stack_dir_data_len(dir_item, 0);
1460 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1461 	btrfs_set_stack_dir_type(dir_item, type);
1462 	memcpy((char *)(dir_item + 1), name, name_len);
1463 
1464 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1465 	/*
1466 	 * we have reserved enough space when we start a new transaction,
1467 	 * so reserving metadata failure is impossible
1468 	 */
1469 	BUG_ON(ret);
1470 
1471 
1472 	mutex_lock(&delayed_node->mutex);
1473 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1474 	if (unlikely(ret)) {
1475 		printk(KERN_ERR "err add delayed dir index item(name: %.*s) "
1476 				"into the insertion tree of the delayed node"
1477 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1478 				name_len, name, delayed_node->root->objectid,
1479 				delayed_node->inode_id, ret);
1480 		BUG();
1481 	}
1482 	mutex_unlock(&delayed_node->mutex);
1483 
1484 release_node:
1485 	btrfs_release_delayed_node(delayed_node);
1486 	return ret;
1487 }
1488 
1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1490 					       struct btrfs_delayed_node *node,
1491 					       struct btrfs_key *key)
1492 {
1493 	struct btrfs_delayed_item *item;
1494 
1495 	mutex_lock(&node->mutex);
1496 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1497 	if (!item) {
1498 		mutex_unlock(&node->mutex);
1499 		return 1;
1500 	}
1501 
1502 	btrfs_delayed_item_release_metadata(root, item);
1503 	btrfs_release_delayed_item(item);
1504 	mutex_unlock(&node->mutex);
1505 	return 0;
1506 }
1507 
1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1509 				   struct btrfs_root *root, struct inode *dir,
1510 				   u64 index)
1511 {
1512 	struct btrfs_delayed_node *node;
1513 	struct btrfs_delayed_item *item;
1514 	struct btrfs_key item_key;
1515 	int ret;
1516 
1517 	node = btrfs_get_or_create_delayed_node(dir);
1518 	if (IS_ERR(node))
1519 		return PTR_ERR(node);
1520 
1521 	item_key.objectid = btrfs_ino(dir);
1522 	btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1523 	item_key.offset = index;
1524 
1525 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1526 	if (!ret)
1527 		goto end;
1528 
1529 	item = btrfs_alloc_delayed_item(0);
1530 	if (!item) {
1531 		ret = -ENOMEM;
1532 		goto end;
1533 	}
1534 
1535 	item->key = item_key;
1536 
1537 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1538 	/*
1539 	 * we have reserved enough space when we start a new transaction,
1540 	 * so reserving metadata failure is impossible.
1541 	 */
1542 	BUG_ON(ret);
1543 
1544 	mutex_lock(&node->mutex);
1545 	ret = __btrfs_add_delayed_deletion_item(node, item);
1546 	if (unlikely(ret)) {
1547 		printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1548 				"into the deletion tree of the delayed node"
1549 				"(root id: %llu, inode id: %llu, errno: %d)\n",
1550 				index, node->root->objectid, node->inode_id,
1551 				ret);
1552 		BUG();
1553 	}
1554 	mutex_unlock(&node->mutex);
1555 end:
1556 	btrfs_release_delayed_node(node);
1557 	return ret;
1558 }
1559 
1560 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1561 {
1562 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1563 
1564 	if (!delayed_node)
1565 		return -ENOENT;
1566 
1567 	/*
1568 	 * Since we have held i_mutex of this directory, it is impossible that
1569 	 * a new directory index is added into the delayed node and index_cnt
1570 	 * is updated now. So we needn't lock the delayed node.
1571 	 */
1572 	if (!delayed_node->index_cnt) {
1573 		btrfs_release_delayed_node(delayed_node);
1574 		return -EINVAL;
1575 	}
1576 
1577 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1578 	btrfs_release_delayed_node(delayed_node);
1579 	return 0;
1580 }
1581 
1582 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1583 			     struct list_head *del_list)
1584 {
1585 	struct btrfs_delayed_node *delayed_node;
1586 	struct btrfs_delayed_item *item;
1587 
1588 	delayed_node = btrfs_get_delayed_node(inode);
1589 	if (!delayed_node)
1590 		return;
1591 
1592 	mutex_lock(&delayed_node->mutex);
1593 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1594 	while (item) {
1595 		atomic_inc(&item->refs);
1596 		list_add_tail(&item->readdir_list, ins_list);
1597 		item = __btrfs_next_delayed_item(item);
1598 	}
1599 
1600 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1601 	while (item) {
1602 		atomic_inc(&item->refs);
1603 		list_add_tail(&item->readdir_list, del_list);
1604 		item = __btrfs_next_delayed_item(item);
1605 	}
1606 	mutex_unlock(&delayed_node->mutex);
1607 	/*
1608 	 * This delayed node is still cached in the btrfs inode, so refs
1609 	 * must be > 1 now, and we needn't check it is going to be freed
1610 	 * or not.
1611 	 *
1612 	 * Besides that, this function is used to read dir, we do not
1613 	 * insert/delete delayed items in this period. So we also needn't
1614 	 * requeue or dequeue this delayed node.
1615 	 */
1616 	atomic_dec(&delayed_node->refs);
1617 }
1618 
1619 void btrfs_put_delayed_items(struct list_head *ins_list,
1620 			     struct list_head *del_list)
1621 {
1622 	struct btrfs_delayed_item *curr, *next;
1623 
1624 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1625 		list_del(&curr->readdir_list);
1626 		if (atomic_dec_and_test(&curr->refs))
1627 			kfree(curr);
1628 	}
1629 
1630 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1631 		list_del(&curr->readdir_list);
1632 		if (atomic_dec_and_test(&curr->refs))
1633 			kfree(curr);
1634 	}
1635 }
1636 
1637 int btrfs_should_delete_dir_index(struct list_head *del_list,
1638 				  u64 index)
1639 {
1640 	struct btrfs_delayed_item *curr, *next;
1641 	int ret;
1642 
1643 	if (list_empty(del_list))
1644 		return 0;
1645 
1646 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1647 		if (curr->key.offset > index)
1648 			break;
1649 
1650 		list_del(&curr->readdir_list);
1651 		ret = (curr->key.offset == index);
1652 
1653 		if (atomic_dec_and_test(&curr->refs))
1654 			kfree(curr);
1655 
1656 		if (ret)
1657 			return 1;
1658 		else
1659 			continue;
1660 	}
1661 	return 0;
1662 }
1663 
1664 /*
1665  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1666  *
1667  */
1668 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1669 				    struct list_head *ins_list)
1670 {
1671 	struct btrfs_dir_item *di;
1672 	struct btrfs_delayed_item *curr, *next;
1673 	struct btrfs_key location;
1674 	char *name;
1675 	int name_len;
1676 	int over = 0;
1677 	unsigned char d_type;
1678 
1679 	if (list_empty(ins_list))
1680 		return 0;
1681 
1682 	/*
1683 	 * Changing the data of the delayed item is impossible. So
1684 	 * we needn't lock them. And we have held i_mutex of the
1685 	 * directory, nobody can delete any directory indexes now.
1686 	 */
1687 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1688 		list_del(&curr->readdir_list);
1689 
1690 		if (curr->key.offset < ctx->pos) {
1691 			if (atomic_dec_and_test(&curr->refs))
1692 				kfree(curr);
1693 			continue;
1694 		}
1695 
1696 		ctx->pos = curr->key.offset;
1697 
1698 		di = (struct btrfs_dir_item *)curr->data;
1699 		name = (char *)(di + 1);
1700 		name_len = btrfs_stack_dir_name_len(di);
1701 
1702 		d_type = btrfs_filetype_table[di->type];
1703 		btrfs_disk_key_to_cpu(&location, &di->location);
1704 
1705 		over = !dir_emit(ctx, name, name_len,
1706 			       location.objectid, d_type);
1707 
1708 		if (atomic_dec_and_test(&curr->refs))
1709 			kfree(curr);
1710 
1711 		if (over)
1712 			return 1;
1713 	}
1714 	return 0;
1715 }
1716 
1717 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1718 				  struct btrfs_inode_item *inode_item,
1719 				  struct inode *inode)
1720 {
1721 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1722 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1723 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1724 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1725 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1726 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1727 	btrfs_set_stack_inode_generation(inode_item,
1728 					 BTRFS_I(inode)->generation);
1729 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1730 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1731 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1732 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1733 	btrfs_set_stack_inode_block_group(inode_item, 0);
1734 
1735 	btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1736 				     inode->i_atime.tv_sec);
1737 	btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1738 				      inode->i_atime.tv_nsec);
1739 
1740 	btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1741 				     inode->i_mtime.tv_sec);
1742 	btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1743 				      inode->i_mtime.tv_nsec);
1744 
1745 	btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1746 				     inode->i_ctime.tv_sec);
1747 	btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1748 				      inode->i_ctime.tv_nsec);
1749 }
1750 
1751 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1752 {
1753 	struct btrfs_delayed_node *delayed_node;
1754 	struct btrfs_inode_item *inode_item;
1755 	struct btrfs_timespec *tspec;
1756 
1757 	delayed_node = btrfs_get_delayed_node(inode);
1758 	if (!delayed_node)
1759 		return -ENOENT;
1760 
1761 	mutex_lock(&delayed_node->mutex);
1762 	if (!delayed_node->inode_dirty) {
1763 		mutex_unlock(&delayed_node->mutex);
1764 		btrfs_release_delayed_node(delayed_node);
1765 		return -ENOENT;
1766 	}
1767 
1768 	inode_item = &delayed_node->inode_item;
1769 
1770 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1771 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1772 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1773 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1774 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1775 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1776 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1777 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1778 	inode->i_rdev = 0;
1779 	*rdev = btrfs_stack_inode_rdev(inode_item);
1780 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1781 
1782 	tspec = btrfs_inode_atime(inode_item);
1783 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1784 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1785 
1786 	tspec = btrfs_inode_mtime(inode_item);
1787 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1788 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1789 
1790 	tspec = btrfs_inode_ctime(inode_item);
1791 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1792 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1793 
1794 	inode->i_generation = BTRFS_I(inode)->generation;
1795 	BTRFS_I(inode)->index_cnt = (u64)-1;
1796 
1797 	mutex_unlock(&delayed_node->mutex);
1798 	btrfs_release_delayed_node(delayed_node);
1799 	return 0;
1800 }
1801 
1802 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1803 			       struct btrfs_root *root, struct inode *inode)
1804 {
1805 	struct btrfs_delayed_node *delayed_node;
1806 	int ret = 0;
1807 
1808 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1809 	if (IS_ERR(delayed_node))
1810 		return PTR_ERR(delayed_node);
1811 
1812 	mutex_lock(&delayed_node->mutex);
1813 	if (delayed_node->inode_dirty) {
1814 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1815 		goto release_node;
1816 	}
1817 
1818 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1819 						   delayed_node);
1820 	if (ret)
1821 		goto release_node;
1822 
1823 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1824 	delayed_node->inode_dirty = 1;
1825 	delayed_node->count++;
1826 	atomic_inc(&root->fs_info->delayed_root->items);
1827 release_node:
1828 	mutex_unlock(&delayed_node->mutex);
1829 	btrfs_release_delayed_node(delayed_node);
1830 	return ret;
1831 }
1832 
1833 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1834 {
1835 	struct btrfs_root *root = delayed_node->root;
1836 	struct btrfs_delayed_item *curr_item, *prev_item;
1837 
1838 	mutex_lock(&delayed_node->mutex);
1839 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1840 	while (curr_item) {
1841 		btrfs_delayed_item_release_metadata(root, curr_item);
1842 		prev_item = curr_item;
1843 		curr_item = __btrfs_next_delayed_item(prev_item);
1844 		btrfs_release_delayed_item(prev_item);
1845 	}
1846 
1847 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1848 	while (curr_item) {
1849 		btrfs_delayed_item_release_metadata(root, curr_item);
1850 		prev_item = curr_item;
1851 		curr_item = __btrfs_next_delayed_item(prev_item);
1852 		btrfs_release_delayed_item(prev_item);
1853 	}
1854 
1855 	if (delayed_node->inode_dirty) {
1856 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1857 		btrfs_release_delayed_inode(delayed_node);
1858 	}
1859 	mutex_unlock(&delayed_node->mutex);
1860 }
1861 
1862 void btrfs_kill_delayed_inode_items(struct inode *inode)
1863 {
1864 	struct btrfs_delayed_node *delayed_node;
1865 
1866 	delayed_node = btrfs_get_delayed_node(inode);
1867 	if (!delayed_node)
1868 		return;
1869 
1870 	__btrfs_kill_delayed_node(delayed_node);
1871 	btrfs_release_delayed_node(delayed_node);
1872 }
1873 
1874 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1875 {
1876 	u64 inode_id = 0;
1877 	struct btrfs_delayed_node *delayed_nodes[8];
1878 	int i, n;
1879 
1880 	while (1) {
1881 		spin_lock(&root->inode_lock);
1882 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1883 					   (void **)delayed_nodes, inode_id,
1884 					   ARRAY_SIZE(delayed_nodes));
1885 		if (!n) {
1886 			spin_unlock(&root->inode_lock);
1887 			break;
1888 		}
1889 
1890 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1891 
1892 		for (i = 0; i < n; i++)
1893 			atomic_inc(&delayed_nodes[i]->refs);
1894 		spin_unlock(&root->inode_lock);
1895 
1896 		for (i = 0; i < n; i++) {
1897 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1898 			btrfs_release_delayed_node(delayed_nodes[i]);
1899 		}
1900 	}
1901 }
1902 
1903 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1904 {
1905 	struct btrfs_delayed_root *delayed_root;
1906 	struct btrfs_delayed_node *curr_node, *prev_node;
1907 
1908 	delayed_root = btrfs_get_delayed_root(root);
1909 
1910 	curr_node = btrfs_first_delayed_node(delayed_root);
1911 	while (curr_node) {
1912 		__btrfs_kill_delayed_node(curr_node);
1913 
1914 		prev_node = curr_node;
1915 		curr_node = btrfs_next_delayed_node(curr_node);
1916 		btrfs_release_delayed_node(prev_node);
1917 	}
1918 }
1919 
1920