1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "ctree.h" 10 #include "fs.h" 11 #include "messages.h" 12 #include "misc.h" 13 #include "delayed-inode.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "qgroup.h" 17 #include "locking.h" 18 #include "inode-item.h" 19 #include "space-info.h" 20 #include "accessors.h" 21 #include "file-item.h" 22 23 #define BTRFS_DELAYED_WRITEBACK 512 24 #define BTRFS_DELAYED_BACKGROUND 128 25 #define BTRFS_DELAYED_BATCH 16 26 27 static struct kmem_cache *delayed_node_cache; 28 29 int __init btrfs_delayed_inode_init(void) 30 { 31 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 32 sizeof(struct btrfs_delayed_node), 33 0, 34 SLAB_MEM_SPREAD, 35 NULL); 36 if (!delayed_node_cache) 37 return -ENOMEM; 38 return 0; 39 } 40 41 void __cold btrfs_delayed_inode_exit(void) 42 { 43 kmem_cache_destroy(delayed_node_cache); 44 } 45 46 static inline void btrfs_init_delayed_node( 47 struct btrfs_delayed_node *delayed_node, 48 struct btrfs_root *root, u64 inode_id) 49 { 50 delayed_node->root = root; 51 delayed_node->inode_id = inode_id; 52 refcount_set(&delayed_node->refs, 0); 53 delayed_node->ins_root = RB_ROOT_CACHED; 54 delayed_node->del_root = RB_ROOT_CACHED; 55 mutex_init(&delayed_node->mutex); 56 INIT_LIST_HEAD(&delayed_node->n_list); 57 INIT_LIST_HEAD(&delayed_node->p_list); 58 } 59 60 static struct btrfs_delayed_node *btrfs_get_delayed_node( 61 struct btrfs_inode *btrfs_inode) 62 { 63 struct btrfs_root *root = btrfs_inode->root; 64 u64 ino = btrfs_ino(btrfs_inode); 65 struct btrfs_delayed_node *node; 66 67 node = READ_ONCE(btrfs_inode->delayed_node); 68 if (node) { 69 refcount_inc(&node->refs); 70 return node; 71 } 72 73 spin_lock(&root->inode_lock); 74 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 75 76 if (node) { 77 if (btrfs_inode->delayed_node) { 78 refcount_inc(&node->refs); /* can be accessed */ 79 BUG_ON(btrfs_inode->delayed_node != node); 80 spin_unlock(&root->inode_lock); 81 return node; 82 } 83 84 /* 85 * It's possible that we're racing into the middle of removing 86 * this node from the radix tree. In this case, the refcount 87 * was zero and it should never go back to one. Just return 88 * NULL like it was never in the radix at all; our release 89 * function is in the process of removing it. 90 * 91 * Some implementations of refcount_inc refuse to bump the 92 * refcount once it has hit zero. If we don't do this dance 93 * here, refcount_inc() may decide to just WARN_ONCE() instead 94 * of actually bumping the refcount. 95 * 96 * If this node is properly in the radix, we want to bump the 97 * refcount twice, once for the inode and once for this get 98 * operation. 99 */ 100 if (refcount_inc_not_zero(&node->refs)) { 101 refcount_inc(&node->refs); 102 btrfs_inode->delayed_node = node; 103 } else { 104 node = NULL; 105 } 106 107 spin_unlock(&root->inode_lock); 108 return node; 109 } 110 spin_unlock(&root->inode_lock); 111 112 return NULL; 113 } 114 115 /* Will return either the node or PTR_ERR(-ENOMEM) */ 116 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 117 struct btrfs_inode *btrfs_inode) 118 { 119 struct btrfs_delayed_node *node; 120 struct btrfs_root *root = btrfs_inode->root; 121 u64 ino = btrfs_ino(btrfs_inode); 122 int ret; 123 124 again: 125 node = btrfs_get_delayed_node(btrfs_inode); 126 if (node) 127 return node; 128 129 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 130 if (!node) 131 return ERR_PTR(-ENOMEM); 132 btrfs_init_delayed_node(node, root, ino); 133 134 /* cached in the btrfs inode and can be accessed */ 135 refcount_set(&node->refs, 2); 136 137 ret = radix_tree_preload(GFP_NOFS); 138 if (ret) { 139 kmem_cache_free(delayed_node_cache, node); 140 return ERR_PTR(ret); 141 } 142 143 spin_lock(&root->inode_lock); 144 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 145 if (ret == -EEXIST) { 146 spin_unlock(&root->inode_lock); 147 kmem_cache_free(delayed_node_cache, node); 148 radix_tree_preload_end(); 149 goto again; 150 } 151 btrfs_inode->delayed_node = node; 152 spin_unlock(&root->inode_lock); 153 radix_tree_preload_end(); 154 155 return node; 156 } 157 158 /* 159 * Call it when holding delayed_node->mutex 160 * 161 * If mod = 1, add this node into the prepared list. 162 */ 163 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 164 struct btrfs_delayed_node *node, 165 int mod) 166 { 167 spin_lock(&root->lock); 168 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 169 if (!list_empty(&node->p_list)) 170 list_move_tail(&node->p_list, &root->prepare_list); 171 else if (mod) 172 list_add_tail(&node->p_list, &root->prepare_list); 173 } else { 174 list_add_tail(&node->n_list, &root->node_list); 175 list_add_tail(&node->p_list, &root->prepare_list); 176 refcount_inc(&node->refs); /* inserted into list */ 177 root->nodes++; 178 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 179 } 180 spin_unlock(&root->lock); 181 } 182 183 /* Call it when holding delayed_node->mutex */ 184 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 185 struct btrfs_delayed_node *node) 186 { 187 spin_lock(&root->lock); 188 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 189 root->nodes--; 190 refcount_dec(&node->refs); /* not in the list */ 191 list_del_init(&node->n_list); 192 if (!list_empty(&node->p_list)) 193 list_del_init(&node->p_list); 194 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 195 } 196 spin_unlock(&root->lock); 197 } 198 199 static struct btrfs_delayed_node *btrfs_first_delayed_node( 200 struct btrfs_delayed_root *delayed_root) 201 { 202 struct list_head *p; 203 struct btrfs_delayed_node *node = NULL; 204 205 spin_lock(&delayed_root->lock); 206 if (list_empty(&delayed_root->node_list)) 207 goto out; 208 209 p = delayed_root->node_list.next; 210 node = list_entry(p, struct btrfs_delayed_node, n_list); 211 refcount_inc(&node->refs); 212 out: 213 spin_unlock(&delayed_root->lock); 214 215 return node; 216 } 217 218 static struct btrfs_delayed_node *btrfs_next_delayed_node( 219 struct btrfs_delayed_node *node) 220 { 221 struct btrfs_delayed_root *delayed_root; 222 struct list_head *p; 223 struct btrfs_delayed_node *next = NULL; 224 225 delayed_root = node->root->fs_info->delayed_root; 226 spin_lock(&delayed_root->lock); 227 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 228 /* not in the list */ 229 if (list_empty(&delayed_root->node_list)) 230 goto out; 231 p = delayed_root->node_list.next; 232 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 233 goto out; 234 else 235 p = node->n_list.next; 236 237 next = list_entry(p, struct btrfs_delayed_node, n_list); 238 refcount_inc(&next->refs); 239 out: 240 spin_unlock(&delayed_root->lock); 241 242 return next; 243 } 244 245 static void __btrfs_release_delayed_node( 246 struct btrfs_delayed_node *delayed_node, 247 int mod) 248 { 249 struct btrfs_delayed_root *delayed_root; 250 251 if (!delayed_node) 252 return; 253 254 delayed_root = delayed_node->root->fs_info->delayed_root; 255 256 mutex_lock(&delayed_node->mutex); 257 if (delayed_node->count) 258 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 259 else 260 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 261 mutex_unlock(&delayed_node->mutex); 262 263 if (refcount_dec_and_test(&delayed_node->refs)) { 264 struct btrfs_root *root = delayed_node->root; 265 266 spin_lock(&root->inode_lock); 267 /* 268 * Once our refcount goes to zero, nobody is allowed to bump it 269 * back up. We can delete it now. 270 */ 271 ASSERT(refcount_read(&delayed_node->refs) == 0); 272 radix_tree_delete(&root->delayed_nodes_tree, 273 delayed_node->inode_id); 274 spin_unlock(&root->inode_lock); 275 kmem_cache_free(delayed_node_cache, delayed_node); 276 } 277 } 278 279 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 280 { 281 __btrfs_release_delayed_node(node, 0); 282 } 283 284 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 285 struct btrfs_delayed_root *delayed_root) 286 { 287 struct list_head *p; 288 struct btrfs_delayed_node *node = NULL; 289 290 spin_lock(&delayed_root->lock); 291 if (list_empty(&delayed_root->prepare_list)) 292 goto out; 293 294 p = delayed_root->prepare_list.next; 295 list_del_init(p); 296 node = list_entry(p, struct btrfs_delayed_node, p_list); 297 refcount_inc(&node->refs); 298 out: 299 spin_unlock(&delayed_root->lock); 300 301 return node; 302 } 303 304 static inline void btrfs_release_prepared_delayed_node( 305 struct btrfs_delayed_node *node) 306 { 307 __btrfs_release_delayed_node(node, 1); 308 } 309 310 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u16 data_len, 311 struct btrfs_delayed_node *node, 312 enum btrfs_delayed_item_type type) 313 { 314 struct btrfs_delayed_item *item; 315 316 item = kmalloc(struct_size(item, data, data_len), GFP_NOFS); 317 if (item) { 318 item->data_len = data_len; 319 item->type = type; 320 item->bytes_reserved = 0; 321 item->delayed_node = node; 322 RB_CLEAR_NODE(&item->rb_node); 323 INIT_LIST_HEAD(&item->log_list); 324 item->logged = false; 325 refcount_set(&item->refs, 1); 326 } 327 return item; 328 } 329 330 /* 331 * __btrfs_lookup_delayed_item - look up the delayed item by key 332 * @delayed_node: pointer to the delayed node 333 * @index: the dir index value to lookup (offset of a dir index key) 334 * 335 * Note: if we don't find the right item, we will return the prev item and 336 * the next item. 337 */ 338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 339 struct rb_root *root, 340 u64 index) 341 { 342 struct rb_node *node = root->rb_node; 343 struct btrfs_delayed_item *delayed_item = NULL; 344 345 while (node) { 346 delayed_item = rb_entry(node, struct btrfs_delayed_item, 347 rb_node); 348 if (delayed_item->index < index) 349 node = node->rb_right; 350 else if (delayed_item->index > index) 351 node = node->rb_left; 352 else 353 return delayed_item; 354 } 355 356 return NULL; 357 } 358 359 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 360 struct btrfs_delayed_item *ins) 361 { 362 struct rb_node **p, *node; 363 struct rb_node *parent_node = NULL; 364 struct rb_root_cached *root; 365 struct btrfs_delayed_item *item; 366 bool leftmost = true; 367 368 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM) 369 root = &delayed_node->ins_root; 370 else 371 root = &delayed_node->del_root; 372 373 p = &root->rb_root.rb_node; 374 node = &ins->rb_node; 375 376 while (*p) { 377 parent_node = *p; 378 item = rb_entry(parent_node, struct btrfs_delayed_item, 379 rb_node); 380 381 if (item->index < ins->index) { 382 p = &(*p)->rb_right; 383 leftmost = false; 384 } else if (item->index > ins->index) { 385 p = &(*p)->rb_left; 386 } else { 387 return -EEXIST; 388 } 389 } 390 391 rb_link_node(node, parent_node, p); 392 rb_insert_color_cached(node, root, leftmost); 393 394 if (ins->type == BTRFS_DELAYED_INSERTION_ITEM && 395 ins->index >= delayed_node->index_cnt) 396 delayed_node->index_cnt = ins->index + 1; 397 398 delayed_node->count++; 399 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 400 return 0; 401 } 402 403 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 404 { 405 int seq = atomic_inc_return(&delayed_root->items_seq); 406 407 /* atomic_dec_return implies a barrier */ 408 if ((atomic_dec_return(&delayed_root->items) < 409 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 410 cond_wake_up_nomb(&delayed_root->wait); 411 } 412 413 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 414 { 415 struct btrfs_delayed_node *delayed_node = delayed_item->delayed_node; 416 struct rb_root_cached *root; 417 struct btrfs_delayed_root *delayed_root; 418 419 /* Not inserted, ignore it. */ 420 if (RB_EMPTY_NODE(&delayed_item->rb_node)) 421 return; 422 423 /* If it's in a rbtree, then we need to have delayed node locked. */ 424 lockdep_assert_held(&delayed_node->mutex); 425 426 delayed_root = delayed_node->root->fs_info->delayed_root; 427 428 if (delayed_item->type == BTRFS_DELAYED_INSERTION_ITEM) 429 root = &delayed_node->ins_root; 430 else 431 root = &delayed_node->del_root; 432 433 rb_erase_cached(&delayed_item->rb_node, root); 434 RB_CLEAR_NODE(&delayed_item->rb_node); 435 delayed_node->count--; 436 437 finish_one_item(delayed_root); 438 } 439 440 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 441 { 442 if (item) { 443 __btrfs_remove_delayed_item(item); 444 if (refcount_dec_and_test(&item->refs)) 445 kfree(item); 446 } 447 } 448 449 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 450 struct btrfs_delayed_node *delayed_node) 451 { 452 struct rb_node *p; 453 struct btrfs_delayed_item *item = NULL; 454 455 p = rb_first_cached(&delayed_node->ins_root); 456 if (p) 457 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 458 459 return item; 460 } 461 462 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 463 struct btrfs_delayed_node *delayed_node) 464 { 465 struct rb_node *p; 466 struct btrfs_delayed_item *item = NULL; 467 468 p = rb_first_cached(&delayed_node->del_root); 469 if (p) 470 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 471 472 return item; 473 } 474 475 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 476 struct btrfs_delayed_item *item) 477 { 478 struct rb_node *p; 479 struct btrfs_delayed_item *next = NULL; 480 481 p = rb_next(&item->rb_node); 482 if (p) 483 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 484 485 return next; 486 } 487 488 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 489 struct btrfs_delayed_item *item) 490 { 491 struct btrfs_block_rsv *src_rsv; 492 struct btrfs_block_rsv *dst_rsv; 493 struct btrfs_fs_info *fs_info = trans->fs_info; 494 u64 num_bytes; 495 int ret; 496 497 if (!trans->bytes_reserved) 498 return 0; 499 500 src_rsv = trans->block_rsv; 501 dst_rsv = &fs_info->delayed_block_rsv; 502 503 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 504 505 /* 506 * Here we migrate space rsv from transaction rsv, since have already 507 * reserved space when starting a transaction. So no need to reserve 508 * qgroup space here. 509 */ 510 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 511 if (!ret) { 512 trace_btrfs_space_reservation(fs_info, "delayed_item", 513 item->delayed_node->inode_id, 514 num_bytes, 1); 515 /* 516 * For insertions we track reserved metadata space by accounting 517 * for the number of leaves that will be used, based on the delayed 518 * node's index_items_size field. 519 */ 520 if (item->type == BTRFS_DELAYED_DELETION_ITEM) 521 item->bytes_reserved = num_bytes; 522 } 523 524 return ret; 525 } 526 527 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 528 struct btrfs_delayed_item *item) 529 { 530 struct btrfs_block_rsv *rsv; 531 struct btrfs_fs_info *fs_info = root->fs_info; 532 533 if (!item->bytes_reserved) 534 return; 535 536 rsv = &fs_info->delayed_block_rsv; 537 /* 538 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 539 * to release/reserve qgroup space. 540 */ 541 trace_btrfs_space_reservation(fs_info, "delayed_item", 542 item->delayed_node->inode_id, 543 item->bytes_reserved, 0); 544 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 545 } 546 547 static void btrfs_delayed_item_release_leaves(struct btrfs_delayed_node *node, 548 unsigned int num_leaves) 549 { 550 struct btrfs_fs_info *fs_info = node->root->fs_info; 551 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, num_leaves); 552 553 /* There are no space reservations during log replay, bail out. */ 554 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 555 return; 556 557 trace_btrfs_space_reservation(fs_info, "delayed_item", node->inode_id, 558 bytes, 0); 559 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, bytes, NULL); 560 } 561 562 static int btrfs_delayed_inode_reserve_metadata( 563 struct btrfs_trans_handle *trans, 564 struct btrfs_root *root, 565 struct btrfs_delayed_node *node) 566 { 567 struct btrfs_fs_info *fs_info = root->fs_info; 568 struct btrfs_block_rsv *src_rsv; 569 struct btrfs_block_rsv *dst_rsv; 570 u64 num_bytes; 571 int ret; 572 573 src_rsv = trans->block_rsv; 574 dst_rsv = &fs_info->delayed_block_rsv; 575 576 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 577 578 /* 579 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 580 * which doesn't reserve space for speed. This is a problem since we 581 * still need to reserve space for this update, so try to reserve the 582 * space. 583 * 584 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 585 * we always reserve enough to update the inode item. 586 */ 587 if (!src_rsv || (!trans->bytes_reserved && 588 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 589 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 590 BTRFS_QGROUP_RSV_META_PREALLOC, true); 591 if (ret < 0) 592 return ret; 593 ret = btrfs_block_rsv_add(fs_info, dst_rsv, num_bytes, 594 BTRFS_RESERVE_NO_FLUSH); 595 /* NO_FLUSH could only fail with -ENOSPC */ 596 ASSERT(ret == 0 || ret == -ENOSPC); 597 if (ret) 598 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 599 } else { 600 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 601 } 602 603 if (!ret) { 604 trace_btrfs_space_reservation(fs_info, "delayed_inode", 605 node->inode_id, num_bytes, 1); 606 node->bytes_reserved = num_bytes; 607 } 608 609 return ret; 610 } 611 612 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 613 struct btrfs_delayed_node *node, 614 bool qgroup_free) 615 { 616 struct btrfs_block_rsv *rsv; 617 618 if (!node->bytes_reserved) 619 return; 620 621 rsv = &fs_info->delayed_block_rsv; 622 trace_btrfs_space_reservation(fs_info, "delayed_inode", 623 node->inode_id, node->bytes_reserved, 0); 624 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 625 if (qgroup_free) 626 btrfs_qgroup_free_meta_prealloc(node->root, 627 node->bytes_reserved); 628 else 629 btrfs_qgroup_convert_reserved_meta(node->root, 630 node->bytes_reserved); 631 node->bytes_reserved = 0; 632 } 633 634 /* 635 * Insert a single delayed item or a batch of delayed items, as many as possible 636 * that fit in a leaf. The delayed items (dir index keys) are sorted by their key 637 * in the rbtree, and if there's a gap between two consecutive dir index items, 638 * then it means at some point we had delayed dir indexes to add but they got 639 * removed (by btrfs_delete_delayed_dir_index()) before we attempted to flush them 640 * into the subvolume tree. Dir index keys also have their offsets coming from a 641 * monotonically increasing counter, so we can't get new keys with an offset that 642 * fits within a gap between delayed dir index items. 643 */ 644 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 645 struct btrfs_root *root, 646 struct btrfs_path *path, 647 struct btrfs_delayed_item *first_item) 648 { 649 struct btrfs_fs_info *fs_info = root->fs_info; 650 struct btrfs_delayed_node *node = first_item->delayed_node; 651 LIST_HEAD(item_list); 652 struct btrfs_delayed_item *curr; 653 struct btrfs_delayed_item *next; 654 const int max_size = BTRFS_LEAF_DATA_SIZE(fs_info); 655 struct btrfs_item_batch batch; 656 struct btrfs_key first_key; 657 const u32 first_data_size = first_item->data_len; 658 int total_size; 659 char *ins_data = NULL; 660 int ret; 661 bool continuous_keys_only = false; 662 663 lockdep_assert_held(&node->mutex); 664 665 /* 666 * During normal operation the delayed index offset is continuously 667 * increasing, so we can batch insert all items as there will not be any 668 * overlapping keys in the tree. 669 * 670 * The exception to this is log replay, where we may have interleaved 671 * offsets in the tree, so our batch needs to be continuous keys only in 672 * order to ensure we do not end up with out of order items in our leaf. 673 */ 674 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 675 continuous_keys_only = true; 676 677 /* 678 * For delayed items to insert, we track reserved metadata bytes based 679 * on the number of leaves that we will use. 680 * See btrfs_insert_delayed_dir_index() and 681 * btrfs_delayed_item_reserve_metadata()). 682 */ 683 ASSERT(first_item->bytes_reserved == 0); 684 685 list_add_tail(&first_item->tree_list, &item_list); 686 batch.total_data_size = first_data_size; 687 batch.nr = 1; 688 total_size = first_data_size + sizeof(struct btrfs_item); 689 curr = first_item; 690 691 while (true) { 692 int next_size; 693 694 next = __btrfs_next_delayed_item(curr); 695 if (!next) 696 break; 697 698 /* 699 * We cannot allow gaps in the key space if we're doing log 700 * replay. 701 */ 702 if (continuous_keys_only && (next->index != curr->index + 1)) 703 break; 704 705 ASSERT(next->bytes_reserved == 0); 706 707 next_size = next->data_len + sizeof(struct btrfs_item); 708 if (total_size + next_size > max_size) 709 break; 710 711 list_add_tail(&next->tree_list, &item_list); 712 batch.nr++; 713 total_size += next_size; 714 batch.total_data_size += next->data_len; 715 curr = next; 716 } 717 718 if (batch.nr == 1) { 719 first_key.objectid = node->inode_id; 720 first_key.type = BTRFS_DIR_INDEX_KEY; 721 first_key.offset = first_item->index; 722 batch.keys = &first_key; 723 batch.data_sizes = &first_data_size; 724 } else { 725 struct btrfs_key *ins_keys; 726 u32 *ins_sizes; 727 int i = 0; 728 729 ins_data = kmalloc(batch.nr * sizeof(u32) + 730 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 731 if (!ins_data) { 732 ret = -ENOMEM; 733 goto out; 734 } 735 ins_sizes = (u32 *)ins_data; 736 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 737 batch.keys = ins_keys; 738 batch.data_sizes = ins_sizes; 739 list_for_each_entry(curr, &item_list, tree_list) { 740 ins_keys[i].objectid = node->inode_id; 741 ins_keys[i].type = BTRFS_DIR_INDEX_KEY; 742 ins_keys[i].offset = curr->index; 743 ins_sizes[i] = curr->data_len; 744 i++; 745 } 746 } 747 748 ret = btrfs_insert_empty_items(trans, root, path, &batch); 749 if (ret) 750 goto out; 751 752 list_for_each_entry(curr, &item_list, tree_list) { 753 char *data_ptr; 754 755 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 756 write_extent_buffer(path->nodes[0], &curr->data, 757 (unsigned long)data_ptr, curr->data_len); 758 path->slots[0]++; 759 } 760 761 /* 762 * Now release our path before releasing the delayed items and their 763 * metadata reservations, so that we don't block other tasks for more 764 * time than needed. 765 */ 766 btrfs_release_path(path); 767 768 ASSERT(node->index_item_leaves > 0); 769 770 /* 771 * For normal operations we will batch an entire leaf's worth of delayed 772 * items, so if there are more items to process we can decrement 773 * index_item_leaves by 1 as we inserted 1 leaf's worth of items. 774 * 775 * However for log replay we may not have inserted an entire leaf's 776 * worth of items, we may have not had continuous items, so decrementing 777 * here would mess up the index_item_leaves accounting. For this case 778 * only clean up the accounting when there are no items left. 779 */ 780 if (next && !continuous_keys_only) { 781 /* 782 * We inserted one batch of items into a leaf a there are more 783 * items to flush in a future batch, now release one unit of 784 * metadata space from the delayed block reserve, corresponding 785 * the leaf we just flushed to. 786 */ 787 btrfs_delayed_item_release_leaves(node, 1); 788 node->index_item_leaves--; 789 } else if (!next) { 790 /* 791 * There are no more items to insert. We can have a number of 792 * reserved leaves > 1 here - this happens when many dir index 793 * items are added and then removed before they are flushed (file 794 * names with a very short life, never span a transaction). So 795 * release all remaining leaves. 796 */ 797 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 798 node->index_item_leaves = 0; 799 } 800 801 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 802 list_del(&curr->tree_list); 803 btrfs_release_delayed_item(curr); 804 } 805 out: 806 kfree(ins_data); 807 return ret; 808 } 809 810 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 811 struct btrfs_path *path, 812 struct btrfs_root *root, 813 struct btrfs_delayed_node *node) 814 { 815 int ret = 0; 816 817 while (ret == 0) { 818 struct btrfs_delayed_item *curr; 819 820 mutex_lock(&node->mutex); 821 curr = __btrfs_first_delayed_insertion_item(node); 822 if (!curr) { 823 mutex_unlock(&node->mutex); 824 break; 825 } 826 ret = btrfs_insert_delayed_item(trans, root, path, curr); 827 mutex_unlock(&node->mutex); 828 } 829 830 return ret; 831 } 832 833 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 834 struct btrfs_root *root, 835 struct btrfs_path *path, 836 struct btrfs_delayed_item *item) 837 { 838 const u64 ino = item->delayed_node->inode_id; 839 struct btrfs_fs_info *fs_info = root->fs_info; 840 struct btrfs_delayed_item *curr, *next; 841 struct extent_buffer *leaf = path->nodes[0]; 842 LIST_HEAD(batch_list); 843 int nitems, slot, last_slot; 844 int ret; 845 u64 total_reserved_size = item->bytes_reserved; 846 847 ASSERT(leaf != NULL); 848 849 slot = path->slots[0]; 850 last_slot = btrfs_header_nritems(leaf) - 1; 851 /* 852 * Our caller always gives us a path pointing to an existing item, so 853 * this can not happen. 854 */ 855 ASSERT(slot <= last_slot); 856 if (WARN_ON(slot > last_slot)) 857 return -ENOENT; 858 859 nitems = 1; 860 curr = item; 861 list_add_tail(&curr->tree_list, &batch_list); 862 863 /* 864 * Keep checking if the next delayed item matches the next item in the 865 * leaf - if so, we can add it to the batch of items to delete from the 866 * leaf. 867 */ 868 while (slot < last_slot) { 869 struct btrfs_key key; 870 871 next = __btrfs_next_delayed_item(curr); 872 if (!next) 873 break; 874 875 slot++; 876 btrfs_item_key_to_cpu(leaf, &key, slot); 877 if (key.objectid != ino || 878 key.type != BTRFS_DIR_INDEX_KEY || 879 key.offset != next->index) 880 break; 881 nitems++; 882 curr = next; 883 list_add_tail(&curr->tree_list, &batch_list); 884 total_reserved_size += curr->bytes_reserved; 885 } 886 887 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 888 if (ret) 889 return ret; 890 891 /* In case of BTRFS_FS_LOG_RECOVERING items won't have reserved space */ 892 if (total_reserved_size > 0) { 893 /* 894 * Check btrfs_delayed_item_reserve_metadata() to see why we 895 * don't need to release/reserve qgroup space. 896 */ 897 trace_btrfs_space_reservation(fs_info, "delayed_item", ino, 898 total_reserved_size, 0); 899 btrfs_block_rsv_release(fs_info, &fs_info->delayed_block_rsv, 900 total_reserved_size, NULL); 901 } 902 903 list_for_each_entry_safe(curr, next, &batch_list, tree_list) { 904 list_del(&curr->tree_list); 905 btrfs_release_delayed_item(curr); 906 } 907 908 return 0; 909 } 910 911 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 912 struct btrfs_path *path, 913 struct btrfs_root *root, 914 struct btrfs_delayed_node *node) 915 { 916 struct btrfs_key key; 917 int ret = 0; 918 919 key.objectid = node->inode_id; 920 key.type = BTRFS_DIR_INDEX_KEY; 921 922 while (ret == 0) { 923 struct btrfs_delayed_item *item; 924 925 mutex_lock(&node->mutex); 926 item = __btrfs_first_delayed_deletion_item(node); 927 if (!item) { 928 mutex_unlock(&node->mutex); 929 break; 930 } 931 932 key.offset = item->index; 933 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 934 if (ret > 0) { 935 /* 936 * There's no matching item in the leaf. This means we 937 * have already deleted this item in a past run of the 938 * delayed items. We ignore errors when running delayed 939 * items from an async context, through a work queue job 940 * running btrfs_async_run_delayed_root(), and don't 941 * release delayed items that failed to complete. This 942 * is because we will retry later, and at transaction 943 * commit time we always run delayed items and will 944 * then deal with errors if they fail to run again. 945 * 946 * So just release delayed items for which we can't find 947 * an item in the tree, and move to the next item. 948 */ 949 btrfs_release_path(path); 950 btrfs_release_delayed_item(item); 951 ret = 0; 952 } else if (ret == 0) { 953 ret = btrfs_batch_delete_items(trans, root, path, item); 954 btrfs_release_path(path); 955 } 956 957 /* 958 * We unlock and relock on each iteration, this is to prevent 959 * blocking other tasks for too long while we are being run from 960 * the async context (work queue job). Those tasks are typically 961 * running system calls like creat/mkdir/rename/unlink/etc which 962 * need to add delayed items to this delayed node. 963 */ 964 mutex_unlock(&node->mutex); 965 } 966 967 return ret; 968 } 969 970 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 971 { 972 struct btrfs_delayed_root *delayed_root; 973 974 if (delayed_node && 975 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 976 ASSERT(delayed_node->root); 977 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 978 delayed_node->count--; 979 980 delayed_root = delayed_node->root->fs_info->delayed_root; 981 finish_one_item(delayed_root); 982 } 983 } 984 985 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 986 { 987 988 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 989 struct btrfs_delayed_root *delayed_root; 990 991 ASSERT(delayed_node->root); 992 delayed_node->count--; 993 994 delayed_root = delayed_node->root->fs_info->delayed_root; 995 finish_one_item(delayed_root); 996 } 997 } 998 999 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1000 struct btrfs_root *root, 1001 struct btrfs_path *path, 1002 struct btrfs_delayed_node *node) 1003 { 1004 struct btrfs_fs_info *fs_info = root->fs_info; 1005 struct btrfs_key key; 1006 struct btrfs_inode_item *inode_item; 1007 struct extent_buffer *leaf; 1008 int mod; 1009 int ret; 1010 1011 key.objectid = node->inode_id; 1012 key.type = BTRFS_INODE_ITEM_KEY; 1013 key.offset = 0; 1014 1015 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1016 mod = -1; 1017 else 1018 mod = 1; 1019 1020 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1021 if (ret > 0) 1022 ret = -ENOENT; 1023 if (ret < 0) 1024 goto out; 1025 1026 leaf = path->nodes[0]; 1027 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1028 struct btrfs_inode_item); 1029 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1030 sizeof(struct btrfs_inode_item)); 1031 btrfs_mark_buffer_dirty(trans, leaf); 1032 1033 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1034 goto out; 1035 1036 path->slots[0]++; 1037 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1038 goto search; 1039 again: 1040 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1041 if (key.objectid != node->inode_id) 1042 goto out; 1043 1044 if (key.type != BTRFS_INODE_REF_KEY && 1045 key.type != BTRFS_INODE_EXTREF_KEY) 1046 goto out; 1047 1048 /* 1049 * Delayed iref deletion is for the inode who has only one link, 1050 * so there is only one iref. The case that several irefs are 1051 * in the same item doesn't exist. 1052 */ 1053 ret = btrfs_del_item(trans, root, path); 1054 out: 1055 btrfs_release_delayed_iref(node); 1056 btrfs_release_path(path); 1057 err_out: 1058 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1059 btrfs_release_delayed_inode(node); 1060 1061 /* 1062 * If we fail to update the delayed inode we need to abort the 1063 * transaction, because we could leave the inode with the improper 1064 * counts behind. 1065 */ 1066 if (ret && ret != -ENOENT) 1067 btrfs_abort_transaction(trans, ret); 1068 1069 return ret; 1070 1071 search: 1072 btrfs_release_path(path); 1073 1074 key.type = BTRFS_INODE_EXTREF_KEY; 1075 key.offset = -1; 1076 1077 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1078 if (ret < 0) 1079 goto err_out; 1080 ASSERT(ret); 1081 1082 ret = 0; 1083 leaf = path->nodes[0]; 1084 path->slots[0]--; 1085 goto again; 1086 } 1087 1088 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1089 struct btrfs_root *root, 1090 struct btrfs_path *path, 1091 struct btrfs_delayed_node *node) 1092 { 1093 int ret; 1094 1095 mutex_lock(&node->mutex); 1096 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1097 mutex_unlock(&node->mutex); 1098 return 0; 1099 } 1100 1101 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1102 mutex_unlock(&node->mutex); 1103 return ret; 1104 } 1105 1106 static inline int 1107 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1108 struct btrfs_path *path, 1109 struct btrfs_delayed_node *node) 1110 { 1111 int ret; 1112 1113 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1114 if (ret) 1115 return ret; 1116 1117 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1118 if (ret) 1119 return ret; 1120 1121 ret = btrfs_record_root_in_trans(trans, node->root); 1122 if (ret) 1123 return ret; 1124 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1125 return ret; 1126 } 1127 1128 /* 1129 * Called when committing the transaction. 1130 * Returns 0 on success. 1131 * Returns < 0 on error and returns with an aborted transaction with any 1132 * outstanding delayed items cleaned up. 1133 */ 1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1135 { 1136 struct btrfs_fs_info *fs_info = trans->fs_info; 1137 struct btrfs_delayed_root *delayed_root; 1138 struct btrfs_delayed_node *curr_node, *prev_node; 1139 struct btrfs_path *path; 1140 struct btrfs_block_rsv *block_rsv; 1141 int ret = 0; 1142 bool count = (nr > 0); 1143 1144 if (TRANS_ABORTED(trans)) 1145 return -EIO; 1146 1147 path = btrfs_alloc_path(); 1148 if (!path) 1149 return -ENOMEM; 1150 1151 block_rsv = trans->block_rsv; 1152 trans->block_rsv = &fs_info->delayed_block_rsv; 1153 1154 delayed_root = fs_info->delayed_root; 1155 1156 curr_node = btrfs_first_delayed_node(delayed_root); 1157 while (curr_node && (!count || nr--)) { 1158 ret = __btrfs_commit_inode_delayed_items(trans, path, 1159 curr_node); 1160 if (ret) { 1161 btrfs_abort_transaction(trans, ret); 1162 break; 1163 } 1164 1165 prev_node = curr_node; 1166 curr_node = btrfs_next_delayed_node(curr_node); 1167 /* 1168 * See the comment below about releasing path before releasing 1169 * node. If the commit of delayed items was successful the path 1170 * should always be released, but in case of an error, it may 1171 * point to locked extent buffers (a leaf at the very least). 1172 */ 1173 ASSERT(path->nodes[0] == NULL); 1174 btrfs_release_delayed_node(prev_node); 1175 } 1176 1177 /* 1178 * Release the path to avoid a potential deadlock and lockdep splat when 1179 * releasing the delayed node, as that requires taking the delayed node's 1180 * mutex. If another task starts running delayed items before we take 1181 * the mutex, it will first lock the mutex and then it may try to lock 1182 * the same btree path (leaf). 1183 */ 1184 btrfs_free_path(path); 1185 1186 if (curr_node) 1187 btrfs_release_delayed_node(curr_node); 1188 trans->block_rsv = block_rsv; 1189 1190 return ret; 1191 } 1192 1193 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1194 { 1195 return __btrfs_run_delayed_items(trans, -1); 1196 } 1197 1198 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1199 { 1200 return __btrfs_run_delayed_items(trans, nr); 1201 } 1202 1203 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1204 struct btrfs_inode *inode) 1205 { 1206 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1207 struct btrfs_path *path; 1208 struct btrfs_block_rsv *block_rsv; 1209 int ret; 1210 1211 if (!delayed_node) 1212 return 0; 1213 1214 mutex_lock(&delayed_node->mutex); 1215 if (!delayed_node->count) { 1216 mutex_unlock(&delayed_node->mutex); 1217 btrfs_release_delayed_node(delayed_node); 1218 return 0; 1219 } 1220 mutex_unlock(&delayed_node->mutex); 1221 1222 path = btrfs_alloc_path(); 1223 if (!path) { 1224 btrfs_release_delayed_node(delayed_node); 1225 return -ENOMEM; 1226 } 1227 1228 block_rsv = trans->block_rsv; 1229 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1230 1231 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1232 1233 btrfs_release_delayed_node(delayed_node); 1234 btrfs_free_path(path); 1235 trans->block_rsv = block_rsv; 1236 1237 return ret; 1238 } 1239 1240 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1241 { 1242 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1243 struct btrfs_trans_handle *trans; 1244 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1245 struct btrfs_path *path; 1246 struct btrfs_block_rsv *block_rsv; 1247 int ret; 1248 1249 if (!delayed_node) 1250 return 0; 1251 1252 mutex_lock(&delayed_node->mutex); 1253 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1254 mutex_unlock(&delayed_node->mutex); 1255 btrfs_release_delayed_node(delayed_node); 1256 return 0; 1257 } 1258 mutex_unlock(&delayed_node->mutex); 1259 1260 trans = btrfs_join_transaction(delayed_node->root); 1261 if (IS_ERR(trans)) { 1262 ret = PTR_ERR(trans); 1263 goto out; 1264 } 1265 1266 path = btrfs_alloc_path(); 1267 if (!path) { 1268 ret = -ENOMEM; 1269 goto trans_out; 1270 } 1271 1272 block_rsv = trans->block_rsv; 1273 trans->block_rsv = &fs_info->delayed_block_rsv; 1274 1275 mutex_lock(&delayed_node->mutex); 1276 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1277 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1278 path, delayed_node); 1279 else 1280 ret = 0; 1281 mutex_unlock(&delayed_node->mutex); 1282 1283 btrfs_free_path(path); 1284 trans->block_rsv = block_rsv; 1285 trans_out: 1286 btrfs_end_transaction(trans); 1287 btrfs_btree_balance_dirty(fs_info); 1288 out: 1289 btrfs_release_delayed_node(delayed_node); 1290 1291 return ret; 1292 } 1293 1294 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1295 { 1296 struct btrfs_delayed_node *delayed_node; 1297 1298 delayed_node = READ_ONCE(inode->delayed_node); 1299 if (!delayed_node) 1300 return; 1301 1302 inode->delayed_node = NULL; 1303 btrfs_release_delayed_node(delayed_node); 1304 } 1305 1306 struct btrfs_async_delayed_work { 1307 struct btrfs_delayed_root *delayed_root; 1308 int nr; 1309 struct btrfs_work work; 1310 }; 1311 1312 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1313 { 1314 struct btrfs_async_delayed_work *async_work; 1315 struct btrfs_delayed_root *delayed_root; 1316 struct btrfs_trans_handle *trans; 1317 struct btrfs_path *path; 1318 struct btrfs_delayed_node *delayed_node = NULL; 1319 struct btrfs_root *root; 1320 struct btrfs_block_rsv *block_rsv; 1321 int total_done = 0; 1322 1323 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1324 delayed_root = async_work->delayed_root; 1325 1326 path = btrfs_alloc_path(); 1327 if (!path) 1328 goto out; 1329 1330 do { 1331 if (atomic_read(&delayed_root->items) < 1332 BTRFS_DELAYED_BACKGROUND / 2) 1333 break; 1334 1335 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1336 if (!delayed_node) 1337 break; 1338 1339 root = delayed_node->root; 1340 1341 trans = btrfs_join_transaction(root); 1342 if (IS_ERR(trans)) { 1343 btrfs_release_path(path); 1344 btrfs_release_prepared_delayed_node(delayed_node); 1345 total_done++; 1346 continue; 1347 } 1348 1349 block_rsv = trans->block_rsv; 1350 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1351 1352 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1353 1354 trans->block_rsv = block_rsv; 1355 btrfs_end_transaction(trans); 1356 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1357 1358 btrfs_release_path(path); 1359 btrfs_release_prepared_delayed_node(delayed_node); 1360 total_done++; 1361 1362 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1363 || total_done < async_work->nr); 1364 1365 btrfs_free_path(path); 1366 out: 1367 wake_up(&delayed_root->wait); 1368 kfree(async_work); 1369 } 1370 1371 1372 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1373 struct btrfs_fs_info *fs_info, int nr) 1374 { 1375 struct btrfs_async_delayed_work *async_work; 1376 1377 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1378 if (!async_work) 1379 return -ENOMEM; 1380 1381 async_work->delayed_root = delayed_root; 1382 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1383 NULL); 1384 async_work->nr = nr; 1385 1386 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1387 return 0; 1388 } 1389 1390 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1391 { 1392 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1393 } 1394 1395 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1396 { 1397 int val = atomic_read(&delayed_root->items_seq); 1398 1399 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1400 return 1; 1401 1402 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1403 return 1; 1404 1405 return 0; 1406 } 1407 1408 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1409 { 1410 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1411 1412 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1413 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1414 return; 1415 1416 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1417 int seq; 1418 int ret; 1419 1420 seq = atomic_read(&delayed_root->items_seq); 1421 1422 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1423 if (ret) 1424 return; 1425 1426 wait_event_interruptible(delayed_root->wait, 1427 could_end_wait(delayed_root, seq)); 1428 return; 1429 } 1430 1431 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1432 } 1433 1434 static void btrfs_release_dir_index_item_space(struct btrfs_trans_handle *trans) 1435 { 1436 struct btrfs_fs_info *fs_info = trans->fs_info; 1437 const u64 bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 1438 1439 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1440 return; 1441 1442 /* 1443 * Adding the new dir index item does not require touching another 1444 * leaf, so we can release 1 unit of metadata that was previously 1445 * reserved when starting the transaction. This applies only to 1446 * the case where we had a transaction start and excludes the 1447 * transaction join case (when replaying log trees). 1448 */ 1449 trace_btrfs_space_reservation(fs_info, "transaction", 1450 trans->transid, bytes, 0); 1451 btrfs_block_rsv_release(fs_info, trans->block_rsv, bytes, NULL); 1452 ASSERT(trans->bytes_reserved >= bytes); 1453 trans->bytes_reserved -= bytes; 1454 } 1455 1456 /* Will return 0, -ENOMEM or -EEXIST (index number collision, unexpected). */ 1457 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1458 const char *name, int name_len, 1459 struct btrfs_inode *dir, 1460 struct btrfs_disk_key *disk_key, u8 flags, 1461 u64 index) 1462 { 1463 struct btrfs_fs_info *fs_info = trans->fs_info; 1464 const unsigned int leaf_data_size = BTRFS_LEAF_DATA_SIZE(fs_info); 1465 struct btrfs_delayed_node *delayed_node; 1466 struct btrfs_delayed_item *delayed_item; 1467 struct btrfs_dir_item *dir_item; 1468 bool reserve_leaf_space; 1469 u32 data_len; 1470 int ret; 1471 1472 delayed_node = btrfs_get_or_create_delayed_node(dir); 1473 if (IS_ERR(delayed_node)) 1474 return PTR_ERR(delayed_node); 1475 1476 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len, 1477 delayed_node, 1478 BTRFS_DELAYED_INSERTION_ITEM); 1479 if (!delayed_item) { 1480 ret = -ENOMEM; 1481 goto release_node; 1482 } 1483 1484 delayed_item->index = index; 1485 1486 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1487 dir_item->location = *disk_key; 1488 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1489 btrfs_set_stack_dir_data_len(dir_item, 0); 1490 btrfs_set_stack_dir_name_len(dir_item, name_len); 1491 btrfs_set_stack_dir_flags(dir_item, flags); 1492 memcpy((char *)(dir_item + 1), name, name_len); 1493 1494 data_len = delayed_item->data_len + sizeof(struct btrfs_item); 1495 1496 mutex_lock(&delayed_node->mutex); 1497 1498 /* 1499 * First attempt to insert the delayed item. This is to make the error 1500 * handling path simpler in case we fail (-EEXIST). There's no risk of 1501 * any other task coming in and running the delayed item before we do 1502 * the metadata space reservation below, because we are holding the 1503 * delayed node's mutex and that mutex must also be locked before the 1504 * node's delayed items can be run. 1505 */ 1506 ret = __btrfs_add_delayed_item(delayed_node, delayed_item); 1507 if (unlikely(ret)) { 1508 btrfs_err(trans->fs_info, 1509 "error adding delayed dir index item, name: %.*s, index: %llu, root: %llu, dir: %llu, dir->index_cnt: %llu, delayed_node->index_cnt: %llu, error: %d", 1510 name_len, name, index, btrfs_root_id(delayed_node->root), 1511 delayed_node->inode_id, dir->index_cnt, 1512 delayed_node->index_cnt, ret); 1513 btrfs_release_delayed_item(delayed_item); 1514 btrfs_release_dir_index_item_space(trans); 1515 mutex_unlock(&delayed_node->mutex); 1516 goto release_node; 1517 } 1518 1519 if (delayed_node->index_item_leaves == 0 || 1520 delayed_node->curr_index_batch_size + data_len > leaf_data_size) { 1521 delayed_node->curr_index_batch_size = data_len; 1522 reserve_leaf_space = true; 1523 } else { 1524 delayed_node->curr_index_batch_size += data_len; 1525 reserve_leaf_space = false; 1526 } 1527 1528 if (reserve_leaf_space) { 1529 ret = btrfs_delayed_item_reserve_metadata(trans, delayed_item); 1530 /* 1531 * Space was reserved for a dir index item insertion when we 1532 * started the transaction, so getting a failure here should be 1533 * impossible. 1534 */ 1535 if (WARN_ON(ret)) { 1536 btrfs_release_delayed_item(delayed_item); 1537 mutex_unlock(&delayed_node->mutex); 1538 goto release_node; 1539 } 1540 1541 delayed_node->index_item_leaves++; 1542 } else { 1543 btrfs_release_dir_index_item_space(trans); 1544 } 1545 mutex_unlock(&delayed_node->mutex); 1546 1547 release_node: 1548 btrfs_release_delayed_node(delayed_node); 1549 return ret; 1550 } 1551 1552 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1553 struct btrfs_delayed_node *node, 1554 u64 index) 1555 { 1556 struct btrfs_delayed_item *item; 1557 1558 mutex_lock(&node->mutex); 1559 item = __btrfs_lookup_delayed_item(&node->ins_root.rb_root, index); 1560 if (!item) { 1561 mutex_unlock(&node->mutex); 1562 return 1; 1563 } 1564 1565 /* 1566 * For delayed items to insert, we track reserved metadata bytes based 1567 * on the number of leaves that we will use. 1568 * See btrfs_insert_delayed_dir_index() and 1569 * btrfs_delayed_item_reserve_metadata()). 1570 */ 1571 ASSERT(item->bytes_reserved == 0); 1572 ASSERT(node->index_item_leaves > 0); 1573 1574 /* 1575 * If there's only one leaf reserved, we can decrement this item from the 1576 * current batch, otherwise we can not because we don't know which leaf 1577 * it belongs to. With the current limit on delayed items, we rarely 1578 * accumulate enough dir index items to fill more than one leaf (even 1579 * when using a leaf size of 4K). 1580 */ 1581 if (node->index_item_leaves == 1) { 1582 const u32 data_len = item->data_len + sizeof(struct btrfs_item); 1583 1584 ASSERT(node->curr_index_batch_size >= data_len); 1585 node->curr_index_batch_size -= data_len; 1586 } 1587 1588 btrfs_release_delayed_item(item); 1589 1590 /* If we now have no more dir index items, we can release all leaves. */ 1591 if (RB_EMPTY_ROOT(&node->ins_root.rb_root)) { 1592 btrfs_delayed_item_release_leaves(node, node->index_item_leaves); 1593 node->index_item_leaves = 0; 1594 } 1595 1596 mutex_unlock(&node->mutex); 1597 return 0; 1598 } 1599 1600 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1601 struct btrfs_inode *dir, u64 index) 1602 { 1603 struct btrfs_delayed_node *node; 1604 struct btrfs_delayed_item *item; 1605 int ret; 1606 1607 node = btrfs_get_or_create_delayed_node(dir); 1608 if (IS_ERR(node)) 1609 return PTR_ERR(node); 1610 1611 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, index); 1612 if (!ret) 1613 goto end; 1614 1615 item = btrfs_alloc_delayed_item(0, node, BTRFS_DELAYED_DELETION_ITEM); 1616 if (!item) { 1617 ret = -ENOMEM; 1618 goto end; 1619 } 1620 1621 item->index = index; 1622 1623 ret = btrfs_delayed_item_reserve_metadata(trans, item); 1624 /* 1625 * we have reserved enough space when we start a new transaction, 1626 * so reserving metadata failure is impossible. 1627 */ 1628 if (ret < 0) { 1629 btrfs_err(trans->fs_info, 1630 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1631 btrfs_release_delayed_item(item); 1632 goto end; 1633 } 1634 1635 mutex_lock(&node->mutex); 1636 ret = __btrfs_add_delayed_item(node, item); 1637 if (unlikely(ret)) { 1638 btrfs_err(trans->fs_info, 1639 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1640 index, node->root->root_key.objectid, 1641 node->inode_id, ret); 1642 btrfs_delayed_item_release_metadata(dir->root, item); 1643 btrfs_release_delayed_item(item); 1644 } 1645 mutex_unlock(&node->mutex); 1646 end: 1647 btrfs_release_delayed_node(node); 1648 return ret; 1649 } 1650 1651 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1652 { 1653 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1654 1655 if (!delayed_node) 1656 return -ENOENT; 1657 1658 /* 1659 * Since we have held i_mutex of this directory, it is impossible that 1660 * a new directory index is added into the delayed node and index_cnt 1661 * is updated now. So we needn't lock the delayed node. 1662 */ 1663 if (!delayed_node->index_cnt) { 1664 btrfs_release_delayed_node(delayed_node); 1665 return -EINVAL; 1666 } 1667 1668 inode->index_cnt = delayed_node->index_cnt; 1669 btrfs_release_delayed_node(delayed_node); 1670 return 0; 1671 } 1672 1673 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1674 u64 last_index, 1675 struct list_head *ins_list, 1676 struct list_head *del_list) 1677 { 1678 struct btrfs_delayed_node *delayed_node; 1679 struct btrfs_delayed_item *item; 1680 1681 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1682 if (!delayed_node) 1683 return false; 1684 1685 /* 1686 * We can only do one readdir with delayed items at a time because of 1687 * item->readdir_list. 1688 */ 1689 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED); 1690 btrfs_inode_lock(BTRFS_I(inode), 0); 1691 1692 mutex_lock(&delayed_node->mutex); 1693 item = __btrfs_first_delayed_insertion_item(delayed_node); 1694 while (item && item->index <= last_index) { 1695 refcount_inc(&item->refs); 1696 list_add_tail(&item->readdir_list, ins_list); 1697 item = __btrfs_next_delayed_item(item); 1698 } 1699 1700 item = __btrfs_first_delayed_deletion_item(delayed_node); 1701 while (item && item->index <= last_index) { 1702 refcount_inc(&item->refs); 1703 list_add_tail(&item->readdir_list, del_list); 1704 item = __btrfs_next_delayed_item(item); 1705 } 1706 mutex_unlock(&delayed_node->mutex); 1707 /* 1708 * This delayed node is still cached in the btrfs inode, so refs 1709 * must be > 1 now, and we needn't check it is going to be freed 1710 * or not. 1711 * 1712 * Besides that, this function is used to read dir, we do not 1713 * insert/delete delayed items in this period. So we also needn't 1714 * requeue or dequeue this delayed node. 1715 */ 1716 refcount_dec(&delayed_node->refs); 1717 1718 return true; 1719 } 1720 1721 void btrfs_readdir_put_delayed_items(struct inode *inode, 1722 struct list_head *ins_list, 1723 struct list_head *del_list) 1724 { 1725 struct btrfs_delayed_item *curr, *next; 1726 1727 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1728 list_del(&curr->readdir_list); 1729 if (refcount_dec_and_test(&curr->refs)) 1730 kfree(curr); 1731 } 1732 1733 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1734 list_del(&curr->readdir_list); 1735 if (refcount_dec_and_test(&curr->refs)) 1736 kfree(curr); 1737 } 1738 1739 /* 1740 * The VFS is going to do up_read(), so we need to downgrade back to a 1741 * read lock. 1742 */ 1743 downgrade_write(&inode->i_rwsem); 1744 } 1745 1746 int btrfs_should_delete_dir_index(struct list_head *del_list, 1747 u64 index) 1748 { 1749 struct btrfs_delayed_item *curr; 1750 int ret = 0; 1751 1752 list_for_each_entry(curr, del_list, readdir_list) { 1753 if (curr->index > index) 1754 break; 1755 if (curr->index == index) { 1756 ret = 1; 1757 break; 1758 } 1759 } 1760 return ret; 1761 } 1762 1763 /* 1764 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1765 * 1766 */ 1767 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1768 struct list_head *ins_list) 1769 { 1770 struct btrfs_dir_item *di; 1771 struct btrfs_delayed_item *curr, *next; 1772 struct btrfs_key location; 1773 char *name; 1774 int name_len; 1775 int over = 0; 1776 unsigned char d_type; 1777 1778 /* 1779 * Changing the data of the delayed item is impossible. So 1780 * we needn't lock them. And we have held i_mutex of the 1781 * directory, nobody can delete any directory indexes now. 1782 */ 1783 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1784 list_del(&curr->readdir_list); 1785 1786 if (curr->index < ctx->pos) { 1787 if (refcount_dec_and_test(&curr->refs)) 1788 kfree(curr); 1789 continue; 1790 } 1791 1792 ctx->pos = curr->index; 1793 1794 di = (struct btrfs_dir_item *)curr->data; 1795 name = (char *)(di + 1); 1796 name_len = btrfs_stack_dir_name_len(di); 1797 1798 d_type = fs_ftype_to_dtype(btrfs_dir_flags_to_ftype(di->type)); 1799 btrfs_disk_key_to_cpu(&location, &di->location); 1800 1801 over = !dir_emit(ctx, name, name_len, 1802 location.objectid, d_type); 1803 1804 if (refcount_dec_and_test(&curr->refs)) 1805 kfree(curr); 1806 1807 if (over) 1808 return 1; 1809 ctx->pos++; 1810 } 1811 return 0; 1812 } 1813 1814 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1815 struct btrfs_inode_item *inode_item, 1816 struct inode *inode) 1817 { 1818 u64 flags; 1819 1820 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1821 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1822 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1823 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1824 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1825 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1826 btrfs_set_stack_inode_generation(inode_item, 1827 BTRFS_I(inode)->generation); 1828 btrfs_set_stack_inode_sequence(inode_item, 1829 inode_peek_iversion(inode)); 1830 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1831 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1832 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1833 BTRFS_I(inode)->ro_flags); 1834 btrfs_set_stack_inode_flags(inode_item, flags); 1835 btrfs_set_stack_inode_block_group(inode_item, 0); 1836 1837 btrfs_set_stack_timespec_sec(&inode_item->atime, 1838 inode->i_atime.tv_sec); 1839 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1840 inode->i_atime.tv_nsec); 1841 1842 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1843 inode->i_mtime.tv_sec); 1844 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1845 inode->i_mtime.tv_nsec); 1846 1847 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1848 inode_get_ctime(inode).tv_sec); 1849 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1850 inode_get_ctime(inode).tv_nsec); 1851 1852 btrfs_set_stack_timespec_sec(&inode_item->otime, 1853 BTRFS_I(inode)->i_otime.tv_sec); 1854 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1855 BTRFS_I(inode)->i_otime.tv_nsec); 1856 } 1857 1858 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1859 { 1860 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1861 struct btrfs_delayed_node *delayed_node; 1862 struct btrfs_inode_item *inode_item; 1863 1864 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1865 if (!delayed_node) 1866 return -ENOENT; 1867 1868 mutex_lock(&delayed_node->mutex); 1869 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1870 mutex_unlock(&delayed_node->mutex); 1871 btrfs_release_delayed_node(delayed_node); 1872 return -ENOENT; 1873 } 1874 1875 inode_item = &delayed_node->inode_item; 1876 1877 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1878 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1879 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1880 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1881 round_up(i_size_read(inode), fs_info->sectorsize)); 1882 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1883 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1884 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1885 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1886 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1887 1888 inode_set_iversion_queried(inode, 1889 btrfs_stack_inode_sequence(inode_item)); 1890 inode->i_rdev = 0; 1891 *rdev = btrfs_stack_inode_rdev(inode_item); 1892 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1893 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1894 1895 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1896 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1897 1898 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1899 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1900 1901 inode_set_ctime(inode, btrfs_stack_timespec_sec(&inode_item->ctime), 1902 btrfs_stack_timespec_nsec(&inode_item->ctime)); 1903 1904 BTRFS_I(inode)->i_otime.tv_sec = 1905 btrfs_stack_timespec_sec(&inode_item->otime); 1906 BTRFS_I(inode)->i_otime.tv_nsec = 1907 btrfs_stack_timespec_nsec(&inode_item->otime); 1908 1909 inode->i_generation = BTRFS_I(inode)->generation; 1910 BTRFS_I(inode)->index_cnt = (u64)-1; 1911 1912 mutex_unlock(&delayed_node->mutex); 1913 btrfs_release_delayed_node(delayed_node); 1914 return 0; 1915 } 1916 1917 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1918 struct btrfs_root *root, 1919 struct btrfs_inode *inode) 1920 { 1921 struct btrfs_delayed_node *delayed_node; 1922 int ret = 0; 1923 1924 delayed_node = btrfs_get_or_create_delayed_node(inode); 1925 if (IS_ERR(delayed_node)) 1926 return PTR_ERR(delayed_node); 1927 1928 mutex_lock(&delayed_node->mutex); 1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1930 fill_stack_inode_item(trans, &delayed_node->inode_item, 1931 &inode->vfs_inode); 1932 goto release_node; 1933 } 1934 1935 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1936 if (ret) 1937 goto release_node; 1938 1939 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1940 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1941 delayed_node->count++; 1942 atomic_inc(&root->fs_info->delayed_root->items); 1943 release_node: 1944 mutex_unlock(&delayed_node->mutex); 1945 btrfs_release_delayed_node(delayed_node); 1946 return ret; 1947 } 1948 1949 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1950 { 1951 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1952 struct btrfs_delayed_node *delayed_node; 1953 1954 /* 1955 * we don't do delayed inode updates during log recovery because it 1956 * leads to enospc problems. This means we also can't do 1957 * delayed inode refs 1958 */ 1959 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1960 return -EAGAIN; 1961 1962 delayed_node = btrfs_get_or_create_delayed_node(inode); 1963 if (IS_ERR(delayed_node)) 1964 return PTR_ERR(delayed_node); 1965 1966 /* 1967 * We don't reserve space for inode ref deletion is because: 1968 * - We ONLY do async inode ref deletion for the inode who has only 1969 * one link(i_nlink == 1), it means there is only one inode ref. 1970 * And in most case, the inode ref and the inode item are in the 1971 * same leaf, and we will deal with them at the same time. 1972 * Since we are sure we will reserve the space for the inode item, 1973 * it is unnecessary to reserve space for inode ref deletion. 1974 * - If the inode ref and the inode item are not in the same leaf, 1975 * We also needn't worry about enospc problem, because we reserve 1976 * much more space for the inode update than it needs. 1977 * - At the worst, we can steal some space from the global reservation. 1978 * It is very rare. 1979 */ 1980 mutex_lock(&delayed_node->mutex); 1981 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1982 goto release_node; 1983 1984 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1985 delayed_node->count++; 1986 atomic_inc(&fs_info->delayed_root->items); 1987 release_node: 1988 mutex_unlock(&delayed_node->mutex); 1989 btrfs_release_delayed_node(delayed_node); 1990 return 0; 1991 } 1992 1993 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1994 { 1995 struct btrfs_root *root = delayed_node->root; 1996 struct btrfs_fs_info *fs_info = root->fs_info; 1997 struct btrfs_delayed_item *curr_item, *prev_item; 1998 1999 mutex_lock(&delayed_node->mutex); 2000 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 2001 while (curr_item) { 2002 prev_item = curr_item; 2003 curr_item = __btrfs_next_delayed_item(prev_item); 2004 btrfs_release_delayed_item(prev_item); 2005 } 2006 2007 if (delayed_node->index_item_leaves > 0) { 2008 btrfs_delayed_item_release_leaves(delayed_node, 2009 delayed_node->index_item_leaves); 2010 delayed_node->index_item_leaves = 0; 2011 } 2012 2013 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 2014 while (curr_item) { 2015 btrfs_delayed_item_release_metadata(root, curr_item); 2016 prev_item = curr_item; 2017 curr_item = __btrfs_next_delayed_item(prev_item); 2018 btrfs_release_delayed_item(prev_item); 2019 } 2020 2021 btrfs_release_delayed_iref(delayed_node); 2022 2023 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 2024 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 2025 btrfs_release_delayed_inode(delayed_node); 2026 } 2027 mutex_unlock(&delayed_node->mutex); 2028 } 2029 2030 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 2031 { 2032 struct btrfs_delayed_node *delayed_node; 2033 2034 delayed_node = btrfs_get_delayed_node(inode); 2035 if (!delayed_node) 2036 return; 2037 2038 __btrfs_kill_delayed_node(delayed_node); 2039 btrfs_release_delayed_node(delayed_node); 2040 } 2041 2042 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 2043 { 2044 u64 inode_id = 0; 2045 struct btrfs_delayed_node *delayed_nodes[8]; 2046 int i, n; 2047 2048 while (1) { 2049 spin_lock(&root->inode_lock); 2050 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 2051 (void **)delayed_nodes, inode_id, 2052 ARRAY_SIZE(delayed_nodes)); 2053 if (!n) { 2054 spin_unlock(&root->inode_lock); 2055 break; 2056 } 2057 2058 inode_id = delayed_nodes[n - 1]->inode_id + 1; 2059 for (i = 0; i < n; i++) { 2060 /* 2061 * Don't increase refs in case the node is dead and 2062 * about to be removed from the tree in the loop below 2063 */ 2064 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 2065 delayed_nodes[i] = NULL; 2066 } 2067 spin_unlock(&root->inode_lock); 2068 2069 for (i = 0; i < n; i++) { 2070 if (!delayed_nodes[i]) 2071 continue; 2072 __btrfs_kill_delayed_node(delayed_nodes[i]); 2073 btrfs_release_delayed_node(delayed_nodes[i]); 2074 } 2075 } 2076 } 2077 2078 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 2079 { 2080 struct btrfs_delayed_node *curr_node, *prev_node; 2081 2082 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 2083 while (curr_node) { 2084 __btrfs_kill_delayed_node(curr_node); 2085 2086 prev_node = curr_node; 2087 curr_node = btrfs_next_delayed_node(curr_node); 2088 btrfs_release_delayed_node(prev_node); 2089 } 2090 } 2091 2092 void btrfs_log_get_delayed_items(struct btrfs_inode *inode, 2093 struct list_head *ins_list, 2094 struct list_head *del_list) 2095 { 2096 struct btrfs_delayed_node *node; 2097 struct btrfs_delayed_item *item; 2098 2099 node = btrfs_get_delayed_node(inode); 2100 if (!node) 2101 return; 2102 2103 mutex_lock(&node->mutex); 2104 item = __btrfs_first_delayed_insertion_item(node); 2105 while (item) { 2106 /* 2107 * It's possible that the item is already in a log list. This 2108 * can happen in case two tasks are trying to log the same 2109 * directory. For example if we have tasks A and task B: 2110 * 2111 * Task A collected the delayed items into a log list while 2112 * under the inode's log_mutex (at btrfs_log_inode()), but it 2113 * only releases the items after logging the inodes they point 2114 * to (if they are new inodes), which happens after unlocking 2115 * the log mutex; 2116 * 2117 * Task B enters btrfs_log_inode() and acquires the log_mutex 2118 * of the same directory inode, before task B releases the 2119 * delayed items. This can happen for example when logging some 2120 * inode we need to trigger logging of its parent directory, so 2121 * logging two files that have the same parent directory can 2122 * lead to this. 2123 * 2124 * If this happens, just ignore delayed items already in a log 2125 * list. All the tasks logging the directory are under a log 2126 * transaction and whichever finishes first can not sync the log 2127 * before the other completes and leaves the log transaction. 2128 */ 2129 if (!item->logged && list_empty(&item->log_list)) { 2130 refcount_inc(&item->refs); 2131 list_add_tail(&item->log_list, ins_list); 2132 } 2133 item = __btrfs_next_delayed_item(item); 2134 } 2135 2136 item = __btrfs_first_delayed_deletion_item(node); 2137 while (item) { 2138 /* It may be non-empty, for the same reason mentioned above. */ 2139 if (!item->logged && list_empty(&item->log_list)) { 2140 refcount_inc(&item->refs); 2141 list_add_tail(&item->log_list, del_list); 2142 } 2143 item = __btrfs_next_delayed_item(item); 2144 } 2145 mutex_unlock(&node->mutex); 2146 2147 /* 2148 * We are called during inode logging, which means the inode is in use 2149 * and can not be evicted before we finish logging the inode. So we never 2150 * have the last reference on the delayed inode. 2151 * Also, we don't use btrfs_release_delayed_node() because that would 2152 * requeue the delayed inode (change its order in the list of prepared 2153 * nodes) and we don't want to do such change because we don't create or 2154 * delete delayed items. 2155 */ 2156 ASSERT(refcount_read(&node->refs) > 1); 2157 refcount_dec(&node->refs); 2158 } 2159 2160 void btrfs_log_put_delayed_items(struct btrfs_inode *inode, 2161 struct list_head *ins_list, 2162 struct list_head *del_list) 2163 { 2164 struct btrfs_delayed_node *node; 2165 struct btrfs_delayed_item *item; 2166 struct btrfs_delayed_item *next; 2167 2168 node = btrfs_get_delayed_node(inode); 2169 if (!node) 2170 return; 2171 2172 mutex_lock(&node->mutex); 2173 2174 list_for_each_entry_safe(item, next, ins_list, log_list) { 2175 item->logged = true; 2176 list_del_init(&item->log_list); 2177 if (refcount_dec_and_test(&item->refs)) 2178 kfree(item); 2179 } 2180 2181 list_for_each_entry_safe(item, next, del_list, log_list) { 2182 item->logged = true; 2183 list_del_init(&item->log_list); 2184 if (refcount_dec_and_test(&item->refs)) 2185 kfree(item); 2186 } 2187 2188 mutex_unlock(&node->mutex); 2189 2190 /* 2191 * We are called during inode logging, which means the inode is in use 2192 * and can not be evicted before we finish logging the inode. So we never 2193 * have the last reference on the delayed inode. 2194 * Also, we don't use btrfs_release_delayed_node() because that would 2195 * requeue the delayed inode (change its order in the list of prepared 2196 * nodes) and we don't want to do such change because we don't create or 2197 * delete delayed items. 2198 */ 2199 ASSERT(refcount_read(&node->refs) > 1); 2200 refcount_dec(&node->refs); 2201 } 2202