1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "delayed-inode.h" 10 #include "disk-io.h" 11 #include "transaction.h" 12 #include "ctree.h" 13 #include "qgroup.h" 14 15 #define BTRFS_DELAYED_WRITEBACK 512 16 #define BTRFS_DELAYED_BACKGROUND 128 17 #define BTRFS_DELAYED_BATCH 16 18 19 static struct kmem_cache *delayed_node_cache; 20 21 int __init btrfs_delayed_inode_init(void) 22 { 23 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 24 sizeof(struct btrfs_delayed_node), 25 0, 26 SLAB_MEM_SPREAD, 27 NULL); 28 if (!delayed_node_cache) 29 return -ENOMEM; 30 return 0; 31 } 32 33 void __cold btrfs_delayed_inode_exit(void) 34 { 35 kmem_cache_destroy(delayed_node_cache); 36 } 37 38 static inline void btrfs_init_delayed_node( 39 struct btrfs_delayed_node *delayed_node, 40 struct btrfs_root *root, u64 inode_id) 41 { 42 delayed_node->root = root; 43 delayed_node->inode_id = inode_id; 44 refcount_set(&delayed_node->refs, 0); 45 delayed_node->ins_root = RB_ROOT; 46 delayed_node->del_root = RB_ROOT; 47 mutex_init(&delayed_node->mutex); 48 INIT_LIST_HEAD(&delayed_node->n_list); 49 INIT_LIST_HEAD(&delayed_node->p_list); 50 } 51 52 static inline int btrfs_is_continuous_delayed_item( 53 struct btrfs_delayed_item *item1, 54 struct btrfs_delayed_item *item2) 55 { 56 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 57 item1->key.objectid == item2->key.objectid && 58 item1->key.type == item2->key.type && 59 item1->key.offset + 1 == item2->key.offset) 60 return 1; 61 return 0; 62 } 63 64 static struct btrfs_delayed_node *btrfs_get_delayed_node( 65 struct btrfs_inode *btrfs_inode) 66 { 67 struct btrfs_root *root = btrfs_inode->root; 68 u64 ino = btrfs_ino(btrfs_inode); 69 struct btrfs_delayed_node *node; 70 71 node = READ_ONCE(btrfs_inode->delayed_node); 72 if (node) { 73 refcount_inc(&node->refs); 74 return node; 75 } 76 77 spin_lock(&root->inode_lock); 78 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 79 80 if (node) { 81 if (btrfs_inode->delayed_node) { 82 refcount_inc(&node->refs); /* can be accessed */ 83 BUG_ON(btrfs_inode->delayed_node != node); 84 spin_unlock(&root->inode_lock); 85 return node; 86 } 87 88 /* 89 * It's possible that we're racing into the middle of removing 90 * this node from the radix tree. In this case, the refcount 91 * was zero and it should never go back to one. Just return 92 * NULL like it was never in the radix at all; our release 93 * function is in the process of removing it. 94 * 95 * Some implementations of refcount_inc refuse to bump the 96 * refcount once it has hit zero. If we don't do this dance 97 * here, refcount_inc() may decide to just WARN_ONCE() instead 98 * of actually bumping the refcount. 99 * 100 * If this node is properly in the radix, we want to bump the 101 * refcount twice, once for the inode and once for this get 102 * operation. 103 */ 104 if (refcount_inc_not_zero(&node->refs)) { 105 refcount_inc(&node->refs); 106 btrfs_inode->delayed_node = node; 107 } else { 108 node = NULL; 109 } 110 111 spin_unlock(&root->inode_lock); 112 return node; 113 } 114 spin_unlock(&root->inode_lock); 115 116 return NULL; 117 } 118 119 /* Will return either the node or PTR_ERR(-ENOMEM) */ 120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 121 struct btrfs_inode *btrfs_inode) 122 { 123 struct btrfs_delayed_node *node; 124 struct btrfs_root *root = btrfs_inode->root; 125 u64 ino = btrfs_ino(btrfs_inode); 126 int ret; 127 128 again: 129 node = btrfs_get_delayed_node(btrfs_inode); 130 if (node) 131 return node; 132 133 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 134 if (!node) 135 return ERR_PTR(-ENOMEM); 136 btrfs_init_delayed_node(node, root, ino); 137 138 /* cached in the btrfs inode and can be accessed */ 139 refcount_set(&node->refs, 2); 140 141 ret = radix_tree_preload(GFP_NOFS); 142 if (ret) { 143 kmem_cache_free(delayed_node_cache, node); 144 return ERR_PTR(ret); 145 } 146 147 spin_lock(&root->inode_lock); 148 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 149 if (ret == -EEXIST) { 150 spin_unlock(&root->inode_lock); 151 kmem_cache_free(delayed_node_cache, node); 152 radix_tree_preload_end(); 153 goto again; 154 } 155 btrfs_inode->delayed_node = node; 156 spin_unlock(&root->inode_lock); 157 radix_tree_preload_end(); 158 159 return node; 160 } 161 162 /* 163 * Call it when holding delayed_node->mutex 164 * 165 * If mod = 1, add this node into the prepared list. 166 */ 167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 168 struct btrfs_delayed_node *node, 169 int mod) 170 { 171 spin_lock(&root->lock); 172 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 173 if (!list_empty(&node->p_list)) 174 list_move_tail(&node->p_list, &root->prepare_list); 175 else if (mod) 176 list_add_tail(&node->p_list, &root->prepare_list); 177 } else { 178 list_add_tail(&node->n_list, &root->node_list); 179 list_add_tail(&node->p_list, &root->prepare_list); 180 refcount_inc(&node->refs); /* inserted into list */ 181 root->nodes++; 182 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 183 } 184 spin_unlock(&root->lock); 185 } 186 187 /* Call it when holding delayed_node->mutex */ 188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 189 struct btrfs_delayed_node *node) 190 { 191 spin_lock(&root->lock); 192 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 193 root->nodes--; 194 refcount_dec(&node->refs); /* not in the list */ 195 list_del_init(&node->n_list); 196 if (!list_empty(&node->p_list)) 197 list_del_init(&node->p_list); 198 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 199 } 200 spin_unlock(&root->lock); 201 } 202 203 static struct btrfs_delayed_node *btrfs_first_delayed_node( 204 struct btrfs_delayed_root *delayed_root) 205 { 206 struct list_head *p; 207 struct btrfs_delayed_node *node = NULL; 208 209 spin_lock(&delayed_root->lock); 210 if (list_empty(&delayed_root->node_list)) 211 goto out; 212 213 p = delayed_root->node_list.next; 214 node = list_entry(p, struct btrfs_delayed_node, n_list); 215 refcount_inc(&node->refs); 216 out: 217 spin_unlock(&delayed_root->lock); 218 219 return node; 220 } 221 222 static struct btrfs_delayed_node *btrfs_next_delayed_node( 223 struct btrfs_delayed_node *node) 224 { 225 struct btrfs_delayed_root *delayed_root; 226 struct list_head *p; 227 struct btrfs_delayed_node *next = NULL; 228 229 delayed_root = node->root->fs_info->delayed_root; 230 spin_lock(&delayed_root->lock); 231 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 232 /* not in the list */ 233 if (list_empty(&delayed_root->node_list)) 234 goto out; 235 p = delayed_root->node_list.next; 236 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 237 goto out; 238 else 239 p = node->n_list.next; 240 241 next = list_entry(p, struct btrfs_delayed_node, n_list); 242 refcount_inc(&next->refs); 243 out: 244 spin_unlock(&delayed_root->lock); 245 246 return next; 247 } 248 249 static void __btrfs_release_delayed_node( 250 struct btrfs_delayed_node *delayed_node, 251 int mod) 252 { 253 struct btrfs_delayed_root *delayed_root; 254 255 if (!delayed_node) 256 return; 257 258 delayed_root = delayed_node->root->fs_info->delayed_root; 259 260 mutex_lock(&delayed_node->mutex); 261 if (delayed_node->count) 262 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 263 else 264 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 265 mutex_unlock(&delayed_node->mutex); 266 267 if (refcount_dec_and_test(&delayed_node->refs)) { 268 struct btrfs_root *root = delayed_node->root; 269 270 spin_lock(&root->inode_lock); 271 /* 272 * Once our refcount goes to zero, nobody is allowed to bump it 273 * back up. We can delete it now. 274 */ 275 ASSERT(refcount_read(&delayed_node->refs) == 0); 276 radix_tree_delete(&root->delayed_nodes_tree, 277 delayed_node->inode_id); 278 spin_unlock(&root->inode_lock); 279 kmem_cache_free(delayed_node_cache, delayed_node); 280 } 281 } 282 283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 284 { 285 __btrfs_release_delayed_node(node, 0); 286 } 287 288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 289 struct btrfs_delayed_root *delayed_root) 290 { 291 struct list_head *p; 292 struct btrfs_delayed_node *node = NULL; 293 294 spin_lock(&delayed_root->lock); 295 if (list_empty(&delayed_root->prepare_list)) 296 goto out; 297 298 p = delayed_root->prepare_list.next; 299 list_del_init(p); 300 node = list_entry(p, struct btrfs_delayed_node, p_list); 301 refcount_inc(&node->refs); 302 out: 303 spin_unlock(&delayed_root->lock); 304 305 return node; 306 } 307 308 static inline void btrfs_release_prepared_delayed_node( 309 struct btrfs_delayed_node *node) 310 { 311 __btrfs_release_delayed_node(node, 1); 312 } 313 314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 315 { 316 struct btrfs_delayed_item *item; 317 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 318 if (item) { 319 item->data_len = data_len; 320 item->ins_or_del = 0; 321 item->bytes_reserved = 0; 322 item->delayed_node = NULL; 323 refcount_set(&item->refs, 1); 324 } 325 return item; 326 } 327 328 /* 329 * __btrfs_lookup_delayed_item - look up the delayed item by key 330 * @delayed_node: pointer to the delayed node 331 * @key: the key to look up 332 * @prev: used to store the prev item if the right item isn't found 333 * @next: used to store the next item if the right item isn't found 334 * 335 * Note: if we don't find the right item, we will return the prev item and 336 * the next item. 337 */ 338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 339 struct rb_root *root, 340 struct btrfs_key *key, 341 struct btrfs_delayed_item **prev, 342 struct btrfs_delayed_item **next) 343 { 344 struct rb_node *node, *prev_node = NULL; 345 struct btrfs_delayed_item *delayed_item = NULL; 346 int ret = 0; 347 348 node = root->rb_node; 349 350 while (node) { 351 delayed_item = rb_entry(node, struct btrfs_delayed_item, 352 rb_node); 353 prev_node = node; 354 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 355 if (ret < 0) 356 node = node->rb_right; 357 else if (ret > 0) 358 node = node->rb_left; 359 else 360 return delayed_item; 361 } 362 363 if (prev) { 364 if (!prev_node) 365 *prev = NULL; 366 else if (ret < 0) 367 *prev = delayed_item; 368 else if ((node = rb_prev(prev_node)) != NULL) { 369 *prev = rb_entry(node, struct btrfs_delayed_item, 370 rb_node); 371 } else 372 *prev = NULL; 373 } 374 375 if (next) { 376 if (!prev_node) 377 *next = NULL; 378 else if (ret > 0) 379 *next = delayed_item; 380 else if ((node = rb_next(prev_node)) != NULL) { 381 *next = rb_entry(node, struct btrfs_delayed_item, 382 rb_node); 383 } else 384 *next = NULL; 385 } 386 return NULL; 387 } 388 389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 390 struct btrfs_delayed_node *delayed_node, 391 struct btrfs_key *key) 392 { 393 return __btrfs_lookup_delayed_item(&delayed_node->ins_root, key, 394 NULL, NULL); 395 } 396 397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 398 struct btrfs_delayed_item *ins, 399 int action) 400 { 401 struct rb_node **p, *node; 402 struct rb_node *parent_node = NULL; 403 struct rb_root *root; 404 struct btrfs_delayed_item *item; 405 int cmp; 406 407 if (action == BTRFS_DELAYED_INSERTION_ITEM) 408 root = &delayed_node->ins_root; 409 else if (action == BTRFS_DELAYED_DELETION_ITEM) 410 root = &delayed_node->del_root; 411 else 412 BUG(); 413 p = &root->rb_node; 414 node = &ins->rb_node; 415 416 while (*p) { 417 parent_node = *p; 418 item = rb_entry(parent_node, struct btrfs_delayed_item, 419 rb_node); 420 421 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 422 if (cmp < 0) 423 p = &(*p)->rb_right; 424 else if (cmp > 0) 425 p = &(*p)->rb_left; 426 else 427 return -EEXIST; 428 } 429 430 rb_link_node(node, parent_node, p); 431 rb_insert_color(node, root); 432 ins->delayed_node = delayed_node; 433 ins->ins_or_del = action; 434 435 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 436 action == BTRFS_DELAYED_INSERTION_ITEM && 437 ins->key.offset >= delayed_node->index_cnt) 438 delayed_node->index_cnt = ins->key.offset + 1; 439 440 delayed_node->count++; 441 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 442 return 0; 443 } 444 445 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 446 struct btrfs_delayed_item *item) 447 { 448 return __btrfs_add_delayed_item(node, item, 449 BTRFS_DELAYED_INSERTION_ITEM); 450 } 451 452 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 453 struct btrfs_delayed_item *item) 454 { 455 return __btrfs_add_delayed_item(node, item, 456 BTRFS_DELAYED_DELETION_ITEM); 457 } 458 459 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 460 { 461 int seq = atomic_inc_return(&delayed_root->items_seq); 462 463 /* atomic_dec_return implies a barrier */ 464 if ((atomic_dec_return(&delayed_root->items) < 465 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 466 cond_wake_up_nomb(&delayed_root->wait); 467 } 468 469 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 470 { 471 struct rb_root *root; 472 struct btrfs_delayed_root *delayed_root; 473 474 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 475 476 BUG_ON(!delayed_root); 477 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 478 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 479 480 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 481 root = &delayed_item->delayed_node->ins_root; 482 else 483 root = &delayed_item->delayed_node->del_root; 484 485 rb_erase(&delayed_item->rb_node, root); 486 delayed_item->delayed_node->count--; 487 488 finish_one_item(delayed_root); 489 } 490 491 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 492 { 493 if (item) { 494 __btrfs_remove_delayed_item(item); 495 if (refcount_dec_and_test(&item->refs)) 496 kfree(item); 497 } 498 } 499 500 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 501 struct btrfs_delayed_node *delayed_node) 502 { 503 struct rb_node *p; 504 struct btrfs_delayed_item *item = NULL; 505 506 p = rb_first(&delayed_node->ins_root); 507 if (p) 508 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 509 510 return item; 511 } 512 513 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 514 struct btrfs_delayed_node *delayed_node) 515 { 516 struct rb_node *p; 517 struct btrfs_delayed_item *item = NULL; 518 519 p = rb_first(&delayed_node->del_root); 520 if (p) 521 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 522 523 return item; 524 } 525 526 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 527 struct btrfs_delayed_item *item) 528 { 529 struct rb_node *p; 530 struct btrfs_delayed_item *next = NULL; 531 532 p = rb_next(&item->rb_node); 533 if (p) 534 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 535 536 return next; 537 } 538 539 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 540 struct btrfs_root *root, 541 struct btrfs_delayed_item *item) 542 { 543 struct btrfs_block_rsv *src_rsv; 544 struct btrfs_block_rsv *dst_rsv; 545 struct btrfs_fs_info *fs_info = root->fs_info; 546 u64 num_bytes; 547 int ret; 548 549 if (!trans->bytes_reserved) 550 return 0; 551 552 src_rsv = trans->block_rsv; 553 dst_rsv = &fs_info->delayed_block_rsv; 554 555 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 556 557 /* 558 * Here we migrate space rsv from transaction rsv, since have already 559 * reserved space when starting a transaction. So no need to reserve 560 * qgroup space here. 561 */ 562 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 563 if (!ret) { 564 trace_btrfs_space_reservation(fs_info, "delayed_item", 565 item->key.objectid, 566 num_bytes, 1); 567 item->bytes_reserved = num_bytes; 568 } 569 570 return ret; 571 } 572 573 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 574 struct btrfs_delayed_item *item) 575 { 576 struct btrfs_block_rsv *rsv; 577 struct btrfs_fs_info *fs_info = root->fs_info; 578 579 if (!item->bytes_reserved) 580 return; 581 582 rsv = &fs_info->delayed_block_rsv; 583 /* 584 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 585 * to release/reserve qgroup space. 586 */ 587 trace_btrfs_space_reservation(fs_info, "delayed_item", 588 item->key.objectid, item->bytes_reserved, 589 0); 590 btrfs_block_rsv_release(fs_info, rsv, 591 item->bytes_reserved); 592 } 593 594 static int btrfs_delayed_inode_reserve_metadata( 595 struct btrfs_trans_handle *trans, 596 struct btrfs_root *root, 597 struct btrfs_inode *inode, 598 struct btrfs_delayed_node *node) 599 { 600 struct btrfs_fs_info *fs_info = root->fs_info; 601 struct btrfs_block_rsv *src_rsv; 602 struct btrfs_block_rsv *dst_rsv; 603 u64 num_bytes; 604 int ret; 605 606 src_rsv = trans->block_rsv; 607 dst_rsv = &fs_info->delayed_block_rsv; 608 609 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); 610 611 /* 612 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 613 * which doesn't reserve space for speed. This is a problem since we 614 * still need to reserve space for this update, so try to reserve the 615 * space. 616 * 617 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 618 * we always reserve enough to update the inode item. 619 */ 620 if (!src_rsv || (!trans->bytes_reserved && 621 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 622 ret = btrfs_qgroup_reserve_meta_prealloc(root, 623 fs_info->nodesize, true); 624 if (ret < 0) 625 return ret; 626 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 627 BTRFS_RESERVE_NO_FLUSH); 628 /* 629 * Since we're under a transaction reserve_metadata_bytes could 630 * try to commit the transaction which will make it return 631 * EAGAIN to make us stop the transaction we have, so return 632 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 633 */ 634 if (ret == -EAGAIN) { 635 ret = -ENOSPC; 636 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 637 } 638 if (!ret) { 639 node->bytes_reserved = num_bytes; 640 trace_btrfs_space_reservation(fs_info, 641 "delayed_inode", 642 btrfs_ino(inode), 643 num_bytes, 1); 644 } else { 645 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 646 } 647 return ret; 648 } 649 650 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1); 651 if (!ret) { 652 trace_btrfs_space_reservation(fs_info, "delayed_inode", 653 btrfs_ino(inode), num_bytes, 1); 654 node->bytes_reserved = num_bytes; 655 } 656 657 return ret; 658 } 659 660 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 661 struct btrfs_delayed_node *node, 662 bool qgroup_free) 663 { 664 struct btrfs_block_rsv *rsv; 665 666 if (!node->bytes_reserved) 667 return; 668 669 rsv = &fs_info->delayed_block_rsv; 670 trace_btrfs_space_reservation(fs_info, "delayed_inode", 671 node->inode_id, node->bytes_reserved, 0); 672 btrfs_block_rsv_release(fs_info, rsv, 673 node->bytes_reserved); 674 if (qgroup_free) 675 btrfs_qgroup_free_meta_prealloc(node->root, 676 node->bytes_reserved); 677 else 678 btrfs_qgroup_convert_reserved_meta(node->root, 679 node->bytes_reserved); 680 node->bytes_reserved = 0; 681 } 682 683 /* 684 * This helper will insert some continuous items into the same leaf according 685 * to the free space of the leaf. 686 */ 687 static int btrfs_batch_insert_items(struct btrfs_root *root, 688 struct btrfs_path *path, 689 struct btrfs_delayed_item *item) 690 { 691 struct btrfs_fs_info *fs_info = root->fs_info; 692 struct btrfs_delayed_item *curr, *next; 693 int free_space; 694 int total_data_size = 0, total_size = 0; 695 struct extent_buffer *leaf; 696 char *data_ptr; 697 struct btrfs_key *keys; 698 u32 *data_size; 699 struct list_head head; 700 int slot; 701 int nitems; 702 int i; 703 int ret = 0; 704 705 BUG_ON(!path->nodes[0]); 706 707 leaf = path->nodes[0]; 708 free_space = btrfs_leaf_free_space(fs_info, leaf); 709 INIT_LIST_HEAD(&head); 710 711 next = item; 712 nitems = 0; 713 714 /* 715 * count the number of the continuous items that we can insert in batch 716 */ 717 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 718 free_space) { 719 total_data_size += next->data_len; 720 total_size += next->data_len + sizeof(struct btrfs_item); 721 list_add_tail(&next->tree_list, &head); 722 nitems++; 723 724 curr = next; 725 next = __btrfs_next_delayed_item(curr); 726 if (!next) 727 break; 728 729 if (!btrfs_is_continuous_delayed_item(curr, next)) 730 break; 731 } 732 733 if (!nitems) { 734 ret = 0; 735 goto out; 736 } 737 738 /* 739 * we need allocate some memory space, but it might cause the task 740 * to sleep, so we set all locked nodes in the path to blocking locks 741 * first. 742 */ 743 btrfs_set_path_blocking(path); 744 745 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 746 if (!keys) { 747 ret = -ENOMEM; 748 goto out; 749 } 750 751 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 752 if (!data_size) { 753 ret = -ENOMEM; 754 goto error; 755 } 756 757 /* get keys of all the delayed items */ 758 i = 0; 759 list_for_each_entry(next, &head, tree_list) { 760 keys[i] = next->key; 761 data_size[i] = next->data_len; 762 i++; 763 } 764 765 /* reset all the locked nodes in the patch to spinning locks. */ 766 btrfs_clear_path_blocking(path, NULL, 0); 767 768 /* insert the keys of the items */ 769 setup_items_for_insert(root, path, keys, data_size, 770 total_data_size, total_size, nitems); 771 772 /* insert the dir index items */ 773 slot = path->slots[0]; 774 list_for_each_entry_safe(curr, next, &head, tree_list) { 775 data_ptr = btrfs_item_ptr(leaf, slot, char); 776 write_extent_buffer(leaf, &curr->data, 777 (unsigned long)data_ptr, 778 curr->data_len); 779 slot++; 780 781 btrfs_delayed_item_release_metadata(root, curr); 782 783 list_del(&curr->tree_list); 784 btrfs_release_delayed_item(curr); 785 } 786 787 error: 788 kfree(data_size); 789 kfree(keys); 790 out: 791 return ret; 792 } 793 794 /* 795 * This helper can just do simple insertion that needn't extend item for new 796 * data, such as directory name index insertion, inode insertion. 797 */ 798 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 799 struct btrfs_root *root, 800 struct btrfs_path *path, 801 struct btrfs_delayed_item *delayed_item) 802 { 803 struct extent_buffer *leaf; 804 char *ptr; 805 int ret; 806 807 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 808 delayed_item->data_len); 809 if (ret < 0 && ret != -EEXIST) 810 return ret; 811 812 leaf = path->nodes[0]; 813 814 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 815 816 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 817 delayed_item->data_len); 818 btrfs_mark_buffer_dirty(leaf); 819 820 btrfs_delayed_item_release_metadata(root, delayed_item); 821 return 0; 822 } 823 824 /* 825 * we insert an item first, then if there are some continuous items, we try 826 * to insert those items into the same leaf. 827 */ 828 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 829 struct btrfs_path *path, 830 struct btrfs_root *root, 831 struct btrfs_delayed_node *node) 832 { 833 struct btrfs_delayed_item *curr, *prev; 834 int ret = 0; 835 836 do_again: 837 mutex_lock(&node->mutex); 838 curr = __btrfs_first_delayed_insertion_item(node); 839 if (!curr) 840 goto insert_end; 841 842 ret = btrfs_insert_delayed_item(trans, root, path, curr); 843 if (ret < 0) { 844 btrfs_release_path(path); 845 goto insert_end; 846 } 847 848 prev = curr; 849 curr = __btrfs_next_delayed_item(prev); 850 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 851 /* insert the continuous items into the same leaf */ 852 path->slots[0]++; 853 btrfs_batch_insert_items(root, path, curr); 854 } 855 btrfs_release_delayed_item(prev); 856 btrfs_mark_buffer_dirty(path->nodes[0]); 857 858 btrfs_release_path(path); 859 mutex_unlock(&node->mutex); 860 goto do_again; 861 862 insert_end: 863 mutex_unlock(&node->mutex); 864 return ret; 865 } 866 867 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 868 struct btrfs_root *root, 869 struct btrfs_path *path, 870 struct btrfs_delayed_item *item) 871 { 872 struct btrfs_delayed_item *curr, *next; 873 struct extent_buffer *leaf; 874 struct btrfs_key key; 875 struct list_head head; 876 int nitems, i, last_item; 877 int ret = 0; 878 879 BUG_ON(!path->nodes[0]); 880 881 leaf = path->nodes[0]; 882 883 i = path->slots[0]; 884 last_item = btrfs_header_nritems(leaf) - 1; 885 if (i > last_item) 886 return -ENOENT; /* FIXME: Is errno suitable? */ 887 888 next = item; 889 INIT_LIST_HEAD(&head); 890 btrfs_item_key_to_cpu(leaf, &key, i); 891 nitems = 0; 892 /* 893 * count the number of the dir index items that we can delete in batch 894 */ 895 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 896 list_add_tail(&next->tree_list, &head); 897 nitems++; 898 899 curr = next; 900 next = __btrfs_next_delayed_item(curr); 901 if (!next) 902 break; 903 904 if (!btrfs_is_continuous_delayed_item(curr, next)) 905 break; 906 907 i++; 908 if (i > last_item) 909 break; 910 btrfs_item_key_to_cpu(leaf, &key, i); 911 } 912 913 if (!nitems) 914 return 0; 915 916 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 917 if (ret) 918 goto out; 919 920 list_for_each_entry_safe(curr, next, &head, tree_list) { 921 btrfs_delayed_item_release_metadata(root, curr); 922 list_del(&curr->tree_list); 923 btrfs_release_delayed_item(curr); 924 } 925 926 out: 927 return ret; 928 } 929 930 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 931 struct btrfs_path *path, 932 struct btrfs_root *root, 933 struct btrfs_delayed_node *node) 934 { 935 struct btrfs_delayed_item *curr, *prev; 936 int ret = 0; 937 938 do_again: 939 mutex_lock(&node->mutex); 940 curr = __btrfs_first_delayed_deletion_item(node); 941 if (!curr) 942 goto delete_fail; 943 944 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 945 if (ret < 0) 946 goto delete_fail; 947 else if (ret > 0) { 948 /* 949 * can't find the item which the node points to, so this node 950 * is invalid, just drop it. 951 */ 952 prev = curr; 953 curr = __btrfs_next_delayed_item(prev); 954 btrfs_release_delayed_item(prev); 955 ret = 0; 956 btrfs_release_path(path); 957 if (curr) { 958 mutex_unlock(&node->mutex); 959 goto do_again; 960 } else 961 goto delete_fail; 962 } 963 964 btrfs_batch_delete_items(trans, root, path, curr); 965 btrfs_release_path(path); 966 mutex_unlock(&node->mutex); 967 goto do_again; 968 969 delete_fail: 970 btrfs_release_path(path); 971 mutex_unlock(&node->mutex); 972 return ret; 973 } 974 975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 976 { 977 struct btrfs_delayed_root *delayed_root; 978 979 if (delayed_node && 980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 981 BUG_ON(!delayed_node->root); 982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 983 delayed_node->count--; 984 985 delayed_root = delayed_node->root->fs_info->delayed_root; 986 finish_one_item(delayed_root); 987 } 988 } 989 990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 991 { 992 struct btrfs_delayed_root *delayed_root; 993 994 ASSERT(delayed_node->root); 995 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 996 delayed_node->count--; 997 998 delayed_root = delayed_node->root->fs_info->delayed_root; 999 finish_one_item(delayed_root); 1000 } 1001 1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1003 struct btrfs_root *root, 1004 struct btrfs_path *path, 1005 struct btrfs_delayed_node *node) 1006 { 1007 struct btrfs_fs_info *fs_info = root->fs_info; 1008 struct btrfs_key key; 1009 struct btrfs_inode_item *inode_item; 1010 struct extent_buffer *leaf; 1011 int mod; 1012 int ret; 1013 1014 key.objectid = node->inode_id; 1015 key.type = BTRFS_INODE_ITEM_KEY; 1016 key.offset = 0; 1017 1018 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1019 mod = -1; 1020 else 1021 mod = 1; 1022 1023 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1024 if (ret > 0) { 1025 btrfs_release_path(path); 1026 return -ENOENT; 1027 } else if (ret < 0) { 1028 return ret; 1029 } 1030 1031 leaf = path->nodes[0]; 1032 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1033 struct btrfs_inode_item); 1034 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1035 sizeof(struct btrfs_inode_item)); 1036 btrfs_mark_buffer_dirty(leaf); 1037 1038 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1039 goto no_iref; 1040 1041 path->slots[0]++; 1042 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1043 goto search; 1044 again: 1045 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1046 if (key.objectid != node->inode_id) 1047 goto out; 1048 1049 if (key.type != BTRFS_INODE_REF_KEY && 1050 key.type != BTRFS_INODE_EXTREF_KEY) 1051 goto out; 1052 1053 /* 1054 * Delayed iref deletion is for the inode who has only one link, 1055 * so there is only one iref. The case that several irefs are 1056 * in the same item doesn't exist. 1057 */ 1058 btrfs_del_item(trans, root, path); 1059 out: 1060 btrfs_release_delayed_iref(node); 1061 no_iref: 1062 btrfs_release_path(path); 1063 err_out: 1064 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1065 btrfs_release_delayed_inode(node); 1066 1067 return ret; 1068 1069 search: 1070 btrfs_release_path(path); 1071 1072 key.type = BTRFS_INODE_EXTREF_KEY; 1073 key.offset = -1; 1074 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1075 if (ret < 0) 1076 goto err_out; 1077 ASSERT(ret); 1078 1079 ret = 0; 1080 leaf = path->nodes[0]; 1081 path->slots[0]--; 1082 goto again; 1083 } 1084 1085 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1086 struct btrfs_root *root, 1087 struct btrfs_path *path, 1088 struct btrfs_delayed_node *node) 1089 { 1090 int ret; 1091 1092 mutex_lock(&node->mutex); 1093 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1094 mutex_unlock(&node->mutex); 1095 return 0; 1096 } 1097 1098 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1099 mutex_unlock(&node->mutex); 1100 return ret; 1101 } 1102 1103 static inline int 1104 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1105 struct btrfs_path *path, 1106 struct btrfs_delayed_node *node) 1107 { 1108 int ret; 1109 1110 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1111 if (ret) 1112 return ret; 1113 1114 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1115 if (ret) 1116 return ret; 1117 1118 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1119 return ret; 1120 } 1121 1122 /* 1123 * Called when committing the transaction. 1124 * Returns 0 on success. 1125 * Returns < 0 on error and returns with an aborted transaction with any 1126 * outstanding delayed items cleaned up. 1127 */ 1128 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1129 { 1130 struct btrfs_fs_info *fs_info = trans->fs_info; 1131 struct btrfs_delayed_root *delayed_root; 1132 struct btrfs_delayed_node *curr_node, *prev_node; 1133 struct btrfs_path *path; 1134 struct btrfs_block_rsv *block_rsv; 1135 int ret = 0; 1136 bool count = (nr > 0); 1137 1138 if (trans->aborted) 1139 return -EIO; 1140 1141 path = btrfs_alloc_path(); 1142 if (!path) 1143 return -ENOMEM; 1144 path->leave_spinning = 1; 1145 1146 block_rsv = trans->block_rsv; 1147 trans->block_rsv = &fs_info->delayed_block_rsv; 1148 1149 delayed_root = fs_info->delayed_root; 1150 1151 curr_node = btrfs_first_delayed_node(delayed_root); 1152 while (curr_node && (!count || (count && nr--))) { 1153 ret = __btrfs_commit_inode_delayed_items(trans, path, 1154 curr_node); 1155 if (ret) { 1156 btrfs_release_delayed_node(curr_node); 1157 curr_node = NULL; 1158 btrfs_abort_transaction(trans, ret); 1159 break; 1160 } 1161 1162 prev_node = curr_node; 1163 curr_node = btrfs_next_delayed_node(curr_node); 1164 btrfs_release_delayed_node(prev_node); 1165 } 1166 1167 if (curr_node) 1168 btrfs_release_delayed_node(curr_node); 1169 btrfs_free_path(path); 1170 trans->block_rsv = block_rsv; 1171 1172 return ret; 1173 } 1174 1175 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1176 { 1177 return __btrfs_run_delayed_items(trans, -1); 1178 } 1179 1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1181 { 1182 return __btrfs_run_delayed_items(trans, nr); 1183 } 1184 1185 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1186 struct btrfs_inode *inode) 1187 { 1188 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1189 struct btrfs_path *path; 1190 struct btrfs_block_rsv *block_rsv; 1191 int ret; 1192 1193 if (!delayed_node) 1194 return 0; 1195 1196 mutex_lock(&delayed_node->mutex); 1197 if (!delayed_node->count) { 1198 mutex_unlock(&delayed_node->mutex); 1199 btrfs_release_delayed_node(delayed_node); 1200 return 0; 1201 } 1202 mutex_unlock(&delayed_node->mutex); 1203 1204 path = btrfs_alloc_path(); 1205 if (!path) { 1206 btrfs_release_delayed_node(delayed_node); 1207 return -ENOMEM; 1208 } 1209 path->leave_spinning = 1; 1210 1211 block_rsv = trans->block_rsv; 1212 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1213 1214 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1215 1216 btrfs_release_delayed_node(delayed_node); 1217 btrfs_free_path(path); 1218 trans->block_rsv = block_rsv; 1219 1220 return ret; 1221 } 1222 1223 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1224 { 1225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1226 struct btrfs_trans_handle *trans; 1227 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1228 struct btrfs_path *path; 1229 struct btrfs_block_rsv *block_rsv; 1230 int ret; 1231 1232 if (!delayed_node) 1233 return 0; 1234 1235 mutex_lock(&delayed_node->mutex); 1236 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1237 mutex_unlock(&delayed_node->mutex); 1238 btrfs_release_delayed_node(delayed_node); 1239 return 0; 1240 } 1241 mutex_unlock(&delayed_node->mutex); 1242 1243 trans = btrfs_join_transaction(delayed_node->root); 1244 if (IS_ERR(trans)) { 1245 ret = PTR_ERR(trans); 1246 goto out; 1247 } 1248 1249 path = btrfs_alloc_path(); 1250 if (!path) { 1251 ret = -ENOMEM; 1252 goto trans_out; 1253 } 1254 path->leave_spinning = 1; 1255 1256 block_rsv = trans->block_rsv; 1257 trans->block_rsv = &fs_info->delayed_block_rsv; 1258 1259 mutex_lock(&delayed_node->mutex); 1260 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1261 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1262 path, delayed_node); 1263 else 1264 ret = 0; 1265 mutex_unlock(&delayed_node->mutex); 1266 1267 btrfs_free_path(path); 1268 trans->block_rsv = block_rsv; 1269 trans_out: 1270 btrfs_end_transaction(trans); 1271 btrfs_btree_balance_dirty(fs_info); 1272 out: 1273 btrfs_release_delayed_node(delayed_node); 1274 1275 return ret; 1276 } 1277 1278 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1279 { 1280 struct btrfs_delayed_node *delayed_node; 1281 1282 delayed_node = READ_ONCE(inode->delayed_node); 1283 if (!delayed_node) 1284 return; 1285 1286 inode->delayed_node = NULL; 1287 btrfs_release_delayed_node(delayed_node); 1288 } 1289 1290 struct btrfs_async_delayed_work { 1291 struct btrfs_delayed_root *delayed_root; 1292 int nr; 1293 struct btrfs_work work; 1294 }; 1295 1296 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1297 { 1298 struct btrfs_async_delayed_work *async_work; 1299 struct btrfs_delayed_root *delayed_root; 1300 struct btrfs_trans_handle *trans; 1301 struct btrfs_path *path; 1302 struct btrfs_delayed_node *delayed_node = NULL; 1303 struct btrfs_root *root; 1304 struct btrfs_block_rsv *block_rsv; 1305 int total_done = 0; 1306 1307 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1308 delayed_root = async_work->delayed_root; 1309 1310 path = btrfs_alloc_path(); 1311 if (!path) 1312 goto out; 1313 1314 do { 1315 if (atomic_read(&delayed_root->items) < 1316 BTRFS_DELAYED_BACKGROUND / 2) 1317 break; 1318 1319 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1320 if (!delayed_node) 1321 break; 1322 1323 path->leave_spinning = 1; 1324 root = delayed_node->root; 1325 1326 trans = btrfs_join_transaction(root); 1327 if (IS_ERR(trans)) { 1328 btrfs_release_path(path); 1329 btrfs_release_prepared_delayed_node(delayed_node); 1330 total_done++; 1331 continue; 1332 } 1333 1334 block_rsv = trans->block_rsv; 1335 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1336 1337 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1338 1339 trans->block_rsv = block_rsv; 1340 btrfs_end_transaction(trans); 1341 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1342 1343 btrfs_release_path(path); 1344 btrfs_release_prepared_delayed_node(delayed_node); 1345 total_done++; 1346 1347 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1348 || total_done < async_work->nr); 1349 1350 btrfs_free_path(path); 1351 out: 1352 wake_up(&delayed_root->wait); 1353 kfree(async_work); 1354 } 1355 1356 1357 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1358 struct btrfs_fs_info *fs_info, int nr) 1359 { 1360 struct btrfs_async_delayed_work *async_work; 1361 1362 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1363 if (!async_work) 1364 return -ENOMEM; 1365 1366 async_work->delayed_root = delayed_root; 1367 btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper, 1368 btrfs_async_run_delayed_root, NULL, NULL); 1369 async_work->nr = nr; 1370 1371 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1372 return 0; 1373 } 1374 1375 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1376 { 1377 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1378 } 1379 1380 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1381 { 1382 int val = atomic_read(&delayed_root->items_seq); 1383 1384 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1385 return 1; 1386 1387 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1388 return 1; 1389 1390 return 0; 1391 } 1392 1393 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1394 { 1395 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1396 1397 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1398 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1399 return; 1400 1401 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1402 int seq; 1403 int ret; 1404 1405 seq = atomic_read(&delayed_root->items_seq); 1406 1407 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1408 if (ret) 1409 return; 1410 1411 wait_event_interruptible(delayed_root->wait, 1412 could_end_wait(delayed_root, seq)); 1413 return; 1414 } 1415 1416 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1417 } 1418 1419 /* Will return 0 or -ENOMEM */ 1420 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1421 struct btrfs_fs_info *fs_info, 1422 const char *name, int name_len, 1423 struct btrfs_inode *dir, 1424 struct btrfs_disk_key *disk_key, u8 type, 1425 u64 index) 1426 { 1427 struct btrfs_delayed_node *delayed_node; 1428 struct btrfs_delayed_item *delayed_item; 1429 struct btrfs_dir_item *dir_item; 1430 int ret; 1431 1432 delayed_node = btrfs_get_or_create_delayed_node(dir); 1433 if (IS_ERR(delayed_node)) 1434 return PTR_ERR(delayed_node); 1435 1436 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1437 if (!delayed_item) { 1438 ret = -ENOMEM; 1439 goto release_node; 1440 } 1441 1442 delayed_item->key.objectid = btrfs_ino(dir); 1443 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1444 delayed_item->key.offset = index; 1445 1446 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1447 dir_item->location = *disk_key; 1448 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1449 btrfs_set_stack_dir_data_len(dir_item, 0); 1450 btrfs_set_stack_dir_name_len(dir_item, name_len); 1451 btrfs_set_stack_dir_type(dir_item, type); 1452 memcpy((char *)(dir_item + 1), name, name_len); 1453 1454 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1455 /* 1456 * we have reserved enough space when we start a new transaction, 1457 * so reserving metadata failure is impossible 1458 */ 1459 BUG_ON(ret); 1460 1461 1462 mutex_lock(&delayed_node->mutex); 1463 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1464 if (unlikely(ret)) { 1465 btrfs_err(fs_info, 1466 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1467 name_len, name, delayed_node->root->objectid, 1468 delayed_node->inode_id, ret); 1469 BUG(); 1470 } 1471 mutex_unlock(&delayed_node->mutex); 1472 1473 release_node: 1474 btrfs_release_delayed_node(delayed_node); 1475 return ret; 1476 } 1477 1478 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1479 struct btrfs_delayed_node *node, 1480 struct btrfs_key *key) 1481 { 1482 struct btrfs_delayed_item *item; 1483 1484 mutex_lock(&node->mutex); 1485 item = __btrfs_lookup_delayed_insertion_item(node, key); 1486 if (!item) { 1487 mutex_unlock(&node->mutex); 1488 return 1; 1489 } 1490 1491 btrfs_delayed_item_release_metadata(node->root, item); 1492 btrfs_release_delayed_item(item); 1493 mutex_unlock(&node->mutex); 1494 return 0; 1495 } 1496 1497 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1498 struct btrfs_fs_info *fs_info, 1499 struct btrfs_inode *dir, u64 index) 1500 { 1501 struct btrfs_delayed_node *node; 1502 struct btrfs_delayed_item *item; 1503 struct btrfs_key item_key; 1504 int ret; 1505 1506 node = btrfs_get_or_create_delayed_node(dir); 1507 if (IS_ERR(node)) 1508 return PTR_ERR(node); 1509 1510 item_key.objectid = btrfs_ino(dir); 1511 item_key.type = BTRFS_DIR_INDEX_KEY; 1512 item_key.offset = index; 1513 1514 ret = btrfs_delete_delayed_insertion_item(fs_info, node, &item_key); 1515 if (!ret) 1516 goto end; 1517 1518 item = btrfs_alloc_delayed_item(0); 1519 if (!item) { 1520 ret = -ENOMEM; 1521 goto end; 1522 } 1523 1524 item->key = item_key; 1525 1526 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1527 /* 1528 * we have reserved enough space when we start a new transaction, 1529 * so reserving metadata failure is impossible. 1530 */ 1531 BUG_ON(ret); 1532 1533 mutex_lock(&node->mutex); 1534 ret = __btrfs_add_delayed_deletion_item(node, item); 1535 if (unlikely(ret)) { 1536 btrfs_err(fs_info, 1537 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1538 index, node->root->objectid, node->inode_id, ret); 1539 BUG(); 1540 } 1541 mutex_unlock(&node->mutex); 1542 end: 1543 btrfs_release_delayed_node(node); 1544 return ret; 1545 } 1546 1547 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1548 { 1549 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1550 1551 if (!delayed_node) 1552 return -ENOENT; 1553 1554 /* 1555 * Since we have held i_mutex of this directory, it is impossible that 1556 * a new directory index is added into the delayed node and index_cnt 1557 * is updated now. So we needn't lock the delayed node. 1558 */ 1559 if (!delayed_node->index_cnt) { 1560 btrfs_release_delayed_node(delayed_node); 1561 return -EINVAL; 1562 } 1563 1564 inode->index_cnt = delayed_node->index_cnt; 1565 btrfs_release_delayed_node(delayed_node); 1566 return 0; 1567 } 1568 1569 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1570 struct list_head *ins_list, 1571 struct list_head *del_list) 1572 { 1573 struct btrfs_delayed_node *delayed_node; 1574 struct btrfs_delayed_item *item; 1575 1576 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1577 if (!delayed_node) 1578 return false; 1579 1580 /* 1581 * We can only do one readdir with delayed items at a time because of 1582 * item->readdir_list. 1583 */ 1584 inode_unlock_shared(inode); 1585 inode_lock(inode); 1586 1587 mutex_lock(&delayed_node->mutex); 1588 item = __btrfs_first_delayed_insertion_item(delayed_node); 1589 while (item) { 1590 refcount_inc(&item->refs); 1591 list_add_tail(&item->readdir_list, ins_list); 1592 item = __btrfs_next_delayed_item(item); 1593 } 1594 1595 item = __btrfs_first_delayed_deletion_item(delayed_node); 1596 while (item) { 1597 refcount_inc(&item->refs); 1598 list_add_tail(&item->readdir_list, del_list); 1599 item = __btrfs_next_delayed_item(item); 1600 } 1601 mutex_unlock(&delayed_node->mutex); 1602 /* 1603 * This delayed node is still cached in the btrfs inode, so refs 1604 * must be > 1 now, and we needn't check it is going to be freed 1605 * or not. 1606 * 1607 * Besides that, this function is used to read dir, we do not 1608 * insert/delete delayed items in this period. So we also needn't 1609 * requeue or dequeue this delayed node. 1610 */ 1611 refcount_dec(&delayed_node->refs); 1612 1613 return true; 1614 } 1615 1616 void btrfs_readdir_put_delayed_items(struct inode *inode, 1617 struct list_head *ins_list, 1618 struct list_head *del_list) 1619 { 1620 struct btrfs_delayed_item *curr, *next; 1621 1622 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1623 list_del(&curr->readdir_list); 1624 if (refcount_dec_and_test(&curr->refs)) 1625 kfree(curr); 1626 } 1627 1628 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1629 list_del(&curr->readdir_list); 1630 if (refcount_dec_and_test(&curr->refs)) 1631 kfree(curr); 1632 } 1633 1634 /* 1635 * The VFS is going to do up_read(), so we need to downgrade back to a 1636 * read lock. 1637 */ 1638 downgrade_write(&inode->i_rwsem); 1639 } 1640 1641 int btrfs_should_delete_dir_index(struct list_head *del_list, 1642 u64 index) 1643 { 1644 struct btrfs_delayed_item *curr; 1645 int ret = 0; 1646 1647 list_for_each_entry(curr, del_list, readdir_list) { 1648 if (curr->key.offset > index) 1649 break; 1650 if (curr->key.offset == index) { 1651 ret = 1; 1652 break; 1653 } 1654 } 1655 return ret; 1656 } 1657 1658 /* 1659 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1660 * 1661 */ 1662 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1663 struct list_head *ins_list) 1664 { 1665 struct btrfs_dir_item *di; 1666 struct btrfs_delayed_item *curr, *next; 1667 struct btrfs_key location; 1668 char *name; 1669 int name_len; 1670 int over = 0; 1671 unsigned char d_type; 1672 1673 if (list_empty(ins_list)) 1674 return 0; 1675 1676 /* 1677 * Changing the data of the delayed item is impossible. So 1678 * we needn't lock them. And we have held i_mutex of the 1679 * directory, nobody can delete any directory indexes now. 1680 */ 1681 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1682 list_del(&curr->readdir_list); 1683 1684 if (curr->key.offset < ctx->pos) { 1685 if (refcount_dec_and_test(&curr->refs)) 1686 kfree(curr); 1687 continue; 1688 } 1689 1690 ctx->pos = curr->key.offset; 1691 1692 di = (struct btrfs_dir_item *)curr->data; 1693 name = (char *)(di + 1); 1694 name_len = btrfs_stack_dir_name_len(di); 1695 1696 d_type = btrfs_filetype_table[di->type]; 1697 btrfs_disk_key_to_cpu(&location, &di->location); 1698 1699 over = !dir_emit(ctx, name, name_len, 1700 location.objectid, d_type); 1701 1702 if (refcount_dec_and_test(&curr->refs)) 1703 kfree(curr); 1704 1705 if (over) 1706 return 1; 1707 ctx->pos++; 1708 } 1709 return 0; 1710 } 1711 1712 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1713 struct btrfs_inode_item *inode_item, 1714 struct inode *inode) 1715 { 1716 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1717 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1718 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1719 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1720 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1721 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1722 btrfs_set_stack_inode_generation(inode_item, 1723 BTRFS_I(inode)->generation); 1724 btrfs_set_stack_inode_sequence(inode_item, 1725 inode_peek_iversion(inode)); 1726 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1727 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1728 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1729 btrfs_set_stack_inode_block_group(inode_item, 0); 1730 1731 btrfs_set_stack_timespec_sec(&inode_item->atime, 1732 inode->i_atime.tv_sec); 1733 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1734 inode->i_atime.tv_nsec); 1735 1736 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1737 inode->i_mtime.tv_sec); 1738 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1739 inode->i_mtime.tv_nsec); 1740 1741 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1742 inode->i_ctime.tv_sec); 1743 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1744 inode->i_ctime.tv_nsec); 1745 1746 btrfs_set_stack_timespec_sec(&inode_item->otime, 1747 BTRFS_I(inode)->i_otime.tv_sec); 1748 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1749 BTRFS_I(inode)->i_otime.tv_nsec); 1750 } 1751 1752 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1753 { 1754 struct btrfs_delayed_node *delayed_node; 1755 struct btrfs_inode_item *inode_item; 1756 1757 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1758 if (!delayed_node) 1759 return -ENOENT; 1760 1761 mutex_lock(&delayed_node->mutex); 1762 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1763 mutex_unlock(&delayed_node->mutex); 1764 btrfs_release_delayed_node(delayed_node); 1765 return -ENOENT; 1766 } 1767 1768 inode_item = &delayed_node->inode_item; 1769 1770 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1771 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1772 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1773 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1774 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1775 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1776 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1777 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1778 1779 inode_set_iversion_queried(inode, 1780 btrfs_stack_inode_sequence(inode_item)); 1781 inode->i_rdev = 0; 1782 *rdev = btrfs_stack_inode_rdev(inode_item); 1783 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1784 1785 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1786 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1787 1788 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1789 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1790 1791 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1792 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1793 1794 BTRFS_I(inode)->i_otime.tv_sec = 1795 btrfs_stack_timespec_sec(&inode_item->otime); 1796 BTRFS_I(inode)->i_otime.tv_nsec = 1797 btrfs_stack_timespec_nsec(&inode_item->otime); 1798 1799 inode->i_generation = BTRFS_I(inode)->generation; 1800 BTRFS_I(inode)->index_cnt = (u64)-1; 1801 1802 mutex_unlock(&delayed_node->mutex); 1803 btrfs_release_delayed_node(delayed_node); 1804 return 0; 1805 } 1806 1807 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1808 struct btrfs_root *root, struct inode *inode) 1809 { 1810 struct btrfs_delayed_node *delayed_node; 1811 int ret = 0; 1812 1813 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1814 if (IS_ERR(delayed_node)) 1815 return PTR_ERR(delayed_node); 1816 1817 mutex_lock(&delayed_node->mutex); 1818 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1819 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1820 goto release_node; 1821 } 1822 1823 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1824 delayed_node); 1825 if (ret) 1826 goto release_node; 1827 1828 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1829 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1830 delayed_node->count++; 1831 atomic_inc(&root->fs_info->delayed_root->items); 1832 release_node: 1833 mutex_unlock(&delayed_node->mutex); 1834 btrfs_release_delayed_node(delayed_node); 1835 return ret; 1836 } 1837 1838 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1839 { 1840 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); 1841 struct btrfs_delayed_node *delayed_node; 1842 1843 /* 1844 * we don't do delayed inode updates during log recovery because it 1845 * leads to enospc problems. This means we also can't do 1846 * delayed inode refs 1847 */ 1848 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1849 return -EAGAIN; 1850 1851 delayed_node = btrfs_get_or_create_delayed_node(inode); 1852 if (IS_ERR(delayed_node)) 1853 return PTR_ERR(delayed_node); 1854 1855 /* 1856 * We don't reserve space for inode ref deletion is because: 1857 * - We ONLY do async inode ref deletion for the inode who has only 1858 * one link(i_nlink == 1), it means there is only one inode ref. 1859 * And in most case, the inode ref and the inode item are in the 1860 * same leaf, and we will deal with them at the same time. 1861 * Since we are sure we will reserve the space for the inode item, 1862 * it is unnecessary to reserve space for inode ref deletion. 1863 * - If the inode ref and the inode item are not in the same leaf, 1864 * We also needn't worry about enospc problem, because we reserve 1865 * much more space for the inode update than it needs. 1866 * - At the worst, we can steal some space from the global reservation. 1867 * It is very rare. 1868 */ 1869 mutex_lock(&delayed_node->mutex); 1870 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1871 goto release_node; 1872 1873 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1874 delayed_node->count++; 1875 atomic_inc(&fs_info->delayed_root->items); 1876 release_node: 1877 mutex_unlock(&delayed_node->mutex); 1878 btrfs_release_delayed_node(delayed_node); 1879 return 0; 1880 } 1881 1882 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1883 { 1884 struct btrfs_root *root = delayed_node->root; 1885 struct btrfs_fs_info *fs_info = root->fs_info; 1886 struct btrfs_delayed_item *curr_item, *prev_item; 1887 1888 mutex_lock(&delayed_node->mutex); 1889 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1890 while (curr_item) { 1891 btrfs_delayed_item_release_metadata(root, curr_item); 1892 prev_item = curr_item; 1893 curr_item = __btrfs_next_delayed_item(prev_item); 1894 btrfs_release_delayed_item(prev_item); 1895 } 1896 1897 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1898 while (curr_item) { 1899 btrfs_delayed_item_release_metadata(root, curr_item); 1900 prev_item = curr_item; 1901 curr_item = __btrfs_next_delayed_item(prev_item); 1902 btrfs_release_delayed_item(prev_item); 1903 } 1904 1905 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1906 btrfs_release_delayed_iref(delayed_node); 1907 1908 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1909 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1910 btrfs_release_delayed_inode(delayed_node); 1911 } 1912 mutex_unlock(&delayed_node->mutex); 1913 } 1914 1915 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1916 { 1917 struct btrfs_delayed_node *delayed_node; 1918 1919 delayed_node = btrfs_get_delayed_node(inode); 1920 if (!delayed_node) 1921 return; 1922 1923 __btrfs_kill_delayed_node(delayed_node); 1924 btrfs_release_delayed_node(delayed_node); 1925 } 1926 1927 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1928 { 1929 u64 inode_id = 0; 1930 struct btrfs_delayed_node *delayed_nodes[8]; 1931 int i, n; 1932 1933 while (1) { 1934 spin_lock(&root->inode_lock); 1935 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1936 (void **)delayed_nodes, inode_id, 1937 ARRAY_SIZE(delayed_nodes)); 1938 if (!n) { 1939 spin_unlock(&root->inode_lock); 1940 break; 1941 } 1942 1943 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1944 1945 for (i = 0; i < n; i++) 1946 refcount_inc(&delayed_nodes[i]->refs); 1947 spin_unlock(&root->inode_lock); 1948 1949 for (i = 0; i < n; i++) { 1950 __btrfs_kill_delayed_node(delayed_nodes[i]); 1951 btrfs_release_delayed_node(delayed_nodes[i]); 1952 } 1953 } 1954 } 1955 1956 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1957 { 1958 struct btrfs_delayed_node *curr_node, *prev_node; 1959 1960 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1961 while (curr_node) { 1962 __btrfs_kill_delayed_node(curr_node); 1963 1964 prev_node = curr_node; 1965 curr_node = btrfs_next_delayed_node(curr_node); 1966 btrfs_release_delayed_node(prev_node); 1967 } 1968 } 1969 1970