1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 #include "locking.h" 16 17 #define BTRFS_DELAYED_WRITEBACK 512 18 #define BTRFS_DELAYED_BACKGROUND 128 19 #define BTRFS_DELAYED_BATCH 16 20 21 static struct kmem_cache *delayed_node_cache; 22 23 int __init btrfs_delayed_inode_init(void) 24 { 25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 26 sizeof(struct btrfs_delayed_node), 27 0, 28 SLAB_MEM_SPREAD, 29 NULL); 30 if (!delayed_node_cache) 31 return -ENOMEM; 32 return 0; 33 } 34 35 void __cold btrfs_delayed_inode_exit(void) 36 { 37 kmem_cache_destroy(delayed_node_cache); 38 } 39 40 static inline void btrfs_init_delayed_node( 41 struct btrfs_delayed_node *delayed_node, 42 struct btrfs_root *root, u64 inode_id) 43 { 44 delayed_node->root = root; 45 delayed_node->inode_id = inode_id; 46 refcount_set(&delayed_node->refs, 0); 47 delayed_node->ins_root = RB_ROOT_CACHED; 48 delayed_node->del_root = RB_ROOT_CACHED; 49 mutex_init(&delayed_node->mutex); 50 INIT_LIST_HEAD(&delayed_node->n_list); 51 INIT_LIST_HEAD(&delayed_node->p_list); 52 } 53 54 static inline int btrfs_is_continuous_delayed_item( 55 struct btrfs_delayed_item *item1, 56 struct btrfs_delayed_item *item2) 57 { 58 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 59 item1->key.objectid == item2->key.objectid && 60 item1->key.type == item2->key.type && 61 item1->key.offset + 1 == item2->key.offset) 62 return 1; 63 return 0; 64 } 65 66 static struct btrfs_delayed_node *btrfs_get_delayed_node( 67 struct btrfs_inode *btrfs_inode) 68 { 69 struct btrfs_root *root = btrfs_inode->root; 70 u64 ino = btrfs_ino(btrfs_inode); 71 struct btrfs_delayed_node *node; 72 73 node = READ_ONCE(btrfs_inode->delayed_node); 74 if (node) { 75 refcount_inc(&node->refs); 76 return node; 77 } 78 79 spin_lock(&root->inode_lock); 80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 81 82 if (node) { 83 if (btrfs_inode->delayed_node) { 84 refcount_inc(&node->refs); /* can be accessed */ 85 BUG_ON(btrfs_inode->delayed_node != node); 86 spin_unlock(&root->inode_lock); 87 return node; 88 } 89 90 /* 91 * It's possible that we're racing into the middle of removing 92 * this node from the radix tree. In this case, the refcount 93 * was zero and it should never go back to one. Just return 94 * NULL like it was never in the radix at all; our release 95 * function is in the process of removing it. 96 * 97 * Some implementations of refcount_inc refuse to bump the 98 * refcount once it has hit zero. If we don't do this dance 99 * here, refcount_inc() may decide to just WARN_ONCE() instead 100 * of actually bumping the refcount. 101 * 102 * If this node is properly in the radix, we want to bump the 103 * refcount twice, once for the inode and once for this get 104 * operation. 105 */ 106 if (refcount_inc_not_zero(&node->refs)) { 107 refcount_inc(&node->refs); 108 btrfs_inode->delayed_node = node; 109 } else { 110 node = NULL; 111 } 112 113 spin_unlock(&root->inode_lock); 114 return node; 115 } 116 spin_unlock(&root->inode_lock); 117 118 return NULL; 119 } 120 121 /* Will return either the node or PTR_ERR(-ENOMEM) */ 122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 123 struct btrfs_inode *btrfs_inode) 124 { 125 struct btrfs_delayed_node *node; 126 struct btrfs_root *root = btrfs_inode->root; 127 u64 ino = btrfs_ino(btrfs_inode); 128 int ret; 129 130 again: 131 node = btrfs_get_delayed_node(btrfs_inode); 132 if (node) 133 return node; 134 135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 136 if (!node) 137 return ERR_PTR(-ENOMEM); 138 btrfs_init_delayed_node(node, root, ino); 139 140 /* cached in the btrfs inode and can be accessed */ 141 refcount_set(&node->refs, 2); 142 143 ret = radix_tree_preload(GFP_NOFS); 144 if (ret) { 145 kmem_cache_free(delayed_node_cache, node); 146 return ERR_PTR(ret); 147 } 148 149 spin_lock(&root->inode_lock); 150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 151 if (ret == -EEXIST) { 152 spin_unlock(&root->inode_lock); 153 kmem_cache_free(delayed_node_cache, node); 154 radix_tree_preload_end(); 155 goto again; 156 } 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 radix_tree_preload_end(); 160 161 return node; 162 } 163 164 /* 165 * Call it when holding delayed_node->mutex 166 * 167 * If mod = 1, add this node into the prepared list. 168 */ 169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 170 struct btrfs_delayed_node *node, 171 int mod) 172 { 173 spin_lock(&root->lock); 174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 175 if (!list_empty(&node->p_list)) 176 list_move_tail(&node->p_list, &root->prepare_list); 177 else if (mod) 178 list_add_tail(&node->p_list, &root->prepare_list); 179 } else { 180 list_add_tail(&node->n_list, &root->node_list); 181 list_add_tail(&node->p_list, &root->prepare_list); 182 refcount_inc(&node->refs); /* inserted into list */ 183 root->nodes++; 184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 185 } 186 spin_unlock(&root->lock); 187 } 188 189 /* Call it when holding delayed_node->mutex */ 190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 191 struct btrfs_delayed_node *node) 192 { 193 spin_lock(&root->lock); 194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 195 root->nodes--; 196 refcount_dec(&node->refs); /* not in the list */ 197 list_del_init(&node->n_list); 198 if (!list_empty(&node->p_list)) 199 list_del_init(&node->p_list); 200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 201 } 202 spin_unlock(&root->lock); 203 } 204 205 static struct btrfs_delayed_node *btrfs_first_delayed_node( 206 struct btrfs_delayed_root *delayed_root) 207 { 208 struct list_head *p; 209 struct btrfs_delayed_node *node = NULL; 210 211 spin_lock(&delayed_root->lock); 212 if (list_empty(&delayed_root->node_list)) 213 goto out; 214 215 p = delayed_root->node_list.next; 216 node = list_entry(p, struct btrfs_delayed_node, n_list); 217 refcount_inc(&node->refs); 218 out: 219 spin_unlock(&delayed_root->lock); 220 221 return node; 222 } 223 224 static struct btrfs_delayed_node *btrfs_next_delayed_node( 225 struct btrfs_delayed_node *node) 226 { 227 struct btrfs_delayed_root *delayed_root; 228 struct list_head *p; 229 struct btrfs_delayed_node *next = NULL; 230 231 delayed_root = node->root->fs_info->delayed_root; 232 spin_lock(&delayed_root->lock); 233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 234 /* not in the list */ 235 if (list_empty(&delayed_root->node_list)) 236 goto out; 237 p = delayed_root->node_list.next; 238 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 239 goto out; 240 else 241 p = node->n_list.next; 242 243 next = list_entry(p, struct btrfs_delayed_node, n_list); 244 refcount_inc(&next->refs); 245 out: 246 spin_unlock(&delayed_root->lock); 247 248 return next; 249 } 250 251 static void __btrfs_release_delayed_node( 252 struct btrfs_delayed_node *delayed_node, 253 int mod) 254 { 255 struct btrfs_delayed_root *delayed_root; 256 257 if (!delayed_node) 258 return; 259 260 delayed_root = delayed_node->root->fs_info->delayed_root; 261 262 mutex_lock(&delayed_node->mutex); 263 if (delayed_node->count) 264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 265 else 266 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 267 mutex_unlock(&delayed_node->mutex); 268 269 if (refcount_dec_and_test(&delayed_node->refs)) { 270 struct btrfs_root *root = delayed_node->root; 271 272 spin_lock(&root->inode_lock); 273 /* 274 * Once our refcount goes to zero, nobody is allowed to bump it 275 * back up. We can delete it now. 276 */ 277 ASSERT(refcount_read(&delayed_node->refs) == 0); 278 radix_tree_delete(&root->delayed_nodes_tree, 279 delayed_node->inode_id); 280 spin_unlock(&root->inode_lock); 281 kmem_cache_free(delayed_node_cache, delayed_node); 282 } 283 } 284 285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 286 { 287 __btrfs_release_delayed_node(node, 0); 288 } 289 290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 291 struct btrfs_delayed_root *delayed_root) 292 { 293 struct list_head *p; 294 struct btrfs_delayed_node *node = NULL; 295 296 spin_lock(&delayed_root->lock); 297 if (list_empty(&delayed_root->prepare_list)) 298 goto out; 299 300 p = delayed_root->prepare_list.next; 301 list_del_init(p); 302 node = list_entry(p, struct btrfs_delayed_node, p_list); 303 refcount_inc(&node->refs); 304 out: 305 spin_unlock(&delayed_root->lock); 306 307 return node; 308 } 309 310 static inline void btrfs_release_prepared_delayed_node( 311 struct btrfs_delayed_node *node) 312 { 313 __btrfs_release_delayed_node(node, 1); 314 } 315 316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 317 { 318 struct btrfs_delayed_item *item; 319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 320 if (item) { 321 item->data_len = data_len; 322 item->ins_or_del = 0; 323 item->bytes_reserved = 0; 324 item->delayed_node = NULL; 325 refcount_set(&item->refs, 1); 326 } 327 return item; 328 } 329 330 /* 331 * __btrfs_lookup_delayed_item - look up the delayed item by key 332 * @delayed_node: pointer to the delayed node 333 * @key: the key to look up 334 * @prev: used to store the prev item if the right item isn't found 335 * @next: used to store the next item if the right item isn't found 336 * 337 * Note: if we don't find the right item, we will return the prev item and 338 * the next item. 339 */ 340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 341 struct rb_root *root, 342 struct btrfs_key *key, 343 struct btrfs_delayed_item **prev, 344 struct btrfs_delayed_item **next) 345 { 346 struct rb_node *node, *prev_node = NULL; 347 struct btrfs_delayed_item *delayed_item = NULL; 348 int ret = 0; 349 350 node = root->rb_node; 351 352 while (node) { 353 delayed_item = rb_entry(node, struct btrfs_delayed_item, 354 rb_node); 355 prev_node = node; 356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 357 if (ret < 0) 358 node = node->rb_right; 359 else if (ret > 0) 360 node = node->rb_left; 361 else 362 return delayed_item; 363 } 364 365 if (prev) { 366 if (!prev_node) 367 *prev = NULL; 368 else if (ret < 0) 369 *prev = delayed_item; 370 else if ((node = rb_prev(prev_node)) != NULL) { 371 *prev = rb_entry(node, struct btrfs_delayed_item, 372 rb_node); 373 } else 374 *prev = NULL; 375 } 376 377 if (next) { 378 if (!prev_node) 379 *next = NULL; 380 else if (ret > 0) 381 *next = delayed_item; 382 else if ((node = rb_next(prev_node)) != NULL) { 383 *next = rb_entry(node, struct btrfs_delayed_item, 384 rb_node); 385 } else 386 *next = NULL; 387 } 388 return NULL; 389 } 390 391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 392 struct btrfs_delayed_node *delayed_node, 393 struct btrfs_key *key) 394 { 395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 396 NULL, NULL); 397 } 398 399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 400 struct btrfs_delayed_item *ins, 401 int action) 402 { 403 struct rb_node **p, *node; 404 struct rb_node *parent_node = NULL; 405 struct rb_root_cached *root; 406 struct btrfs_delayed_item *item; 407 int cmp; 408 bool leftmost = true; 409 410 if (action == BTRFS_DELAYED_INSERTION_ITEM) 411 root = &delayed_node->ins_root; 412 else if (action == BTRFS_DELAYED_DELETION_ITEM) 413 root = &delayed_node->del_root; 414 else 415 BUG(); 416 p = &root->rb_root.rb_node; 417 node = &ins->rb_node; 418 419 while (*p) { 420 parent_node = *p; 421 item = rb_entry(parent_node, struct btrfs_delayed_item, 422 rb_node); 423 424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 425 if (cmp < 0) { 426 p = &(*p)->rb_right; 427 leftmost = false; 428 } else if (cmp > 0) { 429 p = &(*p)->rb_left; 430 } else { 431 return -EEXIST; 432 } 433 } 434 435 rb_link_node(node, parent_node, p); 436 rb_insert_color_cached(node, root, leftmost); 437 ins->delayed_node = delayed_node; 438 ins->ins_or_del = action; 439 440 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 441 action == BTRFS_DELAYED_INSERTION_ITEM && 442 ins->key.offset >= delayed_node->index_cnt) 443 delayed_node->index_cnt = ins->key.offset + 1; 444 445 delayed_node->count++; 446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 447 return 0; 448 } 449 450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 451 struct btrfs_delayed_item *item) 452 { 453 return __btrfs_add_delayed_item(node, item, 454 BTRFS_DELAYED_INSERTION_ITEM); 455 } 456 457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 458 struct btrfs_delayed_item *item) 459 { 460 return __btrfs_add_delayed_item(node, item, 461 BTRFS_DELAYED_DELETION_ITEM); 462 } 463 464 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 465 { 466 int seq = atomic_inc_return(&delayed_root->items_seq); 467 468 /* atomic_dec_return implies a barrier */ 469 if ((atomic_dec_return(&delayed_root->items) < 470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 471 cond_wake_up_nomb(&delayed_root->wait); 472 } 473 474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 475 { 476 struct rb_root_cached *root; 477 struct btrfs_delayed_root *delayed_root; 478 479 /* Not associated with any delayed_node */ 480 if (!delayed_item->delayed_node) 481 return; 482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 483 484 BUG_ON(!delayed_root); 485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 487 488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 489 root = &delayed_item->delayed_node->ins_root; 490 else 491 root = &delayed_item->delayed_node->del_root; 492 493 rb_erase_cached(&delayed_item->rb_node, root); 494 delayed_item->delayed_node->count--; 495 496 finish_one_item(delayed_root); 497 } 498 499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 500 { 501 if (item) { 502 __btrfs_remove_delayed_item(item); 503 if (refcount_dec_and_test(&item->refs)) 504 kfree(item); 505 } 506 } 507 508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 509 struct btrfs_delayed_node *delayed_node) 510 { 511 struct rb_node *p; 512 struct btrfs_delayed_item *item = NULL; 513 514 p = rb_first_cached(&delayed_node->ins_root); 515 if (p) 516 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 517 518 return item; 519 } 520 521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 522 struct btrfs_delayed_node *delayed_node) 523 { 524 struct rb_node *p; 525 struct btrfs_delayed_item *item = NULL; 526 527 p = rb_first_cached(&delayed_node->del_root); 528 if (p) 529 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 530 531 return item; 532 } 533 534 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 535 struct btrfs_delayed_item *item) 536 { 537 struct rb_node *p; 538 struct btrfs_delayed_item *next = NULL; 539 540 p = rb_next(&item->rb_node); 541 if (p) 542 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 543 544 return next; 545 } 546 547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 548 struct btrfs_root *root, 549 struct btrfs_delayed_item *item) 550 { 551 struct btrfs_block_rsv *src_rsv; 552 struct btrfs_block_rsv *dst_rsv; 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 u64 num_bytes; 555 int ret; 556 557 if (!trans->bytes_reserved) 558 return 0; 559 560 src_rsv = trans->block_rsv; 561 dst_rsv = &fs_info->delayed_block_rsv; 562 563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 564 565 /* 566 * Here we migrate space rsv from transaction rsv, since have already 567 * reserved space when starting a transaction. So no need to reserve 568 * qgroup space here. 569 */ 570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 571 if (!ret) { 572 trace_btrfs_space_reservation(fs_info, "delayed_item", 573 item->key.objectid, 574 num_bytes, 1); 575 item->bytes_reserved = num_bytes; 576 } 577 578 return ret; 579 } 580 581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 582 struct btrfs_delayed_item *item) 583 { 584 struct btrfs_block_rsv *rsv; 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 587 if (!item->bytes_reserved) 588 return; 589 590 rsv = &fs_info->delayed_block_rsv; 591 /* 592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 593 * to release/reserve qgroup space. 594 */ 595 trace_btrfs_space_reservation(fs_info, "delayed_item", 596 item->key.objectid, item->bytes_reserved, 597 0); 598 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 599 } 600 601 static int btrfs_delayed_inode_reserve_metadata( 602 struct btrfs_trans_handle *trans, 603 struct btrfs_root *root, 604 struct btrfs_delayed_node *node) 605 { 606 struct btrfs_fs_info *fs_info = root->fs_info; 607 struct btrfs_block_rsv *src_rsv; 608 struct btrfs_block_rsv *dst_rsv; 609 u64 num_bytes; 610 int ret; 611 612 src_rsv = trans->block_rsv; 613 dst_rsv = &fs_info->delayed_block_rsv; 614 615 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 616 617 /* 618 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 619 * which doesn't reserve space for speed. This is a problem since we 620 * still need to reserve space for this update, so try to reserve the 621 * space. 622 * 623 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 624 * we always reserve enough to update the inode item. 625 */ 626 if (!src_rsv || (!trans->bytes_reserved && 627 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 628 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 629 BTRFS_QGROUP_RSV_META_PREALLOC, true); 630 if (ret < 0) 631 return ret; 632 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 633 BTRFS_RESERVE_NO_FLUSH); 634 /* NO_FLUSH could only fail with -ENOSPC */ 635 ASSERT(ret == 0 || ret == -ENOSPC); 636 if (ret) 637 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 638 } else { 639 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 640 } 641 642 if (!ret) { 643 trace_btrfs_space_reservation(fs_info, "delayed_inode", 644 node->inode_id, num_bytes, 1); 645 node->bytes_reserved = num_bytes; 646 } 647 648 return ret; 649 } 650 651 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 652 struct btrfs_delayed_node *node, 653 bool qgroup_free) 654 { 655 struct btrfs_block_rsv *rsv; 656 657 if (!node->bytes_reserved) 658 return; 659 660 rsv = &fs_info->delayed_block_rsv; 661 trace_btrfs_space_reservation(fs_info, "delayed_inode", 662 node->inode_id, node->bytes_reserved, 0); 663 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 664 if (qgroup_free) 665 btrfs_qgroup_free_meta_prealloc(node->root, 666 node->bytes_reserved); 667 else 668 btrfs_qgroup_convert_reserved_meta(node->root, 669 node->bytes_reserved); 670 node->bytes_reserved = 0; 671 } 672 673 /* 674 * Insert a single delayed item or a batch of delayed items that have consecutive 675 * keys if they exist. 676 */ 677 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 678 struct btrfs_root *root, 679 struct btrfs_path *path, 680 struct btrfs_delayed_item *first_item) 681 { 682 LIST_HEAD(item_list); 683 struct btrfs_delayed_item *curr; 684 struct btrfs_delayed_item *next; 685 const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info); 686 struct btrfs_item_batch batch; 687 int total_size; 688 char *ins_data = NULL; 689 int ret; 690 691 list_add_tail(&first_item->tree_list, &item_list); 692 batch.total_data_size = first_item->data_len; 693 batch.nr = 1; 694 total_size = first_item->data_len + sizeof(struct btrfs_item); 695 curr = first_item; 696 697 while (true) { 698 int next_size; 699 700 next = __btrfs_next_delayed_item(curr); 701 if (!next || !btrfs_is_continuous_delayed_item(curr, next)) 702 break; 703 704 next_size = next->data_len + sizeof(struct btrfs_item); 705 if (total_size + next_size > max_size) 706 break; 707 708 list_add_tail(&next->tree_list, &item_list); 709 batch.nr++; 710 total_size += next_size; 711 batch.total_data_size += next->data_len; 712 curr = next; 713 } 714 715 if (batch.nr == 1) { 716 batch.keys = &first_item->key; 717 batch.data_sizes = &first_item->data_len; 718 } else { 719 struct btrfs_key *ins_keys; 720 u32 *ins_sizes; 721 int i = 0; 722 723 ins_data = kmalloc(batch.nr * sizeof(u32) + 724 batch.nr * sizeof(struct btrfs_key), GFP_NOFS); 725 if (!ins_data) { 726 ret = -ENOMEM; 727 goto out; 728 } 729 ins_sizes = (u32 *)ins_data; 730 ins_keys = (struct btrfs_key *)(ins_data + batch.nr * sizeof(u32)); 731 batch.keys = ins_keys; 732 batch.data_sizes = ins_sizes; 733 list_for_each_entry(curr, &item_list, tree_list) { 734 ins_keys[i] = curr->key; 735 ins_sizes[i] = curr->data_len; 736 i++; 737 } 738 } 739 740 ret = btrfs_insert_empty_items(trans, root, path, &batch); 741 if (ret) 742 goto out; 743 744 list_for_each_entry(curr, &item_list, tree_list) { 745 char *data_ptr; 746 747 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 748 write_extent_buffer(path->nodes[0], &curr->data, 749 (unsigned long)data_ptr, curr->data_len); 750 path->slots[0]++; 751 } 752 753 /* 754 * Now release our path before releasing the delayed items and their 755 * metadata reservations, so that we don't block other tasks for more 756 * time than needed. 757 */ 758 btrfs_release_path(path); 759 760 list_for_each_entry_safe(curr, next, &item_list, tree_list) { 761 list_del(&curr->tree_list); 762 btrfs_delayed_item_release_metadata(root, curr); 763 btrfs_release_delayed_item(curr); 764 } 765 out: 766 kfree(ins_data); 767 return ret; 768 } 769 770 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 771 struct btrfs_path *path, 772 struct btrfs_root *root, 773 struct btrfs_delayed_node *node) 774 { 775 int ret = 0; 776 777 while (ret == 0) { 778 struct btrfs_delayed_item *curr; 779 780 mutex_lock(&node->mutex); 781 curr = __btrfs_first_delayed_insertion_item(node); 782 if (!curr) { 783 mutex_unlock(&node->mutex); 784 break; 785 } 786 ret = btrfs_insert_delayed_item(trans, root, path, curr); 787 mutex_unlock(&node->mutex); 788 } 789 790 return ret; 791 } 792 793 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 794 struct btrfs_root *root, 795 struct btrfs_path *path, 796 struct btrfs_delayed_item *item) 797 { 798 struct btrfs_delayed_item *curr, *next; 799 struct extent_buffer *leaf; 800 struct btrfs_key key; 801 struct list_head head; 802 int nitems, i, last_item; 803 int ret = 0; 804 805 BUG_ON(!path->nodes[0]); 806 807 leaf = path->nodes[0]; 808 809 i = path->slots[0]; 810 last_item = btrfs_header_nritems(leaf) - 1; 811 if (i > last_item) 812 return -ENOENT; /* FIXME: Is errno suitable? */ 813 814 next = item; 815 INIT_LIST_HEAD(&head); 816 btrfs_item_key_to_cpu(leaf, &key, i); 817 nitems = 0; 818 /* 819 * count the number of the dir index items that we can delete in batch 820 */ 821 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 822 list_add_tail(&next->tree_list, &head); 823 nitems++; 824 825 curr = next; 826 next = __btrfs_next_delayed_item(curr); 827 if (!next) 828 break; 829 830 if (!btrfs_is_continuous_delayed_item(curr, next)) 831 break; 832 833 i++; 834 if (i > last_item) 835 break; 836 btrfs_item_key_to_cpu(leaf, &key, i); 837 } 838 839 if (!nitems) 840 return 0; 841 842 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 843 if (ret) 844 goto out; 845 846 list_for_each_entry_safe(curr, next, &head, tree_list) { 847 btrfs_delayed_item_release_metadata(root, curr); 848 list_del(&curr->tree_list); 849 btrfs_release_delayed_item(curr); 850 } 851 852 out: 853 return ret; 854 } 855 856 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 857 struct btrfs_path *path, 858 struct btrfs_root *root, 859 struct btrfs_delayed_node *node) 860 { 861 struct btrfs_delayed_item *curr, *prev; 862 int ret = 0; 863 864 do_again: 865 mutex_lock(&node->mutex); 866 curr = __btrfs_first_delayed_deletion_item(node); 867 if (!curr) 868 goto delete_fail; 869 870 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 871 if (ret < 0) 872 goto delete_fail; 873 else if (ret > 0) { 874 /* 875 * can't find the item which the node points to, so this node 876 * is invalid, just drop it. 877 */ 878 prev = curr; 879 curr = __btrfs_next_delayed_item(prev); 880 btrfs_release_delayed_item(prev); 881 ret = 0; 882 btrfs_release_path(path); 883 if (curr) { 884 mutex_unlock(&node->mutex); 885 goto do_again; 886 } else 887 goto delete_fail; 888 } 889 890 btrfs_batch_delete_items(trans, root, path, curr); 891 btrfs_release_path(path); 892 mutex_unlock(&node->mutex); 893 goto do_again; 894 895 delete_fail: 896 btrfs_release_path(path); 897 mutex_unlock(&node->mutex); 898 return ret; 899 } 900 901 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 902 { 903 struct btrfs_delayed_root *delayed_root; 904 905 if (delayed_node && 906 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 907 BUG_ON(!delayed_node->root); 908 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 909 delayed_node->count--; 910 911 delayed_root = delayed_node->root->fs_info->delayed_root; 912 finish_one_item(delayed_root); 913 } 914 } 915 916 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 917 { 918 919 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 920 struct btrfs_delayed_root *delayed_root; 921 922 ASSERT(delayed_node->root); 923 delayed_node->count--; 924 925 delayed_root = delayed_node->root->fs_info->delayed_root; 926 finish_one_item(delayed_root); 927 } 928 } 929 930 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 931 struct btrfs_root *root, 932 struct btrfs_path *path, 933 struct btrfs_delayed_node *node) 934 { 935 struct btrfs_fs_info *fs_info = root->fs_info; 936 struct btrfs_key key; 937 struct btrfs_inode_item *inode_item; 938 struct extent_buffer *leaf; 939 int mod; 940 int ret; 941 942 key.objectid = node->inode_id; 943 key.type = BTRFS_INODE_ITEM_KEY; 944 key.offset = 0; 945 946 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 947 mod = -1; 948 else 949 mod = 1; 950 951 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 952 if (ret > 0) 953 ret = -ENOENT; 954 if (ret < 0) 955 goto out; 956 957 leaf = path->nodes[0]; 958 inode_item = btrfs_item_ptr(leaf, path->slots[0], 959 struct btrfs_inode_item); 960 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 961 sizeof(struct btrfs_inode_item)); 962 btrfs_mark_buffer_dirty(leaf); 963 964 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 965 goto out; 966 967 path->slots[0]++; 968 if (path->slots[0] >= btrfs_header_nritems(leaf)) 969 goto search; 970 again: 971 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 972 if (key.objectid != node->inode_id) 973 goto out; 974 975 if (key.type != BTRFS_INODE_REF_KEY && 976 key.type != BTRFS_INODE_EXTREF_KEY) 977 goto out; 978 979 /* 980 * Delayed iref deletion is for the inode who has only one link, 981 * so there is only one iref. The case that several irefs are 982 * in the same item doesn't exist. 983 */ 984 btrfs_del_item(trans, root, path); 985 out: 986 btrfs_release_delayed_iref(node); 987 btrfs_release_path(path); 988 err_out: 989 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 990 btrfs_release_delayed_inode(node); 991 992 /* 993 * If we fail to update the delayed inode we need to abort the 994 * transaction, because we could leave the inode with the improper 995 * counts behind. 996 */ 997 if (ret && ret != -ENOENT) 998 btrfs_abort_transaction(trans, ret); 999 1000 return ret; 1001 1002 search: 1003 btrfs_release_path(path); 1004 1005 key.type = BTRFS_INODE_EXTREF_KEY; 1006 key.offset = -1; 1007 1008 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1009 if (ret < 0) 1010 goto err_out; 1011 ASSERT(ret); 1012 1013 ret = 0; 1014 leaf = path->nodes[0]; 1015 path->slots[0]--; 1016 goto again; 1017 } 1018 1019 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1020 struct btrfs_root *root, 1021 struct btrfs_path *path, 1022 struct btrfs_delayed_node *node) 1023 { 1024 int ret; 1025 1026 mutex_lock(&node->mutex); 1027 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1028 mutex_unlock(&node->mutex); 1029 return 0; 1030 } 1031 1032 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1033 mutex_unlock(&node->mutex); 1034 return ret; 1035 } 1036 1037 static inline int 1038 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1039 struct btrfs_path *path, 1040 struct btrfs_delayed_node *node) 1041 { 1042 int ret; 1043 1044 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1045 if (ret) 1046 return ret; 1047 1048 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1049 if (ret) 1050 return ret; 1051 1052 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1053 return ret; 1054 } 1055 1056 /* 1057 * Called when committing the transaction. 1058 * Returns 0 on success. 1059 * Returns < 0 on error and returns with an aborted transaction with any 1060 * outstanding delayed items cleaned up. 1061 */ 1062 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1063 { 1064 struct btrfs_fs_info *fs_info = trans->fs_info; 1065 struct btrfs_delayed_root *delayed_root; 1066 struct btrfs_delayed_node *curr_node, *prev_node; 1067 struct btrfs_path *path; 1068 struct btrfs_block_rsv *block_rsv; 1069 int ret = 0; 1070 bool count = (nr > 0); 1071 1072 if (TRANS_ABORTED(trans)) 1073 return -EIO; 1074 1075 path = btrfs_alloc_path(); 1076 if (!path) 1077 return -ENOMEM; 1078 1079 block_rsv = trans->block_rsv; 1080 trans->block_rsv = &fs_info->delayed_block_rsv; 1081 1082 delayed_root = fs_info->delayed_root; 1083 1084 curr_node = btrfs_first_delayed_node(delayed_root); 1085 while (curr_node && (!count || nr--)) { 1086 ret = __btrfs_commit_inode_delayed_items(trans, path, 1087 curr_node); 1088 if (ret) { 1089 btrfs_release_delayed_node(curr_node); 1090 curr_node = NULL; 1091 btrfs_abort_transaction(trans, ret); 1092 break; 1093 } 1094 1095 prev_node = curr_node; 1096 curr_node = btrfs_next_delayed_node(curr_node); 1097 btrfs_release_delayed_node(prev_node); 1098 } 1099 1100 if (curr_node) 1101 btrfs_release_delayed_node(curr_node); 1102 btrfs_free_path(path); 1103 trans->block_rsv = block_rsv; 1104 1105 return ret; 1106 } 1107 1108 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1109 { 1110 return __btrfs_run_delayed_items(trans, -1); 1111 } 1112 1113 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1114 { 1115 return __btrfs_run_delayed_items(trans, nr); 1116 } 1117 1118 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1119 struct btrfs_inode *inode) 1120 { 1121 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1122 struct btrfs_path *path; 1123 struct btrfs_block_rsv *block_rsv; 1124 int ret; 1125 1126 if (!delayed_node) 1127 return 0; 1128 1129 mutex_lock(&delayed_node->mutex); 1130 if (!delayed_node->count) { 1131 mutex_unlock(&delayed_node->mutex); 1132 btrfs_release_delayed_node(delayed_node); 1133 return 0; 1134 } 1135 mutex_unlock(&delayed_node->mutex); 1136 1137 path = btrfs_alloc_path(); 1138 if (!path) { 1139 btrfs_release_delayed_node(delayed_node); 1140 return -ENOMEM; 1141 } 1142 1143 block_rsv = trans->block_rsv; 1144 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1145 1146 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1147 1148 btrfs_release_delayed_node(delayed_node); 1149 btrfs_free_path(path); 1150 trans->block_rsv = block_rsv; 1151 1152 return ret; 1153 } 1154 1155 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1156 { 1157 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1158 struct btrfs_trans_handle *trans; 1159 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1160 struct btrfs_path *path; 1161 struct btrfs_block_rsv *block_rsv; 1162 int ret; 1163 1164 if (!delayed_node) 1165 return 0; 1166 1167 mutex_lock(&delayed_node->mutex); 1168 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1169 mutex_unlock(&delayed_node->mutex); 1170 btrfs_release_delayed_node(delayed_node); 1171 return 0; 1172 } 1173 mutex_unlock(&delayed_node->mutex); 1174 1175 trans = btrfs_join_transaction(delayed_node->root); 1176 if (IS_ERR(trans)) { 1177 ret = PTR_ERR(trans); 1178 goto out; 1179 } 1180 1181 path = btrfs_alloc_path(); 1182 if (!path) { 1183 ret = -ENOMEM; 1184 goto trans_out; 1185 } 1186 1187 block_rsv = trans->block_rsv; 1188 trans->block_rsv = &fs_info->delayed_block_rsv; 1189 1190 mutex_lock(&delayed_node->mutex); 1191 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1192 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1193 path, delayed_node); 1194 else 1195 ret = 0; 1196 mutex_unlock(&delayed_node->mutex); 1197 1198 btrfs_free_path(path); 1199 trans->block_rsv = block_rsv; 1200 trans_out: 1201 btrfs_end_transaction(trans); 1202 btrfs_btree_balance_dirty(fs_info); 1203 out: 1204 btrfs_release_delayed_node(delayed_node); 1205 1206 return ret; 1207 } 1208 1209 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1210 { 1211 struct btrfs_delayed_node *delayed_node; 1212 1213 delayed_node = READ_ONCE(inode->delayed_node); 1214 if (!delayed_node) 1215 return; 1216 1217 inode->delayed_node = NULL; 1218 btrfs_release_delayed_node(delayed_node); 1219 } 1220 1221 struct btrfs_async_delayed_work { 1222 struct btrfs_delayed_root *delayed_root; 1223 int nr; 1224 struct btrfs_work work; 1225 }; 1226 1227 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1228 { 1229 struct btrfs_async_delayed_work *async_work; 1230 struct btrfs_delayed_root *delayed_root; 1231 struct btrfs_trans_handle *trans; 1232 struct btrfs_path *path; 1233 struct btrfs_delayed_node *delayed_node = NULL; 1234 struct btrfs_root *root; 1235 struct btrfs_block_rsv *block_rsv; 1236 int total_done = 0; 1237 1238 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1239 delayed_root = async_work->delayed_root; 1240 1241 path = btrfs_alloc_path(); 1242 if (!path) 1243 goto out; 1244 1245 do { 1246 if (atomic_read(&delayed_root->items) < 1247 BTRFS_DELAYED_BACKGROUND / 2) 1248 break; 1249 1250 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1251 if (!delayed_node) 1252 break; 1253 1254 root = delayed_node->root; 1255 1256 trans = btrfs_join_transaction(root); 1257 if (IS_ERR(trans)) { 1258 btrfs_release_path(path); 1259 btrfs_release_prepared_delayed_node(delayed_node); 1260 total_done++; 1261 continue; 1262 } 1263 1264 block_rsv = trans->block_rsv; 1265 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1266 1267 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1268 1269 trans->block_rsv = block_rsv; 1270 btrfs_end_transaction(trans); 1271 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1272 1273 btrfs_release_path(path); 1274 btrfs_release_prepared_delayed_node(delayed_node); 1275 total_done++; 1276 1277 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1278 || total_done < async_work->nr); 1279 1280 btrfs_free_path(path); 1281 out: 1282 wake_up(&delayed_root->wait); 1283 kfree(async_work); 1284 } 1285 1286 1287 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1288 struct btrfs_fs_info *fs_info, int nr) 1289 { 1290 struct btrfs_async_delayed_work *async_work; 1291 1292 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1293 if (!async_work) 1294 return -ENOMEM; 1295 1296 async_work->delayed_root = delayed_root; 1297 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1298 NULL); 1299 async_work->nr = nr; 1300 1301 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1302 return 0; 1303 } 1304 1305 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1306 { 1307 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1308 } 1309 1310 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1311 { 1312 int val = atomic_read(&delayed_root->items_seq); 1313 1314 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1315 return 1; 1316 1317 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1318 return 1; 1319 1320 return 0; 1321 } 1322 1323 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1324 { 1325 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1326 1327 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1328 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1329 return; 1330 1331 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1332 int seq; 1333 int ret; 1334 1335 seq = atomic_read(&delayed_root->items_seq); 1336 1337 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1338 if (ret) 1339 return; 1340 1341 wait_event_interruptible(delayed_root->wait, 1342 could_end_wait(delayed_root, seq)); 1343 return; 1344 } 1345 1346 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1347 } 1348 1349 /* Will return 0 or -ENOMEM */ 1350 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1351 const char *name, int name_len, 1352 struct btrfs_inode *dir, 1353 struct btrfs_disk_key *disk_key, u8 type, 1354 u64 index) 1355 { 1356 struct btrfs_delayed_node *delayed_node; 1357 struct btrfs_delayed_item *delayed_item; 1358 struct btrfs_dir_item *dir_item; 1359 int ret; 1360 1361 delayed_node = btrfs_get_or_create_delayed_node(dir); 1362 if (IS_ERR(delayed_node)) 1363 return PTR_ERR(delayed_node); 1364 1365 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1366 if (!delayed_item) { 1367 ret = -ENOMEM; 1368 goto release_node; 1369 } 1370 1371 delayed_item->key.objectid = btrfs_ino(dir); 1372 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1373 delayed_item->key.offset = index; 1374 1375 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1376 dir_item->location = *disk_key; 1377 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1378 btrfs_set_stack_dir_data_len(dir_item, 0); 1379 btrfs_set_stack_dir_name_len(dir_item, name_len); 1380 btrfs_set_stack_dir_type(dir_item, type); 1381 memcpy((char *)(dir_item + 1), name, name_len); 1382 1383 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1384 /* 1385 * we have reserved enough space when we start a new transaction, 1386 * so reserving metadata failure is impossible 1387 */ 1388 BUG_ON(ret); 1389 1390 mutex_lock(&delayed_node->mutex); 1391 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1392 if (unlikely(ret)) { 1393 btrfs_err(trans->fs_info, 1394 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1395 name_len, name, delayed_node->root->root_key.objectid, 1396 delayed_node->inode_id, ret); 1397 BUG(); 1398 } 1399 mutex_unlock(&delayed_node->mutex); 1400 1401 release_node: 1402 btrfs_release_delayed_node(delayed_node); 1403 return ret; 1404 } 1405 1406 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1407 struct btrfs_delayed_node *node, 1408 struct btrfs_key *key) 1409 { 1410 struct btrfs_delayed_item *item; 1411 1412 mutex_lock(&node->mutex); 1413 item = __btrfs_lookup_delayed_insertion_item(node, key); 1414 if (!item) { 1415 mutex_unlock(&node->mutex); 1416 return 1; 1417 } 1418 1419 btrfs_delayed_item_release_metadata(node->root, item); 1420 btrfs_release_delayed_item(item); 1421 mutex_unlock(&node->mutex); 1422 return 0; 1423 } 1424 1425 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1426 struct btrfs_inode *dir, u64 index) 1427 { 1428 struct btrfs_delayed_node *node; 1429 struct btrfs_delayed_item *item; 1430 struct btrfs_key item_key; 1431 int ret; 1432 1433 node = btrfs_get_or_create_delayed_node(dir); 1434 if (IS_ERR(node)) 1435 return PTR_ERR(node); 1436 1437 item_key.objectid = btrfs_ino(dir); 1438 item_key.type = BTRFS_DIR_INDEX_KEY; 1439 item_key.offset = index; 1440 1441 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1442 &item_key); 1443 if (!ret) 1444 goto end; 1445 1446 item = btrfs_alloc_delayed_item(0); 1447 if (!item) { 1448 ret = -ENOMEM; 1449 goto end; 1450 } 1451 1452 item->key = item_key; 1453 1454 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1455 /* 1456 * we have reserved enough space when we start a new transaction, 1457 * so reserving metadata failure is impossible. 1458 */ 1459 if (ret < 0) { 1460 btrfs_err(trans->fs_info, 1461 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1462 btrfs_release_delayed_item(item); 1463 goto end; 1464 } 1465 1466 mutex_lock(&node->mutex); 1467 ret = __btrfs_add_delayed_deletion_item(node, item); 1468 if (unlikely(ret)) { 1469 btrfs_err(trans->fs_info, 1470 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1471 index, node->root->root_key.objectid, 1472 node->inode_id, ret); 1473 btrfs_delayed_item_release_metadata(dir->root, item); 1474 btrfs_release_delayed_item(item); 1475 } 1476 mutex_unlock(&node->mutex); 1477 end: 1478 btrfs_release_delayed_node(node); 1479 return ret; 1480 } 1481 1482 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1483 { 1484 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1485 1486 if (!delayed_node) 1487 return -ENOENT; 1488 1489 /* 1490 * Since we have held i_mutex of this directory, it is impossible that 1491 * a new directory index is added into the delayed node and index_cnt 1492 * is updated now. So we needn't lock the delayed node. 1493 */ 1494 if (!delayed_node->index_cnt) { 1495 btrfs_release_delayed_node(delayed_node); 1496 return -EINVAL; 1497 } 1498 1499 inode->index_cnt = delayed_node->index_cnt; 1500 btrfs_release_delayed_node(delayed_node); 1501 return 0; 1502 } 1503 1504 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1505 struct list_head *ins_list, 1506 struct list_head *del_list) 1507 { 1508 struct btrfs_delayed_node *delayed_node; 1509 struct btrfs_delayed_item *item; 1510 1511 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1512 if (!delayed_node) 1513 return false; 1514 1515 /* 1516 * We can only do one readdir with delayed items at a time because of 1517 * item->readdir_list. 1518 */ 1519 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1520 btrfs_inode_lock(inode, 0); 1521 1522 mutex_lock(&delayed_node->mutex); 1523 item = __btrfs_first_delayed_insertion_item(delayed_node); 1524 while (item) { 1525 refcount_inc(&item->refs); 1526 list_add_tail(&item->readdir_list, ins_list); 1527 item = __btrfs_next_delayed_item(item); 1528 } 1529 1530 item = __btrfs_first_delayed_deletion_item(delayed_node); 1531 while (item) { 1532 refcount_inc(&item->refs); 1533 list_add_tail(&item->readdir_list, del_list); 1534 item = __btrfs_next_delayed_item(item); 1535 } 1536 mutex_unlock(&delayed_node->mutex); 1537 /* 1538 * This delayed node is still cached in the btrfs inode, so refs 1539 * must be > 1 now, and we needn't check it is going to be freed 1540 * or not. 1541 * 1542 * Besides that, this function is used to read dir, we do not 1543 * insert/delete delayed items in this period. So we also needn't 1544 * requeue or dequeue this delayed node. 1545 */ 1546 refcount_dec(&delayed_node->refs); 1547 1548 return true; 1549 } 1550 1551 void btrfs_readdir_put_delayed_items(struct inode *inode, 1552 struct list_head *ins_list, 1553 struct list_head *del_list) 1554 { 1555 struct btrfs_delayed_item *curr, *next; 1556 1557 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1558 list_del(&curr->readdir_list); 1559 if (refcount_dec_and_test(&curr->refs)) 1560 kfree(curr); 1561 } 1562 1563 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1564 list_del(&curr->readdir_list); 1565 if (refcount_dec_and_test(&curr->refs)) 1566 kfree(curr); 1567 } 1568 1569 /* 1570 * The VFS is going to do up_read(), so we need to downgrade back to a 1571 * read lock. 1572 */ 1573 downgrade_write(&inode->i_rwsem); 1574 } 1575 1576 int btrfs_should_delete_dir_index(struct list_head *del_list, 1577 u64 index) 1578 { 1579 struct btrfs_delayed_item *curr; 1580 int ret = 0; 1581 1582 list_for_each_entry(curr, del_list, readdir_list) { 1583 if (curr->key.offset > index) 1584 break; 1585 if (curr->key.offset == index) { 1586 ret = 1; 1587 break; 1588 } 1589 } 1590 return ret; 1591 } 1592 1593 /* 1594 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1595 * 1596 */ 1597 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1598 struct list_head *ins_list) 1599 { 1600 struct btrfs_dir_item *di; 1601 struct btrfs_delayed_item *curr, *next; 1602 struct btrfs_key location; 1603 char *name; 1604 int name_len; 1605 int over = 0; 1606 unsigned char d_type; 1607 1608 if (list_empty(ins_list)) 1609 return 0; 1610 1611 /* 1612 * Changing the data of the delayed item is impossible. So 1613 * we needn't lock them. And we have held i_mutex of the 1614 * directory, nobody can delete any directory indexes now. 1615 */ 1616 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1617 list_del(&curr->readdir_list); 1618 1619 if (curr->key.offset < ctx->pos) { 1620 if (refcount_dec_and_test(&curr->refs)) 1621 kfree(curr); 1622 continue; 1623 } 1624 1625 ctx->pos = curr->key.offset; 1626 1627 di = (struct btrfs_dir_item *)curr->data; 1628 name = (char *)(di + 1); 1629 name_len = btrfs_stack_dir_name_len(di); 1630 1631 d_type = fs_ftype_to_dtype(di->type); 1632 btrfs_disk_key_to_cpu(&location, &di->location); 1633 1634 over = !dir_emit(ctx, name, name_len, 1635 location.objectid, d_type); 1636 1637 if (refcount_dec_and_test(&curr->refs)) 1638 kfree(curr); 1639 1640 if (over) 1641 return 1; 1642 ctx->pos++; 1643 } 1644 return 0; 1645 } 1646 1647 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1648 struct btrfs_inode_item *inode_item, 1649 struct inode *inode) 1650 { 1651 u64 flags; 1652 1653 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1654 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1655 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1656 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1657 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1658 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1659 btrfs_set_stack_inode_generation(inode_item, 1660 BTRFS_I(inode)->generation); 1661 btrfs_set_stack_inode_sequence(inode_item, 1662 inode_peek_iversion(inode)); 1663 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1664 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1665 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1666 BTRFS_I(inode)->ro_flags); 1667 btrfs_set_stack_inode_flags(inode_item, flags); 1668 btrfs_set_stack_inode_block_group(inode_item, 0); 1669 1670 btrfs_set_stack_timespec_sec(&inode_item->atime, 1671 inode->i_atime.tv_sec); 1672 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1673 inode->i_atime.tv_nsec); 1674 1675 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1676 inode->i_mtime.tv_sec); 1677 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1678 inode->i_mtime.tv_nsec); 1679 1680 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1681 inode->i_ctime.tv_sec); 1682 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1683 inode->i_ctime.tv_nsec); 1684 1685 btrfs_set_stack_timespec_sec(&inode_item->otime, 1686 BTRFS_I(inode)->i_otime.tv_sec); 1687 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1688 BTRFS_I(inode)->i_otime.tv_nsec); 1689 } 1690 1691 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1692 { 1693 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1694 struct btrfs_delayed_node *delayed_node; 1695 struct btrfs_inode_item *inode_item; 1696 1697 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1698 if (!delayed_node) 1699 return -ENOENT; 1700 1701 mutex_lock(&delayed_node->mutex); 1702 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1703 mutex_unlock(&delayed_node->mutex); 1704 btrfs_release_delayed_node(delayed_node); 1705 return -ENOENT; 1706 } 1707 1708 inode_item = &delayed_node->inode_item; 1709 1710 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1711 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1712 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1713 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1714 round_up(i_size_read(inode), fs_info->sectorsize)); 1715 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1716 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1717 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1718 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1719 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1720 1721 inode_set_iversion_queried(inode, 1722 btrfs_stack_inode_sequence(inode_item)); 1723 inode->i_rdev = 0; 1724 *rdev = btrfs_stack_inode_rdev(inode_item); 1725 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1726 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1727 1728 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1729 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1730 1731 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1732 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1733 1734 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1735 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1736 1737 BTRFS_I(inode)->i_otime.tv_sec = 1738 btrfs_stack_timespec_sec(&inode_item->otime); 1739 BTRFS_I(inode)->i_otime.tv_nsec = 1740 btrfs_stack_timespec_nsec(&inode_item->otime); 1741 1742 inode->i_generation = BTRFS_I(inode)->generation; 1743 BTRFS_I(inode)->index_cnt = (u64)-1; 1744 1745 mutex_unlock(&delayed_node->mutex); 1746 btrfs_release_delayed_node(delayed_node); 1747 return 0; 1748 } 1749 1750 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1751 struct btrfs_root *root, 1752 struct btrfs_inode *inode) 1753 { 1754 struct btrfs_delayed_node *delayed_node; 1755 int ret = 0; 1756 1757 delayed_node = btrfs_get_or_create_delayed_node(inode); 1758 if (IS_ERR(delayed_node)) 1759 return PTR_ERR(delayed_node); 1760 1761 mutex_lock(&delayed_node->mutex); 1762 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1763 fill_stack_inode_item(trans, &delayed_node->inode_item, 1764 &inode->vfs_inode); 1765 goto release_node; 1766 } 1767 1768 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1769 if (ret) 1770 goto release_node; 1771 1772 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1773 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1774 delayed_node->count++; 1775 atomic_inc(&root->fs_info->delayed_root->items); 1776 release_node: 1777 mutex_unlock(&delayed_node->mutex); 1778 btrfs_release_delayed_node(delayed_node); 1779 return ret; 1780 } 1781 1782 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1783 { 1784 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1785 struct btrfs_delayed_node *delayed_node; 1786 1787 /* 1788 * we don't do delayed inode updates during log recovery because it 1789 * leads to enospc problems. This means we also can't do 1790 * delayed inode refs 1791 */ 1792 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1793 return -EAGAIN; 1794 1795 delayed_node = btrfs_get_or_create_delayed_node(inode); 1796 if (IS_ERR(delayed_node)) 1797 return PTR_ERR(delayed_node); 1798 1799 /* 1800 * We don't reserve space for inode ref deletion is because: 1801 * - We ONLY do async inode ref deletion for the inode who has only 1802 * one link(i_nlink == 1), it means there is only one inode ref. 1803 * And in most case, the inode ref and the inode item are in the 1804 * same leaf, and we will deal with them at the same time. 1805 * Since we are sure we will reserve the space for the inode item, 1806 * it is unnecessary to reserve space for inode ref deletion. 1807 * - If the inode ref and the inode item are not in the same leaf, 1808 * We also needn't worry about enospc problem, because we reserve 1809 * much more space for the inode update than it needs. 1810 * - At the worst, we can steal some space from the global reservation. 1811 * It is very rare. 1812 */ 1813 mutex_lock(&delayed_node->mutex); 1814 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1815 goto release_node; 1816 1817 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1818 delayed_node->count++; 1819 atomic_inc(&fs_info->delayed_root->items); 1820 release_node: 1821 mutex_unlock(&delayed_node->mutex); 1822 btrfs_release_delayed_node(delayed_node); 1823 return 0; 1824 } 1825 1826 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1827 { 1828 struct btrfs_root *root = delayed_node->root; 1829 struct btrfs_fs_info *fs_info = root->fs_info; 1830 struct btrfs_delayed_item *curr_item, *prev_item; 1831 1832 mutex_lock(&delayed_node->mutex); 1833 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1834 while (curr_item) { 1835 btrfs_delayed_item_release_metadata(root, curr_item); 1836 prev_item = curr_item; 1837 curr_item = __btrfs_next_delayed_item(prev_item); 1838 btrfs_release_delayed_item(prev_item); 1839 } 1840 1841 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1842 while (curr_item) { 1843 btrfs_delayed_item_release_metadata(root, curr_item); 1844 prev_item = curr_item; 1845 curr_item = __btrfs_next_delayed_item(prev_item); 1846 btrfs_release_delayed_item(prev_item); 1847 } 1848 1849 btrfs_release_delayed_iref(delayed_node); 1850 1851 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1852 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1853 btrfs_release_delayed_inode(delayed_node); 1854 } 1855 mutex_unlock(&delayed_node->mutex); 1856 } 1857 1858 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1859 { 1860 struct btrfs_delayed_node *delayed_node; 1861 1862 delayed_node = btrfs_get_delayed_node(inode); 1863 if (!delayed_node) 1864 return; 1865 1866 __btrfs_kill_delayed_node(delayed_node); 1867 btrfs_release_delayed_node(delayed_node); 1868 } 1869 1870 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1871 { 1872 u64 inode_id = 0; 1873 struct btrfs_delayed_node *delayed_nodes[8]; 1874 int i, n; 1875 1876 while (1) { 1877 spin_lock(&root->inode_lock); 1878 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1879 (void **)delayed_nodes, inode_id, 1880 ARRAY_SIZE(delayed_nodes)); 1881 if (!n) { 1882 spin_unlock(&root->inode_lock); 1883 break; 1884 } 1885 1886 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1887 for (i = 0; i < n; i++) { 1888 /* 1889 * Don't increase refs in case the node is dead and 1890 * about to be removed from the tree in the loop below 1891 */ 1892 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1893 delayed_nodes[i] = NULL; 1894 } 1895 spin_unlock(&root->inode_lock); 1896 1897 for (i = 0; i < n; i++) { 1898 if (!delayed_nodes[i]) 1899 continue; 1900 __btrfs_kill_delayed_node(delayed_nodes[i]); 1901 btrfs_release_delayed_node(delayed_nodes[i]); 1902 } 1903 } 1904 } 1905 1906 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1907 { 1908 struct btrfs_delayed_node *curr_node, *prev_node; 1909 1910 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1911 while (curr_node) { 1912 __btrfs_kill_delayed_node(curr_node); 1913 1914 prev_node = curr_node; 1915 curr_node = btrfs_next_delayed_node(curr_node); 1916 btrfs_release_delayed_node(prev_node); 1917 } 1918 } 1919 1920