xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static inline int btrfs_is_continuous_delayed_item(
56 					struct btrfs_delayed_item *item1,
57 					struct btrfs_delayed_item *item2)
58 {
59 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 	    item1->key.objectid == item2->key.objectid &&
61 	    item1->key.type == item2->key.type &&
62 	    item1->key.offset + 1 == item2->key.offset)
63 		return 1;
64 	return 0;
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the radix tree.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the radix at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the radix, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 
131 again:
132 	node = btrfs_get_delayed_node(btrfs_inode);
133 	if (node)
134 		return node;
135 
136 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 	if (!node)
138 		return ERR_PTR(-ENOMEM);
139 	btrfs_init_delayed_node(node, root, ino);
140 
141 	/* cached in the btrfs inode and can be accessed */
142 	refcount_set(&node->refs, 2);
143 
144 	ret = radix_tree_preload(GFP_NOFS);
145 	if (ret) {
146 		kmem_cache_free(delayed_node_cache, node);
147 		return ERR_PTR(ret);
148 	}
149 
150 	spin_lock(&root->inode_lock);
151 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 	if (ret == -EEXIST) {
153 		spin_unlock(&root->inode_lock);
154 		kmem_cache_free(delayed_node_cache, node);
155 		radix_tree_preload_end();
156 		goto again;
157 	}
158 	btrfs_inode->delayed_node = node;
159 	spin_unlock(&root->inode_lock);
160 	radix_tree_preload_end();
161 
162 	return node;
163 }
164 
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 				     struct btrfs_delayed_node *node,
172 				     int mod)
173 {
174 	spin_lock(&root->lock);
175 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 		if (!list_empty(&node->p_list))
177 			list_move_tail(&node->p_list, &root->prepare_list);
178 		else if (mod)
179 			list_add_tail(&node->p_list, &root->prepare_list);
180 	} else {
181 		list_add_tail(&node->n_list, &root->node_list);
182 		list_add_tail(&node->p_list, &root->prepare_list);
183 		refcount_inc(&node->refs);	/* inserted into list */
184 		root->nodes++;
185 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 	}
187 	spin_unlock(&root->lock);
188 }
189 
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 				       struct btrfs_delayed_node *node)
193 {
194 	spin_lock(&root->lock);
195 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 		root->nodes--;
197 		refcount_dec(&node->refs);	/* not in the list */
198 		list_del_init(&node->n_list);
199 		if (!list_empty(&node->p_list))
200 			list_del_init(&node->p_list);
201 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 	}
203 	spin_unlock(&root->lock);
204 }
205 
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 			struct btrfs_delayed_root *delayed_root)
208 {
209 	struct list_head *p;
210 	struct btrfs_delayed_node *node = NULL;
211 
212 	spin_lock(&delayed_root->lock);
213 	if (list_empty(&delayed_root->node_list))
214 		goto out;
215 
216 	p = delayed_root->node_list.next;
217 	node = list_entry(p, struct btrfs_delayed_node, n_list);
218 	refcount_inc(&node->refs);
219 out:
220 	spin_unlock(&delayed_root->lock);
221 
222 	return node;
223 }
224 
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 						struct btrfs_delayed_node *node)
227 {
228 	struct btrfs_delayed_root *delayed_root;
229 	struct list_head *p;
230 	struct btrfs_delayed_node *next = NULL;
231 
232 	delayed_root = node->root->fs_info->delayed_root;
233 	spin_lock(&delayed_root->lock);
234 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 		/* not in the list */
236 		if (list_empty(&delayed_root->node_list))
237 			goto out;
238 		p = delayed_root->node_list.next;
239 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 		goto out;
241 	else
242 		p = node->n_list.next;
243 
244 	next = list_entry(p, struct btrfs_delayed_node, n_list);
245 	refcount_inc(&next->refs);
246 out:
247 	spin_unlock(&delayed_root->lock);
248 
249 	return next;
250 }
251 
252 static void __btrfs_release_delayed_node(
253 				struct btrfs_delayed_node *delayed_node,
254 				int mod)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 
258 	if (!delayed_node)
259 		return;
260 
261 	delayed_root = delayed_node->root->fs_info->delayed_root;
262 
263 	mutex_lock(&delayed_node->mutex);
264 	if (delayed_node->count)
265 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 	else
267 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 	mutex_unlock(&delayed_node->mutex);
269 
270 	if (refcount_dec_and_test(&delayed_node->refs)) {
271 		struct btrfs_root *root = delayed_node->root;
272 
273 		spin_lock(&root->inode_lock);
274 		/*
275 		 * Once our refcount goes to zero, nobody is allowed to bump it
276 		 * back up.  We can delete it now.
277 		 */
278 		ASSERT(refcount_read(&delayed_node->refs) == 0);
279 		radix_tree_delete(&root->delayed_nodes_tree,
280 				  delayed_node->inode_id);
281 		spin_unlock(&root->inode_lock);
282 		kmem_cache_free(delayed_node_cache, delayed_node);
283 	}
284 }
285 
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 	__btrfs_release_delayed_node(node, 0);
289 }
290 
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 					struct btrfs_delayed_root *delayed_root)
293 {
294 	struct list_head *p;
295 	struct btrfs_delayed_node *node = NULL;
296 
297 	spin_lock(&delayed_root->lock);
298 	if (list_empty(&delayed_root->prepare_list))
299 		goto out;
300 
301 	p = delayed_root->prepare_list.next;
302 	list_del_init(p);
303 	node = list_entry(p, struct btrfs_delayed_node, p_list);
304 	refcount_inc(&node->refs);
305 out:
306 	spin_unlock(&delayed_root->lock);
307 
308 	return node;
309 }
310 
311 static inline void btrfs_release_prepared_delayed_node(
312 					struct btrfs_delayed_node *node)
313 {
314 	__btrfs_release_delayed_node(node, 1);
315 }
316 
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 	struct btrfs_delayed_item *item;
320 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 	if (item) {
322 		item->data_len = data_len;
323 		item->ins_or_del = 0;
324 		item->bytes_reserved = 0;
325 		item->delayed_node = NULL;
326 		refcount_set(&item->refs, 1);
327 	}
328 	return item;
329 }
330 
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:	  the key to look up
335  * @prev:	  used to store the prev item if the right item isn't found
336  * @next:	  used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 				struct rb_root *root,
343 				struct btrfs_key *key,
344 				struct btrfs_delayed_item **prev,
345 				struct btrfs_delayed_item **next)
346 {
347 	struct rb_node *node, *prev_node = NULL;
348 	struct btrfs_delayed_item *delayed_item = NULL;
349 	int ret = 0;
350 
351 	node = root->rb_node;
352 
353 	while (node) {
354 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 					rb_node);
356 		prev_node = node;
357 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 		if (ret < 0)
359 			node = node->rb_right;
360 		else if (ret > 0)
361 			node = node->rb_left;
362 		else
363 			return delayed_item;
364 	}
365 
366 	if (prev) {
367 		if (!prev_node)
368 			*prev = NULL;
369 		else if (ret < 0)
370 			*prev = delayed_item;
371 		else if ((node = rb_prev(prev_node)) != NULL) {
372 			*prev = rb_entry(node, struct btrfs_delayed_item,
373 					 rb_node);
374 		} else
375 			*prev = NULL;
376 	}
377 
378 	if (next) {
379 		if (!prev_node)
380 			*next = NULL;
381 		else if (ret > 0)
382 			*next = delayed_item;
383 		else if ((node = rb_next(prev_node)) != NULL) {
384 			*next = rb_entry(node, struct btrfs_delayed_item,
385 					 rb_node);
386 		} else
387 			*next = NULL;
388 	}
389 	return NULL;
390 }
391 
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 					struct btrfs_delayed_node *delayed_node,
394 					struct btrfs_key *key)
395 {
396 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 					   NULL, NULL);
398 }
399 
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 				    struct btrfs_delayed_item *ins,
402 				    int action)
403 {
404 	struct rb_node **p, *node;
405 	struct rb_node *parent_node = NULL;
406 	struct rb_root_cached *root;
407 	struct btrfs_delayed_item *item;
408 	int cmp;
409 	bool leftmost = true;
410 
411 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 		root = &delayed_node->ins_root;
413 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 		root = &delayed_node->del_root;
415 	else
416 		BUG();
417 	p = &root->rb_root.rb_node;
418 	node = &ins->rb_node;
419 
420 	while (*p) {
421 		parent_node = *p;
422 		item = rb_entry(parent_node, struct btrfs_delayed_item,
423 				 rb_node);
424 
425 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 		if (cmp < 0) {
427 			p = &(*p)->rb_right;
428 			leftmost = false;
429 		} else if (cmp > 0) {
430 			p = &(*p)->rb_left;
431 		} else {
432 			return -EEXIST;
433 		}
434 	}
435 
436 	rb_link_node(node, parent_node, p);
437 	rb_insert_color_cached(node, root, leftmost);
438 	ins->delayed_node = delayed_node;
439 	ins->ins_or_del = action;
440 
441 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
443 	    ins->key.offset >= delayed_node->index_cnt)
444 			delayed_node->index_cnt = ins->key.offset + 1;
445 
446 	delayed_node->count++;
447 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 	return 0;
449 }
450 
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 					      struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_INSERTION_ITEM);
456 }
457 
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 					     struct btrfs_delayed_item *item)
460 {
461 	return __btrfs_add_delayed_item(node, item,
462 					BTRFS_DELAYED_DELETION_ITEM);
463 }
464 
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 	int seq = atomic_inc_return(&delayed_root->items_seq);
468 
469 	/* atomic_dec_return implies a barrier */
470 	if ((atomic_dec_return(&delayed_root->items) <
471 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 		cond_wake_up_nomb(&delayed_root->wait);
473 }
474 
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 	struct rb_root_cached *root;
478 	struct btrfs_delayed_root *delayed_root;
479 
480 	/* Not associated with any delayed_node */
481 	if (!delayed_item->delayed_node)
482 		return;
483 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484 
485 	BUG_ON(!delayed_root);
486 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488 
489 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 		root = &delayed_item->delayed_node->ins_root;
491 	else
492 		root = &delayed_item->delayed_node->del_root;
493 
494 	rb_erase_cached(&delayed_item->rb_node, root);
495 	delayed_item->delayed_node->count--;
496 
497 	finish_one_item(delayed_root);
498 }
499 
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 	if (item) {
503 		__btrfs_remove_delayed_item(item);
504 		if (refcount_dec_and_test(&item->refs))
505 			kfree(item);
506 	}
507 }
508 
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 					struct btrfs_delayed_node *delayed_node)
511 {
512 	struct rb_node *p;
513 	struct btrfs_delayed_item *item = NULL;
514 
515 	p = rb_first_cached(&delayed_node->ins_root);
516 	if (p)
517 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518 
519 	return item;
520 }
521 
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 					struct btrfs_delayed_node *delayed_node)
524 {
525 	struct rb_node *p;
526 	struct btrfs_delayed_item *item = NULL;
527 
528 	p = rb_first_cached(&delayed_node->del_root);
529 	if (p)
530 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531 
532 	return item;
533 }
534 
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 						struct btrfs_delayed_item *item)
537 {
538 	struct rb_node *p;
539 	struct btrfs_delayed_item *next = NULL;
540 
541 	p = rb_next(&item->rb_node);
542 	if (p)
543 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544 
545 	return next;
546 }
547 
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 					       struct btrfs_root *root,
550 					       struct btrfs_delayed_item *item)
551 {
552 	struct btrfs_block_rsv *src_rsv;
553 	struct btrfs_block_rsv *dst_rsv;
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 	u64 num_bytes;
556 	int ret;
557 
558 	if (!trans->bytes_reserved)
559 		return 0;
560 
561 	src_rsv = trans->block_rsv;
562 	dst_rsv = &fs_info->delayed_block_rsv;
563 
564 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 
566 	/*
567 	 * Here we migrate space rsv from transaction rsv, since have already
568 	 * reserved space when starting a transaction.  So no need to reserve
569 	 * qgroup space here.
570 	 */
571 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 	if (!ret) {
573 		trace_btrfs_space_reservation(fs_info, "delayed_item",
574 					      item->key.objectid,
575 					      num_bytes, 1);
576 		item->bytes_reserved = num_bytes;
577 	}
578 
579 	return ret;
580 }
581 
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 						struct btrfs_delayed_item *item)
584 {
585 	struct btrfs_block_rsv *rsv;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 
588 	if (!item->bytes_reserved)
589 		return;
590 
591 	rsv = &fs_info->delayed_block_rsv;
592 	/*
593 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 	 * to release/reserve qgroup space.
595 	 */
596 	trace_btrfs_space_reservation(fs_info, "delayed_item",
597 				      item->key.objectid, item->bytes_reserved,
598 				      0);
599 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601 
602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_inode *inode,
606 					struct btrfs_delayed_node *node)
607 {
608 	struct btrfs_fs_info *fs_info = root->fs_info;
609 	struct btrfs_block_rsv *src_rsv;
610 	struct btrfs_block_rsv *dst_rsv;
611 	u64 num_bytes;
612 	int ret;
613 
614 	src_rsv = trans->block_rsv;
615 	dst_rsv = &fs_info->delayed_block_rsv;
616 
617 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
618 
619 	/*
620 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
621 	 * which doesn't reserve space for speed.  This is a problem since we
622 	 * still need to reserve space for this update, so try to reserve the
623 	 * space.
624 	 *
625 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
626 	 * we always reserve enough to update the inode item.
627 	 */
628 	if (!src_rsv || (!trans->bytes_reserved &&
629 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
630 		ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
631 		if (ret < 0)
632 			return ret;
633 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 					  BTRFS_RESERVE_NO_FLUSH);
635 		/*
636 		 * Since we're under a transaction reserve_metadata_bytes could
637 		 * try to commit the transaction which will make it return
638 		 * EAGAIN to make us stop the transaction we have, so return
639 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
640 		 */
641 		if (ret == -EAGAIN) {
642 			ret = -ENOSPC;
643 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
644 		}
645 		if (!ret) {
646 			node->bytes_reserved = num_bytes;
647 			trace_btrfs_space_reservation(fs_info,
648 						      "delayed_inode",
649 						      btrfs_ino(inode),
650 						      num_bytes, 1);
651 		} else {
652 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
653 		}
654 		return ret;
655 	}
656 
657 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
658 	if (!ret) {
659 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
660 					      btrfs_ino(inode), num_bytes, 1);
661 		node->bytes_reserved = num_bytes;
662 	}
663 
664 	return ret;
665 }
666 
667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
668 						struct btrfs_delayed_node *node,
669 						bool qgroup_free)
670 {
671 	struct btrfs_block_rsv *rsv;
672 
673 	if (!node->bytes_reserved)
674 		return;
675 
676 	rsv = &fs_info->delayed_block_rsv;
677 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
678 				      node->inode_id, node->bytes_reserved, 0);
679 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
680 	if (qgroup_free)
681 		btrfs_qgroup_free_meta_prealloc(node->root,
682 				node->bytes_reserved);
683 	else
684 		btrfs_qgroup_convert_reserved_meta(node->root,
685 				node->bytes_reserved);
686 	node->bytes_reserved = 0;
687 }
688 
689 /*
690  * This helper will insert some continuous items into the same leaf according
691  * to the free space of the leaf.
692  */
693 static int btrfs_batch_insert_items(struct btrfs_root *root,
694 				    struct btrfs_path *path,
695 				    struct btrfs_delayed_item *item)
696 {
697 	struct btrfs_delayed_item *curr, *next;
698 	int free_space;
699 	int total_data_size = 0, total_size = 0;
700 	struct extent_buffer *leaf;
701 	char *data_ptr;
702 	struct btrfs_key *keys;
703 	u32 *data_size;
704 	struct list_head head;
705 	int slot;
706 	int nitems;
707 	int i;
708 	int ret = 0;
709 
710 	BUG_ON(!path->nodes[0]);
711 
712 	leaf = path->nodes[0];
713 	free_space = btrfs_leaf_free_space(leaf);
714 	INIT_LIST_HEAD(&head);
715 
716 	next = item;
717 	nitems = 0;
718 
719 	/*
720 	 * count the number of the continuous items that we can insert in batch
721 	 */
722 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
723 	       free_space) {
724 		total_data_size += next->data_len;
725 		total_size += next->data_len + sizeof(struct btrfs_item);
726 		list_add_tail(&next->tree_list, &head);
727 		nitems++;
728 
729 		curr = next;
730 		next = __btrfs_next_delayed_item(curr);
731 		if (!next)
732 			break;
733 
734 		if (!btrfs_is_continuous_delayed_item(curr, next))
735 			break;
736 	}
737 
738 	if (!nitems) {
739 		ret = 0;
740 		goto out;
741 	}
742 
743 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
744 	if (!keys) {
745 		ret = -ENOMEM;
746 		goto out;
747 	}
748 
749 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
750 	if (!data_size) {
751 		ret = -ENOMEM;
752 		goto error;
753 	}
754 
755 	/* get keys of all the delayed items */
756 	i = 0;
757 	list_for_each_entry(next, &head, tree_list) {
758 		keys[i] = next->key;
759 		data_size[i] = next->data_len;
760 		i++;
761 	}
762 
763 	/* insert the keys of the items */
764 	setup_items_for_insert(root, path, keys, data_size, nitems);
765 
766 	/* insert the dir index items */
767 	slot = path->slots[0];
768 	list_for_each_entry_safe(curr, next, &head, tree_list) {
769 		data_ptr = btrfs_item_ptr(leaf, slot, char);
770 		write_extent_buffer(leaf, &curr->data,
771 				    (unsigned long)data_ptr,
772 				    curr->data_len);
773 		slot++;
774 
775 		btrfs_delayed_item_release_metadata(root, curr);
776 
777 		list_del(&curr->tree_list);
778 		btrfs_release_delayed_item(curr);
779 	}
780 
781 error:
782 	kfree(data_size);
783 	kfree(keys);
784 out:
785 	return ret;
786 }
787 
788 /*
789  * This helper can just do simple insertion that needn't extend item for new
790  * data, such as directory name index insertion, inode insertion.
791  */
792 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
793 				     struct btrfs_root *root,
794 				     struct btrfs_path *path,
795 				     struct btrfs_delayed_item *delayed_item)
796 {
797 	struct extent_buffer *leaf;
798 	unsigned int nofs_flag;
799 	char *ptr;
800 	int ret;
801 
802 	nofs_flag = memalloc_nofs_save();
803 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
804 				      delayed_item->data_len);
805 	memalloc_nofs_restore(nofs_flag);
806 	if (ret < 0 && ret != -EEXIST)
807 		return ret;
808 
809 	leaf = path->nodes[0];
810 
811 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
812 
813 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
814 			    delayed_item->data_len);
815 	btrfs_mark_buffer_dirty(leaf);
816 
817 	btrfs_delayed_item_release_metadata(root, delayed_item);
818 	return 0;
819 }
820 
821 /*
822  * we insert an item first, then if there are some continuous items, we try
823  * to insert those items into the same leaf.
824  */
825 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
826 				      struct btrfs_path *path,
827 				      struct btrfs_root *root,
828 				      struct btrfs_delayed_node *node)
829 {
830 	struct btrfs_delayed_item *curr, *prev;
831 	int ret = 0;
832 
833 do_again:
834 	mutex_lock(&node->mutex);
835 	curr = __btrfs_first_delayed_insertion_item(node);
836 	if (!curr)
837 		goto insert_end;
838 
839 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
840 	if (ret < 0) {
841 		btrfs_release_path(path);
842 		goto insert_end;
843 	}
844 
845 	prev = curr;
846 	curr = __btrfs_next_delayed_item(prev);
847 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
848 		/* insert the continuous items into the same leaf */
849 		path->slots[0]++;
850 		btrfs_batch_insert_items(root, path, curr);
851 	}
852 	btrfs_release_delayed_item(prev);
853 	btrfs_mark_buffer_dirty(path->nodes[0]);
854 
855 	btrfs_release_path(path);
856 	mutex_unlock(&node->mutex);
857 	goto do_again;
858 
859 insert_end:
860 	mutex_unlock(&node->mutex);
861 	return ret;
862 }
863 
864 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
865 				    struct btrfs_root *root,
866 				    struct btrfs_path *path,
867 				    struct btrfs_delayed_item *item)
868 {
869 	struct btrfs_delayed_item *curr, *next;
870 	struct extent_buffer *leaf;
871 	struct btrfs_key key;
872 	struct list_head head;
873 	int nitems, i, last_item;
874 	int ret = 0;
875 
876 	BUG_ON(!path->nodes[0]);
877 
878 	leaf = path->nodes[0];
879 
880 	i = path->slots[0];
881 	last_item = btrfs_header_nritems(leaf) - 1;
882 	if (i > last_item)
883 		return -ENOENT;	/* FIXME: Is errno suitable? */
884 
885 	next = item;
886 	INIT_LIST_HEAD(&head);
887 	btrfs_item_key_to_cpu(leaf, &key, i);
888 	nitems = 0;
889 	/*
890 	 * count the number of the dir index items that we can delete in batch
891 	 */
892 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
893 		list_add_tail(&next->tree_list, &head);
894 		nitems++;
895 
896 		curr = next;
897 		next = __btrfs_next_delayed_item(curr);
898 		if (!next)
899 			break;
900 
901 		if (!btrfs_is_continuous_delayed_item(curr, next))
902 			break;
903 
904 		i++;
905 		if (i > last_item)
906 			break;
907 		btrfs_item_key_to_cpu(leaf, &key, i);
908 	}
909 
910 	if (!nitems)
911 		return 0;
912 
913 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
914 	if (ret)
915 		goto out;
916 
917 	list_for_each_entry_safe(curr, next, &head, tree_list) {
918 		btrfs_delayed_item_release_metadata(root, curr);
919 		list_del(&curr->tree_list);
920 		btrfs_release_delayed_item(curr);
921 	}
922 
923 out:
924 	return ret;
925 }
926 
927 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
928 				      struct btrfs_path *path,
929 				      struct btrfs_root *root,
930 				      struct btrfs_delayed_node *node)
931 {
932 	struct btrfs_delayed_item *curr, *prev;
933 	unsigned int nofs_flag;
934 	int ret = 0;
935 
936 do_again:
937 	mutex_lock(&node->mutex);
938 	curr = __btrfs_first_delayed_deletion_item(node);
939 	if (!curr)
940 		goto delete_fail;
941 
942 	nofs_flag = memalloc_nofs_save();
943 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
944 	memalloc_nofs_restore(nofs_flag);
945 	if (ret < 0)
946 		goto delete_fail;
947 	else if (ret > 0) {
948 		/*
949 		 * can't find the item which the node points to, so this node
950 		 * is invalid, just drop it.
951 		 */
952 		prev = curr;
953 		curr = __btrfs_next_delayed_item(prev);
954 		btrfs_release_delayed_item(prev);
955 		ret = 0;
956 		btrfs_release_path(path);
957 		if (curr) {
958 			mutex_unlock(&node->mutex);
959 			goto do_again;
960 		} else
961 			goto delete_fail;
962 	}
963 
964 	btrfs_batch_delete_items(trans, root, path, curr);
965 	btrfs_release_path(path);
966 	mutex_unlock(&node->mutex);
967 	goto do_again;
968 
969 delete_fail:
970 	btrfs_release_path(path);
971 	mutex_unlock(&node->mutex);
972 	return ret;
973 }
974 
975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
976 {
977 	struct btrfs_delayed_root *delayed_root;
978 
979 	if (delayed_node &&
980 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981 		BUG_ON(!delayed_node->root);
982 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983 		delayed_node->count--;
984 
985 		delayed_root = delayed_node->root->fs_info->delayed_root;
986 		finish_one_item(delayed_root);
987 	}
988 }
989 
990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
991 {
992 	struct btrfs_delayed_root *delayed_root;
993 
994 	ASSERT(delayed_node->root);
995 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
996 	delayed_node->count--;
997 
998 	delayed_root = delayed_node->root->fs_info->delayed_root;
999 	finish_one_item(delayed_root);
1000 }
1001 
1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003 					struct btrfs_root *root,
1004 					struct btrfs_path *path,
1005 					struct btrfs_delayed_node *node)
1006 {
1007 	struct btrfs_fs_info *fs_info = root->fs_info;
1008 	struct btrfs_key key;
1009 	struct btrfs_inode_item *inode_item;
1010 	struct extent_buffer *leaf;
1011 	unsigned int nofs_flag;
1012 	int mod;
1013 	int ret;
1014 
1015 	key.objectid = node->inode_id;
1016 	key.type = BTRFS_INODE_ITEM_KEY;
1017 	key.offset = 0;
1018 
1019 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1020 		mod = -1;
1021 	else
1022 		mod = 1;
1023 
1024 	nofs_flag = memalloc_nofs_save();
1025 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1026 	memalloc_nofs_restore(nofs_flag);
1027 	if (ret > 0) {
1028 		btrfs_release_path(path);
1029 		return -ENOENT;
1030 	} else if (ret < 0) {
1031 		return ret;
1032 	}
1033 
1034 	leaf = path->nodes[0];
1035 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036 				    struct btrfs_inode_item);
1037 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038 			    sizeof(struct btrfs_inode_item));
1039 	btrfs_mark_buffer_dirty(leaf);
1040 
1041 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042 		goto no_iref;
1043 
1044 	path->slots[0]++;
1045 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1046 		goto search;
1047 again:
1048 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049 	if (key.objectid != node->inode_id)
1050 		goto out;
1051 
1052 	if (key.type != BTRFS_INODE_REF_KEY &&
1053 	    key.type != BTRFS_INODE_EXTREF_KEY)
1054 		goto out;
1055 
1056 	/*
1057 	 * Delayed iref deletion is for the inode who has only one link,
1058 	 * so there is only one iref. The case that several irefs are
1059 	 * in the same item doesn't exist.
1060 	 */
1061 	btrfs_del_item(trans, root, path);
1062 out:
1063 	btrfs_release_delayed_iref(node);
1064 no_iref:
1065 	btrfs_release_path(path);
1066 err_out:
1067 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068 	btrfs_release_delayed_inode(node);
1069 
1070 	return ret;
1071 
1072 search:
1073 	btrfs_release_path(path);
1074 
1075 	key.type = BTRFS_INODE_EXTREF_KEY;
1076 	key.offset = -1;
1077 
1078 	nofs_flag = memalloc_nofs_save();
1079 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1080 	memalloc_nofs_restore(nofs_flag);
1081 	if (ret < 0)
1082 		goto err_out;
1083 	ASSERT(ret);
1084 
1085 	ret = 0;
1086 	leaf = path->nodes[0];
1087 	path->slots[0]--;
1088 	goto again;
1089 }
1090 
1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092 					     struct btrfs_root *root,
1093 					     struct btrfs_path *path,
1094 					     struct btrfs_delayed_node *node)
1095 {
1096 	int ret;
1097 
1098 	mutex_lock(&node->mutex);
1099 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100 		mutex_unlock(&node->mutex);
1101 		return 0;
1102 	}
1103 
1104 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105 	mutex_unlock(&node->mutex);
1106 	return ret;
1107 }
1108 
1109 static inline int
1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111 				   struct btrfs_path *path,
1112 				   struct btrfs_delayed_node *node)
1113 {
1114 	int ret;
1115 
1116 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1125 	return ret;
1126 }
1127 
1128 /*
1129  * Called when committing the transaction.
1130  * Returns 0 on success.
1131  * Returns < 0 on error and returns with an aborted transaction with any
1132  * outstanding delayed items cleaned up.
1133  */
1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1135 {
1136 	struct btrfs_fs_info *fs_info = trans->fs_info;
1137 	struct btrfs_delayed_root *delayed_root;
1138 	struct btrfs_delayed_node *curr_node, *prev_node;
1139 	struct btrfs_path *path;
1140 	struct btrfs_block_rsv *block_rsv;
1141 	int ret = 0;
1142 	bool count = (nr > 0);
1143 
1144 	if (TRANS_ABORTED(trans))
1145 		return -EIO;
1146 
1147 	path = btrfs_alloc_path();
1148 	if (!path)
1149 		return -ENOMEM;
1150 
1151 	block_rsv = trans->block_rsv;
1152 	trans->block_rsv = &fs_info->delayed_block_rsv;
1153 
1154 	delayed_root = fs_info->delayed_root;
1155 
1156 	curr_node = btrfs_first_delayed_node(delayed_root);
1157 	while (curr_node && (!count || (count && nr--))) {
1158 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1159 							 curr_node);
1160 		if (ret) {
1161 			btrfs_release_delayed_node(curr_node);
1162 			curr_node = NULL;
1163 			btrfs_abort_transaction(trans, ret);
1164 			break;
1165 		}
1166 
1167 		prev_node = curr_node;
1168 		curr_node = btrfs_next_delayed_node(curr_node);
1169 		btrfs_release_delayed_node(prev_node);
1170 	}
1171 
1172 	if (curr_node)
1173 		btrfs_release_delayed_node(curr_node);
1174 	btrfs_free_path(path);
1175 	trans->block_rsv = block_rsv;
1176 
1177 	return ret;
1178 }
1179 
1180 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1181 {
1182 	return __btrfs_run_delayed_items(trans, -1);
1183 }
1184 
1185 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1186 {
1187 	return __btrfs_run_delayed_items(trans, nr);
1188 }
1189 
1190 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1191 				     struct btrfs_inode *inode)
1192 {
1193 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1194 	struct btrfs_path *path;
1195 	struct btrfs_block_rsv *block_rsv;
1196 	int ret;
1197 
1198 	if (!delayed_node)
1199 		return 0;
1200 
1201 	mutex_lock(&delayed_node->mutex);
1202 	if (!delayed_node->count) {
1203 		mutex_unlock(&delayed_node->mutex);
1204 		btrfs_release_delayed_node(delayed_node);
1205 		return 0;
1206 	}
1207 	mutex_unlock(&delayed_node->mutex);
1208 
1209 	path = btrfs_alloc_path();
1210 	if (!path) {
1211 		btrfs_release_delayed_node(delayed_node);
1212 		return -ENOMEM;
1213 	}
1214 
1215 	block_rsv = trans->block_rsv;
1216 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1217 
1218 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1219 
1220 	btrfs_release_delayed_node(delayed_node);
1221 	btrfs_free_path(path);
1222 	trans->block_rsv = block_rsv;
1223 
1224 	return ret;
1225 }
1226 
1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1228 {
1229 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1230 	struct btrfs_trans_handle *trans;
1231 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1232 	struct btrfs_path *path;
1233 	struct btrfs_block_rsv *block_rsv;
1234 	int ret;
1235 
1236 	if (!delayed_node)
1237 		return 0;
1238 
1239 	mutex_lock(&delayed_node->mutex);
1240 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1241 		mutex_unlock(&delayed_node->mutex);
1242 		btrfs_release_delayed_node(delayed_node);
1243 		return 0;
1244 	}
1245 	mutex_unlock(&delayed_node->mutex);
1246 
1247 	trans = btrfs_join_transaction(delayed_node->root);
1248 	if (IS_ERR(trans)) {
1249 		ret = PTR_ERR(trans);
1250 		goto out;
1251 	}
1252 
1253 	path = btrfs_alloc_path();
1254 	if (!path) {
1255 		ret = -ENOMEM;
1256 		goto trans_out;
1257 	}
1258 
1259 	block_rsv = trans->block_rsv;
1260 	trans->block_rsv = &fs_info->delayed_block_rsv;
1261 
1262 	mutex_lock(&delayed_node->mutex);
1263 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265 						   path, delayed_node);
1266 	else
1267 		ret = 0;
1268 	mutex_unlock(&delayed_node->mutex);
1269 
1270 	btrfs_free_path(path);
1271 	trans->block_rsv = block_rsv;
1272 trans_out:
1273 	btrfs_end_transaction(trans);
1274 	btrfs_btree_balance_dirty(fs_info);
1275 out:
1276 	btrfs_release_delayed_node(delayed_node);
1277 
1278 	return ret;
1279 }
1280 
1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282 {
1283 	struct btrfs_delayed_node *delayed_node;
1284 
1285 	delayed_node = READ_ONCE(inode->delayed_node);
1286 	if (!delayed_node)
1287 		return;
1288 
1289 	inode->delayed_node = NULL;
1290 	btrfs_release_delayed_node(delayed_node);
1291 }
1292 
1293 struct btrfs_async_delayed_work {
1294 	struct btrfs_delayed_root *delayed_root;
1295 	int nr;
1296 	struct btrfs_work work;
1297 };
1298 
1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300 {
1301 	struct btrfs_async_delayed_work *async_work;
1302 	struct btrfs_delayed_root *delayed_root;
1303 	struct btrfs_trans_handle *trans;
1304 	struct btrfs_path *path;
1305 	struct btrfs_delayed_node *delayed_node = NULL;
1306 	struct btrfs_root *root;
1307 	struct btrfs_block_rsv *block_rsv;
1308 	int total_done = 0;
1309 
1310 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311 	delayed_root = async_work->delayed_root;
1312 
1313 	path = btrfs_alloc_path();
1314 	if (!path)
1315 		goto out;
1316 
1317 	do {
1318 		if (atomic_read(&delayed_root->items) <
1319 		    BTRFS_DELAYED_BACKGROUND / 2)
1320 			break;
1321 
1322 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323 		if (!delayed_node)
1324 			break;
1325 
1326 		root = delayed_node->root;
1327 
1328 		trans = btrfs_join_transaction(root);
1329 		if (IS_ERR(trans)) {
1330 			btrfs_release_path(path);
1331 			btrfs_release_prepared_delayed_node(delayed_node);
1332 			total_done++;
1333 			continue;
1334 		}
1335 
1336 		block_rsv = trans->block_rsv;
1337 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1338 
1339 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1340 
1341 		trans->block_rsv = block_rsv;
1342 		btrfs_end_transaction(trans);
1343 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1344 
1345 		btrfs_release_path(path);
1346 		btrfs_release_prepared_delayed_node(delayed_node);
1347 		total_done++;
1348 
1349 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1350 		 || total_done < async_work->nr);
1351 
1352 	btrfs_free_path(path);
1353 out:
1354 	wake_up(&delayed_root->wait);
1355 	kfree(async_work);
1356 }
1357 
1358 
1359 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1360 				     struct btrfs_fs_info *fs_info, int nr)
1361 {
1362 	struct btrfs_async_delayed_work *async_work;
1363 
1364 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1365 	if (!async_work)
1366 		return -ENOMEM;
1367 
1368 	async_work->delayed_root = delayed_root;
1369 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1370 			NULL);
1371 	async_work->nr = nr;
1372 
1373 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1374 	return 0;
1375 }
1376 
1377 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1378 {
1379 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1380 }
1381 
1382 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1383 {
1384 	int val = atomic_read(&delayed_root->items_seq);
1385 
1386 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1387 		return 1;
1388 
1389 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1390 		return 1;
1391 
1392 	return 0;
1393 }
1394 
1395 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1396 {
1397 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1398 
1399 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1400 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1401 		return;
1402 
1403 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1404 		int seq;
1405 		int ret;
1406 
1407 		seq = atomic_read(&delayed_root->items_seq);
1408 
1409 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1410 		if (ret)
1411 			return;
1412 
1413 		wait_event_interruptible(delayed_root->wait,
1414 					 could_end_wait(delayed_root, seq));
1415 		return;
1416 	}
1417 
1418 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1419 }
1420 
1421 /* Will return 0 or -ENOMEM */
1422 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1423 				   const char *name, int name_len,
1424 				   struct btrfs_inode *dir,
1425 				   struct btrfs_disk_key *disk_key, u8 type,
1426 				   u64 index)
1427 {
1428 	struct btrfs_delayed_node *delayed_node;
1429 	struct btrfs_delayed_item *delayed_item;
1430 	struct btrfs_dir_item *dir_item;
1431 	int ret;
1432 
1433 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1434 	if (IS_ERR(delayed_node))
1435 		return PTR_ERR(delayed_node);
1436 
1437 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1438 	if (!delayed_item) {
1439 		ret = -ENOMEM;
1440 		goto release_node;
1441 	}
1442 
1443 	delayed_item->key.objectid = btrfs_ino(dir);
1444 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1445 	delayed_item->key.offset = index;
1446 
1447 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1448 	dir_item->location = *disk_key;
1449 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1450 	btrfs_set_stack_dir_data_len(dir_item, 0);
1451 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1452 	btrfs_set_stack_dir_type(dir_item, type);
1453 	memcpy((char *)(dir_item + 1), name, name_len);
1454 
1455 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1456 	/*
1457 	 * we have reserved enough space when we start a new transaction,
1458 	 * so reserving metadata failure is impossible
1459 	 */
1460 	BUG_ON(ret);
1461 
1462 	mutex_lock(&delayed_node->mutex);
1463 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1464 	if (unlikely(ret)) {
1465 		btrfs_err(trans->fs_info,
1466 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1467 			  name_len, name, delayed_node->root->root_key.objectid,
1468 			  delayed_node->inode_id, ret);
1469 		BUG();
1470 	}
1471 	mutex_unlock(&delayed_node->mutex);
1472 
1473 release_node:
1474 	btrfs_release_delayed_node(delayed_node);
1475 	return ret;
1476 }
1477 
1478 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1479 					       struct btrfs_delayed_node *node,
1480 					       struct btrfs_key *key)
1481 {
1482 	struct btrfs_delayed_item *item;
1483 
1484 	mutex_lock(&node->mutex);
1485 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1486 	if (!item) {
1487 		mutex_unlock(&node->mutex);
1488 		return 1;
1489 	}
1490 
1491 	btrfs_delayed_item_release_metadata(node->root, item);
1492 	btrfs_release_delayed_item(item);
1493 	mutex_unlock(&node->mutex);
1494 	return 0;
1495 }
1496 
1497 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1498 				   struct btrfs_inode *dir, u64 index)
1499 {
1500 	struct btrfs_delayed_node *node;
1501 	struct btrfs_delayed_item *item;
1502 	struct btrfs_key item_key;
1503 	int ret;
1504 
1505 	node = btrfs_get_or_create_delayed_node(dir);
1506 	if (IS_ERR(node))
1507 		return PTR_ERR(node);
1508 
1509 	item_key.objectid = btrfs_ino(dir);
1510 	item_key.type = BTRFS_DIR_INDEX_KEY;
1511 	item_key.offset = index;
1512 
1513 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1514 						  &item_key);
1515 	if (!ret)
1516 		goto end;
1517 
1518 	item = btrfs_alloc_delayed_item(0);
1519 	if (!item) {
1520 		ret = -ENOMEM;
1521 		goto end;
1522 	}
1523 
1524 	item->key = item_key;
1525 
1526 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1527 	/*
1528 	 * we have reserved enough space when we start a new transaction,
1529 	 * so reserving metadata failure is impossible.
1530 	 */
1531 	if (ret < 0) {
1532 		btrfs_err(trans->fs_info,
1533 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1534 		btrfs_release_delayed_item(item);
1535 		goto end;
1536 	}
1537 
1538 	mutex_lock(&node->mutex);
1539 	ret = __btrfs_add_delayed_deletion_item(node, item);
1540 	if (unlikely(ret)) {
1541 		btrfs_err(trans->fs_info,
1542 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1543 			  index, node->root->root_key.objectid,
1544 			  node->inode_id, ret);
1545 		btrfs_delayed_item_release_metadata(dir->root, item);
1546 		btrfs_release_delayed_item(item);
1547 	}
1548 	mutex_unlock(&node->mutex);
1549 end:
1550 	btrfs_release_delayed_node(node);
1551 	return ret;
1552 }
1553 
1554 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1555 {
1556 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1557 
1558 	if (!delayed_node)
1559 		return -ENOENT;
1560 
1561 	/*
1562 	 * Since we have held i_mutex of this directory, it is impossible that
1563 	 * a new directory index is added into the delayed node and index_cnt
1564 	 * is updated now. So we needn't lock the delayed node.
1565 	 */
1566 	if (!delayed_node->index_cnt) {
1567 		btrfs_release_delayed_node(delayed_node);
1568 		return -EINVAL;
1569 	}
1570 
1571 	inode->index_cnt = delayed_node->index_cnt;
1572 	btrfs_release_delayed_node(delayed_node);
1573 	return 0;
1574 }
1575 
1576 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1577 				     struct list_head *ins_list,
1578 				     struct list_head *del_list)
1579 {
1580 	struct btrfs_delayed_node *delayed_node;
1581 	struct btrfs_delayed_item *item;
1582 
1583 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1584 	if (!delayed_node)
1585 		return false;
1586 
1587 	/*
1588 	 * We can only do one readdir with delayed items at a time because of
1589 	 * item->readdir_list.
1590 	 */
1591 	inode_unlock_shared(inode);
1592 	inode_lock(inode);
1593 
1594 	mutex_lock(&delayed_node->mutex);
1595 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1596 	while (item) {
1597 		refcount_inc(&item->refs);
1598 		list_add_tail(&item->readdir_list, ins_list);
1599 		item = __btrfs_next_delayed_item(item);
1600 	}
1601 
1602 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1603 	while (item) {
1604 		refcount_inc(&item->refs);
1605 		list_add_tail(&item->readdir_list, del_list);
1606 		item = __btrfs_next_delayed_item(item);
1607 	}
1608 	mutex_unlock(&delayed_node->mutex);
1609 	/*
1610 	 * This delayed node is still cached in the btrfs inode, so refs
1611 	 * must be > 1 now, and we needn't check it is going to be freed
1612 	 * or not.
1613 	 *
1614 	 * Besides that, this function is used to read dir, we do not
1615 	 * insert/delete delayed items in this period. So we also needn't
1616 	 * requeue or dequeue this delayed node.
1617 	 */
1618 	refcount_dec(&delayed_node->refs);
1619 
1620 	return true;
1621 }
1622 
1623 void btrfs_readdir_put_delayed_items(struct inode *inode,
1624 				     struct list_head *ins_list,
1625 				     struct list_head *del_list)
1626 {
1627 	struct btrfs_delayed_item *curr, *next;
1628 
1629 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1630 		list_del(&curr->readdir_list);
1631 		if (refcount_dec_and_test(&curr->refs))
1632 			kfree(curr);
1633 	}
1634 
1635 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1636 		list_del(&curr->readdir_list);
1637 		if (refcount_dec_and_test(&curr->refs))
1638 			kfree(curr);
1639 	}
1640 
1641 	/*
1642 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1643 	 * read lock.
1644 	 */
1645 	downgrade_write(&inode->i_rwsem);
1646 }
1647 
1648 int btrfs_should_delete_dir_index(struct list_head *del_list,
1649 				  u64 index)
1650 {
1651 	struct btrfs_delayed_item *curr;
1652 	int ret = 0;
1653 
1654 	list_for_each_entry(curr, del_list, readdir_list) {
1655 		if (curr->key.offset > index)
1656 			break;
1657 		if (curr->key.offset == index) {
1658 			ret = 1;
1659 			break;
1660 		}
1661 	}
1662 	return ret;
1663 }
1664 
1665 /*
1666  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1667  *
1668  */
1669 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1670 				    struct list_head *ins_list)
1671 {
1672 	struct btrfs_dir_item *di;
1673 	struct btrfs_delayed_item *curr, *next;
1674 	struct btrfs_key location;
1675 	char *name;
1676 	int name_len;
1677 	int over = 0;
1678 	unsigned char d_type;
1679 
1680 	if (list_empty(ins_list))
1681 		return 0;
1682 
1683 	/*
1684 	 * Changing the data of the delayed item is impossible. So
1685 	 * we needn't lock them. And we have held i_mutex of the
1686 	 * directory, nobody can delete any directory indexes now.
1687 	 */
1688 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1689 		list_del(&curr->readdir_list);
1690 
1691 		if (curr->key.offset < ctx->pos) {
1692 			if (refcount_dec_and_test(&curr->refs))
1693 				kfree(curr);
1694 			continue;
1695 		}
1696 
1697 		ctx->pos = curr->key.offset;
1698 
1699 		di = (struct btrfs_dir_item *)curr->data;
1700 		name = (char *)(di + 1);
1701 		name_len = btrfs_stack_dir_name_len(di);
1702 
1703 		d_type = fs_ftype_to_dtype(di->type);
1704 		btrfs_disk_key_to_cpu(&location, &di->location);
1705 
1706 		over = !dir_emit(ctx, name, name_len,
1707 			       location.objectid, d_type);
1708 
1709 		if (refcount_dec_and_test(&curr->refs))
1710 			kfree(curr);
1711 
1712 		if (over)
1713 			return 1;
1714 		ctx->pos++;
1715 	}
1716 	return 0;
1717 }
1718 
1719 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1720 				  struct btrfs_inode_item *inode_item,
1721 				  struct inode *inode)
1722 {
1723 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1724 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1725 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1726 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1727 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1728 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1729 	btrfs_set_stack_inode_generation(inode_item,
1730 					 BTRFS_I(inode)->generation);
1731 	btrfs_set_stack_inode_sequence(inode_item,
1732 				       inode_peek_iversion(inode));
1733 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1734 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1735 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1736 	btrfs_set_stack_inode_block_group(inode_item, 0);
1737 
1738 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1739 				     inode->i_atime.tv_sec);
1740 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1741 				      inode->i_atime.tv_nsec);
1742 
1743 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1744 				     inode->i_mtime.tv_sec);
1745 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1746 				      inode->i_mtime.tv_nsec);
1747 
1748 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1749 				     inode->i_ctime.tv_sec);
1750 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1751 				      inode->i_ctime.tv_nsec);
1752 
1753 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1754 				     BTRFS_I(inode)->i_otime.tv_sec);
1755 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1756 				     BTRFS_I(inode)->i_otime.tv_nsec);
1757 }
1758 
1759 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1760 {
1761 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1762 	struct btrfs_delayed_node *delayed_node;
1763 	struct btrfs_inode_item *inode_item;
1764 
1765 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766 	if (!delayed_node)
1767 		return -ENOENT;
1768 
1769 	mutex_lock(&delayed_node->mutex);
1770 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771 		mutex_unlock(&delayed_node->mutex);
1772 		btrfs_release_delayed_node(delayed_node);
1773 		return -ENOENT;
1774 	}
1775 
1776 	inode_item = &delayed_node->inode_item;
1777 
1778 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1782 			round_up(i_size_read(inode), fs_info->sectorsize));
1783 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1784 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1785 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1786 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1787         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1788 
1789 	inode_set_iversion_queried(inode,
1790 				   btrfs_stack_inode_sequence(inode_item));
1791 	inode->i_rdev = 0;
1792 	*rdev = btrfs_stack_inode_rdev(inode_item);
1793 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1794 
1795 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1796 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1797 
1798 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1799 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1800 
1801 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1802 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1803 
1804 	BTRFS_I(inode)->i_otime.tv_sec =
1805 		btrfs_stack_timespec_sec(&inode_item->otime);
1806 	BTRFS_I(inode)->i_otime.tv_nsec =
1807 		btrfs_stack_timespec_nsec(&inode_item->otime);
1808 
1809 	inode->i_generation = BTRFS_I(inode)->generation;
1810 	BTRFS_I(inode)->index_cnt = (u64)-1;
1811 
1812 	mutex_unlock(&delayed_node->mutex);
1813 	btrfs_release_delayed_node(delayed_node);
1814 	return 0;
1815 }
1816 
1817 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1818 			       struct btrfs_root *root,
1819 			       struct btrfs_inode *inode)
1820 {
1821 	struct btrfs_delayed_node *delayed_node;
1822 	int ret = 0;
1823 
1824 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1825 	if (IS_ERR(delayed_node))
1826 		return PTR_ERR(delayed_node);
1827 
1828 	mutex_lock(&delayed_node->mutex);
1829 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1830 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1831 				      &inode->vfs_inode);
1832 		goto release_node;
1833 	}
1834 
1835 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1836 						   delayed_node);
1837 	if (ret)
1838 		goto release_node;
1839 
1840 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1841 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1842 	delayed_node->count++;
1843 	atomic_inc(&root->fs_info->delayed_root->items);
1844 release_node:
1845 	mutex_unlock(&delayed_node->mutex);
1846 	btrfs_release_delayed_node(delayed_node);
1847 	return ret;
1848 }
1849 
1850 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1851 {
1852 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1853 	struct btrfs_delayed_node *delayed_node;
1854 
1855 	/*
1856 	 * we don't do delayed inode updates during log recovery because it
1857 	 * leads to enospc problems.  This means we also can't do
1858 	 * delayed inode refs
1859 	 */
1860 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1861 		return -EAGAIN;
1862 
1863 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1864 	if (IS_ERR(delayed_node))
1865 		return PTR_ERR(delayed_node);
1866 
1867 	/*
1868 	 * We don't reserve space for inode ref deletion is because:
1869 	 * - We ONLY do async inode ref deletion for the inode who has only
1870 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1871 	 *   And in most case, the inode ref and the inode item are in the
1872 	 *   same leaf, and we will deal with them at the same time.
1873 	 *   Since we are sure we will reserve the space for the inode item,
1874 	 *   it is unnecessary to reserve space for inode ref deletion.
1875 	 * - If the inode ref and the inode item are not in the same leaf,
1876 	 *   We also needn't worry about enospc problem, because we reserve
1877 	 *   much more space for the inode update than it needs.
1878 	 * - At the worst, we can steal some space from the global reservation.
1879 	 *   It is very rare.
1880 	 */
1881 	mutex_lock(&delayed_node->mutex);
1882 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1883 		goto release_node;
1884 
1885 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1886 	delayed_node->count++;
1887 	atomic_inc(&fs_info->delayed_root->items);
1888 release_node:
1889 	mutex_unlock(&delayed_node->mutex);
1890 	btrfs_release_delayed_node(delayed_node);
1891 	return 0;
1892 }
1893 
1894 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1895 {
1896 	struct btrfs_root *root = delayed_node->root;
1897 	struct btrfs_fs_info *fs_info = root->fs_info;
1898 	struct btrfs_delayed_item *curr_item, *prev_item;
1899 
1900 	mutex_lock(&delayed_node->mutex);
1901 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1902 	while (curr_item) {
1903 		btrfs_delayed_item_release_metadata(root, curr_item);
1904 		prev_item = curr_item;
1905 		curr_item = __btrfs_next_delayed_item(prev_item);
1906 		btrfs_release_delayed_item(prev_item);
1907 	}
1908 
1909 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1910 	while (curr_item) {
1911 		btrfs_delayed_item_release_metadata(root, curr_item);
1912 		prev_item = curr_item;
1913 		curr_item = __btrfs_next_delayed_item(prev_item);
1914 		btrfs_release_delayed_item(prev_item);
1915 	}
1916 
1917 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1918 		btrfs_release_delayed_iref(delayed_node);
1919 
1920 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1921 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1922 		btrfs_release_delayed_inode(delayed_node);
1923 	}
1924 	mutex_unlock(&delayed_node->mutex);
1925 }
1926 
1927 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1928 {
1929 	struct btrfs_delayed_node *delayed_node;
1930 
1931 	delayed_node = btrfs_get_delayed_node(inode);
1932 	if (!delayed_node)
1933 		return;
1934 
1935 	__btrfs_kill_delayed_node(delayed_node);
1936 	btrfs_release_delayed_node(delayed_node);
1937 }
1938 
1939 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1940 {
1941 	u64 inode_id = 0;
1942 	struct btrfs_delayed_node *delayed_nodes[8];
1943 	int i, n;
1944 
1945 	while (1) {
1946 		spin_lock(&root->inode_lock);
1947 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1948 					   (void **)delayed_nodes, inode_id,
1949 					   ARRAY_SIZE(delayed_nodes));
1950 		if (!n) {
1951 			spin_unlock(&root->inode_lock);
1952 			break;
1953 		}
1954 
1955 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1956 		for (i = 0; i < n; i++) {
1957 			/*
1958 			 * Don't increase refs in case the node is dead and
1959 			 * about to be removed from the tree in the loop below
1960 			 */
1961 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1962 				delayed_nodes[i] = NULL;
1963 		}
1964 		spin_unlock(&root->inode_lock);
1965 
1966 		for (i = 0; i < n; i++) {
1967 			if (!delayed_nodes[i])
1968 				continue;
1969 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1970 			btrfs_release_delayed_node(delayed_nodes[i]);
1971 		}
1972 	}
1973 }
1974 
1975 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1976 {
1977 	struct btrfs_delayed_node *curr_node, *prev_node;
1978 
1979 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1980 	while (curr_node) {
1981 		__btrfs_kill_delayed_node(curr_node);
1982 
1983 		prev_node = curr_node;
1984 		curr_node = btrfs_next_delayed_node(curr_node);
1985 		btrfs_release_delayed_node(prev_node);
1986 	}
1987 }
1988 
1989