xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "delayed-inode.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "ctree.h"
15 #include "qgroup.h"
16 #include "locking.h"
17 
18 #define BTRFS_DELAYED_WRITEBACK		512
19 #define BTRFS_DELAYED_BACKGROUND	128
20 #define BTRFS_DELAYED_BATCH		16
21 
22 static struct kmem_cache *delayed_node_cache;
23 
24 int __init btrfs_delayed_inode_init(void)
25 {
26 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
27 					sizeof(struct btrfs_delayed_node),
28 					0,
29 					SLAB_MEM_SPREAD,
30 					NULL);
31 	if (!delayed_node_cache)
32 		return -ENOMEM;
33 	return 0;
34 }
35 
36 void __cold btrfs_delayed_inode_exit(void)
37 {
38 	kmem_cache_destroy(delayed_node_cache);
39 }
40 
41 static inline void btrfs_init_delayed_node(
42 				struct btrfs_delayed_node *delayed_node,
43 				struct btrfs_root *root, u64 inode_id)
44 {
45 	delayed_node->root = root;
46 	delayed_node->inode_id = inode_id;
47 	refcount_set(&delayed_node->refs, 0);
48 	delayed_node->ins_root = RB_ROOT_CACHED;
49 	delayed_node->del_root = RB_ROOT_CACHED;
50 	mutex_init(&delayed_node->mutex);
51 	INIT_LIST_HEAD(&delayed_node->n_list);
52 	INIT_LIST_HEAD(&delayed_node->p_list);
53 }
54 
55 static inline int btrfs_is_continuous_delayed_item(
56 					struct btrfs_delayed_item *item1,
57 					struct btrfs_delayed_item *item2)
58 {
59 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
60 	    item1->key.objectid == item2->key.objectid &&
61 	    item1->key.type == item2->key.type &&
62 	    item1->key.offset + 1 == item2->key.offset)
63 		return 1;
64 	return 0;
65 }
66 
67 static struct btrfs_delayed_node *btrfs_get_delayed_node(
68 		struct btrfs_inode *btrfs_inode)
69 {
70 	struct btrfs_root *root = btrfs_inode->root;
71 	u64 ino = btrfs_ino(btrfs_inode);
72 	struct btrfs_delayed_node *node;
73 
74 	node = READ_ONCE(btrfs_inode->delayed_node);
75 	if (node) {
76 		refcount_inc(&node->refs);
77 		return node;
78 	}
79 
80 	spin_lock(&root->inode_lock);
81 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
82 
83 	if (node) {
84 		if (btrfs_inode->delayed_node) {
85 			refcount_inc(&node->refs);	/* can be accessed */
86 			BUG_ON(btrfs_inode->delayed_node != node);
87 			spin_unlock(&root->inode_lock);
88 			return node;
89 		}
90 
91 		/*
92 		 * It's possible that we're racing into the middle of removing
93 		 * this node from the radix tree.  In this case, the refcount
94 		 * was zero and it should never go back to one.  Just return
95 		 * NULL like it was never in the radix at all; our release
96 		 * function is in the process of removing it.
97 		 *
98 		 * Some implementations of refcount_inc refuse to bump the
99 		 * refcount once it has hit zero.  If we don't do this dance
100 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
101 		 * of actually bumping the refcount.
102 		 *
103 		 * If this node is properly in the radix, we want to bump the
104 		 * refcount twice, once for the inode and once for this get
105 		 * operation.
106 		 */
107 		if (refcount_inc_not_zero(&node->refs)) {
108 			refcount_inc(&node->refs);
109 			btrfs_inode->delayed_node = node;
110 		} else {
111 			node = NULL;
112 		}
113 
114 		spin_unlock(&root->inode_lock);
115 		return node;
116 	}
117 	spin_unlock(&root->inode_lock);
118 
119 	return NULL;
120 }
121 
122 /* Will return either the node or PTR_ERR(-ENOMEM) */
123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
124 		struct btrfs_inode *btrfs_inode)
125 {
126 	struct btrfs_delayed_node *node;
127 	struct btrfs_root *root = btrfs_inode->root;
128 	u64 ino = btrfs_ino(btrfs_inode);
129 	int ret;
130 
131 again:
132 	node = btrfs_get_delayed_node(btrfs_inode);
133 	if (node)
134 		return node;
135 
136 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
137 	if (!node)
138 		return ERR_PTR(-ENOMEM);
139 	btrfs_init_delayed_node(node, root, ino);
140 
141 	/* cached in the btrfs inode and can be accessed */
142 	refcount_set(&node->refs, 2);
143 
144 	ret = radix_tree_preload(GFP_NOFS);
145 	if (ret) {
146 		kmem_cache_free(delayed_node_cache, node);
147 		return ERR_PTR(ret);
148 	}
149 
150 	spin_lock(&root->inode_lock);
151 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
152 	if (ret == -EEXIST) {
153 		spin_unlock(&root->inode_lock);
154 		kmem_cache_free(delayed_node_cache, node);
155 		radix_tree_preload_end();
156 		goto again;
157 	}
158 	btrfs_inode->delayed_node = node;
159 	spin_unlock(&root->inode_lock);
160 	radix_tree_preload_end();
161 
162 	return node;
163 }
164 
165 /*
166  * Call it when holding delayed_node->mutex
167  *
168  * If mod = 1, add this node into the prepared list.
169  */
170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
171 				     struct btrfs_delayed_node *node,
172 				     int mod)
173 {
174 	spin_lock(&root->lock);
175 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
176 		if (!list_empty(&node->p_list))
177 			list_move_tail(&node->p_list, &root->prepare_list);
178 		else if (mod)
179 			list_add_tail(&node->p_list, &root->prepare_list);
180 	} else {
181 		list_add_tail(&node->n_list, &root->node_list);
182 		list_add_tail(&node->p_list, &root->prepare_list);
183 		refcount_inc(&node->refs);	/* inserted into list */
184 		root->nodes++;
185 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
186 	}
187 	spin_unlock(&root->lock);
188 }
189 
190 /* Call it when holding delayed_node->mutex */
191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
192 				       struct btrfs_delayed_node *node)
193 {
194 	spin_lock(&root->lock);
195 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
196 		root->nodes--;
197 		refcount_dec(&node->refs);	/* not in the list */
198 		list_del_init(&node->n_list);
199 		if (!list_empty(&node->p_list))
200 			list_del_init(&node->p_list);
201 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
202 	}
203 	spin_unlock(&root->lock);
204 }
205 
206 static struct btrfs_delayed_node *btrfs_first_delayed_node(
207 			struct btrfs_delayed_root *delayed_root)
208 {
209 	struct list_head *p;
210 	struct btrfs_delayed_node *node = NULL;
211 
212 	spin_lock(&delayed_root->lock);
213 	if (list_empty(&delayed_root->node_list))
214 		goto out;
215 
216 	p = delayed_root->node_list.next;
217 	node = list_entry(p, struct btrfs_delayed_node, n_list);
218 	refcount_inc(&node->refs);
219 out:
220 	spin_unlock(&delayed_root->lock);
221 
222 	return node;
223 }
224 
225 static struct btrfs_delayed_node *btrfs_next_delayed_node(
226 						struct btrfs_delayed_node *node)
227 {
228 	struct btrfs_delayed_root *delayed_root;
229 	struct list_head *p;
230 	struct btrfs_delayed_node *next = NULL;
231 
232 	delayed_root = node->root->fs_info->delayed_root;
233 	spin_lock(&delayed_root->lock);
234 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
235 		/* not in the list */
236 		if (list_empty(&delayed_root->node_list))
237 			goto out;
238 		p = delayed_root->node_list.next;
239 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
240 		goto out;
241 	else
242 		p = node->n_list.next;
243 
244 	next = list_entry(p, struct btrfs_delayed_node, n_list);
245 	refcount_inc(&next->refs);
246 out:
247 	spin_unlock(&delayed_root->lock);
248 
249 	return next;
250 }
251 
252 static void __btrfs_release_delayed_node(
253 				struct btrfs_delayed_node *delayed_node,
254 				int mod)
255 {
256 	struct btrfs_delayed_root *delayed_root;
257 
258 	if (!delayed_node)
259 		return;
260 
261 	delayed_root = delayed_node->root->fs_info->delayed_root;
262 
263 	mutex_lock(&delayed_node->mutex);
264 	if (delayed_node->count)
265 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
266 	else
267 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
268 	mutex_unlock(&delayed_node->mutex);
269 
270 	if (refcount_dec_and_test(&delayed_node->refs)) {
271 		struct btrfs_root *root = delayed_node->root;
272 
273 		spin_lock(&root->inode_lock);
274 		/*
275 		 * Once our refcount goes to zero, nobody is allowed to bump it
276 		 * back up.  We can delete it now.
277 		 */
278 		ASSERT(refcount_read(&delayed_node->refs) == 0);
279 		radix_tree_delete(&root->delayed_nodes_tree,
280 				  delayed_node->inode_id);
281 		spin_unlock(&root->inode_lock);
282 		kmem_cache_free(delayed_node_cache, delayed_node);
283 	}
284 }
285 
286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
287 {
288 	__btrfs_release_delayed_node(node, 0);
289 }
290 
291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
292 					struct btrfs_delayed_root *delayed_root)
293 {
294 	struct list_head *p;
295 	struct btrfs_delayed_node *node = NULL;
296 
297 	spin_lock(&delayed_root->lock);
298 	if (list_empty(&delayed_root->prepare_list))
299 		goto out;
300 
301 	p = delayed_root->prepare_list.next;
302 	list_del_init(p);
303 	node = list_entry(p, struct btrfs_delayed_node, p_list);
304 	refcount_inc(&node->refs);
305 out:
306 	spin_unlock(&delayed_root->lock);
307 
308 	return node;
309 }
310 
311 static inline void btrfs_release_prepared_delayed_node(
312 					struct btrfs_delayed_node *node)
313 {
314 	__btrfs_release_delayed_node(node, 1);
315 }
316 
317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
318 {
319 	struct btrfs_delayed_item *item;
320 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
321 	if (item) {
322 		item->data_len = data_len;
323 		item->ins_or_del = 0;
324 		item->bytes_reserved = 0;
325 		item->delayed_node = NULL;
326 		refcount_set(&item->refs, 1);
327 	}
328 	return item;
329 }
330 
331 /*
332  * __btrfs_lookup_delayed_item - look up the delayed item by key
333  * @delayed_node: pointer to the delayed node
334  * @key:	  the key to look up
335  * @prev:	  used to store the prev item if the right item isn't found
336  * @next:	  used to store the next item if the right item isn't found
337  *
338  * Note: if we don't find the right item, we will return the prev item and
339  * the next item.
340  */
341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
342 				struct rb_root *root,
343 				struct btrfs_key *key,
344 				struct btrfs_delayed_item **prev,
345 				struct btrfs_delayed_item **next)
346 {
347 	struct rb_node *node, *prev_node = NULL;
348 	struct btrfs_delayed_item *delayed_item = NULL;
349 	int ret = 0;
350 
351 	node = root->rb_node;
352 
353 	while (node) {
354 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
355 					rb_node);
356 		prev_node = node;
357 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
358 		if (ret < 0)
359 			node = node->rb_right;
360 		else if (ret > 0)
361 			node = node->rb_left;
362 		else
363 			return delayed_item;
364 	}
365 
366 	if (prev) {
367 		if (!prev_node)
368 			*prev = NULL;
369 		else if (ret < 0)
370 			*prev = delayed_item;
371 		else if ((node = rb_prev(prev_node)) != NULL) {
372 			*prev = rb_entry(node, struct btrfs_delayed_item,
373 					 rb_node);
374 		} else
375 			*prev = NULL;
376 	}
377 
378 	if (next) {
379 		if (!prev_node)
380 			*next = NULL;
381 		else if (ret > 0)
382 			*next = delayed_item;
383 		else if ((node = rb_next(prev_node)) != NULL) {
384 			*next = rb_entry(node, struct btrfs_delayed_item,
385 					 rb_node);
386 		} else
387 			*next = NULL;
388 	}
389 	return NULL;
390 }
391 
392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
393 					struct btrfs_delayed_node *delayed_node,
394 					struct btrfs_key *key)
395 {
396 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
397 					   NULL, NULL);
398 }
399 
400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
401 				    struct btrfs_delayed_item *ins,
402 				    int action)
403 {
404 	struct rb_node **p, *node;
405 	struct rb_node *parent_node = NULL;
406 	struct rb_root_cached *root;
407 	struct btrfs_delayed_item *item;
408 	int cmp;
409 	bool leftmost = true;
410 
411 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 		root = &delayed_node->ins_root;
413 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 		root = &delayed_node->del_root;
415 	else
416 		BUG();
417 	p = &root->rb_root.rb_node;
418 	node = &ins->rb_node;
419 
420 	while (*p) {
421 		parent_node = *p;
422 		item = rb_entry(parent_node, struct btrfs_delayed_item,
423 				 rb_node);
424 
425 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 		if (cmp < 0) {
427 			p = &(*p)->rb_right;
428 			leftmost = false;
429 		} else if (cmp > 0) {
430 			p = &(*p)->rb_left;
431 		} else {
432 			return -EEXIST;
433 		}
434 	}
435 
436 	rb_link_node(node, parent_node, p);
437 	rb_insert_color_cached(node, root, leftmost);
438 	ins->delayed_node = delayed_node;
439 	ins->ins_or_del = action;
440 
441 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
442 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
443 	    ins->key.offset >= delayed_node->index_cnt)
444 			delayed_node->index_cnt = ins->key.offset + 1;
445 
446 	delayed_node->count++;
447 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
448 	return 0;
449 }
450 
451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
452 					      struct btrfs_delayed_item *item)
453 {
454 	return __btrfs_add_delayed_item(node, item,
455 					BTRFS_DELAYED_INSERTION_ITEM);
456 }
457 
458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
459 					     struct btrfs_delayed_item *item)
460 {
461 	return __btrfs_add_delayed_item(node, item,
462 					BTRFS_DELAYED_DELETION_ITEM);
463 }
464 
465 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
466 {
467 	int seq = atomic_inc_return(&delayed_root->items_seq);
468 
469 	/* atomic_dec_return implies a barrier */
470 	if ((atomic_dec_return(&delayed_root->items) <
471 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
472 		cond_wake_up_nomb(&delayed_root->wait);
473 }
474 
475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
476 {
477 	struct rb_root_cached *root;
478 	struct btrfs_delayed_root *delayed_root;
479 
480 	/* Not associated with any delayed_node */
481 	if (!delayed_item->delayed_node)
482 		return;
483 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
484 
485 	BUG_ON(!delayed_root);
486 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
487 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
488 
489 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
490 		root = &delayed_item->delayed_node->ins_root;
491 	else
492 		root = &delayed_item->delayed_node->del_root;
493 
494 	rb_erase_cached(&delayed_item->rb_node, root);
495 	delayed_item->delayed_node->count--;
496 
497 	finish_one_item(delayed_root);
498 }
499 
500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
501 {
502 	if (item) {
503 		__btrfs_remove_delayed_item(item);
504 		if (refcount_dec_and_test(&item->refs))
505 			kfree(item);
506 	}
507 }
508 
509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
510 					struct btrfs_delayed_node *delayed_node)
511 {
512 	struct rb_node *p;
513 	struct btrfs_delayed_item *item = NULL;
514 
515 	p = rb_first_cached(&delayed_node->ins_root);
516 	if (p)
517 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
518 
519 	return item;
520 }
521 
522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
523 					struct btrfs_delayed_node *delayed_node)
524 {
525 	struct rb_node *p;
526 	struct btrfs_delayed_item *item = NULL;
527 
528 	p = rb_first_cached(&delayed_node->del_root);
529 	if (p)
530 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
531 
532 	return item;
533 }
534 
535 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
536 						struct btrfs_delayed_item *item)
537 {
538 	struct rb_node *p;
539 	struct btrfs_delayed_item *next = NULL;
540 
541 	p = rb_next(&item->rb_node);
542 	if (p)
543 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
544 
545 	return next;
546 }
547 
548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
549 					       struct btrfs_root *root,
550 					       struct btrfs_delayed_item *item)
551 {
552 	struct btrfs_block_rsv *src_rsv;
553 	struct btrfs_block_rsv *dst_rsv;
554 	struct btrfs_fs_info *fs_info = root->fs_info;
555 	u64 num_bytes;
556 	int ret;
557 
558 	if (!trans->bytes_reserved)
559 		return 0;
560 
561 	src_rsv = trans->block_rsv;
562 	dst_rsv = &fs_info->delayed_block_rsv;
563 
564 	num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
565 
566 	/*
567 	 * Here we migrate space rsv from transaction rsv, since have already
568 	 * reserved space when starting a transaction.  So no need to reserve
569 	 * qgroup space here.
570 	 */
571 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
572 	if (!ret) {
573 		trace_btrfs_space_reservation(fs_info, "delayed_item",
574 					      item->key.objectid,
575 					      num_bytes, 1);
576 		item->bytes_reserved = num_bytes;
577 	}
578 
579 	return ret;
580 }
581 
582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
583 						struct btrfs_delayed_item *item)
584 {
585 	struct btrfs_block_rsv *rsv;
586 	struct btrfs_fs_info *fs_info = root->fs_info;
587 
588 	if (!item->bytes_reserved)
589 		return;
590 
591 	rsv = &fs_info->delayed_block_rsv;
592 	/*
593 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
594 	 * to release/reserve qgroup space.
595 	 */
596 	trace_btrfs_space_reservation(fs_info, "delayed_item",
597 				      item->key.objectid, item->bytes_reserved,
598 				      0);
599 	btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
600 }
601 
602 static int btrfs_delayed_inode_reserve_metadata(
603 					struct btrfs_trans_handle *trans,
604 					struct btrfs_root *root,
605 					struct btrfs_delayed_node *node)
606 {
607 	struct btrfs_fs_info *fs_info = root->fs_info;
608 	struct btrfs_block_rsv *src_rsv;
609 	struct btrfs_block_rsv *dst_rsv;
610 	u64 num_bytes;
611 	int ret;
612 
613 	src_rsv = trans->block_rsv;
614 	dst_rsv = &fs_info->delayed_block_rsv;
615 
616 	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
617 
618 	/*
619 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
620 	 * which doesn't reserve space for speed.  This is a problem since we
621 	 * still need to reserve space for this update, so try to reserve the
622 	 * space.
623 	 *
624 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
625 	 * we always reserve enough to update the inode item.
626 	 */
627 	if (!src_rsv || (!trans->bytes_reserved &&
628 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
629 		ret = btrfs_qgroup_reserve_meta(root, num_bytes,
630 					  BTRFS_QGROUP_RSV_META_PREALLOC, true);
631 		if (ret < 0)
632 			return ret;
633 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
634 					  BTRFS_RESERVE_NO_FLUSH);
635 		/* NO_FLUSH could only fail with -ENOSPC */
636 		ASSERT(ret == 0 || ret == -ENOSPC);
637 		if (ret)
638 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
639 	} else {
640 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
641 	}
642 
643 	if (!ret) {
644 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
645 					      node->inode_id, num_bytes, 1);
646 		node->bytes_reserved = num_bytes;
647 	}
648 
649 	return ret;
650 }
651 
652 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
653 						struct btrfs_delayed_node *node,
654 						bool qgroup_free)
655 {
656 	struct btrfs_block_rsv *rsv;
657 
658 	if (!node->bytes_reserved)
659 		return;
660 
661 	rsv = &fs_info->delayed_block_rsv;
662 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
663 				      node->inode_id, node->bytes_reserved, 0);
664 	btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
665 	if (qgroup_free)
666 		btrfs_qgroup_free_meta_prealloc(node->root,
667 				node->bytes_reserved);
668 	else
669 		btrfs_qgroup_convert_reserved_meta(node->root,
670 				node->bytes_reserved);
671 	node->bytes_reserved = 0;
672 }
673 
674 /*
675  * This helper will insert some continuous items into the same leaf according
676  * to the free space of the leaf.
677  */
678 static int btrfs_batch_insert_items(struct btrfs_root *root,
679 				    struct btrfs_path *path,
680 				    struct btrfs_delayed_item *item)
681 {
682 	struct btrfs_delayed_item *curr, *next;
683 	int free_space;
684 	int total_size = 0;
685 	struct extent_buffer *leaf;
686 	char *data_ptr;
687 	struct btrfs_key *keys;
688 	u32 *data_size;
689 	struct list_head head;
690 	int slot;
691 	int nitems;
692 	int i;
693 	int ret = 0;
694 
695 	BUG_ON(!path->nodes[0]);
696 
697 	leaf = path->nodes[0];
698 	free_space = btrfs_leaf_free_space(leaf);
699 	INIT_LIST_HEAD(&head);
700 
701 	next = item;
702 	nitems = 0;
703 
704 	/*
705 	 * count the number of the continuous items that we can insert in batch
706 	 */
707 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
708 	       free_space) {
709 		total_size += next->data_len + sizeof(struct btrfs_item);
710 		list_add_tail(&next->tree_list, &head);
711 		nitems++;
712 
713 		curr = next;
714 		next = __btrfs_next_delayed_item(curr);
715 		if (!next)
716 			break;
717 
718 		if (!btrfs_is_continuous_delayed_item(curr, next))
719 			break;
720 	}
721 
722 	if (!nitems) {
723 		ret = 0;
724 		goto out;
725 	}
726 
727 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
728 	if (!keys) {
729 		ret = -ENOMEM;
730 		goto out;
731 	}
732 
733 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
734 	if (!data_size) {
735 		ret = -ENOMEM;
736 		goto error;
737 	}
738 
739 	/* get keys of all the delayed items */
740 	i = 0;
741 	list_for_each_entry(next, &head, tree_list) {
742 		keys[i] = next->key;
743 		data_size[i] = next->data_len;
744 		i++;
745 	}
746 
747 	/* insert the keys of the items */
748 	setup_items_for_insert(root, path, keys, data_size, nitems);
749 
750 	/* insert the dir index items */
751 	slot = path->slots[0];
752 	list_for_each_entry_safe(curr, next, &head, tree_list) {
753 		data_ptr = btrfs_item_ptr(leaf, slot, char);
754 		write_extent_buffer(leaf, &curr->data,
755 				    (unsigned long)data_ptr,
756 				    curr->data_len);
757 		slot++;
758 
759 		btrfs_delayed_item_release_metadata(root, curr);
760 
761 		list_del(&curr->tree_list);
762 		btrfs_release_delayed_item(curr);
763 	}
764 
765 error:
766 	kfree(data_size);
767 	kfree(keys);
768 out:
769 	return ret;
770 }
771 
772 /*
773  * This helper can just do simple insertion that needn't extend item for new
774  * data, such as directory name index insertion, inode insertion.
775  */
776 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
777 				     struct btrfs_root *root,
778 				     struct btrfs_path *path,
779 				     struct btrfs_delayed_item *delayed_item)
780 {
781 	struct extent_buffer *leaf;
782 	unsigned int nofs_flag;
783 	char *ptr;
784 	int ret;
785 
786 	nofs_flag = memalloc_nofs_save();
787 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
788 				      delayed_item->data_len);
789 	memalloc_nofs_restore(nofs_flag);
790 	if (ret < 0 && ret != -EEXIST)
791 		return ret;
792 
793 	leaf = path->nodes[0];
794 
795 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
796 
797 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
798 			    delayed_item->data_len);
799 	btrfs_mark_buffer_dirty(leaf);
800 
801 	btrfs_delayed_item_release_metadata(root, delayed_item);
802 	return 0;
803 }
804 
805 /*
806  * we insert an item first, then if there are some continuous items, we try
807  * to insert those items into the same leaf.
808  */
809 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
810 				      struct btrfs_path *path,
811 				      struct btrfs_root *root,
812 				      struct btrfs_delayed_node *node)
813 {
814 	struct btrfs_delayed_item *curr, *prev;
815 	int ret = 0;
816 
817 do_again:
818 	mutex_lock(&node->mutex);
819 	curr = __btrfs_first_delayed_insertion_item(node);
820 	if (!curr)
821 		goto insert_end;
822 
823 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
824 	if (ret < 0) {
825 		btrfs_release_path(path);
826 		goto insert_end;
827 	}
828 
829 	prev = curr;
830 	curr = __btrfs_next_delayed_item(prev);
831 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
832 		/* insert the continuous items into the same leaf */
833 		path->slots[0]++;
834 		btrfs_batch_insert_items(root, path, curr);
835 	}
836 	btrfs_release_delayed_item(prev);
837 	btrfs_mark_buffer_dirty(path->nodes[0]);
838 
839 	btrfs_release_path(path);
840 	mutex_unlock(&node->mutex);
841 	goto do_again;
842 
843 insert_end:
844 	mutex_unlock(&node->mutex);
845 	return ret;
846 }
847 
848 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
849 				    struct btrfs_root *root,
850 				    struct btrfs_path *path,
851 				    struct btrfs_delayed_item *item)
852 {
853 	struct btrfs_delayed_item *curr, *next;
854 	struct extent_buffer *leaf;
855 	struct btrfs_key key;
856 	struct list_head head;
857 	int nitems, i, last_item;
858 	int ret = 0;
859 
860 	BUG_ON(!path->nodes[0]);
861 
862 	leaf = path->nodes[0];
863 
864 	i = path->slots[0];
865 	last_item = btrfs_header_nritems(leaf) - 1;
866 	if (i > last_item)
867 		return -ENOENT;	/* FIXME: Is errno suitable? */
868 
869 	next = item;
870 	INIT_LIST_HEAD(&head);
871 	btrfs_item_key_to_cpu(leaf, &key, i);
872 	nitems = 0;
873 	/*
874 	 * count the number of the dir index items that we can delete in batch
875 	 */
876 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
877 		list_add_tail(&next->tree_list, &head);
878 		nitems++;
879 
880 		curr = next;
881 		next = __btrfs_next_delayed_item(curr);
882 		if (!next)
883 			break;
884 
885 		if (!btrfs_is_continuous_delayed_item(curr, next))
886 			break;
887 
888 		i++;
889 		if (i > last_item)
890 			break;
891 		btrfs_item_key_to_cpu(leaf, &key, i);
892 	}
893 
894 	if (!nitems)
895 		return 0;
896 
897 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
898 	if (ret)
899 		goto out;
900 
901 	list_for_each_entry_safe(curr, next, &head, tree_list) {
902 		btrfs_delayed_item_release_metadata(root, curr);
903 		list_del(&curr->tree_list);
904 		btrfs_release_delayed_item(curr);
905 	}
906 
907 out:
908 	return ret;
909 }
910 
911 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
912 				      struct btrfs_path *path,
913 				      struct btrfs_root *root,
914 				      struct btrfs_delayed_node *node)
915 {
916 	struct btrfs_delayed_item *curr, *prev;
917 	unsigned int nofs_flag;
918 	int ret = 0;
919 
920 do_again:
921 	mutex_lock(&node->mutex);
922 	curr = __btrfs_first_delayed_deletion_item(node);
923 	if (!curr)
924 		goto delete_fail;
925 
926 	nofs_flag = memalloc_nofs_save();
927 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
928 	memalloc_nofs_restore(nofs_flag);
929 	if (ret < 0)
930 		goto delete_fail;
931 	else if (ret > 0) {
932 		/*
933 		 * can't find the item which the node points to, so this node
934 		 * is invalid, just drop it.
935 		 */
936 		prev = curr;
937 		curr = __btrfs_next_delayed_item(prev);
938 		btrfs_release_delayed_item(prev);
939 		ret = 0;
940 		btrfs_release_path(path);
941 		if (curr) {
942 			mutex_unlock(&node->mutex);
943 			goto do_again;
944 		} else
945 			goto delete_fail;
946 	}
947 
948 	btrfs_batch_delete_items(trans, root, path, curr);
949 	btrfs_release_path(path);
950 	mutex_unlock(&node->mutex);
951 	goto do_again;
952 
953 delete_fail:
954 	btrfs_release_path(path);
955 	mutex_unlock(&node->mutex);
956 	return ret;
957 }
958 
959 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
960 {
961 	struct btrfs_delayed_root *delayed_root;
962 
963 	if (delayed_node &&
964 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
965 		BUG_ON(!delayed_node->root);
966 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
967 		delayed_node->count--;
968 
969 		delayed_root = delayed_node->root->fs_info->delayed_root;
970 		finish_one_item(delayed_root);
971 	}
972 }
973 
974 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
975 {
976 
977 	if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) {
978 		struct btrfs_delayed_root *delayed_root;
979 
980 		ASSERT(delayed_node->root);
981 		delayed_node->count--;
982 
983 		delayed_root = delayed_node->root->fs_info->delayed_root;
984 		finish_one_item(delayed_root);
985 	}
986 }
987 
988 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
989 					struct btrfs_root *root,
990 					struct btrfs_path *path,
991 					struct btrfs_delayed_node *node)
992 {
993 	struct btrfs_fs_info *fs_info = root->fs_info;
994 	struct btrfs_key key;
995 	struct btrfs_inode_item *inode_item;
996 	struct extent_buffer *leaf;
997 	unsigned int nofs_flag;
998 	int mod;
999 	int ret;
1000 
1001 	key.objectid = node->inode_id;
1002 	key.type = BTRFS_INODE_ITEM_KEY;
1003 	key.offset = 0;
1004 
1005 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1006 		mod = -1;
1007 	else
1008 		mod = 1;
1009 
1010 	nofs_flag = memalloc_nofs_save();
1011 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1012 	memalloc_nofs_restore(nofs_flag);
1013 	if (ret > 0)
1014 		ret = -ENOENT;
1015 	if (ret < 0)
1016 		goto out;
1017 
1018 	leaf = path->nodes[0];
1019 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1020 				    struct btrfs_inode_item);
1021 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1022 			    sizeof(struct btrfs_inode_item));
1023 	btrfs_mark_buffer_dirty(leaf);
1024 
1025 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1026 		goto out;
1027 
1028 	path->slots[0]++;
1029 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1030 		goto search;
1031 again:
1032 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1033 	if (key.objectid != node->inode_id)
1034 		goto out;
1035 
1036 	if (key.type != BTRFS_INODE_REF_KEY &&
1037 	    key.type != BTRFS_INODE_EXTREF_KEY)
1038 		goto out;
1039 
1040 	/*
1041 	 * Delayed iref deletion is for the inode who has only one link,
1042 	 * so there is only one iref. The case that several irefs are
1043 	 * in the same item doesn't exist.
1044 	 */
1045 	btrfs_del_item(trans, root, path);
1046 out:
1047 	btrfs_release_delayed_iref(node);
1048 	btrfs_release_path(path);
1049 err_out:
1050 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1051 	btrfs_release_delayed_inode(node);
1052 
1053 	/*
1054 	 * If we fail to update the delayed inode we need to abort the
1055 	 * transaction, because we could leave the inode with the improper
1056 	 * counts behind.
1057 	 */
1058 	if (ret && ret != -ENOENT)
1059 		btrfs_abort_transaction(trans, ret);
1060 
1061 	return ret;
1062 
1063 search:
1064 	btrfs_release_path(path);
1065 
1066 	key.type = BTRFS_INODE_EXTREF_KEY;
1067 	key.offset = -1;
1068 
1069 	nofs_flag = memalloc_nofs_save();
1070 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1071 	memalloc_nofs_restore(nofs_flag);
1072 	if (ret < 0)
1073 		goto err_out;
1074 	ASSERT(ret);
1075 
1076 	ret = 0;
1077 	leaf = path->nodes[0];
1078 	path->slots[0]--;
1079 	goto again;
1080 }
1081 
1082 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1083 					     struct btrfs_root *root,
1084 					     struct btrfs_path *path,
1085 					     struct btrfs_delayed_node *node)
1086 {
1087 	int ret;
1088 
1089 	mutex_lock(&node->mutex);
1090 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1091 		mutex_unlock(&node->mutex);
1092 		return 0;
1093 	}
1094 
1095 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1096 	mutex_unlock(&node->mutex);
1097 	return ret;
1098 }
1099 
1100 static inline int
1101 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1102 				   struct btrfs_path *path,
1103 				   struct btrfs_delayed_node *node)
1104 {
1105 	int ret;
1106 
1107 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1108 	if (ret)
1109 		return ret;
1110 
1111 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1112 	if (ret)
1113 		return ret;
1114 
1115 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1116 	return ret;
1117 }
1118 
1119 /*
1120  * Called when committing the transaction.
1121  * Returns 0 on success.
1122  * Returns < 0 on error and returns with an aborted transaction with any
1123  * outstanding delayed items cleaned up.
1124  */
1125 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1126 {
1127 	struct btrfs_fs_info *fs_info = trans->fs_info;
1128 	struct btrfs_delayed_root *delayed_root;
1129 	struct btrfs_delayed_node *curr_node, *prev_node;
1130 	struct btrfs_path *path;
1131 	struct btrfs_block_rsv *block_rsv;
1132 	int ret = 0;
1133 	bool count = (nr > 0);
1134 
1135 	if (TRANS_ABORTED(trans))
1136 		return -EIO;
1137 
1138 	path = btrfs_alloc_path();
1139 	if (!path)
1140 		return -ENOMEM;
1141 
1142 	block_rsv = trans->block_rsv;
1143 	trans->block_rsv = &fs_info->delayed_block_rsv;
1144 
1145 	delayed_root = fs_info->delayed_root;
1146 
1147 	curr_node = btrfs_first_delayed_node(delayed_root);
1148 	while (curr_node && (!count || nr--)) {
1149 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1150 							 curr_node);
1151 		if (ret) {
1152 			btrfs_release_delayed_node(curr_node);
1153 			curr_node = NULL;
1154 			btrfs_abort_transaction(trans, ret);
1155 			break;
1156 		}
1157 
1158 		prev_node = curr_node;
1159 		curr_node = btrfs_next_delayed_node(curr_node);
1160 		btrfs_release_delayed_node(prev_node);
1161 	}
1162 
1163 	if (curr_node)
1164 		btrfs_release_delayed_node(curr_node);
1165 	btrfs_free_path(path);
1166 	trans->block_rsv = block_rsv;
1167 
1168 	return ret;
1169 }
1170 
1171 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1172 {
1173 	return __btrfs_run_delayed_items(trans, -1);
1174 }
1175 
1176 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1177 {
1178 	return __btrfs_run_delayed_items(trans, nr);
1179 }
1180 
1181 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1182 				     struct btrfs_inode *inode)
1183 {
1184 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1185 	struct btrfs_path *path;
1186 	struct btrfs_block_rsv *block_rsv;
1187 	int ret;
1188 
1189 	if (!delayed_node)
1190 		return 0;
1191 
1192 	mutex_lock(&delayed_node->mutex);
1193 	if (!delayed_node->count) {
1194 		mutex_unlock(&delayed_node->mutex);
1195 		btrfs_release_delayed_node(delayed_node);
1196 		return 0;
1197 	}
1198 	mutex_unlock(&delayed_node->mutex);
1199 
1200 	path = btrfs_alloc_path();
1201 	if (!path) {
1202 		btrfs_release_delayed_node(delayed_node);
1203 		return -ENOMEM;
1204 	}
1205 
1206 	block_rsv = trans->block_rsv;
1207 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1208 
1209 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1210 
1211 	btrfs_release_delayed_node(delayed_node);
1212 	btrfs_free_path(path);
1213 	trans->block_rsv = block_rsv;
1214 
1215 	return ret;
1216 }
1217 
1218 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1219 {
1220 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1221 	struct btrfs_trans_handle *trans;
1222 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1223 	struct btrfs_path *path;
1224 	struct btrfs_block_rsv *block_rsv;
1225 	int ret;
1226 
1227 	if (!delayed_node)
1228 		return 0;
1229 
1230 	mutex_lock(&delayed_node->mutex);
1231 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1232 		mutex_unlock(&delayed_node->mutex);
1233 		btrfs_release_delayed_node(delayed_node);
1234 		return 0;
1235 	}
1236 	mutex_unlock(&delayed_node->mutex);
1237 
1238 	trans = btrfs_join_transaction(delayed_node->root);
1239 	if (IS_ERR(trans)) {
1240 		ret = PTR_ERR(trans);
1241 		goto out;
1242 	}
1243 
1244 	path = btrfs_alloc_path();
1245 	if (!path) {
1246 		ret = -ENOMEM;
1247 		goto trans_out;
1248 	}
1249 
1250 	block_rsv = trans->block_rsv;
1251 	trans->block_rsv = &fs_info->delayed_block_rsv;
1252 
1253 	mutex_lock(&delayed_node->mutex);
1254 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1255 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1256 						   path, delayed_node);
1257 	else
1258 		ret = 0;
1259 	mutex_unlock(&delayed_node->mutex);
1260 
1261 	btrfs_free_path(path);
1262 	trans->block_rsv = block_rsv;
1263 trans_out:
1264 	btrfs_end_transaction(trans);
1265 	btrfs_btree_balance_dirty(fs_info);
1266 out:
1267 	btrfs_release_delayed_node(delayed_node);
1268 
1269 	return ret;
1270 }
1271 
1272 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1273 {
1274 	struct btrfs_delayed_node *delayed_node;
1275 
1276 	delayed_node = READ_ONCE(inode->delayed_node);
1277 	if (!delayed_node)
1278 		return;
1279 
1280 	inode->delayed_node = NULL;
1281 	btrfs_release_delayed_node(delayed_node);
1282 }
1283 
1284 struct btrfs_async_delayed_work {
1285 	struct btrfs_delayed_root *delayed_root;
1286 	int nr;
1287 	struct btrfs_work work;
1288 };
1289 
1290 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1291 {
1292 	struct btrfs_async_delayed_work *async_work;
1293 	struct btrfs_delayed_root *delayed_root;
1294 	struct btrfs_trans_handle *trans;
1295 	struct btrfs_path *path;
1296 	struct btrfs_delayed_node *delayed_node = NULL;
1297 	struct btrfs_root *root;
1298 	struct btrfs_block_rsv *block_rsv;
1299 	int total_done = 0;
1300 
1301 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1302 	delayed_root = async_work->delayed_root;
1303 
1304 	path = btrfs_alloc_path();
1305 	if (!path)
1306 		goto out;
1307 
1308 	do {
1309 		if (atomic_read(&delayed_root->items) <
1310 		    BTRFS_DELAYED_BACKGROUND / 2)
1311 			break;
1312 
1313 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1314 		if (!delayed_node)
1315 			break;
1316 
1317 		root = delayed_node->root;
1318 
1319 		trans = btrfs_join_transaction(root);
1320 		if (IS_ERR(trans)) {
1321 			btrfs_release_path(path);
1322 			btrfs_release_prepared_delayed_node(delayed_node);
1323 			total_done++;
1324 			continue;
1325 		}
1326 
1327 		block_rsv = trans->block_rsv;
1328 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1329 
1330 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1331 
1332 		trans->block_rsv = block_rsv;
1333 		btrfs_end_transaction(trans);
1334 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1335 
1336 		btrfs_release_path(path);
1337 		btrfs_release_prepared_delayed_node(delayed_node);
1338 		total_done++;
1339 
1340 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1341 		 || total_done < async_work->nr);
1342 
1343 	btrfs_free_path(path);
1344 out:
1345 	wake_up(&delayed_root->wait);
1346 	kfree(async_work);
1347 }
1348 
1349 
1350 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1351 				     struct btrfs_fs_info *fs_info, int nr)
1352 {
1353 	struct btrfs_async_delayed_work *async_work;
1354 
1355 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1356 	if (!async_work)
1357 		return -ENOMEM;
1358 
1359 	async_work->delayed_root = delayed_root;
1360 	btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1361 			NULL);
1362 	async_work->nr = nr;
1363 
1364 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1365 	return 0;
1366 }
1367 
1368 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1369 {
1370 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1371 }
1372 
1373 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1374 {
1375 	int val = atomic_read(&delayed_root->items_seq);
1376 
1377 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1378 		return 1;
1379 
1380 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1381 		return 1;
1382 
1383 	return 0;
1384 }
1385 
1386 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1387 {
1388 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1389 
1390 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1391 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1392 		return;
1393 
1394 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1395 		int seq;
1396 		int ret;
1397 
1398 		seq = atomic_read(&delayed_root->items_seq);
1399 
1400 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1401 		if (ret)
1402 			return;
1403 
1404 		wait_event_interruptible(delayed_root->wait,
1405 					 could_end_wait(delayed_root, seq));
1406 		return;
1407 	}
1408 
1409 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1410 }
1411 
1412 /* Will return 0 or -ENOMEM */
1413 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1414 				   const char *name, int name_len,
1415 				   struct btrfs_inode *dir,
1416 				   struct btrfs_disk_key *disk_key, u8 type,
1417 				   u64 index)
1418 {
1419 	struct btrfs_delayed_node *delayed_node;
1420 	struct btrfs_delayed_item *delayed_item;
1421 	struct btrfs_dir_item *dir_item;
1422 	int ret;
1423 
1424 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1425 	if (IS_ERR(delayed_node))
1426 		return PTR_ERR(delayed_node);
1427 
1428 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1429 	if (!delayed_item) {
1430 		ret = -ENOMEM;
1431 		goto release_node;
1432 	}
1433 
1434 	delayed_item->key.objectid = btrfs_ino(dir);
1435 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1436 	delayed_item->key.offset = index;
1437 
1438 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1439 	dir_item->location = *disk_key;
1440 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1441 	btrfs_set_stack_dir_data_len(dir_item, 0);
1442 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1443 	btrfs_set_stack_dir_type(dir_item, type);
1444 	memcpy((char *)(dir_item + 1), name, name_len);
1445 
1446 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1447 	/*
1448 	 * we have reserved enough space when we start a new transaction,
1449 	 * so reserving metadata failure is impossible
1450 	 */
1451 	BUG_ON(ret);
1452 
1453 	mutex_lock(&delayed_node->mutex);
1454 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1455 	if (unlikely(ret)) {
1456 		btrfs_err(trans->fs_info,
1457 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1458 			  name_len, name, delayed_node->root->root_key.objectid,
1459 			  delayed_node->inode_id, ret);
1460 		BUG();
1461 	}
1462 	mutex_unlock(&delayed_node->mutex);
1463 
1464 release_node:
1465 	btrfs_release_delayed_node(delayed_node);
1466 	return ret;
1467 }
1468 
1469 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1470 					       struct btrfs_delayed_node *node,
1471 					       struct btrfs_key *key)
1472 {
1473 	struct btrfs_delayed_item *item;
1474 
1475 	mutex_lock(&node->mutex);
1476 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1477 	if (!item) {
1478 		mutex_unlock(&node->mutex);
1479 		return 1;
1480 	}
1481 
1482 	btrfs_delayed_item_release_metadata(node->root, item);
1483 	btrfs_release_delayed_item(item);
1484 	mutex_unlock(&node->mutex);
1485 	return 0;
1486 }
1487 
1488 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1489 				   struct btrfs_inode *dir, u64 index)
1490 {
1491 	struct btrfs_delayed_node *node;
1492 	struct btrfs_delayed_item *item;
1493 	struct btrfs_key item_key;
1494 	int ret;
1495 
1496 	node = btrfs_get_or_create_delayed_node(dir);
1497 	if (IS_ERR(node))
1498 		return PTR_ERR(node);
1499 
1500 	item_key.objectid = btrfs_ino(dir);
1501 	item_key.type = BTRFS_DIR_INDEX_KEY;
1502 	item_key.offset = index;
1503 
1504 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1505 						  &item_key);
1506 	if (!ret)
1507 		goto end;
1508 
1509 	item = btrfs_alloc_delayed_item(0);
1510 	if (!item) {
1511 		ret = -ENOMEM;
1512 		goto end;
1513 	}
1514 
1515 	item->key = item_key;
1516 
1517 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1518 	/*
1519 	 * we have reserved enough space when we start a new transaction,
1520 	 * so reserving metadata failure is impossible.
1521 	 */
1522 	if (ret < 0) {
1523 		btrfs_err(trans->fs_info,
1524 "metadata reservation failed for delayed dir item deltiona, should have been reserved");
1525 		btrfs_release_delayed_item(item);
1526 		goto end;
1527 	}
1528 
1529 	mutex_lock(&node->mutex);
1530 	ret = __btrfs_add_delayed_deletion_item(node, item);
1531 	if (unlikely(ret)) {
1532 		btrfs_err(trans->fs_info,
1533 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1534 			  index, node->root->root_key.objectid,
1535 			  node->inode_id, ret);
1536 		btrfs_delayed_item_release_metadata(dir->root, item);
1537 		btrfs_release_delayed_item(item);
1538 	}
1539 	mutex_unlock(&node->mutex);
1540 end:
1541 	btrfs_release_delayed_node(node);
1542 	return ret;
1543 }
1544 
1545 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1546 {
1547 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1548 
1549 	if (!delayed_node)
1550 		return -ENOENT;
1551 
1552 	/*
1553 	 * Since we have held i_mutex of this directory, it is impossible that
1554 	 * a new directory index is added into the delayed node and index_cnt
1555 	 * is updated now. So we needn't lock the delayed node.
1556 	 */
1557 	if (!delayed_node->index_cnt) {
1558 		btrfs_release_delayed_node(delayed_node);
1559 		return -EINVAL;
1560 	}
1561 
1562 	inode->index_cnt = delayed_node->index_cnt;
1563 	btrfs_release_delayed_node(delayed_node);
1564 	return 0;
1565 }
1566 
1567 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1568 				     struct list_head *ins_list,
1569 				     struct list_head *del_list)
1570 {
1571 	struct btrfs_delayed_node *delayed_node;
1572 	struct btrfs_delayed_item *item;
1573 
1574 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1575 	if (!delayed_node)
1576 		return false;
1577 
1578 	/*
1579 	 * We can only do one readdir with delayed items at a time because of
1580 	 * item->readdir_list.
1581 	 */
1582 	btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED);
1583 	btrfs_inode_lock(inode, 0);
1584 
1585 	mutex_lock(&delayed_node->mutex);
1586 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1587 	while (item) {
1588 		refcount_inc(&item->refs);
1589 		list_add_tail(&item->readdir_list, ins_list);
1590 		item = __btrfs_next_delayed_item(item);
1591 	}
1592 
1593 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1594 	while (item) {
1595 		refcount_inc(&item->refs);
1596 		list_add_tail(&item->readdir_list, del_list);
1597 		item = __btrfs_next_delayed_item(item);
1598 	}
1599 	mutex_unlock(&delayed_node->mutex);
1600 	/*
1601 	 * This delayed node is still cached in the btrfs inode, so refs
1602 	 * must be > 1 now, and we needn't check it is going to be freed
1603 	 * or not.
1604 	 *
1605 	 * Besides that, this function is used to read dir, we do not
1606 	 * insert/delete delayed items in this period. So we also needn't
1607 	 * requeue or dequeue this delayed node.
1608 	 */
1609 	refcount_dec(&delayed_node->refs);
1610 
1611 	return true;
1612 }
1613 
1614 void btrfs_readdir_put_delayed_items(struct inode *inode,
1615 				     struct list_head *ins_list,
1616 				     struct list_head *del_list)
1617 {
1618 	struct btrfs_delayed_item *curr, *next;
1619 
1620 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1621 		list_del(&curr->readdir_list);
1622 		if (refcount_dec_and_test(&curr->refs))
1623 			kfree(curr);
1624 	}
1625 
1626 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1627 		list_del(&curr->readdir_list);
1628 		if (refcount_dec_and_test(&curr->refs))
1629 			kfree(curr);
1630 	}
1631 
1632 	/*
1633 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1634 	 * read lock.
1635 	 */
1636 	downgrade_write(&inode->i_rwsem);
1637 }
1638 
1639 int btrfs_should_delete_dir_index(struct list_head *del_list,
1640 				  u64 index)
1641 {
1642 	struct btrfs_delayed_item *curr;
1643 	int ret = 0;
1644 
1645 	list_for_each_entry(curr, del_list, readdir_list) {
1646 		if (curr->key.offset > index)
1647 			break;
1648 		if (curr->key.offset == index) {
1649 			ret = 1;
1650 			break;
1651 		}
1652 	}
1653 	return ret;
1654 }
1655 
1656 /*
1657  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1658  *
1659  */
1660 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1661 				    struct list_head *ins_list)
1662 {
1663 	struct btrfs_dir_item *di;
1664 	struct btrfs_delayed_item *curr, *next;
1665 	struct btrfs_key location;
1666 	char *name;
1667 	int name_len;
1668 	int over = 0;
1669 	unsigned char d_type;
1670 
1671 	if (list_empty(ins_list))
1672 		return 0;
1673 
1674 	/*
1675 	 * Changing the data of the delayed item is impossible. So
1676 	 * we needn't lock them. And we have held i_mutex of the
1677 	 * directory, nobody can delete any directory indexes now.
1678 	 */
1679 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1680 		list_del(&curr->readdir_list);
1681 
1682 		if (curr->key.offset < ctx->pos) {
1683 			if (refcount_dec_and_test(&curr->refs))
1684 				kfree(curr);
1685 			continue;
1686 		}
1687 
1688 		ctx->pos = curr->key.offset;
1689 
1690 		di = (struct btrfs_dir_item *)curr->data;
1691 		name = (char *)(di + 1);
1692 		name_len = btrfs_stack_dir_name_len(di);
1693 
1694 		d_type = fs_ftype_to_dtype(di->type);
1695 		btrfs_disk_key_to_cpu(&location, &di->location);
1696 
1697 		over = !dir_emit(ctx, name, name_len,
1698 			       location.objectid, d_type);
1699 
1700 		if (refcount_dec_and_test(&curr->refs))
1701 			kfree(curr);
1702 
1703 		if (over)
1704 			return 1;
1705 		ctx->pos++;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1711 				  struct btrfs_inode_item *inode_item,
1712 				  struct inode *inode)
1713 {
1714 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1715 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1716 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1717 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1718 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1719 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1720 	btrfs_set_stack_inode_generation(inode_item,
1721 					 BTRFS_I(inode)->generation);
1722 	btrfs_set_stack_inode_sequence(inode_item,
1723 				       inode_peek_iversion(inode));
1724 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1725 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1726 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1727 	btrfs_set_stack_inode_block_group(inode_item, 0);
1728 
1729 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1730 				     inode->i_atime.tv_sec);
1731 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1732 				      inode->i_atime.tv_nsec);
1733 
1734 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1735 				     inode->i_mtime.tv_sec);
1736 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1737 				      inode->i_mtime.tv_nsec);
1738 
1739 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1740 				     inode->i_ctime.tv_sec);
1741 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1742 				      inode->i_ctime.tv_nsec);
1743 
1744 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1745 				     BTRFS_I(inode)->i_otime.tv_sec);
1746 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1747 				     BTRFS_I(inode)->i_otime.tv_nsec);
1748 }
1749 
1750 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1751 {
1752 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1753 	struct btrfs_delayed_node *delayed_node;
1754 	struct btrfs_inode_item *inode_item;
1755 
1756 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757 	if (!delayed_node)
1758 		return -ENOENT;
1759 
1760 	mutex_lock(&delayed_node->mutex);
1761 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762 		mutex_unlock(&delayed_node->mutex);
1763 		btrfs_release_delayed_node(delayed_node);
1764 		return -ENOENT;
1765 	}
1766 
1767 	inode_item = &delayed_node->inode_item;
1768 
1769 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772 	btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1773 			round_up(i_size_read(inode), fs_info->sectorsize));
1774 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1775 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1776 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1777 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1778         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1779 
1780 	inode_set_iversion_queried(inode,
1781 				   btrfs_stack_inode_sequence(inode_item));
1782 	inode->i_rdev = 0;
1783 	*rdev = btrfs_stack_inode_rdev(inode_item);
1784 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1785 
1786 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1787 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1788 
1789 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1790 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1791 
1792 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1793 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1794 
1795 	BTRFS_I(inode)->i_otime.tv_sec =
1796 		btrfs_stack_timespec_sec(&inode_item->otime);
1797 	BTRFS_I(inode)->i_otime.tv_nsec =
1798 		btrfs_stack_timespec_nsec(&inode_item->otime);
1799 
1800 	inode->i_generation = BTRFS_I(inode)->generation;
1801 	BTRFS_I(inode)->index_cnt = (u64)-1;
1802 
1803 	mutex_unlock(&delayed_node->mutex);
1804 	btrfs_release_delayed_node(delayed_node);
1805 	return 0;
1806 }
1807 
1808 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1809 			       struct btrfs_root *root,
1810 			       struct btrfs_inode *inode)
1811 {
1812 	struct btrfs_delayed_node *delayed_node;
1813 	int ret = 0;
1814 
1815 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1816 	if (IS_ERR(delayed_node))
1817 		return PTR_ERR(delayed_node);
1818 
1819 	mutex_lock(&delayed_node->mutex);
1820 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1821 		fill_stack_inode_item(trans, &delayed_node->inode_item,
1822 				      &inode->vfs_inode);
1823 		goto release_node;
1824 	}
1825 
1826 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1827 	if (ret)
1828 		goto release_node;
1829 
1830 	fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1831 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1832 	delayed_node->count++;
1833 	atomic_inc(&root->fs_info->delayed_root->items);
1834 release_node:
1835 	mutex_unlock(&delayed_node->mutex);
1836 	btrfs_release_delayed_node(delayed_node);
1837 	return ret;
1838 }
1839 
1840 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1841 {
1842 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1843 	struct btrfs_delayed_node *delayed_node;
1844 
1845 	/*
1846 	 * we don't do delayed inode updates during log recovery because it
1847 	 * leads to enospc problems.  This means we also can't do
1848 	 * delayed inode refs
1849 	 */
1850 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1851 		return -EAGAIN;
1852 
1853 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1854 	if (IS_ERR(delayed_node))
1855 		return PTR_ERR(delayed_node);
1856 
1857 	/*
1858 	 * We don't reserve space for inode ref deletion is because:
1859 	 * - We ONLY do async inode ref deletion for the inode who has only
1860 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1861 	 *   And in most case, the inode ref and the inode item are in the
1862 	 *   same leaf, and we will deal with them at the same time.
1863 	 *   Since we are sure we will reserve the space for the inode item,
1864 	 *   it is unnecessary to reserve space for inode ref deletion.
1865 	 * - If the inode ref and the inode item are not in the same leaf,
1866 	 *   We also needn't worry about enospc problem, because we reserve
1867 	 *   much more space for the inode update than it needs.
1868 	 * - At the worst, we can steal some space from the global reservation.
1869 	 *   It is very rare.
1870 	 */
1871 	mutex_lock(&delayed_node->mutex);
1872 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1873 		goto release_node;
1874 
1875 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1876 	delayed_node->count++;
1877 	atomic_inc(&fs_info->delayed_root->items);
1878 release_node:
1879 	mutex_unlock(&delayed_node->mutex);
1880 	btrfs_release_delayed_node(delayed_node);
1881 	return 0;
1882 }
1883 
1884 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1885 {
1886 	struct btrfs_root *root = delayed_node->root;
1887 	struct btrfs_fs_info *fs_info = root->fs_info;
1888 	struct btrfs_delayed_item *curr_item, *prev_item;
1889 
1890 	mutex_lock(&delayed_node->mutex);
1891 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1892 	while (curr_item) {
1893 		btrfs_delayed_item_release_metadata(root, curr_item);
1894 		prev_item = curr_item;
1895 		curr_item = __btrfs_next_delayed_item(prev_item);
1896 		btrfs_release_delayed_item(prev_item);
1897 	}
1898 
1899 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1900 	while (curr_item) {
1901 		btrfs_delayed_item_release_metadata(root, curr_item);
1902 		prev_item = curr_item;
1903 		curr_item = __btrfs_next_delayed_item(prev_item);
1904 		btrfs_release_delayed_item(prev_item);
1905 	}
1906 
1907 	btrfs_release_delayed_iref(delayed_node);
1908 
1909 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1910 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1911 		btrfs_release_delayed_inode(delayed_node);
1912 	}
1913 	mutex_unlock(&delayed_node->mutex);
1914 }
1915 
1916 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1917 {
1918 	struct btrfs_delayed_node *delayed_node;
1919 
1920 	delayed_node = btrfs_get_delayed_node(inode);
1921 	if (!delayed_node)
1922 		return;
1923 
1924 	__btrfs_kill_delayed_node(delayed_node);
1925 	btrfs_release_delayed_node(delayed_node);
1926 }
1927 
1928 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1929 {
1930 	u64 inode_id = 0;
1931 	struct btrfs_delayed_node *delayed_nodes[8];
1932 	int i, n;
1933 
1934 	while (1) {
1935 		spin_lock(&root->inode_lock);
1936 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1937 					   (void **)delayed_nodes, inode_id,
1938 					   ARRAY_SIZE(delayed_nodes));
1939 		if (!n) {
1940 			spin_unlock(&root->inode_lock);
1941 			break;
1942 		}
1943 
1944 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1945 		for (i = 0; i < n; i++) {
1946 			/*
1947 			 * Don't increase refs in case the node is dead and
1948 			 * about to be removed from the tree in the loop below
1949 			 */
1950 			if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1951 				delayed_nodes[i] = NULL;
1952 		}
1953 		spin_unlock(&root->inode_lock);
1954 
1955 		for (i = 0; i < n; i++) {
1956 			if (!delayed_nodes[i])
1957 				continue;
1958 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1959 			btrfs_release_delayed_node(delayed_nodes[i]);
1960 		}
1961 	}
1962 }
1963 
1964 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1965 {
1966 	struct btrfs_delayed_node *curr_node, *prev_node;
1967 
1968 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1969 	while (curr_node) {
1970 		__btrfs_kill_delayed_node(curr_node);
1971 
1972 		prev_node = curr_node;
1973 		curr_node = btrfs_next_delayed_node(curr_node);
1974 		btrfs_release_delayed_node(prev_node);
1975 	}
1976 }
1977 
1978