1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 #include "locking.h" 16 17 #define BTRFS_DELAYED_WRITEBACK 512 18 #define BTRFS_DELAYED_BACKGROUND 128 19 #define BTRFS_DELAYED_BATCH 16 20 21 static struct kmem_cache *delayed_node_cache; 22 23 int __init btrfs_delayed_inode_init(void) 24 { 25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 26 sizeof(struct btrfs_delayed_node), 27 0, 28 SLAB_MEM_SPREAD, 29 NULL); 30 if (!delayed_node_cache) 31 return -ENOMEM; 32 return 0; 33 } 34 35 void __cold btrfs_delayed_inode_exit(void) 36 { 37 kmem_cache_destroy(delayed_node_cache); 38 } 39 40 static inline void btrfs_init_delayed_node( 41 struct btrfs_delayed_node *delayed_node, 42 struct btrfs_root *root, u64 inode_id) 43 { 44 delayed_node->root = root; 45 delayed_node->inode_id = inode_id; 46 refcount_set(&delayed_node->refs, 0); 47 delayed_node->ins_root = RB_ROOT_CACHED; 48 delayed_node->del_root = RB_ROOT_CACHED; 49 mutex_init(&delayed_node->mutex); 50 INIT_LIST_HEAD(&delayed_node->n_list); 51 INIT_LIST_HEAD(&delayed_node->p_list); 52 } 53 54 static inline int btrfs_is_continuous_delayed_item( 55 struct btrfs_delayed_item *item1, 56 struct btrfs_delayed_item *item2) 57 { 58 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 59 item1->key.objectid == item2->key.objectid && 60 item1->key.type == item2->key.type && 61 item1->key.offset + 1 == item2->key.offset) 62 return 1; 63 return 0; 64 } 65 66 static struct btrfs_delayed_node *btrfs_get_delayed_node( 67 struct btrfs_inode *btrfs_inode) 68 { 69 struct btrfs_root *root = btrfs_inode->root; 70 u64 ino = btrfs_ino(btrfs_inode); 71 struct btrfs_delayed_node *node; 72 73 node = READ_ONCE(btrfs_inode->delayed_node); 74 if (node) { 75 refcount_inc(&node->refs); 76 return node; 77 } 78 79 spin_lock(&root->inode_lock); 80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 81 82 if (node) { 83 if (btrfs_inode->delayed_node) { 84 refcount_inc(&node->refs); /* can be accessed */ 85 BUG_ON(btrfs_inode->delayed_node != node); 86 spin_unlock(&root->inode_lock); 87 return node; 88 } 89 90 /* 91 * It's possible that we're racing into the middle of removing 92 * this node from the radix tree. In this case, the refcount 93 * was zero and it should never go back to one. Just return 94 * NULL like it was never in the radix at all; our release 95 * function is in the process of removing it. 96 * 97 * Some implementations of refcount_inc refuse to bump the 98 * refcount once it has hit zero. If we don't do this dance 99 * here, refcount_inc() may decide to just WARN_ONCE() instead 100 * of actually bumping the refcount. 101 * 102 * If this node is properly in the radix, we want to bump the 103 * refcount twice, once for the inode and once for this get 104 * operation. 105 */ 106 if (refcount_inc_not_zero(&node->refs)) { 107 refcount_inc(&node->refs); 108 btrfs_inode->delayed_node = node; 109 } else { 110 node = NULL; 111 } 112 113 spin_unlock(&root->inode_lock); 114 return node; 115 } 116 spin_unlock(&root->inode_lock); 117 118 return NULL; 119 } 120 121 /* Will return either the node or PTR_ERR(-ENOMEM) */ 122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 123 struct btrfs_inode *btrfs_inode) 124 { 125 struct btrfs_delayed_node *node; 126 struct btrfs_root *root = btrfs_inode->root; 127 u64 ino = btrfs_ino(btrfs_inode); 128 int ret; 129 130 again: 131 node = btrfs_get_delayed_node(btrfs_inode); 132 if (node) 133 return node; 134 135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 136 if (!node) 137 return ERR_PTR(-ENOMEM); 138 btrfs_init_delayed_node(node, root, ino); 139 140 /* cached in the btrfs inode and can be accessed */ 141 refcount_set(&node->refs, 2); 142 143 ret = radix_tree_preload(GFP_NOFS); 144 if (ret) { 145 kmem_cache_free(delayed_node_cache, node); 146 return ERR_PTR(ret); 147 } 148 149 spin_lock(&root->inode_lock); 150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 151 if (ret == -EEXIST) { 152 spin_unlock(&root->inode_lock); 153 kmem_cache_free(delayed_node_cache, node); 154 radix_tree_preload_end(); 155 goto again; 156 } 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 radix_tree_preload_end(); 160 161 return node; 162 } 163 164 /* 165 * Call it when holding delayed_node->mutex 166 * 167 * If mod = 1, add this node into the prepared list. 168 */ 169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 170 struct btrfs_delayed_node *node, 171 int mod) 172 { 173 spin_lock(&root->lock); 174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 175 if (!list_empty(&node->p_list)) 176 list_move_tail(&node->p_list, &root->prepare_list); 177 else if (mod) 178 list_add_tail(&node->p_list, &root->prepare_list); 179 } else { 180 list_add_tail(&node->n_list, &root->node_list); 181 list_add_tail(&node->p_list, &root->prepare_list); 182 refcount_inc(&node->refs); /* inserted into list */ 183 root->nodes++; 184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 185 } 186 spin_unlock(&root->lock); 187 } 188 189 /* Call it when holding delayed_node->mutex */ 190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 191 struct btrfs_delayed_node *node) 192 { 193 spin_lock(&root->lock); 194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 195 root->nodes--; 196 refcount_dec(&node->refs); /* not in the list */ 197 list_del_init(&node->n_list); 198 if (!list_empty(&node->p_list)) 199 list_del_init(&node->p_list); 200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 201 } 202 spin_unlock(&root->lock); 203 } 204 205 static struct btrfs_delayed_node *btrfs_first_delayed_node( 206 struct btrfs_delayed_root *delayed_root) 207 { 208 struct list_head *p; 209 struct btrfs_delayed_node *node = NULL; 210 211 spin_lock(&delayed_root->lock); 212 if (list_empty(&delayed_root->node_list)) 213 goto out; 214 215 p = delayed_root->node_list.next; 216 node = list_entry(p, struct btrfs_delayed_node, n_list); 217 refcount_inc(&node->refs); 218 out: 219 spin_unlock(&delayed_root->lock); 220 221 return node; 222 } 223 224 static struct btrfs_delayed_node *btrfs_next_delayed_node( 225 struct btrfs_delayed_node *node) 226 { 227 struct btrfs_delayed_root *delayed_root; 228 struct list_head *p; 229 struct btrfs_delayed_node *next = NULL; 230 231 delayed_root = node->root->fs_info->delayed_root; 232 spin_lock(&delayed_root->lock); 233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 234 /* not in the list */ 235 if (list_empty(&delayed_root->node_list)) 236 goto out; 237 p = delayed_root->node_list.next; 238 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 239 goto out; 240 else 241 p = node->n_list.next; 242 243 next = list_entry(p, struct btrfs_delayed_node, n_list); 244 refcount_inc(&next->refs); 245 out: 246 spin_unlock(&delayed_root->lock); 247 248 return next; 249 } 250 251 static void __btrfs_release_delayed_node( 252 struct btrfs_delayed_node *delayed_node, 253 int mod) 254 { 255 struct btrfs_delayed_root *delayed_root; 256 257 if (!delayed_node) 258 return; 259 260 delayed_root = delayed_node->root->fs_info->delayed_root; 261 262 mutex_lock(&delayed_node->mutex); 263 if (delayed_node->count) 264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 265 else 266 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 267 mutex_unlock(&delayed_node->mutex); 268 269 if (refcount_dec_and_test(&delayed_node->refs)) { 270 struct btrfs_root *root = delayed_node->root; 271 272 spin_lock(&root->inode_lock); 273 /* 274 * Once our refcount goes to zero, nobody is allowed to bump it 275 * back up. We can delete it now. 276 */ 277 ASSERT(refcount_read(&delayed_node->refs) == 0); 278 radix_tree_delete(&root->delayed_nodes_tree, 279 delayed_node->inode_id); 280 spin_unlock(&root->inode_lock); 281 kmem_cache_free(delayed_node_cache, delayed_node); 282 } 283 } 284 285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 286 { 287 __btrfs_release_delayed_node(node, 0); 288 } 289 290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 291 struct btrfs_delayed_root *delayed_root) 292 { 293 struct list_head *p; 294 struct btrfs_delayed_node *node = NULL; 295 296 spin_lock(&delayed_root->lock); 297 if (list_empty(&delayed_root->prepare_list)) 298 goto out; 299 300 p = delayed_root->prepare_list.next; 301 list_del_init(p); 302 node = list_entry(p, struct btrfs_delayed_node, p_list); 303 refcount_inc(&node->refs); 304 out: 305 spin_unlock(&delayed_root->lock); 306 307 return node; 308 } 309 310 static inline void btrfs_release_prepared_delayed_node( 311 struct btrfs_delayed_node *node) 312 { 313 __btrfs_release_delayed_node(node, 1); 314 } 315 316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 317 { 318 struct btrfs_delayed_item *item; 319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 320 if (item) { 321 item->data_len = data_len; 322 item->ins_or_del = 0; 323 item->bytes_reserved = 0; 324 item->delayed_node = NULL; 325 refcount_set(&item->refs, 1); 326 } 327 return item; 328 } 329 330 /* 331 * __btrfs_lookup_delayed_item - look up the delayed item by key 332 * @delayed_node: pointer to the delayed node 333 * @key: the key to look up 334 * @prev: used to store the prev item if the right item isn't found 335 * @next: used to store the next item if the right item isn't found 336 * 337 * Note: if we don't find the right item, we will return the prev item and 338 * the next item. 339 */ 340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 341 struct rb_root *root, 342 struct btrfs_key *key, 343 struct btrfs_delayed_item **prev, 344 struct btrfs_delayed_item **next) 345 { 346 struct rb_node *node, *prev_node = NULL; 347 struct btrfs_delayed_item *delayed_item = NULL; 348 int ret = 0; 349 350 node = root->rb_node; 351 352 while (node) { 353 delayed_item = rb_entry(node, struct btrfs_delayed_item, 354 rb_node); 355 prev_node = node; 356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 357 if (ret < 0) 358 node = node->rb_right; 359 else if (ret > 0) 360 node = node->rb_left; 361 else 362 return delayed_item; 363 } 364 365 if (prev) { 366 if (!prev_node) 367 *prev = NULL; 368 else if (ret < 0) 369 *prev = delayed_item; 370 else if ((node = rb_prev(prev_node)) != NULL) { 371 *prev = rb_entry(node, struct btrfs_delayed_item, 372 rb_node); 373 } else 374 *prev = NULL; 375 } 376 377 if (next) { 378 if (!prev_node) 379 *next = NULL; 380 else if (ret > 0) 381 *next = delayed_item; 382 else if ((node = rb_next(prev_node)) != NULL) { 383 *next = rb_entry(node, struct btrfs_delayed_item, 384 rb_node); 385 } else 386 *next = NULL; 387 } 388 return NULL; 389 } 390 391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 392 struct btrfs_delayed_node *delayed_node, 393 struct btrfs_key *key) 394 { 395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 396 NULL, NULL); 397 } 398 399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 400 struct btrfs_delayed_item *ins, 401 int action) 402 { 403 struct rb_node **p, *node; 404 struct rb_node *parent_node = NULL; 405 struct rb_root_cached *root; 406 struct btrfs_delayed_item *item; 407 int cmp; 408 bool leftmost = true; 409 410 if (action == BTRFS_DELAYED_INSERTION_ITEM) 411 root = &delayed_node->ins_root; 412 else if (action == BTRFS_DELAYED_DELETION_ITEM) 413 root = &delayed_node->del_root; 414 else 415 BUG(); 416 p = &root->rb_root.rb_node; 417 node = &ins->rb_node; 418 419 while (*p) { 420 parent_node = *p; 421 item = rb_entry(parent_node, struct btrfs_delayed_item, 422 rb_node); 423 424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 425 if (cmp < 0) { 426 p = &(*p)->rb_right; 427 leftmost = false; 428 } else if (cmp > 0) { 429 p = &(*p)->rb_left; 430 } else { 431 return -EEXIST; 432 } 433 } 434 435 rb_link_node(node, parent_node, p); 436 rb_insert_color_cached(node, root, leftmost); 437 ins->delayed_node = delayed_node; 438 ins->ins_or_del = action; 439 440 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 441 action == BTRFS_DELAYED_INSERTION_ITEM && 442 ins->key.offset >= delayed_node->index_cnt) 443 delayed_node->index_cnt = ins->key.offset + 1; 444 445 delayed_node->count++; 446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 447 return 0; 448 } 449 450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 451 struct btrfs_delayed_item *item) 452 { 453 return __btrfs_add_delayed_item(node, item, 454 BTRFS_DELAYED_INSERTION_ITEM); 455 } 456 457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 458 struct btrfs_delayed_item *item) 459 { 460 return __btrfs_add_delayed_item(node, item, 461 BTRFS_DELAYED_DELETION_ITEM); 462 } 463 464 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 465 { 466 int seq = atomic_inc_return(&delayed_root->items_seq); 467 468 /* atomic_dec_return implies a barrier */ 469 if ((atomic_dec_return(&delayed_root->items) < 470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 471 cond_wake_up_nomb(&delayed_root->wait); 472 } 473 474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 475 { 476 struct rb_root_cached *root; 477 struct btrfs_delayed_root *delayed_root; 478 479 /* Not associated with any delayed_node */ 480 if (!delayed_item->delayed_node) 481 return; 482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 483 484 BUG_ON(!delayed_root); 485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 487 488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 489 root = &delayed_item->delayed_node->ins_root; 490 else 491 root = &delayed_item->delayed_node->del_root; 492 493 rb_erase_cached(&delayed_item->rb_node, root); 494 delayed_item->delayed_node->count--; 495 496 finish_one_item(delayed_root); 497 } 498 499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 500 { 501 if (item) { 502 __btrfs_remove_delayed_item(item); 503 if (refcount_dec_and_test(&item->refs)) 504 kfree(item); 505 } 506 } 507 508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 509 struct btrfs_delayed_node *delayed_node) 510 { 511 struct rb_node *p; 512 struct btrfs_delayed_item *item = NULL; 513 514 p = rb_first_cached(&delayed_node->ins_root); 515 if (p) 516 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 517 518 return item; 519 } 520 521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 522 struct btrfs_delayed_node *delayed_node) 523 { 524 struct rb_node *p; 525 struct btrfs_delayed_item *item = NULL; 526 527 p = rb_first_cached(&delayed_node->del_root); 528 if (p) 529 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 530 531 return item; 532 } 533 534 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 535 struct btrfs_delayed_item *item) 536 { 537 struct rb_node *p; 538 struct btrfs_delayed_item *next = NULL; 539 540 p = rb_next(&item->rb_node); 541 if (p) 542 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 543 544 return next; 545 } 546 547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 548 struct btrfs_root *root, 549 struct btrfs_delayed_item *item) 550 { 551 struct btrfs_block_rsv *src_rsv; 552 struct btrfs_block_rsv *dst_rsv; 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 u64 num_bytes; 555 int ret; 556 557 if (!trans->bytes_reserved) 558 return 0; 559 560 src_rsv = trans->block_rsv; 561 dst_rsv = &fs_info->delayed_block_rsv; 562 563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 564 565 /* 566 * Here we migrate space rsv from transaction rsv, since have already 567 * reserved space when starting a transaction. So no need to reserve 568 * qgroup space here. 569 */ 570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 571 if (!ret) { 572 trace_btrfs_space_reservation(fs_info, "delayed_item", 573 item->key.objectid, 574 num_bytes, 1); 575 item->bytes_reserved = num_bytes; 576 } 577 578 return ret; 579 } 580 581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 582 struct btrfs_delayed_item *item) 583 { 584 struct btrfs_block_rsv *rsv; 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 587 if (!item->bytes_reserved) 588 return; 589 590 rsv = &fs_info->delayed_block_rsv; 591 /* 592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 593 * to release/reserve qgroup space. 594 */ 595 trace_btrfs_space_reservation(fs_info, "delayed_item", 596 item->key.objectid, item->bytes_reserved, 597 0); 598 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 599 } 600 601 static int btrfs_delayed_inode_reserve_metadata( 602 struct btrfs_trans_handle *trans, 603 struct btrfs_root *root, 604 struct btrfs_delayed_node *node) 605 { 606 struct btrfs_fs_info *fs_info = root->fs_info; 607 struct btrfs_block_rsv *src_rsv; 608 struct btrfs_block_rsv *dst_rsv; 609 u64 num_bytes; 610 int ret; 611 612 src_rsv = trans->block_rsv; 613 dst_rsv = &fs_info->delayed_block_rsv; 614 615 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 616 617 /* 618 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 619 * which doesn't reserve space for speed. This is a problem since we 620 * still need to reserve space for this update, so try to reserve the 621 * space. 622 * 623 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 624 * we always reserve enough to update the inode item. 625 */ 626 if (!src_rsv || (!trans->bytes_reserved && 627 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 628 ret = btrfs_qgroup_reserve_meta(root, num_bytes, 629 BTRFS_QGROUP_RSV_META_PREALLOC, true); 630 if (ret < 0) 631 return ret; 632 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 633 BTRFS_RESERVE_NO_FLUSH); 634 /* NO_FLUSH could only fail with -ENOSPC */ 635 ASSERT(ret == 0 || ret == -ENOSPC); 636 if (ret) 637 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 638 } else { 639 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 640 } 641 642 if (!ret) { 643 trace_btrfs_space_reservation(fs_info, "delayed_inode", 644 node->inode_id, num_bytes, 1); 645 node->bytes_reserved = num_bytes; 646 } 647 648 return ret; 649 } 650 651 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 652 struct btrfs_delayed_node *node, 653 bool qgroup_free) 654 { 655 struct btrfs_block_rsv *rsv; 656 657 if (!node->bytes_reserved) 658 return; 659 660 rsv = &fs_info->delayed_block_rsv; 661 trace_btrfs_space_reservation(fs_info, "delayed_inode", 662 node->inode_id, node->bytes_reserved, 0); 663 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 664 if (qgroup_free) 665 btrfs_qgroup_free_meta_prealloc(node->root, 666 node->bytes_reserved); 667 else 668 btrfs_qgroup_convert_reserved_meta(node->root, 669 node->bytes_reserved); 670 node->bytes_reserved = 0; 671 } 672 673 /* 674 * Insert a single delayed item or a batch of delayed items that have consecutive 675 * keys if they exist. 676 */ 677 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 678 struct btrfs_root *root, 679 struct btrfs_path *path, 680 struct btrfs_delayed_item *first_item) 681 { 682 LIST_HEAD(batch); 683 struct btrfs_delayed_item *curr; 684 struct btrfs_delayed_item *next; 685 const int max_size = BTRFS_LEAF_DATA_SIZE(root->fs_info); 686 int total_size; 687 int nitems; 688 char *ins_data = NULL; 689 struct btrfs_key *ins_keys; 690 u32 *ins_sizes; 691 int ret; 692 693 list_add_tail(&first_item->tree_list, &batch); 694 nitems = 1; 695 total_size = first_item->data_len + sizeof(struct btrfs_item); 696 curr = first_item; 697 698 while (true) { 699 int next_size; 700 701 next = __btrfs_next_delayed_item(curr); 702 if (!next || !btrfs_is_continuous_delayed_item(curr, next)) 703 break; 704 705 next_size = next->data_len + sizeof(struct btrfs_item); 706 if (total_size + next_size > max_size) 707 break; 708 709 list_add_tail(&next->tree_list, &batch); 710 nitems++; 711 total_size += next_size; 712 curr = next; 713 } 714 715 if (nitems == 1) { 716 ins_keys = &first_item->key; 717 ins_sizes = &first_item->data_len; 718 } else { 719 int i = 0; 720 721 ins_data = kmalloc(nitems * sizeof(u32) + 722 nitems * sizeof(struct btrfs_key), GFP_NOFS); 723 if (!ins_data) { 724 ret = -ENOMEM; 725 goto out; 726 } 727 ins_sizes = (u32 *)ins_data; 728 ins_keys = (struct btrfs_key *)(ins_data + nitems * sizeof(u32)); 729 list_for_each_entry(curr, &batch, tree_list) { 730 ins_keys[i] = curr->key; 731 ins_sizes[i] = curr->data_len; 732 i++; 733 } 734 } 735 736 ret = btrfs_insert_empty_items(trans, root, path, ins_keys, ins_sizes, 737 nitems); 738 if (ret) 739 goto out; 740 741 list_for_each_entry(curr, &batch, tree_list) { 742 char *data_ptr; 743 744 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char); 745 write_extent_buffer(path->nodes[0], &curr->data, 746 (unsigned long)data_ptr, curr->data_len); 747 path->slots[0]++; 748 } 749 750 /* 751 * Now release our path before releasing the delayed items and their 752 * metadata reservations, so that we don't block other tasks for more 753 * time than needed. 754 */ 755 btrfs_release_path(path); 756 757 list_for_each_entry_safe(curr, next, &batch, tree_list) { 758 list_del(&curr->tree_list); 759 btrfs_delayed_item_release_metadata(root, curr); 760 btrfs_release_delayed_item(curr); 761 } 762 out: 763 kfree(ins_data); 764 return ret; 765 } 766 767 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 768 struct btrfs_path *path, 769 struct btrfs_root *root, 770 struct btrfs_delayed_node *node) 771 { 772 int ret = 0; 773 774 while (ret == 0) { 775 struct btrfs_delayed_item *curr; 776 777 mutex_lock(&node->mutex); 778 curr = __btrfs_first_delayed_insertion_item(node); 779 if (!curr) { 780 mutex_unlock(&node->mutex); 781 break; 782 } 783 ret = btrfs_insert_delayed_item(trans, root, path, curr); 784 mutex_unlock(&node->mutex); 785 } 786 787 return ret; 788 } 789 790 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 791 struct btrfs_root *root, 792 struct btrfs_path *path, 793 struct btrfs_delayed_item *item) 794 { 795 struct btrfs_delayed_item *curr, *next; 796 struct extent_buffer *leaf; 797 struct btrfs_key key; 798 struct list_head head; 799 int nitems, i, last_item; 800 int ret = 0; 801 802 BUG_ON(!path->nodes[0]); 803 804 leaf = path->nodes[0]; 805 806 i = path->slots[0]; 807 last_item = btrfs_header_nritems(leaf) - 1; 808 if (i > last_item) 809 return -ENOENT; /* FIXME: Is errno suitable? */ 810 811 next = item; 812 INIT_LIST_HEAD(&head); 813 btrfs_item_key_to_cpu(leaf, &key, i); 814 nitems = 0; 815 /* 816 * count the number of the dir index items that we can delete in batch 817 */ 818 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 819 list_add_tail(&next->tree_list, &head); 820 nitems++; 821 822 curr = next; 823 next = __btrfs_next_delayed_item(curr); 824 if (!next) 825 break; 826 827 if (!btrfs_is_continuous_delayed_item(curr, next)) 828 break; 829 830 i++; 831 if (i > last_item) 832 break; 833 btrfs_item_key_to_cpu(leaf, &key, i); 834 } 835 836 if (!nitems) 837 return 0; 838 839 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 840 if (ret) 841 goto out; 842 843 list_for_each_entry_safe(curr, next, &head, tree_list) { 844 btrfs_delayed_item_release_metadata(root, curr); 845 list_del(&curr->tree_list); 846 btrfs_release_delayed_item(curr); 847 } 848 849 out: 850 return ret; 851 } 852 853 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 854 struct btrfs_path *path, 855 struct btrfs_root *root, 856 struct btrfs_delayed_node *node) 857 { 858 struct btrfs_delayed_item *curr, *prev; 859 int ret = 0; 860 861 do_again: 862 mutex_lock(&node->mutex); 863 curr = __btrfs_first_delayed_deletion_item(node); 864 if (!curr) 865 goto delete_fail; 866 867 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 868 if (ret < 0) 869 goto delete_fail; 870 else if (ret > 0) { 871 /* 872 * can't find the item which the node points to, so this node 873 * is invalid, just drop it. 874 */ 875 prev = curr; 876 curr = __btrfs_next_delayed_item(prev); 877 btrfs_release_delayed_item(prev); 878 ret = 0; 879 btrfs_release_path(path); 880 if (curr) { 881 mutex_unlock(&node->mutex); 882 goto do_again; 883 } else 884 goto delete_fail; 885 } 886 887 btrfs_batch_delete_items(trans, root, path, curr); 888 btrfs_release_path(path); 889 mutex_unlock(&node->mutex); 890 goto do_again; 891 892 delete_fail: 893 btrfs_release_path(path); 894 mutex_unlock(&node->mutex); 895 return ret; 896 } 897 898 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 899 { 900 struct btrfs_delayed_root *delayed_root; 901 902 if (delayed_node && 903 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 904 BUG_ON(!delayed_node->root); 905 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 906 delayed_node->count--; 907 908 delayed_root = delayed_node->root->fs_info->delayed_root; 909 finish_one_item(delayed_root); 910 } 911 } 912 913 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 914 { 915 916 if (test_and_clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) { 917 struct btrfs_delayed_root *delayed_root; 918 919 ASSERT(delayed_node->root); 920 delayed_node->count--; 921 922 delayed_root = delayed_node->root->fs_info->delayed_root; 923 finish_one_item(delayed_root); 924 } 925 } 926 927 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 928 struct btrfs_root *root, 929 struct btrfs_path *path, 930 struct btrfs_delayed_node *node) 931 { 932 struct btrfs_fs_info *fs_info = root->fs_info; 933 struct btrfs_key key; 934 struct btrfs_inode_item *inode_item; 935 struct extent_buffer *leaf; 936 int mod; 937 int ret; 938 939 key.objectid = node->inode_id; 940 key.type = BTRFS_INODE_ITEM_KEY; 941 key.offset = 0; 942 943 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 944 mod = -1; 945 else 946 mod = 1; 947 948 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 949 if (ret > 0) 950 ret = -ENOENT; 951 if (ret < 0) 952 goto out; 953 954 leaf = path->nodes[0]; 955 inode_item = btrfs_item_ptr(leaf, path->slots[0], 956 struct btrfs_inode_item); 957 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 958 sizeof(struct btrfs_inode_item)); 959 btrfs_mark_buffer_dirty(leaf); 960 961 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 962 goto out; 963 964 path->slots[0]++; 965 if (path->slots[0] >= btrfs_header_nritems(leaf)) 966 goto search; 967 again: 968 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 969 if (key.objectid != node->inode_id) 970 goto out; 971 972 if (key.type != BTRFS_INODE_REF_KEY && 973 key.type != BTRFS_INODE_EXTREF_KEY) 974 goto out; 975 976 /* 977 * Delayed iref deletion is for the inode who has only one link, 978 * so there is only one iref. The case that several irefs are 979 * in the same item doesn't exist. 980 */ 981 btrfs_del_item(trans, root, path); 982 out: 983 btrfs_release_delayed_iref(node); 984 btrfs_release_path(path); 985 err_out: 986 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 987 btrfs_release_delayed_inode(node); 988 989 /* 990 * If we fail to update the delayed inode we need to abort the 991 * transaction, because we could leave the inode with the improper 992 * counts behind. 993 */ 994 if (ret && ret != -ENOENT) 995 btrfs_abort_transaction(trans, ret); 996 997 return ret; 998 999 search: 1000 btrfs_release_path(path); 1001 1002 key.type = BTRFS_INODE_EXTREF_KEY; 1003 key.offset = -1; 1004 1005 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1006 if (ret < 0) 1007 goto err_out; 1008 ASSERT(ret); 1009 1010 ret = 0; 1011 leaf = path->nodes[0]; 1012 path->slots[0]--; 1013 goto again; 1014 } 1015 1016 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1017 struct btrfs_root *root, 1018 struct btrfs_path *path, 1019 struct btrfs_delayed_node *node) 1020 { 1021 int ret; 1022 1023 mutex_lock(&node->mutex); 1024 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1025 mutex_unlock(&node->mutex); 1026 return 0; 1027 } 1028 1029 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1030 mutex_unlock(&node->mutex); 1031 return ret; 1032 } 1033 1034 static inline int 1035 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1036 struct btrfs_path *path, 1037 struct btrfs_delayed_node *node) 1038 { 1039 int ret; 1040 1041 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1042 if (ret) 1043 return ret; 1044 1045 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1046 if (ret) 1047 return ret; 1048 1049 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1050 return ret; 1051 } 1052 1053 /* 1054 * Called when committing the transaction. 1055 * Returns 0 on success. 1056 * Returns < 0 on error and returns with an aborted transaction with any 1057 * outstanding delayed items cleaned up. 1058 */ 1059 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1060 { 1061 struct btrfs_fs_info *fs_info = trans->fs_info; 1062 struct btrfs_delayed_root *delayed_root; 1063 struct btrfs_delayed_node *curr_node, *prev_node; 1064 struct btrfs_path *path; 1065 struct btrfs_block_rsv *block_rsv; 1066 int ret = 0; 1067 bool count = (nr > 0); 1068 1069 if (TRANS_ABORTED(trans)) 1070 return -EIO; 1071 1072 path = btrfs_alloc_path(); 1073 if (!path) 1074 return -ENOMEM; 1075 1076 block_rsv = trans->block_rsv; 1077 trans->block_rsv = &fs_info->delayed_block_rsv; 1078 1079 delayed_root = fs_info->delayed_root; 1080 1081 curr_node = btrfs_first_delayed_node(delayed_root); 1082 while (curr_node && (!count || nr--)) { 1083 ret = __btrfs_commit_inode_delayed_items(trans, path, 1084 curr_node); 1085 if (ret) { 1086 btrfs_release_delayed_node(curr_node); 1087 curr_node = NULL; 1088 btrfs_abort_transaction(trans, ret); 1089 break; 1090 } 1091 1092 prev_node = curr_node; 1093 curr_node = btrfs_next_delayed_node(curr_node); 1094 btrfs_release_delayed_node(prev_node); 1095 } 1096 1097 if (curr_node) 1098 btrfs_release_delayed_node(curr_node); 1099 btrfs_free_path(path); 1100 trans->block_rsv = block_rsv; 1101 1102 return ret; 1103 } 1104 1105 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1106 { 1107 return __btrfs_run_delayed_items(trans, -1); 1108 } 1109 1110 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1111 { 1112 return __btrfs_run_delayed_items(trans, nr); 1113 } 1114 1115 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1116 struct btrfs_inode *inode) 1117 { 1118 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1119 struct btrfs_path *path; 1120 struct btrfs_block_rsv *block_rsv; 1121 int ret; 1122 1123 if (!delayed_node) 1124 return 0; 1125 1126 mutex_lock(&delayed_node->mutex); 1127 if (!delayed_node->count) { 1128 mutex_unlock(&delayed_node->mutex); 1129 btrfs_release_delayed_node(delayed_node); 1130 return 0; 1131 } 1132 mutex_unlock(&delayed_node->mutex); 1133 1134 path = btrfs_alloc_path(); 1135 if (!path) { 1136 btrfs_release_delayed_node(delayed_node); 1137 return -ENOMEM; 1138 } 1139 1140 block_rsv = trans->block_rsv; 1141 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1142 1143 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1144 1145 btrfs_release_delayed_node(delayed_node); 1146 btrfs_free_path(path); 1147 trans->block_rsv = block_rsv; 1148 1149 return ret; 1150 } 1151 1152 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1153 { 1154 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1155 struct btrfs_trans_handle *trans; 1156 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1157 struct btrfs_path *path; 1158 struct btrfs_block_rsv *block_rsv; 1159 int ret; 1160 1161 if (!delayed_node) 1162 return 0; 1163 1164 mutex_lock(&delayed_node->mutex); 1165 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1166 mutex_unlock(&delayed_node->mutex); 1167 btrfs_release_delayed_node(delayed_node); 1168 return 0; 1169 } 1170 mutex_unlock(&delayed_node->mutex); 1171 1172 trans = btrfs_join_transaction(delayed_node->root); 1173 if (IS_ERR(trans)) { 1174 ret = PTR_ERR(trans); 1175 goto out; 1176 } 1177 1178 path = btrfs_alloc_path(); 1179 if (!path) { 1180 ret = -ENOMEM; 1181 goto trans_out; 1182 } 1183 1184 block_rsv = trans->block_rsv; 1185 trans->block_rsv = &fs_info->delayed_block_rsv; 1186 1187 mutex_lock(&delayed_node->mutex); 1188 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1189 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1190 path, delayed_node); 1191 else 1192 ret = 0; 1193 mutex_unlock(&delayed_node->mutex); 1194 1195 btrfs_free_path(path); 1196 trans->block_rsv = block_rsv; 1197 trans_out: 1198 btrfs_end_transaction(trans); 1199 btrfs_btree_balance_dirty(fs_info); 1200 out: 1201 btrfs_release_delayed_node(delayed_node); 1202 1203 return ret; 1204 } 1205 1206 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1207 { 1208 struct btrfs_delayed_node *delayed_node; 1209 1210 delayed_node = READ_ONCE(inode->delayed_node); 1211 if (!delayed_node) 1212 return; 1213 1214 inode->delayed_node = NULL; 1215 btrfs_release_delayed_node(delayed_node); 1216 } 1217 1218 struct btrfs_async_delayed_work { 1219 struct btrfs_delayed_root *delayed_root; 1220 int nr; 1221 struct btrfs_work work; 1222 }; 1223 1224 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1225 { 1226 struct btrfs_async_delayed_work *async_work; 1227 struct btrfs_delayed_root *delayed_root; 1228 struct btrfs_trans_handle *trans; 1229 struct btrfs_path *path; 1230 struct btrfs_delayed_node *delayed_node = NULL; 1231 struct btrfs_root *root; 1232 struct btrfs_block_rsv *block_rsv; 1233 int total_done = 0; 1234 1235 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1236 delayed_root = async_work->delayed_root; 1237 1238 path = btrfs_alloc_path(); 1239 if (!path) 1240 goto out; 1241 1242 do { 1243 if (atomic_read(&delayed_root->items) < 1244 BTRFS_DELAYED_BACKGROUND / 2) 1245 break; 1246 1247 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1248 if (!delayed_node) 1249 break; 1250 1251 root = delayed_node->root; 1252 1253 trans = btrfs_join_transaction(root); 1254 if (IS_ERR(trans)) { 1255 btrfs_release_path(path); 1256 btrfs_release_prepared_delayed_node(delayed_node); 1257 total_done++; 1258 continue; 1259 } 1260 1261 block_rsv = trans->block_rsv; 1262 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1263 1264 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1265 1266 trans->block_rsv = block_rsv; 1267 btrfs_end_transaction(trans); 1268 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1269 1270 btrfs_release_path(path); 1271 btrfs_release_prepared_delayed_node(delayed_node); 1272 total_done++; 1273 1274 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1275 || total_done < async_work->nr); 1276 1277 btrfs_free_path(path); 1278 out: 1279 wake_up(&delayed_root->wait); 1280 kfree(async_work); 1281 } 1282 1283 1284 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1285 struct btrfs_fs_info *fs_info, int nr) 1286 { 1287 struct btrfs_async_delayed_work *async_work; 1288 1289 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1290 if (!async_work) 1291 return -ENOMEM; 1292 1293 async_work->delayed_root = delayed_root; 1294 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1295 NULL); 1296 async_work->nr = nr; 1297 1298 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1299 return 0; 1300 } 1301 1302 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1303 { 1304 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1305 } 1306 1307 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1308 { 1309 int val = atomic_read(&delayed_root->items_seq); 1310 1311 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1312 return 1; 1313 1314 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1315 return 1; 1316 1317 return 0; 1318 } 1319 1320 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1321 { 1322 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1323 1324 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1325 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1326 return; 1327 1328 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1329 int seq; 1330 int ret; 1331 1332 seq = atomic_read(&delayed_root->items_seq); 1333 1334 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1335 if (ret) 1336 return; 1337 1338 wait_event_interruptible(delayed_root->wait, 1339 could_end_wait(delayed_root, seq)); 1340 return; 1341 } 1342 1343 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1344 } 1345 1346 /* Will return 0 or -ENOMEM */ 1347 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1348 const char *name, int name_len, 1349 struct btrfs_inode *dir, 1350 struct btrfs_disk_key *disk_key, u8 type, 1351 u64 index) 1352 { 1353 struct btrfs_delayed_node *delayed_node; 1354 struct btrfs_delayed_item *delayed_item; 1355 struct btrfs_dir_item *dir_item; 1356 int ret; 1357 1358 delayed_node = btrfs_get_or_create_delayed_node(dir); 1359 if (IS_ERR(delayed_node)) 1360 return PTR_ERR(delayed_node); 1361 1362 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1363 if (!delayed_item) { 1364 ret = -ENOMEM; 1365 goto release_node; 1366 } 1367 1368 delayed_item->key.objectid = btrfs_ino(dir); 1369 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1370 delayed_item->key.offset = index; 1371 1372 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1373 dir_item->location = *disk_key; 1374 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1375 btrfs_set_stack_dir_data_len(dir_item, 0); 1376 btrfs_set_stack_dir_name_len(dir_item, name_len); 1377 btrfs_set_stack_dir_type(dir_item, type); 1378 memcpy((char *)(dir_item + 1), name, name_len); 1379 1380 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1381 /* 1382 * we have reserved enough space when we start a new transaction, 1383 * so reserving metadata failure is impossible 1384 */ 1385 BUG_ON(ret); 1386 1387 mutex_lock(&delayed_node->mutex); 1388 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1389 if (unlikely(ret)) { 1390 btrfs_err(trans->fs_info, 1391 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1392 name_len, name, delayed_node->root->root_key.objectid, 1393 delayed_node->inode_id, ret); 1394 BUG(); 1395 } 1396 mutex_unlock(&delayed_node->mutex); 1397 1398 release_node: 1399 btrfs_release_delayed_node(delayed_node); 1400 return ret; 1401 } 1402 1403 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1404 struct btrfs_delayed_node *node, 1405 struct btrfs_key *key) 1406 { 1407 struct btrfs_delayed_item *item; 1408 1409 mutex_lock(&node->mutex); 1410 item = __btrfs_lookup_delayed_insertion_item(node, key); 1411 if (!item) { 1412 mutex_unlock(&node->mutex); 1413 return 1; 1414 } 1415 1416 btrfs_delayed_item_release_metadata(node->root, item); 1417 btrfs_release_delayed_item(item); 1418 mutex_unlock(&node->mutex); 1419 return 0; 1420 } 1421 1422 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1423 struct btrfs_inode *dir, u64 index) 1424 { 1425 struct btrfs_delayed_node *node; 1426 struct btrfs_delayed_item *item; 1427 struct btrfs_key item_key; 1428 int ret; 1429 1430 node = btrfs_get_or_create_delayed_node(dir); 1431 if (IS_ERR(node)) 1432 return PTR_ERR(node); 1433 1434 item_key.objectid = btrfs_ino(dir); 1435 item_key.type = BTRFS_DIR_INDEX_KEY; 1436 item_key.offset = index; 1437 1438 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1439 &item_key); 1440 if (!ret) 1441 goto end; 1442 1443 item = btrfs_alloc_delayed_item(0); 1444 if (!item) { 1445 ret = -ENOMEM; 1446 goto end; 1447 } 1448 1449 item->key = item_key; 1450 1451 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1452 /* 1453 * we have reserved enough space when we start a new transaction, 1454 * so reserving metadata failure is impossible. 1455 */ 1456 if (ret < 0) { 1457 btrfs_err(trans->fs_info, 1458 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1459 btrfs_release_delayed_item(item); 1460 goto end; 1461 } 1462 1463 mutex_lock(&node->mutex); 1464 ret = __btrfs_add_delayed_deletion_item(node, item); 1465 if (unlikely(ret)) { 1466 btrfs_err(trans->fs_info, 1467 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1468 index, node->root->root_key.objectid, 1469 node->inode_id, ret); 1470 btrfs_delayed_item_release_metadata(dir->root, item); 1471 btrfs_release_delayed_item(item); 1472 } 1473 mutex_unlock(&node->mutex); 1474 end: 1475 btrfs_release_delayed_node(node); 1476 return ret; 1477 } 1478 1479 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1480 { 1481 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1482 1483 if (!delayed_node) 1484 return -ENOENT; 1485 1486 /* 1487 * Since we have held i_mutex of this directory, it is impossible that 1488 * a new directory index is added into the delayed node and index_cnt 1489 * is updated now. So we needn't lock the delayed node. 1490 */ 1491 if (!delayed_node->index_cnt) { 1492 btrfs_release_delayed_node(delayed_node); 1493 return -EINVAL; 1494 } 1495 1496 inode->index_cnt = delayed_node->index_cnt; 1497 btrfs_release_delayed_node(delayed_node); 1498 return 0; 1499 } 1500 1501 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1502 struct list_head *ins_list, 1503 struct list_head *del_list) 1504 { 1505 struct btrfs_delayed_node *delayed_node; 1506 struct btrfs_delayed_item *item; 1507 1508 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1509 if (!delayed_node) 1510 return false; 1511 1512 /* 1513 * We can only do one readdir with delayed items at a time because of 1514 * item->readdir_list. 1515 */ 1516 btrfs_inode_unlock(inode, BTRFS_ILOCK_SHARED); 1517 btrfs_inode_lock(inode, 0); 1518 1519 mutex_lock(&delayed_node->mutex); 1520 item = __btrfs_first_delayed_insertion_item(delayed_node); 1521 while (item) { 1522 refcount_inc(&item->refs); 1523 list_add_tail(&item->readdir_list, ins_list); 1524 item = __btrfs_next_delayed_item(item); 1525 } 1526 1527 item = __btrfs_first_delayed_deletion_item(delayed_node); 1528 while (item) { 1529 refcount_inc(&item->refs); 1530 list_add_tail(&item->readdir_list, del_list); 1531 item = __btrfs_next_delayed_item(item); 1532 } 1533 mutex_unlock(&delayed_node->mutex); 1534 /* 1535 * This delayed node is still cached in the btrfs inode, so refs 1536 * must be > 1 now, and we needn't check it is going to be freed 1537 * or not. 1538 * 1539 * Besides that, this function is used to read dir, we do not 1540 * insert/delete delayed items in this period. So we also needn't 1541 * requeue or dequeue this delayed node. 1542 */ 1543 refcount_dec(&delayed_node->refs); 1544 1545 return true; 1546 } 1547 1548 void btrfs_readdir_put_delayed_items(struct inode *inode, 1549 struct list_head *ins_list, 1550 struct list_head *del_list) 1551 { 1552 struct btrfs_delayed_item *curr, *next; 1553 1554 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1555 list_del(&curr->readdir_list); 1556 if (refcount_dec_and_test(&curr->refs)) 1557 kfree(curr); 1558 } 1559 1560 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1561 list_del(&curr->readdir_list); 1562 if (refcount_dec_and_test(&curr->refs)) 1563 kfree(curr); 1564 } 1565 1566 /* 1567 * The VFS is going to do up_read(), so we need to downgrade back to a 1568 * read lock. 1569 */ 1570 downgrade_write(&inode->i_rwsem); 1571 } 1572 1573 int btrfs_should_delete_dir_index(struct list_head *del_list, 1574 u64 index) 1575 { 1576 struct btrfs_delayed_item *curr; 1577 int ret = 0; 1578 1579 list_for_each_entry(curr, del_list, readdir_list) { 1580 if (curr->key.offset > index) 1581 break; 1582 if (curr->key.offset == index) { 1583 ret = 1; 1584 break; 1585 } 1586 } 1587 return ret; 1588 } 1589 1590 /* 1591 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1592 * 1593 */ 1594 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1595 struct list_head *ins_list) 1596 { 1597 struct btrfs_dir_item *di; 1598 struct btrfs_delayed_item *curr, *next; 1599 struct btrfs_key location; 1600 char *name; 1601 int name_len; 1602 int over = 0; 1603 unsigned char d_type; 1604 1605 if (list_empty(ins_list)) 1606 return 0; 1607 1608 /* 1609 * Changing the data of the delayed item is impossible. So 1610 * we needn't lock them. And we have held i_mutex of the 1611 * directory, nobody can delete any directory indexes now. 1612 */ 1613 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1614 list_del(&curr->readdir_list); 1615 1616 if (curr->key.offset < ctx->pos) { 1617 if (refcount_dec_and_test(&curr->refs)) 1618 kfree(curr); 1619 continue; 1620 } 1621 1622 ctx->pos = curr->key.offset; 1623 1624 di = (struct btrfs_dir_item *)curr->data; 1625 name = (char *)(di + 1); 1626 name_len = btrfs_stack_dir_name_len(di); 1627 1628 d_type = fs_ftype_to_dtype(di->type); 1629 btrfs_disk_key_to_cpu(&location, &di->location); 1630 1631 over = !dir_emit(ctx, name, name_len, 1632 location.objectid, d_type); 1633 1634 if (refcount_dec_and_test(&curr->refs)) 1635 kfree(curr); 1636 1637 if (over) 1638 return 1; 1639 ctx->pos++; 1640 } 1641 return 0; 1642 } 1643 1644 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1645 struct btrfs_inode_item *inode_item, 1646 struct inode *inode) 1647 { 1648 u64 flags; 1649 1650 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1651 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1652 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1653 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1654 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1655 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1656 btrfs_set_stack_inode_generation(inode_item, 1657 BTRFS_I(inode)->generation); 1658 btrfs_set_stack_inode_sequence(inode_item, 1659 inode_peek_iversion(inode)); 1660 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1661 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1662 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags, 1663 BTRFS_I(inode)->ro_flags); 1664 btrfs_set_stack_inode_flags(inode_item, flags); 1665 btrfs_set_stack_inode_block_group(inode_item, 0); 1666 1667 btrfs_set_stack_timespec_sec(&inode_item->atime, 1668 inode->i_atime.tv_sec); 1669 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1670 inode->i_atime.tv_nsec); 1671 1672 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1673 inode->i_mtime.tv_sec); 1674 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1675 inode->i_mtime.tv_nsec); 1676 1677 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1678 inode->i_ctime.tv_sec); 1679 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1680 inode->i_ctime.tv_nsec); 1681 1682 btrfs_set_stack_timespec_sec(&inode_item->otime, 1683 BTRFS_I(inode)->i_otime.tv_sec); 1684 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1685 BTRFS_I(inode)->i_otime.tv_nsec); 1686 } 1687 1688 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1689 { 1690 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1691 struct btrfs_delayed_node *delayed_node; 1692 struct btrfs_inode_item *inode_item; 1693 1694 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1695 if (!delayed_node) 1696 return -ENOENT; 1697 1698 mutex_lock(&delayed_node->mutex); 1699 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1700 mutex_unlock(&delayed_node->mutex); 1701 btrfs_release_delayed_node(delayed_node); 1702 return -ENOENT; 1703 } 1704 1705 inode_item = &delayed_node->inode_item; 1706 1707 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1708 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1709 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1710 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1711 round_up(i_size_read(inode), fs_info->sectorsize)); 1712 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1713 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1714 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1715 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1716 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1717 1718 inode_set_iversion_queried(inode, 1719 btrfs_stack_inode_sequence(inode_item)); 1720 inode->i_rdev = 0; 1721 *rdev = btrfs_stack_inode_rdev(inode_item); 1722 btrfs_inode_split_flags(btrfs_stack_inode_flags(inode_item), 1723 &BTRFS_I(inode)->flags, &BTRFS_I(inode)->ro_flags); 1724 1725 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1726 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1727 1728 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1729 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1730 1731 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1732 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1733 1734 BTRFS_I(inode)->i_otime.tv_sec = 1735 btrfs_stack_timespec_sec(&inode_item->otime); 1736 BTRFS_I(inode)->i_otime.tv_nsec = 1737 btrfs_stack_timespec_nsec(&inode_item->otime); 1738 1739 inode->i_generation = BTRFS_I(inode)->generation; 1740 BTRFS_I(inode)->index_cnt = (u64)-1; 1741 1742 mutex_unlock(&delayed_node->mutex); 1743 btrfs_release_delayed_node(delayed_node); 1744 return 0; 1745 } 1746 1747 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1748 struct btrfs_root *root, 1749 struct btrfs_inode *inode) 1750 { 1751 struct btrfs_delayed_node *delayed_node; 1752 int ret = 0; 1753 1754 delayed_node = btrfs_get_or_create_delayed_node(inode); 1755 if (IS_ERR(delayed_node)) 1756 return PTR_ERR(delayed_node); 1757 1758 mutex_lock(&delayed_node->mutex); 1759 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1760 fill_stack_inode_item(trans, &delayed_node->inode_item, 1761 &inode->vfs_inode); 1762 goto release_node; 1763 } 1764 1765 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node); 1766 if (ret) 1767 goto release_node; 1768 1769 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1770 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1771 delayed_node->count++; 1772 atomic_inc(&root->fs_info->delayed_root->items); 1773 release_node: 1774 mutex_unlock(&delayed_node->mutex); 1775 btrfs_release_delayed_node(delayed_node); 1776 return ret; 1777 } 1778 1779 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1780 { 1781 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1782 struct btrfs_delayed_node *delayed_node; 1783 1784 /* 1785 * we don't do delayed inode updates during log recovery because it 1786 * leads to enospc problems. This means we also can't do 1787 * delayed inode refs 1788 */ 1789 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1790 return -EAGAIN; 1791 1792 delayed_node = btrfs_get_or_create_delayed_node(inode); 1793 if (IS_ERR(delayed_node)) 1794 return PTR_ERR(delayed_node); 1795 1796 /* 1797 * We don't reserve space for inode ref deletion is because: 1798 * - We ONLY do async inode ref deletion for the inode who has only 1799 * one link(i_nlink == 1), it means there is only one inode ref. 1800 * And in most case, the inode ref and the inode item are in the 1801 * same leaf, and we will deal with them at the same time. 1802 * Since we are sure we will reserve the space for the inode item, 1803 * it is unnecessary to reserve space for inode ref deletion. 1804 * - If the inode ref and the inode item are not in the same leaf, 1805 * We also needn't worry about enospc problem, because we reserve 1806 * much more space for the inode update than it needs. 1807 * - At the worst, we can steal some space from the global reservation. 1808 * It is very rare. 1809 */ 1810 mutex_lock(&delayed_node->mutex); 1811 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1812 goto release_node; 1813 1814 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1815 delayed_node->count++; 1816 atomic_inc(&fs_info->delayed_root->items); 1817 release_node: 1818 mutex_unlock(&delayed_node->mutex); 1819 btrfs_release_delayed_node(delayed_node); 1820 return 0; 1821 } 1822 1823 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1824 { 1825 struct btrfs_root *root = delayed_node->root; 1826 struct btrfs_fs_info *fs_info = root->fs_info; 1827 struct btrfs_delayed_item *curr_item, *prev_item; 1828 1829 mutex_lock(&delayed_node->mutex); 1830 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1831 while (curr_item) { 1832 btrfs_delayed_item_release_metadata(root, curr_item); 1833 prev_item = curr_item; 1834 curr_item = __btrfs_next_delayed_item(prev_item); 1835 btrfs_release_delayed_item(prev_item); 1836 } 1837 1838 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1839 while (curr_item) { 1840 btrfs_delayed_item_release_metadata(root, curr_item); 1841 prev_item = curr_item; 1842 curr_item = __btrfs_next_delayed_item(prev_item); 1843 btrfs_release_delayed_item(prev_item); 1844 } 1845 1846 btrfs_release_delayed_iref(delayed_node); 1847 1848 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1849 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1850 btrfs_release_delayed_inode(delayed_node); 1851 } 1852 mutex_unlock(&delayed_node->mutex); 1853 } 1854 1855 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1856 { 1857 struct btrfs_delayed_node *delayed_node; 1858 1859 delayed_node = btrfs_get_delayed_node(inode); 1860 if (!delayed_node) 1861 return; 1862 1863 __btrfs_kill_delayed_node(delayed_node); 1864 btrfs_release_delayed_node(delayed_node); 1865 } 1866 1867 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1868 { 1869 u64 inode_id = 0; 1870 struct btrfs_delayed_node *delayed_nodes[8]; 1871 int i, n; 1872 1873 while (1) { 1874 spin_lock(&root->inode_lock); 1875 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1876 (void **)delayed_nodes, inode_id, 1877 ARRAY_SIZE(delayed_nodes)); 1878 if (!n) { 1879 spin_unlock(&root->inode_lock); 1880 break; 1881 } 1882 1883 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1884 for (i = 0; i < n; i++) { 1885 /* 1886 * Don't increase refs in case the node is dead and 1887 * about to be removed from the tree in the loop below 1888 */ 1889 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1890 delayed_nodes[i] = NULL; 1891 } 1892 spin_unlock(&root->inode_lock); 1893 1894 for (i = 0; i < n; i++) { 1895 if (!delayed_nodes[i]) 1896 continue; 1897 __btrfs_kill_delayed_node(delayed_nodes[i]); 1898 btrfs_release_delayed_node(delayed_nodes[i]); 1899 } 1900 } 1901 } 1902 1903 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1904 { 1905 struct btrfs_delayed_node *curr_node, *prev_node; 1906 1907 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1908 while (curr_node) { 1909 __btrfs_kill_delayed_node(curr_node); 1910 1911 prev_node = curr_node; 1912 curr_node = btrfs_next_delayed_node(curr_node); 1913 btrfs_release_delayed_node(prev_node); 1914 } 1915 } 1916 1917