1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include "misc.h" 10 #include "delayed-inode.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "ctree.h" 14 #include "qgroup.h" 15 #include "locking.h" 16 17 #define BTRFS_DELAYED_WRITEBACK 512 18 #define BTRFS_DELAYED_BACKGROUND 128 19 #define BTRFS_DELAYED_BATCH 16 20 21 static struct kmem_cache *delayed_node_cache; 22 23 int __init btrfs_delayed_inode_init(void) 24 { 25 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 26 sizeof(struct btrfs_delayed_node), 27 0, 28 SLAB_MEM_SPREAD, 29 NULL); 30 if (!delayed_node_cache) 31 return -ENOMEM; 32 return 0; 33 } 34 35 void __cold btrfs_delayed_inode_exit(void) 36 { 37 kmem_cache_destroy(delayed_node_cache); 38 } 39 40 static inline void btrfs_init_delayed_node( 41 struct btrfs_delayed_node *delayed_node, 42 struct btrfs_root *root, u64 inode_id) 43 { 44 delayed_node->root = root; 45 delayed_node->inode_id = inode_id; 46 refcount_set(&delayed_node->refs, 0); 47 delayed_node->ins_root = RB_ROOT_CACHED; 48 delayed_node->del_root = RB_ROOT_CACHED; 49 mutex_init(&delayed_node->mutex); 50 INIT_LIST_HEAD(&delayed_node->n_list); 51 INIT_LIST_HEAD(&delayed_node->p_list); 52 } 53 54 static inline int btrfs_is_continuous_delayed_item( 55 struct btrfs_delayed_item *item1, 56 struct btrfs_delayed_item *item2) 57 { 58 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 59 item1->key.objectid == item2->key.objectid && 60 item1->key.type == item2->key.type && 61 item1->key.offset + 1 == item2->key.offset) 62 return 1; 63 return 0; 64 } 65 66 static struct btrfs_delayed_node *btrfs_get_delayed_node( 67 struct btrfs_inode *btrfs_inode) 68 { 69 struct btrfs_root *root = btrfs_inode->root; 70 u64 ino = btrfs_ino(btrfs_inode); 71 struct btrfs_delayed_node *node; 72 73 node = READ_ONCE(btrfs_inode->delayed_node); 74 if (node) { 75 refcount_inc(&node->refs); 76 return node; 77 } 78 79 spin_lock(&root->inode_lock); 80 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 81 82 if (node) { 83 if (btrfs_inode->delayed_node) { 84 refcount_inc(&node->refs); /* can be accessed */ 85 BUG_ON(btrfs_inode->delayed_node != node); 86 spin_unlock(&root->inode_lock); 87 return node; 88 } 89 90 /* 91 * It's possible that we're racing into the middle of removing 92 * this node from the radix tree. In this case, the refcount 93 * was zero and it should never go back to one. Just return 94 * NULL like it was never in the radix at all; our release 95 * function is in the process of removing it. 96 * 97 * Some implementations of refcount_inc refuse to bump the 98 * refcount once it has hit zero. If we don't do this dance 99 * here, refcount_inc() may decide to just WARN_ONCE() instead 100 * of actually bumping the refcount. 101 * 102 * If this node is properly in the radix, we want to bump the 103 * refcount twice, once for the inode and once for this get 104 * operation. 105 */ 106 if (refcount_inc_not_zero(&node->refs)) { 107 refcount_inc(&node->refs); 108 btrfs_inode->delayed_node = node; 109 } else { 110 node = NULL; 111 } 112 113 spin_unlock(&root->inode_lock); 114 return node; 115 } 116 spin_unlock(&root->inode_lock); 117 118 return NULL; 119 } 120 121 /* Will return either the node or PTR_ERR(-ENOMEM) */ 122 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 123 struct btrfs_inode *btrfs_inode) 124 { 125 struct btrfs_delayed_node *node; 126 struct btrfs_root *root = btrfs_inode->root; 127 u64 ino = btrfs_ino(btrfs_inode); 128 int ret; 129 130 again: 131 node = btrfs_get_delayed_node(btrfs_inode); 132 if (node) 133 return node; 134 135 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 136 if (!node) 137 return ERR_PTR(-ENOMEM); 138 btrfs_init_delayed_node(node, root, ino); 139 140 /* cached in the btrfs inode and can be accessed */ 141 refcount_set(&node->refs, 2); 142 143 ret = radix_tree_preload(GFP_NOFS); 144 if (ret) { 145 kmem_cache_free(delayed_node_cache, node); 146 return ERR_PTR(ret); 147 } 148 149 spin_lock(&root->inode_lock); 150 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 151 if (ret == -EEXIST) { 152 spin_unlock(&root->inode_lock); 153 kmem_cache_free(delayed_node_cache, node); 154 radix_tree_preload_end(); 155 goto again; 156 } 157 btrfs_inode->delayed_node = node; 158 spin_unlock(&root->inode_lock); 159 radix_tree_preload_end(); 160 161 return node; 162 } 163 164 /* 165 * Call it when holding delayed_node->mutex 166 * 167 * If mod = 1, add this node into the prepared list. 168 */ 169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 170 struct btrfs_delayed_node *node, 171 int mod) 172 { 173 spin_lock(&root->lock); 174 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 175 if (!list_empty(&node->p_list)) 176 list_move_tail(&node->p_list, &root->prepare_list); 177 else if (mod) 178 list_add_tail(&node->p_list, &root->prepare_list); 179 } else { 180 list_add_tail(&node->n_list, &root->node_list); 181 list_add_tail(&node->p_list, &root->prepare_list); 182 refcount_inc(&node->refs); /* inserted into list */ 183 root->nodes++; 184 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 185 } 186 spin_unlock(&root->lock); 187 } 188 189 /* Call it when holding delayed_node->mutex */ 190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 191 struct btrfs_delayed_node *node) 192 { 193 spin_lock(&root->lock); 194 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 195 root->nodes--; 196 refcount_dec(&node->refs); /* not in the list */ 197 list_del_init(&node->n_list); 198 if (!list_empty(&node->p_list)) 199 list_del_init(&node->p_list); 200 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 201 } 202 spin_unlock(&root->lock); 203 } 204 205 static struct btrfs_delayed_node *btrfs_first_delayed_node( 206 struct btrfs_delayed_root *delayed_root) 207 { 208 struct list_head *p; 209 struct btrfs_delayed_node *node = NULL; 210 211 spin_lock(&delayed_root->lock); 212 if (list_empty(&delayed_root->node_list)) 213 goto out; 214 215 p = delayed_root->node_list.next; 216 node = list_entry(p, struct btrfs_delayed_node, n_list); 217 refcount_inc(&node->refs); 218 out: 219 spin_unlock(&delayed_root->lock); 220 221 return node; 222 } 223 224 static struct btrfs_delayed_node *btrfs_next_delayed_node( 225 struct btrfs_delayed_node *node) 226 { 227 struct btrfs_delayed_root *delayed_root; 228 struct list_head *p; 229 struct btrfs_delayed_node *next = NULL; 230 231 delayed_root = node->root->fs_info->delayed_root; 232 spin_lock(&delayed_root->lock); 233 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 234 /* not in the list */ 235 if (list_empty(&delayed_root->node_list)) 236 goto out; 237 p = delayed_root->node_list.next; 238 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 239 goto out; 240 else 241 p = node->n_list.next; 242 243 next = list_entry(p, struct btrfs_delayed_node, n_list); 244 refcount_inc(&next->refs); 245 out: 246 spin_unlock(&delayed_root->lock); 247 248 return next; 249 } 250 251 static void __btrfs_release_delayed_node( 252 struct btrfs_delayed_node *delayed_node, 253 int mod) 254 { 255 struct btrfs_delayed_root *delayed_root; 256 257 if (!delayed_node) 258 return; 259 260 delayed_root = delayed_node->root->fs_info->delayed_root; 261 262 mutex_lock(&delayed_node->mutex); 263 if (delayed_node->count) 264 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 265 else 266 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 267 mutex_unlock(&delayed_node->mutex); 268 269 if (refcount_dec_and_test(&delayed_node->refs)) { 270 struct btrfs_root *root = delayed_node->root; 271 272 spin_lock(&root->inode_lock); 273 /* 274 * Once our refcount goes to zero, nobody is allowed to bump it 275 * back up. We can delete it now. 276 */ 277 ASSERT(refcount_read(&delayed_node->refs) == 0); 278 radix_tree_delete(&root->delayed_nodes_tree, 279 delayed_node->inode_id); 280 spin_unlock(&root->inode_lock); 281 kmem_cache_free(delayed_node_cache, delayed_node); 282 } 283 } 284 285 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 286 { 287 __btrfs_release_delayed_node(node, 0); 288 } 289 290 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 291 struct btrfs_delayed_root *delayed_root) 292 { 293 struct list_head *p; 294 struct btrfs_delayed_node *node = NULL; 295 296 spin_lock(&delayed_root->lock); 297 if (list_empty(&delayed_root->prepare_list)) 298 goto out; 299 300 p = delayed_root->prepare_list.next; 301 list_del_init(p); 302 node = list_entry(p, struct btrfs_delayed_node, p_list); 303 refcount_inc(&node->refs); 304 out: 305 spin_unlock(&delayed_root->lock); 306 307 return node; 308 } 309 310 static inline void btrfs_release_prepared_delayed_node( 311 struct btrfs_delayed_node *node) 312 { 313 __btrfs_release_delayed_node(node, 1); 314 } 315 316 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 317 { 318 struct btrfs_delayed_item *item; 319 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 320 if (item) { 321 item->data_len = data_len; 322 item->ins_or_del = 0; 323 item->bytes_reserved = 0; 324 item->delayed_node = NULL; 325 refcount_set(&item->refs, 1); 326 } 327 return item; 328 } 329 330 /* 331 * __btrfs_lookup_delayed_item - look up the delayed item by key 332 * @delayed_node: pointer to the delayed node 333 * @key: the key to look up 334 * @prev: used to store the prev item if the right item isn't found 335 * @next: used to store the next item if the right item isn't found 336 * 337 * Note: if we don't find the right item, we will return the prev item and 338 * the next item. 339 */ 340 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 341 struct rb_root *root, 342 struct btrfs_key *key, 343 struct btrfs_delayed_item **prev, 344 struct btrfs_delayed_item **next) 345 { 346 struct rb_node *node, *prev_node = NULL; 347 struct btrfs_delayed_item *delayed_item = NULL; 348 int ret = 0; 349 350 node = root->rb_node; 351 352 while (node) { 353 delayed_item = rb_entry(node, struct btrfs_delayed_item, 354 rb_node); 355 prev_node = node; 356 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 357 if (ret < 0) 358 node = node->rb_right; 359 else if (ret > 0) 360 node = node->rb_left; 361 else 362 return delayed_item; 363 } 364 365 if (prev) { 366 if (!prev_node) 367 *prev = NULL; 368 else if (ret < 0) 369 *prev = delayed_item; 370 else if ((node = rb_prev(prev_node)) != NULL) { 371 *prev = rb_entry(node, struct btrfs_delayed_item, 372 rb_node); 373 } else 374 *prev = NULL; 375 } 376 377 if (next) { 378 if (!prev_node) 379 *next = NULL; 380 else if (ret > 0) 381 *next = delayed_item; 382 else if ((node = rb_next(prev_node)) != NULL) { 383 *next = rb_entry(node, struct btrfs_delayed_item, 384 rb_node); 385 } else 386 *next = NULL; 387 } 388 return NULL; 389 } 390 391 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 392 struct btrfs_delayed_node *delayed_node, 393 struct btrfs_key *key) 394 { 395 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 396 NULL, NULL); 397 } 398 399 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 400 struct btrfs_delayed_item *ins, 401 int action) 402 { 403 struct rb_node **p, *node; 404 struct rb_node *parent_node = NULL; 405 struct rb_root_cached *root; 406 struct btrfs_delayed_item *item; 407 int cmp; 408 bool leftmost = true; 409 410 if (action == BTRFS_DELAYED_INSERTION_ITEM) 411 root = &delayed_node->ins_root; 412 else if (action == BTRFS_DELAYED_DELETION_ITEM) 413 root = &delayed_node->del_root; 414 else 415 BUG(); 416 p = &root->rb_root.rb_node; 417 node = &ins->rb_node; 418 419 while (*p) { 420 parent_node = *p; 421 item = rb_entry(parent_node, struct btrfs_delayed_item, 422 rb_node); 423 424 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 425 if (cmp < 0) { 426 p = &(*p)->rb_right; 427 leftmost = false; 428 } else if (cmp > 0) { 429 p = &(*p)->rb_left; 430 } else { 431 return -EEXIST; 432 } 433 } 434 435 rb_link_node(node, parent_node, p); 436 rb_insert_color_cached(node, root, leftmost); 437 ins->delayed_node = delayed_node; 438 ins->ins_or_del = action; 439 440 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 441 action == BTRFS_DELAYED_INSERTION_ITEM && 442 ins->key.offset >= delayed_node->index_cnt) 443 delayed_node->index_cnt = ins->key.offset + 1; 444 445 delayed_node->count++; 446 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 447 return 0; 448 } 449 450 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 451 struct btrfs_delayed_item *item) 452 { 453 return __btrfs_add_delayed_item(node, item, 454 BTRFS_DELAYED_INSERTION_ITEM); 455 } 456 457 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 458 struct btrfs_delayed_item *item) 459 { 460 return __btrfs_add_delayed_item(node, item, 461 BTRFS_DELAYED_DELETION_ITEM); 462 } 463 464 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 465 { 466 int seq = atomic_inc_return(&delayed_root->items_seq); 467 468 /* atomic_dec_return implies a barrier */ 469 if ((atomic_dec_return(&delayed_root->items) < 470 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 471 cond_wake_up_nomb(&delayed_root->wait); 472 } 473 474 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 475 { 476 struct rb_root_cached *root; 477 struct btrfs_delayed_root *delayed_root; 478 479 /* Not associated with any delayed_node */ 480 if (!delayed_item->delayed_node) 481 return; 482 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 483 484 BUG_ON(!delayed_root); 485 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 486 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 487 488 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 489 root = &delayed_item->delayed_node->ins_root; 490 else 491 root = &delayed_item->delayed_node->del_root; 492 493 rb_erase_cached(&delayed_item->rb_node, root); 494 delayed_item->delayed_node->count--; 495 496 finish_one_item(delayed_root); 497 } 498 499 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 500 { 501 if (item) { 502 __btrfs_remove_delayed_item(item); 503 if (refcount_dec_and_test(&item->refs)) 504 kfree(item); 505 } 506 } 507 508 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 509 struct btrfs_delayed_node *delayed_node) 510 { 511 struct rb_node *p; 512 struct btrfs_delayed_item *item = NULL; 513 514 p = rb_first_cached(&delayed_node->ins_root); 515 if (p) 516 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 517 518 return item; 519 } 520 521 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 522 struct btrfs_delayed_node *delayed_node) 523 { 524 struct rb_node *p; 525 struct btrfs_delayed_item *item = NULL; 526 527 p = rb_first_cached(&delayed_node->del_root); 528 if (p) 529 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 530 531 return item; 532 } 533 534 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 535 struct btrfs_delayed_item *item) 536 { 537 struct rb_node *p; 538 struct btrfs_delayed_item *next = NULL; 539 540 p = rb_next(&item->rb_node); 541 if (p) 542 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 543 544 return next; 545 } 546 547 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 548 struct btrfs_root *root, 549 struct btrfs_delayed_item *item) 550 { 551 struct btrfs_block_rsv *src_rsv; 552 struct btrfs_block_rsv *dst_rsv; 553 struct btrfs_fs_info *fs_info = root->fs_info; 554 u64 num_bytes; 555 int ret; 556 557 if (!trans->bytes_reserved) 558 return 0; 559 560 src_rsv = trans->block_rsv; 561 dst_rsv = &fs_info->delayed_block_rsv; 562 563 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 564 565 /* 566 * Here we migrate space rsv from transaction rsv, since have already 567 * reserved space when starting a transaction. So no need to reserve 568 * qgroup space here. 569 */ 570 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 571 if (!ret) { 572 trace_btrfs_space_reservation(fs_info, "delayed_item", 573 item->key.objectid, 574 num_bytes, 1); 575 item->bytes_reserved = num_bytes; 576 } 577 578 return ret; 579 } 580 581 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 582 struct btrfs_delayed_item *item) 583 { 584 struct btrfs_block_rsv *rsv; 585 struct btrfs_fs_info *fs_info = root->fs_info; 586 587 if (!item->bytes_reserved) 588 return; 589 590 rsv = &fs_info->delayed_block_rsv; 591 /* 592 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 593 * to release/reserve qgroup space. 594 */ 595 trace_btrfs_space_reservation(fs_info, "delayed_item", 596 item->key.objectid, item->bytes_reserved, 597 0); 598 btrfs_block_rsv_release(fs_info, rsv, 599 item->bytes_reserved); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_inode *inode, 606 struct btrfs_delayed_node *node) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_block_rsv *src_rsv; 610 struct btrfs_block_rsv *dst_rsv; 611 u64 num_bytes; 612 int ret; 613 614 src_rsv = trans->block_rsv; 615 dst_rsv = &fs_info->delayed_block_rsv; 616 617 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 618 619 /* 620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 621 * which doesn't reserve space for speed. This is a problem since we 622 * still need to reserve space for this update, so try to reserve the 623 * space. 624 * 625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 626 * we always reserve enough to update the inode item. 627 */ 628 if (!src_rsv || (!trans->bytes_reserved && 629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 630 ret = btrfs_qgroup_reserve_meta_prealloc(root, 631 fs_info->nodesize, true); 632 if (ret < 0) 633 return ret; 634 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 635 BTRFS_RESERVE_NO_FLUSH); 636 /* 637 * Since we're under a transaction reserve_metadata_bytes could 638 * try to commit the transaction which will make it return 639 * EAGAIN to make us stop the transaction we have, so return 640 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 641 */ 642 if (ret == -EAGAIN) { 643 ret = -ENOSPC; 644 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 645 } 646 if (!ret) { 647 node->bytes_reserved = num_bytes; 648 trace_btrfs_space_reservation(fs_info, 649 "delayed_inode", 650 btrfs_ino(inode), 651 num_bytes, 1); 652 } else { 653 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 654 } 655 return ret; 656 } 657 658 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 659 if (!ret) { 660 trace_btrfs_space_reservation(fs_info, "delayed_inode", 661 btrfs_ino(inode), num_bytes, 1); 662 node->bytes_reserved = num_bytes; 663 } 664 665 return ret; 666 } 667 668 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 669 struct btrfs_delayed_node *node, 670 bool qgroup_free) 671 { 672 struct btrfs_block_rsv *rsv; 673 674 if (!node->bytes_reserved) 675 return; 676 677 rsv = &fs_info->delayed_block_rsv; 678 trace_btrfs_space_reservation(fs_info, "delayed_inode", 679 node->inode_id, node->bytes_reserved, 0); 680 btrfs_block_rsv_release(fs_info, rsv, 681 node->bytes_reserved); 682 if (qgroup_free) 683 btrfs_qgroup_free_meta_prealloc(node->root, 684 node->bytes_reserved); 685 else 686 btrfs_qgroup_convert_reserved_meta(node->root, 687 node->bytes_reserved); 688 node->bytes_reserved = 0; 689 } 690 691 /* 692 * This helper will insert some continuous items into the same leaf according 693 * to the free space of the leaf. 694 */ 695 static int btrfs_batch_insert_items(struct btrfs_root *root, 696 struct btrfs_path *path, 697 struct btrfs_delayed_item *item) 698 { 699 struct btrfs_delayed_item *curr, *next; 700 int free_space; 701 int total_data_size = 0, total_size = 0; 702 struct extent_buffer *leaf; 703 char *data_ptr; 704 struct btrfs_key *keys; 705 u32 *data_size; 706 struct list_head head; 707 int slot; 708 int nitems; 709 int i; 710 int ret = 0; 711 712 BUG_ON(!path->nodes[0]); 713 714 leaf = path->nodes[0]; 715 free_space = btrfs_leaf_free_space(leaf); 716 INIT_LIST_HEAD(&head); 717 718 next = item; 719 nitems = 0; 720 721 /* 722 * count the number of the continuous items that we can insert in batch 723 */ 724 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 725 free_space) { 726 total_data_size += next->data_len; 727 total_size += next->data_len + sizeof(struct btrfs_item); 728 list_add_tail(&next->tree_list, &head); 729 nitems++; 730 731 curr = next; 732 next = __btrfs_next_delayed_item(curr); 733 if (!next) 734 break; 735 736 if (!btrfs_is_continuous_delayed_item(curr, next)) 737 break; 738 } 739 740 if (!nitems) { 741 ret = 0; 742 goto out; 743 } 744 745 /* 746 * we need allocate some memory space, but it might cause the task 747 * to sleep, so we set all locked nodes in the path to blocking locks 748 * first. 749 */ 750 btrfs_set_path_blocking(path); 751 752 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 753 if (!keys) { 754 ret = -ENOMEM; 755 goto out; 756 } 757 758 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 759 if (!data_size) { 760 ret = -ENOMEM; 761 goto error; 762 } 763 764 /* get keys of all the delayed items */ 765 i = 0; 766 list_for_each_entry(next, &head, tree_list) { 767 keys[i] = next->key; 768 data_size[i] = next->data_len; 769 i++; 770 } 771 772 /* insert the keys of the items */ 773 setup_items_for_insert(root, path, keys, data_size, 774 total_data_size, total_size, nitems); 775 776 /* insert the dir index items */ 777 slot = path->slots[0]; 778 list_for_each_entry_safe(curr, next, &head, tree_list) { 779 data_ptr = btrfs_item_ptr(leaf, slot, char); 780 write_extent_buffer(leaf, &curr->data, 781 (unsigned long)data_ptr, 782 curr->data_len); 783 slot++; 784 785 btrfs_delayed_item_release_metadata(root, curr); 786 787 list_del(&curr->tree_list); 788 btrfs_release_delayed_item(curr); 789 } 790 791 error: 792 kfree(data_size); 793 kfree(keys); 794 out: 795 return ret; 796 } 797 798 /* 799 * This helper can just do simple insertion that needn't extend item for new 800 * data, such as directory name index insertion, inode insertion. 801 */ 802 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 803 struct btrfs_root *root, 804 struct btrfs_path *path, 805 struct btrfs_delayed_item *delayed_item) 806 { 807 struct extent_buffer *leaf; 808 char *ptr; 809 int ret; 810 811 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 812 delayed_item->data_len); 813 if (ret < 0 && ret != -EEXIST) 814 return ret; 815 816 leaf = path->nodes[0]; 817 818 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 819 820 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 821 delayed_item->data_len); 822 btrfs_mark_buffer_dirty(leaf); 823 824 btrfs_delayed_item_release_metadata(root, delayed_item); 825 return 0; 826 } 827 828 /* 829 * we insert an item first, then if there are some continuous items, we try 830 * to insert those items into the same leaf. 831 */ 832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 833 struct btrfs_path *path, 834 struct btrfs_root *root, 835 struct btrfs_delayed_node *node) 836 { 837 struct btrfs_delayed_item *curr, *prev; 838 int ret = 0; 839 840 do_again: 841 mutex_lock(&node->mutex); 842 curr = __btrfs_first_delayed_insertion_item(node); 843 if (!curr) 844 goto insert_end; 845 846 ret = btrfs_insert_delayed_item(trans, root, path, curr); 847 if (ret < 0) { 848 btrfs_release_path(path); 849 goto insert_end; 850 } 851 852 prev = curr; 853 curr = __btrfs_next_delayed_item(prev); 854 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 855 /* insert the continuous items into the same leaf */ 856 path->slots[0]++; 857 btrfs_batch_insert_items(root, path, curr); 858 } 859 btrfs_release_delayed_item(prev); 860 btrfs_mark_buffer_dirty(path->nodes[0]); 861 862 btrfs_release_path(path); 863 mutex_unlock(&node->mutex); 864 goto do_again; 865 866 insert_end: 867 mutex_unlock(&node->mutex); 868 return ret; 869 } 870 871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root, 873 struct btrfs_path *path, 874 struct btrfs_delayed_item *item) 875 { 876 struct btrfs_delayed_item *curr, *next; 877 struct extent_buffer *leaf; 878 struct btrfs_key key; 879 struct list_head head; 880 int nitems, i, last_item; 881 int ret = 0; 882 883 BUG_ON(!path->nodes[0]); 884 885 leaf = path->nodes[0]; 886 887 i = path->slots[0]; 888 last_item = btrfs_header_nritems(leaf) - 1; 889 if (i > last_item) 890 return -ENOENT; /* FIXME: Is errno suitable? */ 891 892 next = item; 893 INIT_LIST_HEAD(&head); 894 btrfs_item_key_to_cpu(leaf, &key, i); 895 nitems = 0; 896 /* 897 * count the number of the dir index items that we can delete in batch 898 */ 899 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 900 list_add_tail(&next->tree_list, &head); 901 nitems++; 902 903 curr = next; 904 next = __btrfs_next_delayed_item(curr); 905 if (!next) 906 break; 907 908 if (!btrfs_is_continuous_delayed_item(curr, next)) 909 break; 910 911 i++; 912 if (i > last_item) 913 break; 914 btrfs_item_key_to_cpu(leaf, &key, i); 915 } 916 917 if (!nitems) 918 return 0; 919 920 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 921 if (ret) 922 goto out; 923 924 list_for_each_entry_safe(curr, next, &head, tree_list) { 925 btrfs_delayed_item_release_metadata(root, curr); 926 list_del(&curr->tree_list); 927 btrfs_release_delayed_item(curr); 928 } 929 930 out: 931 return ret; 932 } 933 934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 935 struct btrfs_path *path, 936 struct btrfs_root *root, 937 struct btrfs_delayed_node *node) 938 { 939 struct btrfs_delayed_item *curr, *prev; 940 int ret = 0; 941 942 do_again: 943 mutex_lock(&node->mutex); 944 curr = __btrfs_first_delayed_deletion_item(node); 945 if (!curr) 946 goto delete_fail; 947 948 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 949 if (ret < 0) 950 goto delete_fail; 951 else if (ret > 0) { 952 /* 953 * can't find the item which the node points to, so this node 954 * is invalid, just drop it. 955 */ 956 prev = curr; 957 curr = __btrfs_next_delayed_item(prev); 958 btrfs_release_delayed_item(prev); 959 ret = 0; 960 btrfs_release_path(path); 961 if (curr) { 962 mutex_unlock(&node->mutex); 963 goto do_again; 964 } else 965 goto delete_fail; 966 } 967 968 btrfs_batch_delete_items(trans, root, path, curr); 969 btrfs_release_path(path); 970 mutex_unlock(&node->mutex); 971 goto do_again; 972 973 delete_fail: 974 btrfs_release_path(path); 975 mutex_unlock(&node->mutex); 976 return ret; 977 } 978 979 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 980 { 981 struct btrfs_delayed_root *delayed_root; 982 983 if (delayed_node && 984 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 985 BUG_ON(!delayed_node->root); 986 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 987 delayed_node->count--; 988 989 delayed_root = delayed_node->root->fs_info->delayed_root; 990 finish_one_item(delayed_root); 991 } 992 } 993 994 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 995 { 996 struct btrfs_delayed_root *delayed_root; 997 998 ASSERT(delayed_node->root); 999 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1000 delayed_node->count--; 1001 1002 delayed_root = delayed_node->root->fs_info->delayed_root; 1003 finish_one_item(delayed_root); 1004 } 1005 1006 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1007 struct btrfs_root *root, 1008 struct btrfs_path *path, 1009 struct btrfs_delayed_node *node) 1010 { 1011 struct btrfs_fs_info *fs_info = root->fs_info; 1012 struct btrfs_key key; 1013 struct btrfs_inode_item *inode_item; 1014 struct extent_buffer *leaf; 1015 int mod; 1016 int ret; 1017 1018 key.objectid = node->inode_id; 1019 key.type = BTRFS_INODE_ITEM_KEY; 1020 key.offset = 0; 1021 1022 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1023 mod = -1; 1024 else 1025 mod = 1; 1026 1027 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1028 if (ret > 0) { 1029 btrfs_release_path(path); 1030 return -ENOENT; 1031 } else if (ret < 0) { 1032 return ret; 1033 } 1034 1035 leaf = path->nodes[0]; 1036 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1037 struct btrfs_inode_item); 1038 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1039 sizeof(struct btrfs_inode_item)); 1040 btrfs_mark_buffer_dirty(leaf); 1041 1042 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1043 goto no_iref; 1044 1045 path->slots[0]++; 1046 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1047 goto search; 1048 again: 1049 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1050 if (key.objectid != node->inode_id) 1051 goto out; 1052 1053 if (key.type != BTRFS_INODE_REF_KEY && 1054 key.type != BTRFS_INODE_EXTREF_KEY) 1055 goto out; 1056 1057 /* 1058 * Delayed iref deletion is for the inode who has only one link, 1059 * so there is only one iref. The case that several irefs are 1060 * in the same item doesn't exist. 1061 */ 1062 btrfs_del_item(trans, root, path); 1063 out: 1064 btrfs_release_delayed_iref(node); 1065 no_iref: 1066 btrfs_release_path(path); 1067 err_out: 1068 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1069 btrfs_release_delayed_inode(node); 1070 1071 return ret; 1072 1073 search: 1074 btrfs_release_path(path); 1075 1076 key.type = BTRFS_INODE_EXTREF_KEY; 1077 key.offset = -1; 1078 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1079 if (ret < 0) 1080 goto err_out; 1081 ASSERT(ret); 1082 1083 ret = 0; 1084 leaf = path->nodes[0]; 1085 path->slots[0]--; 1086 goto again; 1087 } 1088 1089 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1090 struct btrfs_root *root, 1091 struct btrfs_path *path, 1092 struct btrfs_delayed_node *node) 1093 { 1094 int ret; 1095 1096 mutex_lock(&node->mutex); 1097 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1098 mutex_unlock(&node->mutex); 1099 return 0; 1100 } 1101 1102 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1103 mutex_unlock(&node->mutex); 1104 return ret; 1105 } 1106 1107 static inline int 1108 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1109 struct btrfs_path *path, 1110 struct btrfs_delayed_node *node) 1111 { 1112 int ret; 1113 1114 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1115 if (ret) 1116 return ret; 1117 1118 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1119 if (ret) 1120 return ret; 1121 1122 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1123 return ret; 1124 } 1125 1126 /* 1127 * Called when committing the transaction. 1128 * Returns 0 on success. 1129 * Returns < 0 on error and returns with an aborted transaction with any 1130 * outstanding delayed items cleaned up. 1131 */ 1132 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1133 { 1134 struct btrfs_fs_info *fs_info = trans->fs_info; 1135 struct btrfs_delayed_root *delayed_root; 1136 struct btrfs_delayed_node *curr_node, *prev_node; 1137 struct btrfs_path *path; 1138 struct btrfs_block_rsv *block_rsv; 1139 int ret = 0; 1140 bool count = (nr > 0); 1141 1142 if (trans->aborted) 1143 return -EIO; 1144 1145 path = btrfs_alloc_path(); 1146 if (!path) 1147 return -ENOMEM; 1148 path->leave_spinning = 1; 1149 1150 block_rsv = trans->block_rsv; 1151 trans->block_rsv = &fs_info->delayed_block_rsv; 1152 1153 delayed_root = fs_info->delayed_root; 1154 1155 curr_node = btrfs_first_delayed_node(delayed_root); 1156 while (curr_node && (!count || (count && nr--))) { 1157 ret = __btrfs_commit_inode_delayed_items(trans, path, 1158 curr_node); 1159 if (ret) { 1160 btrfs_release_delayed_node(curr_node); 1161 curr_node = NULL; 1162 btrfs_abort_transaction(trans, ret); 1163 break; 1164 } 1165 1166 prev_node = curr_node; 1167 curr_node = btrfs_next_delayed_node(curr_node); 1168 btrfs_release_delayed_node(prev_node); 1169 } 1170 1171 if (curr_node) 1172 btrfs_release_delayed_node(curr_node); 1173 btrfs_free_path(path); 1174 trans->block_rsv = block_rsv; 1175 1176 return ret; 1177 } 1178 1179 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1180 { 1181 return __btrfs_run_delayed_items(trans, -1); 1182 } 1183 1184 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1185 { 1186 return __btrfs_run_delayed_items(trans, nr); 1187 } 1188 1189 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1190 struct btrfs_inode *inode) 1191 { 1192 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1193 struct btrfs_path *path; 1194 struct btrfs_block_rsv *block_rsv; 1195 int ret; 1196 1197 if (!delayed_node) 1198 return 0; 1199 1200 mutex_lock(&delayed_node->mutex); 1201 if (!delayed_node->count) { 1202 mutex_unlock(&delayed_node->mutex); 1203 btrfs_release_delayed_node(delayed_node); 1204 return 0; 1205 } 1206 mutex_unlock(&delayed_node->mutex); 1207 1208 path = btrfs_alloc_path(); 1209 if (!path) { 1210 btrfs_release_delayed_node(delayed_node); 1211 return -ENOMEM; 1212 } 1213 path->leave_spinning = 1; 1214 1215 block_rsv = trans->block_rsv; 1216 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1217 1218 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1219 1220 btrfs_release_delayed_node(delayed_node); 1221 btrfs_free_path(path); 1222 trans->block_rsv = block_rsv; 1223 1224 return ret; 1225 } 1226 1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1228 { 1229 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1230 struct btrfs_trans_handle *trans; 1231 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1232 struct btrfs_path *path; 1233 struct btrfs_block_rsv *block_rsv; 1234 int ret; 1235 1236 if (!delayed_node) 1237 return 0; 1238 1239 mutex_lock(&delayed_node->mutex); 1240 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1241 mutex_unlock(&delayed_node->mutex); 1242 btrfs_release_delayed_node(delayed_node); 1243 return 0; 1244 } 1245 mutex_unlock(&delayed_node->mutex); 1246 1247 trans = btrfs_join_transaction(delayed_node->root); 1248 if (IS_ERR(trans)) { 1249 ret = PTR_ERR(trans); 1250 goto out; 1251 } 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 ret = -ENOMEM; 1256 goto trans_out; 1257 } 1258 path->leave_spinning = 1; 1259 1260 block_rsv = trans->block_rsv; 1261 trans->block_rsv = &fs_info->delayed_block_rsv; 1262 1263 mutex_lock(&delayed_node->mutex); 1264 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1265 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1266 path, delayed_node); 1267 else 1268 ret = 0; 1269 mutex_unlock(&delayed_node->mutex); 1270 1271 btrfs_free_path(path); 1272 trans->block_rsv = block_rsv; 1273 trans_out: 1274 btrfs_end_transaction(trans); 1275 btrfs_btree_balance_dirty(fs_info); 1276 out: 1277 btrfs_release_delayed_node(delayed_node); 1278 1279 return ret; 1280 } 1281 1282 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1283 { 1284 struct btrfs_delayed_node *delayed_node; 1285 1286 delayed_node = READ_ONCE(inode->delayed_node); 1287 if (!delayed_node) 1288 return; 1289 1290 inode->delayed_node = NULL; 1291 btrfs_release_delayed_node(delayed_node); 1292 } 1293 1294 struct btrfs_async_delayed_work { 1295 struct btrfs_delayed_root *delayed_root; 1296 int nr; 1297 struct btrfs_work work; 1298 }; 1299 1300 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1301 { 1302 struct btrfs_async_delayed_work *async_work; 1303 struct btrfs_delayed_root *delayed_root; 1304 struct btrfs_trans_handle *trans; 1305 struct btrfs_path *path; 1306 struct btrfs_delayed_node *delayed_node = NULL; 1307 struct btrfs_root *root; 1308 struct btrfs_block_rsv *block_rsv; 1309 int total_done = 0; 1310 1311 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1312 delayed_root = async_work->delayed_root; 1313 1314 path = btrfs_alloc_path(); 1315 if (!path) 1316 goto out; 1317 1318 do { 1319 if (atomic_read(&delayed_root->items) < 1320 BTRFS_DELAYED_BACKGROUND / 2) 1321 break; 1322 1323 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1324 if (!delayed_node) 1325 break; 1326 1327 path->leave_spinning = 1; 1328 root = delayed_node->root; 1329 1330 trans = btrfs_join_transaction(root); 1331 if (IS_ERR(trans)) { 1332 btrfs_release_path(path); 1333 btrfs_release_prepared_delayed_node(delayed_node); 1334 total_done++; 1335 continue; 1336 } 1337 1338 block_rsv = trans->block_rsv; 1339 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1340 1341 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1342 1343 trans->block_rsv = block_rsv; 1344 btrfs_end_transaction(trans); 1345 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1346 1347 btrfs_release_path(path); 1348 btrfs_release_prepared_delayed_node(delayed_node); 1349 total_done++; 1350 1351 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1352 || total_done < async_work->nr); 1353 1354 btrfs_free_path(path); 1355 out: 1356 wake_up(&delayed_root->wait); 1357 kfree(async_work); 1358 } 1359 1360 1361 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1362 struct btrfs_fs_info *fs_info, int nr) 1363 { 1364 struct btrfs_async_delayed_work *async_work; 1365 1366 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1367 if (!async_work) 1368 return -ENOMEM; 1369 1370 async_work->delayed_root = delayed_root; 1371 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1372 NULL); 1373 async_work->nr = nr; 1374 1375 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1376 return 0; 1377 } 1378 1379 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1380 { 1381 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1382 } 1383 1384 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1385 { 1386 int val = atomic_read(&delayed_root->items_seq); 1387 1388 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1389 return 1; 1390 1391 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1392 return 1; 1393 1394 return 0; 1395 } 1396 1397 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1398 { 1399 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1400 1401 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1402 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1403 return; 1404 1405 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1406 int seq; 1407 int ret; 1408 1409 seq = atomic_read(&delayed_root->items_seq); 1410 1411 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1412 if (ret) 1413 return; 1414 1415 wait_event_interruptible(delayed_root->wait, 1416 could_end_wait(delayed_root, seq)); 1417 return; 1418 } 1419 1420 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1421 } 1422 1423 /* Will return 0 or -ENOMEM */ 1424 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1425 const char *name, int name_len, 1426 struct btrfs_inode *dir, 1427 struct btrfs_disk_key *disk_key, u8 type, 1428 u64 index) 1429 { 1430 struct btrfs_delayed_node *delayed_node; 1431 struct btrfs_delayed_item *delayed_item; 1432 struct btrfs_dir_item *dir_item; 1433 int ret; 1434 1435 delayed_node = btrfs_get_or_create_delayed_node(dir); 1436 if (IS_ERR(delayed_node)) 1437 return PTR_ERR(delayed_node); 1438 1439 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1440 if (!delayed_item) { 1441 ret = -ENOMEM; 1442 goto release_node; 1443 } 1444 1445 delayed_item->key.objectid = btrfs_ino(dir); 1446 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1447 delayed_item->key.offset = index; 1448 1449 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1450 dir_item->location = *disk_key; 1451 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1452 btrfs_set_stack_dir_data_len(dir_item, 0); 1453 btrfs_set_stack_dir_name_len(dir_item, name_len); 1454 btrfs_set_stack_dir_type(dir_item, type); 1455 memcpy((char *)(dir_item + 1), name, name_len); 1456 1457 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1458 /* 1459 * we have reserved enough space when we start a new transaction, 1460 * so reserving metadata failure is impossible 1461 */ 1462 BUG_ON(ret); 1463 1464 mutex_lock(&delayed_node->mutex); 1465 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1466 if (unlikely(ret)) { 1467 btrfs_err(trans->fs_info, 1468 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1469 name_len, name, delayed_node->root->root_key.objectid, 1470 delayed_node->inode_id, ret); 1471 BUG(); 1472 } 1473 mutex_unlock(&delayed_node->mutex); 1474 1475 release_node: 1476 btrfs_release_delayed_node(delayed_node); 1477 return ret; 1478 } 1479 1480 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1481 struct btrfs_delayed_node *node, 1482 struct btrfs_key *key) 1483 { 1484 struct btrfs_delayed_item *item; 1485 1486 mutex_lock(&node->mutex); 1487 item = __btrfs_lookup_delayed_insertion_item(node, key); 1488 if (!item) { 1489 mutex_unlock(&node->mutex); 1490 return 1; 1491 } 1492 1493 btrfs_delayed_item_release_metadata(node->root, item); 1494 btrfs_release_delayed_item(item); 1495 mutex_unlock(&node->mutex); 1496 return 0; 1497 } 1498 1499 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1500 struct btrfs_inode *dir, u64 index) 1501 { 1502 struct btrfs_delayed_node *node; 1503 struct btrfs_delayed_item *item; 1504 struct btrfs_key item_key; 1505 int ret; 1506 1507 node = btrfs_get_or_create_delayed_node(dir); 1508 if (IS_ERR(node)) 1509 return PTR_ERR(node); 1510 1511 item_key.objectid = btrfs_ino(dir); 1512 item_key.type = BTRFS_DIR_INDEX_KEY; 1513 item_key.offset = index; 1514 1515 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1516 &item_key); 1517 if (!ret) 1518 goto end; 1519 1520 item = btrfs_alloc_delayed_item(0); 1521 if (!item) { 1522 ret = -ENOMEM; 1523 goto end; 1524 } 1525 1526 item->key = item_key; 1527 1528 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1529 /* 1530 * we have reserved enough space when we start a new transaction, 1531 * so reserving metadata failure is impossible. 1532 */ 1533 if (ret < 0) { 1534 btrfs_err(trans->fs_info, 1535 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1536 btrfs_release_delayed_item(item); 1537 goto end; 1538 } 1539 1540 mutex_lock(&node->mutex); 1541 ret = __btrfs_add_delayed_deletion_item(node, item); 1542 if (unlikely(ret)) { 1543 btrfs_err(trans->fs_info, 1544 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1545 index, node->root->root_key.objectid, 1546 node->inode_id, ret); 1547 btrfs_delayed_item_release_metadata(dir->root, item); 1548 btrfs_release_delayed_item(item); 1549 } 1550 mutex_unlock(&node->mutex); 1551 end: 1552 btrfs_release_delayed_node(node); 1553 return ret; 1554 } 1555 1556 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1557 { 1558 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1559 1560 if (!delayed_node) 1561 return -ENOENT; 1562 1563 /* 1564 * Since we have held i_mutex of this directory, it is impossible that 1565 * a new directory index is added into the delayed node and index_cnt 1566 * is updated now. So we needn't lock the delayed node. 1567 */ 1568 if (!delayed_node->index_cnt) { 1569 btrfs_release_delayed_node(delayed_node); 1570 return -EINVAL; 1571 } 1572 1573 inode->index_cnt = delayed_node->index_cnt; 1574 btrfs_release_delayed_node(delayed_node); 1575 return 0; 1576 } 1577 1578 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1579 struct list_head *ins_list, 1580 struct list_head *del_list) 1581 { 1582 struct btrfs_delayed_node *delayed_node; 1583 struct btrfs_delayed_item *item; 1584 1585 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1586 if (!delayed_node) 1587 return false; 1588 1589 /* 1590 * We can only do one readdir with delayed items at a time because of 1591 * item->readdir_list. 1592 */ 1593 inode_unlock_shared(inode); 1594 inode_lock(inode); 1595 1596 mutex_lock(&delayed_node->mutex); 1597 item = __btrfs_first_delayed_insertion_item(delayed_node); 1598 while (item) { 1599 refcount_inc(&item->refs); 1600 list_add_tail(&item->readdir_list, ins_list); 1601 item = __btrfs_next_delayed_item(item); 1602 } 1603 1604 item = __btrfs_first_delayed_deletion_item(delayed_node); 1605 while (item) { 1606 refcount_inc(&item->refs); 1607 list_add_tail(&item->readdir_list, del_list); 1608 item = __btrfs_next_delayed_item(item); 1609 } 1610 mutex_unlock(&delayed_node->mutex); 1611 /* 1612 * This delayed node is still cached in the btrfs inode, so refs 1613 * must be > 1 now, and we needn't check it is going to be freed 1614 * or not. 1615 * 1616 * Besides that, this function is used to read dir, we do not 1617 * insert/delete delayed items in this period. So we also needn't 1618 * requeue or dequeue this delayed node. 1619 */ 1620 refcount_dec(&delayed_node->refs); 1621 1622 return true; 1623 } 1624 1625 void btrfs_readdir_put_delayed_items(struct inode *inode, 1626 struct list_head *ins_list, 1627 struct list_head *del_list) 1628 { 1629 struct btrfs_delayed_item *curr, *next; 1630 1631 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1632 list_del(&curr->readdir_list); 1633 if (refcount_dec_and_test(&curr->refs)) 1634 kfree(curr); 1635 } 1636 1637 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1638 list_del(&curr->readdir_list); 1639 if (refcount_dec_and_test(&curr->refs)) 1640 kfree(curr); 1641 } 1642 1643 /* 1644 * The VFS is going to do up_read(), so we need to downgrade back to a 1645 * read lock. 1646 */ 1647 downgrade_write(&inode->i_rwsem); 1648 } 1649 1650 int btrfs_should_delete_dir_index(struct list_head *del_list, 1651 u64 index) 1652 { 1653 struct btrfs_delayed_item *curr; 1654 int ret = 0; 1655 1656 list_for_each_entry(curr, del_list, readdir_list) { 1657 if (curr->key.offset > index) 1658 break; 1659 if (curr->key.offset == index) { 1660 ret = 1; 1661 break; 1662 } 1663 } 1664 return ret; 1665 } 1666 1667 /* 1668 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1669 * 1670 */ 1671 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1672 struct list_head *ins_list) 1673 { 1674 struct btrfs_dir_item *di; 1675 struct btrfs_delayed_item *curr, *next; 1676 struct btrfs_key location; 1677 char *name; 1678 int name_len; 1679 int over = 0; 1680 unsigned char d_type; 1681 1682 if (list_empty(ins_list)) 1683 return 0; 1684 1685 /* 1686 * Changing the data of the delayed item is impossible. So 1687 * we needn't lock them. And we have held i_mutex of the 1688 * directory, nobody can delete any directory indexes now. 1689 */ 1690 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1691 list_del(&curr->readdir_list); 1692 1693 if (curr->key.offset < ctx->pos) { 1694 if (refcount_dec_and_test(&curr->refs)) 1695 kfree(curr); 1696 continue; 1697 } 1698 1699 ctx->pos = curr->key.offset; 1700 1701 di = (struct btrfs_dir_item *)curr->data; 1702 name = (char *)(di + 1); 1703 name_len = btrfs_stack_dir_name_len(di); 1704 1705 d_type = fs_ftype_to_dtype(di->type); 1706 btrfs_disk_key_to_cpu(&location, &di->location); 1707 1708 over = !dir_emit(ctx, name, name_len, 1709 location.objectid, d_type); 1710 1711 if (refcount_dec_and_test(&curr->refs)) 1712 kfree(curr); 1713 1714 if (over) 1715 return 1; 1716 ctx->pos++; 1717 } 1718 return 0; 1719 } 1720 1721 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1722 struct btrfs_inode_item *inode_item, 1723 struct inode *inode) 1724 { 1725 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1726 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1727 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1728 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1729 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1730 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1731 btrfs_set_stack_inode_generation(inode_item, 1732 BTRFS_I(inode)->generation); 1733 btrfs_set_stack_inode_sequence(inode_item, 1734 inode_peek_iversion(inode)); 1735 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1736 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1737 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1738 btrfs_set_stack_inode_block_group(inode_item, 0); 1739 1740 btrfs_set_stack_timespec_sec(&inode_item->atime, 1741 inode->i_atime.tv_sec); 1742 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1743 inode->i_atime.tv_nsec); 1744 1745 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1746 inode->i_mtime.tv_sec); 1747 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1748 inode->i_mtime.tv_nsec); 1749 1750 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1751 inode->i_ctime.tv_sec); 1752 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1753 inode->i_ctime.tv_nsec); 1754 1755 btrfs_set_stack_timespec_sec(&inode_item->otime, 1756 BTRFS_I(inode)->i_otime.tv_sec); 1757 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1758 BTRFS_I(inode)->i_otime.tv_nsec); 1759 } 1760 1761 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1762 { 1763 struct btrfs_delayed_node *delayed_node; 1764 struct btrfs_inode_item *inode_item; 1765 1766 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1767 if (!delayed_node) 1768 return -ENOENT; 1769 1770 mutex_lock(&delayed_node->mutex); 1771 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1772 mutex_unlock(&delayed_node->mutex); 1773 btrfs_release_delayed_node(delayed_node); 1774 return -ENOENT; 1775 } 1776 1777 inode_item = &delayed_node->inode_item; 1778 1779 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1780 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1781 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1782 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1783 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1784 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1785 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1786 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1787 1788 inode_set_iversion_queried(inode, 1789 btrfs_stack_inode_sequence(inode_item)); 1790 inode->i_rdev = 0; 1791 *rdev = btrfs_stack_inode_rdev(inode_item); 1792 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1793 1794 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1795 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1796 1797 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1798 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1799 1800 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1801 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1802 1803 BTRFS_I(inode)->i_otime.tv_sec = 1804 btrfs_stack_timespec_sec(&inode_item->otime); 1805 BTRFS_I(inode)->i_otime.tv_nsec = 1806 btrfs_stack_timespec_nsec(&inode_item->otime); 1807 1808 inode->i_generation = BTRFS_I(inode)->generation; 1809 BTRFS_I(inode)->index_cnt = (u64)-1; 1810 1811 mutex_unlock(&delayed_node->mutex); 1812 btrfs_release_delayed_node(delayed_node); 1813 return 0; 1814 } 1815 1816 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1817 struct btrfs_root *root, struct inode *inode) 1818 { 1819 struct btrfs_delayed_node *delayed_node; 1820 int ret = 0; 1821 1822 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1823 if (IS_ERR(delayed_node)) 1824 return PTR_ERR(delayed_node); 1825 1826 mutex_lock(&delayed_node->mutex); 1827 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1828 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1829 goto release_node; 1830 } 1831 1832 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1833 delayed_node); 1834 if (ret) 1835 goto release_node; 1836 1837 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1838 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1839 delayed_node->count++; 1840 atomic_inc(&root->fs_info->delayed_root->items); 1841 release_node: 1842 mutex_unlock(&delayed_node->mutex); 1843 btrfs_release_delayed_node(delayed_node); 1844 return ret; 1845 } 1846 1847 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1848 { 1849 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1850 struct btrfs_delayed_node *delayed_node; 1851 1852 /* 1853 * we don't do delayed inode updates during log recovery because it 1854 * leads to enospc problems. This means we also can't do 1855 * delayed inode refs 1856 */ 1857 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1858 return -EAGAIN; 1859 1860 delayed_node = btrfs_get_or_create_delayed_node(inode); 1861 if (IS_ERR(delayed_node)) 1862 return PTR_ERR(delayed_node); 1863 1864 /* 1865 * We don't reserve space for inode ref deletion is because: 1866 * - We ONLY do async inode ref deletion for the inode who has only 1867 * one link(i_nlink == 1), it means there is only one inode ref. 1868 * And in most case, the inode ref and the inode item are in the 1869 * same leaf, and we will deal with them at the same time. 1870 * Since we are sure we will reserve the space for the inode item, 1871 * it is unnecessary to reserve space for inode ref deletion. 1872 * - If the inode ref and the inode item are not in the same leaf, 1873 * We also needn't worry about enospc problem, because we reserve 1874 * much more space for the inode update than it needs. 1875 * - At the worst, we can steal some space from the global reservation. 1876 * It is very rare. 1877 */ 1878 mutex_lock(&delayed_node->mutex); 1879 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1880 goto release_node; 1881 1882 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1883 delayed_node->count++; 1884 atomic_inc(&fs_info->delayed_root->items); 1885 release_node: 1886 mutex_unlock(&delayed_node->mutex); 1887 btrfs_release_delayed_node(delayed_node); 1888 return 0; 1889 } 1890 1891 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1892 { 1893 struct btrfs_root *root = delayed_node->root; 1894 struct btrfs_fs_info *fs_info = root->fs_info; 1895 struct btrfs_delayed_item *curr_item, *prev_item; 1896 1897 mutex_lock(&delayed_node->mutex); 1898 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1899 while (curr_item) { 1900 btrfs_delayed_item_release_metadata(root, curr_item); 1901 prev_item = curr_item; 1902 curr_item = __btrfs_next_delayed_item(prev_item); 1903 btrfs_release_delayed_item(prev_item); 1904 } 1905 1906 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1907 while (curr_item) { 1908 btrfs_delayed_item_release_metadata(root, curr_item); 1909 prev_item = curr_item; 1910 curr_item = __btrfs_next_delayed_item(prev_item); 1911 btrfs_release_delayed_item(prev_item); 1912 } 1913 1914 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1915 btrfs_release_delayed_iref(delayed_node); 1916 1917 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1918 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1919 btrfs_release_delayed_inode(delayed_node); 1920 } 1921 mutex_unlock(&delayed_node->mutex); 1922 } 1923 1924 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1925 { 1926 struct btrfs_delayed_node *delayed_node; 1927 1928 delayed_node = btrfs_get_delayed_node(inode); 1929 if (!delayed_node) 1930 return; 1931 1932 __btrfs_kill_delayed_node(delayed_node); 1933 btrfs_release_delayed_node(delayed_node); 1934 } 1935 1936 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1937 { 1938 u64 inode_id = 0; 1939 struct btrfs_delayed_node *delayed_nodes[8]; 1940 int i, n; 1941 1942 while (1) { 1943 spin_lock(&root->inode_lock); 1944 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1945 (void **)delayed_nodes, inode_id, 1946 ARRAY_SIZE(delayed_nodes)); 1947 if (!n) { 1948 spin_unlock(&root->inode_lock); 1949 break; 1950 } 1951 1952 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1953 for (i = 0; i < n; i++) { 1954 /* 1955 * Don't increase refs in case the node is dead and 1956 * about to be removed from the tree in the loop below 1957 */ 1958 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1959 delayed_nodes[i] = NULL; 1960 } 1961 spin_unlock(&root->inode_lock); 1962 1963 for (i = 0; i < n; i++) { 1964 if (!delayed_nodes[i]) 1965 continue; 1966 __btrfs_kill_delayed_node(delayed_nodes[i]); 1967 btrfs_release_delayed_node(delayed_nodes[i]); 1968 } 1969 } 1970 } 1971 1972 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1973 { 1974 struct btrfs_delayed_node *curr_node, *prev_node; 1975 1976 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1977 while (curr_node) { 1978 __btrfs_kill_delayed_node(curr_node); 1979 1980 prev_node = curr_node; 1981 curr_node = btrfs_next_delayed_node(curr_node); 1982 btrfs_release_delayed_node(prev_node); 1983 } 1984 } 1985 1986