1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "delayed-inode.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "ctree.h" 15 #include "qgroup.h" 16 #include "locking.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the radix tree. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the radix at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the radix, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 again: 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* cached in the btrfs inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 ret = radix_tree_preload(GFP_NOFS); 145 if (ret) { 146 kmem_cache_free(delayed_node_cache, node); 147 return ERR_PTR(ret); 148 } 149 150 spin_lock(&root->inode_lock); 151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 152 if (ret == -EEXIST) { 153 spin_unlock(&root->inode_lock); 154 kmem_cache_free(delayed_node_cache, node); 155 radix_tree_preload_end(); 156 goto again; 157 } 158 btrfs_inode->delayed_node = node; 159 spin_unlock(&root->inode_lock); 160 radix_tree_preload_end(); 161 162 return node; 163 } 164 165 /* 166 * Call it when holding delayed_node->mutex 167 * 168 * If mod = 1, add this node into the prepared list. 169 */ 170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 171 struct btrfs_delayed_node *node, 172 int mod) 173 { 174 spin_lock(&root->lock); 175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 176 if (!list_empty(&node->p_list)) 177 list_move_tail(&node->p_list, &root->prepare_list); 178 else if (mod) 179 list_add_tail(&node->p_list, &root->prepare_list); 180 } else { 181 list_add_tail(&node->n_list, &root->node_list); 182 list_add_tail(&node->p_list, &root->prepare_list); 183 refcount_inc(&node->refs); /* inserted into list */ 184 root->nodes++; 185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 186 } 187 spin_unlock(&root->lock); 188 } 189 190 /* Call it when holding delayed_node->mutex */ 191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 192 struct btrfs_delayed_node *node) 193 { 194 spin_lock(&root->lock); 195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 196 root->nodes--; 197 refcount_dec(&node->refs); /* not in the list */ 198 list_del_init(&node->n_list); 199 if (!list_empty(&node->p_list)) 200 list_del_init(&node->p_list); 201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 202 } 203 spin_unlock(&root->lock); 204 } 205 206 static struct btrfs_delayed_node *btrfs_first_delayed_node( 207 struct btrfs_delayed_root *delayed_root) 208 { 209 struct list_head *p; 210 struct btrfs_delayed_node *node = NULL; 211 212 spin_lock(&delayed_root->lock); 213 if (list_empty(&delayed_root->node_list)) 214 goto out; 215 216 p = delayed_root->node_list.next; 217 node = list_entry(p, struct btrfs_delayed_node, n_list); 218 refcount_inc(&node->refs); 219 out: 220 spin_unlock(&delayed_root->lock); 221 222 return node; 223 } 224 225 static struct btrfs_delayed_node *btrfs_next_delayed_node( 226 struct btrfs_delayed_node *node) 227 { 228 struct btrfs_delayed_root *delayed_root; 229 struct list_head *p; 230 struct btrfs_delayed_node *next = NULL; 231 232 delayed_root = node->root->fs_info->delayed_root; 233 spin_lock(&delayed_root->lock); 234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 235 /* not in the list */ 236 if (list_empty(&delayed_root->node_list)) 237 goto out; 238 p = delayed_root->node_list.next; 239 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 240 goto out; 241 else 242 p = node->n_list.next; 243 244 next = list_entry(p, struct btrfs_delayed_node, n_list); 245 refcount_inc(&next->refs); 246 out: 247 spin_unlock(&delayed_root->lock); 248 249 return next; 250 } 251 252 static void __btrfs_release_delayed_node( 253 struct btrfs_delayed_node *delayed_node, 254 int mod) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 258 if (!delayed_node) 259 return; 260 261 delayed_root = delayed_node->root->fs_info->delayed_root; 262 263 mutex_lock(&delayed_node->mutex); 264 if (delayed_node->count) 265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 266 else 267 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 268 mutex_unlock(&delayed_node->mutex); 269 270 if (refcount_dec_and_test(&delayed_node->refs)) { 271 struct btrfs_root *root = delayed_node->root; 272 273 spin_lock(&root->inode_lock); 274 /* 275 * Once our refcount goes to zero, nobody is allowed to bump it 276 * back up. We can delete it now. 277 */ 278 ASSERT(refcount_read(&delayed_node->refs) == 0); 279 radix_tree_delete(&root->delayed_nodes_tree, 280 delayed_node->inode_id); 281 spin_unlock(&root->inode_lock); 282 kmem_cache_free(delayed_node_cache, delayed_node); 283 } 284 } 285 286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 287 { 288 __btrfs_release_delayed_node(node, 0); 289 } 290 291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 292 struct btrfs_delayed_root *delayed_root) 293 { 294 struct list_head *p; 295 struct btrfs_delayed_node *node = NULL; 296 297 spin_lock(&delayed_root->lock); 298 if (list_empty(&delayed_root->prepare_list)) 299 goto out; 300 301 p = delayed_root->prepare_list.next; 302 list_del_init(p); 303 node = list_entry(p, struct btrfs_delayed_node, p_list); 304 refcount_inc(&node->refs); 305 out: 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 318 { 319 struct btrfs_delayed_item *item; 320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->ins_or_del = 0; 324 item->bytes_reserved = 0; 325 item->delayed_node = NULL; 326 refcount_set(&item->refs, 1); 327 } 328 return item; 329 } 330 331 /* 332 * __btrfs_lookup_delayed_item - look up the delayed item by key 333 * @delayed_node: pointer to the delayed node 334 * @key: the key to look up 335 * @prev: used to store the prev item if the right item isn't found 336 * @next: used to store the next item if the right item isn't found 337 * 338 * Note: if we don't find the right item, we will return the prev item and 339 * the next item. 340 */ 341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 342 struct rb_root *root, 343 struct btrfs_key *key, 344 struct btrfs_delayed_item **prev, 345 struct btrfs_delayed_item **next) 346 { 347 struct rb_node *node, *prev_node = NULL; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 int ret = 0; 350 351 node = root->rb_node; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 prev_node = node; 357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 358 if (ret < 0) 359 node = node->rb_right; 360 else if (ret > 0) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 if (prev) { 367 if (!prev_node) 368 *prev = NULL; 369 else if (ret < 0) 370 *prev = delayed_item; 371 else if ((node = rb_prev(prev_node)) != NULL) { 372 *prev = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *prev = NULL; 376 } 377 378 if (next) { 379 if (!prev_node) 380 *next = NULL; 381 else if (ret > 0) 382 *next = delayed_item; 383 else if ((node = rb_next(prev_node)) != NULL) { 384 *next = rb_entry(node, struct btrfs_delayed_item, 385 rb_node); 386 } else 387 *next = NULL; 388 } 389 return NULL; 390 } 391 392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 393 struct btrfs_delayed_node *delayed_node, 394 struct btrfs_key *key) 395 { 396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 397 NULL, NULL); 398 } 399 400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 401 struct btrfs_delayed_item *ins, 402 int action) 403 { 404 struct rb_node **p, *node; 405 struct rb_node *parent_node = NULL; 406 struct rb_root_cached *root; 407 struct btrfs_delayed_item *item; 408 int cmp; 409 bool leftmost = true; 410 411 if (action == BTRFS_DELAYED_INSERTION_ITEM) 412 root = &delayed_node->ins_root; 413 else if (action == BTRFS_DELAYED_DELETION_ITEM) 414 root = &delayed_node->del_root; 415 else 416 BUG(); 417 p = &root->rb_root.rb_node; 418 node = &ins->rb_node; 419 420 while (*p) { 421 parent_node = *p; 422 item = rb_entry(parent_node, struct btrfs_delayed_item, 423 rb_node); 424 425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 426 if (cmp < 0) { 427 p = &(*p)->rb_right; 428 leftmost = false; 429 } else if (cmp > 0) { 430 p = &(*p)->rb_left; 431 } else { 432 return -EEXIST; 433 } 434 } 435 436 rb_link_node(node, parent_node, p); 437 rb_insert_color_cached(node, root, leftmost); 438 ins->delayed_node = delayed_node; 439 ins->ins_or_del = action; 440 441 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 442 action == BTRFS_DELAYED_INSERTION_ITEM && 443 ins->key.offset >= delayed_node->index_cnt) 444 delayed_node->index_cnt = ins->key.offset + 1; 445 446 delayed_node->count++; 447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 448 return 0; 449 } 450 451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_INSERTION_ITEM); 456 } 457 458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_DELETION_ITEM); 463 } 464 465 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 466 { 467 int seq = atomic_inc_return(&delayed_root->items_seq); 468 469 /* atomic_dec_return implies a barrier */ 470 if ((atomic_dec_return(&delayed_root->items) < 471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 472 cond_wake_up_nomb(&delayed_root->wait); 473 } 474 475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 476 { 477 struct rb_root_cached *root; 478 struct btrfs_delayed_root *delayed_root; 479 480 /* Not associated with any delayed_node */ 481 if (!delayed_item->delayed_node) 482 return; 483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 484 485 BUG_ON(!delayed_root); 486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 488 489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 490 root = &delayed_item->delayed_node->ins_root; 491 else 492 root = &delayed_item->delayed_node->del_root; 493 494 rb_erase_cached(&delayed_item->rb_node, root); 495 delayed_item->delayed_node->count--; 496 497 finish_one_item(delayed_root); 498 } 499 500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 501 { 502 if (item) { 503 __btrfs_remove_delayed_item(item); 504 if (refcount_dec_and_test(&item->refs)) 505 kfree(item); 506 } 507 } 508 509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 510 struct btrfs_delayed_node *delayed_node) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *item = NULL; 514 515 p = rb_first_cached(&delayed_node->ins_root); 516 if (p) 517 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return item; 520 } 521 522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 523 struct btrfs_delayed_node *delayed_node) 524 { 525 struct rb_node *p; 526 struct btrfs_delayed_item *item = NULL; 527 528 p = rb_first_cached(&delayed_node->del_root); 529 if (p) 530 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 531 532 return item; 533 } 534 535 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 536 struct btrfs_delayed_item *item) 537 { 538 struct rb_node *p; 539 struct btrfs_delayed_item *next = NULL; 540 541 p = rb_next(&item->rb_node); 542 if (p) 543 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 544 545 return next; 546 } 547 548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 549 struct btrfs_root *root, 550 struct btrfs_delayed_item *item) 551 { 552 struct btrfs_block_rsv *src_rsv; 553 struct btrfs_block_rsv *dst_rsv; 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 u64 num_bytes; 556 int ret; 557 558 if (!trans->bytes_reserved) 559 return 0; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 566 /* 567 * Here we migrate space rsv from transaction rsv, since have already 568 * reserved space when starting a transaction. So no need to reserve 569 * qgroup space here. 570 */ 571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 572 if (!ret) { 573 trace_btrfs_space_reservation(fs_info, "delayed_item", 574 item->key.objectid, 575 num_bytes, 1); 576 item->bytes_reserved = num_bytes; 577 } 578 579 return ret; 580 } 581 582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *rsv; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 588 if (!item->bytes_reserved) 589 return; 590 591 rsv = &fs_info->delayed_block_rsv; 592 /* 593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 594 * to release/reserve qgroup space. 595 */ 596 trace_btrfs_space_reservation(fs_info, "delayed_item", 597 item->key.objectid, item->bytes_reserved, 598 0); 599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_inode *inode, 606 struct btrfs_delayed_node *node) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_block_rsv *src_rsv; 610 struct btrfs_block_rsv *dst_rsv; 611 u64 num_bytes; 612 int ret; 613 614 src_rsv = trans->block_rsv; 615 dst_rsv = &fs_info->delayed_block_rsv; 616 617 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 618 619 /* 620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 621 * which doesn't reserve space for speed. This is a problem since we 622 * still need to reserve space for this update, so try to reserve the 623 * space. 624 * 625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 626 * we always reserve enough to update the inode item. 627 */ 628 if (!src_rsv || (!trans->bytes_reserved && 629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 630 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 631 if (ret < 0) 632 return ret; 633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 634 BTRFS_RESERVE_NO_FLUSH); 635 /* 636 * Since we're under a transaction reserve_metadata_bytes could 637 * try to commit the transaction which will make it return 638 * EAGAIN to make us stop the transaction we have, so return 639 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 640 */ 641 if (ret == -EAGAIN) { 642 ret = -ENOSPC; 643 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 644 } 645 if (!ret) { 646 node->bytes_reserved = num_bytes; 647 trace_btrfs_space_reservation(fs_info, 648 "delayed_inode", 649 btrfs_ino(inode), 650 num_bytes, 1); 651 } else { 652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 653 } 654 return ret; 655 } 656 657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 658 if (!ret) { 659 trace_btrfs_space_reservation(fs_info, "delayed_inode", 660 btrfs_ino(inode), num_bytes, 1); 661 node->bytes_reserved = num_bytes; 662 } 663 664 return ret; 665 } 666 667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 668 struct btrfs_delayed_node *node, 669 bool qgroup_free) 670 { 671 struct btrfs_block_rsv *rsv; 672 673 if (!node->bytes_reserved) 674 return; 675 676 rsv = &fs_info->delayed_block_rsv; 677 trace_btrfs_space_reservation(fs_info, "delayed_inode", 678 node->inode_id, node->bytes_reserved, 0); 679 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 680 if (qgroup_free) 681 btrfs_qgroup_free_meta_prealloc(node->root, 682 node->bytes_reserved); 683 else 684 btrfs_qgroup_convert_reserved_meta(node->root, 685 node->bytes_reserved); 686 node->bytes_reserved = 0; 687 } 688 689 /* 690 * This helper will insert some continuous items into the same leaf according 691 * to the free space of the leaf. 692 */ 693 static int btrfs_batch_insert_items(struct btrfs_root *root, 694 struct btrfs_path *path, 695 struct btrfs_delayed_item *item) 696 { 697 struct btrfs_delayed_item *curr, *next; 698 int free_space; 699 int total_data_size = 0, total_size = 0; 700 struct extent_buffer *leaf; 701 char *data_ptr; 702 struct btrfs_key *keys; 703 u32 *data_size; 704 struct list_head head; 705 int slot; 706 int nitems; 707 int i; 708 int ret = 0; 709 710 BUG_ON(!path->nodes[0]); 711 712 leaf = path->nodes[0]; 713 free_space = btrfs_leaf_free_space(leaf); 714 INIT_LIST_HEAD(&head); 715 716 next = item; 717 nitems = 0; 718 719 /* 720 * count the number of the continuous items that we can insert in batch 721 */ 722 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 723 free_space) { 724 total_data_size += next->data_len; 725 total_size += next->data_len + sizeof(struct btrfs_item); 726 list_add_tail(&next->tree_list, &head); 727 nitems++; 728 729 curr = next; 730 next = __btrfs_next_delayed_item(curr); 731 if (!next) 732 break; 733 734 if (!btrfs_is_continuous_delayed_item(curr, next)) 735 break; 736 } 737 738 if (!nitems) { 739 ret = 0; 740 goto out; 741 } 742 743 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 744 if (!keys) { 745 ret = -ENOMEM; 746 goto out; 747 } 748 749 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 750 if (!data_size) { 751 ret = -ENOMEM; 752 goto error; 753 } 754 755 /* get keys of all the delayed items */ 756 i = 0; 757 list_for_each_entry(next, &head, tree_list) { 758 keys[i] = next->key; 759 data_size[i] = next->data_len; 760 i++; 761 } 762 763 /* insert the keys of the items */ 764 setup_items_for_insert(root, path, keys, data_size, nitems); 765 766 /* insert the dir index items */ 767 slot = path->slots[0]; 768 list_for_each_entry_safe(curr, next, &head, tree_list) { 769 data_ptr = btrfs_item_ptr(leaf, slot, char); 770 write_extent_buffer(leaf, &curr->data, 771 (unsigned long)data_ptr, 772 curr->data_len); 773 slot++; 774 775 btrfs_delayed_item_release_metadata(root, curr); 776 777 list_del(&curr->tree_list); 778 btrfs_release_delayed_item(curr); 779 } 780 781 error: 782 kfree(data_size); 783 kfree(keys); 784 out: 785 return ret; 786 } 787 788 /* 789 * This helper can just do simple insertion that needn't extend item for new 790 * data, such as directory name index insertion, inode insertion. 791 */ 792 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 793 struct btrfs_root *root, 794 struct btrfs_path *path, 795 struct btrfs_delayed_item *delayed_item) 796 { 797 struct extent_buffer *leaf; 798 unsigned int nofs_flag; 799 char *ptr; 800 int ret; 801 802 nofs_flag = memalloc_nofs_save(); 803 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 804 delayed_item->data_len); 805 memalloc_nofs_restore(nofs_flag); 806 if (ret < 0 && ret != -EEXIST) 807 return ret; 808 809 leaf = path->nodes[0]; 810 811 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 812 813 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 814 delayed_item->data_len); 815 btrfs_mark_buffer_dirty(leaf); 816 817 btrfs_delayed_item_release_metadata(root, delayed_item); 818 return 0; 819 } 820 821 /* 822 * we insert an item first, then if there are some continuous items, we try 823 * to insert those items into the same leaf. 824 */ 825 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 826 struct btrfs_path *path, 827 struct btrfs_root *root, 828 struct btrfs_delayed_node *node) 829 { 830 struct btrfs_delayed_item *curr, *prev; 831 int ret = 0; 832 833 do_again: 834 mutex_lock(&node->mutex); 835 curr = __btrfs_first_delayed_insertion_item(node); 836 if (!curr) 837 goto insert_end; 838 839 ret = btrfs_insert_delayed_item(trans, root, path, curr); 840 if (ret < 0) { 841 btrfs_release_path(path); 842 goto insert_end; 843 } 844 845 prev = curr; 846 curr = __btrfs_next_delayed_item(prev); 847 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 848 /* insert the continuous items into the same leaf */ 849 path->slots[0]++; 850 btrfs_batch_insert_items(root, path, curr); 851 } 852 btrfs_release_delayed_item(prev); 853 btrfs_mark_buffer_dirty(path->nodes[0]); 854 855 btrfs_release_path(path); 856 mutex_unlock(&node->mutex); 857 goto do_again; 858 859 insert_end: 860 mutex_unlock(&node->mutex); 861 return ret; 862 } 863 864 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 865 struct btrfs_root *root, 866 struct btrfs_path *path, 867 struct btrfs_delayed_item *item) 868 { 869 struct btrfs_delayed_item *curr, *next; 870 struct extent_buffer *leaf; 871 struct btrfs_key key; 872 struct list_head head; 873 int nitems, i, last_item; 874 int ret = 0; 875 876 BUG_ON(!path->nodes[0]); 877 878 leaf = path->nodes[0]; 879 880 i = path->slots[0]; 881 last_item = btrfs_header_nritems(leaf) - 1; 882 if (i > last_item) 883 return -ENOENT; /* FIXME: Is errno suitable? */ 884 885 next = item; 886 INIT_LIST_HEAD(&head); 887 btrfs_item_key_to_cpu(leaf, &key, i); 888 nitems = 0; 889 /* 890 * count the number of the dir index items that we can delete in batch 891 */ 892 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 893 list_add_tail(&next->tree_list, &head); 894 nitems++; 895 896 curr = next; 897 next = __btrfs_next_delayed_item(curr); 898 if (!next) 899 break; 900 901 if (!btrfs_is_continuous_delayed_item(curr, next)) 902 break; 903 904 i++; 905 if (i > last_item) 906 break; 907 btrfs_item_key_to_cpu(leaf, &key, i); 908 } 909 910 if (!nitems) 911 return 0; 912 913 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 914 if (ret) 915 goto out; 916 917 list_for_each_entry_safe(curr, next, &head, tree_list) { 918 btrfs_delayed_item_release_metadata(root, curr); 919 list_del(&curr->tree_list); 920 btrfs_release_delayed_item(curr); 921 } 922 923 out: 924 return ret; 925 } 926 927 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 928 struct btrfs_path *path, 929 struct btrfs_root *root, 930 struct btrfs_delayed_node *node) 931 { 932 struct btrfs_delayed_item *curr, *prev; 933 unsigned int nofs_flag; 934 int ret = 0; 935 936 do_again: 937 mutex_lock(&node->mutex); 938 curr = __btrfs_first_delayed_deletion_item(node); 939 if (!curr) 940 goto delete_fail; 941 942 nofs_flag = memalloc_nofs_save(); 943 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 944 memalloc_nofs_restore(nofs_flag); 945 if (ret < 0) 946 goto delete_fail; 947 else if (ret > 0) { 948 /* 949 * can't find the item which the node points to, so this node 950 * is invalid, just drop it. 951 */ 952 prev = curr; 953 curr = __btrfs_next_delayed_item(prev); 954 btrfs_release_delayed_item(prev); 955 ret = 0; 956 btrfs_release_path(path); 957 if (curr) { 958 mutex_unlock(&node->mutex); 959 goto do_again; 960 } else 961 goto delete_fail; 962 } 963 964 btrfs_batch_delete_items(trans, root, path, curr); 965 btrfs_release_path(path); 966 mutex_unlock(&node->mutex); 967 goto do_again; 968 969 delete_fail: 970 btrfs_release_path(path); 971 mutex_unlock(&node->mutex); 972 return ret; 973 } 974 975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 976 { 977 struct btrfs_delayed_root *delayed_root; 978 979 if (delayed_node && 980 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 981 BUG_ON(!delayed_node->root); 982 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 983 delayed_node->count--; 984 985 delayed_root = delayed_node->root->fs_info->delayed_root; 986 finish_one_item(delayed_root); 987 } 988 } 989 990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 991 { 992 struct btrfs_delayed_root *delayed_root; 993 994 ASSERT(delayed_node->root); 995 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 996 delayed_node->count--; 997 998 delayed_root = delayed_node->root->fs_info->delayed_root; 999 finish_one_item(delayed_root); 1000 } 1001 1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1003 struct btrfs_root *root, 1004 struct btrfs_path *path, 1005 struct btrfs_delayed_node *node) 1006 { 1007 struct btrfs_fs_info *fs_info = root->fs_info; 1008 struct btrfs_key key; 1009 struct btrfs_inode_item *inode_item; 1010 struct extent_buffer *leaf; 1011 unsigned int nofs_flag; 1012 int mod; 1013 int ret; 1014 1015 key.objectid = node->inode_id; 1016 key.type = BTRFS_INODE_ITEM_KEY; 1017 key.offset = 0; 1018 1019 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1020 mod = -1; 1021 else 1022 mod = 1; 1023 1024 nofs_flag = memalloc_nofs_save(); 1025 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1026 memalloc_nofs_restore(nofs_flag); 1027 if (ret > 0) { 1028 btrfs_release_path(path); 1029 return -ENOENT; 1030 } else if (ret < 0) { 1031 return ret; 1032 } 1033 1034 leaf = path->nodes[0]; 1035 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1036 struct btrfs_inode_item); 1037 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1038 sizeof(struct btrfs_inode_item)); 1039 btrfs_mark_buffer_dirty(leaf); 1040 1041 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1042 goto no_iref; 1043 1044 path->slots[0]++; 1045 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1046 goto search; 1047 again: 1048 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1049 if (key.objectid != node->inode_id) 1050 goto out; 1051 1052 if (key.type != BTRFS_INODE_REF_KEY && 1053 key.type != BTRFS_INODE_EXTREF_KEY) 1054 goto out; 1055 1056 /* 1057 * Delayed iref deletion is for the inode who has only one link, 1058 * so there is only one iref. The case that several irefs are 1059 * in the same item doesn't exist. 1060 */ 1061 btrfs_del_item(trans, root, path); 1062 out: 1063 btrfs_release_delayed_iref(node); 1064 no_iref: 1065 btrfs_release_path(path); 1066 err_out: 1067 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1068 btrfs_release_delayed_inode(node); 1069 1070 return ret; 1071 1072 search: 1073 btrfs_release_path(path); 1074 1075 key.type = BTRFS_INODE_EXTREF_KEY; 1076 key.offset = -1; 1077 1078 nofs_flag = memalloc_nofs_save(); 1079 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1080 memalloc_nofs_restore(nofs_flag); 1081 if (ret < 0) 1082 goto err_out; 1083 ASSERT(ret); 1084 1085 ret = 0; 1086 leaf = path->nodes[0]; 1087 path->slots[0]--; 1088 goto again; 1089 } 1090 1091 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1092 struct btrfs_root *root, 1093 struct btrfs_path *path, 1094 struct btrfs_delayed_node *node) 1095 { 1096 int ret; 1097 1098 mutex_lock(&node->mutex); 1099 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1100 mutex_unlock(&node->mutex); 1101 return 0; 1102 } 1103 1104 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1105 mutex_unlock(&node->mutex); 1106 return ret; 1107 } 1108 1109 static inline int 1110 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1111 struct btrfs_path *path, 1112 struct btrfs_delayed_node *node) 1113 { 1114 int ret; 1115 1116 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1117 if (ret) 1118 return ret; 1119 1120 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1125 return ret; 1126 } 1127 1128 /* 1129 * Called when committing the transaction. 1130 * Returns 0 on success. 1131 * Returns < 0 on error and returns with an aborted transaction with any 1132 * outstanding delayed items cleaned up. 1133 */ 1134 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1135 { 1136 struct btrfs_fs_info *fs_info = trans->fs_info; 1137 struct btrfs_delayed_root *delayed_root; 1138 struct btrfs_delayed_node *curr_node, *prev_node; 1139 struct btrfs_path *path; 1140 struct btrfs_block_rsv *block_rsv; 1141 int ret = 0; 1142 bool count = (nr > 0); 1143 1144 if (TRANS_ABORTED(trans)) 1145 return -EIO; 1146 1147 path = btrfs_alloc_path(); 1148 if (!path) 1149 return -ENOMEM; 1150 1151 block_rsv = trans->block_rsv; 1152 trans->block_rsv = &fs_info->delayed_block_rsv; 1153 1154 delayed_root = fs_info->delayed_root; 1155 1156 curr_node = btrfs_first_delayed_node(delayed_root); 1157 while (curr_node && (!count || (count && nr--))) { 1158 ret = __btrfs_commit_inode_delayed_items(trans, path, 1159 curr_node); 1160 if (ret) { 1161 btrfs_release_delayed_node(curr_node); 1162 curr_node = NULL; 1163 btrfs_abort_transaction(trans, ret); 1164 break; 1165 } 1166 1167 prev_node = curr_node; 1168 curr_node = btrfs_next_delayed_node(curr_node); 1169 btrfs_release_delayed_node(prev_node); 1170 } 1171 1172 if (curr_node) 1173 btrfs_release_delayed_node(curr_node); 1174 btrfs_free_path(path); 1175 trans->block_rsv = block_rsv; 1176 1177 return ret; 1178 } 1179 1180 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1181 { 1182 return __btrfs_run_delayed_items(trans, -1); 1183 } 1184 1185 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1186 { 1187 return __btrfs_run_delayed_items(trans, nr); 1188 } 1189 1190 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1191 struct btrfs_inode *inode) 1192 { 1193 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1194 struct btrfs_path *path; 1195 struct btrfs_block_rsv *block_rsv; 1196 int ret; 1197 1198 if (!delayed_node) 1199 return 0; 1200 1201 mutex_lock(&delayed_node->mutex); 1202 if (!delayed_node->count) { 1203 mutex_unlock(&delayed_node->mutex); 1204 btrfs_release_delayed_node(delayed_node); 1205 return 0; 1206 } 1207 mutex_unlock(&delayed_node->mutex); 1208 1209 path = btrfs_alloc_path(); 1210 if (!path) { 1211 btrfs_release_delayed_node(delayed_node); 1212 return -ENOMEM; 1213 } 1214 1215 block_rsv = trans->block_rsv; 1216 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1217 1218 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1219 1220 btrfs_release_delayed_node(delayed_node); 1221 btrfs_free_path(path); 1222 trans->block_rsv = block_rsv; 1223 1224 return ret; 1225 } 1226 1227 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1228 { 1229 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1230 struct btrfs_trans_handle *trans; 1231 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1232 struct btrfs_path *path; 1233 struct btrfs_block_rsv *block_rsv; 1234 int ret; 1235 1236 if (!delayed_node) 1237 return 0; 1238 1239 mutex_lock(&delayed_node->mutex); 1240 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1241 mutex_unlock(&delayed_node->mutex); 1242 btrfs_release_delayed_node(delayed_node); 1243 return 0; 1244 } 1245 mutex_unlock(&delayed_node->mutex); 1246 1247 trans = btrfs_join_transaction(delayed_node->root); 1248 if (IS_ERR(trans)) { 1249 ret = PTR_ERR(trans); 1250 goto out; 1251 } 1252 1253 path = btrfs_alloc_path(); 1254 if (!path) { 1255 ret = -ENOMEM; 1256 goto trans_out; 1257 } 1258 1259 block_rsv = trans->block_rsv; 1260 trans->block_rsv = &fs_info->delayed_block_rsv; 1261 1262 mutex_lock(&delayed_node->mutex); 1263 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1264 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1265 path, delayed_node); 1266 else 1267 ret = 0; 1268 mutex_unlock(&delayed_node->mutex); 1269 1270 btrfs_free_path(path); 1271 trans->block_rsv = block_rsv; 1272 trans_out: 1273 btrfs_end_transaction(trans); 1274 btrfs_btree_balance_dirty(fs_info); 1275 out: 1276 btrfs_release_delayed_node(delayed_node); 1277 1278 return ret; 1279 } 1280 1281 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1282 { 1283 struct btrfs_delayed_node *delayed_node; 1284 1285 delayed_node = READ_ONCE(inode->delayed_node); 1286 if (!delayed_node) 1287 return; 1288 1289 inode->delayed_node = NULL; 1290 btrfs_release_delayed_node(delayed_node); 1291 } 1292 1293 struct btrfs_async_delayed_work { 1294 struct btrfs_delayed_root *delayed_root; 1295 int nr; 1296 struct btrfs_work work; 1297 }; 1298 1299 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1300 { 1301 struct btrfs_async_delayed_work *async_work; 1302 struct btrfs_delayed_root *delayed_root; 1303 struct btrfs_trans_handle *trans; 1304 struct btrfs_path *path; 1305 struct btrfs_delayed_node *delayed_node = NULL; 1306 struct btrfs_root *root; 1307 struct btrfs_block_rsv *block_rsv; 1308 int total_done = 0; 1309 1310 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1311 delayed_root = async_work->delayed_root; 1312 1313 path = btrfs_alloc_path(); 1314 if (!path) 1315 goto out; 1316 1317 do { 1318 if (atomic_read(&delayed_root->items) < 1319 BTRFS_DELAYED_BACKGROUND / 2) 1320 break; 1321 1322 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1323 if (!delayed_node) 1324 break; 1325 1326 root = delayed_node->root; 1327 1328 trans = btrfs_join_transaction(root); 1329 if (IS_ERR(trans)) { 1330 btrfs_release_path(path); 1331 btrfs_release_prepared_delayed_node(delayed_node); 1332 total_done++; 1333 continue; 1334 } 1335 1336 block_rsv = trans->block_rsv; 1337 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1338 1339 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1340 1341 trans->block_rsv = block_rsv; 1342 btrfs_end_transaction(trans); 1343 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1344 1345 btrfs_release_path(path); 1346 btrfs_release_prepared_delayed_node(delayed_node); 1347 total_done++; 1348 1349 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1350 || total_done < async_work->nr); 1351 1352 btrfs_free_path(path); 1353 out: 1354 wake_up(&delayed_root->wait); 1355 kfree(async_work); 1356 } 1357 1358 1359 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1360 struct btrfs_fs_info *fs_info, int nr) 1361 { 1362 struct btrfs_async_delayed_work *async_work; 1363 1364 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1365 if (!async_work) 1366 return -ENOMEM; 1367 1368 async_work->delayed_root = delayed_root; 1369 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1370 NULL); 1371 async_work->nr = nr; 1372 1373 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1374 return 0; 1375 } 1376 1377 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1378 { 1379 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1380 } 1381 1382 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1383 { 1384 int val = atomic_read(&delayed_root->items_seq); 1385 1386 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1387 return 1; 1388 1389 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1390 return 1; 1391 1392 return 0; 1393 } 1394 1395 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1396 { 1397 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1398 1399 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1400 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1401 return; 1402 1403 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1404 int seq; 1405 int ret; 1406 1407 seq = atomic_read(&delayed_root->items_seq); 1408 1409 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1410 if (ret) 1411 return; 1412 1413 wait_event_interruptible(delayed_root->wait, 1414 could_end_wait(delayed_root, seq)); 1415 return; 1416 } 1417 1418 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1419 } 1420 1421 /* Will return 0 or -ENOMEM */ 1422 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1423 const char *name, int name_len, 1424 struct btrfs_inode *dir, 1425 struct btrfs_disk_key *disk_key, u8 type, 1426 u64 index) 1427 { 1428 struct btrfs_delayed_node *delayed_node; 1429 struct btrfs_delayed_item *delayed_item; 1430 struct btrfs_dir_item *dir_item; 1431 int ret; 1432 1433 delayed_node = btrfs_get_or_create_delayed_node(dir); 1434 if (IS_ERR(delayed_node)) 1435 return PTR_ERR(delayed_node); 1436 1437 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1438 if (!delayed_item) { 1439 ret = -ENOMEM; 1440 goto release_node; 1441 } 1442 1443 delayed_item->key.objectid = btrfs_ino(dir); 1444 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1445 delayed_item->key.offset = index; 1446 1447 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1448 dir_item->location = *disk_key; 1449 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1450 btrfs_set_stack_dir_data_len(dir_item, 0); 1451 btrfs_set_stack_dir_name_len(dir_item, name_len); 1452 btrfs_set_stack_dir_type(dir_item, type); 1453 memcpy((char *)(dir_item + 1), name, name_len); 1454 1455 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1456 /* 1457 * we have reserved enough space when we start a new transaction, 1458 * so reserving metadata failure is impossible 1459 */ 1460 BUG_ON(ret); 1461 1462 mutex_lock(&delayed_node->mutex); 1463 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1464 if (unlikely(ret)) { 1465 btrfs_err(trans->fs_info, 1466 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1467 name_len, name, delayed_node->root->root_key.objectid, 1468 delayed_node->inode_id, ret); 1469 BUG(); 1470 } 1471 mutex_unlock(&delayed_node->mutex); 1472 1473 release_node: 1474 btrfs_release_delayed_node(delayed_node); 1475 return ret; 1476 } 1477 1478 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1479 struct btrfs_delayed_node *node, 1480 struct btrfs_key *key) 1481 { 1482 struct btrfs_delayed_item *item; 1483 1484 mutex_lock(&node->mutex); 1485 item = __btrfs_lookup_delayed_insertion_item(node, key); 1486 if (!item) { 1487 mutex_unlock(&node->mutex); 1488 return 1; 1489 } 1490 1491 btrfs_delayed_item_release_metadata(node->root, item); 1492 btrfs_release_delayed_item(item); 1493 mutex_unlock(&node->mutex); 1494 return 0; 1495 } 1496 1497 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1498 struct btrfs_inode *dir, u64 index) 1499 { 1500 struct btrfs_delayed_node *node; 1501 struct btrfs_delayed_item *item; 1502 struct btrfs_key item_key; 1503 int ret; 1504 1505 node = btrfs_get_or_create_delayed_node(dir); 1506 if (IS_ERR(node)) 1507 return PTR_ERR(node); 1508 1509 item_key.objectid = btrfs_ino(dir); 1510 item_key.type = BTRFS_DIR_INDEX_KEY; 1511 item_key.offset = index; 1512 1513 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1514 &item_key); 1515 if (!ret) 1516 goto end; 1517 1518 item = btrfs_alloc_delayed_item(0); 1519 if (!item) { 1520 ret = -ENOMEM; 1521 goto end; 1522 } 1523 1524 item->key = item_key; 1525 1526 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1527 /* 1528 * we have reserved enough space when we start a new transaction, 1529 * so reserving metadata failure is impossible. 1530 */ 1531 if (ret < 0) { 1532 btrfs_err(trans->fs_info, 1533 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1534 btrfs_release_delayed_item(item); 1535 goto end; 1536 } 1537 1538 mutex_lock(&node->mutex); 1539 ret = __btrfs_add_delayed_deletion_item(node, item); 1540 if (unlikely(ret)) { 1541 btrfs_err(trans->fs_info, 1542 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1543 index, node->root->root_key.objectid, 1544 node->inode_id, ret); 1545 btrfs_delayed_item_release_metadata(dir->root, item); 1546 btrfs_release_delayed_item(item); 1547 } 1548 mutex_unlock(&node->mutex); 1549 end: 1550 btrfs_release_delayed_node(node); 1551 return ret; 1552 } 1553 1554 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1555 { 1556 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1557 1558 if (!delayed_node) 1559 return -ENOENT; 1560 1561 /* 1562 * Since we have held i_mutex of this directory, it is impossible that 1563 * a new directory index is added into the delayed node and index_cnt 1564 * is updated now. So we needn't lock the delayed node. 1565 */ 1566 if (!delayed_node->index_cnt) { 1567 btrfs_release_delayed_node(delayed_node); 1568 return -EINVAL; 1569 } 1570 1571 inode->index_cnt = delayed_node->index_cnt; 1572 btrfs_release_delayed_node(delayed_node); 1573 return 0; 1574 } 1575 1576 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1577 struct list_head *ins_list, 1578 struct list_head *del_list) 1579 { 1580 struct btrfs_delayed_node *delayed_node; 1581 struct btrfs_delayed_item *item; 1582 1583 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1584 if (!delayed_node) 1585 return false; 1586 1587 /* 1588 * We can only do one readdir with delayed items at a time because of 1589 * item->readdir_list. 1590 */ 1591 inode_unlock_shared(inode); 1592 inode_lock(inode); 1593 1594 mutex_lock(&delayed_node->mutex); 1595 item = __btrfs_first_delayed_insertion_item(delayed_node); 1596 while (item) { 1597 refcount_inc(&item->refs); 1598 list_add_tail(&item->readdir_list, ins_list); 1599 item = __btrfs_next_delayed_item(item); 1600 } 1601 1602 item = __btrfs_first_delayed_deletion_item(delayed_node); 1603 while (item) { 1604 refcount_inc(&item->refs); 1605 list_add_tail(&item->readdir_list, del_list); 1606 item = __btrfs_next_delayed_item(item); 1607 } 1608 mutex_unlock(&delayed_node->mutex); 1609 /* 1610 * This delayed node is still cached in the btrfs inode, so refs 1611 * must be > 1 now, and we needn't check it is going to be freed 1612 * or not. 1613 * 1614 * Besides that, this function is used to read dir, we do not 1615 * insert/delete delayed items in this period. So we also needn't 1616 * requeue or dequeue this delayed node. 1617 */ 1618 refcount_dec(&delayed_node->refs); 1619 1620 return true; 1621 } 1622 1623 void btrfs_readdir_put_delayed_items(struct inode *inode, 1624 struct list_head *ins_list, 1625 struct list_head *del_list) 1626 { 1627 struct btrfs_delayed_item *curr, *next; 1628 1629 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1630 list_del(&curr->readdir_list); 1631 if (refcount_dec_and_test(&curr->refs)) 1632 kfree(curr); 1633 } 1634 1635 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1636 list_del(&curr->readdir_list); 1637 if (refcount_dec_and_test(&curr->refs)) 1638 kfree(curr); 1639 } 1640 1641 /* 1642 * The VFS is going to do up_read(), so we need to downgrade back to a 1643 * read lock. 1644 */ 1645 downgrade_write(&inode->i_rwsem); 1646 } 1647 1648 int btrfs_should_delete_dir_index(struct list_head *del_list, 1649 u64 index) 1650 { 1651 struct btrfs_delayed_item *curr; 1652 int ret = 0; 1653 1654 list_for_each_entry(curr, del_list, readdir_list) { 1655 if (curr->key.offset > index) 1656 break; 1657 if (curr->key.offset == index) { 1658 ret = 1; 1659 break; 1660 } 1661 } 1662 return ret; 1663 } 1664 1665 /* 1666 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1667 * 1668 */ 1669 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1670 struct list_head *ins_list) 1671 { 1672 struct btrfs_dir_item *di; 1673 struct btrfs_delayed_item *curr, *next; 1674 struct btrfs_key location; 1675 char *name; 1676 int name_len; 1677 int over = 0; 1678 unsigned char d_type; 1679 1680 if (list_empty(ins_list)) 1681 return 0; 1682 1683 /* 1684 * Changing the data of the delayed item is impossible. So 1685 * we needn't lock them. And we have held i_mutex of the 1686 * directory, nobody can delete any directory indexes now. 1687 */ 1688 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1689 list_del(&curr->readdir_list); 1690 1691 if (curr->key.offset < ctx->pos) { 1692 if (refcount_dec_and_test(&curr->refs)) 1693 kfree(curr); 1694 continue; 1695 } 1696 1697 ctx->pos = curr->key.offset; 1698 1699 di = (struct btrfs_dir_item *)curr->data; 1700 name = (char *)(di + 1); 1701 name_len = btrfs_stack_dir_name_len(di); 1702 1703 d_type = fs_ftype_to_dtype(di->type); 1704 btrfs_disk_key_to_cpu(&location, &di->location); 1705 1706 over = !dir_emit(ctx, name, name_len, 1707 location.objectid, d_type); 1708 1709 if (refcount_dec_and_test(&curr->refs)) 1710 kfree(curr); 1711 1712 if (over) 1713 return 1; 1714 ctx->pos++; 1715 } 1716 return 0; 1717 } 1718 1719 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1720 struct btrfs_inode_item *inode_item, 1721 struct inode *inode) 1722 { 1723 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1724 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1725 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1726 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1727 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1728 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1729 btrfs_set_stack_inode_generation(inode_item, 1730 BTRFS_I(inode)->generation); 1731 btrfs_set_stack_inode_sequence(inode_item, 1732 inode_peek_iversion(inode)); 1733 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1734 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1735 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1736 btrfs_set_stack_inode_block_group(inode_item, 0); 1737 1738 btrfs_set_stack_timespec_sec(&inode_item->atime, 1739 inode->i_atime.tv_sec); 1740 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1741 inode->i_atime.tv_nsec); 1742 1743 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1744 inode->i_mtime.tv_sec); 1745 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1746 inode->i_mtime.tv_nsec); 1747 1748 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1749 inode->i_ctime.tv_sec); 1750 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1751 inode->i_ctime.tv_nsec); 1752 1753 btrfs_set_stack_timespec_sec(&inode_item->otime, 1754 BTRFS_I(inode)->i_otime.tv_sec); 1755 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1756 BTRFS_I(inode)->i_otime.tv_nsec); 1757 } 1758 1759 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1760 { 1761 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1762 struct btrfs_delayed_node *delayed_node; 1763 struct btrfs_inode_item *inode_item; 1764 1765 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1766 if (!delayed_node) 1767 return -ENOENT; 1768 1769 mutex_lock(&delayed_node->mutex); 1770 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1771 mutex_unlock(&delayed_node->mutex); 1772 btrfs_release_delayed_node(delayed_node); 1773 return -ENOENT; 1774 } 1775 1776 inode_item = &delayed_node->inode_item; 1777 1778 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1779 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1780 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1781 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1782 round_up(i_size_read(inode), fs_info->sectorsize)); 1783 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1784 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1785 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1786 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1787 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1788 1789 inode_set_iversion_queried(inode, 1790 btrfs_stack_inode_sequence(inode_item)); 1791 inode->i_rdev = 0; 1792 *rdev = btrfs_stack_inode_rdev(inode_item); 1793 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1794 1795 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1796 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1797 1798 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1799 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1800 1801 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1802 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1803 1804 BTRFS_I(inode)->i_otime.tv_sec = 1805 btrfs_stack_timespec_sec(&inode_item->otime); 1806 BTRFS_I(inode)->i_otime.tv_nsec = 1807 btrfs_stack_timespec_nsec(&inode_item->otime); 1808 1809 inode->i_generation = BTRFS_I(inode)->generation; 1810 BTRFS_I(inode)->index_cnt = (u64)-1; 1811 1812 mutex_unlock(&delayed_node->mutex); 1813 btrfs_release_delayed_node(delayed_node); 1814 return 0; 1815 } 1816 1817 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1818 struct btrfs_root *root, 1819 struct btrfs_inode *inode) 1820 { 1821 struct btrfs_delayed_node *delayed_node; 1822 int ret = 0; 1823 1824 delayed_node = btrfs_get_or_create_delayed_node(inode); 1825 if (IS_ERR(delayed_node)) 1826 return PTR_ERR(delayed_node); 1827 1828 mutex_lock(&delayed_node->mutex); 1829 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1830 fill_stack_inode_item(trans, &delayed_node->inode_item, 1831 &inode->vfs_inode); 1832 goto release_node; 1833 } 1834 1835 ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode, 1836 delayed_node); 1837 if (ret) 1838 goto release_node; 1839 1840 fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode); 1841 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1842 delayed_node->count++; 1843 atomic_inc(&root->fs_info->delayed_root->items); 1844 release_node: 1845 mutex_unlock(&delayed_node->mutex); 1846 btrfs_release_delayed_node(delayed_node); 1847 return ret; 1848 } 1849 1850 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1851 { 1852 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1853 struct btrfs_delayed_node *delayed_node; 1854 1855 /* 1856 * we don't do delayed inode updates during log recovery because it 1857 * leads to enospc problems. This means we also can't do 1858 * delayed inode refs 1859 */ 1860 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1861 return -EAGAIN; 1862 1863 delayed_node = btrfs_get_or_create_delayed_node(inode); 1864 if (IS_ERR(delayed_node)) 1865 return PTR_ERR(delayed_node); 1866 1867 /* 1868 * We don't reserve space for inode ref deletion is because: 1869 * - We ONLY do async inode ref deletion for the inode who has only 1870 * one link(i_nlink == 1), it means there is only one inode ref. 1871 * And in most case, the inode ref and the inode item are in the 1872 * same leaf, and we will deal with them at the same time. 1873 * Since we are sure we will reserve the space for the inode item, 1874 * it is unnecessary to reserve space for inode ref deletion. 1875 * - If the inode ref and the inode item are not in the same leaf, 1876 * We also needn't worry about enospc problem, because we reserve 1877 * much more space for the inode update than it needs. 1878 * - At the worst, we can steal some space from the global reservation. 1879 * It is very rare. 1880 */ 1881 mutex_lock(&delayed_node->mutex); 1882 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1883 goto release_node; 1884 1885 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1886 delayed_node->count++; 1887 atomic_inc(&fs_info->delayed_root->items); 1888 release_node: 1889 mutex_unlock(&delayed_node->mutex); 1890 btrfs_release_delayed_node(delayed_node); 1891 return 0; 1892 } 1893 1894 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1895 { 1896 struct btrfs_root *root = delayed_node->root; 1897 struct btrfs_fs_info *fs_info = root->fs_info; 1898 struct btrfs_delayed_item *curr_item, *prev_item; 1899 1900 mutex_lock(&delayed_node->mutex); 1901 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1902 while (curr_item) { 1903 btrfs_delayed_item_release_metadata(root, curr_item); 1904 prev_item = curr_item; 1905 curr_item = __btrfs_next_delayed_item(prev_item); 1906 btrfs_release_delayed_item(prev_item); 1907 } 1908 1909 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1910 while (curr_item) { 1911 btrfs_delayed_item_release_metadata(root, curr_item); 1912 prev_item = curr_item; 1913 curr_item = __btrfs_next_delayed_item(prev_item); 1914 btrfs_release_delayed_item(prev_item); 1915 } 1916 1917 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1918 btrfs_release_delayed_iref(delayed_node); 1919 1920 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1921 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1922 btrfs_release_delayed_inode(delayed_node); 1923 } 1924 mutex_unlock(&delayed_node->mutex); 1925 } 1926 1927 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1928 { 1929 struct btrfs_delayed_node *delayed_node; 1930 1931 delayed_node = btrfs_get_delayed_node(inode); 1932 if (!delayed_node) 1933 return; 1934 1935 __btrfs_kill_delayed_node(delayed_node); 1936 btrfs_release_delayed_node(delayed_node); 1937 } 1938 1939 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1940 { 1941 u64 inode_id = 0; 1942 struct btrfs_delayed_node *delayed_nodes[8]; 1943 int i, n; 1944 1945 while (1) { 1946 spin_lock(&root->inode_lock); 1947 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1948 (void **)delayed_nodes, inode_id, 1949 ARRAY_SIZE(delayed_nodes)); 1950 if (!n) { 1951 spin_unlock(&root->inode_lock); 1952 break; 1953 } 1954 1955 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1956 for (i = 0; i < n; i++) { 1957 /* 1958 * Don't increase refs in case the node is dead and 1959 * about to be removed from the tree in the loop below 1960 */ 1961 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1962 delayed_nodes[i] = NULL; 1963 } 1964 spin_unlock(&root->inode_lock); 1965 1966 for (i = 0; i < n; i++) { 1967 if (!delayed_nodes[i]) 1968 continue; 1969 __btrfs_kill_delayed_node(delayed_nodes[i]); 1970 btrfs_release_delayed_node(delayed_nodes[i]); 1971 } 1972 } 1973 } 1974 1975 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1976 { 1977 struct btrfs_delayed_node *curr_node, *prev_node; 1978 1979 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1980 while (curr_node) { 1981 __btrfs_kill_delayed_node(curr_node); 1982 1983 prev_node = curr_node; 1984 curr_node = btrfs_next_delayed_node(curr_node); 1985 btrfs_release_delayed_node(prev_node); 1986 } 1987 } 1988 1989