1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011 Fujitsu. All rights reserved. 4 * Written by Miao Xie <miaox@cn.fujitsu.com> 5 */ 6 7 #include <linux/slab.h> 8 #include <linux/iversion.h> 9 #include <linux/sched/mm.h> 10 #include "misc.h" 11 #include "delayed-inode.h" 12 #include "disk-io.h" 13 #include "transaction.h" 14 #include "ctree.h" 15 #include "qgroup.h" 16 #include "locking.h" 17 18 #define BTRFS_DELAYED_WRITEBACK 512 19 #define BTRFS_DELAYED_BACKGROUND 128 20 #define BTRFS_DELAYED_BATCH 16 21 22 static struct kmem_cache *delayed_node_cache; 23 24 int __init btrfs_delayed_inode_init(void) 25 { 26 delayed_node_cache = kmem_cache_create("btrfs_delayed_node", 27 sizeof(struct btrfs_delayed_node), 28 0, 29 SLAB_MEM_SPREAD, 30 NULL); 31 if (!delayed_node_cache) 32 return -ENOMEM; 33 return 0; 34 } 35 36 void __cold btrfs_delayed_inode_exit(void) 37 { 38 kmem_cache_destroy(delayed_node_cache); 39 } 40 41 static inline void btrfs_init_delayed_node( 42 struct btrfs_delayed_node *delayed_node, 43 struct btrfs_root *root, u64 inode_id) 44 { 45 delayed_node->root = root; 46 delayed_node->inode_id = inode_id; 47 refcount_set(&delayed_node->refs, 0); 48 delayed_node->ins_root = RB_ROOT_CACHED; 49 delayed_node->del_root = RB_ROOT_CACHED; 50 mutex_init(&delayed_node->mutex); 51 INIT_LIST_HEAD(&delayed_node->n_list); 52 INIT_LIST_HEAD(&delayed_node->p_list); 53 } 54 55 static inline int btrfs_is_continuous_delayed_item( 56 struct btrfs_delayed_item *item1, 57 struct btrfs_delayed_item *item2) 58 { 59 if (item1->key.type == BTRFS_DIR_INDEX_KEY && 60 item1->key.objectid == item2->key.objectid && 61 item1->key.type == item2->key.type && 62 item1->key.offset + 1 == item2->key.offset) 63 return 1; 64 return 0; 65 } 66 67 static struct btrfs_delayed_node *btrfs_get_delayed_node( 68 struct btrfs_inode *btrfs_inode) 69 { 70 struct btrfs_root *root = btrfs_inode->root; 71 u64 ino = btrfs_ino(btrfs_inode); 72 struct btrfs_delayed_node *node; 73 74 node = READ_ONCE(btrfs_inode->delayed_node); 75 if (node) { 76 refcount_inc(&node->refs); 77 return node; 78 } 79 80 spin_lock(&root->inode_lock); 81 node = radix_tree_lookup(&root->delayed_nodes_tree, ino); 82 83 if (node) { 84 if (btrfs_inode->delayed_node) { 85 refcount_inc(&node->refs); /* can be accessed */ 86 BUG_ON(btrfs_inode->delayed_node != node); 87 spin_unlock(&root->inode_lock); 88 return node; 89 } 90 91 /* 92 * It's possible that we're racing into the middle of removing 93 * this node from the radix tree. In this case, the refcount 94 * was zero and it should never go back to one. Just return 95 * NULL like it was never in the radix at all; our release 96 * function is in the process of removing it. 97 * 98 * Some implementations of refcount_inc refuse to bump the 99 * refcount once it has hit zero. If we don't do this dance 100 * here, refcount_inc() may decide to just WARN_ONCE() instead 101 * of actually bumping the refcount. 102 * 103 * If this node is properly in the radix, we want to bump the 104 * refcount twice, once for the inode and once for this get 105 * operation. 106 */ 107 if (refcount_inc_not_zero(&node->refs)) { 108 refcount_inc(&node->refs); 109 btrfs_inode->delayed_node = node; 110 } else { 111 node = NULL; 112 } 113 114 spin_unlock(&root->inode_lock); 115 return node; 116 } 117 spin_unlock(&root->inode_lock); 118 119 return NULL; 120 } 121 122 /* Will return either the node or PTR_ERR(-ENOMEM) */ 123 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node( 124 struct btrfs_inode *btrfs_inode) 125 { 126 struct btrfs_delayed_node *node; 127 struct btrfs_root *root = btrfs_inode->root; 128 u64 ino = btrfs_ino(btrfs_inode); 129 int ret; 130 131 again: 132 node = btrfs_get_delayed_node(btrfs_inode); 133 if (node) 134 return node; 135 136 node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS); 137 if (!node) 138 return ERR_PTR(-ENOMEM); 139 btrfs_init_delayed_node(node, root, ino); 140 141 /* cached in the btrfs inode and can be accessed */ 142 refcount_set(&node->refs, 2); 143 144 ret = radix_tree_preload(GFP_NOFS); 145 if (ret) { 146 kmem_cache_free(delayed_node_cache, node); 147 return ERR_PTR(ret); 148 } 149 150 spin_lock(&root->inode_lock); 151 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node); 152 if (ret == -EEXIST) { 153 spin_unlock(&root->inode_lock); 154 kmem_cache_free(delayed_node_cache, node); 155 radix_tree_preload_end(); 156 goto again; 157 } 158 btrfs_inode->delayed_node = node; 159 spin_unlock(&root->inode_lock); 160 radix_tree_preload_end(); 161 162 return node; 163 } 164 165 /* 166 * Call it when holding delayed_node->mutex 167 * 168 * If mod = 1, add this node into the prepared list. 169 */ 170 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root, 171 struct btrfs_delayed_node *node, 172 int mod) 173 { 174 spin_lock(&root->lock); 175 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 176 if (!list_empty(&node->p_list)) 177 list_move_tail(&node->p_list, &root->prepare_list); 178 else if (mod) 179 list_add_tail(&node->p_list, &root->prepare_list); 180 } else { 181 list_add_tail(&node->n_list, &root->node_list); 182 list_add_tail(&node->p_list, &root->prepare_list); 183 refcount_inc(&node->refs); /* inserted into list */ 184 root->nodes++; 185 set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 186 } 187 spin_unlock(&root->lock); 188 } 189 190 /* Call it when holding delayed_node->mutex */ 191 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root, 192 struct btrfs_delayed_node *node) 193 { 194 spin_lock(&root->lock); 195 if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 196 root->nodes--; 197 refcount_dec(&node->refs); /* not in the list */ 198 list_del_init(&node->n_list); 199 if (!list_empty(&node->p_list)) 200 list_del_init(&node->p_list); 201 clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags); 202 } 203 spin_unlock(&root->lock); 204 } 205 206 static struct btrfs_delayed_node *btrfs_first_delayed_node( 207 struct btrfs_delayed_root *delayed_root) 208 { 209 struct list_head *p; 210 struct btrfs_delayed_node *node = NULL; 211 212 spin_lock(&delayed_root->lock); 213 if (list_empty(&delayed_root->node_list)) 214 goto out; 215 216 p = delayed_root->node_list.next; 217 node = list_entry(p, struct btrfs_delayed_node, n_list); 218 refcount_inc(&node->refs); 219 out: 220 spin_unlock(&delayed_root->lock); 221 222 return node; 223 } 224 225 static struct btrfs_delayed_node *btrfs_next_delayed_node( 226 struct btrfs_delayed_node *node) 227 { 228 struct btrfs_delayed_root *delayed_root; 229 struct list_head *p; 230 struct btrfs_delayed_node *next = NULL; 231 232 delayed_root = node->root->fs_info->delayed_root; 233 spin_lock(&delayed_root->lock); 234 if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) { 235 /* not in the list */ 236 if (list_empty(&delayed_root->node_list)) 237 goto out; 238 p = delayed_root->node_list.next; 239 } else if (list_is_last(&node->n_list, &delayed_root->node_list)) 240 goto out; 241 else 242 p = node->n_list.next; 243 244 next = list_entry(p, struct btrfs_delayed_node, n_list); 245 refcount_inc(&next->refs); 246 out: 247 spin_unlock(&delayed_root->lock); 248 249 return next; 250 } 251 252 static void __btrfs_release_delayed_node( 253 struct btrfs_delayed_node *delayed_node, 254 int mod) 255 { 256 struct btrfs_delayed_root *delayed_root; 257 258 if (!delayed_node) 259 return; 260 261 delayed_root = delayed_node->root->fs_info->delayed_root; 262 263 mutex_lock(&delayed_node->mutex); 264 if (delayed_node->count) 265 btrfs_queue_delayed_node(delayed_root, delayed_node, mod); 266 else 267 btrfs_dequeue_delayed_node(delayed_root, delayed_node); 268 mutex_unlock(&delayed_node->mutex); 269 270 if (refcount_dec_and_test(&delayed_node->refs)) { 271 struct btrfs_root *root = delayed_node->root; 272 273 spin_lock(&root->inode_lock); 274 /* 275 * Once our refcount goes to zero, nobody is allowed to bump it 276 * back up. We can delete it now. 277 */ 278 ASSERT(refcount_read(&delayed_node->refs) == 0); 279 radix_tree_delete(&root->delayed_nodes_tree, 280 delayed_node->inode_id); 281 spin_unlock(&root->inode_lock); 282 kmem_cache_free(delayed_node_cache, delayed_node); 283 } 284 } 285 286 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node) 287 { 288 __btrfs_release_delayed_node(node, 0); 289 } 290 291 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node( 292 struct btrfs_delayed_root *delayed_root) 293 { 294 struct list_head *p; 295 struct btrfs_delayed_node *node = NULL; 296 297 spin_lock(&delayed_root->lock); 298 if (list_empty(&delayed_root->prepare_list)) 299 goto out; 300 301 p = delayed_root->prepare_list.next; 302 list_del_init(p); 303 node = list_entry(p, struct btrfs_delayed_node, p_list); 304 refcount_inc(&node->refs); 305 out: 306 spin_unlock(&delayed_root->lock); 307 308 return node; 309 } 310 311 static inline void btrfs_release_prepared_delayed_node( 312 struct btrfs_delayed_node *node) 313 { 314 __btrfs_release_delayed_node(node, 1); 315 } 316 317 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len) 318 { 319 struct btrfs_delayed_item *item; 320 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS); 321 if (item) { 322 item->data_len = data_len; 323 item->ins_or_del = 0; 324 item->bytes_reserved = 0; 325 item->delayed_node = NULL; 326 refcount_set(&item->refs, 1); 327 } 328 return item; 329 } 330 331 /* 332 * __btrfs_lookup_delayed_item - look up the delayed item by key 333 * @delayed_node: pointer to the delayed node 334 * @key: the key to look up 335 * @prev: used to store the prev item if the right item isn't found 336 * @next: used to store the next item if the right item isn't found 337 * 338 * Note: if we don't find the right item, we will return the prev item and 339 * the next item. 340 */ 341 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item( 342 struct rb_root *root, 343 struct btrfs_key *key, 344 struct btrfs_delayed_item **prev, 345 struct btrfs_delayed_item **next) 346 { 347 struct rb_node *node, *prev_node = NULL; 348 struct btrfs_delayed_item *delayed_item = NULL; 349 int ret = 0; 350 351 node = root->rb_node; 352 353 while (node) { 354 delayed_item = rb_entry(node, struct btrfs_delayed_item, 355 rb_node); 356 prev_node = node; 357 ret = btrfs_comp_cpu_keys(&delayed_item->key, key); 358 if (ret < 0) 359 node = node->rb_right; 360 else if (ret > 0) 361 node = node->rb_left; 362 else 363 return delayed_item; 364 } 365 366 if (prev) { 367 if (!prev_node) 368 *prev = NULL; 369 else if (ret < 0) 370 *prev = delayed_item; 371 else if ((node = rb_prev(prev_node)) != NULL) { 372 *prev = rb_entry(node, struct btrfs_delayed_item, 373 rb_node); 374 } else 375 *prev = NULL; 376 } 377 378 if (next) { 379 if (!prev_node) 380 *next = NULL; 381 else if (ret > 0) 382 *next = delayed_item; 383 else if ((node = rb_next(prev_node)) != NULL) { 384 *next = rb_entry(node, struct btrfs_delayed_item, 385 rb_node); 386 } else 387 *next = NULL; 388 } 389 return NULL; 390 } 391 392 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item( 393 struct btrfs_delayed_node *delayed_node, 394 struct btrfs_key *key) 395 { 396 return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key, 397 NULL, NULL); 398 } 399 400 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node, 401 struct btrfs_delayed_item *ins, 402 int action) 403 { 404 struct rb_node **p, *node; 405 struct rb_node *parent_node = NULL; 406 struct rb_root_cached *root; 407 struct btrfs_delayed_item *item; 408 int cmp; 409 bool leftmost = true; 410 411 if (action == BTRFS_DELAYED_INSERTION_ITEM) 412 root = &delayed_node->ins_root; 413 else if (action == BTRFS_DELAYED_DELETION_ITEM) 414 root = &delayed_node->del_root; 415 else 416 BUG(); 417 p = &root->rb_root.rb_node; 418 node = &ins->rb_node; 419 420 while (*p) { 421 parent_node = *p; 422 item = rb_entry(parent_node, struct btrfs_delayed_item, 423 rb_node); 424 425 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key); 426 if (cmp < 0) { 427 p = &(*p)->rb_right; 428 leftmost = false; 429 } else if (cmp > 0) { 430 p = &(*p)->rb_left; 431 } else { 432 return -EEXIST; 433 } 434 } 435 436 rb_link_node(node, parent_node, p); 437 rb_insert_color_cached(node, root, leftmost); 438 ins->delayed_node = delayed_node; 439 ins->ins_or_del = action; 440 441 if (ins->key.type == BTRFS_DIR_INDEX_KEY && 442 action == BTRFS_DELAYED_INSERTION_ITEM && 443 ins->key.offset >= delayed_node->index_cnt) 444 delayed_node->index_cnt = ins->key.offset + 1; 445 446 delayed_node->count++; 447 atomic_inc(&delayed_node->root->fs_info->delayed_root->items); 448 return 0; 449 } 450 451 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node, 452 struct btrfs_delayed_item *item) 453 { 454 return __btrfs_add_delayed_item(node, item, 455 BTRFS_DELAYED_INSERTION_ITEM); 456 } 457 458 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node, 459 struct btrfs_delayed_item *item) 460 { 461 return __btrfs_add_delayed_item(node, item, 462 BTRFS_DELAYED_DELETION_ITEM); 463 } 464 465 static void finish_one_item(struct btrfs_delayed_root *delayed_root) 466 { 467 int seq = atomic_inc_return(&delayed_root->items_seq); 468 469 /* atomic_dec_return implies a barrier */ 470 if ((atomic_dec_return(&delayed_root->items) < 471 BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0)) 472 cond_wake_up_nomb(&delayed_root->wait); 473 } 474 475 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item) 476 { 477 struct rb_root_cached *root; 478 struct btrfs_delayed_root *delayed_root; 479 480 /* Not associated with any delayed_node */ 481 if (!delayed_item->delayed_node) 482 return; 483 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root; 484 485 BUG_ON(!delayed_root); 486 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM && 487 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM); 488 489 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM) 490 root = &delayed_item->delayed_node->ins_root; 491 else 492 root = &delayed_item->delayed_node->del_root; 493 494 rb_erase_cached(&delayed_item->rb_node, root); 495 delayed_item->delayed_node->count--; 496 497 finish_one_item(delayed_root); 498 } 499 500 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item) 501 { 502 if (item) { 503 __btrfs_remove_delayed_item(item); 504 if (refcount_dec_and_test(&item->refs)) 505 kfree(item); 506 } 507 } 508 509 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item( 510 struct btrfs_delayed_node *delayed_node) 511 { 512 struct rb_node *p; 513 struct btrfs_delayed_item *item = NULL; 514 515 p = rb_first_cached(&delayed_node->ins_root); 516 if (p) 517 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 518 519 return item; 520 } 521 522 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item( 523 struct btrfs_delayed_node *delayed_node) 524 { 525 struct rb_node *p; 526 struct btrfs_delayed_item *item = NULL; 527 528 p = rb_first_cached(&delayed_node->del_root); 529 if (p) 530 item = rb_entry(p, struct btrfs_delayed_item, rb_node); 531 532 return item; 533 } 534 535 static struct btrfs_delayed_item *__btrfs_next_delayed_item( 536 struct btrfs_delayed_item *item) 537 { 538 struct rb_node *p; 539 struct btrfs_delayed_item *next = NULL; 540 541 p = rb_next(&item->rb_node); 542 if (p) 543 next = rb_entry(p, struct btrfs_delayed_item, rb_node); 544 545 return next; 546 } 547 548 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans, 549 struct btrfs_root *root, 550 struct btrfs_delayed_item *item) 551 { 552 struct btrfs_block_rsv *src_rsv; 553 struct btrfs_block_rsv *dst_rsv; 554 struct btrfs_fs_info *fs_info = root->fs_info; 555 u64 num_bytes; 556 int ret; 557 558 if (!trans->bytes_reserved) 559 return 0; 560 561 src_rsv = trans->block_rsv; 562 dst_rsv = &fs_info->delayed_block_rsv; 563 564 num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1); 565 566 /* 567 * Here we migrate space rsv from transaction rsv, since have already 568 * reserved space when starting a transaction. So no need to reserve 569 * qgroup space here. 570 */ 571 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 572 if (!ret) { 573 trace_btrfs_space_reservation(fs_info, "delayed_item", 574 item->key.objectid, 575 num_bytes, 1); 576 item->bytes_reserved = num_bytes; 577 } 578 579 return ret; 580 } 581 582 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root, 583 struct btrfs_delayed_item *item) 584 { 585 struct btrfs_block_rsv *rsv; 586 struct btrfs_fs_info *fs_info = root->fs_info; 587 588 if (!item->bytes_reserved) 589 return; 590 591 rsv = &fs_info->delayed_block_rsv; 592 /* 593 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need 594 * to release/reserve qgroup space. 595 */ 596 trace_btrfs_space_reservation(fs_info, "delayed_item", 597 item->key.objectid, item->bytes_reserved, 598 0); 599 btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL); 600 } 601 602 static int btrfs_delayed_inode_reserve_metadata( 603 struct btrfs_trans_handle *trans, 604 struct btrfs_root *root, 605 struct btrfs_inode *inode, 606 struct btrfs_delayed_node *node) 607 { 608 struct btrfs_fs_info *fs_info = root->fs_info; 609 struct btrfs_block_rsv *src_rsv; 610 struct btrfs_block_rsv *dst_rsv; 611 u64 num_bytes; 612 int ret; 613 614 src_rsv = trans->block_rsv; 615 dst_rsv = &fs_info->delayed_block_rsv; 616 617 num_bytes = btrfs_calc_metadata_size(fs_info, 1); 618 619 /* 620 * btrfs_dirty_inode will update the inode under btrfs_join_transaction 621 * which doesn't reserve space for speed. This is a problem since we 622 * still need to reserve space for this update, so try to reserve the 623 * space. 624 * 625 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since 626 * we always reserve enough to update the inode item. 627 */ 628 if (!src_rsv || (!trans->bytes_reserved && 629 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) { 630 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true); 631 if (ret < 0) 632 return ret; 633 ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes, 634 BTRFS_RESERVE_NO_FLUSH); 635 /* 636 * Since we're under a transaction reserve_metadata_bytes could 637 * try to commit the transaction which will make it return 638 * EAGAIN to make us stop the transaction we have, so return 639 * ENOSPC instead so that btrfs_dirty_inode knows what to do. 640 */ 641 if (ret == -EAGAIN) { 642 ret = -ENOSPC; 643 btrfs_qgroup_free_meta_prealloc(root, num_bytes); 644 } 645 if (!ret) { 646 node->bytes_reserved = num_bytes; 647 trace_btrfs_space_reservation(fs_info, 648 "delayed_inode", 649 btrfs_ino(inode), 650 num_bytes, 1); 651 } else { 652 btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize); 653 } 654 return ret; 655 } 656 657 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true); 658 if (!ret) { 659 trace_btrfs_space_reservation(fs_info, "delayed_inode", 660 btrfs_ino(inode), num_bytes, 1); 661 node->bytes_reserved = num_bytes; 662 } 663 664 return ret; 665 } 666 667 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info, 668 struct btrfs_delayed_node *node, 669 bool qgroup_free) 670 { 671 struct btrfs_block_rsv *rsv; 672 673 if (!node->bytes_reserved) 674 return; 675 676 rsv = &fs_info->delayed_block_rsv; 677 trace_btrfs_space_reservation(fs_info, "delayed_inode", 678 node->inode_id, node->bytes_reserved, 0); 679 btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL); 680 if (qgroup_free) 681 btrfs_qgroup_free_meta_prealloc(node->root, 682 node->bytes_reserved); 683 else 684 btrfs_qgroup_convert_reserved_meta(node->root, 685 node->bytes_reserved); 686 node->bytes_reserved = 0; 687 } 688 689 /* 690 * This helper will insert some continuous items into the same leaf according 691 * to the free space of the leaf. 692 */ 693 static int btrfs_batch_insert_items(struct btrfs_root *root, 694 struct btrfs_path *path, 695 struct btrfs_delayed_item *item) 696 { 697 struct btrfs_delayed_item *curr, *next; 698 int free_space; 699 int total_data_size = 0, total_size = 0; 700 struct extent_buffer *leaf; 701 char *data_ptr; 702 struct btrfs_key *keys; 703 u32 *data_size; 704 struct list_head head; 705 int slot; 706 int nitems; 707 int i; 708 int ret = 0; 709 710 BUG_ON(!path->nodes[0]); 711 712 leaf = path->nodes[0]; 713 free_space = btrfs_leaf_free_space(leaf); 714 INIT_LIST_HEAD(&head); 715 716 next = item; 717 nitems = 0; 718 719 /* 720 * count the number of the continuous items that we can insert in batch 721 */ 722 while (total_size + next->data_len + sizeof(struct btrfs_item) <= 723 free_space) { 724 total_data_size += next->data_len; 725 total_size += next->data_len + sizeof(struct btrfs_item); 726 list_add_tail(&next->tree_list, &head); 727 nitems++; 728 729 curr = next; 730 next = __btrfs_next_delayed_item(curr); 731 if (!next) 732 break; 733 734 if (!btrfs_is_continuous_delayed_item(curr, next)) 735 break; 736 } 737 738 if (!nitems) { 739 ret = 0; 740 goto out; 741 } 742 743 /* 744 * we need allocate some memory space, but it might cause the task 745 * to sleep, so we set all locked nodes in the path to blocking locks 746 * first. 747 */ 748 btrfs_set_path_blocking(path); 749 750 keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS); 751 if (!keys) { 752 ret = -ENOMEM; 753 goto out; 754 } 755 756 data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS); 757 if (!data_size) { 758 ret = -ENOMEM; 759 goto error; 760 } 761 762 /* get keys of all the delayed items */ 763 i = 0; 764 list_for_each_entry(next, &head, tree_list) { 765 keys[i] = next->key; 766 data_size[i] = next->data_len; 767 i++; 768 } 769 770 /* insert the keys of the items */ 771 setup_items_for_insert(root, path, keys, data_size, nitems); 772 773 /* insert the dir index items */ 774 slot = path->slots[0]; 775 list_for_each_entry_safe(curr, next, &head, tree_list) { 776 data_ptr = btrfs_item_ptr(leaf, slot, char); 777 write_extent_buffer(leaf, &curr->data, 778 (unsigned long)data_ptr, 779 curr->data_len); 780 slot++; 781 782 btrfs_delayed_item_release_metadata(root, curr); 783 784 list_del(&curr->tree_list); 785 btrfs_release_delayed_item(curr); 786 } 787 788 error: 789 kfree(data_size); 790 kfree(keys); 791 out: 792 return ret; 793 } 794 795 /* 796 * This helper can just do simple insertion that needn't extend item for new 797 * data, such as directory name index insertion, inode insertion. 798 */ 799 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans, 800 struct btrfs_root *root, 801 struct btrfs_path *path, 802 struct btrfs_delayed_item *delayed_item) 803 { 804 struct extent_buffer *leaf; 805 unsigned int nofs_flag; 806 char *ptr; 807 int ret; 808 809 nofs_flag = memalloc_nofs_save(); 810 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key, 811 delayed_item->data_len); 812 memalloc_nofs_restore(nofs_flag); 813 if (ret < 0 && ret != -EEXIST) 814 return ret; 815 816 leaf = path->nodes[0]; 817 818 ptr = btrfs_item_ptr(leaf, path->slots[0], char); 819 820 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr, 821 delayed_item->data_len); 822 btrfs_mark_buffer_dirty(leaf); 823 824 btrfs_delayed_item_release_metadata(root, delayed_item); 825 return 0; 826 } 827 828 /* 829 * we insert an item first, then if there are some continuous items, we try 830 * to insert those items into the same leaf. 831 */ 832 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans, 833 struct btrfs_path *path, 834 struct btrfs_root *root, 835 struct btrfs_delayed_node *node) 836 { 837 struct btrfs_delayed_item *curr, *prev; 838 int ret = 0; 839 840 do_again: 841 mutex_lock(&node->mutex); 842 curr = __btrfs_first_delayed_insertion_item(node); 843 if (!curr) 844 goto insert_end; 845 846 ret = btrfs_insert_delayed_item(trans, root, path, curr); 847 if (ret < 0) { 848 btrfs_release_path(path); 849 goto insert_end; 850 } 851 852 prev = curr; 853 curr = __btrfs_next_delayed_item(prev); 854 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) { 855 /* insert the continuous items into the same leaf */ 856 path->slots[0]++; 857 btrfs_batch_insert_items(root, path, curr); 858 } 859 btrfs_release_delayed_item(prev); 860 btrfs_mark_buffer_dirty(path->nodes[0]); 861 862 btrfs_release_path(path); 863 mutex_unlock(&node->mutex); 864 goto do_again; 865 866 insert_end: 867 mutex_unlock(&node->mutex); 868 return ret; 869 } 870 871 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root, 873 struct btrfs_path *path, 874 struct btrfs_delayed_item *item) 875 { 876 struct btrfs_delayed_item *curr, *next; 877 struct extent_buffer *leaf; 878 struct btrfs_key key; 879 struct list_head head; 880 int nitems, i, last_item; 881 int ret = 0; 882 883 BUG_ON(!path->nodes[0]); 884 885 leaf = path->nodes[0]; 886 887 i = path->slots[0]; 888 last_item = btrfs_header_nritems(leaf) - 1; 889 if (i > last_item) 890 return -ENOENT; /* FIXME: Is errno suitable? */ 891 892 next = item; 893 INIT_LIST_HEAD(&head); 894 btrfs_item_key_to_cpu(leaf, &key, i); 895 nitems = 0; 896 /* 897 * count the number of the dir index items that we can delete in batch 898 */ 899 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) { 900 list_add_tail(&next->tree_list, &head); 901 nitems++; 902 903 curr = next; 904 next = __btrfs_next_delayed_item(curr); 905 if (!next) 906 break; 907 908 if (!btrfs_is_continuous_delayed_item(curr, next)) 909 break; 910 911 i++; 912 if (i > last_item) 913 break; 914 btrfs_item_key_to_cpu(leaf, &key, i); 915 } 916 917 if (!nitems) 918 return 0; 919 920 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems); 921 if (ret) 922 goto out; 923 924 list_for_each_entry_safe(curr, next, &head, tree_list) { 925 btrfs_delayed_item_release_metadata(root, curr); 926 list_del(&curr->tree_list); 927 btrfs_release_delayed_item(curr); 928 } 929 930 out: 931 return ret; 932 } 933 934 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans, 935 struct btrfs_path *path, 936 struct btrfs_root *root, 937 struct btrfs_delayed_node *node) 938 { 939 struct btrfs_delayed_item *curr, *prev; 940 unsigned int nofs_flag; 941 int ret = 0; 942 943 do_again: 944 mutex_lock(&node->mutex); 945 curr = __btrfs_first_delayed_deletion_item(node); 946 if (!curr) 947 goto delete_fail; 948 949 nofs_flag = memalloc_nofs_save(); 950 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1); 951 memalloc_nofs_restore(nofs_flag); 952 if (ret < 0) 953 goto delete_fail; 954 else if (ret > 0) { 955 /* 956 * can't find the item which the node points to, so this node 957 * is invalid, just drop it. 958 */ 959 prev = curr; 960 curr = __btrfs_next_delayed_item(prev); 961 btrfs_release_delayed_item(prev); 962 ret = 0; 963 btrfs_release_path(path); 964 if (curr) { 965 mutex_unlock(&node->mutex); 966 goto do_again; 967 } else 968 goto delete_fail; 969 } 970 971 btrfs_batch_delete_items(trans, root, path, curr); 972 btrfs_release_path(path); 973 mutex_unlock(&node->mutex); 974 goto do_again; 975 976 delete_fail: 977 btrfs_release_path(path); 978 mutex_unlock(&node->mutex); 979 return ret; 980 } 981 982 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node) 983 { 984 struct btrfs_delayed_root *delayed_root; 985 986 if (delayed_node && 987 test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 988 BUG_ON(!delayed_node->root); 989 clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 990 delayed_node->count--; 991 992 delayed_root = delayed_node->root->fs_info->delayed_root; 993 finish_one_item(delayed_root); 994 } 995 } 996 997 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node) 998 { 999 struct btrfs_delayed_root *delayed_root; 1000 1001 ASSERT(delayed_node->root); 1002 clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1003 delayed_node->count--; 1004 1005 delayed_root = delayed_node->root->fs_info->delayed_root; 1006 finish_one_item(delayed_root); 1007 } 1008 1009 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1010 struct btrfs_root *root, 1011 struct btrfs_path *path, 1012 struct btrfs_delayed_node *node) 1013 { 1014 struct btrfs_fs_info *fs_info = root->fs_info; 1015 struct btrfs_key key; 1016 struct btrfs_inode_item *inode_item; 1017 struct extent_buffer *leaf; 1018 unsigned int nofs_flag; 1019 int mod; 1020 int ret; 1021 1022 key.objectid = node->inode_id; 1023 key.type = BTRFS_INODE_ITEM_KEY; 1024 key.offset = 0; 1025 1026 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1027 mod = -1; 1028 else 1029 mod = 1; 1030 1031 nofs_flag = memalloc_nofs_save(); 1032 ret = btrfs_lookup_inode(trans, root, path, &key, mod); 1033 memalloc_nofs_restore(nofs_flag); 1034 if (ret > 0) { 1035 btrfs_release_path(path); 1036 return -ENOENT; 1037 } else if (ret < 0) { 1038 return ret; 1039 } 1040 1041 leaf = path->nodes[0]; 1042 inode_item = btrfs_item_ptr(leaf, path->slots[0], 1043 struct btrfs_inode_item); 1044 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item, 1045 sizeof(struct btrfs_inode_item)); 1046 btrfs_mark_buffer_dirty(leaf); 1047 1048 if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags)) 1049 goto no_iref; 1050 1051 path->slots[0]++; 1052 if (path->slots[0] >= btrfs_header_nritems(leaf)) 1053 goto search; 1054 again: 1055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 1056 if (key.objectid != node->inode_id) 1057 goto out; 1058 1059 if (key.type != BTRFS_INODE_REF_KEY && 1060 key.type != BTRFS_INODE_EXTREF_KEY) 1061 goto out; 1062 1063 /* 1064 * Delayed iref deletion is for the inode who has only one link, 1065 * so there is only one iref. The case that several irefs are 1066 * in the same item doesn't exist. 1067 */ 1068 btrfs_del_item(trans, root, path); 1069 out: 1070 btrfs_release_delayed_iref(node); 1071 no_iref: 1072 btrfs_release_path(path); 1073 err_out: 1074 btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0)); 1075 btrfs_release_delayed_inode(node); 1076 1077 return ret; 1078 1079 search: 1080 btrfs_release_path(path); 1081 1082 key.type = BTRFS_INODE_EXTREF_KEY; 1083 key.offset = -1; 1084 1085 nofs_flag = memalloc_nofs_save(); 1086 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1087 memalloc_nofs_restore(nofs_flag); 1088 if (ret < 0) 1089 goto err_out; 1090 ASSERT(ret); 1091 1092 ret = 0; 1093 leaf = path->nodes[0]; 1094 path->slots[0]--; 1095 goto again; 1096 } 1097 1098 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans, 1099 struct btrfs_root *root, 1100 struct btrfs_path *path, 1101 struct btrfs_delayed_node *node) 1102 { 1103 int ret; 1104 1105 mutex_lock(&node->mutex); 1106 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) { 1107 mutex_unlock(&node->mutex); 1108 return 0; 1109 } 1110 1111 ret = __btrfs_update_delayed_inode(trans, root, path, node); 1112 mutex_unlock(&node->mutex); 1113 return ret; 1114 } 1115 1116 static inline int 1117 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1118 struct btrfs_path *path, 1119 struct btrfs_delayed_node *node) 1120 { 1121 int ret; 1122 1123 ret = btrfs_insert_delayed_items(trans, path, node->root, node); 1124 if (ret) 1125 return ret; 1126 1127 ret = btrfs_delete_delayed_items(trans, path, node->root, node); 1128 if (ret) 1129 return ret; 1130 1131 ret = btrfs_update_delayed_inode(trans, node->root, path, node); 1132 return ret; 1133 } 1134 1135 /* 1136 * Called when committing the transaction. 1137 * Returns 0 on success. 1138 * Returns < 0 on error and returns with an aborted transaction with any 1139 * outstanding delayed items cleaned up. 1140 */ 1141 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr) 1142 { 1143 struct btrfs_fs_info *fs_info = trans->fs_info; 1144 struct btrfs_delayed_root *delayed_root; 1145 struct btrfs_delayed_node *curr_node, *prev_node; 1146 struct btrfs_path *path; 1147 struct btrfs_block_rsv *block_rsv; 1148 int ret = 0; 1149 bool count = (nr > 0); 1150 1151 if (TRANS_ABORTED(trans)) 1152 return -EIO; 1153 1154 path = btrfs_alloc_path(); 1155 if (!path) 1156 return -ENOMEM; 1157 path->leave_spinning = 1; 1158 1159 block_rsv = trans->block_rsv; 1160 trans->block_rsv = &fs_info->delayed_block_rsv; 1161 1162 delayed_root = fs_info->delayed_root; 1163 1164 curr_node = btrfs_first_delayed_node(delayed_root); 1165 while (curr_node && (!count || (count && nr--))) { 1166 ret = __btrfs_commit_inode_delayed_items(trans, path, 1167 curr_node); 1168 if (ret) { 1169 btrfs_release_delayed_node(curr_node); 1170 curr_node = NULL; 1171 btrfs_abort_transaction(trans, ret); 1172 break; 1173 } 1174 1175 prev_node = curr_node; 1176 curr_node = btrfs_next_delayed_node(curr_node); 1177 btrfs_release_delayed_node(prev_node); 1178 } 1179 1180 if (curr_node) 1181 btrfs_release_delayed_node(curr_node); 1182 btrfs_free_path(path); 1183 trans->block_rsv = block_rsv; 1184 1185 return ret; 1186 } 1187 1188 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans) 1189 { 1190 return __btrfs_run_delayed_items(trans, -1); 1191 } 1192 1193 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr) 1194 { 1195 return __btrfs_run_delayed_items(trans, nr); 1196 } 1197 1198 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans, 1199 struct btrfs_inode *inode) 1200 { 1201 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1202 struct btrfs_path *path; 1203 struct btrfs_block_rsv *block_rsv; 1204 int ret; 1205 1206 if (!delayed_node) 1207 return 0; 1208 1209 mutex_lock(&delayed_node->mutex); 1210 if (!delayed_node->count) { 1211 mutex_unlock(&delayed_node->mutex); 1212 btrfs_release_delayed_node(delayed_node); 1213 return 0; 1214 } 1215 mutex_unlock(&delayed_node->mutex); 1216 1217 path = btrfs_alloc_path(); 1218 if (!path) { 1219 btrfs_release_delayed_node(delayed_node); 1220 return -ENOMEM; 1221 } 1222 path->leave_spinning = 1; 1223 1224 block_rsv = trans->block_rsv; 1225 trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv; 1226 1227 ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1228 1229 btrfs_release_delayed_node(delayed_node); 1230 btrfs_free_path(path); 1231 trans->block_rsv = block_rsv; 1232 1233 return ret; 1234 } 1235 1236 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode) 1237 { 1238 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1239 struct btrfs_trans_handle *trans; 1240 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1241 struct btrfs_path *path; 1242 struct btrfs_block_rsv *block_rsv; 1243 int ret; 1244 1245 if (!delayed_node) 1246 return 0; 1247 1248 mutex_lock(&delayed_node->mutex); 1249 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1250 mutex_unlock(&delayed_node->mutex); 1251 btrfs_release_delayed_node(delayed_node); 1252 return 0; 1253 } 1254 mutex_unlock(&delayed_node->mutex); 1255 1256 trans = btrfs_join_transaction(delayed_node->root); 1257 if (IS_ERR(trans)) { 1258 ret = PTR_ERR(trans); 1259 goto out; 1260 } 1261 1262 path = btrfs_alloc_path(); 1263 if (!path) { 1264 ret = -ENOMEM; 1265 goto trans_out; 1266 } 1267 path->leave_spinning = 1; 1268 1269 block_rsv = trans->block_rsv; 1270 trans->block_rsv = &fs_info->delayed_block_rsv; 1271 1272 mutex_lock(&delayed_node->mutex); 1273 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) 1274 ret = __btrfs_update_delayed_inode(trans, delayed_node->root, 1275 path, delayed_node); 1276 else 1277 ret = 0; 1278 mutex_unlock(&delayed_node->mutex); 1279 1280 btrfs_free_path(path); 1281 trans->block_rsv = block_rsv; 1282 trans_out: 1283 btrfs_end_transaction(trans); 1284 btrfs_btree_balance_dirty(fs_info); 1285 out: 1286 btrfs_release_delayed_node(delayed_node); 1287 1288 return ret; 1289 } 1290 1291 void btrfs_remove_delayed_node(struct btrfs_inode *inode) 1292 { 1293 struct btrfs_delayed_node *delayed_node; 1294 1295 delayed_node = READ_ONCE(inode->delayed_node); 1296 if (!delayed_node) 1297 return; 1298 1299 inode->delayed_node = NULL; 1300 btrfs_release_delayed_node(delayed_node); 1301 } 1302 1303 struct btrfs_async_delayed_work { 1304 struct btrfs_delayed_root *delayed_root; 1305 int nr; 1306 struct btrfs_work work; 1307 }; 1308 1309 static void btrfs_async_run_delayed_root(struct btrfs_work *work) 1310 { 1311 struct btrfs_async_delayed_work *async_work; 1312 struct btrfs_delayed_root *delayed_root; 1313 struct btrfs_trans_handle *trans; 1314 struct btrfs_path *path; 1315 struct btrfs_delayed_node *delayed_node = NULL; 1316 struct btrfs_root *root; 1317 struct btrfs_block_rsv *block_rsv; 1318 int total_done = 0; 1319 1320 async_work = container_of(work, struct btrfs_async_delayed_work, work); 1321 delayed_root = async_work->delayed_root; 1322 1323 path = btrfs_alloc_path(); 1324 if (!path) 1325 goto out; 1326 1327 do { 1328 if (atomic_read(&delayed_root->items) < 1329 BTRFS_DELAYED_BACKGROUND / 2) 1330 break; 1331 1332 delayed_node = btrfs_first_prepared_delayed_node(delayed_root); 1333 if (!delayed_node) 1334 break; 1335 1336 path->leave_spinning = 1; 1337 root = delayed_node->root; 1338 1339 trans = btrfs_join_transaction(root); 1340 if (IS_ERR(trans)) { 1341 btrfs_release_path(path); 1342 btrfs_release_prepared_delayed_node(delayed_node); 1343 total_done++; 1344 continue; 1345 } 1346 1347 block_rsv = trans->block_rsv; 1348 trans->block_rsv = &root->fs_info->delayed_block_rsv; 1349 1350 __btrfs_commit_inode_delayed_items(trans, path, delayed_node); 1351 1352 trans->block_rsv = block_rsv; 1353 btrfs_end_transaction(trans); 1354 btrfs_btree_balance_dirty_nodelay(root->fs_info); 1355 1356 btrfs_release_path(path); 1357 btrfs_release_prepared_delayed_node(delayed_node); 1358 total_done++; 1359 1360 } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK) 1361 || total_done < async_work->nr); 1362 1363 btrfs_free_path(path); 1364 out: 1365 wake_up(&delayed_root->wait); 1366 kfree(async_work); 1367 } 1368 1369 1370 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root, 1371 struct btrfs_fs_info *fs_info, int nr) 1372 { 1373 struct btrfs_async_delayed_work *async_work; 1374 1375 async_work = kmalloc(sizeof(*async_work), GFP_NOFS); 1376 if (!async_work) 1377 return -ENOMEM; 1378 1379 async_work->delayed_root = delayed_root; 1380 btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL, 1381 NULL); 1382 async_work->nr = nr; 1383 1384 btrfs_queue_work(fs_info->delayed_workers, &async_work->work); 1385 return 0; 1386 } 1387 1388 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info) 1389 { 1390 WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root)); 1391 } 1392 1393 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq) 1394 { 1395 int val = atomic_read(&delayed_root->items_seq); 1396 1397 if (val < seq || val >= seq + BTRFS_DELAYED_BATCH) 1398 return 1; 1399 1400 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) 1401 return 1; 1402 1403 return 0; 1404 } 1405 1406 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info) 1407 { 1408 struct btrfs_delayed_root *delayed_root = fs_info->delayed_root; 1409 1410 if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) || 1411 btrfs_workqueue_normal_congested(fs_info->delayed_workers)) 1412 return; 1413 1414 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) { 1415 int seq; 1416 int ret; 1417 1418 seq = atomic_read(&delayed_root->items_seq); 1419 1420 ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0); 1421 if (ret) 1422 return; 1423 1424 wait_event_interruptible(delayed_root->wait, 1425 could_end_wait(delayed_root, seq)); 1426 return; 1427 } 1428 1429 btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH); 1430 } 1431 1432 /* Will return 0 or -ENOMEM */ 1433 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans, 1434 const char *name, int name_len, 1435 struct btrfs_inode *dir, 1436 struct btrfs_disk_key *disk_key, u8 type, 1437 u64 index) 1438 { 1439 struct btrfs_delayed_node *delayed_node; 1440 struct btrfs_delayed_item *delayed_item; 1441 struct btrfs_dir_item *dir_item; 1442 int ret; 1443 1444 delayed_node = btrfs_get_or_create_delayed_node(dir); 1445 if (IS_ERR(delayed_node)) 1446 return PTR_ERR(delayed_node); 1447 1448 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len); 1449 if (!delayed_item) { 1450 ret = -ENOMEM; 1451 goto release_node; 1452 } 1453 1454 delayed_item->key.objectid = btrfs_ino(dir); 1455 delayed_item->key.type = BTRFS_DIR_INDEX_KEY; 1456 delayed_item->key.offset = index; 1457 1458 dir_item = (struct btrfs_dir_item *)delayed_item->data; 1459 dir_item->location = *disk_key; 1460 btrfs_set_stack_dir_transid(dir_item, trans->transid); 1461 btrfs_set_stack_dir_data_len(dir_item, 0); 1462 btrfs_set_stack_dir_name_len(dir_item, name_len); 1463 btrfs_set_stack_dir_type(dir_item, type); 1464 memcpy((char *)(dir_item + 1), name, name_len); 1465 1466 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item); 1467 /* 1468 * we have reserved enough space when we start a new transaction, 1469 * so reserving metadata failure is impossible 1470 */ 1471 BUG_ON(ret); 1472 1473 mutex_lock(&delayed_node->mutex); 1474 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item); 1475 if (unlikely(ret)) { 1476 btrfs_err(trans->fs_info, 1477 "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1478 name_len, name, delayed_node->root->root_key.objectid, 1479 delayed_node->inode_id, ret); 1480 BUG(); 1481 } 1482 mutex_unlock(&delayed_node->mutex); 1483 1484 release_node: 1485 btrfs_release_delayed_node(delayed_node); 1486 return ret; 1487 } 1488 1489 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info, 1490 struct btrfs_delayed_node *node, 1491 struct btrfs_key *key) 1492 { 1493 struct btrfs_delayed_item *item; 1494 1495 mutex_lock(&node->mutex); 1496 item = __btrfs_lookup_delayed_insertion_item(node, key); 1497 if (!item) { 1498 mutex_unlock(&node->mutex); 1499 return 1; 1500 } 1501 1502 btrfs_delayed_item_release_metadata(node->root, item); 1503 btrfs_release_delayed_item(item); 1504 mutex_unlock(&node->mutex); 1505 return 0; 1506 } 1507 1508 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans, 1509 struct btrfs_inode *dir, u64 index) 1510 { 1511 struct btrfs_delayed_node *node; 1512 struct btrfs_delayed_item *item; 1513 struct btrfs_key item_key; 1514 int ret; 1515 1516 node = btrfs_get_or_create_delayed_node(dir); 1517 if (IS_ERR(node)) 1518 return PTR_ERR(node); 1519 1520 item_key.objectid = btrfs_ino(dir); 1521 item_key.type = BTRFS_DIR_INDEX_KEY; 1522 item_key.offset = index; 1523 1524 ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node, 1525 &item_key); 1526 if (!ret) 1527 goto end; 1528 1529 item = btrfs_alloc_delayed_item(0); 1530 if (!item) { 1531 ret = -ENOMEM; 1532 goto end; 1533 } 1534 1535 item->key = item_key; 1536 1537 ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item); 1538 /* 1539 * we have reserved enough space when we start a new transaction, 1540 * so reserving metadata failure is impossible. 1541 */ 1542 if (ret < 0) { 1543 btrfs_err(trans->fs_info, 1544 "metadata reservation failed for delayed dir item deltiona, should have been reserved"); 1545 btrfs_release_delayed_item(item); 1546 goto end; 1547 } 1548 1549 mutex_lock(&node->mutex); 1550 ret = __btrfs_add_delayed_deletion_item(node, item); 1551 if (unlikely(ret)) { 1552 btrfs_err(trans->fs_info, 1553 "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)", 1554 index, node->root->root_key.objectid, 1555 node->inode_id, ret); 1556 btrfs_delayed_item_release_metadata(dir->root, item); 1557 btrfs_release_delayed_item(item); 1558 } 1559 mutex_unlock(&node->mutex); 1560 end: 1561 btrfs_release_delayed_node(node); 1562 return ret; 1563 } 1564 1565 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode) 1566 { 1567 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode); 1568 1569 if (!delayed_node) 1570 return -ENOENT; 1571 1572 /* 1573 * Since we have held i_mutex of this directory, it is impossible that 1574 * a new directory index is added into the delayed node and index_cnt 1575 * is updated now. So we needn't lock the delayed node. 1576 */ 1577 if (!delayed_node->index_cnt) { 1578 btrfs_release_delayed_node(delayed_node); 1579 return -EINVAL; 1580 } 1581 1582 inode->index_cnt = delayed_node->index_cnt; 1583 btrfs_release_delayed_node(delayed_node); 1584 return 0; 1585 } 1586 1587 bool btrfs_readdir_get_delayed_items(struct inode *inode, 1588 struct list_head *ins_list, 1589 struct list_head *del_list) 1590 { 1591 struct btrfs_delayed_node *delayed_node; 1592 struct btrfs_delayed_item *item; 1593 1594 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1595 if (!delayed_node) 1596 return false; 1597 1598 /* 1599 * We can only do one readdir with delayed items at a time because of 1600 * item->readdir_list. 1601 */ 1602 inode_unlock_shared(inode); 1603 inode_lock(inode); 1604 1605 mutex_lock(&delayed_node->mutex); 1606 item = __btrfs_first_delayed_insertion_item(delayed_node); 1607 while (item) { 1608 refcount_inc(&item->refs); 1609 list_add_tail(&item->readdir_list, ins_list); 1610 item = __btrfs_next_delayed_item(item); 1611 } 1612 1613 item = __btrfs_first_delayed_deletion_item(delayed_node); 1614 while (item) { 1615 refcount_inc(&item->refs); 1616 list_add_tail(&item->readdir_list, del_list); 1617 item = __btrfs_next_delayed_item(item); 1618 } 1619 mutex_unlock(&delayed_node->mutex); 1620 /* 1621 * This delayed node is still cached in the btrfs inode, so refs 1622 * must be > 1 now, and we needn't check it is going to be freed 1623 * or not. 1624 * 1625 * Besides that, this function is used to read dir, we do not 1626 * insert/delete delayed items in this period. So we also needn't 1627 * requeue or dequeue this delayed node. 1628 */ 1629 refcount_dec(&delayed_node->refs); 1630 1631 return true; 1632 } 1633 1634 void btrfs_readdir_put_delayed_items(struct inode *inode, 1635 struct list_head *ins_list, 1636 struct list_head *del_list) 1637 { 1638 struct btrfs_delayed_item *curr, *next; 1639 1640 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1641 list_del(&curr->readdir_list); 1642 if (refcount_dec_and_test(&curr->refs)) 1643 kfree(curr); 1644 } 1645 1646 list_for_each_entry_safe(curr, next, del_list, readdir_list) { 1647 list_del(&curr->readdir_list); 1648 if (refcount_dec_and_test(&curr->refs)) 1649 kfree(curr); 1650 } 1651 1652 /* 1653 * The VFS is going to do up_read(), so we need to downgrade back to a 1654 * read lock. 1655 */ 1656 downgrade_write(&inode->i_rwsem); 1657 } 1658 1659 int btrfs_should_delete_dir_index(struct list_head *del_list, 1660 u64 index) 1661 { 1662 struct btrfs_delayed_item *curr; 1663 int ret = 0; 1664 1665 list_for_each_entry(curr, del_list, readdir_list) { 1666 if (curr->key.offset > index) 1667 break; 1668 if (curr->key.offset == index) { 1669 ret = 1; 1670 break; 1671 } 1672 } 1673 return ret; 1674 } 1675 1676 /* 1677 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree 1678 * 1679 */ 1680 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx, 1681 struct list_head *ins_list) 1682 { 1683 struct btrfs_dir_item *di; 1684 struct btrfs_delayed_item *curr, *next; 1685 struct btrfs_key location; 1686 char *name; 1687 int name_len; 1688 int over = 0; 1689 unsigned char d_type; 1690 1691 if (list_empty(ins_list)) 1692 return 0; 1693 1694 /* 1695 * Changing the data of the delayed item is impossible. So 1696 * we needn't lock them. And we have held i_mutex of the 1697 * directory, nobody can delete any directory indexes now. 1698 */ 1699 list_for_each_entry_safe(curr, next, ins_list, readdir_list) { 1700 list_del(&curr->readdir_list); 1701 1702 if (curr->key.offset < ctx->pos) { 1703 if (refcount_dec_and_test(&curr->refs)) 1704 kfree(curr); 1705 continue; 1706 } 1707 1708 ctx->pos = curr->key.offset; 1709 1710 di = (struct btrfs_dir_item *)curr->data; 1711 name = (char *)(di + 1); 1712 name_len = btrfs_stack_dir_name_len(di); 1713 1714 d_type = fs_ftype_to_dtype(di->type); 1715 btrfs_disk_key_to_cpu(&location, &di->location); 1716 1717 over = !dir_emit(ctx, name, name_len, 1718 location.objectid, d_type); 1719 1720 if (refcount_dec_and_test(&curr->refs)) 1721 kfree(curr); 1722 1723 if (over) 1724 return 1; 1725 ctx->pos++; 1726 } 1727 return 0; 1728 } 1729 1730 static void fill_stack_inode_item(struct btrfs_trans_handle *trans, 1731 struct btrfs_inode_item *inode_item, 1732 struct inode *inode) 1733 { 1734 btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode)); 1735 btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode)); 1736 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size); 1737 btrfs_set_stack_inode_mode(inode_item, inode->i_mode); 1738 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink); 1739 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode)); 1740 btrfs_set_stack_inode_generation(inode_item, 1741 BTRFS_I(inode)->generation); 1742 btrfs_set_stack_inode_sequence(inode_item, 1743 inode_peek_iversion(inode)); 1744 btrfs_set_stack_inode_transid(inode_item, trans->transid); 1745 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev); 1746 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags); 1747 btrfs_set_stack_inode_block_group(inode_item, 0); 1748 1749 btrfs_set_stack_timespec_sec(&inode_item->atime, 1750 inode->i_atime.tv_sec); 1751 btrfs_set_stack_timespec_nsec(&inode_item->atime, 1752 inode->i_atime.tv_nsec); 1753 1754 btrfs_set_stack_timespec_sec(&inode_item->mtime, 1755 inode->i_mtime.tv_sec); 1756 btrfs_set_stack_timespec_nsec(&inode_item->mtime, 1757 inode->i_mtime.tv_nsec); 1758 1759 btrfs_set_stack_timespec_sec(&inode_item->ctime, 1760 inode->i_ctime.tv_sec); 1761 btrfs_set_stack_timespec_nsec(&inode_item->ctime, 1762 inode->i_ctime.tv_nsec); 1763 1764 btrfs_set_stack_timespec_sec(&inode_item->otime, 1765 BTRFS_I(inode)->i_otime.tv_sec); 1766 btrfs_set_stack_timespec_nsec(&inode_item->otime, 1767 BTRFS_I(inode)->i_otime.tv_nsec); 1768 } 1769 1770 int btrfs_fill_inode(struct inode *inode, u32 *rdev) 1771 { 1772 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1773 struct btrfs_delayed_node *delayed_node; 1774 struct btrfs_inode_item *inode_item; 1775 1776 delayed_node = btrfs_get_delayed_node(BTRFS_I(inode)); 1777 if (!delayed_node) 1778 return -ENOENT; 1779 1780 mutex_lock(&delayed_node->mutex); 1781 if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1782 mutex_unlock(&delayed_node->mutex); 1783 btrfs_release_delayed_node(delayed_node); 1784 return -ENOENT; 1785 } 1786 1787 inode_item = &delayed_node->inode_item; 1788 1789 i_uid_write(inode, btrfs_stack_inode_uid(inode_item)); 1790 i_gid_write(inode, btrfs_stack_inode_gid(inode_item)); 1791 btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item)); 1792 btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0, 1793 round_up(i_size_read(inode), fs_info->sectorsize)); 1794 inode->i_mode = btrfs_stack_inode_mode(inode_item); 1795 set_nlink(inode, btrfs_stack_inode_nlink(inode_item)); 1796 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item)); 1797 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item); 1798 BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item); 1799 1800 inode_set_iversion_queried(inode, 1801 btrfs_stack_inode_sequence(inode_item)); 1802 inode->i_rdev = 0; 1803 *rdev = btrfs_stack_inode_rdev(inode_item); 1804 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item); 1805 1806 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime); 1807 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime); 1808 1809 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime); 1810 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime); 1811 1812 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime); 1813 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime); 1814 1815 BTRFS_I(inode)->i_otime.tv_sec = 1816 btrfs_stack_timespec_sec(&inode_item->otime); 1817 BTRFS_I(inode)->i_otime.tv_nsec = 1818 btrfs_stack_timespec_nsec(&inode_item->otime); 1819 1820 inode->i_generation = BTRFS_I(inode)->generation; 1821 BTRFS_I(inode)->index_cnt = (u64)-1; 1822 1823 mutex_unlock(&delayed_node->mutex); 1824 btrfs_release_delayed_node(delayed_node); 1825 return 0; 1826 } 1827 1828 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans, 1829 struct btrfs_root *root, struct inode *inode) 1830 { 1831 struct btrfs_delayed_node *delayed_node; 1832 int ret = 0; 1833 1834 delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode)); 1835 if (IS_ERR(delayed_node)) 1836 return PTR_ERR(delayed_node); 1837 1838 mutex_lock(&delayed_node->mutex); 1839 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1840 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1841 goto release_node; 1842 } 1843 1844 ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode), 1845 delayed_node); 1846 if (ret) 1847 goto release_node; 1848 1849 fill_stack_inode_item(trans, &delayed_node->inode_item, inode); 1850 set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags); 1851 delayed_node->count++; 1852 atomic_inc(&root->fs_info->delayed_root->items); 1853 release_node: 1854 mutex_unlock(&delayed_node->mutex); 1855 btrfs_release_delayed_node(delayed_node); 1856 return ret; 1857 } 1858 1859 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode) 1860 { 1861 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1862 struct btrfs_delayed_node *delayed_node; 1863 1864 /* 1865 * we don't do delayed inode updates during log recovery because it 1866 * leads to enospc problems. This means we also can't do 1867 * delayed inode refs 1868 */ 1869 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 1870 return -EAGAIN; 1871 1872 delayed_node = btrfs_get_or_create_delayed_node(inode); 1873 if (IS_ERR(delayed_node)) 1874 return PTR_ERR(delayed_node); 1875 1876 /* 1877 * We don't reserve space for inode ref deletion is because: 1878 * - We ONLY do async inode ref deletion for the inode who has only 1879 * one link(i_nlink == 1), it means there is only one inode ref. 1880 * And in most case, the inode ref and the inode item are in the 1881 * same leaf, and we will deal with them at the same time. 1882 * Since we are sure we will reserve the space for the inode item, 1883 * it is unnecessary to reserve space for inode ref deletion. 1884 * - If the inode ref and the inode item are not in the same leaf, 1885 * We also needn't worry about enospc problem, because we reserve 1886 * much more space for the inode update than it needs. 1887 * - At the worst, we can steal some space from the global reservation. 1888 * It is very rare. 1889 */ 1890 mutex_lock(&delayed_node->mutex); 1891 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1892 goto release_node; 1893 1894 set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags); 1895 delayed_node->count++; 1896 atomic_inc(&fs_info->delayed_root->items); 1897 release_node: 1898 mutex_unlock(&delayed_node->mutex); 1899 btrfs_release_delayed_node(delayed_node); 1900 return 0; 1901 } 1902 1903 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node) 1904 { 1905 struct btrfs_root *root = delayed_node->root; 1906 struct btrfs_fs_info *fs_info = root->fs_info; 1907 struct btrfs_delayed_item *curr_item, *prev_item; 1908 1909 mutex_lock(&delayed_node->mutex); 1910 curr_item = __btrfs_first_delayed_insertion_item(delayed_node); 1911 while (curr_item) { 1912 btrfs_delayed_item_release_metadata(root, curr_item); 1913 prev_item = curr_item; 1914 curr_item = __btrfs_next_delayed_item(prev_item); 1915 btrfs_release_delayed_item(prev_item); 1916 } 1917 1918 curr_item = __btrfs_first_delayed_deletion_item(delayed_node); 1919 while (curr_item) { 1920 btrfs_delayed_item_release_metadata(root, curr_item); 1921 prev_item = curr_item; 1922 curr_item = __btrfs_next_delayed_item(prev_item); 1923 btrfs_release_delayed_item(prev_item); 1924 } 1925 1926 if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags)) 1927 btrfs_release_delayed_iref(delayed_node); 1928 1929 if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) { 1930 btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false); 1931 btrfs_release_delayed_inode(delayed_node); 1932 } 1933 mutex_unlock(&delayed_node->mutex); 1934 } 1935 1936 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode) 1937 { 1938 struct btrfs_delayed_node *delayed_node; 1939 1940 delayed_node = btrfs_get_delayed_node(inode); 1941 if (!delayed_node) 1942 return; 1943 1944 __btrfs_kill_delayed_node(delayed_node); 1945 btrfs_release_delayed_node(delayed_node); 1946 } 1947 1948 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root) 1949 { 1950 u64 inode_id = 0; 1951 struct btrfs_delayed_node *delayed_nodes[8]; 1952 int i, n; 1953 1954 while (1) { 1955 spin_lock(&root->inode_lock); 1956 n = radix_tree_gang_lookup(&root->delayed_nodes_tree, 1957 (void **)delayed_nodes, inode_id, 1958 ARRAY_SIZE(delayed_nodes)); 1959 if (!n) { 1960 spin_unlock(&root->inode_lock); 1961 break; 1962 } 1963 1964 inode_id = delayed_nodes[n - 1]->inode_id + 1; 1965 for (i = 0; i < n; i++) { 1966 /* 1967 * Don't increase refs in case the node is dead and 1968 * about to be removed from the tree in the loop below 1969 */ 1970 if (!refcount_inc_not_zero(&delayed_nodes[i]->refs)) 1971 delayed_nodes[i] = NULL; 1972 } 1973 spin_unlock(&root->inode_lock); 1974 1975 for (i = 0; i < n; i++) { 1976 if (!delayed_nodes[i]) 1977 continue; 1978 __btrfs_kill_delayed_node(delayed_nodes[i]); 1979 btrfs_release_delayed_node(delayed_nodes[i]); 1980 } 1981 } 1982 } 1983 1984 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info) 1985 { 1986 struct btrfs_delayed_node *curr_node, *prev_node; 1987 1988 curr_node = btrfs_first_delayed_node(fs_info->delayed_root); 1989 while (curr_node) { 1990 __btrfs_kill_delayed_node(curr_node); 1991 1992 prev_node = curr_node; 1993 curr_node = btrfs_next_delayed_node(curr_node); 1994 btrfs_release_delayed_node(prev_node); 1995 } 1996 } 1997 1998