xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * Copyright (C) 2011 Fujitsu.  All rights reserved.
3  * Written by Miao Xie <miaox@cn.fujitsu.com>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public
7  * License v2 as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12  * General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public
15  * License along with this program; if not, write to the
16  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17  * Boston, MA 021110-1307, USA.
18  */
19 
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "ctree.h"
25 
26 #define BTRFS_DELAYED_WRITEBACK		512
27 #define BTRFS_DELAYED_BACKGROUND	128
28 #define BTRFS_DELAYED_BATCH		16
29 
30 static struct kmem_cache *delayed_node_cache;
31 
32 int __init btrfs_delayed_inode_init(void)
33 {
34 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
35 					sizeof(struct btrfs_delayed_node),
36 					0,
37 					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
38 					NULL);
39 	if (!delayed_node_cache)
40 		return -ENOMEM;
41 	return 0;
42 }
43 
44 void btrfs_delayed_inode_exit(void)
45 {
46 	if (delayed_node_cache)
47 		kmem_cache_destroy(delayed_node_cache);
48 }
49 
50 static inline void btrfs_init_delayed_node(
51 				struct btrfs_delayed_node *delayed_node,
52 				struct btrfs_root *root, u64 inode_id)
53 {
54 	delayed_node->root = root;
55 	delayed_node->inode_id = inode_id;
56 	atomic_set(&delayed_node->refs, 0);
57 	delayed_node->count = 0;
58 	delayed_node->flags = 0;
59 	delayed_node->ins_root = RB_ROOT;
60 	delayed_node->del_root = RB_ROOT;
61 	mutex_init(&delayed_node->mutex);
62 	delayed_node->index_cnt = 0;
63 	INIT_LIST_HEAD(&delayed_node->n_list);
64 	INIT_LIST_HEAD(&delayed_node->p_list);
65 	delayed_node->bytes_reserved = 0;
66 	memset(&delayed_node->inode_item, 0, sizeof(delayed_node->inode_item));
67 }
68 
69 static inline int btrfs_is_continuous_delayed_item(
70 					struct btrfs_delayed_item *item1,
71 					struct btrfs_delayed_item *item2)
72 {
73 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
74 	    item1->key.objectid == item2->key.objectid &&
75 	    item1->key.type == item2->key.type &&
76 	    item1->key.offset + 1 == item2->key.offset)
77 		return 1;
78 	return 0;
79 }
80 
81 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
82 							struct btrfs_root *root)
83 {
84 	return root->fs_info->delayed_root;
85 }
86 
87 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
88 {
89 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
90 	struct btrfs_root *root = btrfs_inode->root;
91 	u64 ino = btrfs_ino(inode);
92 	struct btrfs_delayed_node *node;
93 
94 	node = ACCESS_ONCE(btrfs_inode->delayed_node);
95 	if (node) {
96 		atomic_inc(&node->refs);
97 		return node;
98 	}
99 
100 	spin_lock(&root->inode_lock);
101 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
102 	if (node) {
103 		if (btrfs_inode->delayed_node) {
104 			atomic_inc(&node->refs);	/* can be accessed */
105 			BUG_ON(btrfs_inode->delayed_node != node);
106 			spin_unlock(&root->inode_lock);
107 			return node;
108 		}
109 		btrfs_inode->delayed_node = node;
110 		/* can be accessed and cached in the inode */
111 		atomic_add(2, &node->refs);
112 		spin_unlock(&root->inode_lock);
113 		return node;
114 	}
115 	spin_unlock(&root->inode_lock);
116 
117 	return NULL;
118 }
119 
120 /* Will return either the node or PTR_ERR(-ENOMEM) */
121 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
122 							struct inode *inode)
123 {
124 	struct btrfs_delayed_node *node;
125 	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
126 	struct btrfs_root *root = btrfs_inode->root;
127 	u64 ino = btrfs_ino(inode);
128 	int ret;
129 
130 again:
131 	node = btrfs_get_delayed_node(inode);
132 	if (node)
133 		return node;
134 
135 	node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
136 	if (!node)
137 		return ERR_PTR(-ENOMEM);
138 	btrfs_init_delayed_node(node, root, ino);
139 
140 	/* cached in the btrfs inode and can be accessed */
141 	atomic_add(2, &node->refs);
142 
143 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
144 	if (ret) {
145 		kmem_cache_free(delayed_node_cache, node);
146 		return ERR_PTR(ret);
147 	}
148 
149 	spin_lock(&root->inode_lock);
150 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
151 	if (ret == -EEXIST) {
152 		spin_unlock(&root->inode_lock);
153 		kmem_cache_free(delayed_node_cache, node);
154 		radix_tree_preload_end();
155 		goto again;
156 	}
157 	btrfs_inode->delayed_node = node;
158 	spin_unlock(&root->inode_lock);
159 	radix_tree_preload_end();
160 
161 	return node;
162 }
163 
164 /*
165  * Call it when holding delayed_node->mutex
166  *
167  * If mod = 1, add this node into the prepared list.
168  */
169 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
170 				     struct btrfs_delayed_node *node,
171 				     int mod)
172 {
173 	spin_lock(&root->lock);
174 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
175 		if (!list_empty(&node->p_list))
176 			list_move_tail(&node->p_list, &root->prepare_list);
177 		else if (mod)
178 			list_add_tail(&node->p_list, &root->prepare_list);
179 	} else {
180 		list_add_tail(&node->n_list, &root->node_list);
181 		list_add_tail(&node->p_list, &root->prepare_list);
182 		atomic_inc(&node->refs);	/* inserted into list */
183 		root->nodes++;
184 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
185 	}
186 	spin_unlock(&root->lock);
187 }
188 
189 /* Call it when holding delayed_node->mutex */
190 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
191 				       struct btrfs_delayed_node *node)
192 {
193 	spin_lock(&root->lock);
194 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
195 		root->nodes--;
196 		atomic_dec(&node->refs);	/* not in the list */
197 		list_del_init(&node->n_list);
198 		if (!list_empty(&node->p_list))
199 			list_del_init(&node->p_list);
200 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
201 	}
202 	spin_unlock(&root->lock);
203 }
204 
205 static struct btrfs_delayed_node *btrfs_first_delayed_node(
206 			struct btrfs_delayed_root *delayed_root)
207 {
208 	struct list_head *p;
209 	struct btrfs_delayed_node *node = NULL;
210 
211 	spin_lock(&delayed_root->lock);
212 	if (list_empty(&delayed_root->node_list))
213 		goto out;
214 
215 	p = delayed_root->node_list.next;
216 	node = list_entry(p, struct btrfs_delayed_node, n_list);
217 	atomic_inc(&node->refs);
218 out:
219 	spin_unlock(&delayed_root->lock);
220 
221 	return node;
222 }
223 
224 static struct btrfs_delayed_node *btrfs_next_delayed_node(
225 						struct btrfs_delayed_node *node)
226 {
227 	struct btrfs_delayed_root *delayed_root;
228 	struct list_head *p;
229 	struct btrfs_delayed_node *next = NULL;
230 
231 	delayed_root = node->root->fs_info->delayed_root;
232 	spin_lock(&delayed_root->lock);
233 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
234 		/* not in the list */
235 		if (list_empty(&delayed_root->node_list))
236 			goto out;
237 		p = delayed_root->node_list.next;
238 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
239 		goto out;
240 	else
241 		p = node->n_list.next;
242 
243 	next = list_entry(p, struct btrfs_delayed_node, n_list);
244 	atomic_inc(&next->refs);
245 out:
246 	spin_unlock(&delayed_root->lock);
247 
248 	return next;
249 }
250 
251 static void __btrfs_release_delayed_node(
252 				struct btrfs_delayed_node *delayed_node,
253 				int mod)
254 {
255 	struct btrfs_delayed_root *delayed_root;
256 
257 	if (!delayed_node)
258 		return;
259 
260 	delayed_root = delayed_node->root->fs_info->delayed_root;
261 
262 	mutex_lock(&delayed_node->mutex);
263 	if (delayed_node->count)
264 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
265 	else
266 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
267 	mutex_unlock(&delayed_node->mutex);
268 
269 	if (atomic_dec_and_test(&delayed_node->refs)) {
270 		bool free = false;
271 		struct btrfs_root *root = delayed_node->root;
272 		spin_lock(&root->inode_lock);
273 		if (atomic_read(&delayed_node->refs) == 0) {
274 			radix_tree_delete(&root->delayed_nodes_tree,
275 					  delayed_node->inode_id);
276 			free = true;
277 		}
278 		spin_unlock(&root->inode_lock);
279 		if (free)
280 			kmem_cache_free(delayed_node_cache, delayed_node);
281 	}
282 }
283 
284 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
285 {
286 	__btrfs_release_delayed_node(node, 0);
287 }
288 
289 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
290 					struct btrfs_delayed_root *delayed_root)
291 {
292 	struct list_head *p;
293 	struct btrfs_delayed_node *node = NULL;
294 
295 	spin_lock(&delayed_root->lock);
296 	if (list_empty(&delayed_root->prepare_list))
297 		goto out;
298 
299 	p = delayed_root->prepare_list.next;
300 	list_del_init(p);
301 	node = list_entry(p, struct btrfs_delayed_node, p_list);
302 	atomic_inc(&node->refs);
303 out:
304 	spin_unlock(&delayed_root->lock);
305 
306 	return node;
307 }
308 
309 static inline void btrfs_release_prepared_delayed_node(
310 					struct btrfs_delayed_node *node)
311 {
312 	__btrfs_release_delayed_node(node, 1);
313 }
314 
315 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
316 {
317 	struct btrfs_delayed_item *item;
318 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
319 	if (item) {
320 		item->data_len = data_len;
321 		item->ins_or_del = 0;
322 		item->bytes_reserved = 0;
323 		item->delayed_node = NULL;
324 		atomic_set(&item->refs, 1);
325 	}
326 	return item;
327 }
328 
329 /*
330  * __btrfs_lookup_delayed_item - look up the delayed item by key
331  * @delayed_node: pointer to the delayed node
332  * @key:	  the key to look up
333  * @prev:	  used to store the prev item if the right item isn't found
334  * @next:	  used to store the next item if the right item isn't found
335  *
336  * Note: if we don't find the right item, we will return the prev item and
337  * the next item.
338  */
339 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
340 				struct rb_root *root,
341 				struct btrfs_key *key,
342 				struct btrfs_delayed_item **prev,
343 				struct btrfs_delayed_item **next)
344 {
345 	struct rb_node *node, *prev_node = NULL;
346 	struct btrfs_delayed_item *delayed_item = NULL;
347 	int ret = 0;
348 
349 	node = root->rb_node;
350 
351 	while (node) {
352 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
353 					rb_node);
354 		prev_node = node;
355 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
356 		if (ret < 0)
357 			node = node->rb_right;
358 		else if (ret > 0)
359 			node = node->rb_left;
360 		else
361 			return delayed_item;
362 	}
363 
364 	if (prev) {
365 		if (!prev_node)
366 			*prev = NULL;
367 		else if (ret < 0)
368 			*prev = delayed_item;
369 		else if ((node = rb_prev(prev_node)) != NULL) {
370 			*prev = rb_entry(node, struct btrfs_delayed_item,
371 					 rb_node);
372 		} else
373 			*prev = NULL;
374 	}
375 
376 	if (next) {
377 		if (!prev_node)
378 			*next = NULL;
379 		else if (ret > 0)
380 			*next = delayed_item;
381 		else if ((node = rb_next(prev_node)) != NULL) {
382 			*next = rb_entry(node, struct btrfs_delayed_item,
383 					 rb_node);
384 		} else
385 			*next = NULL;
386 	}
387 	return NULL;
388 }
389 
390 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
391 					struct btrfs_delayed_node *delayed_node,
392 					struct btrfs_key *key)
393 {
394 	struct btrfs_delayed_item *item;
395 
396 	item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
397 					   NULL, NULL);
398 	return item;
399 }
400 
401 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
402 				    struct btrfs_delayed_item *ins,
403 				    int action)
404 {
405 	struct rb_node **p, *node;
406 	struct rb_node *parent_node = NULL;
407 	struct rb_root *root;
408 	struct btrfs_delayed_item *item;
409 	int cmp;
410 
411 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
412 		root = &delayed_node->ins_root;
413 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
414 		root = &delayed_node->del_root;
415 	else
416 		BUG();
417 	p = &root->rb_node;
418 	node = &ins->rb_node;
419 
420 	while (*p) {
421 		parent_node = *p;
422 		item = rb_entry(parent_node, struct btrfs_delayed_item,
423 				 rb_node);
424 
425 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
426 		if (cmp < 0)
427 			p = &(*p)->rb_right;
428 		else if (cmp > 0)
429 			p = &(*p)->rb_left;
430 		else
431 			return -EEXIST;
432 	}
433 
434 	rb_link_node(node, parent_node, p);
435 	rb_insert_color(node, root);
436 	ins->delayed_node = delayed_node;
437 	ins->ins_or_del = action;
438 
439 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
440 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
441 	    ins->key.offset >= delayed_node->index_cnt)
442 			delayed_node->index_cnt = ins->key.offset + 1;
443 
444 	delayed_node->count++;
445 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
446 	return 0;
447 }
448 
449 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
450 					      struct btrfs_delayed_item *item)
451 {
452 	return __btrfs_add_delayed_item(node, item,
453 					BTRFS_DELAYED_INSERTION_ITEM);
454 }
455 
456 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
457 					     struct btrfs_delayed_item *item)
458 {
459 	return __btrfs_add_delayed_item(node, item,
460 					BTRFS_DELAYED_DELETION_ITEM);
461 }
462 
463 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
464 {
465 	int seq = atomic_inc_return(&delayed_root->items_seq);
466 
467 	/*
468 	 * atomic_dec_return implies a barrier for waitqueue_active
469 	 */
470 	if ((atomic_dec_return(&delayed_root->items) <
471 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0) &&
472 	    waitqueue_active(&delayed_root->wait))
473 		wake_up(&delayed_root->wait);
474 }
475 
476 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
477 {
478 	struct rb_root *root;
479 	struct btrfs_delayed_root *delayed_root;
480 
481 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
482 
483 	BUG_ON(!delayed_root);
484 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
485 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
486 
487 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
488 		root = &delayed_item->delayed_node->ins_root;
489 	else
490 		root = &delayed_item->delayed_node->del_root;
491 
492 	rb_erase(&delayed_item->rb_node, root);
493 	delayed_item->delayed_node->count--;
494 
495 	finish_one_item(delayed_root);
496 }
497 
498 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
499 {
500 	if (item) {
501 		__btrfs_remove_delayed_item(item);
502 		if (atomic_dec_and_test(&item->refs))
503 			kfree(item);
504 	}
505 }
506 
507 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
508 					struct btrfs_delayed_node *delayed_node)
509 {
510 	struct rb_node *p;
511 	struct btrfs_delayed_item *item = NULL;
512 
513 	p = rb_first(&delayed_node->ins_root);
514 	if (p)
515 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
516 
517 	return item;
518 }
519 
520 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
521 					struct btrfs_delayed_node *delayed_node)
522 {
523 	struct rb_node *p;
524 	struct btrfs_delayed_item *item = NULL;
525 
526 	p = rb_first(&delayed_node->del_root);
527 	if (p)
528 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
529 
530 	return item;
531 }
532 
533 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
534 						struct btrfs_delayed_item *item)
535 {
536 	struct rb_node *p;
537 	struct btrfs_delayed_item *next = NULL;
538 
539 	p = rb_next(&item->rb_node);
540 	if (p)
541 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
542 
543 	return next;
544 }
545 
546 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
547 					       struct btrfs_root *root,
548 					       struct btrfs_delayed_item *item)
549 {
550 	struct btrfs_block_rsv *src_rsv;
551 	struct btrfs_block_rsv *dst_rsv;
552 	u64 num_bytes;
553 	int ret;
554 
555 	if (!trans->bytes_reserved)
556 		return 0;
557 
558 	src_rsv = trans->block_rsv;
559 	dst_rsv = &root->fs_info->delayed_block_rsv;
560 
561 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
562 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
563 	if (!ret) {
564 		trace_btrfs_space_reservation(root->fs_info, "delayed_item",
565 					      item->key.objectid,
566 					      num_bytes, 1);
567 		item->bytes_reserved = num_bytes;
568 	}
569 
570 	return ret;
571 }
572 
573 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
574 						struct btrfs_delayed_item *item)
575 {
576 	struct btrfs_block_rsv *rsv;
577 
578 	if (!item->bytes_reserved)
579 		return;
580 
581 	rsv = &root->fs_info->delayed_block_rsv;
582 	trace_btrfs_space_reservation(root->fs_info, "delayed_item",
583 				      item->key.objectid, item->bytes_reserved,
584 				      0);
585 	btrfs_block_rsv_release(root, rsv,
586 				item->bytes_reserved);
587 }
588 
589 static int btrfs_delayed_inode_reserve_metadata(
590 					struct btrfs_trans_handle *trans,
591 					struct btrfs_root *root,
592 					struct inode *inode,
593 					struct btrfs_delayed_node *node)
594 {
595 	struct btrfs_block_rsv *src_rsv;
596 	struct btrfs_block_rsv *dst_rsv;
597 	u64 num_bytes;
598 	int ret;
599 	bool release = false;
600 
601 	src_rsv = trans->block_rsv;
602 	dst_rsv = &root->fs_info->delayed_block_rsv;
603 
604 	num_bytes = btrfs_calc_trans_metadata_size(root, 1);
605 
606 	/*
607 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
608 	 * which doesn't reserve space for speed.  This is a problem since we
609 	 * still need to reserve space for this update, so try to reserve the
610 	 * space.
611 	 *
612 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
613 	 * we're accounted for.
614 	 */
615 	if (!src_rsv || (!trans->bytes_reserved &&
616 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
617 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
618 					  BTRFS_RESERVE_NO_FLUSH);
619 		/*
620 		 * Since we're under a transaction reserve_metadata_bytes could
621 		 * try to commit the transaction which will make it return
622 		 * EAGAIN to make us stop the transaction we have, so return
623 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
624 		 */
625 		if (ret == -EAGAIN)
626 			ret = -ENOSPC;
627 		if (!ret) {
628 			node->bytes_reserved = num_bytes;
629 			trace_btrfs_space_reservation(root->fs_info,
630 						      "delayed_inode",
631 						      btrfs_ino(inode),
632 						      num_bytes, 1);
633 		}
634 		return ret;
635 	} else if (src_rsv->type == BTRFS_BLOCK_RSV_DELALLOC) {
636 		spin_lock(&BTRFS_I(inode)->lock);
637 		if (test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
638 				       &BTRFS_I(inode)->runtime_flags)) {
639 			spin_unlock(&BTRFS_I(inode)->lock);
640 			release = true;
641 			goto migrate;
642 		}
643 		spin_unlock(&BTRFS_I(inode)->lock);
644 
645 		/* Ok we didn't have space pre-reserved.  This shouldn't happen
646 		 * too often but it can happen if we do delalloc to an existing
647 		 * inode which gets dirtied because of the time update, and then
648 		 * isn't touched again until after the transaction commits and
649 		 * then we try to write out the data.  First try to be nice and
650 		 * reserve something strictly for us.  If not be a pain and try
651 		 * to steal from the delalloc block rsv.
652 		 */
653 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
654 					  BTRFS_RESERVE_NO_FLUSH);
655 		if (!ret)
656 			goto out;
657 
658 		ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
659 		if (!WARN_ON(ret))
660 			goto out;
661 
662 		/*
663 		 * Ok this is a problem, let's just steal from the global rsv
664 		 * since this really shouldn't happen that often.
665 		 */
666 		ret = btrfs_block_rsv_migrate(&root->fs_info->global_block_rsv,
667 					      dst_rsv, num_bytes);
668 		goto out;
669 	}
670 
671 migrate:
672 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
673 
674 out:
675 	/*
676 	 * Migrate only takes a reservation, it doesn't touch the size of the
677 	 * block_rsv.  This is to simplify people who don't normally have things
678 	 * migrated from their block rsv.  If they go to release their
679 	 * reservation, that will decrease the size as well, so if migrate
680 	 * reduced size we'd end up with a negative size.  But for the
681 	 * delalloc_meta_reserved stuff we will only know to drop 1 reservation,
682 	 * but we could in fact do this reserve/migrate dance several times
683 	 * between the time we did the original reservation and we'd clean it
684 	 * up.  So to take care of this, release the space for the meta
685 	 * reservation here.  I think it may be time for a documentation page on
686 	 * how block rsvs. work.
687 	 */
688 	if (!ret) {
689 		trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
690 					      btrfs_ino(inode), num_bytes, 1);
691 		node->bytes_reserved = num_bytes;
692 	}
693 
694 	if (release) {
695 		trace_btrfs_space_reservation(root->fs_info, "delalloc",
696 					      btrfs_ino(inode), num_bytes, 0);
697 		btrfs_block_rsv_release(root, src_rsv, num_bytes);
698 	}
699 
700 	return ret;
701 }
702 
703 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
704 						struct btrfs_delayed_node *node)
705 {
706 	struct btrfs_block_rsv *rsv;
707 
708 	if (!node->bytes_reserved)
709 		return;
710 
711 	rsv = &root->fs_info->delayed_block_rsv;
712 	trace_btrfs_space_reservation(root->fs_info, "delayed_inode",
713 				      node->inode_id, node->bytes_reserved, 0);
714 	btrfs_block_rsv_release(root, rsv,
715 				node->bytes_reserved);
716 	node->bytes_reserved = 0;
717 }
718 
719 /*
720  * This helper will insert some continuous items into the same leaf according
721  * to the free space of the leaf.
722  */
723 static int btrfs_batch_insert_items(struct btrfs_root *root,
724 				    struct btrfs_path *path,
725 				    struct btrfs_delayed_item *item)
726 {
727 	struct btrfs_delayed_item *curr, *next;
728 	int free_space;
729 	int total_data_size = 0, total_size = 0;
730 	struct extent_buffer *leaf;
731 	char *data_ptr;
732 	struct btrfs_key *keys;
733 	u32 *data_size;
734 	struct list_head head;
735 	int slot;
736 	int nitems;
737 	int i;
738 	int ret = 0;
739 
740 	BUG_ON(!path->nodes[0]);
741 
742 	leaf = path->nodes[0];
743 	free_space = btrfs_leaf_free_space(root, leaf);
744 	INIT_LIST_HEAD(&head);
745 
746 	next = item;
747 	nitems = 0;
748 
749 	/*
750 	 * count the number of the continuous items that we can insert in batch
751 	 */
752 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
753 	       free_space) {
754 		total_data_size += next->data_len;
755 		total_size += next->data_len + sizeof(struct btrfs_item);
756 		list_add_tail(&next->tree_list, &head);
757 		nitems++;
758 
759 		curr = next;
760 		next = __btrfs_next_delayed_item(curr);
761 		if (!next)
762 			break;
763 
764 		if (!btrfs_is_continuous_delayed_item(curr, next))
765 			break;
766 	}
767 
768 	if (!nitems) {
769 		ret = 0;
770 		goto out;
771 	}
772 
773 	/*
774 	 * we need allocate some memory space, but it might cause the task
775 	 * to sleep, so we set all locked nodes in the path to blocking locks
776 	 * first.
777 	 */
778 	btrfs_set_path_blocking(path);
779 
780 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
781 	if (!keys) {
782 		ret = -ENOMEM;
783 		goto out;
784 	}
785 
786 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
787 	if (!data_size) {
788 		ret = -ENOMEM;
789 		goto error;
790 	}
791 
792 	/* get keys of all the delayed items */
793 	i = 0;
794 	list_for_each_entry(next, &head, tree_list) {
795 		keys[i] = next->key;
796 		data_size[i] = next->data_len;
797 		i++;
798 	}
799 
800 	/* reset all the locked nodes in the patch to spinning locks. */
801 	btrfs_clear_path_blocking(path, NULL, 0);
802 
803 	/* insert the keys of the items */
804 	setup_items_for_insert(root, path, keys, data_size,
805 			       total_data_size, total_size, nitems);
806 
807 	/* insert the dir index items */
808 	slot = path->slots[0];
809 	list_for_each_entry_safe(curr, next, &head, tree_list) {
810 		data_ptr = btrfs_item_ptr(leaf, slot, char);
811 		write_extent_buffer(leaf, &curr->data,
812 				    (unsigned long)data_ptr,
813 				    curr->data_len);
814 		slot++;
815 
816 		btrfs_delayed_item_release_metadata(root, curr);
817 
818 		list_del(&curr->tree_list);
819 		btrfs_release_delayed_item(curr);
820 	}
821 
822 error:
823 	kfree(data_size);
824 	kfree(keys);
825 out:
826 	return ret;
827 }
828 
829 /*
830  * This helper can just do simple insertion that needn't extend item for new
831  * data, such as directory name index insertion, inode insertion.
832  */
833 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
834 				     struct btrfs_root *root,
835 				     struct btrfs_path *path,
836 				     struct btrfs_delayed_item *delayed_item)
837 {
838 	struct extent_buffer *leaf;
839 	char *ptr;
840 	int ret;
841 
842 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
843 				      delayed_item->data_len);
844 	if (ret < 0 && ret != -EEXIST)
845 		return ret;
846 
847 	leaf = path->nodes[0];
848 
849 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
850 
851 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
852 			    delayed_item->data_len);
853 	btrfs_mark_buffer_dirty(leaf);
854 
855 	btrfs_delayed_item_release_metadata(root, delayed_item);
856 	return 0;
857 }
858 
859 /*
860  * we insert an item first, then if there are some continuous items, we try
861  * to insert those items into the same leaf.
862  */
863 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
864 				      struct btrfs_path *path,
865 				      struct btrfs_root *root,
866 				      struct btrfs_delayed_node *node)
867 {
868 	struct btrfs_delayed_item *curr, *prev;
869 	int ret = 0;
870 
871 do_again:
872 	mutex_lock(&node->mutex);
873 	curr = __btrfs_first_delayed_insertion_item(node);
874 	if (!curr)
875 		goto insert_end;
876 
877 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
878 	if (ret < 0) {
879 		btrfs_release_path(path);
880 		goto insert_end;
881 	}
882 
883 	prev = curr;
884 	curr = __btrfs_next_delayed_item(prev);
885 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
886 		/* insert the continuous items into the same leaf */
887 		path->slots[0]++;
888 		btrfs_batch_insert_items(root, path, curr);
889 	}
890 	btrfs_release_delayed_item(prev);
891 	btrfs_mark_buffer_dirty(path->nodes[0]);
892 
893 	btrfs_release_path(path);
894 	mutex_unlock(&node->mutex);
895 	goto do_again;
896 
897 insert_end:
898 	mutex_unlock(&node->mutex);
899 	return ret;
900 }
901 
902 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
903 				    struct btrfs_root *root,
904 				    struct btrfs_path *path,
905 				    struct btrfs_delayed_item *item)
906 {
907 	struct btrfs_delayed_item *curr, *next;
908 	struct extent_buffer *leaf;
909 	struct btrfs_key key;
910 	struct list_head head;
911 	int nitems, i, last_item;
912 	int ret = 0;
913 
914 	BUG_ON(!path->nodes[0]);
915 
916 	leaf = path->nodes[0];
917 
918 	i = path->slots[0];
919 	last_item = btrfs_header_nritems(leaf) - 1;
920 	if (i > last_item)
921 		return -ENOENT;	/* FIXME: Is errno suitable? */
922 
923 	next = item;
924 	INIT_LIST_HEAD(&head);
925 	btrfs_item_key_to_cpu(leaf, &key, i);
926 	nitems = 0;
927 	/*
928 	 * count the number of the dir index items that we can delete in batch
929 	 */
930 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
931 		list_add_tail(&next->tree_list, &head);
932 		nitems++;
933 
934 		curr = next;
935 		next = __btrfs_next_delayed_item(curr);
936 		if (!next)
937 			break;
938 
939 		if (!btrfs_is_continuous_delayed_item(curr, next))
940 			break;
941 
942 		i++;
943 		if (i > last_item)
944 			break;
945 		btrfs_item_key_to_cpu(leaf, &key, i);
946 	}
947 
948 	if (!nitems)
949 		return 0;
950 
951 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
952 	if (ret)
953 		goto out;
954 
955 	list_for_each_entry_safe(curr, next, &head, tree_list) {
956 		btrfs_delayed_item_release_metadata(root, curr);
957 		list_del(&curr->tree_list);
958 		btrfs_release_delayed_item(curr);
959 	}
960 
961 out:
962 	return ret;
963 }
964 
965 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
966 				      struct btrfs_path *path,
967 				      struct btrfs_root *root,
968 				      struct btrfs_delayed_node *node)
969 {
970 	struct btrfs_delayed_item *curr, *prev;
971 	int ret = 0;
972 
973 do_again:
974 	mutex_lock(&node->mutex);
975 	curr = __btrfs_first_delayed_deletion_item(node);
976 	if (!curr)
977 		goto delete_fail;
978 
979 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
980 	if (ret < 0)
981 		goto delete_fail;
982 	else if (ret > 0) {
983 		/*
984 		 * can't find the item which the node points to, so this node
985 		 * is invalid, just drop it.
986 		 */
987 		prev = curr;
988 		curr = __btrfs_next_delayed_item(prev);
989 		btrfs_release_delayed_item(prev);
990 		ret = 0;
991 		btrfs_release_path(path);
992 		if (curr) {
993 			mutex_unlock(&node->mutex);
994 			goto do_again;
995 		} else
996 			goto delete_fail;
997 	}
998 
999 	btrfs_batch_delete_items(trans, root, path, curr);
1000 	btrfs_release_path(path);
1001 	mutex_unlock(&node->mutex);
1002 	goto do_again;
1003 
1004 delete_fail:
1005 	btrfs_release_path(path);
1006 	mutex_unlock(&node->mutex);
1007 	return ret;
1008 }
1009 
1010 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
1011 {
1012 	struct btrfs_delayed_root *delayed_root;
1013 
1014 	if (delayed_node &&
1015 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1016 		BUG_ON(!delayed_node->root);
1017 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1018 		delayed_node->count--;
1019 
1020 		delayed_root = delayed_node->root->fs_info->delayed_root;
1021 		finish_one_item(delayed_root);
1022 	}
1023 }
1024 
1025 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
1026 {
1027 	struct btrfs_delayed_root *delayed_root;
1028 
1029 	ASSERT(delayed_node->root);
1030 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1031 	delayed_node->count--;
1032 
1033 	delayed_root = delayed_node->root->fs_info->delayed_root;
1034 	finish_one_item(delayed_root);
1035 }
1036 
1037 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1038 					struct btrfs_root *root,
1039 					struct btrfs_path *path,
1040 					struct btrfs_delayed_node *node)
1041 {
1042 	struct btrfs_key key;
1043 	struct btrfs_inode_item *inode_item;
1044 	struct extent_buffer *leaf;
1045 	int mod;
1046 	int ret;
1047 
1048 	key.objectid = node->inode_id;
1049 	key.type = BTRFS_INODE_ITEM_KEY;
1050 	key.offset = 0;
1051 
1052 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1053 		mod = -1;
1054 	else
1055 		mod = 1;
1056 
1057 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1058 	if (ret > 0) {
1059 		btrfs_release_path(path);
1060 		return -ENOENT;
1061 	} else if (ret < 0) {
1062 		return ret;
1063 	}
1064 
1065 	leaf = path->nodes[0];
1066 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1067 				    struct btrfs_inode_item);
1068 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1069 			    sizeof(struct btrfs_inode_item));
1070 	btrfs_mark_buffer_dirty(leaf);
1071 
1072 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1073 		goto no_iref;
1074 
1075 	path->slots[0]++;
1076 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1077 		goto search;
1078 again:
1079 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 	if (key.objectid != node->inode_id)
1081 		goto out;
1082 
1083 	if (key.type != BTRFS_INODE_REF_KEY &&
1084 	    key.type != BTRFS_INODE_EXTREF_KEY)
1085 		goto out;
1086 
1087 	/*
1088 	 * Delayed iref deletion is for the inode who has only one link,
1089 	 * so there is only one iref. The case that several irefs are
1090 	 * in the same item doesn't exist.
1091 	 */
1092 	btrfs_del_item(trans, root, path);
1093 out:
1094 	btrfs_release_delayed_iref(node);
1095 no_iref:
1096 	btrfs_release_path(path);
1097 err_out:
1098 	btrfs_delayed_inode_release_metadata(root, node);
1099 	btrfs_release_delayed_inode(node);
1100 
1101 	return ret;
1102 
1103 search:
1104 	btrfs_release_path(path);
1105 
1106 	key.type = BTRFS_INODE_EXTREF_KEY;
1107 	key.offset = -1;
1108 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1109 	if (ret < 0)
1110 		goto err_out;
1111 	ASSERT(ret);
1112 
1113 	ret = 0;
1114 	leaf = path->nodes[0];
1115 	path->slots[0]--;
1116 	goto again;
1117 }
1118 
1119 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1120 					     struct btrfs_root *root,
1121 					     struct btrfs_path *path,
1122 					     struct btrfs_delayed_node *node)
1123 {
1124 	int ret;
1125 
1126 	mutex_lock(&node->mutex);
1127 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1128 		mutex_unlock(&node->mutex);
1129 		return 0;
1130 	}
1131 
1132 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1133 	mutex_unlock(&node->mutex);
1134 	return ret;
1135 }
1136 
1137 static inline int
1138 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1139 				   struct btrfs_path *path,
1140 				   struct btrfs_delayed_node *node)
1141 {
1142 	int ret;
1143 
1144 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1145 	if (ret)
1146 		return ret;
1147 
1148 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1149 	if (ret)
1150 		return ret;
1151 
1152 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1153 	return ret;
1154 }
1155 
1156 /*
1157  * Called when committing the transaction.
1158  * Returns 0 on success.
1159  * Returns < 0 on error and returns with an aborted transaction with any
1160  * outstanding delayed items cleaned up.
1161  */
1162 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1163 				     struct btrfs_root *root, int nr)
1164 {
1165 	struct btrfs_delayed_root *delayed_root;
1166 	struct btrfs_delayed_node *curr_node, *prev_node;
1167 	struct btrfs_path *path;
1168 	struct btrfs_block_rsv *block_rsv;
1169 	int ret = 0;
1170 	bool count = (nr > 0);
1171 
1172 	if (trans->aborted)
1173 		return -EIO;
1174 
1175 	path = btrfs_alloc_path();
1176 	if (!path)
1177 		return -ENOMEM;
1178 	path->leave_spinning = 1;
1179 
1180 	block_rsv = trans->block_rsv;
1181 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1182 
1183 	delayed_root = btrfs_get_delayed_root(root);
1184 
1185 	curr_node = btrfs_first_delayed_node(delayed_root);
1186 	while (curr_node && (!count || (count && nr--))) {
1187 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1188 							 curr_node);
1189 		if (ret) {
1190 			btrfs_release_delayed_node(curr_node);
1191 			curr_node = NULL;
1192 			btrfs_abort_transaction(trans, root, ret);
1193 			break;
1194 		}
1195 
1196 		prev_node = curr_node;
1197 		curr_node = btrfs_next_delayed_node(curr_node);
1198 		btrfs_release_delayed_node(prev_node);
1199 	}
1200 
1201 	if (curr_node)
1202 		btrfs_release_delayed_node(curr_node);
1203 	btrfs_free_path(path);
1204 	trans->block_rsv = block_rsv;
1205 
1206 	return ret;
1207 }
1208 
1209 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1210 			    struct btrfs_root *root)
1211 {
1212 	return __btrfs_run_delayed_items(trans, root, -1);
1213 }
1214 
1215 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans,
1216 			       struct btrfs_root *root, int nr)
1217 {
1218 	return __btrfs_run_delayed_items(trans, root, nr);
1219 }
1220 
1221 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1222 				     struct inode *inode)
1223 {
1224 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1225 	struct btrfs_path *path;
1226 	struct btrfs_block_rsv *block_rsv;
1227 	int ret;
1228 
1229 	if (!delayed_node)
1230 		return 0;
1231 
1232 	mutex_lock(&delayed_node->mutex);
1233 	if (!delayed_node->count) {
1234 		mutex_unlock(&delayed_node->mutex);
1235 		btrfs_release_delayed_node(delayed_node);
1236 		return 0;
1237 	}
1238 	mutex_unlock(&delayed_node->mutex);
1239 
1240 	path = btrfs_alloc_path();
1241 	if (!path) {
1242 		btrfs_release_delayed_node(delayed_node);
1243 		return -ENOMEM;
1244 	}
1245 	path->leave_spinning = 1;
1246 
1247 	block_rsv = trans->block_rsv;
1248 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1249 
1250 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1251 
1252 	btrfs_release_delayed_node(delayed_node);
1253 	btrfs_free_path(path);
1254 	trans->block_rsv = block_rsv;
1255 
1256 	return ret;
1257 }
1258 
1259 int btrfs_commit_inode_delayed_inode(struct inode *inode)
1260 {
1261 	struct btrfs_trans_handle *trans;
1262 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1263 	struct btrfs_path *path;
1264 	struct btrfs_block_rsv *block_rsv;
1265 	int ret;
1266 
1267 	if (!delayed_node)
1268 		return 0;
1269 
1270 	mutex_lock(&delayed_node->mutex);
1271 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1272 		mutex_unlock(&delayed_node->mutex);
1273 		btrfs_release_delayed_node(delayed_node);
1274 		return 0;
1275 	}
1276 	mutex_unlock(&delayed_node->mutex);
1277 
1278 	trans = btrfs_join_transaction(delayed_node->root);
1279 	if (IS_ERR(trans)) {
1280 		ret = PTR_ERR(trans);
1281 		goto out;
1282 	}
1283 
1284 	path = btrfs_alloc_path();
1285 	if (!path) {
1286 		ret = -ENOMEM;
1287 		goto trans_out;
1288 	}
1289 	path->leave_spinning = 1;
1290 
1291 	block_rsv = trans->block_rsv;
1292 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1293 
1294 	mutex_lock(&delayed_node->mutex);
1295 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1296 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1297 						   path, delayed_node);
1298 	else
1299 		ret = 0;
1300 	mutex_unlock(&delayed_node->mutex);
1301 
1302 	btrfs_free_path(path);
1303 	trans->block_rsv = block_rsv;
1304 trans_out:
1305 	btrfs_end_transaction(trans, delayed_node->root);
1306 	btrfs_btree_balance_dirty(delayed_node->root);
1307 out:
1308 	btrfs_release_delayed_node(delayed_node);
1309 
1310 	return ret;
1311 }
1312 
1313 void btrfs_remove_delayed_node(struct inode *inode)
1314 {
1315 	struct btrfs_delayed_node *delayed_node;
1316 
1317 	delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1318 	if (!delayed_node)
1319 		return;
1320 
1321 	BTRFS_I(inode)->delayed_node = NULL;
1322 	btrfs_release_delayed_node(delayed_node);
1323 }
1324 
1325 struct btrfs_async_delayed_work {
1326 	struct btrfs_delayed_root *delayed_root;
1327 	int nr;
1328 	struct btrfs_work work;
1329 };
1330 
1331 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1332 {
1333 	struct btrfs_async_delayed_work *async_work;
1334 	struct btrfs_delayed_root *delayed_root;
1335 	struct btrfs_trans_handle *trans;
1336 	struct btrfs_path *path;
1337 	struct btrfs_delayed_node *delayed_node = NULL;
1338 	struct btrfs_root *root;
1339 	struct btrfs_block_rsv *block_rsv;
1340 	int total_done = 0;
1341 
1342 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1343 	delayed_root = async_work->delayed_root;
1344 
1345 	path = btrfs_alloc_path();
1346 	if (!path)
1347 		goto out;
1348 
1349 again:
1350 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND / 2)
1351 		goto free_path;
1352 
1353 	delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1354 	if (!delayed_node)
1355 		goto free_path;
1356 
1357 	path->leave_spinning = 1;
1358 	root = delayed_node->root;
1359 
1360 	trans = btrfs_join_transaction(root);
1361 	if (IS_ERR(trans))
1362 		goto release_path;
1363 
1364 	block_rsv = trans->block_rsv;
1365 	trans->block_rsv = &root->fs_info->delayed_block_rsv;
1366 
1367 	__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1368 
1369 	trans->block_rsv = block_rsv;
1370 	btrfs_end_transaction(trans, root);
1371 	btrfs_btree_balance_dirty_nodelay(root);
1372 
1373 release_path:
1374 	btrfs_release_path(path);
1375 	total_done++;
1376 
1377 	btrfs_release_prepared_delayed_node(delayed_node);
1378 	if (async_work->nr == 0 || total_done < async_work->nr)
1379 		goto again;
1380 
1381 free_path:
1382 	btrfs_free_path(path);
1383 out:
1384 	wake_up(&delayed_root->wait);
1385 	kfree(async_work);
1386 }
1387 
1388 
1389 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1390 				     struct btrfs_fs_info *fs_info, int nr)
1391 {
1392 	struct btrfs_async_delayed_work *async_work;
1393 
1394 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1395 		return 0;
1396 
1397 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1398 	if (!async_work)
1399 		return -ENOMEM;
1400 
1401 	async_work->delayed_root = delayed_root;
1402 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1403 			btrfs_async_run_delayed_root, NULL, NULL);
1404 	async_work->nr = nr;
1405 
1406 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1407 	return 0;
1408 }
1409 
1410 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1411 {
1412 	struct btrfs_delayed_root *delayed_root;
1413 	delayed_root = btrfs_get_delayed_root(root);
1414 	WARN_ON(btrfs_first_delayed_node(delayed_root));
1415 }
1416 
1417 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1418 {
1419 	int val = atomic_read(&delayed_root->items_seq);
1420 
1421 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1422 		return 1;
1423 
1424 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1425 		return 1;
1426 
1427 	return 0;
1428 }
1429 
1430 void btrfs_balance_delayed_items(struct btrfs_root *root)
1431 {
1432 	struct btrfs_delayed_root *delayed_root;
1433 	struct btrfs_fs_info *fs_info = root->fs_info;
1434 
1435 	delayed_root = btrfs_get_delayed_root(root);
1436 
1437 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1438 		return;
1439 
1440 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1441 		int seq;
1442 		int ret;
1443 
1444 		seq = atomic_read(&delayed_root->items_seq);
1445 
1446 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1447 		if (ret)
1448 			return;
1449 
1450 		wait_event_interruptible(delayed_root->wait,
1451 					 could_end_wait(delayed_root, seq));
1452 		return;
1453 	}
1454 
1455 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1456 }
1457 
1458 /* Will return 0 or -ENOMEM */
1459 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1460 				   struct btrfs_root *root, const char *name,
1461 				   int name_len, struct inode *dir,
1462 				   struct btrfs_disk_key *disk_key, u8 type,
1463 				   u64 index)
1464 {
1465 	struct btrfs_delayed_node *delayed_node;
1466 	struct btrfs_delayed_item *delayed_item;
1467 	struct btrfs_dir_item *dir_item;
1468 	int ret;
1469 
1470 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1471 	if (IS_ERR(delayed_node))
1472 		return PTR_ERR(delayed_node);
1473 
1474 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1475 	if (!delayed_item) {
1476 		ret = -ENOMEM;
1477 		goto release_node;
1478 	}
1479 
1480 	delayed_item->key.objectid = btrfs_ino(dir);
1481 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1482 	delayed_item->key.offset = index;
1483 
1484 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1485 	dir_item->location = *disk_key;
1486 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1487 	btrfs_set_stack_dir_data_len(dir_item, 0);
1488 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1489 	btrfs_set_stack_dir_type(dir_item, type);
1490 	memcpy((char *)(dir_item + 1), name, name_len);
1491 
1492 	ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1493 	/*
1494 	 * we have reserved enough space when we start a new transaction,
1495 	 * so reserving metadata failure is impossible
1496 	 */
1497 	BUG_ON(ret);
1498 
1499 
1500 	mutex_lock(&delayed_node->mutex);
1501 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1502 	if (unlikely(ret)) {
1503 		btrfs_err(root->fs_info, "err add delayed dir index item(name: %.*s) "
1504 				"into the insertion tree of the delayed node"
1505 				"(root id: %llu, inode id: %llu, errno: %d)",
1506 				name_len, name, delayed_node->root->objectid,
1507 				delayed_node->inode_id, ret);
1508 		BUG();
1509 	}
1510 	mutex_unlock(&delayed_node->mutex);
1511 
1512 release_node:
1513 	btrfs_release_delayed_node(delayed_node);
1514 	return ret;
1515 }
1516 
1517 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1518 					       struct btrfs_delayed_node *node,
1519 					       struct btrfs_key *key)
1520 {
1521 	struct btrfs_delayed_item *item;
1522 
1523 	mutex_lock(&node->mutex);
1524 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1525 	if (!item) {
1526 		mutex_unlock(&node->mutex);
1527 		return 1;
1528 	}
1529 
1530 	btrfs_delayed_item_release_metadata(root, item);
1531 	btrfs_release_delayed_item(item);
1532 	mutex_unlock(&node->mutex);
1533 	return 0;
1534 }
1535 
1536 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1537 				   struct btrfs_root *root, struct inode *dir,
1538 				   u64 index)
1539 {
1540 	struct btrfs_delayed_node *node;
1541 	struct btrfs_delayed_item *item;
1542 	struct btrfs_key item_key;
1543 	int ret;
1544 
1545 	node = btrfs_get_or_create_delayed_node(dir);
1546 	if (IS_ERR(node))
1547 		return PTR_ERR(node);
1548 
1549 	item_key.objectid = btrfs_ino(dir);
1550 	item_key.type = BTRFS_DIR_INDEX_KEY;
1551 	item_key.offset = index;
1552 
1553 	ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1554 	if (!ret)
1555 		goto end;
1556 
1557 	item = btrfs_alloc_delayed_item(0);
1558 	if (!item) {
1559 		ret = -ENOMEM;
1560 		goto end;
1561 	}
1562 
1563 	item->key = item_key;
1564 
1565 	ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1566 	/*
1567 	 * we have reserved enough space when we start a new transaction,
1568 	 * so reserving metadata failure is impossible.
1569 	 */
1570 	BUG_ON(ret);
1571 
1572 	mutex_lock(&node->mutex);
1573 	ret = __btrfs_add_delayed_deletion_item(node, item);
1574 	if (unlikely(ret)) {
1575 		btrfs_err(root->fs_info, "err add delayed dir index item(index: %llu) "
1576 				"into the deletion tree of the delayed node"
1577 				"(root id: %llu, inode id: %llu, errno: %d)",
1578 				index, node->root->objectid, node->inode_id,
1579 				ret);
1580 		BUG();
1581 	}
1582 	mutex_unlock(&node->mutex);
1583 end:
1584 	btrfs_release_delayed_node(node);
1585 	return ret;
1586 }
1587 
1588 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1589 {
1590 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1591 
1592 	if (!delayed_node)
1593 		return -ENOENT;
1594 
1595 	/*
1596 	 * Since we have held i_mutex of this directory, it is impossible that
1597 	 * a new directory index is added into the delayed node and index_cnt
1598 	 * is updated now. So we needn't lock the delayed node.
1599 	 */
1600 	if (!delayed_node->index_cnt) {
1601 		btrfs_release_delayed_node(delayed_node);
1602 		return -EINVAL;
1603 	}
1604 
1605 	BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1606 	btrfs_release_delayed_node(delayed_node);
1607 	return 0;
1608 }
1609 
1610 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1611 			     struct list_head *del_list)
1612 {
1613 	struct btrfs_delayed_node *delayed_node;
1614 	struct btrfs_delayed_item *item;
1615 
1616 	delayed_node = btrfs_get_delayed_node(inode);
1617 	if (!delayed_node)
1618 		return;
1619 
1620 	mutex_lock(&delayed_node->mutex);
1621 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1622 	while (item) {
1623 		atomic_inc(&item->refs);
1624 		list_add_tail(&item->readdir_list, ins_list);
1625 		item = __btrfs_next_delayed_item(item);
1626 	}
1627 
1628 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1629 	while (item) {
1630 		atomic_inc(&item->refs);
1631 		list_add_tail(&item->readdir_list, del_list);
1632 		item = __btrfs_next_delayed_item(item);
1633 	}
1634 	mutex_unlock(&delayed_node->mutex);
1635 	/*
1636 	 * This delayed node is still cached in the btrfs inode, so refs
1637 	 * must be > 1 now, and we needn't check it is going to be freed
1638 	 * or not.
1639 	 *
1640 	 * Besides that, this function is used to read dir, we do not
1641 	 * insert/delete delayed items in this period. So we also needn't
1642 	 * requeue or dequeue this delayed node.
1643 	 */
1644 	atomic_dec(&delayed_node->refs);
1645 }
1646 
1647 void btrfs_put_delayed_items(struct list_head *ins_list,
1648 			     struct list_head *del_list)
1649 {
1650 	struct btrfs_delayed_item *curr, *next;
1651 
1652 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1653 		list_del(&curr->readdir_list);
1654 		if (atomic_dec_and_test(&curr->refs))
1655 			kfree(curr);
1656 	}
1657 
1658 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1659 		list_del(&curr->readdir_list);
1660 		if (atomic_dec_and_test(&curr->refs))
1661 			kfree(curr);
1662 	}
1663 }
1664 
1665 int btrfs_should_delete_dir_index(struct list_head *del_list,
1666 				  u64 index)
1667 {
1668 	struct btrfs_delayed_item *curr, *next;
1669 	int ret;
1670 
1671 	if (list_empty(del_list))
1672 		return 0;
1673 
1674 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1675 		if (curr->key.offset > index)
1676 			break;
1677 
1678 		list_del(&curr->readdir_list);
1679 		ret = (curr->key.offset == index);
1680 
1681 		if (atomic_dec_and_test(&curr->refs))
1682 			kfree(curr);
1683 
1684 		if (ret)
1685 			return 1;
1686 		else
1687 			continue;
1688 	}
1689 	return 0;
1690 }
1691 
1692 /*
1693  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1694  *
1695  */
1696 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1697 				    struct list_head *ins_list)
1698 {
1699 	struct btrfs_dir_item *di;
1700 	struct btrfs_delayed_item *curr, *next;
1701 	struct btrfs_key location;
1702 	char *name;
1703 	int name_len;
1704 	int over = 0;
1705 	unsigned char d_type;
1706 
1707 	if (list_empty(ins_list))
1708 		return 0;
1709 
1710 	/*
1711 	 * Changing the data of the delayed item is impossible. So
1712 	 * we needn't lock them. And we have held i_mutex of the
1713 	 * directory, nobody can delete any directory indexes now.
1714 	 */
1715 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1716 		list_del(&curr->readdir_list);
1717 
1718 		if (curr->key.offset < ctx->pos) {
1719 			if (atomic_dec_and_test(&curr->refs))
1720 				kfree(curr);
1721 			continue;
1722 		}
1723 
1724 		ctx->pos = curr->key.offset;
1725 
1726 		di = (struct btrfs_dir_item *)curr->data;
1727 		name = (char *)(di + 1);
1728 		name_len = btrfs_stack_dir_name_len(di);
1729 
1730 		d_type = btrfs_filetype_table[di->type];
1731 		btrfs_disk_key_to_cpu(&location, &di->location);
1732 
1733 		over = !dir_emit(ctx, name, name_len,
1734 			       location.objectid, d_type);
1735 
1736 		if (atomic_dec_and_test(&curr->refs))
1737 			kfree(curr);
1738 
1739 		if (over)
1740 			return 1;
1741 	}
1742 	return 0;
1743 }
1744 
1745 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1746 				  struct btrfs_inode_item *inode_item,
1747 				  struct inode *inode)
1748 {
1749 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1750 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1751 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1752 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1753 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1754 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1755 	btrfs_set_stack_inode_generation(inode_item,
1756 					 BTRFS_I(inode)->generation);
1757 	btrfs_set_stack_inode_sequence(inode_item, inode->i_version);
1758 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1759 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1760 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1761 	btrfs_set_stack_inode_block_group(inode_item, 0);
1762 
1763 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1764 				     inode->i_atime.tv_sec);
1765 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1766 				      inode->i_atime.tv_nsec);
1767 
1768 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1769 				     inode->i_mtime.tv_sec);
1770 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1771 				      inode->i_mtime.tv_nsec);
1772 
1773 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1774 				     inode->i_ctime.tv_sec);
1775 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1776 				      inode->i_ctime.tv_nsec);
1777 
1778 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1779 				     BTRFS_I(inode)->i_otime.tv_sec);
1780 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1781 				     BTRFS_I(inode)->i_otime.tv_nsec);
1782 }
1783 
1784 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1785 {
1786 	struct btrfs_delayed_node *delayed_node;
1787 	struct btrfs_inode_item *inode_item;
1788 
1789 	delayed_node = btrfs_get_delayed_node(inode);
1790 	if (!delayed_node)
1791 		return -ENOENT;
1792 
1793 	mutex_lock(&delayed_node->mutex);
1794 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1795 		mutex_unlock(&delayed_node->mutex);
1796 		btrfs_release_delayed_node(delayed_node);
1797 		return -ENOENT;
1798 	}
1799 
1800 	inode_item = &delayed_node->inode_item;
1801 
1802 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1803 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1804 	btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1805 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1806 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1807 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1808 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1809         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1810 
1811 	inode->i_version = btrfs_stack_inode_sequence(inode_item);
1812 	inode->i_rdev = 0;
1813 	*rdev = btrfs_stack_inode_rdev(inode_item);
1814 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1815 
1816 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1817 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1818 
1819 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1820 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1821 
1822 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1823 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1824 
1825 	BTRFS_I(inode)->i_otime.tv_sec =
1826 		btrfs_stack_timespec_sec(&inode_item->otime);
1827 	BTRFS_I(inode)->i_otime.tv_nsec =
1828 		btrfs_stack_timespec_nsec(&inode_item->otime);
1829 
1830 	inode->i_generation = BTRFS_I(inode)->generation;
1831 	BTRFS_I(inode)->index_cnt = (u64)-1;
1832 
1833 	mutex_unlock(&delayed_node->mutex);
1834 	btrfs_release_delayed_node(delayed_node);
1835 	return 0;
1836 }
1837 
1838 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1839 			       struct btrfs_root *root, struct inode *inode)
1840 {
1841 	struct btrfs_delayed_node *delayed_node;
1842 	int ret = 0;
1843 
1844 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1845 	if (IS_ERR(delayed_node))
1846 		return PTR_ERR(delayed_node);
1847 
1848 	mutex_lock(&delayed_node->mutex);
1849 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1850 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1851 		goto release_node;
1852 	}
1853 
1854 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1855 						   delayed_node);
1856 	if (ret)
1857 		goto release_node;
1858 
1859 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1860 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1861 	delayed_node->count++;
1862 	atomic_inc(&root->fs_info->delayed_root->items);
1863 release_node:
1864 	mutex_unlock(&delayed_node->mutex);
1865 	btrfs_release_delayed_node(delayed_node);
1866 	return ret;
1867 }
1868 
1869 int btrfs_delayed_delete_inode_ref(struct inode *inode)
1870 {
1871 	struct btrfs_delayed_node *delayed_node;
1872 
1873 	/*
1874 	 * we don't do delayed inode updates during log recovery because it
1875 	 * leads to enospc problems.  This means we also can't do
1876 	 * delayed inode refs
1877 	 */
1878 	if (BTRFS_I(inode)->root->fs_info->log_root_recovering)
1879 		return -EAGAIN;
1880 
1881 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1882 	if (IS_ERR(delayed_node))
1883 		return PTR_ERR(delayed_node);
1884 
1885 	/*
1886 	 * We don't reserve space for inode ref deletion is because:
1887 	 * - We ONLY do async inode ref deletion for the inode who has only
1888 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1889 	 *   And in most case, the inode ref and the inode item are in the
1890 	 *   same leaf, and we will deal with them at the same time.
1891 	 *   Since we are sure we will reserve the space for the inode item,
1892 	 *   it is unnecessary to reserve space for inode ref deletion.
1893 	 * - If the inode ref and the inode item are not in the same leaf,
1894 	 *   We also needn't worry about enospc problem, because we reserve
1895 	 *   much more space for the inode update than it needs.
1896 	 * - At the worst, we can steal some space from the global reservation.
1897 	 *   It is very rare.
1898 	 */
1899 	mutex_lock(&delayed_node->mutex);
1900 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1901 		goto release_node;
1902 
1903 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1904 	delayed_node->count++;
1905 	atomic_inc(&BTRFS_I(inode)->root->fs_info->delayed_root->items);
1906 release_node:
1907 	mutex_unlock(&delayed_node->mutex);
1908 	btrfs_release_delayed_node(delayed_node);
1909 	return 0;
1910 }
1911 
1912 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1913 {
1914 	struct btrfs_root *root = delayed_node->root;
1915 	struct btrfs_delayed_item *curr_item, *prev_item;
1916 
1917 	mutex_lock(&delayed_node->mutex);
1918 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1919 	while (curr_item) {
1920 		btrfs_delayed_item_release_metadata(root, curr_item);
1921 		prev_item = curr_item;
1922 		curr_item = __btrfs_next_delayed_item(prev_item);
1923 		btrfs_release_delayed_item(prev_item);
1924 	}
1925 
1926 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1927 	while (curr_item) {
1928 		btrfs_delayed_item_release_metadata(root, curr_item);
1929 		prev_item = curr_item;
1930 		curr_item = __btrfs_next_delayed_item(prev_item);
1931 		btrfs_release_delayed_item(prev_item);
1932 	}
1933 
1934 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1935 		btrfs_release_delayed_iref(delayed_node);
1936 
1937 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1938 		btrfs_delayed_inode_release_metadata(root, delayed_node);
1939 		btrfs_release_delayed_inode(delayed_node);
1940 	}
1941 	mutex_unlock(&delayed_node->mutex);
1942 }
1943 
1944 void btrfs_kill_delayed_inode_items(struct inode *inode)
1945 {
1946 	struct btrfs_delayed_node *delayed_node;
1947 
1948 	delayed_node = btrfs_get_delayed_node(inode);
1949 	if (!delayed_node)
1950 		return;
1951 
1952 	__btrfs_kill_delayed_node(delayed_node);
1953 	btrfs_release_delayed_node(delayed_node);
1954 }
1955 
1956 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1957 {
1958 	u64 inode_id = 0;
1959 	struct btrfs_delayed_node *delayed_nodes[8];
1960 	int i, n;
1961 
1962 	while (1) {
1963 		spin_lock(&root->inode_lock);
1964 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1965 					   (void **)delayed_nodes, inode_id,
1966 					   ARRAY_SIZE(delayed_nodes));
1967 		if (!n) {
1968 			spin_unlock(&root->inode_lock);
1969 			break;
1970 		}
1971 
1972 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1973 
1974 		for (i = 0; i < n; i++)
1975 			atomic_inc(&delayed_nodes[i]->refs);
1976 		spin_unlock(&root->inode_lock);
1977 
1978 		for (i = 0; i < n; i++) {
1979 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1980 			btrfs_release_delayed_node(delayed_nodes[i]);
1981 		}
1982 	}
1983 }
1984 
1985 void btrfs_destroy_delayed_inodes(struct btrfs_root *root)
1986 {
1987 	struct btrfs_delayed_root *delayed_root;
1988 	struct btrfs_delayed_node *curr_node, *prev_node;
1989 
1990 	delayed_root = btrfs_get_delayed_root(root);
1991 
1992 	curr_node = btrfs_first_delayed_node(delayed_root);
1993 	while (curr_node) {
1994 		__btrfs_kill_delayed_node(curr_node);
1995 
1996 		prev_node = curr_node;
1997 		curr_node = btrfs_next_delayed_node(curr_node);
1998 		btrfs_release_delayed_node(prev_node);
1999 	}
2000 }
2001 
2002