xref: /openbmc/linux/fs/btrfs/delayed-inode.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 Fujitsu.  All rights reserved.
4  * Written by Miao Xie <miaox@cn.fujitsu.com>
5  */
6 
7 #include <linux/slab.h>
8 #include <linux/iversion.h>
9 #include "delayed-inode.h"
10 #include "disk-io.h"
11 #include "transaction.h"
12 #include "ctree.h"
13 #include "qgroup.h"
14 
15 #define BTRFS_DELAYED_WRITEBACK		512
16 #define BTRFS_DELAYED_BACKGROUND	128
17 #define BTRFS_DELAYED_BATCH		16
18 
19 static struct kmem_cache *delayed_node_cache;
20 
21 int __init btrfs_delayed_inode_init(void)
22 {
23 	delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
24 					sizeof(struct btrfs_delayed_node),
25 					0,
26 					SLAB_MEM_SPREAD,
27 					NULL);
28 	if (!delayed_node_cache)
29 		return -ENOMEM;
30 	return 0;
31 }
32 
33 void __cold btrfs_delayed_inode_exit(void)
34 {
35 	kmem_cache_destroy(delayed_node_cache);
36 }
37 
38 static inline void btrfs_init_delayed_node(
39 				struct btrfs_delayed_node *delayed_node,
40 				struct btrfs_root *root, u64 inode_id)
41 {
42 	delayed_node->root = root;
43 	delayed_node->inode_id = inode_id;
44 	refcount_set(&delayed_node->refs, 0);
45 	delayed_node->ins_root = RB_ROOT_CACHED;
46 	delayed_node->del_root = RB_ROOT_CACHED;
47 	mutex_init(&delayed_node->mutex);
48 	INIT_LIST_HEAD(&delayed_node->n_list);
49 	INIT_LIST_HEAD(&delayed_node->p_list);
50 }
51 
52 static inline int btrfs_is_continuous_delayed_item(
53 					struct btrfs_delayed_item *item1,
54 					struct btrfs_delayed_item *item2)
55 {
56 	if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
57 	    item1->key.objectid == item2->key.objectid &&
58 	    item1->key.type == item2->key.type &&
59 	    item1->key.offset + 1 == item2->key.offset)
60 		return 1;
61 	return 0;
62 }
63 
64 static struct btrfs_delayed_node *btrfs_get_delayed_node(
65 		struct btrfs_inode *btrfs_inode)
66 {
67 	struct btrfs_root *root = btrfs_inode->root;
68 	u64 ino = btrfs_ino(btrfs_inode);
69 	struct btrfs_delayed_node *node;
70 
71 	node = READ_ONCE(btrfs_inode->delayed_node);
72 	if (node) {
73 		refcount_inc(&node->refs);
74 		return node;
75 	}
76 
77 	spin_lock(&root->inode_lock);
78 	node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
79 
80 	if (node) {
81 		if (btrfs_inode->delayed_node) {
82 			refcount_inc(&node->refs);	/* can be accessed */
83 			BUG_ON(btrfs_inode->delayed_node != node);
84 			spin_unlock(&root->inode_lock);
85 			return node;
86 		}
87 
88 		/*
89 		 * It's possible that we're racing into the middle of removing
90 		 * this node from the radix tree.  In this case, the refcount
91 		 * was zero and it should never go back to one.  Just return
92 		 * NULL like it was never in the radix at all; our release
93 		 * function is in the process of removing it.
94 		 *
95 		 * Some implementations of refcount_inc refuse to bump the
96 		 * refcount once it has hit zero.  If we don't do this dance
97 		 * here, refcount_inc() may decide to just WARN_ONCE() instead
98 		 * of actually bumping the refcount.
99 		 *
100 		 * If this node is properly in the radix, we want to bump the
101 		 * refcount twice, once for the inode and once for this get
102 		 * operation.
103 		 */
104 		if (refcount_inc_not_zero(&node->refs)) {
105 			refcount_inc(&node->refs);
106 			btrfs_inode->delayed_node = node;
107 		} else {
108 			node = NULL;
109 		}
110 
111 		spin_unlock(&root->inode_lock);
112 		return node;
113 	}
114 	spin_unlock(&root->inode_lock);
115 
116 	return NULL;
117 }
118 
119 /* Will return either the node or PTR_ERR(-ENOMEM) */
120 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
121 		struct btrfs_inode *btrfs_inode)
122 {
123 	struct btrfs_delayed_node *node;
124 	struct btrfs_root *root = btrfs_inode->root;
125 	u64 ino = btrfs_ino(btrfs_inode);
126 	int ret;
127 
128 again:
129 	node = btrfs_get_delayed_node(btrfs_inode);
130 	if (node)
131 		return node;
132 
133 	node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
134 	if (!node)
135 		return ERR_PTR(-ENOMEM);
136 	btrfs_init_delayed_node(node, root, ino);
137 
138 	/* cached in the btrfs inode and can be accessed */
139 	refcount_set(&node->refs, 2);
140 
141 	ret = radix_tree_preload(GFP_NOFS);
142 	if (ret) {
143 		kmem_cache_free(delayed_node_cache, node);
144 		return ERR_PTR(ret);
145 	}
146 
147 	spin_lock(&root->inode_lock);
148 	ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
149 	if (ret == -EEXIST) {
150 		spin_unlock(&root->inode_lock);
151 		kmem_cache_free(delayed_node_cache, node);
152 		radix_tree_preload_end();
153 		goto again;
154 	}
155 	btrfs_inode->delayed_node = node;
156 	spin_unlock(&root->inode_lock);
157 	radix_tree_preload_end();
158 
159 	return node;
160 }
161 
162 /*
163  * Call it when holding delayed_node->mutex
164  *
165  * If mod = 1, add this node into the prepared list.
166  */
167 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
168 				     struct btrfs_delayed_node *node,
169 				     int mod)
170 {
171 	spin_lock(&root->lock);
172 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
173 		if (!list_empty(&node->p_list))
174 			list_move_tail(&node->p_list, &root->prepare_list);
175 		else if (mod)
176 			list_add_tail(&node->p_list, &root->prepare_list);
177 	} else {
178 		list_add_tail(&node->n_list, &root->node_list);
179 		list_add_tail(&node->p_list, &root->prepare_list);
180 		refcount_inc(&node->refs);	/* inserted into list */
181 		root->nodes++;
182 		set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
183 	}
184 	spin_unlock(&root->lock);
185 }
186 
187 /* Call it when holding delayed_node->mutex */
188 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
189 				       struct btrfs_delayed_node *node)
190 {
191 	spin_lock(&root->lock);
192 	if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
193 		root->nodes--;
194 		refcount_dec(&node->refs);	/* not in the list */
195 		list_del_init(&node->n_list);
196 		if (!list_empty(&node->p_list))
197 			list_del_init(&node->p_list);
198 		clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
199 	}
200 	spin_unlock(&root->lock);
201 }
202 
203 static struct btrfs_delayed_node *btrfs_first_delayed_node(
204 			struct btrfs_delayed_root *delayed_root)
205 {
206 	struct list_head *p;
207 	struct btrfs_delayed_node *node = NULL;
208 
209 	spin_lock(&delayed_root->lock);
210 	if (list_empty(&delayed_root->node_list))
211 		goto out;
212 
213 	p = delayed_root->node_list.next;
214 	node = list_entry(p, struct btrfs_delayed_node, n_list);
215 	refcount_inc(&node->refs);
216 out:
217 	spin_unlock(&delayed_root->lock);
218 
219 	return node;
220 }
221 
222 static struct btrfs_delayed_node *btrfs_next_delayed_node(
223 						struct btrfs_delayed_node *node)
224 {
225 	struct btrfs_delayed_root *delayed_root;
226 	struct list_head *p;
227 	struct btrfs_delayed_node *next = NULL;
228 
229 	delayed_root = node->root->fs_info->delayed_root;
230 	spin_lock(&delayed_root->lock);
231 	if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
232 		/* not in the list */
233 		if (list_empty(&delayed_root->node_list))
234 			goto out;
235 		p = delayed_root->node_list.next;
236 	} else if (list_is_last(&node->n_list, &delayed_root->node_list))
237 		goto out;
238 	else
239 		p = node->n_list.next;
240 
241 	next = list_entry(p, struct btrfs_delayed_node, n_list);
242 	refcount_inc(&next->refs);
243 out:
244 	spin_unlock(&delayed_root->lock);
245 
246 	return next;
247 }
248 
249 static void __btrfs_release_delayed_node(
250 				struct btrfs_delayed_node *delayed_node,
251 				int mod)
252 {
253 	struct btrfs_delayed_root *delayed_root;
254 
255 	if (!delayed_node)
256 		return;
257 
258 	delayed_root = delayed_node->root->fs_info->delayed_root;
259 
260 	mutex_lock(&delayed_node->mutex);
261 	if (delayed_node->count)
262 		btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
263 	else
264 		btrfs_dequeue_delayed_node(delayed_root, delayed_node);
265 	mutex_unlock(&delayed_node->mutex);
266 
267 	if (refcount_dec_and_test(&delayed_node->refs)) {
268 		struct btrfs_root *root = delayed_node->root;
269 
270 		spin_lock(&root->inode_lock);
271 		/*
272 		 * Once our refcount goes to zero, nobody is allowed to bump it
273 		 * back up.  We can delete it now.
274 		 */
275 		ASSERT(refcount_read(&delayed_node->refs) == 0);
276 		radix_tree_delete(&root->delayed_nodes_tree,
277 				  delayed_node->inode_id);
278 		spin_unlock(&root->inode_lock);
279 		kmem_cache_free(delayed_node_cache, delayed_node);
280 	}
281 }
282 
283 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
284 {
285 	__btrfs_release_delayed_node(node, 0);
286 }
287 
288 static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
289 					struct btrfs_delayed_root *delayed_root)
290 {
291 	struct list_head *p;
292 	struct btrfs_delayed_node *node = NULL;
293 
294 	spin_lock(&delayed_root->lock);
295 	if (list_empty(&delayed_root->prepare_list))
296 		goto out;
297 
298 	p = delayed_root->prepare_list.next;
299 	list_del_init(p);
300 	node = list_entry(p, struct btrfs_delayed_node, p_list);
301 	refcount_inc(&node->refs);
302 out:
303 	spin_unlock(&delayed_root->lock);
304 
305 	return node;
306 }
307 
308 static inline void btrfs_release_prepared_delayed_node(
309 					struct btrfs_delayed_node *node)
310 {
311 	__btrfs_release_delayed_node(node, 1);
312 }
313 
314 static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
315 {
316 	struct btrfs_delayed_item *item;
317 	item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
318 	if (item) {
319 		item->data_len = data_len;
320 		item->ins_or_del = 0;
321 		item->bytes_reserved = 0;
322 		item->delayed_node = NULL;
323 		refcount_set(&item->refs, 1);
324 	}
325 	return item;
326 }
327 
328 /*
329  * __btrfs_lookup_delayed_item - look up the delayed item by key
330  * @delayed_node: pointer to the delayed node
331  * @key:	  the key to look up
332  * @prev:	  used to store the prev item if the right item isn't found
333  * @next:	  used to store the next item if the right item isn't found
334  *
335  * Note: if we don't find the right item, we will return the prev item and
336  * the next item.
337  */
338 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
339 				struct rb_root *root,
340 				struct btrfs_key *key,
341 				struct btrfs_delayed_item **prev,
342 				struct btrfs_delayed_item **next)
343 {
344 	struct rb_node *node, *prev_node = NULL;
345 	struct btrfs_delayed_item *delayed_item = NULL;
346 	int ret = 0;
347 
348 	node = root->rb_node;
349 
350 	while (node) {
351 		delayed_item = rb_entry(node, struct btrfs_delayed_item,
352 					rb_node);
353 		prev_node = node;
354 		ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
355 		if (ret < 0)
356 			node = node->rb_right;
357 		else if (ret > 0)
358 			node = node->rb_left;
359 		else
360 			return delayed_item;
361 	}
362 
363 	if (prev) {
364 		if (!prev_node)
365 			*prev = NULL;
366 		else if (ret < 0)
367 			*prev = delayed_item;
368 		else if ((node = rb_prev(prev_node)) != NULL) {
369 			*prev = rb_entry(node, struct btrfs_delayed_item,
370 					 rb_node);
371 		} else
372 			*prev = NULL;
373 	}
374 
375 	if (next) {
376 		if (!prev_node)
377 			*next = NULL;
378 		else if (ret > 0)
379 			*next = delayed_item;
380 		else if ((node = rb_next(prev_node)) != NULL) {
381 			*next = rb_entry(node, struct btrfs_delayed_item,
382 					 rb_node);
383 		} else
384 			*next = NULL;
385 	}
386 	return NULL;
387 }
388 
389 static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
390 					struct btrfs_delayed_node *delayed_node,
391 					struct btrfs_key *key)
392 {
393 	return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
394 					   NULL, NULL);
395 }
396 
397 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
398 				    struct btrfs_delayed_item *ins,
399 				    int action)
400 {
401 	struct rb_node **p, *node;
402 	struct rb_node *parent_node = NULL;
403 	struct rb_root_cached *root;
404 	struct btrfs_delayed_item *item;
405 	int cmp;
406 	bool leftmost = true;
407 
408 	if (action == BTRFS_DELAYED_INSERTION_ITEM)
409 		root = &delayed_node->ins_root;
410 	else if (action == BTRFS_DELAYED_DELETION_ITEM)
411 		root = &delayed_node->del_root;
412 	else
413 		BUG();
414 	p = &root->rb_root.rb_node;
415 	node = &ins->rb_node;
416 
417 	while (*p) {
418 		parent_node = *p;
419 		item = rb_entry(parent_node, struct btrfs_delayed_item,
420 				 rb_node);
421 
422 		cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
423 		if (cmp < 0) {
424 			p = &(*p)->rb_right;
425 			leftmost = false;
426 		} else if (cmp > 0) {
427 			p = &(*p)->rb_left;
428 		} else {
429 			return -EEXIST;
430 		}
431 	}
432 
433 	rb_link_node(node, parent_node, p);
434 	rb_insert_color_cached(node, root, leftmost);
435 	ins->delayed_node = delayed_node;
436 	ins->ins_or_del = action;
437 
438 	if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
439 	    action == BTRFS_DELAYED_INSERTION_ITEM &&
440 	    ins->key.offset >= delayed_node->index_cnt)
441 			delayed_node->index_cnt = ins->key.offset + 1;
442 
443 	delayed_node->count++;
444 	atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
445 	return 0;
446 }
447 
448 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
449 					      struct btrfs_delayed_item *item)
450 {
451 	return __btrfs_add_delayed_item(node, item,
452 					BTRFS_DELAYED_INSERTION_ITEM);
453 }
454 
455 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
456 					     struct btrfs_delayed_item *item)
457 {
458 	return __btrfs_add_delayed_item(node, item,
459 					BTRFS_DELAYED_DELETION_ITEM);
460 }
461 
462 static void finish_one_item(struct btrfs_delayed_root *delayed_root)
463 {
464 	int seq = atomic_inc_return(&delayed_root->items_seq);
465 
466 	/* atomic_dec_return implies a barrier */
467 	if ((atomic_dec_return(&delayed_root->items) <
468 	    BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
469 		cond_wake_up_nomb(&delayed_root->wait);
470 }
471 
472 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
473 {
474 	struct rb_root_cached *root;
475 	struct btrfs_delayed_root *delayed_root;
476 
477 	delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
478 
479 	BUG_ON(!delayed_root);
480 	BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
481 	       delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
482 
483 	if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
484 		root = &delayed_item->delayed_node->ins_root;
485 	else
486 		root = &delayed_item->delayed_node->del_root;
487 
488 	rb_erase_cached(&delayed_item->rb_node, root);
489 	delayed_item->delayed_node->count--;
490 
491 	finish_one_item(delayed_root);
492 }
493 
494 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
495 {
496 	if (item) {
497 		__btrfs_remove_delayed_item(item);
498 		if (refcount_dec_and_test(&item->refs))
499 			kfree(item);
500 	}
501 }
502 
503 static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
504 					struct btrfs_delayed_node *delayed_node)
505 {
506 	struct rb_node *p;
507 	struct btrfs_delayed_item *item = NULL;
508 
509 	p = rb_first_cached(&delayed_node->ins_root);
510 	if (p)
511 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
512 
513 	return item;
514 }
515 
516 static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
517 					struct btrfs_delayed_node *delayed_node)
518 {
519 	struct rb_node *p;
520 	struct btrfs_delayed_item *item = NULL;
521 
522 	p = rb_first_cached(&delayed_node->del_root);
523 	if (p)
524 		item = rb_entry(p, struct btrfs_delayed_item, rb_node);
525 
526 	return item;
527 }
528 
529 static struct btrfs_delayed_item *__btrfs_next_delayed_item(
530 						struct btrfs_delayed_item *item)
531 {
532 	struct rb_node *p;
533 	struct btrfs_delayed_item *next = NULL;
534 
535 	p = rb_next(&item->rb_node);
536 	if (p)
537 		next = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 
539 	return next;
540 }
541 
542 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
543 					       struct btrfs_root *root,
544 					       struct btrfs_delayed_item *item)
545 {
546 	struct btrfs_block_rsv *src_rsv;
547 	struct btrfs_block_rsv *dst_rsv;
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 	u64 num_bytes;
550 	int ret;
551 
552 	if (!trans->bytes_reserved)
553 		return 0;
554 
555 	src_rsv = trans->block_rsv;
556 	dst_rsv = &fs_info->delayed_block_rsv;
557 
558 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
559 
560 	/*
561 	 * Here we migrate space rsv from transaction rsv, since have already
562 	 * reserved space when starting a transaction.  So no need to reserve
563 	 * qgroup space here.
564 	 */
565 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
566 	if (!ret) {
567 		trace_btrfs_space_reservation(fs_info, "delayed_item",
568 					      item->key.objectid,
569 					      num_bytes, 1);
570 		item->bytes_reserved = num_bytes;
571 	}
572 
573 	return ret;
574 }
575 
576 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
577 						struct btrfs_delayed_item *item)
578 {
579 	struct btrfs_block_rsv *rsv;
580 	struct btrfs_fs_info *fs_info = root->fs_info;
581 
582 	if (!item->bytes_reserved)
583 		return;
584 
585 	rsv = &fs_info->delayed_block_rsv;
586 	/*
587 	 * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
588 	 * to release/reserve qgroup space.
589 	 */
590 	trace_btrfs_space_reservation(fs_info, "delayed_item",
591 				      item->key.objectid, item->bytes_reserved,
592 				      0);
593 	btrfs_block_rsv_release(fs_info, rsv,
594 				item->bytes_reserved);
595 }
596 
597 static int btrfs_delayed_inode_reserve_metadata(
598 					struct btrfs_trans_handle *trans,
599 					struct btrfs_root *root,
600 					struct btrfs_inode *inode,
601 					struct btrfs_delayed_node *node)
602 {
603 	struct btrfs_fs_info *fs_info = root->fs_info;
604 	struct btrfs_block_rsv *src_rsv;
605 	struct btrfs_block_rsv *dst_rsv;
606 	u64 num_bytes;
607 	int ret;
608 
609 	src_rsv = trans->block_rsv;
610 	dst_rsv = &fs_info->delayed_block_rsv;
611 
612 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
613 
614 	/*
615 	 * btrfs_dirty_inode will update the inode under btrfs_join_transaction
616 	 * which doesn't reserve space for speed.  This is a problem since we
617 	 * still need to reserve space for this update, so try to reserve the
618 	 * space.
619 	 *
620 	 * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
621 	 * we always reserve enough to update the inode item.
622 	 */
623 	if (!src_rsv || (!trans->bytes_reserved &&
624 			 src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
625 		ret = btrfs_qgroup_reserve_meta_prealloc(root,
626 				fs_info->nodesize, true);
627 		if (ret < 0)
628 			return ret;
629 		ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
630 					  BTRFS_RESERVE_NO_FLUSH);
631 		/*
632 		 * Since we're under a transaction reserve_metadata_bytes could
633 		 * try to commit the transaction which will make it return
634 		 * EAGAIN to make us stop the transaction we have, so return
635 		 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
636 		 */
637 		if (ret == -EAGAIN) {
638 			ret = -ENOSPC;
639 			btrfs_qgroup_free_meta_prealloc(root, num_bytes);
640 		}
641 		if (!ret) {
642 			node->bytes_reserved = num_bytes;
643 			trace_btrfs_space_reservation(fs_info,
644 						      "delayed_inode",
645 						      btrfs_ino(inode),
646 						      num_bytes, 1);
647 		} else {
648 			btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
649 		}
650 		return ret;
651 	}
652 
653 	ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
654 	if (!ret) {
655 		trace_btrfs_space_reservation(fs_info, "delayed_inode",
656 					      btrfs_ino(inode), num_bytes, 1);
657 		node->bytes_reserved = num_bytes;
658 	}
659 
660 	return ret;
661 }
662 
663 static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
664 						struct btrfs_delayed_node *node,
665 						bool qgroup_free)
666 {
667 	struct btrfs_block_rsv *rsv;
668 
669 	if (!node->bytes_reserved)
670 		return;
671 
672 	rsv = &fs_info->delayed_block_rsv;
673 	trace_btrfs_space_reservation(fs_info, "delayed_inode",
674 				      node->inode_id, node->bytes_reserved, 0);
675 	btrfs_block_rsv_release(fs_info, rsv,
676 				node->bytes_reserved);
677 	if (qgroup_free)
678 		btrfs_qgroup_free_meta_prealloc(node->root,
679 				node->bytes_reserved);
680 	else
681 		btrfs_qgroup_convert_reserved_meta(node->root,
682 				node->bytes_reserved);
683 	node->bytes_reserved = 0;
684 }
685 
686 /*
687  * This helper will insert some continuous items into the same leaf according
688  * to the free space of the leaf.
689  */
690 static int btrfs_batch_insert_items(struct btrfs_root *root,
691 				    struct btrfs_path *path,
692 				    struct btrfs_delayed_item *item)
693 {
694 	struct btrfs_fs_info *fs_info = root->fs_info;
695 	struct btrfs_delayed_item *curr, *next;
696 	int free_space;
697 	int total_data_size = 0, total_size = 0;
698 	struct extent_buffer *leaf;
699 	char *data_ptr;
700 	struct btrfs_key *keys;
701 	u32 *data_size;
702 	struct list_head head;
703 	int slot;
704 	int nitems;
705 	int i;
706 	int ret = 0;
707 
708 	BUG_ON(!path->nodes[0]);
709 
710 	leaf = path->nodes[0];
711 	free_space = btrfs_leaf_free_space(fs_info, leaf);
712 	INIT_LIST_HEAD(&head);
713 
714 	next = item;
715 	nitems = 0;
716 
717 	/*
718 	 * count the number of the continuous items that we can insert in batch
719 	 */
720 	while (total_size + next->data_len + sizeof(struct btrfs_item) <=
721 	       free_space) {
722 		total_data_size += next->data_len;
723 		total_size += next->data_len + sizeof(struct btrfs_item);
724 		list_add_tail(&next->tree_list, &head);
725 		nitems++;
726 
727 		curr = next;
728 		next = __btrfs_next_delayed_item(curr);
729 		if (!next)
730 			break;
731 
732 		if (!btrfs_is_continuous_delayed_item(curr, next))
733 			break;
734 	}
735 
736 	if (!nitems) {
737 		ret = 0;
738 		goto out;
739 	}
740 
741 	/*
742 	 * we need allocate some memory space, but it might cause the task
743 	 * to sleep, so we set all locked nodes in the path to blocking locks
744 	 * first.
745 	 */
746 	btrfs_set_path_blocking(path);
747 
748 	keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
749 	if (!keys) {
750 		ret = -ENOMEM;
751 		goto out;
752 	}
753 
754 	data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
755 	if (!data_size) {
756 		ret = -ENOMEM;
757 		goto error;
758 	}
759 
760 	/* get keys of all the delayed items */
761 	i = 0;
762 	list_for_each_entry(next, &head, tree_list) {
763 		keys[i] = next->key;
764 		data_size[i] = next->data_len;
765 		i++;
766 	}
767 
768 	/* insert the keys of the items */
769 	setup_items_for_insert(root, path, keys, data_size,
770 			       total_data_size, total_size, nitems);
771 
772 	/* insert the dir index items */
773 	slot = path->slots[0];
774 	list_for_each_entry_safe(curr, next, &head, tree_list) {
775 		data_ptr = btrfs_item_ptr(leaf, slot, char);
776 		write_extent_buffer(leaf, &curr->data,
777 				    (unsigned long)data_ptr,
778 				    curr->data_len);
779 		slot++;
780 
781 		btrfs_delayed_item_release_metadata(root, curr);
782 
783 		list_del(&curr->tree_list);
784 		btrfs_release_delayed_item(curr);
785 	}
786 
787 error:
788 	kfree(data_size);
789 	kfree(keys);
790 out:
791 	return ret;
792 }
793 
794 /*
795  * This helper can just do simple insertion that needn't extend item for new
796  * data, such as directory name index insertion, inode insertion.
797  */
798 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
799 				     struct btrfs_root *root,
800 				     struct btrfs_path *path,
801 				     struct btrfs_delayed_item *delayed_item)
802 {
803 	struct extent_buffer *leaf;
804 	char *ptr;
805 	int ret;
806 
807 	ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
808 				      delayed_item->data_len);
809 	if (ret < 0 && ret != -EEXIST)
810 		return ret;
811 
812 	leaf = path->nodes[0];
813 
814 	ptr = btrfs_item_ptr(leaf, path->slots[0], char);
815 
816 	write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
817 			    delayed_item->data_len);
818 	btrfs_mark_buffer_dirty(leaf);
819 
820 	btrfs_delayed_item_release_metadata(root, delayed_item);
821 	return 0;
822 }
823 
824 /*
825  * we insert an item first, then if there are some continuous items, we try
826  * to insert those items into the same leaf.
827  */
828 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
829 				      struct btrfs_path *path,
830 				      struct btrfs_root *root,
831 				      struct btrfs_delayed_node *node)
832 {
833 	struct btrfs_delayed_item *curr, *prev;
834 	int ret = 0;
835 
836 do_again:
837 	mutex_lock(&node->mutex);
838 	curr = __btrfs_first_delayed_insertion_item(node);
839 	if (!curr)
840 		goto insert_end;
841 
842 	ret = btrfs_insert_delayed_item(trans, root, path, curr);
843 	if (ret < 0) {
844 		btrfs_release_path(path);
845 		goto insert_end;
846 	}
847 
848 	prev = curr;
849 	curr = __btrfs_next_delayed_item(prev);
850 	if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
851 		/* insert the continuous items into the same leaf */
852 		path->slots[0]++;
853 		btrfs_batch_insert_items(root, path, curr);
854 	}
855 	btrfs_release_delayed_item(prev);
856 	btrfs_mark_buffer_dirty(path->nodes[0]);
857 
858 	btrfs_release_path(path);
859 	mutex_unlock(&node->mutex);
860 	goto do_again;
861 
862 insert_end:
863 	mutex_unlock(&node->mutex);
864 	return ret;
865 }
866 
867 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
868 				    struct btrfs_root *root,
869 				    struct btrfs_path *path,
870 				    struct btrfs_delayed_item *item)
871 {
872 	struct btrfs_delayed_item *curr, *next;
873 	struct extent_buffer *leaf;
874 	struct btrfs_key key;
875 	struct list_head head;
876 	int nitems, i, last_item;
877 	int ret = 0;
878 
879 	BUG_ON(!path->nodes[0]);
880 
881 	leaf = path->nodes[0];
882 
883 	i = path->slots[0];
884 	last_item = btrfs_header_nritems(leaf) - 1;
885 	if (i > last_item)
886 		return -ENOENT;	/* FIXME: Is errno suitable? */
887 
888 	next = item;
889 	INIT_LIST_HEAD(&head);
890 	btrfs_item_key_to_cpu(leaf, &key, i);
891 	nitems = 0;
892 	/*
893 	 * count the number of the dir index items that we can delete in batch
894 	 */
895 	while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
896 		list_add_tail(&next->tree_list, &head);
897 		nitems++;
898 
899 		curr = next;
900 		next = __btrfs_next_delayed_item(curr);
901 		if (!next)
902 			break;
903 
904 		if (!btrfs_is_continuous_delayed_item(curr, next))
905 			break;
906 
907 		i++;
908 		if (i > last_item)
909 			break;
910 		btrfs_item_key_to_cpu(leaf, &key, i);
911 	}
912 
913 	if (!nitems)
914 		return 0;
915 
916 	ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
917 	if (ret)
918 		goto out;
919 
920 	list_for_each_entry_safe(curr, next, &head, tree_list) {
921 		btrfs_delayed_item_release_metadata(root, curr);
922 		list_del(&curr->tree_list);
923 		btrfs_release_delayed_item(curr);
924 	}
925 
926 out:
927 	return ret;
928 }
929 
930 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
931 				      struct btrfs_path *path,
932 				      struct btrfs_root *root,
933 				      struct btrfs_delayed_node *node)
934 {
935 	struct btrfs_delayed_item *curr, *prev;
936 	int ret = 0;
937 
938 do_again:
939 	mutex_lock(&node->mutex);
940 	curr = __btrfs_first_delayed_deletion_item(node);
941 	if (!curr)
942 		goto delete_fail;
943 
944 	ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
945 	if (ret < 0)
946 		goto delete_fail;
947 	else if (ret > 0) {
948 		/*
949 		 * can't find the item which the node points to, so this node
950 		 * is invalid, just drop it.
951 		 */
952 		prev = curr;
953 		curr = __btrfs_next_delayed_item(prev);
954 		btrfs_release_delayed_item(prev);
955 		ret = 0;
956 		btrfs_release_path(path);
957 		if (curr) {
958 			mutex_unlock(&node->mutex);
959 			goto do_again;
960 		} else
961 			goto delete_fail;
962 	}
963 
964 	btrfs_batch_delete_items(trans, root, path, curr);
965 	btrfs_release_path(path);
966 	mutex_unlock(&node->mutex);
967 	goto do_again;
968 
969 delete_fail:
970 	btrfs_release_path(path);
971 	mutex_unlock(&node->mutex);
972 	return ret;
973 }
974 
975 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
976 {
977 	struct btrfs_delayed_root *delayed_root;
978 
979 	if (delayed_node &&
980 	    test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
981 		BUG_ON(!delayed_node->root);
982 		clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
983 		delayed_node->count--;
984 
985 		delayed_root = delayed_node->root->fs_info->delayed_root;
986 		finish_one_item(delayed_root);
987 	}
988 }
989 
990 static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
991 {
992 	struct btrfs_delayed_root *delayed_root;
993 
994 	ASSERT(delayed_node->root);
995 	clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
996 	delayed_node->count--;
997 
998 	delayed_root = delayed_node->root->fs_info->delayed_root;
999 	finish_one_item(delayed_root);
1000 }
1001 
1002 static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003 					struct btrfs_root *root,
1004 					struct btrfs_path *path,
1005 					struct btrfs_delayed_node *node)
1006 {
1007 	struct btrfs_fs_info *fs_info = root->fs_info;
1008 	struct btrfs_key key;
1009 	struct btrfs_inode_item *inode_item;
1010 	struct extent_buffer *leaf;
1011 	int mod;
1012 	int ret;
1013 
1014 	key.objectid = node->inode_id;
1015 	key.type = BTRFS_INODE_ITEM_KEY;
1016 	key.offset = 0;
1017 
1018 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1019 		mod = -1;
1020 	else
1021 		mod = 1;
1022 
1023 	ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1024 	if (ret > 0) {
1025 		btrfs_release_path(path);
1026 		return -ENOENT;
1027 	} else if (ret < 0) {
1028 		return ret;
1029 	}
1030 
1031 	leaf = path->nodes[0];
1032 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
1033 				    struct btrfs_inode_item);
1034 	write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1035 			    sizeof(struct btrfs_inode_item));
1036 	btrfs_mark_buffer_dirty(leaf);
1037 
1038 	if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1039 		goto no_iref;
1040 
1041 	path->slots[0]++;
1042 	if (path->slots[0] >= btrfs_header_nritems(leaf))
1043 		goto search;
1044 again:
1045 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1046 	if (key.objectid != node->inode_id)
1047 		goto out;
1048 
1049 	if (key.type != BTRFS_INODE_REF_KEY &&
1050 	    key.type != BTRFS_INODE_EXTREF_KEY)
1051 		goto out;
1052 
1053 	/*
1054 	 * Delayed iref deletion is for the inode who has only one link,
1055 	 * so there is only one iref. The case that several irefs are
1056 	 * in the same item doesn't exist.
1057 	 */
1058 	btrfs_del_item(trans, root, path);
1059 out:
1060 	btrfs_release_delayed_iref(node);
1061 no_iref:
1062 	btrfs_release_path(path);
1063 err_out:
1064 	btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1065 	btrfs_release_delayed_inode(node);
1066 
1067 	return ret;
1068 
1069 search:
1070 	btrfs_release_path(path);
1071 
1072 	key.type = BTRFS_INODE_EXTREF_KEY;
1073 	key.offset = -1;
1074 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1075 	if (ret < 0)
1076 		goto err_out;
1077 	ASSERT(ret);
1078 
1079 	ret = 0;
1080 	leaf = path->nodes[0];
1081 	path->slots[0]--;
1082 	goto again;
1083 }
1084 
1085 static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1086 					     struct btrfs_root *root,
1087 					     struct btrfs_path *path,
1088 					     struct btrfs_delayed_node *node)
1089 {
1090 	int ret;
1091 
1092 	mutex_lock(&node->mutex);
1093 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1094 		mutex_unlock(&node->mutex);
1095 		return 0;
1096 	}
1097 
1098 	ret = __btrfs_update_delayed_inode(trans, root, path, node);
1099 	mutex_unlock(&node->mutex);
1100 	return ret;
1101 }
1102 
1103 static inline int
1104 __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1105 				   struct btrfs_path *path,
1106 				   struct btrfs_delayed_node *node)
1107 {
1108 	int ret;
1109 
1110 	ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1111 	if (ret)
1112 		return ret;
1113 
1114 	ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1115 	if (ret)
1116 		return ret;
1117 
1118 	ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1119 	return ret;
1120 }
1121 
1122 /*
1123  * Called when committing the transaction.
1124  * Returns 0 on success.
1125  * Returns < 0 on error and returns with an aborted transaction with any
1126  * outstanding delayed items cleaned up.
1127  */
1128 static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1129 {
1130 	struct btrfs_fs_info *fs_info = trans->fs_info;
1131 	struct btrfs_delayed_root *delayed_root;
1132 	struct btrfs_delayed_node *curr_node, *prev_node;
1133 	struct btrfs_path *path;
1134 	struct btrfs_block_rsv *block_rsv;
1135 	int ret = 0;
1136 	bool count = (nr > 0);
1137 
1138 	if (trans->aborted)
1139 		return -EIO;
1140 
1141 	path = btrfs_alloc_path();
1142 	if (!path)
1143 		return -ENOMEM;
1144 	path->leave_spinning = 1;
1145 
1146 	block_rsv = trans->block_rsv;
1147 	trans->block_rsv = &fs_info->delayed_block_rsv;
1148 
1149 	delayed_root = fs_info->delayed_root;
1150 
1151 	curr_node = btrfs_first_delayed_node(delayed_root);
1152 	while (curr_node && (!count || (count && nr--))) {
1153 		ret = __btrfs_commit_inode_delayed_items(trans, path,
1154 							 curr_node);
1155 		if (ret) {
1156 			btrfs_release_delayed_node(curr_node);
1157 			curr_node = NULL;
1158 			btrfs_abort_transaction(trans, ret);
1159 			break;
1160 		}
1161 
1162 		prev_node = curr_node;
1163 		curr_node = btrfs_next_delayed_node(curr_node);
1164 		btrfs_release_delayed_node(prev_node);
1165 	}
1166 
1167 	if (curr_node)
1168 		btrfs_release_delayed_node(curr_node);
1169 	btrfs_free_path(path);
1170 	trans->block_rsv = block_rsv;
1171 
1172 	return ret;
1173 }
1174 
1175 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1176 {
1177 	return __btrfs_run_delayed_items(trans, -1);
1178 }
1179 
1180 int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1181 {
1182 	return __btrfs_run_delayed_items(trans, nr);
1183 }
1184 
1185 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1186 				     struct btrfs_inode *inode)
1187 {
1188 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1189 	struct btrfs_path *path;
1190 	struct btrfs_block_rsv *block_rsv;
1191 	int ret;
1192 
1193 	if (!delayed_node)
1194 		return 0;
1195 
1196 	mutex_lock(&delayed_node->mutex);
1197 	if (!delayed_node->count) {
1198 		mutex_unlock(&delayed_node->mutex);
1199 		btrfs_release_delayed_node(delayed_node);
1200 		return 0;
1201 	}
1202 	mutex_unlock(&delayed_node->mutex);
1203 
1204 	path = btrfs_alloc_path();
1205 	if (!path) {
1206 		btrfs_release_delayed_node(delayed_node);
1207 		return -ENOMEM;
1208 	}
1209 	path->leave_spinning = 1;
1210 
1211 	block_rsv = trans->block_rsv;
1212 	trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1213 
1214 	ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1215 
1216 	btrfs_release_delayed_node(delayed_node);
1217 	btrfs_free_path(path);
1218 	trans->block_rsv = block_rsv;
1219 
1220 	return ret;
1221 }
1222 
1223 int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1224 {
1225 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1226 	struct btrfs_trans_handle *trans;
1227 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1228 	struct btrfs_path *path;
1229 	struct btrfs_block_rsv *block_rsv;
1230 	int ret;
1231 
1232 	if (!delayed_node)
1233 		return 0;
1234 
1235 	mutex_lock(&delayed_node->mutex);
1236 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1237 		mutex_unlock(&delayed_node->mutex);
1238 		btrfs_release_delayed_node(delayed_node);
1239 		return 0;
1240 	}
1241 	mutex_unlock(&delayed_node->mutex);
1242 
1243 	trans = btrfs_join_transaction(delayed_node->root);
1244 	if (IS_ERR(trans)) {
1245 		ret = PTR_ERR(trans);
1246 		goto out;
1247 	}
1248 
1249 	path = btrfs_alloc_path();
1250 	if (!path) {
1251 		ret = -ENOMEM;
1252 		goto trans_out;
1253 	}
1254 	path->leave_spinning = 1;
1255 
1256 	block_rsv = trans->block_rsv;
1257 	trans->block_rsv = &fs_info->delayed_block_rsv;
1258 
1259 	mutex_lock(&delayed_node->mutex);
1260 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1261 		ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1262 						   path, delayed_node);
1263 	else
1264 		ret = 0;
1265 	mutex_unlock(&delayed_node->mutex);
1266 
1267 	btrfs_free_path(path);
1268 	trans->block_rsv = block_rsv;
1269 trans_out:
1270 	btrfs_end_transaction(trans);
1271 	btrfs_btree_balance_dirty(fs_info);
1272 out:
1273 	btrfs_release_delayed_node(delayed_node);
1274 
1275 	return ret;
1276 }
1277 
1278 void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1279 {
1280 	struct btrfs_delayed_node *delayed_node;
1281 
1282 	delayed_node = READ_ONCE(inode->delayed_node);
1283 	if (!delayed_node)
1284 		return;
1285 
1286 	inode->delayed_node = NULL;
1287 	btrfs_release_delayed_node(delayed_node);
1288 }
1289 
1290 struct btrfs_async_delayed_work {
1291 	struct btrfs_delayed_root *delayed_root;
1292 	int nr;
1293 	struct btrfs_work work;
1294 };
1295 
1296 static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1297 {
1298 	struct btrfs_async_delayed_work *async_work;
1299 	struct btrfs_delayed_root *delayed_root;
1300 	struct btrfs_trans_handle *trans;
1301 	struct btrfs_path *path;
1302 	struct btrfs_delayed_node *delayed_node = NULL;
1303 	struct btrfs_root *root;
1304 	struct btrfs_block_rsv *block_rsv;
1305 	int total_done = 0;
1306 
1307 	async_work = container_of(work, struct btrfs_async_delayed_work, work);
1308 	delayed_root = async_work->delayed_root;
1309 
1310 	path = btrfs_alloc_path();
1311 	if (!path)
1312 		goto out;
1313 
1314 	do {
1315 		if (atomic_read(&delayed_root->items) <
1316 		    BTRFS_DELAYED_BACKGROUND / 2)
1317 			break;
1318 
1319 		delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1320 		if (!delayed_node)
1321 			break;
1322 
1323 		path->leave_spinning = 1;
1324 		root = delayed_node->root;
1325 
1326 		trans = btrfs_join_transaction(root);
1327 		if (IS_ERR(trans)) {
1328 			btrfs_release_path(path);
1329 			btrfs_release_prepared_delayed_node(delayed_node);
1330 			total_done++;
1331 			continue;
1332 		}
1333 
1334 		block_rsv = trans->block_rsv;
1335 		trans->block_rsv = &root->fs_info->delayed_block_rsv;
1336 
1337 		__btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1338 
1339 		trans->block_rsv = block_rsv;
1340 		btrfs_end_transaction(trans);
1341 		btrfs_btree_balance_dirty_nodelay(root->fs_info);
1342 
1343 		btrfs_release_path(path);
1344 		btrfs_release_prepared_delayed_node(delayed_node);
1345 		total_done++;
1346 
1347 	} while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1348 		 || total_done < async_work->nr);
1349 
1350 	btrfs_free_path(path);
1351 out:
1352 	wake_up(&delayed_root->wait);
1353 	kfree(async_work);
1354 }
1355 
1356 
1357 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1358 				     struct btrfs_fs_info *fs_info, int nr)
1359 {
1360 	struct btrfs_async_delayed_work *async_work;
1361 
1362 	async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1363 	if (!async_work)
1364 		return -ENOMEM;
1365 
1366 	async_work->delayed_root = delayed_root;
1367 	btrfs_init_work(&async_work->work, btrfs_delayed_meta_helper,
1368 			btrfs_async_run_delayed_root, NULL, NULL);
1369 	async_work->nr = nr;
1370 
1371 	btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1372 	return 0;
1373 }
1374 
1375 void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1376 {
1377 	WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1378 }
1379 
1380 static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1381 {
1382 	int val = atomic_read(&delayed_root->items_seq);
1383 
1384 	if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1385 		return 1;
1386 
1387 	if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1388 		return 1;
1389 
1390 	return 0;
1391 }
1392 
1393 void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1394 {
1395 	struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1396 
1397 	if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1398 		btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1399 		return;
1400 
1401 	if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1402 		int seq;
1403 		int ret;
1404 
1405 		seq = atomic_read(&delayed_root->items_seq);
1406 
1407 		ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1408 		if (ret)
1409 			return;
1410 
1411 		wait_event_interruptible(delayed_root->wait,
1412 					 could_end_wait(delayed_root, seq));
1413 		return;
1414 	}
1415 
1416 	btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1417 }
1418 
1419 /* Will return 0 or -ENOMEM */
1420 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1421 				   const char *name, int name_len,
1422 				   struct btrfs_inode *dir,
1423 				   struct btrfs_disk_key *disk_key, u8 type,
1424 				   u64 index)
1425 {
1426 	struct btrfs_delayed_node *delayed_node;
1427 	struct btrfs_delayed_item *delayed_item;
1428 	struct btrfs_dir_item *dir_item;
1429 	int ret;
1430 
1431 	delayed_node = btrfs_get_or_create_delayed_node(dir);
1432 	if (IS_ERR(delayed_node))
1433 		return PTR_ERR(delayed_node);
1434 
1435 	delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1436 	if (!delayed_item) {
1437 		ret = -ENOMEM;
1438 		goto release_node;
1439 	}
1440 
1441 	delayed_item->key.objectid = btrfs_ino(dir);
1442 	delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1443 	delayed_item->key.offset = index;
1444 
1445 	dir_item = (struct btrfs_dir_item *)delayed_item->data;
1446 	dir_item->location = *disk_key;
1447 	btrfs_set_stack_dir_transid(dir_item, trans->transid);
1448 	btrfs_set_stack_dir_data_len(dir_item, 0);
1449 	btrfs_set_stack_dir_name_len(dir_item, name_len);
1450 	btrfs_set_stack_dir_type(dir_item, type);
1451 	memcpy((char *)(dir_item + 1), name, name_len);
1452 
1453 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1454 	/*
1455 	 * we have reserved enough space when we start a new transaction,
1456 	 * so reserving metadata failure is impossible
1457 	 */
1458 	BUG_ON(ret);
1459 
1460 	mutex_lock(&delayed_node->mutex);
1461 	ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1462 	if (unlikely(ret)) {
1463 		btrfs_err(trans->fs_info,
1464 			  "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1465 			  name_len, name, delayed_node->root->root_key.objectid,
1466 			  delayed_node->inode_id, ret);
1467 		BUG();
1468 	}
1469 	mutex_unlock(&delayed_node->mutex);
1470 
1471 release_node:
1472 	btrfs_release_delayed_node(delayed_node);
1473 	return ret;
1474 }
1475 
1476 static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1477 					       struct btrfs_delayed_node *node,
1478 					       struct btrfs_key *key)
1479 {
1480 	struct btrfs_delayed_item *item;
1481 
1482 	mutex_lock(&node->mutex);
1483 	item = __btrfs_lookup_delayed_insertion_item(node, key);
1484 	if (!item) {
1485 		mutex_unlock(&node->mutex);
1486 		return 1;
1487 	}
1488 
1489 	btrfs_delayed_item_release_metadata(node->root, item);
1490 	btrfs_release_delayed_item(item);
1491 	mutex_unlock(&node->mutex);
1492 	return 0;
1493 }
1494 
1495 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1496 				   struct btrfs_inode *dir, u64 index)
1497 {
1498 	struct btrfs_delayed_node *node;
1499 	struct btrfs_delayed_item *item;
1500 	struct btrfs_key item_key;
1501 	int ret;
1502 
1503 	node = btrfs_get_or_create_delayed_node(dir);
1504 	if (IS_ERR(node))
1505 		return PTR_ERR(node);
1506 
1507 	item_key.objectid = btrfs_ino(dir);
1508 	item_key.type = BTRFS_DIR_INDEX_KEY;
1509 	item_key.offset = index;
1510 
1511 	ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1512 						  &item_key);
1513 	if (!ret)
1514 		goto end;
1515 
1516 	item = btrfs_alloc_delayed_item(0);
1517 	if (!item) {
1518 		ret = -ENOMEM;
1519 		goto end;
1520 	}
1521 
1522 	item->key = item_key;
1523 
1524 	ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1525 	/*
1526 	 * we have reserved enough space when we start a new transaction,
1527 	 * so reserving metadata failure is impossible.
1528 	 */
1529 	BUG_ON(ret);
1530 
1531 	mutex_lock(&node->mutex);
1532 	ret = __btrfs_add_delayed_deletion_item(node, item);
1533 	if (unlikely(ret)) {
1534 		btrfs_err(trans->fs_info,
1535 			  "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1536 			  index, node->root->root_key.objectid,
1537 			  node->inode_id, ret);
1538 		BUG();
1539 	}
1540 	mutex_unlock(&node->mutex);
1541 end:
1542 	btrfs_release_delayed_node(node);
1543 	return ret;
1544 }
1545 
1546 int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1547 {
1548 	struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1549 
1550 	if (!delayed_node)
1551 		return -ENOENT;
1552 
1553 	/*
1554 	 * Since we have held i_mutex of this directory, it is impossible that
1555 	 * a new directory index is added into the delayed node and index_cnt
1556 	 * is updated now. So we needn't lock the delayed node.
1557 	 */
1558 	if (!delayed_node->index_cnt) {
1559 		btrfs_release_delayed_node(delayed_node);
1560 		return -EINVAL;
1561 	}
1562 
1563 	inode->index_cnt = delayed_node->index_cnt;
1564 	btrfs_release_delayed_node(delayed_node);
1565 	return 0;
1566 }
1567 
1568 bool btrfs_readdir_get_delayed_items(struct inode *inode,
1569 				     struct list_head *ins_list,
1570 				     struct list_head *del_list)
1571 {
1572 	struct btrfs_delayed_node *delayed_node;
1573 	struct btrfs_delayed_item *item;
1574 
1575 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1576 	if (!delayed_node)
1577 		return false;
1578 
1579 	/*
1580 	 * We can only do one readdir with delayed items at a time because of
1581 	 * item->readdir_list.
1582 	 */
1583 	inode_unlock_shared(inode);
1584 	inode_lock(inode);
1585 
1586 	mutex_lock(&delayed_node->mutex);
1587 	item = __btrfs_first_delayed_insertion_item(delayed_node);
1588 	while (item) {
1589 		refcount_inc(&item->refs);
1590 		list_add_tail(&item->readdir_list, ins_list);
1591 		item = __btrfs_next_delayed_item(item);
1592 	}
1593 
1594 	item = __btrfs_first_delayed_deletion_item(delayed_node);
1595 	while (item) {
1596 		refcount_inc(&item->refs);
1597 		list_add_tail(&item->readdir_list, del_list);
1598 		item = __btrfs_next_delayed_item(item);
1599 	}
1600 	mutex_unlock(&delayed_node->mutex);
1601 	/*
1602 	 * This delayed node is still cached in the btrfs inode, so refs
1603 	 * must be > 1 now, and we needn't check it is going to be freed
1604 	 * or not.
1605 	 *
1606 	 * Besides that, this function is used to read dir, we do not
1607 	 * insert/delete delayed items in this period. So we also needn't
1608 	 * requeue or dequeue this delayed node.
1609 	 */
1610 	refcount_dec(&delayed_node->refs);
1611 
1612 	return true;
1613 }
1614 
1615 void btrfs_readdir_put_delayed_items(struct inode *inode,
1616 				     struct list_head *ins_list,
1617 				     struct list_head *del_list)
1618 {
1619 	struct btrfs_delayed_item *curr, *next;
1620 
1621 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1622 		list_del(&curr->readdir_list);
1623 		if (refcount_dec_and_test(&curr->refs))
1624 			kfree(curr);
1625 	}
1626 
1627 	list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1628 		list_del(&curr->readdir_list);
1629 		if (refcount_dec_and_test(&curr->refs))
1630 			kfree(curr);
1631 	}
1632 
1633 	/*
1634 	 * The VFS is going to do up_read(), so we need to downgrade back to a
1635 	 * read lock.
1636 	 */
1637 	downgrade_write(&inode->i_rwsem);
1638 }
1639 
1640 int btrfs_should_delete_dir_index(struct list_head *del_list,
1641 				  u64 index)
1642 {
1643 	struct btrfs_delayed_item *curr;
1644 	int ret = 0;
1645 
1646 	list_for_each_entry(curr, del_list, readdir_list) {
1647 		if (curr->key.offset > index)
1648 			break;
1649 		if (curr->key.offset == index) {
1650 			ret = 1;
1651 			break;
1652 		}
1653 	}
1654 	return ret;
1655 }
1656 
1657 /*
1658  * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1659  *
1660  */
1661 int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1662 				    struct list_head *ins_list)
1663 {
1664 	struct btrfs_dir_item *di;
1665 	struct btrfs_delayed_item *curr, *next;
1666 	struct btrfs_key location;
1667 	char *name;
1668 	int name_len;
1669 	int over = 0;
1670 	unsigned char d_type;
1671 
1672 	if (list_empty(ins_list))
1673 		return 0;
1674 
1675 	/*
1676 	 * Changing the data of the delayed item is impossible. So
1677 	 * we needn't lock them. And we have held i_mutex of the
1678 	 * directory, nobody can delete any directory indexes now.
1679 	 */
1680 	list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1681 		list_del(&curr->readdir_list);
1682 
1683 		if (curr->key.offset < ctx->pos) {
1684 			if (refcount_dec_and_test(&curr->refs))
1685 				kfree(curr);
1686 			continue;
1687 		}
1688 
1689 		ctx->pos = curr->key.offset;
1690 
1691 		di = (struct btrfs_dir_item *)curr->data;
1692 		name = (char *)(di + 1);
1693 		name_len = btrfs_stack_dir_name_len(di);
1694 
1695 		d_type = btrfs_filetype_table[di->type];
1696 		btrfs_disk_key_to_cpu(&location, &di->location);
1697 
1698 		over = !dir_emit(ctx, name, name_len,
1699 			       location.objectid, d_type);
1700 
1701 		if (refcount_dec_and_test(&curr->refs))
1702 			kfree(curr);
1703 
1704 		if (over)
1705 			return 1;
1706 		ctx->pos++;
1707 	}
1708 	return 0;
1709 }
1710 
1711 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1712 				  struct btrfs_inode_item *inode_item,
1713 				  struct inode *inode)
1714 {
1715 	btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1716 	btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1717 	btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1718 	btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1719 	btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1720 	btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1721 	btrfs_set_stack_inode_generation(inode_item,
1722 					 BTRFS_I(inode)->generation);
1723 	btrfs_set_stack_inode_sequence(inode_item,
1724 				       inode_peek_iversion(inode));
1725 	btrfs_set_stack_inode_transid(inode_item, trans->transid);
1726 	btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1727 	btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1728 	btrfs_set_stack_inode_block_group(inode_item, 0);
1729 
1730 	btrfs_set_stack_timespec_sec(&inode_item->atime,
1731 				     inode->i_atime.tv_sec);
1732 	btrfs_set_stack_timespec_nsec(&inode_item->atime,
1733 				      inode->i_atime.tv_nsec);
1734 
1735 	btrfs_set_stack_timespec_sec(&inode_item->mtime,
1736 				     inode->i_mtime.tv_sec);
1737 	btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1738 				      inode->i_mtime.tv_nsec);
1739 
1740 	btrfs_set_stack_timespec_sec(&inode_item->ctime,
1741 				     inode->i_ctime.tv_sec);
1742 	btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1743 				      inode->i_ctime.tv_nsec);
1744 
1745 	btrfs_set_stack_timespec_sec(&inode_item->otime,
1746 				     BTRFS_I(inode)->i_otime.tv_sec);
1747 	btrfs_set_stack_timespec_nsec(&inode_item->otime,
1748 				     BTRFS_I(inode)->i_otime.tv_nsec);
1749 }
1750 
1751 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1752 {
1753 	struct btrfs_delayed_node *delayed_node;
1754 	struct btrfs_inode_item *inode_item;
1755 
1756 	delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1757 	if (!delayed_node)
1758 		return -ENOENT;
1759 
1760 	mutex_lock(&delayed_node->mutex);
1761 	if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1762 		mutex_unlock(&delayed_node->mutex);
1763 		btrfs_release_delayed_node(delayed_node);
1764 		return -ENOENT;
1765 	}
1766 
1767 	inode_item = &delayed_node->inode_item;
1768 
1769 	i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1770 	i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1771 	btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1772 	inode->i_mode = btrfs_stack_inode_mode(inode_item);
1773 	set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1774 	inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1775 	BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1776         BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1777 
1778 	inode_set_iversion_queried(inode,
1779 				   btrfs_stack_inode_sequence(inode_item));
1780 	inode->i_rdev = 0;
1781 	*rdev = btrfs_stack_inode_rdev(inode_item);
1782 	BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1783 
1784 	inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1785 	inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1786 
1787 	inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1788 	inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1789 
1790 	inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1791 	inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1792 
1793 	BTRFS_I(inode)->i_otime.tv_sec =
1794 		btrfs_stack_timespec_sec(&inode_item->otime);
1795 	BTRFS_I(inode)->i_otime.tv_nsec =
1796 		btrfs_stack_timespec_nsec(&inode_item->otime);
1797 
1798 	inode->i_generation = BTRFS_I(inode)->generation;
1799 	BTRFS_I(inode)->index_cnt = (u64)-1;
1800 
1801 	mutex_unlock(&delayed_node->mutex);
1802 	btrfs_release_delayed_node(delayed_node);
1803 	return 0;
1804 }
1805 
1806 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1807 			       struct btrfs_root *root, struct inode *inode)
1808 {
1809 	struct btrfs_delayed_node *delayed_node;
1810 	int ret = 0;
1811 
1812 	delayed_node = btrfs_get_or_create_delayed_node(BTRFS_I(inode));
1813 	if (IS_ERR(delayed_node))
1814 		return PTR_ERR(delayed_node);
1815 
1816 	mutex_lock(&delayed_node->mutex);
1817 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1818 		fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1819 		goto release_node;
1820 	}
1821 
1822 	ret = btrfs_delayed_inode_reserve_metadata(trans, root, BTRFS_I(inode),
1823 						   delayed_node);
1824 	if (ret)
1825 		goto release_node;
1826 
1827 	fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1828 	set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1829 	delayed_node->count++;
1830 	atomic_inc(&root->fs_info->delayed_root->items);
1831 release_node:
1832 	mutex_unlock(&delayed_node->mutex);
1833 	btrfs_release_delayed_node(delayed_node);
1834 	return ret;
1835 }
1836 
1837 int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1838 {
1839 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1840 	struct btrfs_delayed_node *delayed_node;
1841 
1842 	/*
1843 	 * we don't do delayed inode updates during log recovery because it
1844 	 * leads to enospc problems.  This means we also can't do
1845 	 * delayed inode refs
1846 	 */
1847 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1848 		return -EAGAIN;
1849 
1850 	delayed_node = btrfs_get_or_create_delayed_node(inode);
1851 	if (IS_ERR(delayed_node))
1852 		return PTR_ERR(delayed_node);
1853 
1854 	/*
1855 	 * We don't reserve space for inode ref deletion is because:
1856 	 * - We ONLY do async inode ref deletion for the inode who has only
1857 	 *   one link(i_nlink == 1), it means there is only one inode ref.
1858 	 *   And in most case, the inode ref and the inode item are in the
1859 	 *   same leaf, and we will deal with them at the same time.
1860 	 *   Since we are sure we will reserve the space for the inode item,
1861 	 *   it is unnecessary to reserve space for inode ref deletion.
1862 	 * - If the inode ref and the inode item are not in the same leaf,
1863 	 *   We also needn't worry about enospc problem, because we reserve
1864 	 *   much more space for the inode update than it needs.
1865 	 * - At the worst, we can steal some space from the global reservation.
1866 	 *   It is very rare.
1867 	 */
1868 	mutex_lock(&delayed_node->mutex);
1869 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1870 		goto release_node;
1871 
1872 	set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1873 	delayed_node->count++;
1874 	atomic_inc(&fs_info->delayed_root->items);
1875 release_node:
1876 	mutex_unlock(&delayed_node->mutex);
1877 	btrfs_release_delayed_node(delayed_node);
1878 	return 0;
1879 }
1880 
1881 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1882 {
1883 	struct btrfs_root *root = delayed_node->root;
1884 	struct btrfs_fs_info *fs_info = root->fs_info;
1885 	struct btrfs_delayed_item *curr_item, *prev_item;
1886 
1887 	mutex_lock(&delayed_node->mutex);
1888 	curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1889 	while (curr_item) {
1890 		btrfs_delayed_item_release_metadata(root, curr_item);
1891 		prev_item = curr_item;
1892 		curr_item = __btrfs_next_delayed_item(prev_item);
1893 		btrfs_release_delayed_item(prev_item);
1894 	}
1895 
1896 	curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1897 	while (curr_item) {
1898 		btrfs_delayed_item_release_metadata(root, curr_item);
1899 		prev_item = curr_item;
1900 		curr_item = __btrfs_next_delayed_item(prev_item);
1901 		btrfs_release_delayed_item(prev_item);
1902 	}
1903 
1904 	if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1905 		btrfs_release_delayed_iref(delayed_node);
1906 
1907 	if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1908 		btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1909 		btrfs_release_delayed_inode(delayed_node);
1910 	}
1911 	mutex_unlock(&delayed_node->mutex);
1912 }
1913 
1914 void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1915 {
1916 	struct btrfs_delayed_node *delayed_node;
1917 
1918 	delayed_node = btrfs_get_delayed_node(inode);
1919 	if (!delayed_node)
1920 		return;
1921 
1922 	__btrfs_kill_delayed_node(delayed_node);
1923 	btrfs_release_delayed_node(delayed_node);
1924 }
1925 
1926 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1927 {
1928 	u64 inode_id = 0;
1929 	struct btrfs_delayed_node *delayed_nodes[8];
1930 	int i, n;
1931 
1932 	while (1) {
1933 		spin_lock(&root->inode_lock);
1934 		n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1935 					   (void **)delayed_nodes, inode_id,
1936 					   ARRAY_SIZE(delayed_nodes));
1937 		if (!n) {
1938 			spin_unlock(&root->inode_lock);
1939 			break;
1940 		}
1941 
1942 		inode_id = delayed_nodes[n - 1]->inode_id + 1;
1943 
1944 		for (i = 0; i < n; i++)
1945 			refcount_inc(&delayed_nodes[i]->refs);
1946 		spin_unlock(&root->inode_lock);
1947 
1948 		for (i = 0; i < n; i++) {
1949 			__btrfs_kill_delayed_node(delayed_nodes[i]);
1950 			btrfs_release_delayed_node(delayed_nodes[i]);
1951 		}
1952 	}
1953 }
1954 
1955 void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1956 {
1957 	struct btrfs_delayed_node *curr_node, *prev_node;
1958 
1959 	curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1960 	while (curr_node) {
1961 		__btrfs_kill_delayed_node(curr_node);
1962 
1963 		prev_node = curr_node;
1964 		curr_node = btrfs_next_delayed_node(curr_node);
1965 		btrfs_release_delayed_node(prev_node);
1966 	}
1967 }
1968 
1969