xref: /openbmc/linux/fs/btrfs/delalloc-space.c (revision fefcd1c75bafa7c5d34e0a517de29f33688abf62)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "messages.h"
4 #include "ctree.h"
5 #include "delalloc-space.h"
6 #include "block-rsv.h"
7 #include "btrfs_inode.h"
8 #include "space-info.h"
9 #include "transaction.h"
10 #include "qgroup.h"
11 #include "block-group.h"
12 #include "fs.h"
13 
14 /*
15  * HOW DOES THIS WORK
16  *
17  * There are two stages to data reservations, one for data and one for metadata
18  * to handle the new extents and checksums generated by writing data.
19  *
20  *
21  * DATA RESERVATION
22  *   The general flow of the data reservation is as follows
23  *
24  *   -> Reserve
25  *     We call into btrfs_reserve_data_bytes() for the user request bytes that
26  *     they wish to write.  We make this reservation and add it to
27  *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
28  *     for the range and carry on if this is buffered, or follow up trying to
29  *     make a real allocation if we are pre-allocating or doing O_DIRECT.
30  *
31  *   -> Use
32  *     At writepages()/prealloc/O_DIRECT time we will call into
33  *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
34  *     will make the allocation and subtract space_info->bytes_may_use by the
35  *     original requested length and increase the space_info->bytes_reserved by
36  *     the allocated length.  This distinction is important because compression
37  *     may allocate a smaller on disk extent than we previously reserved.
38  *
39  *   -> Allocation
40  *     finish_ordered_io() will insert the new file extent item for this range,
41  *     and then add a delayed ref update for the extent tree.  Once that delayed
42  *     ref is written the extent size is subtracted from
43  *     space_info->bytes_reserved and added to space_info->bytes_used.
44  *
45  *   Error handling
46  *
47  *   -> By the reservation maker
48  *     This is the simplest case, we haven't completed our operation and we know
49  *     how much we reserved, we can simply call
50  *     btrfs_free_reserved_data_space*() and it will be removed from
51  *     space_info->bytes_may_use.
52  *
53  *   -> After the reservation has been made, but before cow_file_range()
54  *     This is specifically for the delalloc case.  You must clear
55  *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
56  *     be subtracted from space_info->bytes_may_use.
57  *
58  * METADATA RESERVATION
59  *   The general metadata reservation lifetimes are discussed elsewhere, this
60  *   will just focus on how it is used for delalloc space.
61  *
62  *   We keep track of two things on a per inode bases
63  *
64  *   ->outstanding_extents
65  *     This is the number of file extent items we'll need to handle all of the
66  *     outstanding DELALLOC space we have in this inode.  We limit the maximum
67  *     size of an extent, so a large contiguous dirty area may require more than
68  *     one outstanding_extent, which is why count_max_extents() is used to
69  *     determine how many outstanding_extents get added.
70  *
71  *   ->csum_bytes
72  *     This is essentially how many dirty bytes we have for this inode, so we
73  *     can calculate the number of checksum items we would have to add in order
74  *     to checksum our outstanding data.
75  *
76  *   We keep a per-inode block_rsv in order to make it easier to keep track of
77  *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
78  *   calculate the current theoretical maximum reservation we would need for the
79  *   metadata for this inode.  We call this and then adjust our reservation as
80  *   necessary, either by attempting to reserve more space, or freeing up excess
81  *   space.
82  *
83  * OUTSTANDING_EXTENTS HANDLING
84  *
85  *  ->outstanding_extents is used for keeping track of how many extents we will
86  *  need to use for this inode, and it will fluctuate depending on where you are
87  *  in the life cycle of the dirty data.  Consider the following normal case for
88  *  a completely clean inode, with a num_bytes < our maximum allowed extent size
89  *
90  *  -> reserve
91  *    ->outstanding_extents += 1 (current value is 1)
92  *
93  *  -> set_delalloc
94  *    ->outstanding_extents += 1 (current value is 2)
95  *
96  *  -> btrfs_delalloc_release_extents()
97  *    ->outstanding_extents -= 1 (current value is 1)
98  *
99  *    We must call this once we are done, as we hold our reservation for the
100  *    duration of our operation, and then assume set_delalloc will update the
101  *    counter appropriately.
102  *
103  *  -> add ordered extent
104  *    ->outstanding_extents += 1 (current value is 2)
105  *
106  *  -> btrfs_clear_delalloc_extent
107  *    ->outstanding_extents -= 1 (current value is 1)
108  *
109  *  -> finish_ordered_io/btrfs_remove_ordered_extent
110  *    ->outstanding_extents -= 1 (current value is 0)
111  *
112  *  Each stage is responsible for their own accounting of the extent, thus
113  *  making error handling and cleanup easier.
114  */
115 
116 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
117 {
118 	struct btrfs_root *root = inode->root;
119 	struct btrfs_fs_info *fs_info = root->fs_info;
120 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
121 
122 	/* Make sure bytes are sectorsize aligned */
123 	bytes = ALIGN(bytes, fs_info->sectorsize);
124 
125 	if (btrfs_is_free_space_inode(inode))
126 		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
127 
128 	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
129 }
130 
131 int btrfs_check_data_free_space(struct btrfs_inode *inode,
132 				struct extent_changeset **reserved, u64 start,
133 				u64 len, bool noflush)
134 {
135 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
136 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
137 	int ret;
138 
139 	/* align the range */
140 	len = round_up(start + len, fs_info->sectorsize) -
141 	      round_down(start, fs_info->sectorsize);
142 	start = round_down(start, fs_info->sectorsize);
143 
144 	if (noflush)
145 		flush = BTRFS_RESERVE_NO_FLUSH;
146 	else if (btrfs_is_free_space_inode(inode))
147 		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
148 
149 	ret = btrfs_reserve_data_bytes(fs_info, len, flush);
150 	if (ret < 0)
151 		return ret;
152 
153 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
154 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
155 	if (ret < 0) {
156 		btrfs_free_reserved_data_space_noquota(fs_info, len);
157 		extent_changeset_free(*reserved);
158 		*reserved = NULL;
159 	} else {
160 		ret = 0;
161 	}
162 	return ret;
163 }
164 
165 /*
166  * Called if we need to clear a data reservation for this inode
167  * Normally in a error case.
168  *
169  * This one will *NOT* use accurate qgroup reserved space API, just for case
170  * which we can't sleep and is sure it won't affect qgroup reserved space.
171  * Like clear_bit_hook().
172  */
173 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
174 					    u64 len)
175 {
176 	struct btrfs_space_info *data_sinfo;
177 
178 	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
179 
180 	data_sinfo = fs_info->data_sinfo;
181 	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
182 }
183 
184 /*
185  * Called if we need to clear a data reservation for this inode
186  * Normally in a error case.
187  *
188  * This one will handle the per-inode data rsv map for accurate reserved
189  * space framework.
190  */
191 void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
192 			struct extent_changeset *reserved, u64 start, u64 len)
193 {
194 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
195 
196 	/* Make sure the range is aligned to sectorsize */
197 	len = round_up(start + len, fs_info->sectorsize) -
198 	      round_down(start, fs_info->sectorsize);
199 	start = round_down(start, fs_info->sectorsize);
200 
201 	btrfs_free_reserved_data_space_noquota(fs_info, len);
202 	btrfs_qgroup_free_data(inode, reserved, start, len, NULL);
203 }
204 
205 /*
206  * Release any excessive reservations for an inode.
207  *
208  * @inode:       the inode we need to release from
209  * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
210  *               meta reservation needs to know if we are freeing qgroup
211  *               reservation or just converting it into per-trans.  Normally
212  *               @qgroup_free is true for error handling, and false for normal
213  *               release.
214  *
215  * This is the same as btrfs_block_rsv_release, except that it handles the
216  * tracepoint for the reservation.
217  */
218 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
219 {
220 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
221 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
222 	u64 released = 0;
223 	u64 qgroup_to_release = 0;
224 
225 	/*
226 	 * Since we statically set the block_rsv->size we just want to say we
227 	 * are releasing 0 bytes, and then we'll just get the reservation over
228 	 * the size free'd.
229 	 */
230 	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
231 					   &qgroup_to_release);
232 	if (released > 0)
233 		trace_btrfs_space_reservation(fs_info, "delalloc",
234 					      btrfs_ino(inode), released, 0);
235 	if (qgroup_free)
236 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
237 	else
238 		btrfs_qgroup_convert_reserved_meta(inode->root,
239 						   qgroup_to_release);
240 }
241 
242 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
243 						 struct btrfs_inode *inode)
244 {
245 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
246 	u64 reserve_size = 0;
247 	u64 qgroup_rsv_size = 0;
248 	unsigned outstanding_extents;
249 
250 	lockdep_assert_held(&inode->lock);
251 	outstanding_extents = inode->outstanding_extents;
252 
253 	/*
254 	 * Insert size for the number of outstanding extents, 1 normal size for
255 	 * updating the inode.
256 	 */
257 	if (outstanding_extents) {
258 		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
259 						outstanding_extents);
260 		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
261 	}
262 	if (!(inode->flags & BTRFS_INODE_NODATASUM)) {
263 		u64 csum_leaves;
264 
265 		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
266 		reserve_size += btrfs_calc_insert_metadata_size(fs_info, csum_leaves);
267 	}
268 	/*
269 	 * For qgroup rsv, the calculation is very simple:
270 	 * account one nodesize for each outstanding extent
271 	 *
272 	 * This is overestimating in most cases.
273 	 */
274 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
275 
276 	spin_lock(&block_rsv->lock);
277 	block_rsv->size = reserve_size;
278 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
279 	spin_unlock(&block_rsv->lock);
280 }
281 
282 static void calc_inode_reservations(struct btrfs_inode *inode,
283 				    u64 num_bytes, u64 disk_num_bytes,
284 				    u64 *meta_reserve, u64 *qgroup_reserve)
285 {
286 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
287 	u64 nr_extents = count_max_extents(fs_info, num_bytes);
288 	u64 csum_leaves;
289 	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
290 
291 	if (inode->flags & BTRFS_INODE_NODATASUM)
292 		csum_leaves = 0;
293 	else
294 		csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes);
295 
296 	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
297 						nr_extents + csum_leaves);
298 
299 	/*
300 	 * finish_ordered_io has to update the inode, so add the space required
301 	 * for an inode update.
302 	 */
303 	*meta_reserve += inode_update;
304 	*qgroup_reserve = nr_extents * fs_info->nodesize;
305 }
306 
307 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
308 				    u64 disk_num_bytes, bool noflush)
309 {
310 	struct btrfs_root *root = inode->root;
311 	struct btrfs_fs_info *fs_info = root->fs_info;
312 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
313 	u64 meta_reserve, qgroup_reserve;
314 	unsigned nr_extents;
315 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
316 	int ret = 0;
317 
318 	/*
319 	 * If we are a free space inode we need to not flush since we will be in
320 	 * the middle of a transaction commit.  We also don't need the delalloc
321 	 * mutex since we won't race with anybody.  We need this mostly to make
322 	 * lockdep shut its filthy mouth.
323 	 *
324 	 * If we have a transaction open (can happen if we call truncate_block
325 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
326 	 */
327 	if (noflush || btrfs_is_free_space_inode(inode)) {
328 		flush = BTRFS_RESERVE_NO_FLUSH;
329 	} else {
330 		if (current->journal_info)
331 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
332 	}
333 
334 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
335 	disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize);
336 
337 	/*
338 	 * We always want to do it this way, every other way is wrong and ends
339 	 * in tears.  Pre-reserving the amount we are going to add will always
340 	 * be the right way, because otherwise if we have enough parallelism we
341 	 * could end up with thousands of inodes all holding little bits of
342 	 * reservations they were able to make previously and the only way to
343 	 * reclaim that space is to ENOSPC out the operations and clear
344 	 * everything out and try again, which is bad.  This way we just
345 	 * over-reserve slightly, and clean up the mess when we are done.
346 	 */
347 	calc_inode_reservations(inode, num_bytes, disk_num_bytes,
348 				&meta_reserve, &qgroup_reserve);
349 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true,
350 						 noflush);
351 	if (ret)
352 		return ret;
353 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush);
354 	if (ret) {
355 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
356 		return ret;
357 	}
358 
359 	/*
360 	 * Now we need to update our outstanding extents and csum bytes _first_
361 	 * and then add the reservation to the block_rsv.  This keeps us from
362 	 * racing with an ordered completion or some such that would think it
363 	 * needs to free the reservation we just made.
364 	 */
365 	nr_extents = count_max_extents(fs_info, num_bytes);
366 	spin_lock(&inode->lock);
367 	btrfs_mod_outstanding_extents(inode, nr_extents);
368 	if (!(inode->flags & BTRFS_INODE_NODATASUM))
369 		inode->csum_bytes += disk_num_bytes;
370 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
371 	spin_unlock(&inode->lock);
372 
373 	/* Now we can safely add our space to our block rsv */
374 	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
375 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
376 				      btrfs_ino(inode), meta_reserve, 1);
377 
378 	spin_lock(&block_rsv->lock);
379 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
380 	spin_unlock(&block_rsv->lock);
381 
382 	return 0;
383 }
384 
385 /*
386  * Release a metadata reservation for an inode.
387  *
388  * @inode:        the inode to release the reservation for.
389  * @num_bytes:    the number of bytes we are releasing.
390  * @qgroup_free:  free qgroup reservation or convert it to per-trans reservation
391  *
392  * This will release the metadata reservation for an inode.  This can be called
393  * once we complete IO for a given set of bytes to release their metadata
394  * reservations, or on error for the same reason.
395  */
396 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
397 				     bool qgroup_free)
398 {
399 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
400 
401 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
402 	spin_lock(&inode->lock);
403 	if (!(inode->flags & BTRFS_INODE_NODATASUM))
404 		inode->csum_bytes -= num_bytes;
405 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
406 	spin_unlock(&inode->lock);
407 
408 	if (btrfs_is_testing(fs_info))
409 		return;
410 
411 	btrfs_inode_rsv_release(inode, qgroup_free);
412 }
413 
414 /*
415  * Release our outstanding_extents for an inode.
416  *
417  * @inode:      the inode to balance the reservation for.
418  * @num_bytes:  the number of bytes we originally reserved with
419  *
420  * When we reserve space we increase outstanding_extents for the extents we may
421  * add.  Once we've set the range as delalloc or created our ordered extents we
422  * have outstanding_extents to track the real usage, so we use this to free our
423  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
424  * with btrfs_delalloc_reserve_metadata.
425  */
426 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
427 {
428 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
429 	unsigned num_extents;
430 
431 	spin_lock(&inode->lock);
432 	num_extents = count_max_extents(fs_info, num_bytes);
433 	btrfs_mod_outstanding_extents(inode, -num_extents);
434 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
435 	spin_unlock(&inode->lock);
436 
437 	if (btrfs_is_testing(fs_info))
438 		return;
439 
440 	btrfs_inode_rsv_release(inode, true);
441 }
442 
443 /*
444  * Reserve data and metadata space for delalloc
445  *
446  * @inode:     inode we're writing to
447  * @start:     start range we are writing to
448  * @len:       how long the range we are writing to
449  * @reserved:  mandatory parameter, record actually reserved qgroup ranges of
450  * 	       current reservation.
451  *
452  * This will do the following things
453  *
454  * - reserve space in data space info for num bytes and reserve precious
455  *   corresponding qgroup space
456  *   (Done in check_data_free_space)
457  *
458  * - reserve space for metadata space, based on the number of outstanding
459  *   extents and how much csums will be needed also reserve metadata space in a
460  *   per root over-reserve method.
461  * - add to the inodes->delalloc_bytes
462  * - add it to the fs_info's delalloc inodes list.
463  *   (Above 3 all done in delalloc_reserve_metadata)
464  *
465  * Return 0 for success
466  * Return <0 for error(-ENOSPC or -EDQUOT)
467  */
468 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
469 			struct extent_changeset **reserved, u64 start, u64 len)
470 {
471 	int ret;
472 
473 	ret = btrfs_check_data_free_space(inode, reserved, start, len, false);
474 	if (ret < 0)
475 		return ret;
476 	ret = btrfs_delalloc_reserve_metadata(inode, len, len, false);
477 	if (ret < 0) {
478 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
479 		extent_changeset_free(*reserved);
480 		*reserved = NULL;
481 	}
482 	return ret;
483 }
484 
485 /*
486  * Release data and metadata space for delalloc
487  *
488  * @inode:       inode we're releasing space for
489  * @reserved:    list of changed/reserved ranges
490  * @start:       start position of the space already reserved
491  * @len:         length of the space already reserved
492  * @qgroup_free: should qgroup reserved-space also be freed
493  *
494  * Release the metadata space that was not used and will decrement
495  * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if
496  * there are no delalloc bytes left.  Also it will handle the qgroup reserved
497  * space.
498  */
499 void btrfs_delalloc_release_space(struct btrfs_inode *inode,
500 				  struct extent_changeset *reserved,
501 				  u64 start, u64 len, bool qgroup_free)
502 {
503 	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
504 	btrfs_free_reserved_data_space(inode, reserved, start, len);
505 }
506