xref: /openbmc/linux/fs/btrfs/delalloc-space.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "ctree.h"
4 #include "delalloc-space.h"
5 #include "block-rsv.h"
6 #include "btrfs_inode.h"
7 #include "space-info.h"
8 #include "transaction.h"
9 #include "qgroup.h"
10 #include "block-group.h"
11 
12 /*
13  * HOW DOES THIS WORK
14  *
15  * There are two stages to data reservations, one for data and one for metadata
16  * to handle the new extents and checksums generated by writing data.
17  *
18  *
19  * DATA RESERVATION
20  *   The general flow of the data reservation is as follows
21  *
22  *   -> Reserve
23  *     We call into btrfs_reserve_data_bytes() for the user request bytes that
24  *     they wish to write.  We make this reservation and add it to
25  *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
26  *     for the range and carry on if this is buffered, or follow up trying to
27  *     make a real allocation if we are pre-allocating or doing O_DIRECT.
28  *
29  *   -> Use
30  *     At writepages()/prealloc/O_DIRECT time we will call into
31  *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
32  *     will make the allocation and subtract space_info->bytes_may_use by the
33  *     original requested length and increase the space_info->bytes_reserved by
34  *     the allocated length.  This distinction is important because compression
35  *     may allocate a smaller on disk extent than we previously reserved.
36  *
37  *   -> Allocation
38  *     finish_ordered_io() will insert the new file extent item for this range,
39  *     and then add a delayed ref update for the extent tree.  Once that delayed
40  *     ref is written the extent size is subtracted from
41  *     space_info->bytes_reserved and added to space_info->bytes_used.
42  *
43  *   Error handling
44  *
45  *   -> By the reservation maker
46  *     This is the simplest case, we haven't completed our operation and we know
47  *     how much we reserved, we can simply call
48  *     btrfs_free_reserved_data_space*() and it will be removed from
49  *     space_info->bytes_may_use.
50  *
51  *   -> After the reservation has been made, but before cow_file_range()
52  *     This is specifically for the delalloc case.  You must clear
53  *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54  *     be subtracted from space_info->bytes_may_use.
55  *
56  * METADATA RESERVATION
57  *   The general metadata reservation lifetimes are discussed elsewhere, this
58  *   will just focus on how it is used for delalloc space.
59  *
60  *   We keep track of two things on a per inode bases
61  *
62  *   ->outstanding_extents
63  *     This is the number of file extent items we'll need to handle all of the
64  *     outstanding DELALLOC space we have in this inode.  We limit the maximum
65  *     size of an extent, so a large contiguous dirty area may require more than
66  *     one outstanding_extent, which is why count_max_extents() is used to
67  *     determine how many outstanding_extents get added.
68  *
69  *   ->csum_bytes
70  *     This is essentially how many dirty bytes we have for this inode, so we
71  *     can calculate the number of checksum items we would have to add in order
72  *     to checksum our outstanding data.
73  *
74  *   We keep a per-inode block_rsv in order to make it easier to keep track of
75  *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
76  *   calculate the current theoretical maximum reservation we would need for the
77  *   metadata for this inode.  We call this and then adjust our reservation as
78  *   necessary, either by attempting to reserve more space, or freeing up excess
79  *   space.
80  *
81  * OUTSTANDING_EXTENTS HANDLING
82  *
83  *  ->outstanding_extents is used for keeping track of how many extents we will
84  *  need to use for this inode, and it will fluctuate depending on where you are
85  *  in the life cycle of the dirty data.  Consider the following normal case for
86  *  a completely clean inode, with a num_bytes < our maximum allowed extent size
87  *
88  *  -> reserve
89  *    ->outstanding_extents += 1 (current value is 1)
90  *
91  *  -> set_delalloc
92  *    ->outstanding_extents += 1 (currrent value is 2)
93  *
94  *  -> btrfs_delalloc_release_extents()
95  *    ->outstanding_extents -= 1 (current value is 1)
96  *
97  *    We must call this once we are done, as we hold our reservation for the
98  *    duration of our operation, and then assume set_delalloc will update the
99  *    counter appropriately.
100  *
101  *  -> add ordered extent
102  *    ->outstanding_extents += 1 (current value is 2)
103  *
104  *  -> btrfs_clear_delalloc_extent
105  *    ->outstanding_extents -= 1 (current value is 1)
106  *
107  *  -> finish_ordered_io/btrfs_remove_ordered_extent
108  *    ->outstanding_extents -= 1 (current value is 0)
109  *
110  *  Each stage is responsible for their own accounting of the extent, thus
111  *  making error handling and cleanup easier.
112  */
113 
114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
115 {
116 	struct btrfs_root *root = inode->root;
117 	struct btrfs_fs_info *fs_info = root->fs_info;
118 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA;
119 
120 	/* Make sure bytes are sectorsize aligned */
121 	bytes = ALIGN(bytes, fs_info->sectorsize);
122 
123 	if (btrfs_is_free_space_inode(inode))
124 		flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE;
125 
126 	return btrfs_reserve_data_bytes(fs_info, bytes, flush);
127 }
128 
129 int btrfs_check_data_free_space(struct btrfs_inode *inode,
130 			struct extent_changeset **reserved, u64 start, u64 len)
131 {
132 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
133 	int ret;
134 
135 	/* align the range */
136 	len = round_up(start + len, fs_info->sectorsize) -
137 	      round_down(start, fs_info->sectorsize);
138 	start = round_down(start, fs_info->sectorsize);
139 
140 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
141 	if (ret < 0)
142 		return ret;
143 
144 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
145 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
146 	if (ret < 0)
147 		btrfs_free_reserved_data_space_noquota(fs_info, len);
148 	else
149 		ret = 0;
150 	return ret;
151 }
152 
153 /*
154  * Called if we need to clear a data reservation for this inode
155  * Normally in a error case.
156  *
157  * This one will *NOT* use accurate qgroup reserved space API, just for case
158  * which we can't sleep and is sure it won't affect qgroup reserved space.
159  * Like clear_bit_hook().
160  */
161 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
162 					    u64 len)
163 {
164 	struct btrfs_space_info *data_sinfo;
165 
166 	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
167 
168 	data_sinfo = fs_info->data_sinfo;
169 	btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len);
170 }
171 
172 /*
173  * Called if we need to clear a data reservation for this inode
174  * Normally in a error case.
175  *
176  * This one will handle the per-inode data rsv map for accurate reserved
177  * space framework.
178  */
179 void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
180 			struct extent_changeset *reserved, u64 start, u64 len)
181 {
182 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
183 
184 	/* Make sure the range is aligned to sectorsize */
185 	len = round_up(start + len, fs_info->sectorsize) -
186 	      round_down(start, fs_info->sectorsize);
187 	start = round_down(start, fs_info->sectorsize);
188 
189 	btrfs_free_reserved_data_space_noquota(fs_info, len);
190 	btrfs_qgroup_free_data(inode, reserved, start, len);
191 }
192 
193 /**
194  * Release any excessive reservation
195  *
196  * @inode:       the inode we need to release from
197  * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup
198  *               meta reservation needs to know if we are freeing qgroup
199  *               reservation or just converting it into per-trans.  Normally
200  *               @qgroup_free is true for error handling, and false for normal
201  *               release.
202  *
203  * This is the same as btrfs_block_rsv_release, except that it handles the
204  * tracepoint for the reservation.
205  */
206 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
207 {
208 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
209 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
210 	u64 released = 0;
211 	u64 qgroup_to_release = 0;
212 
213 	/*
214 	 * Since we statically set the block_rsv->size we just want to say we
215 	 * are releasing 0 bytes, and then we'll just get the reservation over
216 	 * the size free'd.
217 	 */
218 	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
219 					   &qgroup_to_release);
220 	if (released > 0)
221 		trace_btrfs_space_reservation(fs_info, "delalloc",
222 					      btrfs_ino(inode), released, 0);
223 	if (qgroup_free)
224 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
225 	else
226 		btrfs_qgroup_convert_reserved_meta(inode->root,
227 						   qgroup_to_release);
228 }
229 
230 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
231 						 struct btrfs_inode *inode)
232 {
233 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
234 	u64 reserve_size = 0;
235 	u64 qgroup_rsv_size = 0;
236 	u64 csum_leaves;
237 	unsigned outstanding_extents;
238 
239 	lockdep_assert_held(&inode->lock);
240 	outstanding_extents = inode->outstanding_extents;
241 
242 	/*
243 	 * Insert size for the number of outstanding extents, 1 normal size for
244 	 * updating the inode.
245 	 */
246 	if (outstanding_extents) {
247 		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
248 						outstanding_extents);
249 		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
250 	}
251 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
252 						 inode->csum_bytes);
253 	reserve_size += btrfs_calc_insert_metadata_size(fs_info,
254 							csum_leaves);
255 	/*
256 	 * For qgroup rsv, the calculation is very simple:
257 	 * account one nodesize for each outstanding extent
258 	 *
259 	 * This is overestimating in most cases.
260 	 */
261 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
262 
263 	spin_lock(&block_rsv->lock);
264 	block_rsv->size = reserve_size;
265 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
266 	spin_unlock(&block_rsv->lock);
267 }
268 
269 static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
270 				    u64 num_bytes, u64 *meta_reserve,
271 				    u64 *qgroup_reserve)
272 {
273 	u64 nr_extents = count_max_extents(num_bytes);
274 	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
275 	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
276 
277 	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
278 						nr_extents + csum_leaves);
279 
280 	/*
281 	 * finish_ordered_io has to update the inode, so add the space required
282 	 * for an inode update.
283 	 */
284 	*meta_reserve += inode_update;
285 	*qgroup_reserve = nr_extents * fs_info->nodesize;
286 }
287 
288 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
289 {
290 	struct btrfs_root *root = inode->root;
291 	struct btrfs_fs_info *fs_info = root->fs_info;
292 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
293 	u64 meta_reserve, qgroup_reserve;
294 	unsigned nr_extents;
295 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
296 	int ret = 0;
297 
298 	/*
299 	 * If we are a free space inode we need to not flush since we will be in
300 	 * the middle of a transaction commit.  We also don't need the delalloc
301 	 * mutex since we won't race with anybody.  We need this mostly to make
302 	 * lockdep shut its filthy mouth.
303 	 *
304 	 * If we have a transaction open (can happen if we call truncate_block
305 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
306 	 */
307 	if (btrfs_is_free_space_inode(inode)) {
308 		flush = BTRFS_RESERVE_NO_FLUSH;
309 	} else {
310 		if (current->journal_info)
311 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
312 
313 		if (btrfs_transaction_in_commit(fs_info))
314 			schedule_timeout(1);
315 	}
316 
317 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
318 
319 	/*
320 	 * We always want to do it this way, every other way is wrong and ends
321 	 * in tears.  Pre-reserving the amount we are going to add will always
322 	 * be the right way, because otherwise if we have enough parallelism we
323 	 * could end up with thousands of inodes all holding little bits of
324 	 * reservations they were able to make previously and the only way to
325 	 * reclaim that space is to ENOSPC out the operations and clear
326 	 * everything out and try again, which is bad.  This way we just
327 	 * over-reserve slightly, and clean up the mess when we are done.
328 	 */
329 	calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
330 				&qgroup_reserve);
331 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
332 	if (ret)
333 		return ret;
334 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
335 	if (ret) {
336 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
337 		return ret;
338 	}
339 
340 	/*
341 	 * Now we need to update our outstanding extents and csum bytes _first_
342 	 * and then add the reservation to the block_rsv.  This keeps us from
343 	 * racing with an ordered completion or some such that would think it
344 	 * needs to free the reservation we just made.
345 	 */
346 	spin_lock(&inode->lock);
347 	nr_extents = count_max_extents(num_bytes);
348 	btrfs_mod_outstanding_extents(inode, nr_extents);
349 	inode->csum_bytes += num_bytes;
350 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
351 	spin_unlock(&inode->lock);
352 
353 	/* Now we can safely add our space to our block rsv */
354 	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
355 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
356 				      btrfs_ino(inode), meta_reserve, 1);
357 
358 	spin_lock(&block_rsv->lock);
359 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
360 	spin_unlock(&block_rsv->lock);
361 
362 	return 0;
363 }
364 
365 /**
366  * Release a metadata reservation for an inode
367  *
368  * @inode: the inode to release the reservation for.
369  * @num_bytes: the number of bytes we are releasing.
370  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
371  *
372  * This will release the metadata reservation for an inode.  This can be called
373  * once we complete IO for a given set of bytes to release their metadata
374  * reservations, or on error for the same reason.
375  */
376 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
377 				     bool qgroup_free)
378 {
379 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
380 
381 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
382 	spin_lock(&inode->lock);
383 	inode->csum_bytes -= num_bytes;
384 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
385 	spin_unlock(&inode->lock);
386 
387 	if (btrfs_is_testing(fs_info))
388 		return;
389 
390 	btrfs_inode_rsv_release(inode, qgroup_free);
391 }
392 
393 /**
394  * btrfs_delalloc_release_extents - release our outstanding_extents
395  * @inode: the inode to balance the reservation for.
396  * @num_bytes: the number of bytes we originally reserved with
397  *
398  * When we reserve space we increase outstanding_extents for the extents we may
399  * add.  Once we've set the range as delalloc or created our ordered extents we
400  * have outstanding_extents to track the real usage, so we use this to free our
401  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
402  * with btrfs_delalloc_reserve_metadata.
403  */
404 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
405 {
406 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
407 	unsigned num_extents;
408 
409 	spin_lock(&inode->lock);
410 	num_extents = count_max_extents(num_bytes);
411 	btrfs_mod_outstanding_extents(inode, -num_extents);
412 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
413 	spin_unlock(&inode->lock);
414 
415 	if (btrfs_is_testing(fs_info))
416 		return;
417 
418 	btrfs_inode_rsv_release(inode, true);
419 }
420 
421 /**
422  * btrfs_delalloc_reserve_space - reserve data and metadata space for
423  * delalloc
424  * @inode: inode we're writing to
425  * @start: start range we are writing to
426  * @len: how long the range we are writing to
427  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
428  * 	      current reservation.
429  *
430  * This will do the following things
431  *
432  * - reserve space in data space info for num bytes
433  *   and reserve precious corresponding qgroup space
434  *   (Done in check_data_free_space)
435  *
436  * - reserve space for metadata space, based on the number of outstanding
437  *   extents and how much csums will be needed
438  *   also reserve metadata space in a per root over-reserve method.
439  * - add to the inodes->delalloc_bytes
440  * - add it to the fs_info's delalloc inodes list.
441  *   (Above 3 all done in delalloc_reserve_metadata)
442  *
443  * Return 0 for success
444  * Return <0 for error(-ENOSPC or -EQUOT)
445  */
446 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
447 			struct extent_changeset **reserved, u64 start, u64 len)
448 {
449 	int ret;
450 
451 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
452 	if (ret < 0)
453 		return ret;
454 	ret = btrfs_delalloc_reserve_metadata(inode, len);
455 	if (ret < 0)
456 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
457 	return ret;
458 }
459 
460 /**
461  * Release data and metadata space for delalloc
462  *
463  * @inode:       inode we're releasing space for
464  * @reserved:    list of changed/reserved ranges
465  * @start:       start position of the space already reserved
466  * @len:         length of the space already reserved
467  * @qgroup_free: should qgroup reserved-space also be freed
468  *
469  * This function will release the metadata space that was not used and will
470  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
471  * list if there are no delalloc bytes left.
472  * Also it will handle the qgroup reserved space.
473  */
474 void btrfs_delalloc_release_space(struct btrfs_inode *inode,
475 				  struct extent_changeset *reserved,
476 				  u64 start, u64 len, bool qgroup_free)
477 {
478 	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
479 	btrfs_free_reserved_data_space(inode, reserved, start, len);
480 }
481