xref: /openbmc/linux/fs/btrfs/delalloc-space.c (revision dfc53baa)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "ctree.h"
4 #include "delalloc-space.h"
5 #include "block-rsv.h"
6 #include "btrfs_inode.h"
7 #include "space-info.h"
8 #include "transaction.h"
9 #include "qgroup.h"
10 #include "block-group.h"
11 
12 /*
13  * HOW DOES THIS WORK
14  *
15  * There are two stages to data reservations, one for data and one for metadata
16  * to handle the new extents and checksums generated by writing data.
17  *
18  *
19  * DATA RESERVATION
20  *   The general flow of the data reservation is as follows
21  *
22  *   -> Reserve
23  *     We call into btrfs_reserve_data_bytes() for the user request bytes that
24  *     they wish to write.  We make this reservation and add it to
25  *     space_info->bytes_may_use.  We set EXTENT_DELALLOC on the inode io_tree
26  *     for the range and carry on if this is buffered, or follow up trying to
27  *     make a real allocation if we are pre-allocating or doing O_DIRECT.
28  *
29  *   -> Use
30  *     At writepages()/prealloc/O_DIRECT time we will call into
31  *     btrfs_reserve_extent() for some part or all of this range of bytes.  We
32  *     will make the allocation and subtract space_info->bytes_may_use by the
33  *     original requested length and increase the space_info->bytes_reserved by
34  *     the allocated length.  This distinction is important because compression
35  *     may allocate a smaller on disk extent than we previously reserved.
36  *
37  *   -> Allocation
38  *     finish_ordered_io() will insert the new file extent item for this range,
39  *     and then add a delayed ref update for the extent tree.  Once that delayed
40  *     ref is written the extent size is subtracted from
41  *     space_info->bytes_reserved and added to space_info->bytes_used.
42  *
43  *   Error handling
44  *
45  *   -> By the reservation maker
46  *     This is the simplest case, we haven't completed our operation and we know
47  *     how much we reserved, we can simply call
48  *     btrfs_free_reserved_data_space*() and it will be removed from
49  *     space_info->bytes_may_use.
50  *
51  *   -> After the reservation has been made, but before cow_file_range()
52  *     This is specifically for the delalloc case.  You must clear
53  *     EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will
54  *     be subtracted from space_info->bytes_may_use.
55  *
56  * METADATA RESERVATION
57  *   The general metadata reservation lifetimes are discussed elsewhere, this
58  *   will just focus on how it is used for delalloc space.
59  *
60  *   We keep track of two things on a per inode bases
61  *
62  *   ->outstanding_extents
63  *     This is the number of file extent items we'll need to handle all of the
64  *     outstanding DELALLOC space we have in this inode.  We limit the maximum
65  *     size of an extent, so a large contiguous dirty area may require more than
66  *     one outstanding_extent, which is why count_max_extents() is used to
67  *     determine how many outstanding_extents get added.
68  *
69  *   ->csum_bytes
70  *     This is essentially how many dirty bytes we have for this inode, so we
71  *     can calculate the number of checksum items we would have to add in order
72  *     to checksum our outstanding data.
73  *
74  *   We keep a per-inode block_rsv in order to make it easier to keep track of
75  *   our reservation.  We use btrfs_calculate_inode_block_rsv_size() to
76  *   calculate the current theoretical maximum reservation we would need for the
77  *   metadata for this inode.  We call this and then adjust our reservation as
78  *   necessary, either by attempting to reserve more space, or freeing up excess
79  *   space.
80  *
81  * OUTSTANDING_EXTENTS HANDLING
82  *
83  *  ->outstanding_extents is used for keeping track of how many extents we will
84  *  need to use for this inode, and it will fluctuate depending on where you are
85  *  in the life cycle of the dirty data.  Consider the following normal case for
86  *  a completely clean inode, with a num_bytes < our maximum allowed extent size
87  *
88  *  -> reserve
89  *    ->outstanding_extents += 1 (current value is 1)
90  *
91  *  -> set_delalloc
92  *    ->outstanding_extents += 1 (currrent value is 2)
93  *
94  *  -> btrfs_delalloc_release_extents()
95  *    ->outstanding_extents -= 1 (current value is 1)
96  *
97  *    We must call this once we are done, as we hold our reservation for the
98  *    duration of our operation, and then assume set_delalloc will update the
99  *    counter appropriately.
100  *
101  *  -> add ordered extent
102  *    ->outstanding_extents += 1 (current value is 2)
103  *
104  *  -> btrfs_clear_delalloc_extent
105  *    ->outstanding_extents -= 1 (current value is 1)
106  *
107  *  -> finish_ordered_io/btrfs_remove_ordered_extent
108  *    ->outstanding_extents -= 1 (current value is 0)
109  *
110  *  Each stage is responsible for their own accounting of the extent, thus
111  *  making error handling and cleanup easier.
112  */
113 
114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
115 {
116 	struct btrfs_root *root = inode->root;
117 	struct btrfs_fs_info *fs_info = root->fs_info;
118 	struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
119 	u64 used;
120 	int ret = 0;
121 	int need_commit = 2;
122 	int have_pinned_space;
123 
124 	/* Make sure bytes are sectorsize aligned */
125 	bytes = ALIGN(bytes, fs_info->sectorsize);
126 
127 	if (btrfs_is_free_space_inode(inode)) {
128 		need_commit = 0;
129 		ASSERT(current->journal_info);
130 	}
131 
132 again:
133 	/* Make sure we have enough space to handle the data first */
134 	spin_lock(&data_sinfo->lock);
135 	used = btrfs_space_info_used(data_sinfo, true);
136 
137 	if (used + bytes > data_sinfo->total_bytes) {
138 		struct btrfs_trans_handle *trans;
139 
140 		/*
141 		 * If we don't have enough free bytes in this space then we need
142 		 * to alloc a new chunk.
143 		 */
144 		if (!data_sinfo->full) {
145 			u64 alloc_target;
146 
147 			data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
148 			spin_unlock(&data_sinfo->lock);
149 
150 			alloc_target = btrfs_data_alloc_profile(fs_info);
151 			/*
152 			 * It is ugly that we don't call nolock join
153 			 * transaction for the free space inode case here.
154 			 * But it is safe because we only do the data space
155 			 * reservation for the free space cache in the
156 			 * transaction context, the common join transaction
157 			 * just increase the counter of the current transaction
158 			 * handler, doesn't try to acquire the trans_lock of
159 			 * the fs.
160 			 */
161 			trans = btrfs_join_transaction(root);
162 			if (IS_ERR(trans))
163 				return PTR_ERR(trans);
164 
165 			ret = btrfs_chunk_alloc(trans, alloc_target,
166 						CHUNK_ALLOC_NO_FORCE);
167 			btrfs_end_transaction(trans);
168 			if (ret < 0) {
169 				if (ret != -ENOSPC)
170 					return ret;
171 				else {
172 					have_pinned_space = 1;
173 					goto commit_trans;
174 				}
175 			}
176 
177 			goto again;
178 		}
179 
180 		/*
181 		 * If we don't have enough pinned space to deal with this
182 		 * allocation, and no removed chunk in current transaction,
183 		 * don't bother committing the transaction.
184 		 */
185 		have_pinned_space = __percpu_counter_compare(
186 			&data_sinfo->total_bytes_pinned,
187 			used + bytes - data_sinfo->total_bytes,
188 			BTRFS_TOTAL_BYTES_PINNED_BATCH);
189 		spin_unlock(&data_sinfo->lock);
190 
191 		/* Commit the current transaction and try again */
192 commit_trans:
193 		if (need_commit) {
194 			need_commit--;
195 
196 			if (need_commit > 0) {
197 				btrfs_start_delalloc_roots(fs_info, -1);
198 				btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
199 							 (u64)-1);
200 			}
201 
202 			trans = btrfs_join_transaction(root);
203 			if (IS_ERR(trans))
204 				return PTR_ERR(trans);
205 			if (have_pinned_space >= 0 ||
206 			    test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
207 				     &trans->transaction->flags) ||
208 			    need_commit > 0) {
209 				ret = btrfs_commit_transaction(trans);
210 				if (ret)
211 					return ret;
212 				/*
213 				 * The cleaner kthread might still be doing iput
214 				 * operations. Wait for it to finish so that
215 				 * more space is released.  We don't need to
216 				 * explicitly run the delayed iputs here because
217 				 * the commit_transaction would have woken up
218 				 * the cleaner.
219 				 */
220 				ret = btrfs_wait_on_delayed_iputs(fs_info);
221 				if (ret)
222 					return ret;
223 				goto again;
224 			} else {
225 				btrfs_end_transaction(trans);
226 			}
227 		}
228 
229 		trace_btrfs_space_reservation(fs_info,
230 					      "space_info:enospc",
231 					      data_sinfo->flags, bytes, 1);
232 		return -ENOSPC;
233 	}
234 	btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, bytes);
235 	spin_unlock(&data_sinfo->lock);
236 
237 	return 0;
238 }
239 
240 int btrfs_check_data_free_space(struct btrfs_inode *inode,
241 			struct extent_changeset **reserved, u64 start, u64 len)
242 {
243 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
244 	int ret;
245 
246 	/* align the range */
247 	len = round_up(start + len, fs_info->sectorsize) -
248 	      round_down(start, fs_info->sectorsize);
249 	start = round_down(start, fs_info->sectorsize);
250 
251 	ret = btrfs_alloc_data_chunk_ondemand(inode, len);
252 	if (ret < 0)
253 		return ret;
254 
255 	/* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
256 	ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
257 	if (ret < 0)
258 		btrfs_free_reserved_data_space_noquota(fs_info, len);
259 	else
260 		ret = 0;
261 	return ret;
262 }
263 
264 /*
265  * Called if we need to clear a data reservation for this inode
266  * Normally in a error case.
267  *
268  * This one will *NOT* use accurate qgroup reserved space API, just for case
269  * which we can't sleep and is sure it won't affect qgroup reserved space.
270  * Like clear_bit_hook().
271  */
272 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info,
273 					    u64 len)
274 {
275 	struct btrfs_space_info *data_sinfo;
276 
277 	ASSERT(IS_ALIGNED(len, fs_info->sectorsize));
278 
279 	data_sinfo = fs_info->data_sinfo;
280 	spin_lock(&data_sinfo->lock);
281 	btrfs_space_info_update_bytes_may_use(fs_info, data_sinfo, -len);
282 	spin_unlock(&data_sinfo->lock);
283 }
284 
285 /*
286  * Called if we need to clear a data reservation for this inode
287  * Normally in a error case.
288  *
289  * This one will handle the per-inode data rsv map for accurate reserved
290  * space framework.
291  */
292 void btrfs_free_reserved_data_space(struct btrfs_inode *inode,
293 			struct extent_changeset *reserved, u64 start, u64 len)
294 {
295 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
296 
297 	/* Make sure the range is aligned to sectorsize */
298 	len = round_up(start + len, fs_info->sectorsize) -
299 	      round_down(start, fs_info->sectorsize);
300 	start = round_down(start, fs_info->sectorsize);
301 
302 	btrfs_free_reserved_data_space_noquota(fs_info, len);
303 	btrfs_qgroup_free_data(inode, reserved, start, len);
304 }
305 
306 /**
307  * btrfs_inode_rsv_release - release any excessive reservation.
308  * @inode - the inode we need to release from.
309  * @qgroup_free - free or convert qgroup meta.
310  *   Unlike normal operation, qgroup meta reservation needs to know if we are
311  *   freeing qgroup reservation or just converting it into per-trans.  Normally
312  *   @qgroup_free is true for error handling, and false for normal release.
313  *
314  * This is the same as btrfs_block_rsv_release, except that it handles the
315  * tracepoint for the reservation.
316  */
317 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
318 {
319 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
320 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
321 	u64 released = 0;
322 	u64 qgroup_to_release = 0;
323 
324 	/*
325 	 * Since we statically set the block_rsv->size we just want to say we
326 	 * are releasing 0 bytes, and then we'll just get the reservation over
327 	 * the size free'd.
328 	 */
329 	released = btrfs_block_rsv_release(fs_info, block_rsv, 0,
330 					   &qgroup_to_release);
331 	if (released > 0)
332 		trace_btrfs_space_reservation(fs_info, "delalloc",
333 					      btrfs_ino(inode), released, 0);
334 	if (qgroup_free)
335 		btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
336 	else
337 		btrfs_qgroup_convert_reserved_meta(inode->root,
338 						   qgroup_to_release);
339 }
340 
341 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
342 						 struct btrfs_inode *inode)
343 {
344 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
345 	u64 reserve_size = 0;
346 	u64 qgroup_rsv_size = 0;
347 	u64 csum_leaves;
348 	unsigned outstanding_extents;
349 
350 	lockdep_assert_held(&inode->lock);
351 	outstanding_extents = inode->outstanding_extents;
352 
353 	/*
354 	 * Insert size for the number of outstanding extents, 1 normal size for
355 	 * updating the inode.
356 	 */
357 	if (outstanding_extents) {
358 		reserve_size = btrfs_calc_insert_metadata_size(fs_info,
359 						outstanding_extents);
360 		reserve_size += btrfs_calc_metadata_size(fs_info, 1);
361 	}
362 	csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
363 						 inode->csum_bytes);
364 	reserve_size += btrfs_calc_insert_metadata_size(fs_info,
365 							csum_leaves);
366 	/*
367 	 * For qgroup rsv, the calculation is very simple:
368 	 * account one nodesize for each outstanding extent
369 	 *
370 	 * This is overestimating in most cases.
371 	 */
372 	qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
373 
374 	spin_lock(&block_rsv->lock);
375 	block_rsv->size = reserve_size;
376 	block_rsv->qgroup_rsv_size = qgroup_rsv_size;
377 	spin_unlock(&block_rsv->lock);
378 }
379 
380 static void calc_inode_reservations(struct btrfs_fs_info *fs_info,
381 				    u64 num_bytes, u64 *meta_reserve,
382 				    u64 *qgroup_reserve)
383 {
384 	u64 nr_extents = count_max_extents(num_bytes);
385 	u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, num_bytes);
386 	u64 inode_update = btrfs_calc_metadata_size(fs_info, 1);
387 
388 	*meta_reserve = btrfs_calc_insert_metadata_size(fs_info,
389 						nr_extents + csum_leaves);
390 
391 	/*
392 	 * finish_ordered_io has to update the inode, so add the space required
393 	 * for an inode update.
394 	 */
395 	*meta_reserve += inode_update;
396 	*qgroup_reserve = nr_extents * fs_info->nodesize;
397 }
398 
399 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
400 {
401 	struct btrfs_root *root = inode->root;
402 	struct btrfs_fs_info *fs_info = root->fs_info;
403 	struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
404 	u64 meta_reserve, qgroup_reserve;
405 	unsigned nr_extents;
406 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
407 	int ret = 0;
408 
409 	/*
410 	 * If we are a free space inode we need to not flush since we will be in
411 	 * the middle of a transaction commit.  We also don't need the delalloc
412 	 * mutex since we won't race with anybody.  We need this mostly to make
413 	 * lockdep shut its filthy mouth.
414 	 *
415 	 * If we have a transaction open (can happen if we call truncate_block
416 	 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
417 	 */
418 	if (btrfs_is_free_space_inode(inode)) {
419 		flush = BTRFS_RESERVE_NO_FLUSH;
420 	} else {
421 		if (current->journal_info)
422 			flush = BTRFS_RESERVE_FLUSH_LIMIT;
423 
424 		if (btrfs_transaction_in_commit(fs_info))
425 			schedule_timeout(1);
426 	}
427 
428 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
429 
430 	/*
431 	 * We always want to do it this way, every other way is wrong and ends
432 	 * in tears.  Pre-reserving the amount we are going to add will always
433 	 * be the right way, because otherwise if we have enough parallelism we
434 	 * could end up with thousands of inodes all holding little bits of
435 	 * reservations they were able to make previously and the only way to
436 	 * reclaim that space is to ENOSPC out the operations and clear
437 	 * everything out and try again, which is bad.  This way we just
438 	 * over-reserve slightly, and clean up the mess when we are done.
439 	 */
440 	calc_inode_reservations(fs_info, num_bytes, &meta_reserve,
441 				&qgroup_reserve);
442 	ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true);
443 	if (ret)
444 		return ret;
445 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, meta_reserve, flush);
446 	if (ret) {
447 		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve);
448 		return ret;
449 	}
450 
451 	/*
452 	 * Now we need to update our outstanding extents and csum bytes _first_
453 	 * and then add the reservation to the block_rsv.  This keeps us from
454 	 * racing with an ordered completion or some such that would think it
455 	 * needs to free the reservation we just made.
456 	 */
457 	spin_lock(&inode->lock);
458 	nr_extents = count_max_extents(num_bytes);
459 	btrfs_mod_outstanding_extents(inode, nr_extents);
460 	inode->csum_bytes += num_bytes;
461 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
462 	spin_unlock(&inode->lock);
463 
464 	/* Now we can safely add our space to our block rsv */
465 	btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false);
466 	trace_btrfs_space_reservation(root->fs_info, "delalloc",
467 				      btrfs_ino(inode), meta_reserve, 1);
468 
469 	spin_lock(&block_rsv->lock);
470 	block_rsv->qgroup_rsv_reserved += qgroup_reserve;
471 	spin_unlock(&block_rsv->lock);
472 
473 	return 0;
474 }
475 
476 /**
477  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
478  * @inode: the inode to release the reservation for.
479  * @num_bytes: the number of bytes we are releasing.
480  * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
481  *
482  * This will release the metadata reservation for an inode.  This can be called
483  * once we complete IO for a given set of bytes to release their metadata
484  * reservations, or on error for the same reason.
485  */
486 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
487 				     bool qgroup_free)
488 {
489 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
490 
491 	num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
492 	spin_lock(&inode->lock);
493 	inode->csum_bytes -= num_bytes;
494 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
495 	spin_unlock(&inode->lock);
496 
497 	if (btrfs_is_testing(fs_info))
498 		return;
499 
500 	btrfs_inode_rsv_release(inode, qgroup_free);
501 }
502 
503 /**
504  * btrfs_delalloc_release_extents - release our outstanding_extents
505  * @inode: the inode to balance the reservation for.
506  * @num_bytes: the number of bytes we originally reserved with
507  *
508  * When we reserve space we increase outstanding_extents for the extents we may
509  * add.  Once we've set the range as delalloc or created our ordered extents we
510  * have outstanding_extents to track the real usage, so we use this to free our
511  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
512  * with btrfs_delalloc_reserve_metadata.
513  */
514 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
515 {
516 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
517 	unsigned num_extents;
518 
519 	spin_lock(&inode->lock);
520 	num_extents = count_max_extents(num_bytes);
521 	btrfs_mod_outstanding_extents(inode, -num_extents);
522 	btrfs_calculate_inode_block_rsv_size(fs_info, inode);
523 	spin_unlock(&inode->lock);
524 
525 	if (btrfs_is_testing(fs_info))
526 		return;
527 
528 	btrfs_inode_rsv_release(inode, true);
529 }
530 
531 /**
532  * btrfs_delalloc_reserve_space - reserve data and metadata space for
533  * delalloc
534  * @inode: inode we're writing to
535  * @start: start range we are writing to
536  * @len: how long the range we are writing to
537  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
538  * 	      current reservation.
539  *
540  * This will do the following things
541  *
542  * - reserve space in data space info for num bytes
543  *   and reserve precious corresponding qgroup space
544  *   (Done in check_data_free_space)
545  *
546  * - reserve space for metadata space, based on the number of outstanding
547  *   extents and how much csums will be needed
548  *   also reserve metadata space in a per root over-reserve method.
549  * - add to the inodes->delalloc_bytes
550  * - add it to the fs_info's delalloc inodes list.
551  *   (Above 3 all done in delalloc_reserve_metadata)
552  *
553  * Return 0 for success
554  * Return <0 for error(-ENOSPC or -EQUOT)
555  */
556 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode,
557 			struct extent_changeset **reserved, u64 start, u64 len)
558 {
559 	int ret;
560 
561 	ret = btrfs_check_data_free_space(inode, reserved, start, len);
562 	if (ret < 0)
563 		return ret;
564 	ret = btrfs_delalloc_reserve_metadata(inode, len);
565 	if (ret < 0)
566 		btrfs_free_reserved_data_space(inode, *reserved, start, len);
567 	return ret;
568 }
569 
570 /**
571  * btrfs_delalloc_release_space - release data and metadata space for delalloc
572  * @inode: inode we're releasing space for
573  * @start: start position of the space already reserved
574  * @len: the len of the space already reserved
575  * @release_bytes: the len of the space we consumed or didn't use
576  *
577  * This function will release the metadata space that was not used and will
578  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
579  * list if there are no delalloc bytes left.
580  * Also it will handle the qgroup reserved space.
581  */
582 void btrfs_delalloc_release_space(struct btrfs_inode *inode,
583 				  struct extent_changeset *reserved,
584 				  u64 start, u64 len, bool qgroup_free)
585 {
586 	btrfs_delalloc_release_metadata(inode, len, qgroup_free);
587 	btrfs_free_reserved_data_space(inode, reserved, start, len);
588 }
589