1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "ctree.h" 4 #include "delalloc-space.h" 5 #include "block-rsv.h" 6 #include "btrfs_inode.h" 7 #include "space-info.h" 8 #include "transaction.h" 9 #include "qgroup.h" 10 #include "block-group.h" 11 12 /* 13 * HOW DOES THIS WORK 14 * 15 * There are two stages to data reservations, one for data and one for metadata 16 * to handle the new extents and checksums generated by writing data. 17 * 18 * 19 * DATA RESERVATION 20 * The general flow of the data reservation is as follows 21 * 22 * -> Reserve 23 * We call into btrfs_reserve_data_bytes() for the user request bytes that 24 * they wish to write. We make this reservation and add it to 25 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 26 * for the range and carry on if this is buffered, or follow up trying to 27 * make a real allocation if we are pre-allocating or doing O_DIRECT. 28 * 29 * -> Use 30 * At writepages()/prealloc/O_DIRECT time we will call into 31 * btrfs_reserve_extent() for some part or all of this range of bytes. We 32 * will make the allocation and subtract space_info->bytes_may_use by the 33 * original requested length and increase the space_info->bytes_reserved by 34 * the allocated length. This distinction is important because compression 35 * may allocate a smaller on disk extent than we previously reserved. 36 * 37 * -> Allocation 38 * finish_ordered_io() will insert the new file extent item for this range, 39 * and then add a delayed ref update for the extent tree. Once that delayed 40 * ref is written the extent size is subtracted from 41 * space_info->bytes_reserved and added to space_info->bytes_used. 42 * 43 * Error handling 44 * 45 * -> By the reservation maker 46 * This is the simplest case, we haven't completed our operation and we know 47 * how much we reserved, we can simply call 48 * btrfs_free_reserved_data_space*() and it will be removed from 49 * space_info->bytes_may_use. 50 * 51 * -> After the reservation has been made, but before cow_file_range() 52 * This is specifically for the delalloc case. You must clear 53 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 54 * be subtracted from space_info->bytes_may_use. 55 * 56 * METADATA RESERVATION 57 * The general metadata reservation lifetimes are discussed elsewhere, this 58 * will just focus on how it is used for delalloc space. 59 * 60 * We keep track of two things on a per inode bases 61 * 62 * ->outstanding_extents 63 * This is the number of file extent items we'll need to handle all of the 64 * outstanding DELALLOC space we have in this inode. We limit the maximum 65 * size of an extent, so a large contiguous dirty area may require more than 66 * one outstanding_extent, which is why count_max_extents() is used to 67 * determine how many outstanding_extents get added. 68 * 69 * ->csum_bytes 70 * This is essentially how many dirty bytes we have for this inode, so we 71 * can calculate the number of checksum items we would have to add in order 72 * to checksum our outstanding data. 73 * 74 * We keep a per-inode block_rsv in order to make it easier to keep track of 75 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 76 * calculate the current theoretical maximum reservation we would need for the 77 * metadata for this inode. We call this and then adjust our reservation as 78 * necessary, either by attempting to reserve more space, or freeing up excess 79 * space. 80 * 81 * OUTSTANDING_EXTENTS HANDLING 82 * 83 * ->outstanding_extents is used for keeping track of how many extents we will 84 * need to use for this inode, and it will fluctuate depending on where you are 85 * in the life cycle of the dirty data. Consider the following normal case for 86 * a completely clean inode, with a num_bytes < our maximum allowed extent size 87 * 88 * -> reserve 89 * ->outstanding_extents += 1 (current value is 1) 90 * 91 * -> set_delalloc 92 * ->outstanding_extents += 1 (current value is 2) 93 * 94 * -> btrfs_delalloc_release_extents() 95 * ->outstanding_extents -= 1 (current value is 1) 96 * 97 * We must call this once we are done, as we hold our reservation for the 98 * duration of our operation, and then assume set_delalloc will update the 99 * counter appropriately. 100 * 101 * -> add ordered extent 102 * ->outstanding_extents += 1 (current value is 2) 103 * 104 * -> btrfs_clear_delalloc_extent 105 * ->outstanding_extents -= 1 (current value is 1) 106 * 107 * -> finish_ordered_io/btrfs_remove_ordered_extent 108 * ->outstanding_extents -= 1 (current value is 0) 109 * 110 * Each stage is responsible for their own accounting of the extent, thus 111 * making error handling and cleanup easier. 112 */ 113 114 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 115 { 116 struct btrfs_root *root = inode->root; 117 struct btrfs_fs_info *fs_info = root->fs_info; 118 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 119 120 /* Make sure bytes are sectorsize aligned */ 121 bytes = ALIGN(bytes, fs_info->sectorsize); 122 123 if (btrfs_is_free_space_inode(inode)) 124 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 125 126 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 127 } 128 129 int btrfs_check_data_free_space(struct btrfs_inode *inode, 130 struct extent_changeset **reserved, u64 start, 131 u64 len, bool noflush) 132 { 133 struct btrfs_fs_info *fs_info = inode->root->fs_info; 134 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 135 int ret; 136 137 /* align the range */ 138 len = round_up(start + len, fs_info->sectorsize) - 139 round_down(start, fs_info->sectorsize); 140 start = round_down(start, fs_info->sectorsize); 141 142 if (noflush) 143 flush = BTRFS_RESERVE_NO_FLUSH; 144 else if (btrfs_is_free_space_inode(inode)) 145 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 146 147 ret = btrfs_reserve_data_bytes(fs_info, len, flush); 148 if (ret < 0) 149 return ret; 150 151 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 152 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 153 if (ret < 0) { 154 btrfs_free_reserved_data_space_noquota(fs_info, len); 155 extent_changeset_free(*reserved); 156 *reserved = NULL; 157 } else { 158 ret = 0; 159 } 160 return ret; 161 } 162 163 /* 164 * Called if we need to clear a data reservation for this inode 165 * Normally in a error case. 166 * 167 * This one will *NOT* use accurate qgroup reserved space API, just for case 168 * which we can't sleep and is sure it won't affect qgroup reserved space. 169 * Like clear_bit_hook(). 170 */ 171 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 172 u64 len) 173 { 174 struct btrfs_space_info *data_sinfo; 175 176 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 177 178 data_sinfo = fs_info->data_sinfo; 179 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 180 } 181 182 /* 183 * Called if we need to clear a data reservation for this inode 184 * Normally in a error case. 185 * 186 * This one will handle the per-inode data rsv map for accurate reserved 187 * space framework. 188 */ 189 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 190 struct extent_changeset *reserved, u64 start, u64 len) 191 { 192 struct btrfs_fs_info *fs_info = inode->root->fs_info; 193 194 /* Make sure the range is aligned to sectorsize */ 195 len = round_up(start + len, fs_info->sectorsize) - 196 round_down(start, fs_info->sectorsize); 197 start = round_down(start, fs_info->sectorsize); 198 199 btrfs_free_reserved_data_space_noquota(fs_info, len); 200 btrfs_qgroup_free_data(inode, reserved, start, len); 201 } 202 203 /** 204 * Release any excessive reservation 205 * 206 * @inode: the inode we need to release from 207 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 208 * meta reservation needs to know if we are freeing qgroup 209 * reservation or just converting it into per-trans. Normally 210 * @qgroup_free is true for error handling, and false for normal 211 * release. 212 * 213 * This is the same as btrfs_block_rsv_release, except that it handles the 214 * tracepoint for the reservation. 215 */ 216 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 217 { 218 struct btrfs_fs_info *fs_info = inode->root->fs_info; 219 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 220 u64 released = 0; 221 u64 qgroup_to_release = 0; 222 223 /* 224 * Since we statically set the block_rsv->size we just want to say we 225 * are releasing 0 bytes, and then we'll just get the reservation over 226 * the size free'd. 227 */ 228 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 229 &qgroup_to_release); 230 if (released > 0) 231 trace_btrfs_space_reservation(fs_info, "delalloc", 232 btrfs_ino(inode), released, 0); 233 if (qgroup_free) 234 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 235 else 236 btrfs_qgroup_convert_reserved_meta(inode->root, 237 qgroup_to_release); 238 } 239 240 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 241 struct btrfs_inode *inode) 242 { 243 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 244 u64 reserve_size = 0; 245 u64 qgroup_rsv_size = 0; 246 u64 csum_leaves; 247 unsigned outstanding_extents; 248 249 lockdep_assert_held(&inode->lock); 250 outstanding_extents = inode->outstanding_extents; 251 252 /* 253 * Insert size for the number of outstanding extents, 1 normal size for 254 * updating the inode. 255 */ 256 if (outstanding_extents) { 257 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 258 outstanding_extents); 259 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 260 } 261 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 262 inode->csum_bytes); 263 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 264 csum_leaves); 265 /* 266 * For qgroup rsv, the calculation is very simple: 267 * account one nodesize for each outstanding extent 268 * 269 * This is overestimating in most cases. 270 */ 271 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 272 273 spin_lock(&block_rsv->lock); 274 block_rsv->size = reserve_size; 275 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 276 spin_unlock(&block_rsv->lock); 277 } 278 279 static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 280 u64 num_bytes, u64 disk_num_bytes, 281 u64 *meta_reserve, u64 *qgroup_reserve) 282 { 283 u64 nr_extents = count_max_extents(fs_info, num_bytes); 284 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 285 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 286 287 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 288 nr_extents + csum_leaves); 289 290 /* 291 * finish_ordered_io has to update the inode, so add the space required 292 * for an inode update. 293 */ 294 *meta_reserve += inode_update; 295 *qgroup_reserve = nr_extents * fs_info->nodesize; 296 } 297 298 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 299 u64 disk_num_bytes, bool noflush) 300 { 301 struct btrfs_root *root = inode->root; 302 struct btrfs_fs_info *fs_info = root->fs_info; 303 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 304 u64 meta_reserve, qgroup_reserve; 305 unsigned nr_extents; 306 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 307 int ret = 0; 308 309 /* 310 * If we are a free space inode we need to not flush since we will be in 311 * the middle of a transaction commit. We also don't need the delalloc 312 * mutex since we won't race with anybody. We need this mostly to make 313 * lockdep shut its filthy mouth. 314 * 315 * If we have a transaction open (can happen if we call truncate_block 316 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 317 */ 318 if (noflush || btrfs_is_free_space_inode(inode)) { 319 flush = BTRFS_RESERVE_NO_FLUSH; 320 } else { 321 if (current->journal_info) 322 flush = BTRFS_RESERVE_FLUSH_LIMIT; 323 324 if (btrfs_transaction_in_commit(fs_info)) 325 schedule_timeout(1); 326 } 327 328 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 329 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 330 331 /* 332 * We always want to do it this way, every other way is wrong and ends 333 * in tears. Pre-reserving the amount we are going to add will always 334 * be the right way, because otherwise if we have enough parallelism we 335 * could end up with thousands of inodes all holding little bits of 336 * reservations they were able to make previously and the only way to 337 * reclaim that space is to ENOSPC out the operations and clear 338 * everything out and try again, which is bad. This way we just 339 * over-reserve slightly, and clean up the mess when we are done. 340 */ 341 calc_inode_reservations(fs_info, num_bytes, disk_num_bytes, 342 &meta_reserve, &qgroup_reserve); 343 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 344 noflush); 345 if (ret) 346 return ret; 347 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush); 348 if (ret) { 349 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 350 return ret; 351 } 352 353 /* 354 * Now we need to update our outstanding extents and csum bytes _first_ 355 * and then add the reservation to the block_rsv. This keeps us from 356 * racing with an ordered completion or some such that would think it 357 * needs to free the reservation we just made. 358 */ 359 spin_lock(&inode->lock); 360 nr_extents = count_max_extents(fs_info, num_bytes); 361 btrfs_mod_outstanding_extents(inode, nr_extents); 362 inode->csum_bytes += disk_num_bytes; 363 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 364 spin_unlock(&inode->lock); 365 366 /* Now we can safely add our space to our block rsv */ 367 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 368 trace_btrfs_space_reservation(root->fs_info, "delalloc", 369 btrfs_ino(inode), meta_reserve, 1); 370 371 spin_lock(&block_rsv->lock); 372 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 373 spin_unlock(&block_rsv->lock); 374 375 return 0; 376 } 377 378 /** 379 * Release a metadata reservation for an inode 380 * 381 * @inode: the inode to release the reservation for. 382 * @num_bytes: the number of bytes we are releasing. 383 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 384 * 385 * This will release the metadata reservation for an inode. This can be called 386 * once we complete IO for a given set of bytes to release their metadata 387 * reservations, or on error for the same reason. 388 */ 389 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 390 bool qgroup_free) 391 { 392 struct btrfs_fs_info *fs_info = inode->root->fs_info; 393 394 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 395 spin_lock(&inode->lock); 396 inode->csum_bytes -= num_bytes; 397 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 398 spin_unlock(&inode->lock); 399 400 if (btrfs_is_testing(fs_info)) 401 return; 402 403 btrfs_inode_rsv_release(inode, qgroup_free); 404 } 405 406 /** 407 * btrfs_delalloc_release_extents - release our outstanding_extents 408 * @inode: the inode to balance the reservation for. 409 * @num_bytes: the number of bytes we originally reserved with 410 * 411 * When we reserve space we increase outstanding_extents for the extents we may 412 * add. Once we've set the range as delalloc or created our ordered extents we 413 * have outstanding_extents to track the real usage, so we use this to free our 414 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 415 * with btrfs_delalloc_reserve_metadata. 416 */ 417 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 418 { 419 struct btrfs_fs_info *fs_info = inode->root->fs_info; 420 unsigned num_extents; 421 422 spin_lock(&inode->lock); 423 num_extents = count_max_extents(fs_info, num_bytes); 424 btrfs_mod_outstanding_extents(inode, -num_extents); 425 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 426 spin_unlock(&inode->lock); 427 428 if (btrfs_is_testing(fs_info)) 429 return; 430 431 btrfs_inode_rsv_release(inode, true); 432 } 433 434 /** 435 * btrfs_delalloc_reserve_space - reserve data and metadata space for 436 * delalloc 437 * @inode: inode we're writing to 438 * @start: start range we are writing to 439 * @len: how long the range we are writing to 440 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 441 * current reservation. 442 * 443 * This will do the following things 444 * 445 * - reserve space in data space info for num bytes 446 * and reserve precious corresponding qgroup space 447 * (Done in check_data_free_space) 448 * 449 * - reserve space for metadata space, based on the number of outstanding 450 * extents and how much csums will be needed 451 * also reserve metadata space in a per root over-reserve method. 452 * - add to the inodes->delalloc_bytes 453 * - add it to the fs_info's delalloc inodes list. 454 * (Above 3 all done in delalloc_reserve_metadata) 455 * 456 * Return 0 for success 457 * Return <0 for error(-ENOSPC or -EQUOT) 458 */ 459 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 460 struct extent_changeset **reserved, u64 start, u64 len) 461 { 462 int ret; 463 464 ret = btrfs_check_data_free_space(inode, reserved, start, len, false); 465 if (ret < 0) 466 return ret; 467 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 468 if (ret < 0) { 469 btrfs_free_reserved_data_space(inode, *reserved, start, len); 470 extent_changeset_free(*reserved); 471 *reserved = NULL; 472 } 473 return ret; 474 } 475 476 /** 477 * Release data and metadata space for delalloc 478 * 479 * @inode: inode we're releasing space for 480 * @reserved: list of changed/reserved ranges 481 * @start: start position of the space already reserved 482 * @len: length of the space already reserved 483 * @qgroup_free: should qgroup reserved-space also be freed 484 * 485 * This function will release the metadata space that was not used and will 486 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes 487 * list if there are no delalloc bytes left. 488 * Also it will handle the qgroup reserved space. 489 */ 490 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 491 struct extent_changeset *reserved, 492 u64 start, u64 len, bool qgroup_free) 493 { 494 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 495 btrfs_free_reserved_data_space(inode, reserved, start, len); 496 } 497