1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "messages.h" 4 #include "ctree.h" 5 #include "delalloc-space.h" 6 #include "block-rsv.h" 7 #include "btrfs_inode.h" 8 #include "space-info.h" 9 #include "transaction.h" 10 #include "qgroup.h" 11 #include "block-group.h" 12 #include "fs.h" 13 14 /* 15 * HOW DOES THIS WORK 16 * 17 * There are two stages to data reservations, one for data and one for metadata 18 * to handle the new extents and checksums generated by writing data. 19 * 20 * 21 * DATA RESERVATION 22 * The general flow of the data reservation is as follows 23 * 24 * -> Reserve 25 * We call into btrfs_reserve_data_bytes() for the user request bytes that 26 * they wish to write. We make this reservation and add it to 27 * space_info->bytes_may_use. We set EXTENT_DELALLOC on the inode io_tree 28 * for the range and carry on if this is buffered, or follow up trying to 29 * make a real allocation if we are pre-allocating or doing O_DIRECT. 30 * 31 * -> Use 32 * At writepages()/prealloc/O_DIRECT time we will call into 33 * btrfs_reserve_extent() for some part or all of this range of bytes. We 34 * will make the allocation and subtract space_info->bytes_may_use by the 35 * original requested length and increase the space_info->bytes_reserved by 36 * the allocated length. This distinction is important because compression 37 * may allocate a smaller on disk extent than we previously reserved. 38 * 39 * -> Allocation 40 * finish_ordered_io() will insert the new file extent item for this range, 41 * and then add a delayed ref update for the extent tree. Once that delayed 42 * ref is written the extent size is subtracted from 43 * space_info->bytes_reserved and added to space_info->bytes_used. 44 * 45 * Error handling 46 * 47 * -> By the reservation maker 48 * This is the simplest case, we haven't completed our operation and we know 49 * how much we reserved, we can simply call 50 * btrfs_free_reserved_data_space*() and it will be removed from 51 * space_info->bytes_may_use. 52 * 53 * -> After the reservation has been made, but before cow_file_range() 54 * This is specifically for the delalloc case. You must clear 55 * EXTENT_DELALLOC with the EXTENT_CLEAR_DATA_RESV bit, and the range will 56 * be subtracted from space_info->bytes_may_use. 57 * 58 * METADATA RESERVATION 59 * The general metadata reservation lifetimes are discussed elsewhere, this 60 * will just focus on how it is used for delalloc space. 61 * 62 * We keep track of two things on a per inode bases 63 * 64 * ->outstanding_extents 65 * This is the number of file extent items we'll need to handle all of the 66 * outstanding DELALLOC space we have in this inode. We limit the maximum 67 * size of an extent, so a large contiguous dirty area may require more than 68 * one outstanding_extent, which is why count_max_extents() is used to 69 * determine how many outstanding_extents get added. 70 * 71 * ->csum_bytes 72 * This is essentially how many dirty bytes we have for this inode, so we 73 * can calculate the number of checksum items we would have to add in order 74 * to checksum our outstanding data. 75 * 76 * We keep a per-inode block_rsv in order to make it easier to keep track of 77 * our reservation. We use btrfs_calculate_inode_block_rsv_size() to 78 * calculate the current theoretical maximum reservation we would need for the 79 * metadata for this inode. We call this and then adjust our reservation as 80 * necessary, either by attempting to reserve more space, or freeing up excess 81 * space. 82 * 83 * OUTSTANDING_EXTENTS HANDLING 84 * 85 * ->outstanding_extents is used for keeping track of how many extents we will 86 * need to use for this inode, and it will fluctuate depending on where you are 87 * in the life cycle of the dirty data. Consider the following normal case for 88 * a completely clean inode, with a num_bytes < our maximum allowed extent size 89 * 90 * -> reserve 91 * ->outstanding_extents += 1 (current value is 1) 92 * 93 * -> set_delalloc 94 * ->outstanding_extents += 1 (current value is 2) 95 * 96 * -> btrfs_delalloc_release_extents() 97 * ->outstanding_extents -= 1 (current value is 1) 98 * 99 * We must call this once we are done, as we hold our reservation for the 100 * duration of our operation, and then assume set_delalloc will update the 101 * counter appropriately. 102 * 103 * -> add ordered extent 104 * ->outstanding_extents += 1 (current value is 2) 105 * 106 * -> btrfs_clear_delalloc_extent 107 * ->outstanding_extents -= 1 (current value is 1) 108 * 109 * -> finish_ordered_io/btrfs_remove_ordered_extent 110 * ->outstanding_extents -= 1 (current value is 0) 111 * 112 * Each stage is responsible for their own accounting of the extent, thus 113 * making error handling and cleanup easier. 114 */ 115 116 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) 117 { 118 struct btrfs_root *root = inode->root; 119 struct btrfs_fs_info *fs_info = root->fs_info; 120 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 121 122 /* Make sure bytes are sectorsize aligned */ 123 bytes = ALIGN(bytes, fs_info->sectorsize); 124 125 if (btrfs_is_free_space_inode(inode)) 126 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 127 128 return btrfs_reserve_data_bytes(fs_info, bytes, flush); 129 } 130 131 int btrfs_check_data_free_space(struct btrfs_inode *inode, 132 struct extent_changeset **reserved, u64 start, 133 u64 len, bool noflush) 134 { 135 struct btrfs_fs_info *fs_info = inode->root->fs_info; 136 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_DATA; 137 int ret; 138 139 /* align the range */ 140 len = round_up(start + len, fs_info->sectorsize) - 141 round_down(start, fs_info->sectorsize); 142 start = round_down(start, fs_info->sectorsize); 143 144 if (noflush) 145 flush = BTRFS_RESERVE_NO_FLUSH; 146 else if (btrfs_is_free_space_inode(inode)) 147 flush = BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE; 148 149 ret = btrfs_reserve_data_bytes(fs_info, len, flush); 150 if (ret < 0) 151 return ret; 152 153 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ 154 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); 155 if (ret < 0) { 156 btrfs_free_reserved_data_space_noquota(fs_info, len); 157 extent_changeset_free(*reserved); 158 *reserved = NULL; 159 } else { 160 ret = 0; 161 } 162 return ret; 163 } 164 165 /* 166 * Called if we need to clear a data reservation for this inode 167 * Normally in a error case. 168 * 169 * This one will *NOT* use accurate qgroup reserved space API, just for case 170 * which we can't sleep and is sure it won't affect qgroup reserved space. 171 * Like clear_bit_hook(). 172 */ 173 void btrfs_free_reserved_data_space_noquota(struct btrfs_fs_info *fs_info, 174 u64 len) 175 { 176 struct btrfs_space_info *data_sinfo; 177 178 ASSERT(IS_ALIGNED(len, fs_info->sectorsize)); 179 180 data_sinfo = fs_info->data_sinfo; 181 btrfs_space_info_free_bytes_may_use(fs_info, data_sinfo, len); 182 } 183 184 /* 185 * Called if we need to clear a data reservation for this inode 186 * Normally in a error case. 187 * 188 * This one will handle the per-inode data rsv map for accurate reserved 189 * space framework. 190 */ 191 void btrfs_free_reserved_data_space(struct btrfs_inode *inode, 192 struct extent_changeset *reserved, u64 start, u64 len) 193 { 194 struct btrfs_fs_info *fs_info = inode->root->fs_info; 195 196 /* Make sure the range is aligned to sectorsize */ 197 len = round_up(start + len, fs_info->sectorsize) - 198 round_down(start, fs_info->sectorsize); 199 start = round_down(start, fs_info->sectorsize); 200 201 btrfs_free_reserved_data_space_noquota(fs_info, len); 202 btrfs_qgroup_free_data(inode, reserved, start, len); 203 } 204 205 /* 206 * Release any excessive reservations for an inode. 207 * 208 * @inode: the inode we need to release from 209 * @qgroup_free: free or convert qgroup meta. Unlike normal operation, qgroup 210 * meta reservation needs to know if we are freeing qgroup 211 * reservation or just converting it into per-trans. Normally 212 * @qgroup_free is true for error handling, and false for normal 213 * release. 214 * 215 * This is the same as btrfs_block_rsv_release, except that it handles the 216 * tracepoint for the reservation. 217 */ 218 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) 219 { 220 struct btrfs_fs_info *fs_info = inode->root->fs_info; 221 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 222 u64 released = 0; 223 u64 qgroup_to_release = 0; 224 225 /* 226 * Since we statically set the block_rsv->size we just want to say we 227 * are releasing 0 bytes, and then we'll just get the reservation over 228 * the size free'd. 229 */ 230 released = btrfs_block_rsv_release(fs_info, block_rsv, 0, 231 &qgroup_to_release); 232 if (released > 0) 233 trace_btrfs_space_reservation(fs_info, "delalloc", 234 btrfs_ino(inode), released, 0); 235 if (qgroup_free) 236 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); 237 else 238 btrfs_qgroup_convert_reserved_meta(inode->root, 239 qgroup_to_release); 240 } 241 242 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, 243 struct btrfs_inode *inode) 244 { 245 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 246 u64 reserve_size = 0; 247 u64 qgroup_rsv_size = 0; 248 u64 csum_leaves; 249 unsigned outstanding_extents; 250 251 lockdep_assert_held(&inode->lock); 252 outstanding_extents = inode->outstanding_extents; 253 254 /* 255 * Insert size for the number of outstanding extents, 1 normal size for 256 * updating the inode. 257 */ 258 if (outstanding_extents) { 259 reserve_size = btrfs_calc_insert_metadata_size(fs_info, 260 outstanding_extents); 261 reserve_size += btrfs_calc_metadata_size(fs_info, 1); 262 } 263 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, 264 inode->csum_bytes); 265 reserve_size += btrfs_calc_insert_metadata_size(fs_info, 266 csum_leaves); 267 /* 268 * For qgroup rsv, the calculation is very simple: 269 * account one nodesize for each outstanding extent 270 * 271 * This is overestimating in most cases. 272 */ 273 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; 274 275 spin_lock(&block_rsv->lock); 276 block_rsv->size = reserve_size; 277 block_rsv->qgroup_rsv_size = qgroup_rsv_size; 278 spin_unlock(&block_rsv->lock); 279 } 280 281 static void calc_inode_reservations(struct btrfs_fs_info *fs_info, 282 u64 num_bytes, u64 disk_num_bytes, 283 u64 *meta_reserve, u64 *qgroup_reserve) 284 { 285 u64 nr_extents = count_max_extents(fs_info, num_bytes); 286 u64 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, disk_num_bytes); 287 u64 inode_update = btrfs_calc_metadata_size(fs_info, 1); 288 289 *meta_reserve = btrfs_calc_insert_metadata_size(fs_info, 290 nr_extents + csum_leaves); 291 292 /* 293 * finish_ordered_io has to update the inode, so add the space required 294 * for an inode update. 295 */ 296 *meta_reserve += inode_update; 297 *qgroup_reserve = nr_extents * fs_info->nodesize; 298 } 299 300 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 301 u64 disk_num_bytes, bool noflush) 302 { 303 struct btrfs_root *root = inode->root; 304 struct btrfs_fs_info *fs_info = root->fs_info; 305 struct btrfs_block_rsv *block_rsv = &inode->block_rsv; 306 u64 meta_reserve, qgroup_reserve; 307 unsigned nr_extents; 308 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; 309 int ret = 0; 310 311 /* 312 * If we are a free space inode we need to not flush since we will be in 313 * the middle of a transaction commit. We also don't need the delalloc 314 * mutex since we won't race with anybody. We need this mostly to make 315 * lockdep shut its filthy mouth. 316 * 317 * If we have a transaction open (can happen if we call truncate_block 318 * from truncate), then we need FLUSH_LIMIT so we don't deadlock. 319 */ 320 if (noflush || btrfs_is_free_space_inode(inode)) { 321 flush = BTRFS_RESERVE_NO_FLUSH; 322 } else { 323 if (current->journal_info) 324 flush = BTRFS_RESERVE_FLUSH_LIMIT; 325 } 326 327 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 328 disk_num_bytes = ALIGN(disk_num_bytes, fs_info->sectorsize); 329 330 /* 331 * We always want to do it this way, every other way is wrong and ends 332 * in tears. Pre-reserving the amount we are going to add will always 333 * be the right way, because otherwise if we have enough parallelism we 334 * could end up with thousands of inodes all holding little bits of 335 * reservations they were able to make previously and the only way to 336 * reclaim that space is to ENOSPC out the operations and clear 337 * everything out and try again, which is bad. This way we just 338 * over-reserve slightly, and clean up the mess when we are done. 339 */ 340 calc_inode_reservations(fs_info, num_bytes, disk_num_bytes, 341 &meta_reserve, &qgroup_reserve); 342 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserve, true, 343 noflush); 344 if (ret) 345 return ret; 346 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, meta_reserve, flush); 347 if (ret) { 348 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserve); 349 return ret; 350 } 351 352 /* 353 * Now we need to update our outstanding extents and csum bytes _first_ 354 * and then add the reservation to the block_rsv. This keeps us from 355 * racing with an ordered completion or some such that would think it 356 * needs to free the reservation we just made. 357 */ 358 nr_extents = count_max_extents(fs_info, num_bytes); 359 spin_lock(&inode->lock); 360 btrfs_mod_outstanding_extents(inode, nr_extents); 361 inode->csum_bytes += disk_num_bytes; 362 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 363 spin_unlock(&inode->lock); 364 365 /* Now we can safely add our space to our block rsv */ 366 btrfs_block_rsv_add_bytes(block_rsv, meta_reserve, false); 367 trace_btrfs_space_reservation(root->fs_info, "delalloc", 368 btrfs_ino(inode), meta_reserve, 1); 369 370 spin_lock(&block_rsv->lock); 371 block_rsv->qgroup_rsv_reserved += qgroup_reserve; 372 spin_unlock(&block_rsv->lock); 373 374 return 0; 375 } 376 377 /* 378 * Release a metadata reservation for an inode. 379 * 380 * @inode: the inode to release the reservation for. 381 * @num_bytes: the number of bytes we are releasing. 382 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation 383 * 384 * This will release the metadata reservation for an inode. This can be called 385 * once we complete IO for a given set of bytes to release their metadata 386 * reservations, or on error for the same reason. 387 */ 388 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, 389 bool qgroup_free) 390 { 391 struct btrfs_fs_info *fs_info = inode->root->fs_info; 392 393 num_bytes = ALIGN(num_bytes, fs_info->sectorsize); 394 spin_lock(&inode->lock); 395 inode->csum_bytes -= num_bytes; 396 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 397 spin_unlock(&inode->lock); 398 399 if (btrfs_is_testing(fs_info)) 400 return; 401 402 btrfs_inode_rsv_release(inode, qgroup_free); 403 } 404 405 /* 406 * Release our outstanding_extents for an inode. 407 * 408 * @inode: the inode to balance the reservation for. 409 * @num_bytes: the number of bytes we originally reserved with 410 * 411 * When we reserve space we increase outstanding_extents for the extents we may 412 * add. Once we've set the range as delalloc or created our ordered extents we 413 * have outstanding_extents to track the real usage, so we use this to free our 414 * temporarily tracked outstanding_extents. This _must_ be used in conjunction 415 * with btrfs_delalloc_reserve_metadata. 416 */ 417 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) 418 { 419 struct btrfs_fs_info *fs_info = inode->root->fs_info; 420 unsigned num_extents; 421 422 spin_lock(&inode->lock); 423 num_extents = count_max_extents(fs_info, num_bytes); 424 btrfs_mod_outstanding_extents(inode, -num_extents); 425 btrfs_calculate_inode_block_rsv_size(fs_info, inode); 426 spin_unlock(&inode->lock); 427 428 if (btrfs_is_testing(fs_info)) 429 return; 430 431 btrfs_inode_rsv_release(inode, true); 432 } 433 434 /* 435 * Reserve data and metadata space for delalloc 436 * 437 * @inode: inode we're writing to 438 * @start: start range we are writing to 439 * @len: how long the range we are writing to 440 * @reserved: mandatory parameter, record actually reserved qgroup ranges of 441 * current reservation. 442 * 443 * This will do the following things 444 * 445 * - reserve space in data space info for num bytes and reserve precious 446 * corresponding qgroup space 447 * (Done in check_data_free_space) 448 * 449 * - reserve space for metadata space, based on the number of outstanding 450 * extents and how much csums will be needed also reserve metadata space in a 451 * per root over-reserve method. 452 * - add to the inodes->delalloc_bytes 453 * - add it to the fs_info's delalloc inodes list. 454 * (Above 3 all done in delalloc_reserve_metadata) 455 * 456 * Return 0 for success 457 * Return <0 for error(-ENOSPC or -EDQUOT) 458 */ 459 int btrfs_delalloc_reserve_space(struct btrfs_inode *inode, 460 struct extent_changeset **reserved, u64 start, u64 len) 461 { 462 int ret; 463 464 ret = btrfs_check_data_free_space(inode, reserved, start, len, false); 465 if (ret < 0) 466 return ret; 467 ret = btrfs_delalloc_reserve_metadata(inode, len, len, false); 468 if (ret < 0) { 469 btrfs_free_reserved_data_space(inode, *reserved, start, len); 470 extent_changeset_free(*reserved); 471 *reserved = NULL; 472 } 473 return ret; 474 } 475 476 /* 477 * Release data and metadata space for delalloc 478 * 479 * @inode: inode we're releasing space for 480 * @reserved: list of changed/reserved ranges 481 * @start: start position of the space already reserved 482 * @len: length of the space already reserved 483 * @qgroup_free: should qgroup reserved-space also be freed 484 * 485 * Release the metadata space that was not used and will decrement 486 * ->delalloc_bytes and remove it from the fs_info->delalloc_inodes list if 487 * there are no delalloc bytes left. Also it will handle the qgroup reserved 488 * space. 489 */ 490 void btrfs_delalloc_release_space(struct btrfs_inode *inode, 491 struct extent_changeset *reserved, 492 u64 start, u64 len, bool qgroup_free) 493 { 494 btrfs_delalloc_release_metadata(inode, len, qgroup_free); 495 btrfs_free_reserved_data_space(inode, reserved, start, len); 496 } 497