xref: /openbmc/linux/fs/btrfs/defrag.c (revision 7c8ede16)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 #include "file-item.h"
18 
19 static struct kmem_cache *btrfs_inode_defrag_cachep;
20 
21 /*
22  * When auto defrag is enabled we queue up these defrag structs to remember
23  * which inodes need defragging passes.
24  */
25 struct inode_defrag {
26 	struct rb_node rb_node;
27 	/* Inode number */
28 	u64 ino;
29 	/*
30 	 * Transid where the defrag was added, we search for extents newer than
31 	 * this.
32 	 */
33 	u64 transid;
34 
35 	/* Root objectid */
36 	u64 root;
37 
38 	/*
39 	 * The extent size threshold for autodefrag.
40 	 *
41 	 * This value is different for compressed/non-compressed extents, thus
42 	 * needs to be passed from higher layer.
43 	 * (aka, inode_should_defrag())
44 	 */
45 	u32 extent_thresh;
46 };
47 
48 static int __compare_inode_defrag(struct inode_defrag *defrag1,
49 				  struct inode_defrag *defrag2)
50 {
51 	if (defrag1->root > defrag2->root)
52 		return 1;
53 	else if (defrag1->root < defrag2->root)
54 		return -1;
55 	else if (defrag1->ino > defrag2->ino)
56 		return 1;
57 	else if (defrag1->ino < defrag2->ino)
58 		return -1;
59 	else
60 		return 0;
61 }
62 
63 /*
64  * Pop a record for an inode into the defrag tree.  The lock must be held
65  * already.
66  *
67  * If you're inserting a record for an older transid than an existing record,
68  * the transid already in the tree is lowered.
69  *
70  * If an existing record is found the defrag item you pass in is freed.
71  */
72 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
73 				    struct inode_defrag *defrag)
74 {
75 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
76 	struct inode_defrag *entry;
77 	struct rb_node **p;
78 	struct rb_node *parent = NULL;
79 	int ret;
80 
81 	p = &fs_info->defrag_inodes.rb_node;
82 	while (*p) {
83 		parent = *p;
84 		entry = rb_entry(parent, struct inode_defrag, rb_node);
85 
86 		ret = __compare_inode_defrag(defrag, entry);
87 		if (ret < 0)
88 			p = &parent->rb_left;
89 		else if (ret > 0)
90 			p = &parent->rb_right;
91 		else {
92 			/*
93 			 * If we're reinserting an entry for an old defrag run,
94 			 * make sure to lower the transid of our existing
95 			 * record.
96 			 */
97 			if (defrag->transid < entry->transid)
98 				entry->transid = defrag->transid;
99 			entry->extent_thresh = min(defrag->extent_thresh,
100 						   entry->extent_thresh);
101 			return -EEXIST;
102 		}
103 	}
104 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
105 	rb_link_node(&defrag->rb_node, parent, p);
106 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
107 	return 0;
108 }
109 
110 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
111 {
112 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
113 		return 0;
114 
115 	if (btrfs_fs_closing(fs_info))
116 		return 0;
117 
118 	return 1;
119 }
120 
121 /*
122  * Insert a defrag record for this inode if auto defrag is enabled.
123  */
124 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
125 			   struct btrfs_inode *inode, u32 extent_thresh)
126 {
127 	struct btrfs_root *root = inode->root;
128 	struct btrfs_fs_info *fs_info = root->fs_info;
129 	struct inode_defrag *defrag;
130 	u64 transid;
131 	int ret;
132 
133 	if (!__need_auto_defrag(fs_info))
134 		return 0;
135 
136 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
137 		return 0;
138 
139 	if (trans)
140 		transid = trans->transid;
141 	else
142 		transid = inode->root->last_trans;
143 
144 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
145 	if (!defrag)
146 		return -ENOMEM;
147 
148 	defrag->ino = btrfs_ino(inode);
149 	defrag->transid = transid;
150 	defrag->root = root->root_key.objectid;
151 	defrag->extent_thresh = extent_thresh;
152 
153 	spin_lock(&fs_info->defrag_inodes_lock);
154 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
155 		/*
156 		 * If we set IN_DEFRAG flag and evict the inode from memory,
157 		 * and then re-read this inode, this new inode doesn't have
158 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
159 		 */
160 		ret = __btrfs_add_inode_defrag(inode, defrag);
161 		if (ret)
162 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
163 	} else {
164 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
165 	}
166 	spin_unlock(&fs_info->defrag_inodes_lock);
167 	return 0;
168 }
169 
170 /*
171  * Pick the defragable inode that we want, if it doesn't exist, we will get the
172  * next one.
173  */
174 static struct inode_defrag *btrfs_pick_defrag_inode(
175 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
176 {
177 	struct inode_defrag *entry = NULL;
178 	struct inode_defrag tmp;
179 	struct rb_node *p;
180 	struct rb_node *parent = NULL;
181 	int ret;
182 
183 	tmp.ino = ino;
184 	tmp.root = root;
185 
186 	spin_lock(&fs_info->defrag_inodes_lock);
187 	p = fs_info->defrag_inodes.rb_node;
188 	while (p) {
189 		parent = p;
190 		entry = rb_entry(parent, struct inode_defrag, rb_node);
191 
192 		ret = __compare_inode_defrag(&tmp, entry);
193 		if (ret < 0)
194 			p = parent->rb_left;
195 		else if (ret > 0)
196 			p = parent->rb_right;
197 		else
198 			goto out;
199 	}
200 
201 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
202 		parent = rb_next(parent);
203 		if (parent)
204 			entry = rb_entry(parent, struct inode_defrag, rb_node);
205 		else
206 			entry = NULL;
207 	}
208 out:
209 	if (entry)
210 		rb_erase(parent, &fs_info->defrag_inodes);
211 	spin_unlock(&fs_info->defrag_inodes_lock);
212 	return entry;
213 }
214 
215 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
216 {
217 	struct inode_defrag *defrag;
218 	struct rb_node *node;
219 
220 	spin_lock(&fs_info->defrag_inodes_lock);
221 	node = rb_first(&fs_info->defrag_inodes);
222 	while (node) {
223 		rb_erase(node, &fs_info->defrag_inodes);
224 		defrag = rb_entry(node, struct inode_defrag, rb_node);
225 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
226 
227 		cond_resched_lock(&fs_info->defrag_inodes_lock);
228 
229 		node = rb_first(&fs_info->defrag_inodes);
230 	}
231 	spin_unlock(&fs_info->defrag_inodes_lock);
232 }
233 
234 #define BTRFS_DEFRAG_BATCH	1024
235 
236 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
237 				    struct inode_defrag *defrag)
238 {
239 	struct btrfs_root *inode_root;
240 	struct inode *inode;
241 	struct btrfs_ioctl_defrag_range_args range;
242 	int ret = 0;
243 	u64 cur = 0;
244 
245 again:
246 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
247 		goto cleanup;
248 	if (!__need_auto_defrag(fs_info))
249 		goto cleanup;
250 
251 	/* Get the inode */
252 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
253 	if (IS_ERR(inode_root)) {
254 		ret = PTR_ERR(inode_root);
255 		goto cleanup;
256 	}
257 
258 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
259 	btrfs_put_root(inode_root);
260 	if (IS_ERR(inode)) {
261 		ret = PTR_ERR(inode);
262 		goto cleanup;
263 	}
264 
265 	if (cur >= i_size_read(inode)) {
266 		iput(inode);
267 		goto cleanup;
268 	}
269 
270 	/* Do a chunk of defrag */
271 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
272 	memset(&range, 0, sizeof(range));
273 	range.len = (u64)-1;
274 	range.start = cur;
275 	range.extent_thresh = defrag->extent_thresh;
276 
277 	sb_start_write(fs_info->sb);
278 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
279 				       BTRFS_DEFRAG_BATCH);
280 	sb_end_write(fs_info->sb);
281 	iput(inode);
282 
283 	if (ret < 0)
284 		goto cleanup;
285 
286 	cur = max(cur + fs_info->sectorsize, range.start);
287 	goto again;
288 
289 cleanup:
290 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
291 	return ret;
292 }
293 
294 /*
295  * Run through the list of inodes in the FS that need defragging.
296  */
297 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
298 {
299 	struct inode_defrag *defrag;
300 	u64 first_ino = 0;
301 	u64 root_objectid = 0;
302 
303 	atomic_inc(&fs_info->defrag_running);
304 	while (1) {
305 		/* Pause the auto defragger. */
306 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
307 			break;
308 
309 		if (!__need_auto_defrag(fs_info))
310 			break;
311 
312 		/* find an inode to defrag */
313 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
314 		if (!defrag) {
315 			if (root_objectid || first_ino) {
316 				root_objectid = 0;
317 				first_ino = 0;
318 				continue;
319 			} else {
320 				break;
321 			}
322 		}
323 
324 		first_ino = defrag->ino + 1;
325 		root_objectid = defrag->root;
326 
327 		__btrfs_run_defrag_inode(fs_info, defrag);
328 	}
329 	atomic_dec(&fs_info->defrag_running);
330 
331 	/*
332 	 * During unmount, we use the transaction_wait queue to wait for the
333 	 * defragger to stop.
334 	 */
335 	wake_up(&fs_info->transaction_wait);
336 	return 0;
337 }
338 
339 /*
340  * Defrag all the leaves in a given btree.
341  * Read all the leaves and try to get key order to
342  * better reflect disk order
343  */
344 
345 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
346 			struct btrfs_root *root)
347 {
348 	struct btrfs_path *path = NULL;
349 	struct btrfs_key key;
350 	int ret = 0;
351 	int wret;
352 	int level;
353 	int next_key_ret = 0;
354 	u64 last_ret = 0;
355 
356 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
357 		goto out;
358 
359 	path = btrfs_alloc_path();
360 	if (!path)
361 		return -ENOMEM;
362 
363 	level = btrfs_header_level(root->node);
364 
365 	if (level == 0)
366 		goto out;
367 
368 	if (root->defrag_progress.objectid == 0) {
369 		struct extent_buffer *root_node;
370 		u32 nritems;
371 
372 		root_node = btrfs_lock_root_node(root);
373 		nritems = btrfs_header_nritems(root_node);
374 		root->defrag_max.objectid = 0;
375 		/* from above we know this is not a leaf */
376 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
377 				      nritems - 1);
378 		btrfs_tree_unlock(root_node);
379 		free_extent_buffer(root_node);
380 		memset(&key, 0, sizeof(key));
381 	} else {
382 		memcpy(&key, &root->defrag_progress, sizeof(key));
383 	}
384 
385 	path->keep_locks = 1;
386 
387 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
388 	if (ret < 0)
389 		goto out;
390 	if (ret > 0) {
391 		ret = 0;
392 		goto out;
393 	}
394 	btrfs_release_path(path);
395 	/*
396 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
397 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
398 	 * a deadlock (attempting to write lock an already write locked leaf).
399 	 */
400 	path->lowest_level = 1;
401 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
402 
403 	if (wret < 0) {
404 		ret = wret;
405 		goto out;
406 	}
407 	if (!path->nodes[1]) {
408 		ret = 0;
409 		goto out;
410 	}
411 	/*
412 	 * The node at level 1 must always be locked when our path has
413 	 * keep_locks set and lowest_level is 1, regardless of the value of
414 	 * path->slots[1].
415 	 */
416 	BUG_ON(path->locks[1] == 0);
417 	ret = btrfs_realloc_node(trans, root,
418 				 path->nodes[1], 0,
419 				 &last_ret,
420 				 &root->defrag_progress);
421 	if (ret) {
422 		WARN_ON(ret == -EAGAIN);
423 		goto out;
424 	}
425 	/*
426 	 * Now that we reallocated the node we can find the next key. Note that
427 	 * btrfs_find_next_key() can release our path and do another search
428 	 * without COWing, this is because even with path->keep_locks = 1,
429 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
430 	 * node when path->slots[node_level - 1] does not point to the last
431 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
432 	 * we search for the next key after reallocating our node.
433 	 */
434 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
435 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
436 					   BTRFS_OLDEST_GENERATION);
437 	if (next_key_ret == 0) {
438 		memcpy(&root->defrag_progress, &key, sizeof(key));
439 		ret = -EAGAIN;
440 	}
441 out:
442 	btrfs_free_path(path);
443 	if (ret == -EAGAIN) {
444 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
445 			goto done;
446 		if (root->defrag_max.type > root->defrag_progress.type)
447 			goto done;
448 		if (root->defrag_max.offset > root->defrag_progress.offset)
449 			goto done;
450 		ret = 0;
451 	}
452 done:
453 	if (ret != -EAGAIN)
454 		memset(&root->defrag_progress, 0,
455 		       sizeof(root->defrag_progress));
456 
457 	return ret;
458 }
459 
460 /*
461  * Defrag specific helper to get an extent map.
462  *
463  * Differences between this and btrfs_get_extent() are:
464  *
465  * - No extent_map will be added to inode->extent_tree
466  *   To reduce memory usage in the long run.
467  *
468  * - Extra optimization to skip file extents older than @newer_than
469  *   By using btrfs_search_forward() we can skip entire file ranges that
470  *   have extents created in past transactions, because btrfs_search_forward()
471  *   will not visit leaves and nodes with a generation smaller than given
472  *   minimal generation threshold (@newer_than).
473  *
474  * Return valid em if we find a file extent matching the requirement.
475  * Return NULL if we can not find a file extent matching the requirement.
476  *
477  * Return ERR_PTR() for error.
478  */
479 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
480 					    u64 start, u64 newer_than)
481 {
482 	struct btrfs_root *root = inode->root;
483 	struct btrfs_file_extent_item *fi;
484 	struct btrfs_path path = { 0 };
485 	struct extent_map *em;
486 	struct btrfs_key key;
487 	u64 ino = btrfs_ino(inode);
488 	int ret;
489 
490 	em = alloc_extent_map();
491 	if (!em) {
492 		ret = -ENOMEM;
493 		goto err;
494 	}
495 
496 	key.objectid = ino;
497 	key.type = BTRFS_EXTENT_DATA_KEY;
498 	key.offset = start;
499 
500 	if (newer_than) {
501 		ret = btrfs_search_forward(root, &key, &path, newer_than);
502 		if (ret < 0)
503 			goto err;
504 		/* Can't find anything newer */
505 		if (ret > 0)
506 			goto not_found;
507 	} else {
508 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
509 		if (ret < 0)
510 			goto err;
511 	}
512 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
513 		/*
514 		 * If btrfs_search_slot() makes path to point beyond nritems,
515 		 * we should not have an empty leaf, as this inode must at
516 		 * least have its INODE_ITEM.
517 		 */
518 		ASSERT(btrfs_header_nritems(path.nodes[0]));
519 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
520 	}
521 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
522 	/* Perfect match, no need to go one slot back */
523 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
524 	    key.offset == start)
525 		goto iterate;
526 
527 	/* We didn't find a perfect match, needs to go one slot back */
528 	if (path.slots[0] > 0) {
529 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
530 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
531 			path.slots[0]--;
532 	}
533 
534 iterate:
535 	/* Iterate through the path to find a file extent covering @start */
536 	while (true) {
537 		u64 extent_end;
538 
539 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
540 			goto next;
541 
542 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
543 
544 		/*
545 		 * We may go one slot back to INODE_REF/XATTR item, then
546 		 * need to go forward until we reach an EXTENT_DATA.
547 		 * But we should still has the correct ino as key.objectid.
548 		 */
549 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
550 			goto next;
551 
552 		/* It's beyond our target range, definitely not extent found */
553 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
554 			goto not_found;
555 
556 		/*
557 		 *	|	|<- File extent ->|
558 		 *	\- start
559 		 *
560 		 * This means there is a hole between start and key.offset.
561 		 */
562 		if (key.offset > start) {
563 			em->start = start;
564 			em->orig_start = start;
565 			em->block_start = EXTENT_MAP_HOLE;
566 			em->len = key.offset - start;
567 			break;
568 		}
569 
570 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
571 				    struct btrfs_file_extent_item);
572 		extent_end = btrfs_file_extent_end(&path);
573 
574 		/*
575 		 *	|<- file extent ->|	|
576 		 *				\- start
577 		 *
578 		 * We haven't reached start, search next slot.
579 		 */
580 		if (extent_end <= start)
581 			goto next;
582 
583 		/* Now this extent covers @start, convert it to em */
584 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
585 		break;
586 next:
587 		ret = btrfs_next_item(root, &path);
588 		if (ret < 0)
589 			goto err;
590 		if (ret > 0)
591 			goto not_found;
592 	}
593 	btrfs_release_path(&path);
594 	return em;
595 
596 not_found:
597 	btrfs_release_path(&path);
598 	free_extent_map(em);
599 	return NULL;
600 
601 err:
602 	btrfs_release_path(&path);
603 	free_extent_map(em);
604 	return ERR_PTR(ret);
605 }
606 
607 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
608 					       u64 newer_than, bool locked)
609 {
610 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
611 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
612 	struct extent_map *em;
613 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
614 
615 	/*
616 	 * Hopefully we have this extent in the tree already, try without the
617 	 * full extent lock.
618 	 */
619 	read_lock(&em_tree->lock);
620 	em = lookup_extent_mapping(em_tree, start, sectorsize);
621 	read_unlock(&em_tree->lock);
622 
623 	/*
624 	 * We can get a merged extent, in that case, we need to re-search
625 	 * tree to get the original em for defrag.
626 	 *
627 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
628 	 * this em, as either we don't care about the generation, or the
629 	 * merged extent map will be rejected anyway.
630 	 */
631 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
632 	    newer_than && em->generation >= newer_than) {
633 		free_extent_map(em);
634 		em = NULL;
635 	}
636 
637 	if (!em) {
638 		struct extent_state *cached = NULL;
639 		u64 end = start + sectorsize - 1;
640 
641 		/* Get the big lock and read metadata off disk. */
642 		if (!locked)
643 			lock_extent(io_tree, start, end, &cached);
644 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
645 		if (!locked)
646 			unlock_extent(io_tree, start, end, &cached);
647 
648 		if (IS_ERR(em))
649 			return NULL;
650 	}
651 
652 	return em;
653 }
654 
655 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
656 				   const struct extent_map *em)
657 {
658 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
659 		return BTRFS_MAX_COMPRESSED;
660 	return fs_info->max_extent_size;
661 }
662 
663 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
664 				     u32 extent_thresh, u64 newer_than, bool locked)
665 {
666 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
667 	struct extent_map *next;
668 	bool ret = false;
669 
670 	/* This is the last extent */
671 	if (em->start + em->len >= i_size_read(inode))
672 		return false;
673 
674 	/*
675 	 * Here we need to pass @newer_then when checking the next extent, or
676 	 * we will hit a case we mark current extent for defrag, but the next
677 	 * one will not be a target.
678 	 * This will just cause extra IO without really reducing the fragments.
679 	 */
680 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
681 	/* No more em or hole */
682 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
683 		goto out;
684 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
685 		goto out;
686 	/*
687 	 * If the next extent is at its max capacity, defragging current extent
688 	 * makes no sense, as the total number of extents won't change.
689 	 */
690 	if (next->len >= get_extent_max_capacity(fs_info, em))
691 		goto out;
692 	/* Skip older extent */
693 	if (next->generation < newer_than)
694 		goto out;
695 	/* Also check extent size */
696 	if (next->len >= extent_thresh)
697 		goto out;
698 
699 	ret = true;
700 out:
701 	free_extent_map(next);
702 	return ret;
703 }
704 
705 /*
706  * Prepare one page to be defragged.
707  *
708  * This will ensure:
709  *
710  * - Returned page is locked and has been set up properly.
711  * - No ordered extent exists in the page.
712  * - The page is uptodate.
713  *
714  * NOTE: Caller should also wait for page writeback after the cluster is
715  * prepared, here we don't do writeback wait for each page.
716  */
717 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
718 {
719 	struct address_space *mapping = inode->vfs_inode.i_mapping;
720 	gfp_t mask = btrfs_alloc_write_mask(mapping);
721 	u64 page_start = (u64)index << PAGE_SHIFT;
722 	u64 page_end = page_start + PAGE_SIZE - 1;
723 	struct extent_state *cached_state = NULL;
724 	struct page *page;
725 	int ret;
726 
727 again:
728 	page = find_or_create_page(mapping, index, mask);
729 	if (!page)
730 		return ERR_PTR(-ENOMEM);
731 
732 	/*
733 	 * Since we can defragment files opened read-only, we can encounter
734 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
735 	 * can't do I/O using huge pages yet, so return an error for now.
736 	 * Filesystem transparent huge pages are typically only used for
737 	 * executables that explicitly enable them, so this isn't very
738 	 * restrictive.
739 	 */
740 	if (PageCompound(page)) {
741 		unlock_page(page);
742 		put_page(page);
743 		return ERR_PTR(-ETXTBSY);
744 	}
745 
746 	ret = set_page_extent_mapped(page);
747 	if (ret < 0) {
748 		unlock_page(page);
749 		put_page(page);
750 		return ERR_PTR(ret);
751 	}
752 
753 	/* Wait for any existing ordered extent in the range */
754 	while (1) {
755 		struct btrfs_ordered_extent *ordered;
756 
757 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
758 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
759 		unlock_extent(&inode->io_tree, page_start, page_end,
760 			      &cached_state);
761 		if (!ordered)
762 			break;
763 
764 		unlock_page(page);
765 		btrfs_start_ordered_extent(ordered, 1);
766 		btrfs_put_ordered_extent(ordered);
767 		lock_page(page);
768 		/*
769 		 * We unlocked the page above, so we need check if it was
770 		 * released or not.
771 		 */
772 		if (page->mapping != mapping || !PagePrivate(page)) {
773 			unlock_page(page);
774 			put_page(page);
775 			goto again;
776 		}
777 	}
778 
779 	/*
780 	 * Now the page range has no ordered extent any more.  Read the page to
781 	 * make it uptodate.
782 	 */
783 	if (!PageUptodate(page)) {
784 		btrfs_read_folio(NULL, page_folio(page));
785 		lock_page(page);
786 		if (page->mapping != mapping || !PagePrivate(page)) {
787 			unlock_page(page);
788 			put_page(page);
789 			goto again;
790 		}
791 		if (!PageUptodate(page)) {
792 			unlock_page(page);
793 			put_page(page);
794 			return ERR_PTR(-EIO);
795 		}
796 	}
797 	return page;
798 }
799 
800 struct defrag_target_range {
801 	struct list_head list;
802 	u64 start;
803 	u64 len;
804 };
805 
806 /*
807  * Collect all valid target extents.
808  *
809  * @start:	   file offset to lookup
810  * @len:	   length to lookup
811  * @extent_thresh: file extent size threshold, any extent size >= this value
812  *		   will be ignored
813  * @newer_than:    only defrag extents newer than this value
814  * @do_compress:   whether the defrag is doing compression
815  *		   if true, @extent_thresh will be ignored and all regular
816  *		   file extents meeting @newer_than will be targets.
817  * @locked:	   if the range has already held extent lock
818  * @target_list:   list of targets file extents
819  */
820 static int defrag_collect_targets(struct btrfs_inode *inode,
821 				  u64 start, u64 len, u32 extent_thresh,
822 				  u64 newer_than, bool do_compress,
823 				  bool locked, struct list_head *target_list,
824 				  u64 *last_scanned_ret)
825 {
826 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
827 	bool last_is_target = false;
828 	u64 cur = start;
829 	int ret = 0;
830 
831 	while (cur < start + len) {
832 		struct extent_map *em;
833 		struct defrag_target_range *new;
834 		bool next_mergeable = true;
835 		u64 range_len;
836 
837 		last_is_target = false;
838 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
839 		if (!em)
840 			break;
841 
842 		/*
843 		 * If the file extent is an inlined one, we may still want to
844 		 * defrag it (fallthrough) if it will cause a regular extent.
845 		 * This is for users who want to convert inline extents to
846 		 * regular ones through max_inline= mount option.
847 		 */
848 		if (em->block_start == EXTENT_MAP_INLINE &&
849 		    em->len <= inode->root->fs_info->max_inline)
850 			goto next;
851 
852 		/* Skip hole/delalloc/preallocated extents */
853 		if (em->block_start == EXTENT_MAP_HOLE ||
854 		    em->block_start == EXTENT_MAP_DELALLOC ||
855 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
856 			goto next;
857 
858 		/* Skip older extent */
859 		if (em->generation < newer_than)
860 			goto next;
861 
862 		/* This em is under writeback, no need to defrag */
863 		if (em->generation == (u64)-1)
864 			goto next;
865 
866 		/*
867 		 * Our start offset might be in the middle of an existing extent
868 		 * map, so take that into account.
869 		 */
870 		range_len = em->len - (cur - em->start);
871 		/*
872 		 * If this range of the extent map is already flagged for delalloc,
873 		 * skip it, because:
874 		 *
875 		 * 1) We could deadlock later, when trying to reserve space for
876 		 *    delalloc, because in case we can't immediately reserve space
877 		 *    the flusher can start delalloc and wait for the respective
878 		 *    ordered extents to complete. The deadlock would happen
879 		 *    because we do the space reservation while holding the range
880 		 *    locked, and starting writeback, or finishing an ordered
881 		 *    extent, requires locking the range;
882 		 *
883 		 * 2) If there's delalloc there, it means there's dirty pages for
884 		 *    which writeback has not started yet (we clean the delalloc
885 		 *    flag when starting writeback and after creating an ordered
886 		 *    extent). If we mark pages in an adjacent range for defrag,
887 		 *    then we will have a larger contiguous range for delalloc,
888 		 *    very likely resulting in a larger extent after writeback is
889 		 *    triggered (except in a case of free space fragmentation).
890 		 */
891 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
892 				   EXTENT_DELALLOC, 0, NULL))
893 			goto next;
894 
895 		/*
896 		 * For do_compress case, we want to compress all valid file
897 		 * extents, thus no @extent_thresh or mergeable check.
898 		 */
899 		if (do_compress)
900 			goto add;
901 
902 		/* Skip too large extent */
903 		if (range_len >= extent_thresh)
904 			goto next;
905 
906 		/*
907 		 * Skip extents already at its max capacity, this is mostly for
908 		 * compressed extents, which max cap is only 128K.
909 		 */
910 		if (em->len >= get_extent_max_capacity(fs_info, em))
911 			goto next;
912 
913 		/*
914 		 * Normally there are no more extents after an inline one, thus
915 		 * @next_mergeable will normally be false and not defragged.
916 		 * So if an inline extent passed all above checks, just add it
917 		 * for defrag, and be converted to regular extents.
918 		 */
919 		if (em->block_start == EXTENT_MAP_INLINE)
920 			goto add;
921 
922 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
923 						extent_thresh, newer_than, locked);
924 		if (!next_mergeable) {
925 			struct defrag_target_range *last;
926 
927 			/* Empty target list, no way to merge with last entry */
928 			if (list_empty(target_list))
929 				goto next;
930 			last = list_entry(target_list->prev,
931 					  struct defrag_target_range, list);
932 			/* Not mergeable with last entry */
933 			if (last->start + last->len != cur)
934 				goto next;
935 
936 			/* Mergeable, fall through to add it to @target_list. */
937 		}
938 
939 add:
940 		last_is_target = true;
941 		range_len = min(extent_map_end(em), start + len) - cur;
942 		/*
943 		 * This one is a good target, check if it can be merged into
944 		 * last range of the target list.
945 		 */
946 		if (!list_empty(target_list)) {
947 			struct defrag_target_range *last;
948 
949 			last = list_entry(target_list->prev,
950 					  struct defrag_target_range, list);
951 			ASSERT(last->start + last->len <= cur);
952 			if (last->start + last->len == cur) {
953 				/* Mergeable, enlarge the last entry */
954 				last->len += range_len;
955 				goto next;
956 			}
957 			/* Fall through to allocate a new entry */
958 		}
959 
960 		/* Allocate new defrag_target_range */
961 		new = kmalloc(sizeof(*new), GFP_NOFS);
962 		if (!new) {
963 			free_extent_map(em);
964 			ret = -ENOMEM;
965 			break;
966 		}
967 		new->start = cur;
968 		new->len = range_len;
969 		list_add_tail(&new->list, target_list);
970 
971 next:
972 		cur = extent_map_end(em);
973 		free_extent_map(em);
974 	}
975 	if (ret < 0) {
976 		struct defrag_target_range *entry;
977 		struct defrag_target_range *tmp;
978 
979 		list_for_each_entry_safe(entry, tmp, target_list, list) {
980 			list_del_init(&entry->list);
981 			kfree(entry);
982 		}
983 	}
984 	if (!ret && last_scanned_ret) {
985 		/*
986 		 * If the last extent is not a target, the caller can skip to
987 		 * the end of that extent.
988 		 * Otherwise, we can only go the end of the specified range.
989 		 */
990 		if (!last_is_target)
991 			*last_scanned_ret = max(cur, *last_scanned_ret);
992 		else
993 			*last_scanned_ret = max(start + len, *last_scanned_ret);
994 	}
995 	return ret;
996 }
997 
998 #define CLUSTER_SIZE	(SZ_256K)
999 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1000 
1001 /*
1002  * Defrag one contiguous target range.
1003  *
1004  * @inode:	target inode
1005  * @target:	target range to defrag
1006  * @pages:	locked pages covering the defrag range
1007  * @nr_pages:	number of locked pages
1008  *
1009  * Caller should ensure:
1010  *
1011  * - Pages are prepared
1012  *   Pages should be locked, no ordered extent in the pages range,
1013  *   no writeback.
1014  *
1015  * - Extent bits are locked
1016  */
1017 static int defrag_one_locked_target(struct btrfs_inode *inode,
1018 				    struct defrag_target_range *target,
1019 				    struct page **pages, int nr_pages,
1020 				    struct extent_state **cached_state)
1021 {
1022 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1023 	struct extent_changeset *data_reserved = NULL;
1024 	const u64 start = target->start;
1025 	const u64 len = target->len;
1026 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1027 	unsigned long start_index = start >> PAGE_SHIFT;
1028 	unsigned long first_index = page_index(pages[0]);
1029 	int ret = 0;
1030 	int i;
1031 
1032 	ASSERT(last_index - first_index + 1 <= nr_pages);
1033 
1034 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1035 	if (ret < 0)
1036 		return ret;
1037 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1038 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1039 			 EXTENT_DEFRAG, cached_state);
1040 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1041 
1042 	/* Update the page status */
1043 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1044 		ClearPageChecked(pages[i]);
1045 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1046 	}
1047 	btrfs_delalloc_release_extents(inode, len);
1048 	extent_changeset_free(data_reserved);
1049 
1050 	return ret;
1051 }
1052 
1053 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1054 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1055 			    u64 *last_scanned_ret)
1056 {
1057 	struct extent_state *cached_state = NULL;
1058 	struct defrag_target_range *entry;
1059 	struct defrag_target_range *tmp;
1060 	LIST_HEAD(target_list);
1061 	struct page **pages;
1062 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1063 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1064 	u64 start_index = start >> PAGE_SHIFT;
1065 	unsigned int nr_pages = last_index - start_index + 1;
1066 	int ret = 0;
1067 	int i;
1068 
1069 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1070 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1071 
1072 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1073 	if (!pages)
1074 		return -ENOMEM;
1075 
1076 	/* Prepare all pages */
1077 	for (i = 0; i < nr_pages; i++) {
1078 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1079 		if (IS_ERR(pages[i])) {
1080 			ret = PTR_ERR(pages[i]);
1081 			pages[i] = NULL;
1082 			goto free_pages;
1083 		}
1084 	}
1085 	for (i = 0; i < nr_pages; i++)
1086 		wait_on_page_writeback(pages[i]);
1087 
1088 	/* Lock the pages range */
1089 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1090 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1091 		    &cached_state);
1092 	/*
1093 	 * Now we have a consistent view about the extent map, re-check
1094 	 * which range really needs to be defragged.
1095 	 *
1096 	 * And this time we have extent locked already, pass @locked = true
1097 	 * so that we won't relock the extent range and cause deadlock.
1098 	 */
1099 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1100 				     newer_than, do_compress, true,
1101 				     &target_list, last_scanned_ret);
1102 	if (ret < 0)
1103 		goto unlock_extent;
1104 
1105 	list_for_each_entry(entry, &target_list, list) {
1106 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1107 					       &cached_state);
1108 		if (ret < 0)
1109 			break;
1110 	}
1111 
1112 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1113 		list_del_init(&entry->list);
1114 		kfree(entry);
1115 	}
1116 unlock_extent:
1117 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1118 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1119 		      &cached_state);
1120 free_pages:
1121 	for (i = 0; i < nr_pages; i++) {
1122 		if (pages[i]) {
1123 			unlock_page(pages[i]);
1124 			put_page(pages[i]);
1125 		}
1126 	}
1127 	kfree(pages);
1128 	return ret;
1129 }
1130 
1131 static int defrag_one_cluster(struct btrfs_inode *inode,
1132 			      struct file_ra_state *ra,
1133 			      u64 start, u32 len, u32 extent_thresh,
1134 			      u64 newer_than, bool do_compress,
1135 			      unsigned long *sectors_defragged,
1136 			      unsigned long max_sectors,
1137 			      u64 *last_scanned_ret)
1138 {
1139 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1140 	struct defrag_target_range *entry;
1141 	struct defrag_target_range *tmp;
1142 	LIST_HEAD(target_list);
1143 	int ret;
1144 
1145 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1146 				     newer_than, do_compress, false,
1147 				     &target_list, NULL);
1148 	if (ret < 0)
1149 		goto out;
1150 
1151 	list_for_each_entry(entry, &target_list, list) {
1152 		u32 range_len = entry->len;
1153 
1154 		/* Reached or beyond the limit */
1155 		if (max_sectors && *sectors_defragged >= max_sectors) {
1156 			ret = 1;
1157 			break;
1158 		}
1159 
1160 		if (max_sectors)
1161 			range_len = min_t(u32, range_len,
1162 				(max_sectors - *sectors_defragged) * sectorsize);
1163 
1164 		/*
1165 		 * If defrag_one_range() has updated last_scanned_ret,
1166 		 * our range may already be invalid (e.g. hole punched).
1167 		 * Skip if our range is before last_scanned_ret, as there is
1168 		 * no need to defrag the range anymore.
1169 		 */
1170 		if (entry->start + range_len <= *last_scanned_ret)
1171 			continue;
1172 
1173 		if (ra)
1174 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1175 				ra, NULL, entry->start >> PAGE_SHIFT,
1176 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1177 				(entry->start >> PAGE_SHIFT) + 1);
1178 		/*
1179 		 * Here we may not defrag any range if holes are punched before
1180 		 * we locked the pages.
1181 		 * But that's fine, it only affects the @sectors_defragged
1182 		 * accounting.
1183 		 */
1184 		ret = defrag_one_range(inode, entry->start, range_len,
1185 				       extent_thresh, newer_than, do_compress,
1186 				       last_scanned_ret);
1187 		if (ret < 0)
1188 			break;
1189 		*sectors_defragged += range_len >>
1190 				      inode->root->fs_info->sectorsize_bits;
1191 	}
1192 out:
1193 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1194 		list_del_init(&entry->list);
1195 		kfree(entry);
1196 	}
1197 	if (ret >= 0)
1198 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1199 	return ret;
1200 }
1201 
1202 /*
1203  * Entry point to file defragmentation.
1204  *
1205  * @inode:	   inode to be defragged
1206  * @ra:		   readahead state (can be NUL)
1207  * @range:	   defrag options including range and flags
1208  * @newer_than:	   minimum transid to defrag
1209  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1210  *		   will be defragged.
1211  *
1212  * Return <0 for error.
1213  * Return >=0 for the number of sectors defragged, and range->start will be updated
1214  * to indicate the file offset where next defrag should be started at.
1215  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1216  *  defragging all the range).
1217  */
1218 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1219 		      struct btrfs_ioctl_defrag_range_args *range,
1220 		      u64 newer_than, unsigned long max_to_defrag)
1221 {
1222 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1223 	unsigned long sectors_defragged = 0;
1224 	u64 isize = i_size_read(inode);
1225 	u64 cur;
1226 	u64 last_byte;
1227 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1228 	bool ra_allocated = false;
1229 	int compress_type = BTRFS_COMPRESS_ZLIB;
1230 	int ret = 0;
1231 	u32 extent_thresh = range->extent_thresh;
1232 	pgoff_t start_index;
1233 
1234 	if (isize == 0)
1235 		return 0;
1236 
1237 	if (range->start >= isize)
1238 		return -EINVAL;
1239 
1240 	if (do_compress) {
1241 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1242 			return -EINVAL;
1243 		if (range->compress_type)
1244 			compress_type = range->compress_type;
1245 	}
1246 
1247 	if (extent_thresh == 0)
1248 		extent_thresh = SZ_256K;
1249 
1250 	if (range->start + range->len > range->start) {
1251 		/* Got a specific range */
1252 		last_byte = min(isize, range->start + range->len);
1253 	} else {
1254 		/* Defrag until file end */
1255 		last_byte = isize;
1256 	}
1257 
1258 	/* Align the range */
1259 	cur = round_down(range->start, fs_info->sectorsize);
1260 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1261 
1262 	/*
1263 	 * If we were not given a ra, allocate a readahead context. As
1264 	 * readahead is just an optimization, defrag will work without it so
1265 	 * we don't error out.
1266 	 */
1267 	if (!ra) {
1268 		ra_allocated = true;
1269 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1270 		if (ra)
1271 			file_ra_state_init(ra, inode->i_mapping);
1272 	}
1273 
1274 	/*
1275 	 * Make writeback start from the beginning of the range, so that the
1276 	 * defrag range can be written sequentially.
1277 	 */
1278 	start_index = cur >> PAGE_SHIFT;
1279 	if (start_index < inode->i_mapping->writeback_index)
1280 		inode->i_mapping->writeback_index = start_index;
1281 
1282 	while (cur < last_byte) {
1283 		const unsigned long prev_sectors_defragged = sectors_defragged;
1284 		u64 last_scanned = cur;
1285 		u64 cluster_end;
1286 
1287 		if (btrfs_defrag_cancelled(fs_info)) {
1288 			ret = -EAGAIN;
1289 			break;
1290 		}
1291 
1292 		/* We want the cluster end at page boundary when possible */
1293 		cluster_end = (((cur >> PAGE_SHIFT) +
1294 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1295 		cluster_end = min(cluster_end, last_byte);
1296 
1297 		btrfs_inode_lock(inode, 0);
1298 		if (IS_SWAPFILE(inode)) {
1299 			ret = -ETXTBSY;
1300 			btrfs_inode_unlock(inode, 0);
1301 			break;
1302 		}
1303 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1304 			btrfs_inode_unlock(inode, 0);
1305 			break;
1306 		}
1307 		if (do_compress)
1308 			BTRFS_I(inode)->defrag_compress = compress_type;
1309 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1310 				cluster_end + 1 - cur, extent_thresh,
1311 				newer_than, do_compress, &sectors_defragged,
1312 				max_to_defrag, &last_scanned);
1313 
1314 		if (sectors_defragged > prev_sectors_defragged)
1315 			balance_dirty_pages_ratelimited(inode->i_mapping);
1316 
1317 		btrfs_inode_unlock(inode, 0);
1318 		if (ret < 0)
1319 			break;
1320 		cur = max(cluster_end + 1, last_scanned);
1321 		if (ret > 0) {
1322 			ret = 0;
1323 			break;
1324 		}
1325 		cond_resched();
1326 	}
1327 
1328 	if (ra_allocated)
1329 		kfree(ra);
1330 	/*
1331 	 * Update range.start for autodefrag, this will indicate where to start
1332 	 * in next run.
1333 	 */
1334 	range->start = cur;
1335 	if (sectors_defragged) {
1336 		/*
1337 		 * We have defragged some sectors, for compression case they
1338 		 * need to be written back immediately.
1339 		 */
1340 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1341 			filemap_flush(inode->i_mapping);
1342 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1343 				     &BTRFS_I(inode)->runtime_flags))
1344 				filemap_flush(inode->i_mapping);
1345 		}
1346 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1347 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1348 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1349 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1350 		ret = sectors_defragged;
1351 	}
1352 	if (do_compress) {
1353 		btrfs_inode_lock(inode, 0);
1354 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1355 		btrfs_inode_unlock(inode, 0);
1356 	}
1357 	return ret;
1358 }
1359 
1360 void __cold btrfs_auto_defrag_exit(void)
1361 {
1362 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1363 }
1364 
1365 int __init btrfs_auto_defrag_init(void)
1366 {
1367 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1368 					sizeof(struct inode_defrag), 0,
1369 					SLAB_MEM_SPREAD,
1370 					NULL);
1371 	if (!btrfs_inode_defrag_cachep)
1372 		return -ENOMEM;
1373 
1374 	return 0;
1375 }
1376