xref: /openbmc/linux/fs/btrfs/defrag.c (revision 59b818e0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 
18 static struct kmem_cache *btrfs_inode_defrag_cachep;
19 
20 /*
21  * When auto defrag is enabled we queue up these defrag structs to remember
22  * which inodes need defragging passes.
23  */
24 struct inode_defrag {
25 	struct rb_node rb_node;
26 	/* Inode number */
27 	u64 ino;
28 	/*
29 	 * Transid where the defrag was added, we search for extents newer than
30 	 * this.
31 	 */
32 	u64 transid;
33 
34 	/* Root objectid */
35 	u64 root;
36 
37 	/*
38 	 * The extent size threshold for autodefrag.
39 	 *
40 	 * This value is different for compressed/non-compressed extents, thus
41 	 * needs to be passed from higher layer.
42 	 * (aka, inode_should_defrag())
43 	 */
44 	u32 extent_thresh;
45 };
46 
47 static int __compare_inode_defrag(struct inode_defrag *defrag1,
48 				  struct inode_defrag *defrag2)
49 {
50 	if (defrag1->root > defrag2->root)
51 		return 1;
52 	else if (defrag1->root < defrag2->root)
53 		return -1;
54 	else if (defrag1->ino > defrag2->ino)
55 		return 1;
56 	else if (defrag1->ino < defrag2->ino)
57 		return -1;
58 	else
59 		return 0;
60 }
61 
62 /*
63  * Pop a record for an inode into the defrag tree.  The lock must be held
64  * already.
65  *
66  * If you're inserting a record for an older transid than an existing record,
67  * the transid already in the tree is lowered.
68  *
69  * If an existing record is found the defrag item you pass in is freed.
70  */
71 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
72 				    struct inode_defrag *defrag)
73 {
74 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
75 	struct inode_defrag *entry;
76 	struct rb_node **p;
77 	struct rb_node *parent = NULL;
78 	int ret;
79 
80 	p = &fs_info->defrag_inodes.rb_node;
81 	while (*p) {
82 		parent = *p;
83 		entry = rb_entry(parent, struct inode_defrag, rb_node);
84 
85 		ret = __compare_inode_defrag(defrag, entry);
86 		if (ret < 0)
87 			p = &parent->rb_left;
88 		else if (ret > 0)
89 			p = &parent->rb_right;
90 		else {
91 			/*
92 			 * If we're reinserting an entry for an old defrag run,
93 			 * make sure to lower the transid of our existing
94 			 * record.
95 			 */
96 			if (defrag->transid < entry->transid)
97 				entry->transid = defrag->transid;
98 			entry->extent_thresh = min(defrag->extent_thresh,
99 						   entry->extent_thresh);
100 			return -EEXIST;
101 		}
102 	}
103 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
104 	rb_link_node(&defrag->rb_node, parent, p);
105 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
106 	return 0;
107 }
108 
109 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
110 {
111 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
112 		return 0;
113 
114 	if (btrfs_fs_closing(fs_info))
115 		return 0;
116 
117 	return 1;
118 }
119 
120 /*
121  * Insert a defrag record for this inode if auto defrag is enabled.
122  */
123 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
124 			   struct btrfs_inode *inode, u32 extent_thresh)
125 {
126 	struct btrfs_root *root = inode->root;
127 	struct btrfs_fs_info *fs_info = root->fs_info;
128 	struct inode_defrag *defrag;
129 	u64 transid;
130 	int ret;
131 
132 	if (!__need_auto_defrag(fs_info))
133 		return 0;
134 
135 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
136 		return 0;
137 
138 	if (trans)
139 		transid = trans->transid;
140 	else
141 		transid = inode->root->last_trans;
142 
143 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
144 	if (!defrag)
145 		return -ENOMEM;
146 
147 	defrag->ino = btrfs_ino(inode);
148 	defrag->transid = transid;
149 	defrag->root = root->root_key.objectid;
150 	defrag->extent_thresh = extent_thresh;
151 
152 	spin_lock(&fs_info->defrag_inodes_lock);
153 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
154 		/*
155 		 * If we set IN_DEFRAG flag and evict the inode from memory,
156 		 * and then re-read this inode, this new inode doesn't have
157 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
158 		 */
159 		ret = __btrfs_add_inode_defrag(inode, defrag);
160 		if (ret)
161 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
162 	} else {
163 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164 	}
165 	spin_unlock(&fs_info->defrag_inodes_lock);
166 	return 0;
167 }
168 
169 /*
170  * Pick the defragable inode that we want, if it doesn't exist, we will get the
171  * next one.
172  */
173 static struct inode_defrag *btrfs_pick_defrag_inode(
174 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
175 {
176 	struct inode_defrag *entry = NULL;
177 	struct inode_defrag tmp;
178 	struct rb_node *p;
179 	struct rb_node *parent = NULL;
180 	int ret;
181 
182 	tmp.ino = ino;
183 	tmp.root = root;
184 
185 	spin_lock(&fs_info->defrag_inodes_lock);
186 	p = fs_info->defrag_inodes.rb_node;
187 	while (p) {
188 		parent = p;
189 		entry = rb_entry(parent, struct inode_defrag, rb_node);
190 
191 		ret = __compare_inode_defrag(&tmp, entry);
192 		if (ret < 0)
193 			p = parent->rb_left;
194 		else if (ret > 0)
195 			p = parent->rb_right;
196 		else
197 			goto out;
198 	}
199 
200 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
201 		parent = rb_next(parent);
202 		if (parent)
203 			entry = rb_entry(parent, struct inode_defrag, rb_node);
204 		else
205 			entry = NULL;
206 	}
207 out:
208 	if (entry)
209 		rb_erase(parent, &fs_info->defrag_inodes);
210 	spin_unlock(&fs_info->defrag_inodes_lock);
211 	return entry;
212 }
213 
214 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
215 {
216 	struct inode_defrag *defrag;
217 	struct rb_node *node;
218 
219 	spin_lock(&fs_info->defrag_inodes_lock);
220 	node = rb_first(&fs_info->defrag_inodes);
221 	while (node) {
222 		rb_erase(node, &fs_info->defrag_inodes);
223 		defrag = rb_entry(node, struct inode_defrag, rb_node);
224 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
225 
226 		cond_resched_lock(&fs_info->defrag_inodes_lock);
227 
228 		node = rb_first(&fs_info->defrag_inodes);
229 	}
230 	spin_unlock(&fs_info->defrag_inodes_lock);
231 }
232 
233 #define BTRFS_DEFRAG_BATCH	1024
234 
235 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
236 				    struct inode_defrag *defrag)
237 {
238 	struct btrfs_root *inode_root;
239 	struct inode *inode;
240 	struct btrfs_ioctl_defrag_range_args range;
241 	int ret = 0;
242 	u64 cur = 0;
243 
244 again:
245 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
246 		goto cleanup;
247 	if (!__need_auto_defrag(fs_info))
248 		goto cleanup;
249 
250 	/* Get the inode */
251 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
252 	if (IS_ERR(inode_root)) {
253 		ret = PTR_ERR(inode_root);
254 		goto cleanup;
255 	}
256 
257 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
258 	btrfs_put_root(inode_root);
259 	if (IS_ERR(inode)) {
260 		ret = PTR_ERR(inode);
261 		goto cleanup;
262 	}
263 
264 	if (cur >= i_size_read(inode)) {
265 		iput(inode);
266 		goto cleanup;
267 	}
268 
269 	/* Do a chunk of defrag */
270 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
271 	memset(&range, 0, sizeof(range));
272 	range.len = (u64)-1;
273 	range.start = cur;
274 	range.extent_thresh = defrag->extent_thresh;
275 
276 	sb_start_write(fs_info->sb);
277 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
278 				       BTRFS_DEFRAG_BATCH);
279 	sb_end_write(fs_info->sb);
280 	iput(inode);
281 
282 	if (ret < 0)
283 		goto cleanup;
284 
285 	cur = max(cur + fs_info->sectorsize, range.start);
286 	goto again;
287 
288 cleanup:
289 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
290 	return ret;
291 }
292 
293 /*
294  * Run through the list of inodes in the FS that need defragging.
295  */
296 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
297 {
298 	struct inode_defrag *defrag;
299 	u64 first_ino = 0;
300 	u64 root_objectid = 0;
301 
302 	atomic_inc(&fs_info->defrag_running);
303 	while (1) {
304 		/* Pause the auto defragger. */
305 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
306 			break;
307 
308 		if (!__need_auto_defrag(fs_info))
309 			break;
310 
311 		/* find an inode to defrag */
312 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
313 		if (!defrag) {
314 			if (root_objectid || first_ino) {
315 				root_objectid = 0;
316 				first_ino = 0;
317 				continue;
318 			} else {
319 				break;
320 			}
321 		}
322 
323 		first_ino = defrag->ino + 1;
324 		root_objectid = defrag->root;
325 
326 		__btrfs_run_defrag_inode(fs_info, defrag);
327 	}
328 	atomic_dec(&fs_info->defrag_running);
329 
330 	/*
331 	 * During unmount, we use the transaction_wait queue to wait for the
332 	 * defragger to stop.
333 	 */
334 	wake_up(&fs_info->transaction_wait);
335 	return 0;
336 }
337 
338 /*
339  * Defrag all the leaves in a given btree.
340  * Read all the leaves and try to get key order to
341  * better reflect disk order
342  */
343 
344 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
345 			struct btrfs_root *root)
346 {
347 	struct btrfs_path *path = NULL;
348 	struct btrfs_key key;
349 	int ret = 0;
350 	int wret;
351 	int level;
352 	int next_key_ret = 0;
353 	u64 last_ret = 0;
354 
355 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
356 		goto out;
357 
358 	path = btrfs_alloc_path();
359 	if (!path)
360 		return -ENOMEM;
361 
362 	level = btrfs_header_level(root->node);
363 
364 	if (level == 0)
365 		goto out;
366 
367 	if (root->defrag_progress.objectid == 0) {
368 		struct extent_buffer *root_node;
369 		u32 nritems;
370 
371 		root_node = btrfs_lock_root_node(root);
372 		nritems = btrfs_header_nritems(root_node);
373 		root->defrag_max.objectid = 0;
374 		/* from above we know this is not a leaf */
375 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
376 				      nritems - 1);
377 		btrfs_tree_unlock(root_node);
378 		free_extent_buffer(root_node);
379 		memset(&key, 0, sizeof(key));
380 	} else {
381 		memcpy(&key, &root->defrag_progress, sizeof(key));
382 	}
383 
384 	path->keep_locks = 1;
385 
386 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
387 	if (ret < 0)
388 		goto out;
389 	if (ret > 0) {
390 		ret = 0;
391 		goto out;
392 	}
393 	btrfs_release_path(path);
394 	/*
395 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
396 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
397 	 * a deadlock (attempting to write lock an already write locked leaf).
398 	 */
399 	path->lowest_level = 1;
400 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
401 
402 	if (wret < 0) {
403 		ret = wret;
404 		goto out;
405 	}
406 	if (!path->nodes[1]) {
407 		ret = 0;
408 		goto out;
409 	}
410 	/*
411 	 * The node at level 1 must always be locked when our path has
412 	 * keep_locks set and lowest_level is 1, regardless of the value of
413 	 * path->slots[1].
414 	 */
415 	BUG_ON(path->locks[1] == 0);
416 	ret = btrfs_realloc_node(trans, root,
417 				 path->nodes[1], 0,
418 				 &last_ret,
419 				 &root->defrag_progress);
420 	if (ret) {
421 		WARN_ON(ret == -EAGAIN);
422 		goto out;
423 	}
424 	/*
425 	 * Now that we reallocated the node we can find the next key. Note that
426 	 * btrfs_find_next_key() can release our path and do another search
427 	 * without COWing, this is because even with path->keep_locks = 1,
428 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
429 	 * node when path->slots[node_level - 1] does not point to the last
430 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
431 	 * we search for the next key after reallocating our node.
432 	 */
433 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
434 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
435 					   BTRFS_OLDEST_GENERATION);
436 	if (next_key_ret == 0) {
437 		memcpy(&root->defrag_progress, &key, sizeof(key));
438 		ret = -EAGAIN;
439 	}
440 out:
441 	btrfs_free_path(path);
442 	if (ret == -EAGAIN) {
443 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
444 			goto done;
445 		if (root->defrag_max.type > root->defrag_progress.type)
446 			goto done;
447 		if (root->defrag_max.offset > root->defrag_progress.offset)
448 			goto done;
449 		ret = 0;
450 	}
451 done:
452 	if (ret != -EAGAIN)
453 		memset(&root->defrag_progress, 0,
454 		       sizeof(root->defrag_progress));
455 
456 	return ret;
457 }
458 
459 /*
460  * Defrag specific helper to get an extent map.
461  *
462  * Differences between this and btrfs_get_extent() are:
463  *
464  * - No extent_map will be added to inode->extent_tree
465  *   To reduce memory usage in the long run.
466  *
467  * - Extra optimization to skip file extents older than @newer_than
468  *   By using btrfs_search_forward() we can skip entire file ranges that
469  *   have extents created in past transactions, because btrfs_search_forward()
470  *   will not visit leaves and nodes with a generation smaller than given
471  *   minimal generation threshold (@newer_than).
472  *
473  * Return valid em if we find a file extent matching the requirement.
474  * Return NULL if we can not find a file extent matching the requirement.
475  *
476  * Return ERR_PTR() for error.
477  */
478 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
479 					    u64 start, u64 newer_than)
480 {
481 	struct btrfs_root *root = inode->root;
482 	struct btrfs_file_extent_item *fi;
483 	struct btrfs_path path = { 0 };
484 	struct extent_map *em;
485 	struct btrfs_key key;
486 	u64 ino = btrfs_ino(inode);
487 	int ret;
488 
489 	em = alloc_extent_map();
490 	if (!em) {
491 		ret = -ENOMEM;
492 		goto err;
493 	}
494 
495 	key.objectid = ino;
496 	key.type = BTRFS_EXTENT_DATA_KEY;
497 	key.offset = start;
498 
499 	if (newer_than) {
500 		ret = btrfs_search_forward(root, &key, &path, newer_than);
501 		if (ret < 0)
502 			goto err;
503 		/* Can't find anything newer */
504 		if (ret > 0)
505 			goto not_found;
506 	} else {
507 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
508 		if (ret < 0)
509 			goto err;
510 	}
511 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
512 		/*
513 		 * If btrfs_search_slot() makes path to point beyond nritems,
514 		 * we should not have an empty leaf, as this inode must at
515 		 * least have its INODE_ITEM.
516 		 */
517 		ASSERT(btrfs_header_nritems(path.nodes[0]));
518 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
519 	}
520 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
521 	/* Perfect match, no need to go one slot back */
522 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
523 	    key.offset == start)
524 		goto iterate;
525 
526 	/* We didn't find a perfect match, needs to go one slot back */
527 	if (path.slots[0] > 0) {
528 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
529 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
530 			path.slots[0]--;
531 	}
532 
533 iterate:
534 	/* Iterate through the path to find a file extent covering @start */
535 	while (true) {
536 		u64 extent_end;
537 
538 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
539 			goto next;
540 
541 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
542 
543 		/*
544 		 * We may go one slot back to INODE_REF/XATTR item, then
545 		 * need to go forward until we reach an EXTENT_DATA.
546 		 * But we should still has the correct ino as key.objectid.
547 		 */
548 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
549 			goto next;
550 
551 		/* It's beyond our target range, definitely not extent found */
552 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
553 			goto not_found;
554 
555 		/*
556 		 *	|	|<- File extent ->|
557 		 *	\- start
558 		 *
559 		 * This means there is a hole between start and key.offset.
560 		 */
561 		if (key.offset > start) {
562 			em->start = start;
563 			em->orig_start = start;
564 			em->block_start = EXTENT_MAP_HOLE;
565 			em->len = key.offset - start;
566 			break;
567 		}
568 
569 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
570 				    struct btrfs_file_extent_item);
571 		extent_end = btrfs_file_extent_end(&path);
572 
573 		/*
574 		 *	|<- file extent ->|	|
575 		 *				\- start
576 		 *
577 		 * We haven't reached start, search next slot.
578 		 */
579 		if (extent_end <= start)
580 			goto next;
581 
582 		/* Now this extent covers @start, convert it to em */
583 		btrfs_extent_item_to_extent_map(inode, &path, fi, false, em);
584 		break;
585 next:
586 		ret = btrfs_next_item(root, &path);
587 		if (ret < 0)
588 			goto err;
589 		if (ret > 0)
590 			goto not_found;
591 	}
592 	btrfs_release_path(&path);
593 	return em;
594 
595 not_found:
596 	btrfs_release_path(&path);
597 	free_extent_map(em);
598 	return NULL;
599 
600 err:
601 	btrfs_release_path(&path);
602 	free_extent_map(em);
603 	return ERR_PTR(ret);
604 }
605 
606 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
607 					       u64 newer_than, bool locked)
608 {
609 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
610 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
611 	struct extent_map *em;
612 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
613 
614 	/*
615 	 * Hopefully we have this extent in the tree already, try without the
616 	 * full extent lock.
617 	 */
618 	read_lock(&em_tree->lock);
619 	em = lookup_extent_mapping(em_tree, start, sectorsize);
620 	read_unlock(&em_tree->lock);
621 
622 	/*
623 	 * We can get a merged extent, in that case, we need to re-search
624 	 * tree to get the original em for defrag.
625 	 *
626 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
627 	 * this em, as either we don't care about the generation, or the
628 	 * merged extent map will be rejected anyway.
629 	 */
630 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
631 	    newer_than && em->generation >= newer_than) {
632 		free_extent_map(em);
633 		em = NULL;
634 	}
635 
636 	if (!em) {
637 		struct extent_state *cached = NULL;
638 		u64 end = start + sectorsize - 1;
639 
640 		/* Get the big lock and read metadata off disk. */
641 		if (!locked)
642 			lock_extent(io_tree, start, end, &cached);
643 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
644 		if (!locked)
645 			unlock_extent(io_tree, start, end, &cached);
646 
647 		if (IS_ERR(em))
648 			return NULL;
649 	}
650 
651 	return em;
652 }
653 
654 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
655 				   const struct extent_map *em)
656 {
657 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
658 		return BTRFS_MAX_COMPRESSED;
659 	return fs_info->max_extent_size;
660 }
661 
662 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
663 				     u32 extent_thresh, u64 newer_than, bool locked)
664 {
665 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
666 	struct extent_map *next;
667 	bool ret = false;
668 
669 	/* This is the last extent */
670 	if (em->start + em->len >= i_size_read(inode))
671 		return false;
672 
673 	/*
674 	 * Here we need to pass @newer_then when checking the next extent, or
675 	 * we will hit a case we mark current extent for defrag, but the next
676 	 * one will not be a target.
677 	 * This will just cause extra IO without really reducing the fragments.
678 	 */
679 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
680 	/* No more em or hole */
681 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
682 		goto out;
683 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
684 		goto out;
685 	/*
686 	 * If the next extent is at its max capacity, defragging current extent
687 	 * makes no sense, as the total number of extents won't change.
688 	 */
689 	if (next->len >= get_extent_max_capacity(fs_info, em))
690 		goto out;
691 	/* Skip older extent */
692 	if (next->generation < newer_than)
693 		goto out;
694 	/* Also check extent size */
695 	if (next->len >= extent_thresh)
696 		goto out;
697 
698 	ret = true;
699 out:
700 	free_extent_map(next);
701 	return ret;
702 }
703 
704 /*
705  * Prepare one page to be defragged.
706  *
707  * This will ensure:
708  *
709  * - Returned page is locked and has been set up properly.
710  * - No ordered extent exists in the page.
711  * - The page is uptodate.
712  *
713  * NOTE: Caller should also wait for page writeback after the cluster is
714  * prepared, here we don't do writeback wait for each page.
715  */
716 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
717 {
718 	struct address_space *mapping = inode->vfs_inode.i_mapping;
719 	gfp_t mask = btrfs_alloc_write_mask(mapping);
720 	u64 page_start = (u64)index << PAGE_SHIFT;
721 	u64 page_end = page_start + PAGE_SIZE - 1;
722 	struct extent_state *cached_state = NULL;
723 	struct page *page;
724 	int ret;
725 
726 again:
727 	page = find_or_create_page(mapping, index, mask);
728 	if (!page)
729 		return ERR_PTR(-ENOMEM);
730 
731 	/*
732 	 * Since we can defragment files opened read-only, we can encounter
733 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
734 	 * can't do I/O using huge pages yet, so return an error for now.
735 	 * Filesystem transparent huge pages are typically only used for
736 	 * executables that explicitly enable them, so this isn't very
737 	 * restrictive.
738 	 */
739 	if (PageCompound(page)) {
740 		unlock_page(page);
741 		put_page(page);
742 		return ERR_PTR(-ETXTBSY);
743 	}
744 
745 	ret = set_page_extent_mapped(page);
746 	if (ret < 0) {
747 		unlock_page(page);
748 		put_page(page);
749 		return ERR_PTR(ret);
750 	}
751 
752 	/* Wait for any existing ordered extent in the range */
753 	while (1) {
754 		struct btrfs_ordered_extent *ordered;
755 
756 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
757 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
758 		unlock_extent(&inode->io_tree, page_start, page_end,
759 			      &cached_state);
760 		if (!ordered)
761 			break;
762 
763 		unlock_page(page);
764 		btrfs_start_ordered_extent(ordered, 1);
765 		btrfs_put_ordered_extent(ordered);
766 		lock_page(page);
767 		/*
768 		 * We unlocked the page above, so we need check if it was
769 		 * released or not.
770 		 */
771 		if (page->mapping != mapping || !PagePrivate(page)) {
772 			unlock_page(page);
773 			put_page(page);
774 			goto again;
775 		}
776 	}
777 
778 	/*
779 	 * Now the page range has no ordered extent any more.  Read the page to
780 	 * make it uptodate.
781 	 */
782 	if (!PageUptodate(page)) {
783 		btrfs_read_folio(NULL, page_folio(page));
784 		lock_page(page);
785 		if (page->mapping != mapping || !PagePrivate(page)) {
786 			unlock_page(page);
787 			put_page(page);
788 			goto again;
789 		}
790 		if (!PageUptodate(page)) {
791 			unlock_page(page);
792 			put_page(page);
793 			return ERR_PTR(-EIO);
794 		}
795 	}
796 	return page;
797 }
798 
799 struct defrag_target_range {
800 	struct list_head list;
801 	u64 start;
802 	u64 len;
803 };
804 
805 /*
806  * Collect all valid target extents.
807  *
808  * @start:	   file offset to lookup
809  * @len:	   length to lookup
810  * @extent_thresh: file extent size threshold, any extent size >= this value
811  *		   will be ignored
812  * @newer_than:    only defrag extents newer than this value
813  * @do_compress:   whether the defrag is doing compression
814  *		   if true, @extent_thresh will be ignored and all regular
815  *		   file extents meeting @newer_than will be targets.
816  * @locked:	   if the range has already held extent lock
817  * @target_list:   list of targets file extents
818  */
819 static int defrag_collect_targets(struct btrfs_inode *inode,
820 				  u64 start, u64 len, u32 extent_thresh,
821 				  u64 newer_than, bool do_compress,
822 				  bool locked, struct list_head *target_list,
823 				  u64 *last_scanned_ret)
824 {
825 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
826 	bool last_is_target = false;
827 	u64 cur = start;
828 	int ret = 0;
829 
830 	while (cur < start + len) {
831 		struct extent_map *em;
832 		struct defrag_target_range *new;
833 		bool next_mergeable = true;
834 		u64 range_len;
835 
836 		last_is_target = false;
837 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
838 		if (!em)
839 			break;
840 
841 		/*
842 		 * If the file extent is an inlined one, we may still want to
843 		 * defrag it (fallthrough) if it will cause a regular extent.
844 		 * This is for users who want to convert inline extents to
845 		 * regular ones through max_inline= mount option.
846 		 */
847 		if (em->block_start == EXTENT_MAP_INLINE &&
848 		    em->len <= inode->root->fs_info->max_inline)
849 			goto next;
850 
851 		/* Skip hole/delalloc/preallocated extents */
852 		if (em->block_start == EXTENT_MAP_HOLE ||
853 		    em->block_start == EXTENT_MAP_DELALLOC ||
854 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
855 			goto next;
856 
857 		/* Skip older extent */
858 		if (em->generation < newer_than)
859 			goto next;
860 
861 		/* This em is under writeback, no need to defrag */
862 		if (em->generation == (u64)-1)
863 			goto next;
864 
865 		/*
866 		 * Our start offset might be in the middle of an existing extent
867 		 * map, so take that into account.
868 		 */
869 		range_len = em->len - (cur - em->start);
870 		/*
871 		 * If this range of the extent map is already flagged for delalloc,
872 		 * skip it, because:
873 		 *
874 		 * 1) We could deadlock later, when trying to reserve space for
875 		 *    delalloc, because in case we can't immediately reserve space
876 		 *    the flusher can start delalloc and wait for the respective
877 		 *    ordered extents to complete. The deadlock would happen
878 		 *    because we do the space reservation while holding the range
879 		 *    locked, and starting writeback, or finishing an ordered
880 		 *    extent, requires locking the range;
881 		 *
882 		 * 2) If there's delalloc there, it means there's dirty pages for
883 		 *    which writeback has not started yet (we clean the delalloc
884 		 *    flag when starting writeback and after creating an ordered
885 		 *    extent). If we mark pages in an adjacent range for defrag,
886 		 *    then we will have a larger contiguous range for delalloc,
887 		 *    very likely resulting in a larger extent after writeback is
888 		 *    triggered (except in a case of free space fragmentation).
889 		 */
890 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
891 				   EXTENT_DELALLOC, 0, NULL))
892 			goto next;
893 
894 		/*
895 		 * For do_compress case, we want to compress all valid file
896 		 * extents, thus no @extent_thresh or mergeable check.
897 		 */
898 		if (do_compress)
899 			goto add;
900 
901 		/* Skip too large extent */
902 		if (range_len >= extent_thresh)
903 			goto next;
904 
905 		/*
906 		 * Skip extents already at its max capacity, this is mostly for
907 		 * compressed extents, which max cap is only 128K.
908 		 */
909 		if (em->len >= get_extent_max_capacity(fs_info, em))
910 			goto next;
911 
912 		/*
913 		 * Normally there are no more extents after an inline one, thus
914 		 * @next_mergeable will normally be false and not defragged.
915 		 * So if an inline extent passed all above checks, just add it
916 		 * for defrag, and be converted to regular extents.
917 		 */
918 		if (em->block_start == EXTENT_MAP_INLINE)
919 			goto add;
920 
921 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
922 						extent_thresh, newer_than, locked);
923 		if (!next_mergeable) {
924 			struct defrag_target_range *last;
925 
926 			/* Empty target list, no way to merge with last entry */
927 			if (list_empty(target_list))
928 				goto next;
929 			last = list_entry(target_list->prev,
930 					  struct defrag_target_range, list);
931 			/* Not mergeable with last entry */
932 			if (last->start + last->len != cur)
933 				goto next;
934 
935 			/* Mergeable, fall through to add it to @target_list. */
936 		}
937 
938 add:
939 		last_is_target = true;
940 		range_len = min(extent_map_end(em), start + len) - cur;
941 		/*
942 		 * This one is a good target, check if it can be merged into
943 		 * last range of the target list.
944 		 */
945 		if (!list_empty(target_list)) {
946 			struct defrag_target_range *last;
947 
948 			last = list_entry(target_list->prev,
949 					  struct defrag_target_range, list);
950 			ASSERT(last->start + last->len <= cur);
951 			if (last->start + last->len == cur) {
952 				/* Mergeable, enlarge the last entry */
953 				last->len += range_len;
954 				goto next;
955 			}
956 			/* Fall through to allocate a new entry */
957 		}
958 
959 		/* Allocate new defrag_target_range */
960 		new = kmalloc(sizeof(*new), GFP_NOFS);
961 		if (!new) {
962 			free_extent_map(em);
963 			ret = -ENOMEM;
964 			break;
965 		}
966 		new->start = cur;
967 		new->len = range_len;
968 		list_add_tail(&new->list, target_list);
969 
970 next:
971 		cur = extent_map_end(em);
972 		free_extent_map(em);
973 	}
974 	if (ret < 0) {
975 		struct defrag_target_range *entry;
976 		struct defrag_target_range *tmp;
977 
978 		list_for_each_entry_safe(entry, tmp, target_list, list) {
979 			list_del_init(&entry->list);
980 			kfree(entry);
981 		}
982 	}
983 	if (!ret && last_scanned_ret) {
984 		/*
985 		 * If the last extent is not a target, the caller can skip to
986 		 * the end of that extent.
987 		 * Otherwise, we can only go the end of the specified range.
988 		 */
989 		if (!last_is_target)
990 			*last_scanned_ret = max(cur, *last_scanned_ret);
991 		else
992 			*last_scanned_ret = max(start + len, *last_scanned_ret);
993 	}
994 	return ret;
995 }
996 
997 #define CLUSTER_SIZE	(SZ_256K)
998 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
999 
1000 /*
1001  * Defrag one contiguous target range.
1002  *
1003  * @inode:	target inode
1004  * @target:	target range to defrag
1005  * @pages:	locked pages covering the defrag range
1006  * @nr_pages:	number of locked pages
1007  *
1008  * Caller should ensure:
1009  *
1010  * - Pages are prepared
1011  *   Pages should be locked, no ordered extent in the pages range,
1012  *   no writeback.
1013  *
1014  * - Extent bits are locked
1015  */
1016 static int defrag_one_locked_target(struct btrfs_inode *inode,
1017 				    struct defrag_target_range *target,
1018 				    struct page **pages, int nr_pages,
1019 				    struct extent_state **cached_state)
1020 {
1021 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1022 	struct extent_changeset *data_reserved = NULL;
1023 	const u64 start = target->start;
1024 	const u64 len = target->len;
1025 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1026 	unsigned long start_index = start >> PAGE_SHIFT;
1027 	unsigned long first_index = page_index(pages[0]);
1028 	int ret = 0;
1029 	int i;
1030 
1031 	ASSERT(last_index - first_index + 1 <= nr_pages);
1032 
1033 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1034 	if (ret < 0)
1035 		return ret;
1036 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1037 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1038 			 EXTENT_DEFRAG, cached_state);
1039 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1040 
1041 	/* Update the page status */
1042 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1043 		ClearPageChecked(pages[i]);
1044 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1045 	}
1046 	btrfs_delalloc_release_extents(inode, len);
1047 	extent_changeset_free(data_reserved);
1048 
1049 	return ret;
1050 }
1051 
1052 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1053 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1054 			    u64 *last_scanned_ret)
1055 {
1056 	struct extent_state *cached_state = NULL;
1057 	struct defrag_target_range *entry;
1058 	struct defrag_target_range *tmp;
1059 	LIST_HEAD(target_list);
1060 	struct page **pages;
1061 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1062 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1063 	u64 start_index = start >> PAGE_SHIFT;
1064 	unsigned int nr_pages = last_index - start_index + 1;
1065 	int ret = 0;
1066 	int i;
1067 
1068 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1069 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1070 
1071 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1072 	if (!pages)
1073 		return -ENOMEM;
1074 
1075 	/* Prepare all pages */
1076 	for (i = 0; i < nr_pages; i++) {
1077 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1078 		if (IS_ERR(pages[i])) {
1079 			ret = PTR_ERR(pages[i]);
1080 			pages[i] = NULL;
1081 			goto free_pages;
1082 		}
1083 	}
1084 	for (i = 0; i < nr_pages; i++)
1085 		wait_on_page_writeback(pages[i]);
1086 
1087 	/* Lock the pages range */
1088 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1089 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1090 		    &cached_state);
1091 	/*
1092 	 * Now we have a consistent view about the extent map, re-check
1093 	 * which range really needs to be defragged.
1094 	 *
1095 	 * And this time we have extent locked already, pass @locked = true
1096 	 * so that we won't relock the extent range and cause deadlock.
1097 	 */
1098 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1099 				     newer_than, do_compress, true,
1100 				     &target_list, last_scanned_ret);
1101 	if (ret < 0)
1102 		goto unlock_extent;
1103 
1104 	list_for_each_entry(entry, &target_list, list) {
1105 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1106 					       &cached_state);
1107 		if (ret < 0)
1108 			break;
1109 	}
1110 
1111 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1112 		list_del_init(&entry->list);
1113 		kfree(entry);
1114 	}
1115 unlock_extent:
1116 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1117 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1118 		      &cached_state);
1119 free_pages:
1120 	for (i = 0; i < nr_pages; i++) {
1121 		if (pages[i]) {
1122 			unlock_page(pages[i]);
1123 			put_page(pages[i]);
1124 		}
1125 	}
1126 	kfree(pages);
1127 	return ret;
1128 }
1129 
1130 static int defrag_one_cluster(struct btrfs_inode *inode,
1131 			      struct file_ra_state *ra,
1132 			      u64 start, u32 len, u32 extent_thresh,
1133 			      u64 newer_than, bool do_compress,
1134 			      unsigned long *sectors_defragged,
1135 			      unsigned long max_sectors,
1136 			      u64 *last_scanned_ret)
1137 {
1138 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1139 	struct defrag_target_range *entry;
1140 	struct defrag_target_range *tmp;
1141 	LIST_HEAD(target_list);
1142 	int ret;
1143 
1144 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1145 				     newer_than, do_compress, false,
1146 				     &target_list, NULL);
1147 	if (ret < 0)
1148 		goto out;
1149 
1150 	list_for_each_entry(entry, &target_list, list) {
1151 		u32 range_len = entry->len;
1152 
1153 		/* Reached or beyond the limit */
1154 		if (max_sectors && *sectors_defragged >= max_sectors) {
1155 			ret = 1;
1156 			break;
1157 		}
1158 
1159 		if (max_sectors)
1160 			range_len = min_t(u32, range_len,
1161 				(max_sectors - *sectors_defragged) * sectorsize);
1162 
1163 		/*
1164 		 * If defrag_one_range() has updated last_scanned_ret,
1165 		 * our range may already be invalid (e.g. hole punched).
1166 		 * Skip if our range is before last_scanned_ret, as there is
1167 		 * no need to defrag the range anymore.
1168 		 */
1169 		if (entry->start + range_len <= *last_scanned_ret)
1170 			continue;
1171 
1172 		if (ra)
1173 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1174 				ra, NULL, entry->start >> PAGE_SHIFT,
1175 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1176 				(entry->start >> PAGE_SHIFT) + 1);
1177 		/*
1178 		 * Here we may not defrag any range if holes are punched before
1179 		 * we locked the pages.
1180 		 * But that's fine, it only affects the @sectors_defragged
1181 		 * accounting.
1182 		 */
1183 		ret = defrag_one_range(inode, entry->start, range_len,
1184 				       extent_thresh, newer_than, do_compress,
1185 				       last_scanned_ret);
1186 		if (ret < 0)
1187 			break;
1188 		*sectors_defragged += range_len >>
1189 				      inode->root->fs_info->sectorsize_bits;
1190 	}
1191 out:
1192 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1193 		list_del_init(&entry->list);
1194 		kfree(entry);
1195 	}
1196 	if (ret >= 0)
1197 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1198 	return ret;
1199 }
1200 
1201 /*
1202  * Entry point to file defragmentation.
1203  *
1204  * @inode:	   inode to be defragged
1205  * @ra:		   readahead state (can be NUL)
1206  * @range:	   defrag options including range and flags
1207  * @newer_than:	   minimum transid to defrag
1208  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1209  *		   will be defragged.
1210  *
1211  * Return <0 for error.
1212  * Return >=0 for the number of sectors defragged, and range->start will be updated
1213  * to indicate the file offset where next defrag should be started at.
1214  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1215  *  defragging all the range).
1216  */
1217 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1218 		      struct btrfs_ioctl_defrag_range_args *range,
1219 		      u64 newer_than, unsigned long max_to_defrag)
1220 {
1221 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1222 	unsigned long sectors_defragged = 0;
1223 	u64 isize = i_size_read(inode);
1224 	u64 cur;
1225 	u64 last_byte;
1226 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1227 	bool ra_allocated = false;
1228 	int compress_type = BTRFS_COMPRESS_ZLIB;
1229 	int ret = 0;
1230 	u32 extent_thresh = range->extent_thresh;
1231 	pgoff_t start_index;
1232 
1233 	if (isize == 0)
1234 		return 0;
1235 
1236 	if (range->start >= isize)
1237 		return -EINVAL;
1238 
1239 	if (do_compress) {
1240 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1241 			return -EINVAL;
1242 		if (range->compress_type)
1243 			compress_type = range->compress_type;
1244 	}
1245 
1246 	if (extent_thresh == 0)
1247 		extent_thresh = SZ_256K;
1248 
1249 	if (range->start + range->len > range->start) {
1250 		/* Got a specific range */
1251 		last_byte = min(isize, range->start + range->len);
1252 	} else {
1253 		/* Defrag until file end */
1254 		last_byte = isize;
1255 	}
1256 
1257 	/* Align the range */
1258 	cur = round_down(range->start, fs_info->sectorsize);
1259 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1260 
1261 	/*
1262 	 * If we were not given a ra, allocate a readahead context. As
1263 	 * readahead is just an optimization, defrag will work without it so
1264 	 * we don't error out.
1265 	 */
1266 	if (!ra) {
1267 		ra_allocated = true;
1268 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1269 		if (ra)
1270 			file_ra_state_init(ra, inode->i_mapping);
1271 	}
1272 
1273 	/*
1274 	 * Make writeback start from the beginning of the range, so that the
1275 	 * defrag range can be written sequentially.
1276 	 */
1277 	start_index = cur >> PAGE_SHIFT;
1278 	if (start_index < inode->i_mapping->writeback_index)
1279 		inode->i_mapping->writeback_index = start_index;
1280 
1281 	while (cur < last_byte) {
1282 		const unsigned long prev_sectors_defragged = sectors_defragged;
1283 		u64 last_scanned = cur;
1284 		u64 cluster_end;
1285 
1286 		if (btrfs_defrag_cancelled(fs_info)) {
1287 			ret = -EAGAIN;
1288 			break;
1289 		}
1290 
1291 		/* We want the cluster end at page boundary when possible */
1292 		cluster_end = (((cur >> PAGE_SHIFT) +
1293 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1294 		cluster_end = min(cluster_end, last_byte);
1295 
1296 		btrfs_inode_lock(inode, 0);
1297 		if (IS_SWAPFILE(inode)) {
1298 			ret = -ETXTBSY;
1299 			btrfs_inode_unlock(inode, 0);
1300 			break;
1301 		}
1302 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1303 			btrfs_inode_unlock(inode, 0);
1304 			break;
1305 		}
1306 		if (do_compress)
1307 			BTRFS_I(inode)->defrag_compress = compress_type;
1308 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1309 				cluster_end + 1 - cur, extent_thresh,
1310 				newer_than, do_compress, &sectors_defragged,
1311 				max_to_defrag, &last_scanned);
1312 
1313 		if (sectors_defragged > prev_sectors_defragged)
1314 			balance_dirty_pages_ratelimited(inode->i_mapping);
1315 
1316 		btrfs_inode_unlock(inode, 0);
1317 		if (ret < 0)
1318 			break;
1319 		cur = max(cluster_end + 1, last_scanned);
1320 		if (ret > 0) {
1321 			ret = 0;
1322 			break;
1323 		}
1324 		cond_resched();
1325 	}
1326 
1327 	if (ra_allocated)
1328 		kfree(ra);
1329 	/*
1330 	 * Update range.start for autodefrag, this will indicate where to start
1331 	 * in next run.
1332 	 */
1333 	range->start = cur;
1334 	if (sectors_defragged) {
1335 		/*
1336 		 * We have defragged some sectors, for compression case they
1337 		 * need to be written back immediately.
1338 		 */
1339 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1340 			filemap_flush(inode->i_mapping);
1341 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1342 				     &BTRFS_I(inode)->runtime_flags))
1343 				filemap_flush(inode->i_mapping);
1344 		}
1345 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1346 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1347 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1348 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1349 		ret = sectors_defragged;
1350 	}
1351 	if (do_compress) {
1352 		btrfs_inode_lock(inode, 0);
1353 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1354 		btrfs_inode_unlock(inode, 0);
1355 	}
1356 	return ret;
1357 }
1358 
1359 void __cold btrfs_auto_defrag_exit(void)
1360 {
1361 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1362 }
1363 
1364 int __init btrfs_auto_defrag_init(void)
1365 {
1366 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1367 					sizeof(struct inode_defrag), 0,
1368 					SLAB_MEM_SPREAD,
1369 					NULL);
1370 	if (!btrfs_inode_defrag_cachep)
1371 		return -ENOMEM;
1372 
1373 	return 0;
1374 }
1375