xref: /openbmc/linux/fs/btrfs/defrag.c (revision 280f15cb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 #include "file-item.h"
18 #include "super.h"
19 
20 static struct kmem_cache *btrfs_inode_defrag_cachep;
21 
22 /*
23  * When auto defrag is enabled we queue up these defrag structs to remember
24  * which inodes need defragging passes.
25  */
26 struct inode_defrag {
27 	struct rb_node rb_node;
28 	/* Inode number */
29 	u64 ino;
30 	/*
31 	 * Transid where the defrag was added, we search for extents newer than
32 	 * this.
33 	 */
34 	u64 transid;
35 
36 	/* Root objectid */
37 	u64 root;
38 
39 	/*
40 	 * The extent size threshold for autodefrag.
41 	 *
42 	 * This value is different for compressed/non-compressed extents, thus
43 	 * needs to be passed from higher layer.
44 	 * (aka, inode_should_defrag())
45 	 */
46 	u32 extent_thresh;
47 };
48 
49 static int __compare_inode_defrag(struct inode_defrag *defrag1,
50 				  struct inode_defrag *defrag2)
51 {
52 	if (defrag1->root > defrag2->root)
53 		return 1;
54 	else if (defrag1->root < defrag2->root)
55 		return -1;
56 	else if (defrag1->ino > defrag2->ino)
57 		return 1;
58 	else if (defrag1->ino < defrag2->ino)
59 		return -1;
60 	else
61 		return 0;
62 }
63 
64 /*
65  * Pop a record for an inode into the defrag tree.  The lock must be held
66  * already.
67  *
68  * If you're inserting a record for an older transid than an existing record,
69  * the transid already in the tree is lowered.
70  *
71  * If an existing record is found the defrag item you pass in is freed.
72  */
73 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74 				    struct inode_defrag *defrag)
75 {
76 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
77 	struct inode_defrag *entry;
78 	struct rb_node **p;
79 	struct rb_node *parent = NULL;
80 	int ret;
81 
82 	p = &fs_info->defrag_inodes.rb_node;
83 	while (*p) {
84 		parent = *p;
85 		entry = rb_entry(parent, struct inode_defrag, rb_node);
86 
87 		ret = __compare_inode_defrag(defrag, entry);
88 		if (ret < 0)
89 			p = &parent->rb_left;
90 		else if (ret > 0)
91 			p = &parent->rb_right;
92 		else {
93 			/*
94 			 * If we're reinserting an entry for an old defrag run,
95 			 * make sure to lower the transid of our existing
96 			 * record.
97 			 */
98 			if (defrag->transid < entry->transid)
99 				entry->transid = defrag->transid;
100 			entry->extent_thresh = min(defrag->extent_thresh,
101 						   entry->extent_thresh);
102 			return -EEXIST;
103 		}
104 	}
105 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106 	rb_link_node(&defrag->rb_node, parent, p);
107 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
108 	return 0;
109 }
110 
111 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
112 {
113 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
114 		return 0;
115 
116 	if (btrfs_fs_closing(fs_info))
117 		return 0;
118 
119 	return 1;
120 }
121 
122 /*
123  * Insert a defrag record for this inode if auto defrag is enabled.
124  */
125 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126 			   struct btrfs_inode *inode, u32 extent_thresh)
127 {
128 	struct btrfs_root *root = inode->root;
129 	struct btrfs_fs_info *fs_info = root->fs_info;
130 	struct inode_defrag *defrag;
131 	u64 transid;
132 	int ret;
133 
134 	if (!__need_auto_defrag(fs_info))
135 		return 0;
136 
137 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
138 		return 0;
139 
140 	if (trans)
141 		transid = trans->transid;
142 	else
143 		transid = inode->root->last_trans;
144 
145 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
146 	if (!defrag)
147 		return -ENOMEM;
148 
149 	defrag->ino = btrfs_ino(inode);
150 	defrag->transid = transid;
151 	defrag->root = root->root_key.objectid;
152 	defrag->extent_thresh = extent_thresh;
153 
154 	spin_lock(&fs_info->defrag_inodes_lock);
155 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
156 		/*
157 		 * If we set IN_DEFRAG flag and evict the inode from memory,
158 		 * and then re-read this inode, this new inode doesn't have
159 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
160 		 */
161 		ret = __btrfs_add_inode_defrag(inode, defrag);
162 		if (ret)
163 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164 	} else {
165 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
166 	}
167 	spin_unlock(&fs_info->defrag_inodes_lock);
168 	return 0;
169 }
170 
171 /*
172  * Pick the defragable inode that we want, if it doesn't exist, we will get the
173  * next one.
174  */
175 static struct inode_defrag *btrfs_pick_defrag_inode(
176 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
177 {
178 	struct inode_defrag *entry = NULL;
179 	struct inode_defrag tmp;
180 	struct rb_node *p;
181 	struct rb_node *parent = NULL;
182 	int ret;
183 
184 	tmp.ino = ino;
185 	tmp.root = root;
186 
187 	spin_lock(&fs_info->defrag_inodes_lock);
188 	p = fs_info->defrag_inodes.rb_node;
189 	while (p) {
190 		parent = p;
191 		entry = rb_entry(parent, struct inode_defrag, rb_node);
192 
193 		ret = __compare_inode_defrag(&tmp, entry);
194 		if (ret < 0)
195 			p = parent->rb_left;
196 		else if (ret > 0)
197 			p = parent->rb_right;
198 		else
199 			goto out;
200 	}
201 
202 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203 		parent = rb_next(parent);
204 		if (parent)
205 			entry = rb_entry(parent, struct inode_defrag, rb_node);
206 		else
207 			entry = NULL;
208 	}
209 out:
210 	if (entry)
211 		rb_erase(parent, &fs_info->defrag_inodes);
212 	spin_unlock(&fs_info->defrag_inodes_lock);
213 	return entry;
214 }
215 
216 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
217 {
218 	struct inode_defrag *defrag;
219 	struct rb_node *node;
220 
221 	spin_lock(&fs_info->defrag_inodes_lock);
222 	node = rb_first(&fs_info->defrag_inodes);
223 	while (node) {
224 		rb_erase(node, &fs_info->defrag_inodes);
225 		defrag = rb_entry(node, struct inode_defrag, rb_node);
226 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
227 
228 		cond_resched_lock(&fs_info->defrag_inodes_lock);
229 
230 		node = rb_first(&fs_info->defrag_inodes);
231 	}
232 	spin_unlock(&fs_info->defrag_inodes_lock);
233 }
234 
235 #define BTRFS_DEFRAG_BATCH	1024
236 
237 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238 				    struct inode_defrag *defrag)
239 {
240 	struct btrfs_root *inode_root;
241 	struct inode *inode;
242 	struct btrfs_ioctl_defrag_range_args range;
243 	int ret = 0;
244 	u64 cur = 0;
245 
246 again:
247 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
248 		goto cleanup;
249 	if (!__need_auto_defrag(fs_info))
250 		goto cleanup;
251 
252 	/* Get the inode */
253 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254 	if (IS_ERR(inode_root)) {
255 		ret = PTR_ERR(inode_root);
256 		goto cleanup;
257 	}
258 
259 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260 	btrfs_put_root(inode_root);
261 	if (IS_ERR(inode)) {
262 		ret = PTR_ERR(inode);
263 		goto cleanup;
264 	}
265 
266 	if (cur >= i_size_read(inode)) {
267 		iput(inode);
268 		goto cleanup;
269 	}
270 
271 	/* Do a chunk of defrag */
272 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273 	memset(&range, 0, sizeof(range));
274 	range.len = (u64)-1;
275 	range.start = cur;
276 	range.extent_thresh = defrag->extent_thresh;
277 
278 	sb_start_write(fs_info->sb);
279 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
280 				       BTRFS_DEFRAG_BATCH);
281 	sb_end_write(fs_info->sb);
282 	iput(inode);
283 
284 	if (ret < 0)
285 		goto cleanup;
286 
287 	cur = max(cur + fs_info->sectorsize, range.start);
288 	goto again;
289 
290 cleanup:
291 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
292 	return ret;
293 }
294 
295 /*
296  * Run through the list of inodes in the FS that need defragging.
297  */
298 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
299 {
300 	struct inode_defrag *defrag;
301 	u64 first_ino = 0;
302 	u64 root_objectid = 0;
303 
304 	atomic_inc(&fs_info->defrag_running);
305 	while (1) {
306 		/* Pause the auto defragger. */
307 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
308 			break;
309 
310 		if (!__need_auto_defrag(fs_info))
311 			break;
312 
313 		/* find an inode to defrag */
314 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
315 		if (!defrag) {
316 			if (root_objectid || first_ino) {
317 				root_objectid = 0;
318 				first_ino = 0;
319 				continue;
320 			} else {
321 				break;
322 			}
323 		}
324 
325 		first_ino = defrag->ino + 1;
326 		root_objectid = defrag->root;
327 
328 		__btrfs_run_defrag_inode(fs_info, defrag);
329 	}
330 	atomic_dec(&fs_info->defrag_running);
331 
332 	/*
333 	 * During unmount, we use the transaction_wait queue to wait for the
334 	 * defragger to stop.
335 	 */
336 	wake_up(&fs_info->transaction_wait);
337 	return 0;
338 }
339 
340 /*
341  * Defrag all the leaves in a given btree.
342  * Read all the leaves and try to get key order to
343  * better reflect disk order
344  */
345 
346 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
347 			struct btrfs_root *root)
348 {
349 	struct btrfs_path *path = NULL;
350 	struct btrfs_key key;
351 	int ret = 0;
352 	int wret;
353 	int level;
354 	int next_key_ret = 0;
355 	u64 last_ret = 0;
356 
357 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
358 		goto out;
359 
360 	path = btrfs_alloc_path();
361 	if (!path)
362 		return -ENOMEM;
363 
364 	level = btrfs_header_level(root->node);
365 
366 	if (level == 0)
367 		goto out;
368 
369 	if (root->defrag_progress.objectid == 0) {
370 		struct extent_buffer *root_node;
371 		u32 nritems;
372 
373 		root_node = btrfs_lock_root_node(root);
374 		nritems = btrfs_header_nritems(root_node);
375 		root->defrag_max.objectid = 0;
376 		/* from above we know this is not a leaf */
377 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
378 				      nritems - 1);
379 		btrfs_tree_unlock(root_node);
380 		free_extent_buffer(root_node);
381 		memset(&key, 0, sizeof(key));
382 	} else {
383 		memcpy(&key, &root->defrag_progress, sizeof(key));
384 	}
385 
386 	path->keep_locks = 1;
387 
388 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
389 	if (ret < 0)
390 		goto out;
391 	if (ret > 0) {
392 		ret = 0;
393 		goto out;
394 	}
395 	btrfs_release_path(path);
396 	/*
397 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
398 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
399 	 * a deadlock (attempting to write lock an already write locked leaf).
400 	 */
401 	path->lowest_level = 1;
402 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
403 
404 	if (wret < 0) {
405 		ret = wret;
406 		goto out;
407 	}
408 	if (!path->nodes[1]) {
409 		ret = 0;
410 		goto out;
411 	}
412 	/*
413 	 * The node at level 1 must always be locked when our path has
414 	 * keep_locks set and lowest_level is 1, regardless of the value of
415 	 * path->slots[1].
416 	 */
417 	BUG_ON(path->locks[1] == 0);
418 	ret = btrfs_realloc_node(trans, root,
419 				 path->nodes[1], 0,
420 				 &last_ret,
421 				 &root->defrag_progress);
422 	if (ret) {
423 		WARN_ON(ret == -EAGAIN);
424 		goto out;
425 	}
426 	/*
427 	 * Now that we reallocated the node we can find the next key. Note that
428 	 * btrfs_find_next_key() can release our path and do another search
429 	 * without COWing, this is because even with path->keep_locks = 1,
430 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
431 	 * node when path->slots[node_level - 1] does not point to the last
432 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
433 	 * we search for the next key after reallocating our node.
434 	 */
435 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
436 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
437 					   BTRFS_OLDEST_GENERATION);
438 	if (next_key_ret == 0) {
439 		memcpy(&root->defrag_progress, &key, sizeof(key));
440 		ret = -EAGAIN;
441 	}
442 out:
443 	btrfs_free_path(path);
444 	if (ret == -EAGAIN) {
445 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
446 			goto done;
447 		if (root->defrag_max.type > root->defrag_progress.type)
448 			goto done;
449 		if (root->defrag_max.offset > root->defrag_progress.offset)
450 			goto done;
451 		ret = 0;
452 	}
453 done:
454 	if (ret != -EAGAIN)
455 		memset(&root->defrag_progress, 0,
456 		       sizeof(root->defrag_progress));
457 
458 	return ret;
459 }
460 
461 /*
462  * Defrag specific helper to get an extent map.
463  *
464  * Differences between this and btrfs_get_extent() are:
465  *
466  * - No extent_map will be added to inode->extent_tree
467  *   To reduce memory usage in the long run.
468  *
469  * - Extra optimization to skip file extents older than @newer_than
470  *   By using btrfs_search_forward() we can skip entire file ranges that
471  *   have extents created in past transactions, because btrfs_search_forward()
472  *   will not visit leaves and nodes with a generation smaller than given
473  *   minimal generation threshold (@newer_than).
474  *
475  * Return valid em if we find a file extent matching the requirement.
476  * Return NULL if we can not find a file extent matching the requirement.
477  *
478  * Return ERR_PTR() for error.
479  */
480 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
481 					    u64 start, u64 newer_than)
482 {
483 	struct btrfs_root *root = inode->root;
484 	struct btrfs_file_extent_item *fi;
485 	struct btrfs_path path = { 0 };
486 	struct extent_map *em;
487 	struct btrfs_key key;
488 	u64 ino = btrfs_ino(inode);
489 	int ret;
490 
491 	em = alloc_extent_map();
492 	if (!em) {
493 		ret = -ENOMEM;
494 		goto err;
495 	}
496 
497 	key.objectid = ino;
498 	key.type = BTRFS_EXTENT_DATA_KEY;
499 	key.offset = start;
500 
501 	if (newer_than) {
502 		ret = btrfs_search_forward(root, &key, &path, newer_than);
503 		if (ret < 0)
504 			goto err;
505 		/* Can't find anything newer */
506 		if (ret > 0)
507 			goto not_found;
508 	} else {
509 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
510 		if (ret < 0)
511 			goto err;
512 	}
513 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
514 		/*
515 		 * If btrfs_search_slot() makes path to point beyond nritems,
516 		 * we should not have an empty leaf, as this inode must at
517 		 * least have its INODE_ITEM.
518 		 */
519 		ASSERT(btrfs_header_nritems(path.nodes[0]));
520 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
521 	}
522 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
523 	/* Perfect match, no need to go one slot back */
524 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
525 	    key.offset == start)
526 		goto iterate;
527 
528 	/* We didn't find a perfect match, needs to go one slot back */
529 	if (path.slots[0] > 0) {
530 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
531 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
532 			path.slots[0]--;
533 	}
534 
535 iterate:
536 	/* Iterate through the path to find a file extent covering @start */
537 	while (true) {
538 		u64 extent_end;
539 
540 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
541 			goto next;
542 
543 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
544 
545 		/*
546 		 * We may go one slot back to INODE_REF/XATTR item, then
547 		 * need to go forward until we reach an EXTENT_DATA.
548 		 * But we should still has the correct ino as key.objectid.
549 		 */
550 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
551 			goto next;
552 
553 		/* It's beyond our target range, definitely not extent found */
554 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
555 			goto not_found;
556 
557 		/*
558 		 *	|	|<- File extent ->|
559 		 *	\- start
560 		 *
561 		 * This means there is a hole between start and key.offset.
562 		 */
563 		if (key.offset > start) {
564 			em->start = start;
565 			em->orig_start = start;
566 			em->block_start = EXTENT_MAP_HOLE;
567 			em->len = key.offset - start;
568 			break;
569 		}
570 
571 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
572 				    struct btrfs_file_extent_item);
573 		extent_end = btrfs_file_extent_end(&path);
574 
575 		/*
576 		 *	|<- file extent ->|	|
577 		 *				\- start
578 		 *
579 		 * We haven't reached start, search next slot.
580 		 */
581 		if (extent_end <= start)
582 			goto next;
583 
584 		/* Now this extent covers @start, convert it to em */
585 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
586 		break;
587 next:
588 		ret = btrfs_next_item(root, &path);
589 		if (ret < 0)
590 			goto err;
591 		if (ret > 0)
592 			goto not_found;
593 	}
594 	btrfs_release_path(&path);
595 	return em;
596 
597 not_found:
598 	btrfs_release_path(&path);
599 	free_extent_map(em);
600 	return NULL;
601 
602 err:
603 	btrfs_release_path(&path);
604 	free_extent_map(em);
605 	return ERR_PTR(ret);
606 }
607 
608 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
609 					       u64 newer_than, bool locked)
610 {
611 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
612 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
613 	struct extent_map *em;
614 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
615 
616 	/*
617 	 * Hopefully we have this extent in the tree already, try without the
618 	 * full extent lock.
619 	 */
620 	read_lock(&em_tree->lock);
621 	em = lookup_extent_mapping(em_tree, start, sectorsize);
622 	read_unlock(&em_tree->lock);
623 
624 	/*
625 	 * We can get a merged extent, in that case, we need to re-search
626 	 * tree to get the original em for defrag.
627 	 *
628 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
629 	 * this em, as either we don't care about the generation, or the
630 	 * merged extent map will be rejected anyway.
631 	 */
632 	if (em && test_bit(EXTENT_FLAG_MERGED, &em->flags) &&
633 	    newer_than && em->generation >= newer_than) {
634 		free_extent_map(em);
635 		em = NULL;
636 	}
637 
638 	if (!em) {
639 		struct extent_state *cached = NULL;
640 		u64 end = start + sectorsize - 1;
641 
642 		/* Get the big lock and read metadata off disk. */
643 		if (!locked)
644 			lock_extent(io_tree, start, end, &cached);
645 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
646 		if (!locked)
647 			unlock_extent(io_tree, start, end, &cached);
648 
649 		if (IS_ERR(em))
650 			return NULL;
651 	}
652 
653 	return em;
654 }
655 
656 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
657 				   const struct extent_map *em)
658 {
659 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
660 		return BTRFS_MAX_COMPRESSED;
661 	return fs_info->max_extent_size;
662 }
663 
664 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
665 				     u32 extent_thresh, u64 newer_than, bool locked)
666 {
667 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
668 	struct extent_map *next;
669 	bool ret = false;
670 
671 	/* This is the last extent */
672 	if (em->start + em->len >= i_size_read(inode))
673 		return false;
674 
675 	/*
676 	 * Here we need to pass @newer_then when checking the next extent, or
677 	 * we will hit a case we mark current extent for defrag, but the next
678 	 * one will not be a target.
679 	 * This will just cause extra IO without really reducing the fragments.
680 	 */
681 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
682 	/* No more em or hole */
683 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
684 		goto out;
685 	if (test_bit(EXTENT_FLAG_PREALLOC, &next->flags))
686 		goto out;
687 	/*
688 	 * If the next extent is at its max capacity, defragging current extent
689 	 * makes no sense, as the total number of extents won't change.
690 	 */
691 	if (next->len >= get_extent_max_capacity(fs_info, em))
692 		goto out;
693 	/* Skip older extent */
694 	if (next->generation < newer_than)
695 		goto out;
696 	/* Also check extent size */
697 	if (next->len >= extent_thresh)
698 		goto out;
699 
700 	ret = true;
701 out:
702 	free_extent_map(next);
703 	return ret;
704 }
705 
706 /*
707  * Prepare one page to be defragged.
708  *
709  * This will ensure:
710  *
711  * - Returned page is locked and has been set up properly.
712  * - No ordered extent exists in the page.
713  * - The page is uptodate.
714  *
715  * NOTE: Caller should also wait for page writeback after the cluster is
716  * prepared, here we don't do writeback wait for each page.
717  */
718 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
719 {
720 	struct address_space *mapping = inode->vfs_inode.i_mapping;
721 	gfp_t mask = btrfs_alloc_write_mask(mapping);
722 	u64 page_start = (u64)index << PAGE_SHIFT;
723 	u64 page_end = page_start + PAGE_SIZE - 1;
724 	struct extent_state *cached_state = NULL;
725 	struct page *page;
726 	int ret;
727 
728 again:
729 	page = find_or_create_page(mapping, index, mask);
730 	if (!page)
731 		return ERR_PTR(-ENOMEM);
732 
733 	/*
734 	 * Since we can defragment files opened read-only, we can encounter
735 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
736 	 * can't do I/O using huge pages yet, so return an error for now.
737 	 * Filesystem transparent huge pages are typically only used for
738 	 * executables that explicitly enable them, so this isn't very
739 	 * restrictive.
740 	 */
741 	if (PageCompound(page)) {
742 		unlock_page(page);
743 		put_page(page);
744 		return ERR_PTR(-ETXTBSY);
745 	}
746 
747 	ret = set_page_extent_mapped(page);
748 	if (ret < 0) {
749 		unlock_page(page);
750 		put_page(page);
751 		return ERR_PTR(ret);
752 	}
753 
754 	/* Wait for any existing ordered extent in the range */
755 	while (1) {
756 		struct btrfs_ordered_extent *ordered;
757 
758 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
759 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
760 		unlock_extent(&inode->io_tree, page_start, page_end,
761 			      &cached_state);
762 		if (!ordered)
763 			break;
764 
765 		unlock_page(page);
766 		btrfs_start_ordered_extent(ordered, 1);
767 		btrfs_put_ordered_extent(ordered);
768 		lock_page(page);
769 		/*
770 		 * We unlocked the page above, so we need check if it was
771 		 * released or not.
772 		 */
773 		if (page->mapping != mapping || !PagePrivate(page)) {
774 			unlock_page(page);
775 			put_page(page);
776 			goto again;
777 		}
778 	}
779 
780 	/*
781 	 * Now the page range has no ordered extent any more.  Read the page to
782 	 * make it uptodate.
783 	 */
784 	if (!PageUptodate(page)) {
785 		btrfs_read_folio(NULL, page_folio(page));
786 		lock_page(page);
787 		if (page->mapping != mapping || !PagePrivate(page)) {
788 			unlock_page(page);
789 			put_page(page);
790 			goto again;
791 		}
792 		if (!PageUptodate(page)) {
793 			unlock_page(page);
794 			put_page(page);
795 			return ERR_PTR(-EIO);
796 		}
797 	}
798 	return page;
799 }
800 
801 struct defrag_target_range {
802 	struct list_head list;
803 	u64 start;
804 	u64 len;
805 };
806 
807 /*
808  * Collect all valid target extents.
809  *
810  * @start:	   file offset to lookup
811  * @len:	   length to lookup
812  * @extent_thresh: file extent size threshold, any extent size >= this value
813  *		   will be ignored
814  * @newer_than:    only defrag extents newer than this value
815  * @do_compress:   whether the defrag is doing compression
816  *		   if true, @extent_thresh will be ignored and all regular
817  *		   file extents meeting @newer_than will be targets.
818  * @locked:	   if the range has already held extent lock
819  * @target_list:   list of targets file extents
820  */
821 static int defrag_collect_targets(struct btrfs_inode *inode,
822 				  u64 start, u64 len, u32 extent_thresh,
823 				  u64 newer_than, bool do_compress,
824 				  bool locked, struct list_head *target_list,
825 				  u64 *last_scanned_ret)
826 {
827 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
828 	bool last_is_target = false;
829 	u64 cur = start;
830 	int ret = 0;
831 
832 	while (cur < start + len) {
833 		struct extent_map *em;
834 		struct defrag_target_range *new;
835 		bool next_mergeable = true;
836 		u64 range_len;
837 
838 		last_is_target = false;
839 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
840 		if (!em)
841 			break;
842 
843 		/*
844 		 * If the file extent is an inlined one, we may still want to
845 		 * defrag it (fallthrough) if it will cause a regular extent.
846 		 * This is for users who want to convert inline extents to
847 		 * regular ones through max_inline= mount option.
848 		 */
849 		if (em->block_start == EXTENT_MAP_INLINE &&
850 		    em->len <= inode->root->fs_info->max_inline)
851 			goto next;
852 
853 		/* Skip hole/delalloc/preallocated extents */
854 		if (em->block_start == EXTENT_MAP_HOLE ||
855 		    em->block_start == EXTENT_MAP_DELALLOC ||
856 		    test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
857 			goto next;
858 
859 		/* Skip older extent */
860 		if (em->generation < newer_than)
861 			goto next;
862 
863 		/* This em is under writeback, no need to defrag */
864 		if (em->generation == (u64)-1)
865 			goto next;
866 
867 		/*
868 		 * Our start offset might be in the middle of an existing extent
869 		 * map, so take that into account.
870 		 */
871 		range_len = em->len - (cur - em->start);
872 		/*
873 		 * If this range of the extent map is already flagged for delalloc,
874 		 * skip it, because:
875 		 *
876 		 * 1) We could deadlock later, when trying to reserve space for
877 		 *    delalloc, because in case we can't immediately reserve space
878 		 *    the flusher can start delalloc and wait for the respective
879 		 *    ordered extents to complete. The deadlock would happen
880 		 *    because we do the space reservation while holding the range
881 		 *    locked, and starting writeback, or finishing an ordered
882 		 *    extent, requires locking the range;
883 		 *
884 		 * 2) If there's delalloc there, it means there's dirty pages for
885 		 *    which writeback has not started yet (we clean the delalloc
886 		 *    flag when starting writeback and after creating an ordered
887 		 *    extent). If we mark pages in an adjacent range for defrag,
888 		 *    then we will have a larger contiguous range for delalloc,
889 		 *    very likely resulting in a larger extent after writeback is
890 		 *    triggered (except in a case of free space fragmentation).
891 		 */
892 		if (test_range_bit(&inode->io_tree, cur, cur + range_len - 1,
893 				   EXTENT_DELALLOC, 0, NULL))
894 			goto next;
895 
896 		/*
897 		 * For do_compress case, we want to compress all valid file
898 		 * extents, thus no @extent_thresh or mergeable check.
899 		 */
900 		if (do_compress)
901 			goto add;
902 
903 		/* Skip too large extent */
904 		if (range_len >= extent_thresh)
905 			goto next;
906 
907 		/*
908 		 * Skip extents already at its max capacity, this is mostly for
909 		 * compressed extents, which max cap is only 128K.
910 		 */
911 		if (em->len >= get_extent_max_capacity(fs_info, em))
912 			goto next;
913 
914 		/*
915 		 * Normally there are no more extents after an inline one, thus
916 		 * @next_mergeable will normally be false and not defragged.
917 		 * So if an inline extent passed all above checks, just add it
918 		 * for defrag, and be converted to regular extents.
919 		 */
920 		if (em->block_start == EXTENT_MAP_INLINE)
921 			goto add;
922 
923 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
924 						extent_thresh, newer_than, locked);
925 		if (!next_mergeable) {
926 			struct defrag_target_range *last;
927 
928 			/* Empty target list, no way to merge with last entry */
929 			if (list_empty(target_list))
930 				goto next;
931 			last = list_entry(target_list->prev,
932 					  struct defrag_target_range, list);
933 			/* Not mergeable with last entry */
934 			if (last->start + last->len != cur)
935 				goto next;
936 
937 			/* Mergeable, fall through to add it to @target_list. */
938 		}
939 
940 add:
941 		last_is_target = true;
942 		range_len = min(extent_map_end(em), start + len) - cur;
943 		/*
944 		 * This one is a good target, check if it can be merged into
945 		 * last range of the target list.
946 		 */
947 		if (!list_empty(target_list)) {
948 			struct defrag_target_range *last;
949 
950 			last = list_entry(target_list->prev,
951 					  struct defrag_target_range, list);
952 			ASSERT(last->start + last->len <= cur);
953 			if (last->start + last->len == cur) {
954 				/* Mergeable, enlarge the last entry */
955 				last->len += range_len;
956 				goto next;
957 			}
958 			/* Fall through to allocate a new entry */
959 		}
960 
961 		/* Allocate new defrag_target_range */
962 		new = kmalloc(sizeof(*new), GFP_NOFS);
963 		if (!new) {
964 			free_extent_map(em);
965 			ret = -ENOMEM;
966 			break;
967 		}
968 		new->start = cur;
969 		new->len = range_len;
970 		list_add_tail(&new->list, target_list);
971 
972 next:
973 		cur = extent_map_end(em);
974 		free_extent_map(em);
975 	}
976 	if (ret < 0) {
977 		struct defrag_target_range *entry;
978 		struct defrag_target_range *tmp;
979 
980 		list_for_each_entry_safe(entry, tmp, target_list, list) {
981 			list_del_init(&entry->list);
982 			kfree(entry);
983 		}
984 	}
985 	if (!ret && last_scanned_ret) {
986 		/*
987 		 * If the last extent is not a target, the caller can skip to
988 		 * the end of that extent.
989 		 * Otherwise, we can only go the end of the specified range.
990 		 */
991 		if (!last_is_target)
992 			*last_scanned_ret = max(cur, *last_scanned_ret);
993 		else
994 			*last_scanned_ret = max(start + len, *last_scanned_ret);
995 	}
996 	return ret;
997 }
998 
999 #define CLUSTER_SIZE	(SZ_256K)
1000 static_assert(IS_ALIGNED(CLUSTER_SIZE, PAGE_SIZE));
1001 
1002 /*
1003  * Defrag one contiguous target range.
1004  *
1005  * @inode:	target inode
1006  * @target:	target range to defrag
1007  * @pages:	locked pages covering the defrag range
1008  * @nr_pages:	number of locked pages
1009  *
1010  * Caller should ensure:
1011  *
1012  * - Pages are prepared
1013  *   Pages should be locked, no ordered extent in the pages range,
1014  *   no writeback.
1015  *
1016  * - Extent bits are locked
1017  */
1018 static int defrag_one_locked_target(struct btrfs_inode *inode,
1019 				    struct defrag_target_range *target,
1020 				    struct page **pages, int nr_pages,
1021 				    struct extent_state **cached_state)
1022 {
1023 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1024 	struct extent_changeset *data_reserved = NULL;
1025 	const u64 start = target->start;
1026 	const u64 len = target->len;
1027 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1028 	unsigned long start_index = start >> PAGE_SHIFT;
1029 	unsigned long first_index = page_index(pages[0]);
1030 	int ret = 0;
1031 	int i;
1032 
1033 	ASSERT(last_index - first_index + 1 <= nr_pages);
1034 
1035 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1036 	if (ret < 0)
1037 		return ret;
1038 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1039 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1040 			 EXTENT_DEFRAG, cached_state);
1041 	set_extent_defrag(&inode->io_tree, start, start + len - 1, cached_state);
1042 
1043 	/* Update the page status */
1044 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1045 		ClearPageChecked(pages[i]);
1046 		btrfs_page_clamp_set_dirty(fs_info, pages[i], start, len);
1047 	}
1048 	btrfs_delalloc_release_extents(inode, len);
1049 	extent_changeset_free(data_reserved);
1050 
1051 	return ret;
1052 }
1053 
1054 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1055 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1056 			    u64 *last_scanned_ret)
1057 {
1058 	struct extent_state *cached_state = NULL;
1059 	struct defrag_target_range *entry;
1060 	struct defrag_target_range *tmp;
1061 	LIST_HEAD(target_list);
1062 	struct page **pages;
1063 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1064 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1065 	u64 start_index = start >> PAGE_SHIFT;
1066 	unsigned int nr_pages = last_index - start_index + 1;
1067 	int ret = 0;
1068 	int i;
1069 
1070 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1071 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1072 
1073 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1074 	if (!pages)
1075 		return -ENOMEM;
1076 
1077 	/* Prepare all pages */
1078 	for (i = 0; i < nr_pages; i++) {
1079 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1080 		if (IS_ERR(pages[i])) {
1081 			ret = PTR_ERR(pages[i]);
1082 			pages[i] = NULL;
1083 			goto free_pages;
1084 		}
1085 	}
1086 	for (i = 0; i < nr_pages; i++)
1087 		wait_on_page_writeback(pages[i]);
1088 
1089 	/* Lock the pages range */
1090 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1091 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1092 		    &cached_state);
1093 	/*
1094 	 * Now we have a consistent view about the extent map, re-check
1095 	 * which range really needs to be defragged.
1096 	 *
1097 	 * And this time we have extent locked already, pass @locked = true
1098 	 * so that we won't relock the extent range and cause deadlock.
1099 	 */
1100 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1101 				     newer_than, do_compress, true,
1102 				     &target_list, last_scanned_ret);
1103 	if (ret < 0)
1104 		goto unlock_extent;
1105 
1106 	list_for_each_entry(entry, &target_list, list) {
1107 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1108 					       &cached_state);
1109 		if (ret < 0)
1110 			break;
1111 	}
1112 
1113 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1114 		list_del_init(&entry->list);
1115 		kfree(entry);
1116 	}
1117 unlock_extent:
1118 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1119 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1120 		      &cached_state);
1121 free_pages:
1122 	for (i = 0; i < nr_pages; i++) {
1123 		if (pages[i]) {
1124 			unlock_page(pages[i]);
1125 			put_page(pages[i]);
1126 		}
1127 	}
1128 	kfree(pages);
1129 	return ret;
1130 }
1131 
1132 static int defrag_one_cluster(struct btrfs_inode *inode,
1133 			      struct file_ra_state *ra,
1134 			      u64 start, u32 len, u32 extent_thresh,
1135 			      u64 newer_than, bool do_compress,
1136 			      unsigned long *sectors_defragged,
1137 			      unsigned long max_sectors,
1138 			      u64 *last_scanned_ret)
1139 {
1140 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1141 	struct defrag_target_range *entry;
1142 	struct defrag_target_range *tmp;
1143 	LIST_HEAD(target_list);
1144 	int ret;
1145 
1146 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1147 				     newer_than, do_compress, false,
1148 				     &target_list, NULL);
1149 	if (ret < 0)
1150 		goto out;
1151 
1152 	list_for_each_entry(entry, &target_list, list) {
1153 		u32 range_len = entry->len;
1154 
1155 		/* Reached or beyond the limit */
1156 		if (max_sectors && *sectors_defragged >= max_sectors) {
1157 			ret = 1;
1158 			break;
1159 		}
1160 
1161 		if (max_sectors)
1162 			range_len = min_t(u32, range_len,
1163 				(max_sectors - *sectors_defragged) * sectorsize);
1164 
1165 		/*
1166 		 * If defrag_one_range() has updated last_scanned_ret,
1167 		 * our range may already be invalid (e.g. hole punched).
1168 		 * Skip if our range is before last_scanned_ret, as there is
1169 		 * no need to defrag the range anymore.
1170 		 */
1171 		if (entry->start + range_len <= *last_scanned_ret)
1172 			continue;
1173 
1174 		if (ra)
1175 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1176 				ra, NULL, entry->start >> PAGE_SHIFT,
1177 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1178 				(entry->start >> PAGE_SHIFT) + 1);
1179 		/*
1180 		 * Here we may not defrag any range if holes are punched before
1181 		 * we locked the pages.
1182 		 * But that's fine, it only affects the @sectors_defragged
1183 		 * accounting.
1184 		 */
1185 		ret = defrag_one_range(inode, entry->start, range_len,
1186 				       extent_thresh, newer_than, do_compress,
1187 				       last_scanned_ret);
1188 		if (ret < 0)
1189 			break;
1190 		*sectors_defragged += range_len >>
1191 				      inode->root->fs_info->sectorsize_bits;
1192 	}
1193 out:
1194 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1195 		list_del_init(&entry->list);
1196 		kfree(entry);
1197 	}
1198 	if (ret >= 0)
1199 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1200 	return ret;
1201 }
1202 
1203 /*
1204  * Entry point to file defragmentation.
1205  *
1206  * @inode:	   inode to be defragged
1207  * @ra:		   readahead state (can be NUL)
1208  * @range:	   defrag options including range and flags
1209  * @newer_than:	   minimum transid to defrag
1210  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1211  *		   will be defragged.
1212  *
1213  * Return <0 for error.
1214  * Return >=0 for the number of sectors defragged, and range->start will be updated
1215  * to indicate the file offset where next defrag should be started at.
1216  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1217  *  defragging all the range).
1218  */
1219 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1220 		      struct btrfs_ioctl_defrag_range_args *range,
1221 		      u64 newer_than, unsigned long max_to_defrag)
1222 {
1223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1224 	unsigned long sectors_defragged = 0;
1225 	u64 isize = i_size_read(inode);
1226 	u64 cur;
1227 	u64 last_byte;
1228 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1229 	bool ra_allocated = false;
1230 	int compress_type = BTRFS_COMPRESS_ZLIB;
1231 	int ret = 0;
1232 	u32 extent_thresh = range->extent_thresh;
1233 	pgoff_t start_index;
1234 
1235 	if (isize == 0)
1236 		return 0;
1237 
1238 	if (range->start >= isize)
1239 		return -EINVAL;
1240 
1241 	if (do_compress) {
1242 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1243 			return -EINVAL;
1244 		if (range->compress_type)
1245 			compress_type = range->compress_type;
1246 	}
1247 
1248 	if (extent_thresh == 0)
1249 		extent_thresh = SZ_256K;
1250 
1251 	if (range->start + range->len > range->start) {
1252 		/* Got a specific range */
1253 		last_byte = min(isize, range->start + range->len);
1254 	} else {
1255 		/* Defrag until file end */
1256 		last_byte = isize;
1257 	}
1258 
1259 	/* Align the range */
1260 	cur = round_down(range->start, fs_info->sectorsize);
1261 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1262 
1263 	/*
1264 	 * If we were not given a ra, allocate a readahead context. As
1265 	 * readahead is just an optimization, defrag will work without it so
1266 	 * we don't error out.
1267 	 */
1268 	if (!ra) {
1269 		ra_allocated = true;
1270 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1271 		if (ra)
1272 			file_ra_state_init(ra, inode->i_mapping);
1273 	}
1274 
1275 	/*
1276 	 * Make writeback start from the beginning of the range, so that the
1277 	 * defrag range can be written sequentially.
1278 	 */
1279 	start_index = cur >> PAGE_SHIFT;
1280 	if (start_index < inode->i_mapping->writeback_index)
1281 		inode->i_mapping->writeback_index = start_index;
1282 
1283 	while (cur < last_byte) {
1284 		const unsigned long prev_sectors_defragged = sectors_defragged;
1285 		u64 last_scanned = cur;
1286 		u64 cluster_end;
1287 
1288 		if (btrfs_defrag_cancelled(fs_info)) {
1289 			ret = -EAGAIN;
1290 			break;
1291 		}
1292 
1293 		/* We want the cluster end at page boundary when possible */
1294 		cluster_end = (((cur >> PAGE_SHIFT) +
1295 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1296 		cluster_end = min(cluster_end, last_byte);
1297 
1298 		btrfs_inode_lock(inode, 0);
1299 		if (IS_SWAPFILE(inode)) {
1300 			ret = -ETXTBSY;
1301 			btrfs_inode_unlock(inode, 0);
1302 			break;
1303 		}
1304 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1305 			btrfs_inode_unlock(inode, 0);
1306 			break;
1307 		}
1308 		if (do_compress)
1309 			BTRFS_I(inode)->defrag_compress = compress_type;
1310 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1311 				cluster_end + 1 - cur, extent_thresh,
1312 				newer_than, do_compress, &sectors_defragged,
1313 				max_to_defrag, &last_scanned);
1314 
1315 		if (sectors_defragged > prev_sectors_defragged)
1316 			balance_dirty_pages_ratelimited(inode->i_mapping);
1317 
1318 		btrfs_inode_unlock(inode, 0);
1319 		if (ret < 0)
1320 			break;
1321 		cur = max(cluster_end + 1, last_scanned);
1322 		if (ret > 0) {
1323 			ret = 0;
1324 			break;
1325 		}
1326 		cond_resched();
1327 	}
1328 
1329 	if (ra_allocated)
1330 		kfree(ra);
1331 	/*
1332 	 * Update range.start for autodefrag, this will indicate where to start
1333 	 * in next run.
1334 	 */
1335 	range->start = cur;
1336 	if (sectors_defragged) {
1337 		/*
1338 		 * We have defragged some sectors, for compression case they
1339 		 * need to be written back immediately.
1340 		 */
1341 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1342 			filemap_flush(inode->i_mapping);
1343 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1344 				     &BTRFS_I(inode)->runtime_flags))
1345 				filemap_flush(inode->i_mapping);
1346 		}
1347 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1348 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1349 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1350 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1351 		ret = sectors_defragged;
1352 	}
1353 	if (do_compress) {
1354 		btrfs_inode_lock(inode, 0);
1355 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1356 		btrfs_inode_unlock(inode, 0);
1357 	}
1358 	return ret;
1359 }
1360 
1361 void __cold btrfs_auto_defrag_exit(void)
1362 {
1363 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1364 }
1365 
1366 int __init btrfs_auto_defrag_init(void)
1367 {
1368 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1369 					sizeof(struct inode_defrag), 0,
1370 					SLAB_MEM_SPREAD,
1371 					NULL);
1372 	if (!btrfs_inode_defrag_cachep)
1373 		return -ENOMEM;
1374 
1375 	return 0;
1376 }
1377