xref: /openbmc/linux/fs/btrfs/ctree.h (revision efb3719f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 
53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
54 
55 /*
56  * Maximum number of mirrors that can be available for all profiles counting
57  * the target device of dev-replace as one. During an active device replace
58  * procedure, the target device of the copy operation is a mirror for the
59  * filesystem data as well that can be used to read data in order to repair
60  * read errors on other disks.
61  *
62  * Current value is derived from RAID1C4 with 4 copies.
63  */
64 #define BTRFS_MAX_MIRRORS (4 + 1)
65 
66 #define BTRFS_MAX_LEVEL 8
67 
68 #define BTRFS_OLDEST_GENERATION	0ULL
69 
70 /*
71  * we can actually store much bigger names, but lets not confuse the rest
72  * of linux
73  */
74 #define BTRFS_NAME_LEN 255
75 
76 /*
77  * Theoretical limit is larger, but we keep this down to a sane
78  * value. That should limit greatly the possibility of collisions on
79  * inode ref items.
80  */
81 #define BTRFS_LINK_MAX 65535U
82 
83 #define BTRFS_EMPTY_DIR_SIZE 0
84 
85 /* ioprio of readahead is set to idle */
86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
87 
88 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
89 
90 /*
91  * Use large batch size to reduce overhead of metadata updates.  On the reader
92  * side, we only read it when we are close to ENOSPC and the read overhead is
93  * mostly related to the number of CPUs, so it is OK to use arbitrary large
94  * value here.
95  */
96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
97 
98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
99 
100 /*
101  * Deltas are an effective way to populate global statistics.  Give macro names
102  * to make it clear what we're doing.  An example is discard_extents in
103  * btrfs_free_space_ctl.
104  */
105 #define BTRFS_STAT_NR_ENTRIES	2
106 #define BTRFS_STAT_CURR		0
107 #define BTRFS_STAT_PREV		1
108 
109 /*
110  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
111  */
112 static inline u32 count_max_extents(u64 size)
113 {
114 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
115 }
116 
117 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
118 {
119 	BUG_ON(num_stripes == 0);
120 	return sizeof(struct btrfs_chunk) +
121 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
122 }
123 
124 /*
125  * Runtime (in-memory) states of filesystem
126  */
127 enum {
128 	/* Global indicator of serious filesystem errors */
129 	BTRFS_FS_STATE_ERROR,
130 	/*
131 	 * Filesystem is being remounted, allow to skip some operations, like
132 	 * defrag
133 	 */
134 	BTRFS_FS_STATE_REMOUNTING,
135 	/* Filesystem in RO mode */
136 	BTRFS_FS_STATE_RO,
137 	/* Track if a transaction abort has been reported on this filesystem */
138 	BTRFS_FS_STATE_TRANS_ABORTED,
139 	/*
140 	 * Bio operations should be blocked on this filesystem because a source
141 	 * or target device is being destroyed as part of a device replace
142 	 */
143 	BTRFS_FS_STATE_DEV_REPLACING,
144 	/* The btrfs_fs_info created for self-tests */
145 	BTRFS_FS_STATE_DUMMY_FS_INFO,
146 
147 	BTRFS_FS_STATE_NO_CSUMS,
148 
149 	/* Indicates there was an error cleaning up a log tree. */
150 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
151 };
152 
153 #define BTRFS_BACKREF_REV_MAX		256
154 #define BTRFS_BACKREF_REV_SHIFT		56
155 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
156 					 BTRFS_BACKREF_REV_SHIFT)
157 
158 #define BTRFS_OLD_BACKREF_REV		0
159 #define BTRFS_MIXED_BACKREF_REV		1
160 
161 /*
162  * every tree block (leaf or node) starts with this header.
163  */
164 struct btrfs_header {
165 	/* these first four must match the super block */
166 	u8 csum[BTRFS_CSUM_SIZE];
167 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
168 	__le64 bytenr; /* which block this node is supposed to live in */
169 	__le64 flags;
170 
171 	/* allowed to be different from the super from here on down */
172 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
173 	__le64 generation;
174 	__le64 owner;
175 	__le32 nritems;
176 	u8 level;
177 } __attribute__ ((__packed__));
178 
179 /*
180  * this is a very generous portion of the super block, giving us
181  * room to translate 14 chunks with 3 stripes each.
182  */
183 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
184 
185 /*
186  * just in case we somehow lose the roots and are not able to mount,
187  * we store an array of the roots from previous transactions
188  * in the super.
189  */
190 #define BTRFS_NUM_BACKUP_ROOTS 4
191 struct btrfs_root_backup {
192 	__le64 tree_root;
193 	__le64 tree_root_gen;
194 
195 	__le64 chunk_root;
196 	__le64 chunk_root_gen;
197 
198 	__le64 extent_root;
199 	__le64 extent_root_gen;
200 
201 	__le64 fs_root;
202 	__le64 fs_root_gen;
203 
204 	__le64 dev_root;
205 	__le64 dev_root_gen;
206 
207 	__le64 csum_root;
208 	__le64 csum_root_gen;
209 
210 	__le64 total_bytes;
211 	__le64 bytes_used;
212 	__le64 num_devices;
213 	/* future */
214 	__le64 unused_64[4];
215 
216 	u8 tree_root_level;
217 	u8 chunk_root_level;
218 	u8 extent_root_level;
219 	u8 fs_root_level;
220 	u8 dev_root_level;
221 	u8 csum_root_level;
222 	/* future and to align */
223 	u8 unused_8[10];
224 } __attribute__ ((__packed__));
225 
226 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
227 #define BTRFS_SUPER_INFO_SIZE			4096
228 
229 /*
230  * the super block basically lists the main trees of the FS
231  * it currently lacks any block count etc etc
232  */
233 struct btrfs_super_block {
234 	/* the first 4 fields must match struct btrfs_header */
235 	u8 csum[BTRFS_CSUM_SIZE];
236 	/* FS specific UUID, visible to user */
237 	u8 fsid[BTRFS_FSID_SIZE];
238 	__le64 bytenr; /* this block number */
239 	__le64 flags;
240 
241 	/* allowed to be different from the btrfs_header from here own down */
242 	__le64 magic;
243 	__le64 generation;
244 	__le64 root;
245 	__le64 chunk_root;
246 	__le64 log_root;
247 
248 	/* this will help find the new super based on the log root */
249 	__le64 log_root_transid;
250 	__le64 total_bytes;
251 	__le64 bytes_used;
252 	__le64 root_dir_objectid;
253 	__le64 num_devices;
254 	__le32 sectorsize;
255 	__le32 nodesize;
256 	__le32 __unused_leafsize;
257 	__le32 stripesize;
258 	__le32 sys_chunk_array_size;
259 	__le64 chunk_root_generation;
260 	__le64 compat_flags;
261 	__le64 compat_ro_flags;
262 	__le64 incompat_flags;
263 	__le16 csum_type;
264 	u8 root_level;
265 	u8 chunk_root_level;
266 	u8 log_root_level;
267 	struct btrfs_dev_item dev_item;
268 
269 	char label[BTRFS_LABEL_SIZE];
270 
271 	__le64 cache_generation;
272 	__le64 uuid_tree_generation;
273 
274 	/* the UUID written into btree blocks */
275 	u8 metadata_uuid[BTRFS_FSID_SIZE];
276 
277 	/* future expansion */
278 	__le64 reserved[28];
279 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
280 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
281 
282 	/* Padded to 4096 bytes */
283 	u8 padding[565];
284 } __attribute__ ((__packed__));
285 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
286 
287 /*
288  * Compat flags that we support.  If any incompat flags are set other than the
289  * ones specified below then we will fail to mount
290  */
291 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
292 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
293 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
294 
295 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
296 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
297 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
298 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
299 
300 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
301 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
302 
303 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
304 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
305 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
306 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
307 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
308 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
309 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
310 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
311 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
312 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
313 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
314 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
315 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
316 	 BTRFS_FEATURE_INCOMPAT_ZONED)
317 
318 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
319 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
320 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
321 
322 /*
323  * A leaf is full of items. offset and size tell us where to find
324  * the item in the leaf (relative to the start of the data area)
325  */
326 struct btrfs_item {
327 	struct btrfs_disk_key key;
328 	__le32 offset;
329 	__le32 size;
330 } __attribute__ ((__packed__));
331 
332 /*
333  * leaves have an item area and a data area:
334  * [item0, item1....itemN] [free space] [dataN...data1, data0]
335  *
336  * The data is separate from the items to get the keys closer together
337  * during searches.
338  */
339 struct btrfs_leaf {
340 	struct btrfs_header header;
341 	struct btrfs_item items[];
342 } __attribute__ ((__packed__));
343 
344 /*
345  * all non-leaf blocks are nodes, they hold only keys and pointers to
346  * other blocks
347  */
348 struct btrfs_key_ptr {
349 	struct btrfs_disk_key key;
350 	__le64 blockptr;
351 	__le64 generation;
352 } __attribute__ ((__packed__));
353 
354 struct btrfs_node {
355 	struct btrfs_header header;
356 	struct btrfs_key_ptr ptrs[];
357 } __attribute__ ((__packed__));
358 
359 /* Read ahead values for struct btrfs_path.reada */
360 enum {
361 	READA_NONE,
362 	READA_BACK,
363 	READA_FORWARD,
364 	/*
365 	 * Similar to READA_FORWARD but unlike it:
366 	 *
367 	 * 1) It will trigger readahead even for leaves that are not close to
368 	 *    each other on disk;
369 	 * 2) It also triggers readahead for nodes;
370 	 * 3) During a search, even when a node or leaf is already in memory, it
371 	 *    will still trigger readahead for other nodes and leaves that follow
372 	 *    it.
373 	 *
374 	 * This is meant to be used only when we know we are iterating over the
375 	 * entire tree or a very large part of it.
376 	 */
377 	READA_FORWARD_ALWAYS,
378 };
379 
380 /*
381  * btrfs_paths remember the path taken from the root down to the leaf.
382  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
383  * to any other levels that are present.
384  *
385  * The slots array records the index of the item or block pointer
386  * used while walking the tree.
387  */
388 struct btrfs_path {
389 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
390 	int slots[BTRFS_MAX_LEVEL];
391 	/* if there is real range locking, this locks field will change */
392 	u8 locks[BTRFS_MAX_LEVEL];
393 	u8 reada;
394 	/* keep some upper locks as we walk down */
395 	u8 lowest_level;
396 
397 	/*
398 	 * set by btrfs_split_item, tells search_slot to keep all locks
399 	 * and to force calls to keep space in the nodes
400 	 */
401 	unsigned int search_for_split:1;
402 	unsigned int keep_locks:1;
403 	unsigned int skip_locking:1;
404 	unsigned int search_commit_root:1;
405 	unsigned int need_commit_sem:1;
406 	unsigned int skip_release_on_error:1;
407 	/*
408 	 * Indicate that new item (btrfs_search_slot) is extending already
409 	 * existing item and ins_len contains only the data size and not item
410 	 * header (ie. sizeof(struct btrfs_item) is not included).
411 	 */
412 	unsigned int search_for_extension:1;
413 };
414 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
415 					sizeof(struct btrfs_item))
416 struct btrfs_dev_replace {
417 	u64 replace_state;	/* see #define above */
418 	time64_t time_started;	/* seconds since 1-Jan-1970 */
419 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
420 	atomic64_t num_write_errors;
421 	atomic64_t num_uncorrectable_read_errors;
422 
423 	u64 cursor_left;
424 	u64 committed_cursor_left;
425 	u64 cursor_left_last_write_of_item;
426 	u64 cursor_right;
427 
428 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
429 
430 	int is_valid;
431 	int item_needs_writeback;
432 	struct btrfs_device *srcdev;
433 	struct btrfs_device *tgtdev;
434 
435 	struct mutex lock_finishing_cancel_unmount;
436 	struct rw_semaphore rwsem;
437 
438 	struct btrfs_scrub_progress scrub_progress;
439 
440 	struct percpu_counter bio_counter;
441 	wait_queue_head_t replace_wait;
442 };
443 
444 /*
445  * free clusters are used to claim free space in relatively large chunks,
446  * allowing us to do less seeky writes. They are used for all metadata
447  * allocations. In ssd_spread mode they are also used for data allocations.
448  */
449 struct btrfs_free_cluster {
450 	spinlock_t lock;
451 	spinlock_t refill_lock;
452 	struct rb_root root;
453 
454 	/* largest extent in this cluster */
455 	u64 max_size;
456 
457 	/* first extent starting offset */
458 	u64 window_start;
459 
460 	/* We did a full search and couldn't create a cluster */
461 	bool fragmented;
462 
463 	struct btrfs_block_group *block_group;
464 	/*
465 	 * when a cluster is allocated from a block group, we put the
466 	 * cluster onto a list in the block group so that it can
467 	 * be freed before the block group is freed.
468 	 */
469 	struct list_head block_group_list;
470 };
471 
472 enum btrfs_caching_type {
473 	BTRFS_CACHE_NO,
474 	BTRFS_CACHE_STARTED,
475 	BTRFS_CACHE_FAST,
476 	BTRFS_CACHE_FINISHED,
477 	BTRFS_CACHE_ERROR,
478 };
479 
480 /*
481  * Tree to record all locked full stripes of a RAID5/6 block group
482  */
483 struct btrfs_full_stripe_locks_tree {
484 	struct rb_root root;
485 	struct mutex lock;
486 };
487 
488 /* Discard control. */
489 /*
490  * Async discard uses multiple lists to differentiate the discard filter
491  * parameters.  Index 0 is for completely free block groups where we need to
492  * ensure the entire block group is trimmed without being lossy.  Indices
493  * afterwards represent monotonically decreasing discard filter sizes to
494  * prioritize what should be discarded next.
495  */
496 #define BTRFS_NR_DISCARD_LISTS		3
497 #define BTRFS_DISCARD_INDEX_UNUSED	0
498 #define BTRFS_DISCARD_INDEX_START	1
499 
500 struct btrfs_discard_ctl {
501 	struct workqueue_struct *discard_workers;
502 	struct delayed_work work;
503 	spinlock_t lock;
504 	struct btrfs_block_group *block_group;
505 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
506 	u64 prev_discard;
507 	u64 prev_discard_time;
508 	atomic_t discardable_extents;
509 	atomic64_t discardable_bytes;
510 	u64 max_discard_size;
511 	u64 delay_ms;
512 	u32 iops_limit;
513 	u32 kbps_limit;
514 	u64 discard_extent_bytes;
515 	u64 discard_bitmap_bytes;
516 	atomic64_t discard_bytes_saved;
517 };
518 
519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
520 
521 /* fs_info */
522 struct reloc_control;
523 struct btrfs_device;
524 struct btrfs_fs_devices;
525 struct btrfs_balance_control;
526 struct btrfs_delayed_root;
527 
528 /*
529  * Block group or device which contains an active swapfile. Used for preventing
530  * unsafe operations while a swapfile is active.
531  *
532  * These are sorted on (ptr, inode) (note that a block group or device can
533  * contain more than one swapfile). We compare the pointer values because we
534  * don't actually care what the object is, we just need a quick check whether
535  * the object exists in the rbtree.
536  */
537 struct btrfs_swapfile_pin {
538 	struct rb_node node;
539 	void *ptr;
540 	struct inode *inode;
541 	/*
542 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
543 	 * points to a struct btrfs_device.
544 	 */
545 	bool is_block_group;
546 	/*
547 	 * Only used when 'is_block_group' is true and it is the number of
548 	 * extents used by a swapfile for this block group ('ptr' field).
549 	 */
550 	int bg_extent_count;
551 };
552 
553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
554 
555 enum {
556 	BTRFS_FS_CLOSING_START,
557 	BTRFS_FS_CLOSING_DONE,
558 	BTRFS_FS_LOG_RECOVERING,
559 	BTRFS_FS_OPEN,
560 	BTRFS_FS_QUOTA_ENABLED,
561 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
562 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
563 	BTRFS_FS_BTREE_ERR,
564 	BTRFS_FS_LOG1_ERR,
565 	BTRFS_FS_LOG2_ERR,
566 	BTRFS_FS_QUOTA_OVERRIDE,
567 	/* Used to record internally whether fs has been frozen */
568 	BTRFS_FS_FROZEN,
569 	/*
570 	 * Indicate that balance has been set up from the ioctl and is in the
571 	 * main phase. The fs_info::balance_ctl is initialized.
572 	 */
573 	BTRFS_FS_BALANCE_RUNNING,
574 
575 	/*
576 	 * Indicate that relocation of a chunk has started, it's set per chunk
577 	 * and is toggled between chunks.
578 	 */
579 	BTRFS_FS_RELOC_RUNNING,
580 
581 	/* Indicate that the cleaner thread is awake and doing something. */
582 	BTRFS_FS_CLEANER_RUNNING,
583 
584 	/*
585 	 * The checksumming has an optimized version and is considered fast,
586 	 * so we don't need to offload checksums to workqueues.
587 	 */
588 	BTRFS_FS_CSUM_IMPL_FAST,
589 
590 	/* Indicate that the discard workqueue can service discards. */
591 	BTRFS_FS_DISCARD_RUNNING,
592 
593 	/* Indicate that we need to cleanup space cache v1 */
594 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
595 
596 	/* Indicate that we can't trust the free space tree for caching yet */
597 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
598 
599 	/* Indicate whether there are any tree modification log users */
600 	BTRFS_FS_TREE_MOD_LOG_USERS,
601 
602 	/* Indicate that we want the transaction kthread to commit right now. */
603 	BTRFS_FS_COMMIT_TRANS,
604 
605 	/* Indicate we have half completed snapshot deletions pending. */
606 	BTRFS_FS_UNFINISHED_DROPS,
607 
608 #if BITS_PER_LONG == 32
609 	/* Indicate if we have error/warn message printed on 32bit systems */
610 	BTRFS_FS_32BIT_ERROR,
611 	BTRFS_FS_32BIT_WARN,
612 #endif
613 };
614 
615 /*
616  * Exclusive operations (device replace, resize, device add/remove, balance)
617  */
618 enum btrfs_exclusive_operation {
619 	BTRFS_EXCLOP_NONE,
620 	BTRFS_EXCLOP_BALANCE_PAUSED,
621 	BTRFS_EXCLOP_BALANCE,
622 	BTRFS_EXCLOP_DEV_ADD,
623 	BTRFS_EXCLOP_DEV_REMOVE,
624 	BTRFS_EXCLOP_DEV_REPLACE,
625 	BTRFS_EXCLOP_RESIZE,
626 	BTRFS_EXCLOP_SWAP_ACTIVATE,
627 };
628 
629 struct btrfs_fs_info {
630 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
631 	unsigned long flags;
632 	struct btrfs_root *tree_root;
633 	struct btrfs_root *chunk_root;
634 	struct btrfs_root *dev_root;
635 	struct btrfs_root *fs_root;
636 	struct btrfs_root *quota_root;
637 	struct btrfs_root *uuid_root;
638 	struct btrfs_root *data_reloc_root;
639 
640 	/* the log root tree is a directory of all the other log roots */
641 	struct btrfs_root *log_root_tree;
642 
643 	/* The tree that holds the global roots (csum, extent, etc) */
644 	rwlock_t global_root_lock;
645 	struct rb_root global_root_tree;
646 
647 	spinlock_t fs_roots_radix_lock;
648 	struct radix_tree_root fs_roots_radix;
649 
650 	/* block group cache stuff */
651 	spinlock_t block_group_cache_lock;
652 	u64 first_logical_byte;
653 	struct rb_root block_group_cache_tree;
654 
655 	/* keep track of unallocated space */
656 	atomic64_t free_chunk_space;
657 
658 	/* Track ranges which are used by log trees blocks/logged data extents */
659 	struct extent_io_tree excluded_extents;
660 
661 	/* logical->physical extent mapping */
662 	struct extent_map_tree mapping_tree;
663 
664 	/*
665 	 * block reservation for extent, checksum, root tree and
666 	 * delayed dir index item
667 	 */
668 	struct btrfs_block_rsv global_block_rsv;
669 	/* block reservation for metadata operations */
670 	struct btrfs_block_rsv trans_block_rsv;
671 	/* block reservation for chunk tree */
672 	struct btrfs_block_rsv chunk_block_rsv;
673 	/* block reservation for delayed operations */
674 	struct btrfs_block_rsv delayed_block_rsv;
675 	/* block reservation for delayed refs */
676 	struct btrfs_block_rsv delayed_refs_rsv;
677 
678 	struct btrfs_block_rsv empty_block_rsv;
679 
680 	u64 generation;
681 	u64 last_trans_committed;
682 	/*
683 	 * Generation of the last transaction used for block group relocation
684 	 * since the filesystem was last mounted (or 0 if none happened yet).
685 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
686 	 */
687 	u64 last_reloc_trans;
688 	u64 avg_delayed_ref_runtime;
689 
690 	/*
691 	 * this is updated to the current trans every time a full commit
692 	 * is required instead of the faster short fsync log commits
693 	 */
694 	u64 last_trans_log_full_commit;
695 	unsigned long mount_opt;
696 	/*
697 	 * Track requests for actions that need to be done during transaction
698 	 * commit (like for some mount options).
699 	 */
700 	unsigned long pending_changes;
701 	unsigned long compress_type:4;
702 	unsigned int compress_level;
703 	u32 commit_interval;
704 	/*
705 	 * It is a suggestive number, the read side is safe even it gets a
706 	 * wrong number because we will write out the data into a regular
707 	 * extent. The write side(mount/remount) is under ->s_umount lock,
708 	 * so it is also safe.
709 	 */
710 	u64 max_inline;
711 
712 	struct btrfs_transaction *running_transaction;
713 	wait_queue_head_t transaction_throttle;
714 	wait_queue_head_t transaction_wait;
715 	wait_queue_head_t transaction_blocked_wait;
716 	wait_queue_head_t async_submit_wait;
717 
718 	/*
719 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
720 	 * when they are updated.
721 	 *
722 	 * Because we do not clear the flags for ever, so we needn't use
723 	 * the lock on the read side.
724 	 *
725 	 * We also needn't use the lock when we mount the fs, because
726 	 * there is no other task which will update the flag.
727 	 */
728 	spinlock_t super_lock;
729 	struct btrfs_super_block *super_copy;
730 	struct btrfs_super_block *super_for_commit;
731 	struct super_block *sb;
732 	struct inode *btree_inode;
733 	struct mutex tree_log_mutex;
734 	struct mutex transaction_kthread_mutex;
735 	struct mutex cleaner_mutex;
736 	struct mutex chunk_mutex;
737 
738 	/*
739 	 * this is taken to make sure we don't set block groups ro after
740 	 * the free space cache has been allocated on them
741 	 */
742 	struct mutex ro_block_group_mutex;
743 
744 	/* this is used during read/modify/write to make sure
745 	 * no two ios are trying to mod the same stripe at the same
746 	 * time
747 	 */
748 	struct btrfs_stripe_hash_table *stripe_hash_table;
749 
750 	/*
751 	 * this protects the ordered operations list only while we are
752 	 * processing all of the entries on it.  This way we make
753 	 * sure the commit code doesn't find the list temporarily empty
754 	 * because another function happens to be doing non-waiting preflush
755 	 * before jumping into the main commit.
756 	 */
757 	struct mutex ordered_operations_mutex;
758 
759 	struct rw_semaphore commit_root_sem;
760 
761 	struct rw_semaphore cleanup_work_sem;
762 
763 	struct rw_semaphore subvol_sem;
764 
765 	spinlock_t trans_lock;
766 	/*
767 	 * the reloc mutex goes with the trans lock, it is taken
768 	 * during commit to protect us from the relocation code
769 	 */
770 	struct mutex reloc_mutex;
771 
772 	struct list_head trans_list;
773 	struct list_head dead_roots;
774 	struct list_head caching_block_groups;
775 
776 	spinlock_t delayed_iput_lock;
777 	struct list_head delayed_iputs;
778 	atomic_t nr_delayed_iputs;
779 	wait_queue_head_t delayed_iputs_wait;
780 
781 	atomic64_t tree_mod_seq;
782 
783 	/* this protects tree_mod_log and tree_mod_seq_list */
784 	rwlock_t tree_mod_log_lock;
785 	struct rb_root tree_mod_log;
786 	struct list_head tree_mod_seq_list;
787 
788 	atomic_t async_delalloc_pages;
789 
790 	/*
791 	 * this is used to protect the following list -- ordered_roots.
792 	 */
793 	spinlock_t ordered_root_lock;
794 
795 	/*
796 	 * all fs/file tree roots in which there are data=ordered extents
797 	 * pending writeback are added into this list.
798 	 *
799 	 * these can span multiple transactions and basically include
800 	 * every dirty data page that isn't from nodatacow
801 	 */
802 	struct list_head ordered_roots;
803 
804 	struct mutex delalloc_root_mutex;
805 	spinlock_t delalloc_root_lock;
806 	/* all fs/file tree roots that have delalloc inodes. */
807 	struct list_head delalloc_roots;
808 
809 	/*
810 	 * there is a pool of worker threads for checksumming during writes
811 	 * and a pool for checksumming after reads.  This is because readers
812 	 * can run with FS locks held, and the writers may be waiting for
813 	 * those locks.  We don't want ordering in the pending list to cause
814 	 * deadlocks, and so the two are serviced separately.
815 	 *
816 	 * A third pool does submit_bio to avoid deadlocking with the other
817 	 * two
818 	 */
819 	struct btrfs_workqueue *workers;
820 	struct btrfs_workqueue *delalloc_workers;
821 	struct btrfs_workqueue *flush_workers;
822 	struct btrfs_workqueue *endio_workers;
823 	struct btrfs_workqueue *endio_meta_workers;
824 	struct btrfs_workqueue *endio_raid56_workers;
825 	struct btrfs_workqueue *rmw_workers;
826 	struct btrfs_workqueue *endio_meta_write_workers;
827 	struct btrfs_workqueue *endio_write_workers;
828 	struct btrfs_workqueue *endio_freespace_worker;
829 	struct btrfs_workqueue *caching_workers;
830 
831 	/*
832 	 * fixup workers take dirty pages that didn't properly go through
833 	 * the cow mechanism and make them safe to write.  It happens
834 	 * for the sys_munmap function call path
835 	 */
836 	struct btrfs_workqueue *fixup_workers;
837 	struct btrfs_workqueue *delayed_workers;
838 
839 	struct task_struct *transaction_kthread;
840 	struct task_struct *cleaner_kthread;
841 	u32 thread_pool_size;
842 
843 	struct kobject *space_info_kobj;
844 	struct kobject *qgroups_kobj;
845 
846 	/* used to keep from writing metadata until there is a nice batch */
847 	struct percpu_counter dirty_metadata_bytes;
848 	struct percpu_counter delalloc_bytes;
849 	struct percpu_counter ordered_bytes;
850 	s32 dirty_metadata_batch;
851 	s32 delalloc_batch;
852 
853 	struct list_head dirty_cowonly_roots;
854 
855 	struct btrfs_fs_devices *fs_devices;
856 
857 	/*
858 	 * The space_info list is effectively read only after initial
859 	 * setup.  It is populated at mount time and cleaned up after
860 	 * all block groups are removed.  RCU is used to protect it.
861 	 */
862 	struct list_head space_info;
863 
864 	struct btrfs_space_info *data_sinfo;
865 
866 	struct reloc_control *reloc_ctl;
867 
868 	/* data_alloc_cluster is only used in ssd_spread mode */
869 	struct btrfs_free_cluster data_alloc_cluster;
870 
871 	/* all metadata allocations go through this cluster */
872 	struct btrfs_free_cluster meta_alloc_cluster;
873 
874 	/* auto defrag inodes go here */
875 	spinlock_t defrag_inodes_lock;
876 	struct rb_root defrag_inodes;
877 	atomic_t defrag_running;
878 
879 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
880 	seqlock_t profiles_lock;
881 	/*
882 	 * these three are in extended format (availability of single
883 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
884 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
885 	 */
886 	u64 avail_data_alloc_bits;
887 	u64 avail_metadata_alloc_bits;
888 	u64 avail_system_alloc_bits;
889 
890 	/* restriper state */
891 	spinlock_t balance_lock;
892 	struct mutex balance_mutex;
893 	atomic_t balance_pause_req;
894 	atomic_t balance_cancel_req;
895 	struct btrfs_balance_control *balance_ctl;
896 	wait_queue_head_t balance_wait_q;
897 
898 	/* Cancellation requests for chunk relocation */
899 	atomic_t reloc_cancel_req;
900 
901 	u32 data_chunk_allocations;
902 	u32 metadata_ratio;
903 
904 	void *bdev_holder;
905 
906 	/* private scrub information */
907 	struct mutex scrub_lock;
908 	atomic_t scrubs_running;
909 	atomic_t scrub_pause_req;
910 	atomic_t scrubs_paused;
911 	atomic_t scrub_cancel_req;
912 	wait_queue_head_t scrub_pause_wait;
913 	/*
914 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
915 	 * running.
916 	 */
917 	refcount_t scrub_workers_refcnt;
918 	struct btrfs_workqueue *scrub_workers;
919 	struct btrfs_workqueue *scrub_wr_completion_workers;
920 	struct btrfs_workqueue *scrub_parity_workers;
921 	struct btrfs_subpage_info *subpage_info;
922 
923 	struct btrfs_discard_ctl discard_ctl;
924 
925 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
926 	u32 check_integrity_print_mask;
927 #endif
928 	/* is qgroup tracking in a consistent state? */
929 	u64 qgroup_flags;
930 
931 	/* holds configuration and tracking. Protected by qgroup_lock */
932 	struct rb_root qgroup_tree;
933 	spinlock_t qgroup_lock;
934 
935 	/*
936 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
937 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
938 	 */
939 	struct ulist *qgroup_ulist;
940 
941 	/*
942 	 * Protect user change for quota operations. If a transaction is needed,
943 	 * it must be started before locking this lock.
944 	 */
945 	struct mutex qgroup_ioctl_lock;
946 
947 	/* list of dirty qgroups to be written at next commit */
948 	struct list_head dirty_qgroups;
949 
950 	/* used by qgroup for an efficient tree traversal */
951 	u64 qgroup_seq;
952 
953 	/* qgroup rescan items */
954 	struct mutex qgroup_rescan_lock; /* protects the progress item */
955 	struct btrfs_key qgroup_rescan_progress;
956 	struct btrfs_workqueue *qgroup_rescan_workers;
957 	struct completion qgroup_rescan_completion;
958 	struct btrfs_work qgroup_rescan_work;
959 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
960 
961 	/* filesystem state */
962 	unsigned long fs_state;
963 
964 	struct btrfs_delayed_root *delayed_root;
965 
966 	/* Extent buffer radix tree */
967 	spinlock_t buffer_lock;
968 	/* Entries are eb->start / sectorsize */
969 	struct radix_tree_root buffer_radix;
970 
971 	/* next backup root to be overwritten */
972 	int backup_root_index;
973 
974 	/* device replace state */
975 	struct btrfs_dev_replace dev_replace;
976 
977 	struct semaphore uuid_tree_rescan_sem;
978 
979 	/* Used to reclaim the metadata space in the background. */
980 	struct work_struct async_reclaim_work;
981 	struct work_struct async_data_reclaim_work;
982 	struct work_struct preempt_reclaim_work;
983 
984 	/* Reclaim partially filled block groups in the background */
985 	struct work_struct reclaim_bgs_work;
986 	struct list_head reclaim_bgs;
987 	int bg_reclaim_threshold;
988 
989 	spinlock_t unused_bgs_lock;
990 	struct list_head unused_bgs;
991 	struct mutex unused_bg_unpin_mutex;
992 	/* Protect block groups that are going to be deleted */
993 	struct mutex reclaim_bgs_lock;
994 
995 	/* Cached block sizes */
996 	u32 nodesize;
997 	u32 sectorsize;
998 	/* ilog2 of sectorsize, use to avoid 64bit division */
999 	u32 sectorsize_bits;
1000 	u32 csum_size;
1001 	u32 csums_per_leaf;
1002 	u32 stripesize;
1003 
1004 	/* Block groups and devices containing active swapfiles. */
1005 	spinlock_t swapfile_pins_lock;
1006 	struct rb_root swapfile_pins;
1007 
1008 	struct crypto_shash *csum_shash;
1009 
1010 	/* Type of exclusive operation running, protected by super_lock */
1011 	enum btrfs_exclusive_operation exclusive_operation;
1012 
1013 	/*
1014 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1015 	 * if the mode is enabled
1016 	 */
1017 	union {
1018 		u64 zone_size;
1019 		u64 zoned;
1020 	};
1021 
1022 	struct mutex zoned_meta_io_lock;
1023 	spinlock_t treelog_bg_lock;
1024 	u64 treelog_bg;
1025 
1026 	/*
1027 	 * Start of the dedicated data relocation block group, protected by
1028 	 * relocation_bg_lock.
1029 	 */
1030 	spinlock_t relocation_bg_lock;
1031 	u64 data_reloc_bg;
1032 
1033 	spinlock_t zone_active_bgs_lock;
1034 	struct list_head zone_active_bgs;
1035 
1036 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1037 	spinlock_t ref_verify_lock;
1038 	struct rb_root block_tree;
1039 #endif
1040 
1041 #ifdef CONFIG_BTRFS_DEBUG
1042 	struct kobject *debug_kobj;
1043 	struct kobject *discard_debug_kobj;
1044 	struct list_head allocated_roots;
1045 
1046 	spinlock_t eb_leak_lock;
1047 	struct list_head allocated_ebs;
1048 #endif
1049 };
1050 
1051 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1052 {
1053 	return sb->s_fs_info;
1054 }
1055 
1056 /*
1057  * The state of btrfs root
1058  */
1059 enum {
1060 	/*
1061 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1062 	 * with the balancing code.   But the race is very small, and only the
1063 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1064 	 * is used to tell us when more checks are required
1065 	 */
1066 	BTRFS_ROOT_IN_TRANS_SETUP,
1067 
1068 	/*
1069 	 * Set if tree blocks of this root can be shared by other roots.
1070 	 * Only subvolume trees and their reloc trees have this bit set.
1071 	 * Conflicts with TRACK_DIRTY bit.
1072 	 *
1073 	 * This affects two things:
1074 	 *
1075 	 * - How balance works
1076 	 *   For shareable roots, we need to use reloc tree and do path
1077 	 *   replacement for balance, and need various pre/post hooks for
1078 	 *   snapshot creation to handle them.
1079 	 *
1080 	 *   While for non-shareable trees, we just simply do a tree search
1081 	 *   with COW.
1082 	 *
1083 	 * - How dirty roots are tracked
1084 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1085 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1086 	 *   don't need to set this manually.
1087 	 */
1088 	BTRFS_ROOT_SHAREABLE,
1089 	BTRFS_ROOT_TRACK_DIRTY,
1090 	BTRFS_ROOT_IN_RADIX,
1091 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1092 	BTRFS_ROOT_DEFRAG_RUNNING,
1093 	BTRFS_ROOT_FORCE_COW,
1094 	BTRFS_ROOT_MULTI_LOG_TASKS,
1095 	BTRFS_ROOT_DIRTY,
1096 	BTRFS_ROOT_DELETING,
1097 
1098 	/*
1099 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1100 	 *
1101 	 * Set for the subvolume tree owning the reloc tree.
1102 	 */
1103 	BTRFS_ROOT_DEAD_RELOC_TREE,
1104 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1105 	BTRFS_ROOT_DEAD_TREE,
1106 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1107 	BTRFS_ROOT_HAS_LOG_TREE,
1108 	/* Qgroup flushing is in progress */
1109 	BTRFS_ROOT_QGROUP_FLUSHING,
1110 	/* We started the orphan cleanup for this root. */
1111 	BTRFS_ROOT_ORPHAN_CLEANUP,
1112 	/* This root has a drop operation that was started previously. */
1113 	BTRFS_ROOT_UNFINISHED_DROP,
1114 };
1115 
1116 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1117 {
1118 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1119 }
1120 
1121 /*
1122  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1123  * code. For detail check comment in fs/btrfs/qgroup.c.
1124  */
1125 struct btrfs_qgroup_swapped_blocks {
1126 	spinlock_t lock;
1127 	/* RM_EMPTY_ROOT() of above blocks[] */
1128 	bool swapped;
1129 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1130 };
1131 
1132 /*
1133  * in ram representation of the tree.  extent_root is used for all allocations
1134  * and for the extent tree extent_root root.
1135  */
1136 struct btrfs_root {
1137 	struct rb_node rb_node;
1138 
1139 	struct extent_buffer *node;
1140 
1141 	struct extent_buffer *commit_root;
1142 	struct btrfs_root *log_root;
1143 	struct btrfs_root *reloc_root;
1144 
1145 	unsigned long state;
1146 	struct btrfs_root_item root_item;
1147 	struct btrfs_key root_key;
1148 	struct btrfs_fs_info *fs_info;
1149 	struct extent_io_tree dirty_log_pages;
1150 
1151 	struct mutex objectid_mutex;
1152 
1153 	spinlock_t accounting_lock;
1154 	struct btrfs_block_rsv *block_rsv;
1155 
1156 	struct mutex log_mutex;
1157 	wait_queue_head_t log_writer_wait;
1158 	wait_queue_head_t log_commit_wait[2];
1159 	struct list_head log_ctxs[2];
1160 	/* Used only for log trees of subvolumes, not for the log root tree */
1161 	atomic_t log_writers;
1162 	atomic_t log_commit[2];
1163 	/* Used only for log trees of subvolumes, not for the log root tree */
1164 	atomic_t log_batch;
1165 	int log_transid;
1166 	/* No matter the commit succeeds or not*/
1167 	int log_transid_committed;
1168 	/* Just be updated when the commit succeeds. */
1169 	int last_log_commit;
1170 	pid_t log_start_pid;
1171 
1172 	u64 last_trans;
1173 
1174 	u32 type;
1175 
1176 	u64 free_objectid;
1177 
1178 	struct btrfs_key defrag_progress;
1179 	struct btrfs_key defrag_max;
1180 
1181 	/* The dirty list is only used by non-shareable roots */
1182 	struct list_head dirty_list;
1183 
1184 	struct list_head root_list;
1185 
1186 	spinlock_t log_extents_lock[2];
1187 	struct list_head logged_list[2];
1188 
1189 	spinlock_t inode_lock;
1190 	/* red-black tree that keeps track of in-memory inodes */
1191 	struct rb_root inode_tree;
1192 
1193 	/*
1194 	 * radix tree that keeps track of delayed nodes of every inode,
1195 	 * protected by inode_lock
1196 	 */
1197 	struct radix_tree_root delayed_nodes_tree;
1198 	/*
1199 	 * right now this just gets used so that a root has its own devid
1200 	 * for stat.  It may be used for more later
1201 	 */
1202 	dev_t anon_dev;
1203 
1204 	spinlock_t root_item_lock;
1205 	refcount_t refs;
1206 
1207 	struct mutex delalloc_mutex;
1208 	spinlock_t delalloc_lock;
1209 	/*
1210 	 * all of the inodes that have delalloc bytes.  It is possible for
1211 	 * this list to be empty even when there is still dirty data=ordered
1212 	 * extents waiting to finish IO.
1213 	 */
1214 	struct list_head delalloc_inodes;
1215 	struct list_head delalloc_root;
1216 	u64 nr_delalloc_inodes;
1217 
1218 	struct mutex ordered_extent_mutex;
1219 	/*
1220 	 * this is used by the balancing code to wait for all the pending
1221 	 * ordered extents
1222 	 */
1223 	spinlock_t ordered_extent_lock;
1224 
1225 	/*
1226 	 * all of the data=ordered extents pending writeback
1227 	 * these can span multiple transactions and basically include
1228 	 * every dirty data page that isn't from nodatacow
1229 	 */
1230 	struct list_head ordered_extents;
1231 	struct list_head ordered_root;
1232 	u64 nr_ordered_extents;
1233 
1234 	/*
1235 	 * Not empty if this subvolume root has gone through tree block swap
1236 	 * (relocation)
1237 	 *
1238 	 * Will be used by reloc_control::dirty_subvol_roots.
1239 	 */
1240 	struct list_head reloc_dirty_list;
1241 
1242 	/*
1243 	 * Number of currently running SEND ioctls to prevent
1244 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1245 	 */
1246 	int send_in_progress;
1247 	/*
1248 	 * Number of currently running deduplication operations that have a
1249 	 * destination inode belonging to this root. Protected by the lock
1250 	 * root_item_lock.
1251 	 */
1252 	int dedupe_in_progress;
1253 	/* For exclusion of snapshot creation and nocow writes */
1254 	struct btrfs_drew_lock snapshot_lock;
1255 
1256 	atomic_t snapshot_force_cow;
1257 
1258 	/* For qgroup metadata reserved space */
1259 	spinlock_t qgroup_meta_rsv_lock;
1260 	u64 qgroup_meta_rsv_pertrans;
1261 	u64 qgroup_meta_rsv_prealloc;
1262 	wait_queue_head_t qgroup_flush_wait;
1263 
1264 	/* Number of active swapfiles */
1265 	atomic_t nr_swapfiles;
1266 
1267 	/* Record pairs of swapped blocks for qgroup */
1268 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1269 
1270 	/* Used only by log trees, when logging csum items */
1271 	struct extent_io_tree log_csum_range;
1272 
1273 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1274 	u64 alloc_bytenr;
1275 #endif
1276 
1277 #ifdef CONFIG_BTRFS_DEBUG
1278 	struct list_head leak_list;
1279 #endif
1280 };
1281 
1282 /*
1283  * Structure that conveys information about an extent that is going to replace
1284  * all the extents in a file range.
1285  */
1286 struct btrfs_replace_extent_info {
1287 	u64 disk_offset;
1288 	u64 disk_len;
1289 	u64 data_offset;
1290 	u64 data_len;
1291 	u64 file_offset;
1292 	/* Pointer to a file extent item of type regular or prealloc. */
1293 	char *extent_buf;
1294 	/*
1295 	 * Set to true when attempting to replace a file range with a new extent
1296 	 * described by this structure, set to false when attempting to clone an
1297 	 * existing extent into a file range.
1298 	 */
1299 	bool is_new_extent;
1300 	/* Meaningful only if is_new_extent is true. */
1301 	int qgroup_reserved;
1302 	/*
1303 	 * Meaningful only if is_new_extent is true.
1304 	 * Used to track how many extent items we have already inserted in a
1305 	 * subvolume tree that refer to the extent described by this structure,
1306 	 * so that we know when to create a new delayed ref or update an existing
1307 	 * one.
1308 	 */
1309 	int insertions;
1310 };
1311 
1312 /* Arguments for btrfs_drop_extents() */
1313 struct btrfs_drop_extents_args {
1314 	/* Input parameters */
1315 
1316 	/*
1317 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1318 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1319 	 * is always released except if 'replace_extent' is true and
1320 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1321 	 * the path is kept locked.
1322 	 */
1323 	struct btrfs_path *path;
1324 	/* Start offset of the range to drop extents from */
1325 	u64 start;
1326 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1327 	u64 end;
1328 	/* If true drop all the extent maps in the range */
1329 	bool drop_cache;
1330 	/*
1331 	 * If true it means we want to insert a new extent after dropping all
1332 	 * the extents in the range. If this is true, the 'extent_item_size'
1333 	 * parameter must be set as well and the 'extent_inserted' field will
1334 	 * be set to true by btrfs_drop_extents() if it could insert the new
1335 	 * extent.
1336 	 * Note: when this is set to true the path must not be NULL.
1337 	 */
1338 	bool replace_extent;
1339 	/*
1340 	 * Used if 'replace_extent' is true. Size of the file extent item to
1341 	 * insert after dropping all existing extents in the range
1342 	 */
1343 	u32 extent_item_size;
1344 
1345 	/* Output parameters */
1346 
1347 	/*
1348 	 * Set to the minimum between the input parameter 'end' and the end
1349 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1350 	 * set even if btrfs_drop_extents() returns an error.
1351 	 */
1352 	u64 drop_end;
1353 	/*
1354 	 * The number of allocated bytes found in the range. This can be smaller
1355 	 * than the range's length when there are holes in the range.
1356 	 */
1357 	u64 bytes_found;
1358 	/*
1359 	 * Only set if 'replace_extent' is true. Set to true if we were able
1360 	 * to insert a replacement extent after dropping all extents in the
1361 	 * range, otherwise set to false by btrfs_drop_extents().
1362 	 * Also, if btrfs_drop_extents() has set this to true it means it
1363 	 * returned with the path locked, otherwise if it has set this to
1364 	 * false it has returned with the path released.
1365 	 */
1366 	bool extent_inserted;
1367 };
1368 
1369 struct btrfs_file_private {
1370 	void *filldir_buf;
1371 };
1372 
1373 
1374 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1375 {
1376 
1377 	return info->nodesize - sizeof(struct btrfs_header);
1378 }
1379 
1380 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1381 
1382 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1383 {
1384 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1385 }
1386 
1387 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1388 {
1389 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1390 }
1391 
1392 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1393 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1394 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1395 {
1396 	return BTRFS_MAX_ITEM_SIZE(info) -
1397 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1398 }
1399 
1400 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1401 {
1402 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1403 }
1404 
1405 /*
1406  * Flags for mount options.
1407  *
1408  * Note: don't forget to add new options to btrfs_show_options()
1409  */
1410 enum {
1411 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1412 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1413 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1414 	BTRFS_MOUNT_SSD				= (1UL << 3),
1415 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1416 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1417 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1418 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1419 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1420 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1421 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1422 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1423 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1424 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1425 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1426 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1427 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1428 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1429 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1430 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1431 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1432 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1433 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1434 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1435 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1436 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1437 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1438 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1439 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1440 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1441 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1442 };
1443 
1444 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1445 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1446 
1447 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1448 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1449 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1450 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1451 					 BTRFS_MOUNT_##opt)
1452 
1453 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1454 do {									\
1455 	if (!btrfs_test_opt(fs_info, opt))				\
1456 		btrfs_info(fs_info, fmt, ##args);			\
1457 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1458 } while (0)
1459 
1460 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1461 do {									\
1462 	if (btrfs_test_opt(fs_info, opt))				\
1463 		btrfs_info(fs_info, fmt, ##args);			\
1464 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1465 } while (0)
1466 
1467 /*
1468  * Requests for changes that need to be done during transaction commit.
1469  *
1470  * Internal mount options that are used for special handling of the real
1471  * mount options (eg. cannot be set during remount and have to be set during
1472  * transaction commit)
1473  */
1474 
1475 #define BTRFS_PENDING_COMMIT			(0)
1476 
1477 #define btrfs_test_pending(info, opt)	\
1478 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1479 #define btrfs_set_pending(info, opt)	\
1480 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1481 #define btrfs_clear_pending(info, opt)	\
1482 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1483 
1484 /*
1485  * Helpers for setting pending mount option changes.
1486  *
1487  * Expects corresponding macros
1488  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1489  */
1490 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1491 do {                                                                   \
1492        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1493                btrfs_info((info), fmt, ##args);                        \
1494                btrfs_set_pending((info), SET_##opt);                   \
1495                btrfs_clear_pending((info), CLEAR_##opt);               \
1496        }                                                               \
1497 } while(0)
1498 
1499 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1500 do {                                                                   \
1501        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1502                btrfs_info((info), fmt, ##args);                        \
1503                btrfs_set_pending((info), CLEAR_##opt);                 \
1504                btrfs_clear_pending((info), SET_##opt);                 \
1505        }                                                               \
1506 } while(0)
1507 
1508 /*
1509  * Inode flags
1510  */
1511 #define BTRFS_INODE_NODATASUM		(1U << 0)
1512 #define BTRFS_INODE_NODATACOW		(1U << 1)
1513 #define BTRFS_INODE_READONLY		(1U << 2)
1514 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1515 #define BTRFS_INODE_PREALLOC		(1U << 4)
1516 #define BTRFS_INODE_SYNC		(1U << 5)
1517 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1518 #define BTRFS_INODE_APPEND		(1U << 7)
1519 #define BTRFS_INODE_NODUMP		(1U << 8)
1520 #define BTRFS_INODE_NOATIME		(1U << 9)
1521 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1522 #define BTRFS_INODE_COMPRESS		(1U << 11)
1523 
1524 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1525 
1526 #define BTRFS_INODE_FLAG_MASK						\
1527 	(BTRFS_INODE_NODATASUM |					\
1528 	 BTRFS_INODE_NODATACOW |					\
1529 	 BTRFS_INODE_READONLY |						\
1530 	 BTRFS_INODE_NOCOMPRESS |					\
1531 	 BTRFS_INODE_PREALLOC |						\
1532 	 BTRFS_INODE_SYNC |						\
1533 	 BTRFS_INODE_IMMUTABLE |					\
1534 	 BTRFS_INODE_APPEND |						\
1535 	 BTRFS_INODE_NODUMP |						\
1536 	 BTRFS_INODE_NOATIME |						\
1537 	 BTRFS_INODE_DIRSYNC |						\
1538 	 BTRFS_INODE_COMPRESS |						\
1539 	 BTRFS_INODE_ROOT_ITEM_INIT)
1540 
1541 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1542 
1543 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1544 
1545 struct btrfs_map_token {
1546 	struct extent_buffer *eb;
1547 	char *kaddr;
1548 	unsigned long offset;
1549 };
1550 
1551 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1552 				((bytes) >> (fs_info)->sectorsize_bits)
1553 
1554 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1555 					struct extent_buffer *eb)
1556 {
1557 	token->eb = eb;
1558 	token->kaddr = page_address(eb->pages[0]);
1559 	token->offset = 0;
1560 }
1561 
1562 /* some macros to generate set/get functions for the struct fields.  This
1563  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1564  * one for u8:
1565  */
1566 #define le8_to_cpu(v) (v)
1567 #define cpu_to_le8(v) (v)
1568 #define __le8 u8
1569 
1570 static inline u8 get_unaligned_le8(const void *p)
1571 {
1572        return *(u8 *)p;
1573 }
1574 
1575 static inline void put_unaligned_le8(u8 val, void *p)
1576 {
1577        *(u8 *)p = val;
1578 }
1579 
1580 #define read_eb_member(eb, ptr, type, member, result) (\
1581 	read_extent_buffer(eb, (char *)(result),			\
1582 			   ((unsigned long)(ptr)) +			\
1583 			    offsetof(type, member),			\
1584 			   sizeof(((type *)0)->member)))
1585 
1586 #define write_eb_member(eb, ptr, type, member, result) (\
1587 	write_extent_buffer(eb, (char *)(result),			\
1588 			   ((unsigned long)(ptr)) +			\
1589 			    offsetof(type, member),			\
1590 			   sizeof(((type *)0)->member)))
1591 
1592 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1593 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1594 			       const void *ptr, unsigned long off);	\
1595 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1596 			    const void *ptr, unsigned long off,		\
1597 			    u##bits val);				\
1598 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1599 			 const void *ptr, unsigned long off);		\
1600 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1601 		      unsigned long off, u##bits val);
1602 
1603 DECLARE_BTRFS_SETGET_BITS(8)
1604 DECLARE_BTRFS_SETGET_BITS(16)
1605 DECLARE_BTRFS_SETGET_BITS(32)
1606 DECLARE_BTRFS_SETGET_BITS(64)
1607 
1608 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1609 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1610 				   const type *s)			\
1611 {									\
1612 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1613 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1614 }									\
1615 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1616 				    u##bits val)			\
1617 {									\
1618 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1619 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1620 }									\
1621 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1622 					 const type *s)			\
1623 {									\
1624 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1625 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1626 }									\
1627 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1628 					  type *s, u##bits val)		\
1629 {									\
1630 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1631 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1632 }
1633 
1634 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1635 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1636 {									\
1637 	const type *p = page_address(eb->pages[0]) +			\
1638 			offset_in_page(eb->start);			\
1639 	return get_unaligned_le##bits(&p->member);			\
1640 }									\
1641 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1642 				    u##bits val)			\
1643 {									\
1644 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1645 	put_unaligned_le##bits(val, &p->member);			\
1646 }
1647 
1648 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1649 static inline u##bits btrfs_##name(const type *s)			\
1650 {									\
1651 	return get_unaligned_le##bits(&s->member);			\
1652 }									\
1653 static inline void btrfs_set_##name(type *s, u##bits val)		\
1654 {									\
1655 	put_unaligned_le##bits(val, &s->member);			\
1656 }
1657 
1658 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1659 					   struct btrfs_dev_item *s)
1660 {
1661 	BUILD_BUG_ON(sizeof(u64) !=
1662 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1663 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1664 					    total_bytes));
1665 }
1666 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1667 						struct btrfs_dev_item *s,
1668 						u64 val)
1669 {
1670 	BUILD_BUG_ON(sizeof(u64) !=
1671 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1672 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1673 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1674 }
1675 
1676 
1677 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1678 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1679 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1680 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1681 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1682 		   start_offset, 64);
1683 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1684 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1685 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1686 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1687 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1688 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1689 
1690 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1691 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1692 			 total_bytes, 64);
1693 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1694 			 bytes_used, 64);
1695 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1696 			 io_align, 32);
1697 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1698 			 io_width, 32);
1699 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1700 			 sector_size, 32);
1701 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1702 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1703 			 dev_group, 32);
1704 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1705 			 seek_speed, 8);
1706 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1707 			 bandwidth, 8);
1708 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1709 			 generation, 64);
1710 
1711 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1712 {
1713 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1714 }
1715 
1716 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1717 {
1718 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1719 }
1720 
1721 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1722 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1723 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1724 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1725 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1726 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1727 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1728 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1729 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1730 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1731 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1732 
1733 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1734 {
1735 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1736 }
1737 
1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1739 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1741 			 stripe_len, 64);
1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1743 			 io_align, 32);
1744 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1745 			 io_width, 32);
1746 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1747 			 sector_size, 32);
1748 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1749 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1750 			 num_stripes, 16);
1751 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1752 			 sub_stripes, 16);
1753 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1754 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1755 
1756 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1757 						   int nr)
1758 {
1759 	unsigned long offset = (unsigned long)c;
1760 	offset += offsetof(struct btrfs_chunk, stripe);
1761 	offset += nr * sizeof(struct btrfs_stripe);
1762 	return (struct btrfs_stripe *)offset;
1763 }
1764 
1765 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1766 {
1767 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1768 }
1769 
1770 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1771 					 struct btrfs_chunk *c, int nr)
1772 {
1773 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1774 }
1775 
1776 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1777 					 struct btrfs_chunk *c, int nr)
1778 {
1779 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1780 }
1781 
1782 /* struct btrfs_block_group_item */
1783 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1784 			 used, 64);
1785 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1786 			 used, 64);
1787 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1788 			struct btrfs_block_group_item, chunk_objectid, 64);
1789 
1790 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1791 		   struct btrfs_block_group_item, chunk_objectid, 64);
1792 BTRFS_SETGET_FUNCS(block_group_flags,
1793 		   struct btrfs_block_group_item, flags, 64);
1794 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1795 			struct btrfs_block_group_item, flags, 64);
1796 
1797 /* struct btrfs_free_space_info */
1798 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1799 		   extent_count, 32);
1800 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1801 
1802 /* struct btrfs_inode_ref */
1803 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1804 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1805 
1806 /* struct btrfs_inode_extref */
1807 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1808 		   parent_objectid, 64);
1809 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1810 		   name_len, 16);
1811 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1812 
1813 /* struct btrfs_inode_item */
1814 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1815 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1816 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1817 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1818 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1819 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1820 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1821 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1822 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1823 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1824 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1825 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1827 			 generation, 64);
1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1829 			 sequence, 64);
1830 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1831 			 transid, 64);
1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1834 			 nbytes, 64);
1835 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1836 			 block_group, 64);
1837 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1838 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1839 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1840 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1841 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1842 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1843 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1844 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1845 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1846 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1847 
1848 /* struct btrfs_dev_extent */
1849 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1850 		   chunk_tree, 64);
1851 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1852 		   chunk_objectid, 64);
1853 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1854 		   chunk_offset, 64);
1855 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1856 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1857 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1858 		   generation, 64);
1859 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1860 
1861 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1862 
1863 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1864 					struct btrfs_tree_block_info *item,
1865 					struct btrfs_disk_key *key)
1866 {
1867 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1868 }
1869 
1870 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1871 					    struct btrfs_tree_block_info *item,
1872 					    struct btrfs_disk_key *key)
1873 {
1874 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1875 }
1876 
1877 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1878 		   root, 64);
1879 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1880 		   objectid, 64);
1881 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1882 		   offset, 64);
1883 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1884 		   count, 32);
1885 
1886 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1887 		   count, 32);
1888 
1889 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1890 		   type, 8);
1891 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1892 		   offset, 64);
1893 
1894 static inline u32 btrfs_extent_inline_ref_size(int type)
1895 {
1896 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1897 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1898 		return sizeof(struct btrfs_extent_inline_ref);
1899 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1900 		return sizeof(struct btrfs_shared_data_ref) +
1901 		       sizeof(struct btrfs_extent_inline_ref);
1902 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1903 		return sizeof(struct btrfs_extent_data_ref) +
1904 		       offsetof(struct btrfs_extent_inline_ref, offset);
1905 	return 0;
1906 }
1907 
1908 /* struct btrfs_node */
1909 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1910 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1911 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1912 			 blockptr, 64);
1913 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1914 			 generation, 64);
1915 
1916 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1917 {
1918 	unsigned long ptr;
1919 	ptr = offsetof(struct btrfs_node, ptrs) +
1920 		sizeof(struct btrfs_key_ptr) * nr;
1921 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1922 }
1923 
1924 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1925 					   int nr, u64 val)
1926 {
1927 	unsigned long ptr;
1928 	ptr = offsetof(struct btrfs_node, ptrs) +
1929 		sizeof(struct btrfs_key_ptr) * nr;
1930 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1931 }
1932 
1933 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1934 {
1935 	unsigned long ptr;
1936 	ptr = offsetof(struct btrfs_node, ptrs) +
1937 		sizeof(struct btrfs_key_ptr) * nr;
1938 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1939 }
1940 
1941 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1942 						 int nr, u64 val)
1943 {
1944 	unsigned long ptr;
1945 	ptr = offsetof(struct btrfs_node, ptrs) +
1946 		sizeof(struct btrfs_key_ptr) * nr;
1947 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1948 }
1949 
1950 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1951 {
1952 	return offsetof(struct btrfs_node, ptrs) +
1953 		sizeof(struct btrfs_key_ptr) * nr;
1954 }
1955 
1956 void btrfs_node_key(const struct extent_buffer *eb,
1957 		    struct btrfs_disk_key *disk_key, int nr);
1958 
1959 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1960 				      struct btrfs_disk_key *disk_key, int nr)
1961 {
1962 	unsigned long ptr;
1963 	ptr = btrfs_node_key_ptr_offset(nr);
1964 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1965 		       struct btrfs_key_ptr, key, disk_key);
1966 }
1967 
1968 /* struct btrfs_item */
1969 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
1970 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
1971 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1972 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1973 
1974 static inline unsigned long btrfs_item_nr_offset(int nr)
1975 {
1976 	return offsetof(struct btrfs_leaf, items) +
1977 		sizeof(struct btrfs_item) * nr;
1978 }
1979 
1980 static inline struct btrfs_item *btrfs_item_nr(int nr)
1981 {
1982 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1983 }
1984 
1985 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
1986 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
1987 				      int slot)					\
1988 {										\
1989 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
1990 }										\
1991 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
1992 					   int slot, u32 val)			\
1993 {										\
1994 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
1995 }										\
1996 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
1997 					    int slot)				\
1998 {										\
1999 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2000 	return btrfs_token_raw_item_##member(token, item);			\
2001 }										\
2002 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2003 						 int slot, u32 val)		\
2004 {										\
2005 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2006 	btrfs_set_token_raw_item_##member(token, item, val);			\
2007 }
2008 
2009 BTRFS_ITEM_SETGET_FUNCS(offset)
2010 BTRFS_ITEM_SETGET_FUNCS(size);
2011 
2012 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2013 {
2014 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2015 }
2016 
2017 static inline void btrfs_item_key(const struct extent_buffer *eb,
2018 			   struct btrfs_disk_key *disk_key, int nr)
2019 {
2020 	struct btrfs_item *item = btrfs_item_nr(nr);
2021 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2022 }
2023 
2024 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2025 			       struct btrfs_disk_key *disk_key, int nr)
2026 {
2027 	struct btrfs_item *item = btrfs_item_nr(nr);
2028 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2029 }
2030 
2031 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2032 
2033 /*
2034  * struct btrfs_root_ref
2035  */
2036 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2037 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2038 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2039 
2040 /* struct btrfs_dir_item */
2041 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2042 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2043 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2044 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2045 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2046 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2047 			 data_len, 16);
2048 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2049 			 name_len, 16);
2050 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2051 			 transid, 64);
2052 
2053 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2054 				      const struct btrfs_dir_item *item,
2055 				      struct btrfs_disk_key *key)
2056 {
2057 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2058 }
2059 
2060 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2061 					  struct btrfs_dir_item *item,
2062 					  const struct btrfs_disk_key *key)
2063 {
2064 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2065 }
2066 
2067 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2068 		   num_entries, 64);
2069 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2070 		   num_bitmaps, 64);
2071 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2072 		   generation, 64);
2073 
2074 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2075 					const struct btrfs_free_space_header *h,
2076 					struct btrfs_disk_key *key)
2077 {
2078 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2079 }
2080 
2081 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2082 					    struct btrfs_free_space_header *h,
2083 					    const struct btrfs_disk_key *key)
2084 {
2085 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2086 }
2087 
2088 /* struct btrfs_disk_key */
2089 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2090 			 objectid, 64);
2091 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2092 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2093 
2094 #ifdef __LITTLE_ENDIAN
2095 
2096 /*
2097  * Optimized helpers for little-endian architectures where CPU and on-disk
2098  * structures have the same endianness and we can skip conversions.
2099  */
2100 
2101 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2102 					 const struct btrfs_disk_key *disk_key)
2103 {
2104 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2105 }
2106 
2107 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2108 					 const struct btrfs_key *cpu_key)
2109 {
2110 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2111 }
2112 
2113 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2114 					 struct btrfs_key *cpu_key, int nr)
2115 {
2116 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2117 
2118 	btrfs_node_key(eb, disk_key, nr);
2119 }
2120 
2121 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2122 					 struct btrfs_key *cpu_key, int nr)
2123 {
2124 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2125 
2126 	btrfs_item_key(eb, disk_key, nr);
2127 }
2128 
2129 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2130 					     const struct btrfs_dir_item *item,
2131 					     struct btrfs_key *cpu_key)
2132 {
2133 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2134 
2135 	btrfs_dir_item_key(eb, item, disk_key);
2136 }
2137 
2138 #else
2139 
2140 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2141 					 const struct btrfs_disk_key *disk)
2142 {
2143 	cpu->offset = le64_to_cpu(disk->offset);
2144 	cpu->type = disk->type;
2145 	cpu->objectid = le64_to_cpu(disk->objectid);
2146 }
2147 
2148 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2149 					 const struct btrfs_key *cpu)
2150 {
2151 	disk->offset = cpu_to_le64(cpu->offset);
2152 	disk->type = cpu->type;
2153 	disk->objectid = cpu_to_le64(cpu->objectid);
2154 }
2155 
2156 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2157 					 struct btrfs_key *key, int nr)
2158 {
2159 	struct btrfs_disk_key disk_key;
2160 	btrfs_node_key(eb, &disk_key, nr);
2161 	btrfs_disk_key_to_cpu(key, &disk_key);
2162 }
2163 
2164 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2165 					 struct btrfs_key *key, int nr)
2166 {
2167 	struct btrfs_disk_key disk_key;
2168 	btrfs_item_key(eb, &disk_key, nr);
2169 	btrfs_disk_key_to_cpu(key, &disk_key);
2170 }
2171 
2172 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2173 					     const struct btrfs_dir_item *item,
2174 					     struct btrfs_key *key)
2175 {
2176 	struct btrfs_disk_key disk_key;
2177 	btrfs_dir_item_key(eb, item, &disk_key);
2178 	btrfs_disk_key_to_cpu(key, &disk_key);
2179 }
2180 
2181 #endif
2182 
2183 /* struct btrfs_header */
2184 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2185 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2186 			  generation, 64);
2187 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2188 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2189 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2190 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2191 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2192 			 generation, 64);
2193 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2194 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2195 			 nritems, 32);
2196 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2197 
2198 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2199 {
2200 	return (btrfs_header_flags(eb) & flag) == flag;
2201 }
2202 
2203 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2204 {
2205 	u64 flags = btrfs_header_flags(eb);
2206 	btrfs_set_header_flags(eb, flags | flag);
2207 }
2208 
2209 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2210 {
2211 	u64 flags = btrfs_header_flags(eb);
2212 	btrfs_set_header_flags(eb, flags & ~flag);
2213 }
2214 
2215 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2216 {
2217 	u64 flags = btrfs_header_flags(eb);
2218 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2219 }
2220 
2221 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2222 						int rev)
2223 {
2224 	u64 flags = btrfs_header_flags(eb);
2225 	flags &= ~BTRFS_BACKREF_REV_MASK;
2226 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2227 	btrfs_set_header_flags(eb, flags);
2228 }
2229 
2230 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2231 {
2232 	return btrfs_header_level(eb) == 0;
2233 }
2234 
2235 /* struct btrfs_root_item */
2236 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2237 		   generation, 64);
2238 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2239 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2240 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2241 
2242 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2243 			 generation, 64);
2244 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2245 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2246 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2247 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2248 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2249 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2250 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2251 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2252 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2253 			 last_snapshot, 64);
2254 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2255 			 generation_v2, 64);
2256 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2257 			 ctransid, 64);
2258 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2259 			 otransid, 64);
2260 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2261 			 stransid, 64);
2262 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2263 			 rtransid, 64);
2264 
2265 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2266 {
2267 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2268 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2269 }
2270 
2271 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2272 {
2273 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2274 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2275 }
2276 
2277 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2278 {
2279 	return root->root_key.objectid;
2280 }
2281 
2282 /* struct btrfs_root_backup */
2283 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2284 		   tree_root, 64);
2285 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2286 		   tree_root_gen, 64);
2287 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2288 		   tree_root_level, 8);
2289 
2290 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2291 		   chunk_root, 64);
2292 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2293 		   chunk_root_gen, 64);
2294 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2295 		   chunk_root_level, 8);
2296 
2297 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2298 		   extent_root, 64);
2299 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2300 		   extent_root_gen, 64);
2301 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2302 		   extent_root_level, 8);
2303 
2304 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2305 		   fs_root, 64);
2306 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2307 		   fs_root_gen, 64);
2308 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2309 		   fs_root_level, 8);
2310 
2311 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2312 		   dev_root, 64);
2313 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2314 		   dev_root_gen, 64);
2315 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2316 		   dev_root_level, 8);
2317 
2318 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2319 		   csum_root, 64);
2320 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2321 		   csum_root_gen, 64);
2322 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2323 		   csum_root_level, 8);
2324 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2325 		   total_bytes, 64);
2326 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2327 		   bytes_used, 64);
2328 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2329 		   num_devices, 64);
2330 
2331 /* struct btrfs_balance_item */
2332 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2333 
2334 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2335 				      const struct btrfs_balance_item *bi,
2336 				      struct btrfs_disk_balance_args *ba)
2337 {
2338 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2339 }
2340 
2341 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2342 				  struct btrfs_balance_item *bi,
2343 				  const struct btrfs_disk_balance_args *ba)
2344 {
2345 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2346 }
2347 
2348 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2349 				      const struct btrfs_balance_item *bi,
2350 				      struct btrfs_disk_balance_args *ba)
2351 {
2352 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2353 }
2354 
2355 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2356 				  struct btrfs_balance_item *bi,
2357 				  const struct btrfs_disk_balance_args *ba)
2358 {
2359 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2360 }
2361 
2362 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2363 				     const struct btrfs_balance_item *bi,
2364 				     struct btrfs_disk_balance_args *ba)
2365 {
2366 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2367 }
2368 
2369 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2370 				 struct btrfs_balance_item *bi,
2371 				 const struct btrfs_disk_balance_args *ba)
2372 {
2373 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2374 }
2375 
2376 static inline void
2377 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2378 			       const struct btrfs_disk_balance_args *disk)
2379 {
2380 	memset(cpu, 0, sizeof(*cpu));
2381 
2382 	cpu->profiles = le64_to_cpu(disk->profiles);
2383 	cpu->usage = le64_to_cpu(disk->usage);
2384 	cpu->devid = le64_to_cpu(disk->devid);
2385 	cpu->pstart = le64_to_cpu(disk->pstart);
2386 	cpu->pend = le64_to_cpu(disk->pend);
2387 	cpu->vstart = le64_to_cpu(disk->vstart);
2388 	cpu->vend = le64_to_cpu(disk->vend);
2389 	cpu->target = le64_to_cpu(disk->target);
2390 	cpu->flags = le64_to_cpu(disk->flags);
2391 	cpu->limit = le64_to_cpu(disk->limit);
2392 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2393 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2394 }
2395 
2396 static inline void
2397 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2398 			       const struct btrfs_balance_args *cpu)
2399 {
2400 	memset(disk, 0, sizeof(*disk));
2401 
2402 	disk->profiles = cpu_to_le64(cpu->profiles);
2403 	disk->usage = cpu_to_le64(cpu->usage);
2404 	disk->devid = cpu_to_le64(cpu->devid);
2405 	disk->pstart = cpu_to_le64(cpu->pstart);
2406 	disk->pend = cpu_to_le64(cpu->pend);
2407 	disk->vstart = cpu_to_le64(cpu->vstart);
2408 	disk->vend = cpu_to_le64(cpu->vend);
2409 	disk->target = cpu_to_le64(cpu->target);
2410 	disk->flags = cpu_to_le64(cpu->flags);
2411 	disk->limit = cpu_to_le64(cpu->limit);
2412 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2413 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2414 }
2415 
2416 /* struct btrfs_super_block */
2417 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2418 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2419 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2420 			 generation, 64);
2421 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2422 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2423 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2424 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2425 			 struct btrfs_super_block, chunk_root_generation, 64);
2426 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2427 			 root_level, 8);
2428 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2429 			 chunk_root, 64);
2430 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2431 			 chunk_root_level, 8);
2432 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2433 			 log_root, 64);
2434 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2435 			 log_root_transid, 64);
2436 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2437 			 log_root_level, 8);
2438 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2439 			 total_bytes, 64);
2440 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2441 			 bytes_used, 64);
2442 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2443 			 sectorsize, 32);
2444 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2445 			 nodesize, 32);
2446 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2447 			 stripesize, 32);
2448 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2449 			 root_dir_objectid, 64);
2450 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2451 			 num_devices, 64);
2452 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2453 			 compat_flags, 64);
2454 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2455 			 compat_ro_flags, 64);
2456 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2457 			 incompat_flags, 64);
2458 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2459 			 csum_type, 16);
2460 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2461 			 cache_generation, 64);
2462 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2463 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2464 			 uuid_tree_generation, 64);
2465 
2466 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2467 const char *btrfs_super_csum_name(u16 csum_type);
2468 const char *btrfs_super_csum_driver(u16 csum_type);
2469 size_t __attribute_const__ btrfs_get_num_csums(void);
2470 
2471 
2472 /*
2473  * The leaf data grows from end-to-front in the node.
2474  * this returns the address of the start of the last item,
2475  * which is the stop of the leaf data stack
2476  */
2477 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2478 {
2479 	u32 nr = btrfs_header_nritems(leaf);
2480 
2481 	if (nr == 0)
2482 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2483 	return btrfs_item_offset(leaf, nr - 1);
2484 }
2485 
2486 /* struct btrfs_file_extent_item */
2487 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2488 			 type, 8);
2489 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2490 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2491 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2492 			 struct btrfs_file_extent_item, offset, 64);
2493 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2494 			 struct btrfs_file_extent_item, generation, 64);
2495 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2496 			 struct btrfs_file_extent_item, num_bytes, 64);
2497 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2498 			 struct btrfs_file_extent_item, ram_bytes, 64);
2499 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2500 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2501 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2502 			 struct btrfs_file_extent_item, compression, 8);
2503 
2504 static inline unsigned long
2505 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2506 {
2507 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2508 }
2509 
2510 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2511 {
2512 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2513 }
2514 
2515 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2516 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2517 		   disk_bytenr, 64);
2518 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2519 		   generation, 64);
2520 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2521 		   disk_num_bytes, 64);
2522 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2523 		  offset, 64);
2524 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2525 		   num_bytes, 64);
2526 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2527 		   ram_bytes, 64);
2528 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2529 		   compression, 8);
2530 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2531 		   encryption, 8);
2532 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2533 		   other_encoding, 16);
2534 
2535 /*
2536  * this returns the number of bytes used by the item on disk, minus the
2537  * size of any extent headers.  If a file is compressed on disk, this is
2538  * the compressed size
2539  */
2540 static inline u32 btrfs_file_extent_inline_item_len(
2541 						const struct extent_buffer *eb,
2542 						int nr)
2543 {
2544 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2545 }
2546 
2547 /* btrfs_qgroup_status_item */
2548 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2549 		   generation, 64);
2550 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2551 		   version, 64);
2552 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2553 		   flags, 64);
2554 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2555 		   rescan, 64);
2556 
2557 /* btrfs_qgroup_info_item */
2558 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2559 		   generation, 64);
2560 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2561 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2562 		   rfer_cmpr, 64);
2563 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2564 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2565 		   excl_cmpr, 64);
2566 
2567 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2568 			 struct btrfs_qgroup_info_item, generation, 64);
2569 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2570 			 rfer, 64);
2571 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2572 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2573 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2574 			 excl, 64);
2575 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2576 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2577 
2578 /* btrfs_qgroup_limit_item */
2579 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2580 		   flags, 64);
2581 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2582 		   max_rfer, 64);
2583 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2584 		   max_excl, 64);
2585 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2586 		   rsv_rfer, 64);
2587 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2588 		   rsv_excl, 64);
2589 
2590 /* btrfs_dev_replace_item */
2591 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2592 		   struct btrfs_dev_replace_item, src_devid, 64);
2593 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2594 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2595 		   64);
2596 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2597 		   replace_state, 64);
2598 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2599 		   time_started, 64);
2600 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2601 		   time_stopped, 64);
2602 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2603 		   num_write_errors, 64);
2604 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2605 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2606 		   64);
2607 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2608 		   cursor_left, 64);
2609 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2610 		   cursor_right, 64);
2611 
2612 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2613 			 struct btrfs_dev_replace_item, src_devid, 64);
2614 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2615 			 struct btrfs_dev_replace_item,
2616 			 cont_reading_from_srcdev_mode, 64);
2617 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2618 			 struct btrfs_dev_replace_item, replace_state, 64);
2619 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2620 			 struct btrfs_dev_replace_item, time_started, 64);
2621 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2622 			 struct btrfs_dev_replace_item, time_stopped, 64);
2623 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2624 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2625 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2626 			 struct btrfs_dev_replace_item,
2627 			 num_uncorrectable_read_errors, 64);
2628 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2629 			 struct btrfs_dev_replace_item, cursor_left, 64);
2630 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2631 			 struct btrfs_dev_replace_item, cursor_right, 64);
2632 
2633 /* helper function to cast into the data area of the leaf. */
2634 #define btrfs_item_ptr(leaf, slot, type) \
2635 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2636 	btrfs_item_offset(leaf, slot)))
2637 
2638 #define btrfs_item_ptr_offset(leaf, slot) \
2639 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2640 	btrfs_item_offset(leaf, slot)))
2641 
2642 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2643 {
2644 	return crc32c(crc, address, length);
2645 }
2646 
2647 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2648 {
2649 	put_unaligned_le32(~crc, result);
2650 }
2651 
2652 static inline u64 btrfs_name_hash(const char *name, int len)
2653 {
2654        return crc32c((u32)~1, name, len);
2655 }
2656 
2657 /*
2658  * Figure the key offset of an extended inode ref
2659  */
2660 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2661                                    int len)
2662 {
2663        return (u64) crc32c(parent_objectid, name, len);
2664 }
2665 
2666 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2667 {
2668 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2669 }
2670 
2671 /* extent-tree.c */
2672 
2673 enum btrfs_inline_ref_type {
2674 	BTRFS_REF_TYPE_INVALID,
2675 	BTRFS_REF_TYPE_BLOCK,
2676 	BTRFS_REF_TYPE_DATA,
2677 	BTRFS_REF_TYPE_ANY,
2678 };
2679 
2680 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2681 				     struct btrfs_extent_inline_ref *iref,
2682 				     enum btrfs_inline_ref_type is_data);
2683 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2684 
2685 /*
2686  * Take the number of bytes to be checksummmed and figure out how many leaves
2687  * it would require to store the csums for that many bytes.
2688  */
2689 static inline u64 btrfs_csum_bytes_to_leaves(
2690 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2691 {
2692 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2693 
2694 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2695 }
2696 
2697 /*
2698  * Use this if we would be adding new items, as we could split nodes as we cow
2699  * down the tree.
2700  */
2701 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2702 						  unsigned num_items)
2703 {
2704 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2705 }
2706 
2707 /*
2708  * Doing a truncate or a modification won't result in new nodes or leaves, just
2709  * what we need for COW.
2710  */
2711 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2712 						 unsigned num_items)
2713 {
2714 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2715 }
2716 
2717 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2718 			      u64 start, u64 num_bytes);
2719 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2720 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2721 			   unsigned long count);
2722 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2723 				  struct btrfs_delayed_ref_root *delayed_refs,
2724 				  struct btrfs_delayed_ref_head *head);
2725 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2726 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2727 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2728 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2729 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2730 		     int reserved);
2731 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2732 				    u64 bytenr, u64 num_bytes);
2733 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2734 int btrfs_cross_ref_exist(struct btrfs_root *root,
2735 			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2736 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2737 					     struct btrfs_root *root,
2738 					     u64 parent, u64 root_objectid,
2739 					     const struct btrfs_disk_key *key,
2740 					     int level, u64 hint,
2741 					     u64 empty_size,
2742 					     enum btrfs_lock_nesting nest);
2743 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2744 			   u64 root_id,
2745 			   struct extent_buffer *buf,
2746 			   u64 parent, int last_ref);
2747 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2748 				     struct btrfs_root *root, u64 owner,
2749 				     u64 offset, u64 ram_bytes,
2750 				     struct btrfs_key *ins);
2751 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2752 				   u64 root_objectid, u64 owner, u64 offset,
2753 				   struct btrfs_key *ins);
2754 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2755 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2756 			 struct btrfs_key *ins, int is_data, int delalloc);
2757 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2758 		  struct extent_buffer *buf, int full_backref);
2759 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2760 		  struct extent_buffer *buf, int full_backref);
2761 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2762 				struct extent_buffer *eb, u64 flags,
2763 				int level, int is_data);
2764 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2765 
2766 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2767 			       u64 start, u64 len, int delalloc);
2768 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2769 			      u64 len);
2770 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2771 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2772 			 struct btrfs_ref *generic_ref);
2773 
2774 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2775 
2776 /*
2777  * Different levels for to flush space when doing space reservations.
2778  *
2779  * The higher the level, the more methods we try to reclaim space.
2780  */
2781 enum btrfs_reserve_flush_enum {
2782 	/* If we are in the transaction, we can't flush anything.*/
2783 	BTRFS_RESERVE_NO_FLUSH,
2784 
2785 	/*
2786 	 * Flush space by:
2787 	 * - Running delayed inode items
2788 	 * - Allocating a new chunk
2789 	 */
2790 	BTRFS_RESERVE_FLUSH_LIMIT,
2791 
2792 	/*
2793 	 * Flush space by:
2794 	 * - Running delayed inode items
2795 	 * - Running delayed refs
2796 	 * - Running delalloc and waiting for ordered extents
2797 	 * - Allocating a new chunk
2798 	 */
2799 	BTRFS_RESERVE_FLUSH_EVICT,
2800 
2801 	/*
2802 	 * Flush space by above mentioned methods and by:
2803 	 * - Running delayed iputs
2804 	 * - Committing transaction
2805 	 *
2806 	 * Can be interrupted by a fatal signal.
2807 	 */
2808 	BTRFS_RESERVE_FLUSH_DATA,
2809 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2810 	BTRFS_RESERVE_FLUSH_ALL,
2811 
2812 	/*
2813 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2814 	 * global rsv.
2815 	 *
2816 	 * Can be interrupted by a fatal signal.
2817 	 */
2818 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2819 };
2820 
2821 enum btrfs_flush_state {
2822 	FLUSH_DELAYED_ITEMS_NR	=	1,
2823 	FLUSH_DELAYED_ITEMS	=	2,
2824 	FLUSH_DELAYED_REFS_NR	=	3,
2825 	FLUSH_DELAYED_REFS	=	4,
2826 	FLUSH_DELALLOC		=	5,
2827 	FLUSH_DELALLOC_WAIT	=	6,
2828 	FLUSH_DELALLOC_FULL	=	7,
2829 	ALLOC_CHUNK		=	8,
2830 	ALLOC_CHUNK_FORCE	=	9,
2831 	RUN_DELAYED_IPUTS	=	10,
2832 	COMMIT_TRANS		=	11,
2833 };
2834 
2835 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2836 				     struct btrfs_block_rsv *rsv,
2837 				     int nitems, bool use_global_rsv);
2838 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2839 				      struct btrfs_block_rsv *rsv);
2840 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2841 
2842 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2843 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2844 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2845 				   u64 start, u64 end);
2846 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2847 			 u64 num_bytes, u64 *actual_bytes);
2848 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2849 
2850 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2851 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2852 					 struct btrfs_fs_info *fs_info);
2853 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2854 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2855 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2856 
2857 /* ctree.c */
2858 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2859 		     int *slot);
2860 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2861 int btrfs_previous_item(struct btrfs_root *root,
2862 			struct btrfs_path *path, u64 min_objectid,
2863 			int type);
2864 int btrfs_previous_extent_item(struct btrfs_root *root,
2865 			struct btrfs_path *path, u64 min_objectid);
2866 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2867 			     struct btrfs_path *path,
2868 			     const struct btrfs_key *new_key);
2869 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2870 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2871 			struct btrfs_key *key, int lowest_level,
2872 			u64 min_trans);
2873 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2874 			 struct btrfs_path *path,
2875 			 u64 min_trans);
2876 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2877 					   int slot);
2878 
2879 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2880 		    struct btrfs_root *root, struct extent_buffer *buf,
2881 		    struct extent_buffer *parent, int parent_slot,
2882 		    struct extent_buffer **cow_ret,
2883 		    enum btrfs_lock_nesting nest);
2884 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2885 		      struct btrfs_root *root,
2886 		      struct extent_buffer *buf,
2887 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2888 int btrfs_block_can_be_shared(struct btrfs_root *root,
2889 			      struct extent_buffer *buf);
2890 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2891 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2892 int btrfs_split_item(struct btrfs_trans_handle *trans,
2893 		     struct btrfs_root *root,
2894 		     struct btrfs_path *path,
2895 		     const struct btrfs_key *new_key,
2896 		     unsigned long split_offset);
2897 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2898 			 struct btrfs_root *root,
2899 			 struct btrfs_path *path,
2900 			 const struct btrfs_key *new_key);
2901 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2902 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2903 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2904 		      const struct btrfs_key *key, struct btrfs_path *p,
2905 		      int ins_len, int cow);
2906 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2907 			  struct btrfs_path *p, u64 time_seq);
2908 int btrfs_search_slot_for_read(struct btrfs_root *root,
2909 			       const struct btrfs_key *key,
2910 			       struct btrfs_path *p, int find_higher,
2911 			       int return_any);
2912 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2913 		       struct btrfs_root *root, struct extent_buffer *parent,
2914 		       int start_slot, u64 *last_ret,
2915 		       struct btrfs_key *progress);
2916 void btrfs_release_path(struct btrfs_path *p);
2917 struct btrfs_path *btrfs_alloc_path(void);
2918 void btrfs_free_path(struct btrfs_path *p);
2919 
2920 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2921 		   struct btrfs_path *path, int slot, int nr);
2922 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2923 				 struct btrfs_root *root,
2924 				 struct btrfs_path *path)
2925 {
2926 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2927 }
2928 
2929 /*
2930  * Describes a batch of items to insert in a btree. This is used by
2931  * btrfs_insert_empty_items().
2932  */
2933 struct btrfs_item_batch {
2934 	/*
2935 	 * Pointer to an array containing the keys of the items to insert (in
2936 	 * sorted order).
2937 	 */
2938 	const struct btrfs_key *keys;
2939 	/* Pointer to an array containing the data size for each item to insert. */
2940 	const u32 *data_sizes;
2941 	/*
2942 	 * The sum of data sizes for all items. The caller can compute this while
2943 	 * setting up the data_sizes array, so it ends up being more efficient
2944 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2945 	 * doing it, as it would avoid an extra loop over a potentially large
2946 	 * array, and in the case of setup_item_for_insert(), we would be doing
2947 	 * it while holding a write lock on a leaf and often on upper level nodes
2948 	 * too, unnecessarily increasing the size of a critical section.
2949 	 */
2950 	u32 total_data_size;
2951 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
2952 	int nr;
2953 };
2954 
2955 void btrfs_setup_item_for_insert(struct btrfs_root *root,
2956 				 struct btrfs_path *path,
2957 				 const struct btrfs_key *key,
2958 				 u32 data_size);
2959 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2960 		      const struct btrfs_key *key, void *data, u32 data_size);
2961 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2962 			     struct btrfs_root *root,
2963 			     struct btrfs_path *path,
2964 			     const struct btrfs_item_batch *batch);
2965 
2966 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2967 					  struct btrfs_root *root,
2968 					  struct btrfs_path *path,
2969 					  const struct btrfs_key *key,
2970 					  u32 data_size)
2971 {
2972 	struct btrfs_item_batch batch;
2973 
2974 	batch.keys = key;
2975 	batch.data_sizes = &data_size;
2976 	batch.total_data_size = data_size;
2977 	batch.nr = 1;
2978 
2979 	return btrfs_insert_empty_items(trans, root, path, &batch);
2980 }
2981 
2982 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2983 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2984 			u64 time_seq);
2985 
2986 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2987 			   struct btrfs_path *path);
2988 
2989 static inline int btrfs_next_old_item(struct btrfs_root *root,
2990 				      struct btrfs_path *p, u64 time_seq)
2991 {
2992 	++p->slots[0];
2993 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2994 		return btrfs_next_old_leaf(root, p, time_seq);
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Search the tree again to find a leaf with greater keys.
3000  *
3001  * Returns 0 if it found something or 1 if there are no greater leaves.
3002  * Returns < 0 on error.
3003  */
3004 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3005 {
3006 	return btrfs_next_old_leaf(root, path, 0);
3007 }
3008 
3009 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3010 {
3011 	return btrfs_next_old_item(root, p, 0);
3012 }
3013 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3014 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3015 				     int for_reloc);
3016 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3017 			struct btrfs_root *root,
3018 			struct extent_buffer *node,
3019 			struct extent_buffer *parent);
3020 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3021 {
3022 	/*
3023 	 * Do it this way so we only ever do one test_bit in the normal case.
3024 	 */
3025 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3026 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3027 			return 2;
3028 		return 1;
3029 	}
3030 	return 0;
3031 }
3032 
3033 /*
3034  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3035  * anything except sleeping. This function is used to check the status of
3036  * the fs.
3037  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3038  * since setting and checking for SB_RDONLY in the superblock's flags is not
3039  * atomic.
3040  */
3041 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3042 {
3043 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3044 		btrfs_fs_closing(fs_info);
3045 }
3046 
3047 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3048 {
3049 	sb->s_flags |= SB_RDONLY;
3050 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3051 }
3052 
3053 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3054 {
3055 	sb->s_flags &= ~SB_RDONLY;
3056 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3057 }
3058 
3059 /* root-item.c */
3060 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3061 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3062 		       int name_len);
3063 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3064 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3065 		       int name_len);
3066 int btrfs_del_root(struct btrfs_trans_handle *trans,
3067 		   const struct btrfs_key *key);
3068 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3069 		      const struct btrfs_key *key,
3070 		      struct btrfs_root_item *item);
3071 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3072 				   struct btrfs_root *root,
3073 				   struct btrfs_key *key,
3074 				   struct btrfs_root_item *item);
3075 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3076 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3077 		    struct btrfs_key *root_key);
3078 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3079 void btrfs_set_root_node(struct btrfs_root_item *item,
3080 			 struct extent_buffer *node);
3081 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3082 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3083 			     struct btrfs_root *root);
3084 
3085 /* uuid-tree.c */
3086 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3087 			u64 subid);
3088 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3089 			u64 subid);
3090 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3091 
3092 /* dir-item.c */
3093 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3094 			  const char *name, int name_len);
3095 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3096 			  int name_len, struct btrfs_inode *dir,
3097 			  struct btrfs_key *location, u8 type, u64 index);
3098 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3099 					     struct btrfs_root *root,
3100 					     struct btrfs_path *path, u64 dir,
3101 					     const char *name, int name_len,
3102 					     int mod);
3103 struct btrfs_dir_item *
3104 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3105 			    struct btrfs_root *root,
3106 			    struct btrfs_path *path, u64 dir,
3107 			    u64 index, const char *name, int name_len,
3108 			    int mod);
3109 struct btrfs_dir_item *
3110 btrfs_search_dir_index_item(struct btrfs_root *root,
3111 			    struct btrfs_path *path, u64 dirid,
3112 			    const char *name, int name_len);
3113 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3114 			      struct btrfs_root *root,
3115 			      struct btrfs_path *path,
3116 			      struct btrfs_dir_item *di);
3117 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3118 			    struct btrfs_root *root,
3119 			    struct btrfs_path *path, u64 objectid,
3120 			    const char *name, u16 name_len,
3121 			    const void *data, u16 data_len);
3122 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3123 					  struct btrfs_root *root,
3124 					  struct btrfs_path *path, u64 dir,
3125 					  const char *name, u16 name_len,
3126 					  int mod);
3127 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3128 						 struct btrfs_path *path,
3129 						 const char *name,
3130 						 int name_len);
3131 
3132 /* orphan.c */
3133 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3134 			     struct btrfs_root *root, u64 offset);
3135 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3136 			  struct btrfs_root *root, u64 offset);
3137 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3138 
3139 /* file-item.c */
3140 struct btrfs_dio_private;
3141 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3142 		    struct btrfs_root *root, u64 bytenr, u64 len);
3143 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3144 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3145 			     struct btrfs_root *root,
3146 			     u64 objectid, u64 pos,
3147 			     u64 disk_offset, u64 disk_num_bytes,
3148 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3149 			     u8 compression, u8 encryption, u16 other_encoding);
3150 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3151 			     struct btrfs_root *root,
3152 			     struct btrfs_path *path, u64 objectid,
3153 			     u64 bytenr, int mod);
3154 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3155 			   struct btrfs_root *root,
3156 			   struct btrfs_ordered_sum *sums);
3157 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3158 				u64 file_start, int contig);
3159 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3160 			     struct list_head *list, int search_commit);
3161 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3162 				     const struct btrfs_path *path,
3163 				     struct btrfs_file_extent_item *fi,
3164 				     const bool new_inline,
3165 				     struct extent_map *em);
3166 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3167 					u64 len);
3168 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3169 				      u64 len);
3170 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3171 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3172 
3173 /* inode.c */
3174 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3175 				   int mirror_num, unsigned long bio_flags);
3176 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3177 				    u32 bio_offset, struct page *page,
3178 				    u64 start, u64 end);
3179 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3180 					   u64 start, u64 len);
3181 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3182 			      u64 *orig_start, u64 *orig_block_len,
3183 			      u64 *ram_bytes, bool strict);
3184 
3185 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3186 				struct btrfs_inode *inode);
3187 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3188 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3189 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3190 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3191 		       const char *name, int name_len);
3192 int btrfs_add_link(struct btrfs_trans_handle *trans,
3193 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3194 		   const char *name, int name_len, int add_backref, u64 index);
3195 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3196 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3197 			 int front);
3198 
3199 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3200 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3201 			       bool in_reclaim_context);
3202 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3203 			      unsigned int extra_bits,
3204 			      struct extent_state **cached_state);
3205 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3206 			     struct btrfs_root *new_root,
3207 			     struct btrfs_root *parent_root,
3208 			     struct user_namespace *mnt_userns);
3209  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3210 			       unsigned *bits);
3211 void btrfs_clear_delalloc_extent(struct inode *inode,
3212 				 struct extent_state *state, unsigned *bits);
3213 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3214 				 struct extent_state *other);
3215 void btrfs_split_delalloc_extent(struct inode *inode,
3216 				 struct extent_state *orig, u64 split);
3217 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3218 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3219 int btrfs_readpage(struct file *file, struct page *page);
3220 void btrfs_evict_inode(struct inode *inode);
3221 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3222 struct inode *btrfs_alloc_inode(struct super_block *sb);
3223 void btrfs_destroy_inode(struct inode *inode);
3224 void btrfs_free_inode(struct inode *inode);
3225 int btrfs_drop_inode(struct inode *inode);
3226 int __init btrfs_init_cachep(void);
3227 void __cold btrfs_destroy_cachep(void);
3228 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3229 			      struct btrfs_root *root, struct btrfs_path *path);
3230 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3231 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3232 				    struct page *page, size_t pg_offset,
3233 				    u64 start, u64 end);
3234 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3235 		       struct btrfs_root *root, struct btrfs_inode *inode);
3236 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3237 				struct btrfs_root *root, struct btrfs_inode *inode);
3238 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3239 		struct btrfs_inode *inode);
3240 int btrfs_orphan_cleanup(struct btrfs_root *root);
3241 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3242 void btrfs_add_delayed_iput(struct inode *inode);
3243 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3244 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3245 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3246 			      u64 start, u64 num_bytes, u64 min_size,
3247 			      loff_t actual_len, u64 *alloc_hint);
3248 int btrfs_prealloc_file_range_trans(struct inode *inode,
3249 				    struct btrfs_trans_handle *trans, int mode,
3250 				    u64 start, u64 num_bytes, u64 min_size,
3251 				    loff_t actual_len, u64 *alloc_hint);
3252 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3253 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3254 		struct writeback_control *wbc);
3255 int btrfs_writepage_cow_fixup(struct page *page);
3256 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3257 					  struct page *page, u64 start,
3258 					  u64 end, bool uptodate);
3259 extern const struct dentry_operations btrfs_dentry_operations;
3260 extern const struct iomap_ops btrfs_dio_iomap_ops;
3261 extern const struct iomap_dio_ops btrfs_dio_ops;
3262 
3263 /* Inode locking type flags, by default the exclusive lock is taken */
3264 #define BTRFS_ILOCK_SHARED	(1U << 0)
3265 #define BTRFS_ILOCK_TRY 	(1U << 1)
3266 #define BTRFS_ILOCK_MMAP	(1U << 2)
3267 
3268 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3269 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3270 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3271 			      const u64 add_bytes,
3272 			      const u64 del_bytes);
3273 
3274 /* ioctl.c */
3275 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3276 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3277 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3278 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3279 		       struct dentry *dentry, struct fileattr *fa);
3280 int btrfs_ioctl_get_supported_features(void __user *arg);
3281 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3282 int __pure btrfs_is_empty_uuid(u8 *uuid);
3283 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3284 		      struct btrfs_ioctl_defrag_range_args *range,
3285 		      u64 newer_than, unsigned long max_to_defrag);
3286 void btrfs_get_block_group_info(struct list_head *groups_list,
3287 				struct btrfs_ioctl_space_info *space);
3288 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3289 			       struct btrfs_ioctl_balance_args *bargs);
3290 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3291 			enum btrfs_exclusive_operation type);
3292 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3293 				 enum btrfs_exclusive_operation type);
3294 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3295 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3296 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3297 			  enum btrfs_exclusive_operation op);
3298 
3299 
3300 /* file.c */
3301 int __init btrfs_auto_defrag_init(void);
3302 void __cold btrfs_auto_defrag_exit(void);
3303 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3304 			   struct btrfs_inode *inode, u32 extent_thresh);
3305 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3306 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3307 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3308 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3309 			     int skip_pinned);
3310 extern const struct file_operations btrfs_file_operations;
3311 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3312 		       struct btrfs_root *root, struct btrfs_inode *inode,
3313 		       struct btrfs_drop_extents_args *args);
3314 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3315 			   struct btrfs_path *path, const u64 start,
3316 			   const u64 end,
3317 			   struct btrfs_replace_extent_info *extent_info,
3318 			   struct btrfs_trans_handle **trans_out);
3319 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3320 			      struct btrfs_inode *inode, u64 start, u64 end);
3321 int btrfs_release_file(struct inode *inode, struct file *file);
3322 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3323 		      size_t num_pages, loff_t pos, size_t write_bytes,
3324 		      struct extent_state **cached, bool noreserve);
3325 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3326 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3327 			   size_t *write_bytes);
3328 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3329 
3330 /* tree-defrag.c */
3331 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3332 			struct btrfs_root *root);
3333 
3334 /* super.c */
3335 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3336 			unsigned long new_flags);
3337 int btrfs_sync_fs(struct super_block *sb, int wait);
3338 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3339 					  u64 subvol_objectid);
3340 
3341 static inline __printf(2, 3) __cold
3342 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3343 {
3344 }
3345 
3346 #ifdef CONFIG_PRINTK
3347 __printf(2, 3)
3348 __cold
3349 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3350 #else
3351 #define btrfs_printk(fs_info, fmt, args...) \
3352 	btrfs_no_printk(fs_info, fmt, ##args)
3353 #endif
3354 
3355 #define btrfs_emerg(fs_info, fmt, args...) \
3356 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3357 #define btrfs_alert(fs_info, fmt, args...) \
3358 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3359 #define btrfs_crit(fs_info, fmt, args...) \
3360 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3361 #define btrfs_err(fs_info, fmt, args...) \
3362 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3363 #define btrfs_warn(fs_info, fmt, args...) \
3364 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3365 #define btrfs_notice(fs_info, fmt, args...) \
3366 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3367 #define btrfs_info(fs_info, fmt, args...) \
3368 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3369 
3370 /*
3371  * Wrappers that use printk_in_rcu
3372  */
3373 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3374 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3375 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3376 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3377 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3378 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3379 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3380 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3381 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3382 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3383 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3384 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3385 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3386 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3387 
3388 /*
3389  * Wrappers that use a ratelimited printk_in_rcu
3390  */
3391 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3392 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3393 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3394 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3395 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3396 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3397 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3398 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3399 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3400 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3401 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3402 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3403 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3404 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3405 
3406 /*
3407  * Wrappers that use a ratelimited printk
3408  */
3409 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3410 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3411 #define btrfs_alert_rl(fs_info, fmt, args...) \
3412 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3413 #define btrfs_crit_rl(fs_info, fmt, args...) \
3414 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3415 #define btrfs_err_rl(fs_info, fmt, args...) \
3416 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3417 #define btrfs_warn_rl(fs_info, fmt, args...) \
3418 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3419 #define btrfs_notice_rl(fs_info, fmt, args...) \
3420 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3421 #define btrfs_info_rl(fs_info, fmt, args...) \
3422 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3423 
3424 #if defined(CONFIG_DYNAMIC_DEBUG)
3425 #define btrfs_debug(fs_info, fmt, args...)				\
3426 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3427 				   fs_info, KERN_DEBUG fmt, ##args)
3428 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3429 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3430 				   fs_info, KERN_DEBUG fmt, ##args)
3431 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3432 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3433 				   fs_info, KERN_DEBUG fmt, ##args)
3434 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3435 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3436 				   fs_info, KERN_DEBUG fmt, ##args)
3437 #elif defined(DEBUG)
3438 #define btrfs_debug(fs_info, fmt, args...) \
3439 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3440 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3441 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3442 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3443 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3444 #define btrfs_debug_rl(fs_info, fmt, args...) \
3445 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3446 #else
3447 #define btrfs_debug(fs_info, fmt, args...) \
3448 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3449 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3450 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3451 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3452 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3453 #define btrfs_debug_rl(fs_info, fmt, args...) \
3454 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3455 #endif
3456 
3457 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3458 do {							\
3459 	rcu_read_lock();				\
3460 	btrfs_printk(fs_info, fmt, ##args);		\
3461 	rcu_read_unlock();				\
3462 } while (0)
3463 
3464 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3465 do {							\
3466 	rcu_read_lock();				\
3467 	btrfs_no_printk(fs_info, fmt, ##args);		\
3468 	rcu_read_unlock();				\
3469 } while (0)
3470 
3471 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3472 do {								\
3473 	static DEFINE_RATELIMIT_STATE(_rs,			\
3474 		DEFAULT_RATELIMIT_INTERVAL,			\
3475 		DEFAULT_RATELIMIT_BURST);       		\
3476 	if (__ratelimit(&_rs))					\
3477 		btrfs_printk(fs_info, fmt, ##args);		\
3478 } while (0)
3479 
3480 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3481 do {								\
3482 	rcu_read_lock();					\
3483 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3484 	rcu_read_unlock();					\
3485 } while (0)
3486 
3487 #ifdef CONFIG_BTRFS_ASSERT
3488 __cold __noreturn
3489 static inline void assertfail(const char *expr, const char *file, int line)
3490 {
3491 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3492 	BUG();
3493 }
3494 
3495 #define ASSERT(expr)						\
3496 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3497 
3498 #else
3499 static inline void assertfail(const char *expr, const char* file, int line) { }
3500 #define ASSERT(expr)	(void)(expr)
3501 #endif
3502 
3503 #if BITS_PER_LONG == 32
3504 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3505 /*
3506  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3507  * addresses of extents.
3508  *
3509  * For 4K page size it's about 10T, for 64K it's 160T.
3510  */
3511 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3512 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3513 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3514 #endif
3515 
3516 /*
3517  * Get the correct offset inside the page of extent buffer.
3518  *
3519  * @eb:		target extent buffer
3520  * @start:	offset inside the extent buffer
3521  *
3522  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3523  */
3524 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3525 					   unsigned long offset)
3526 {
3527 	/*
3528 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3529 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3530 	 *
3531 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3532 	 * to the eb, thus we have to take the eb->start into consideration.
3533 	 */
3534 	return offset_in_page(offset + eb->start);
3535 }
3536 
3537 static inline unsigned long get_eb_page_index(unsigned long offset)
3538 {
3539 	/*
3540 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3541 	 *
3542 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3543 	 * and have ensured that all tree blocks are contained in one page,
3544 	 * thus we always get index == 0.
3545 	 */
3546 	return offset >> PAGE_SHIFT;
3547 }
3548 
3549 /*
3550  * Use that for functions that are conditionally exported for sanity tests but
3551  * otherwise static
3552  */
3553 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3554 #define EXPORT_FOR_TESTS static
3555 #else
3556 #define EXPORT_FOR_TESTS
3557 #endif
3558 
3559 __cold
3560 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3561 {
3562 	btrfs_err(fs_info,
3563 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3564 }
3565 
3566 __printf(5, 6)
3567 __cold
3568 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3569 		     unsigned int line, int errno, const char *fmt, ...);
3570 
3571 const char * __attribute_const__ btrfs_decode_error(int errno);
3572 
3573 __cold
3574 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3575 			       const char *function,
3576 			       unsigned int line, int errno);
3577 
3578 /*
3579  * Call btrfs_abort_transaction as early as possible when an error condition is
3580  * detected, that way the exact line number is reported.
3581  */
3582 #define btrfs_abort_transaction(trans, errno)		\
3583 do {								\
3584 	/* Report first abort since mount */			\
3585 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3586 			&((trans)->fs_info->fs_state))) {	\
3587 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3588 			WARN(1, KERN_DEBUG				\
3589 			"BTRFS: Transaction aborted (error %d)\n",	\
3590 			(errno));					\
3591 		} else {						\
3592 			btrfs_debug((trans)->fs_info,			\
3593 				    "Transaction aborted (error %d)", \
3594 				  (errno));			\
3595 		}						\
3596 	}							\
3597 	__btrfs_abort_transaction((trans), __func__,		\
3598 				  __LINE__, (errno));		\
3599 } while (0)
3600 
3601 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3602 do {								\
3603 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3604 			  (errno), fmt, ##args);		\
3605 } while (0)
3606 
3607 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3608 						   &(fs_info)->fs_state)))
3609 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3610 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3611 			   &(fs_info)->fs_state)))
3612 
3613 __printf(5, 6)
3614 __cold
3615 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3616 		   unsigned int line, int errno, const char *fmt, ...);
3617 /*
3618  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3619  * will panic().  Otherwise we BUG() here.
3620  */
3621 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3622 do {									\
3623 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3624 	BUG();								\
3625 } while (0)
3626 
3627 
3628 /* compatibility and incompatibility defines */
3629 
3630 #define btrfs_set_fs_incompat(__fs_info, opt) \
3631 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3632 				#opt)
3633 
3634 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3635 					   u64 flag, const char* name)
3636 {
3637 	struct btrfs_super_block *disk_super;
3638 	u64 features;
3639 
3640 	disk_super = fs_info->super_copy;
3641 	features = btrfs_super_incompat_flags(disk_super);
3642 	if (!(features & flag)) {
3643 		spin_lock(&fs_info->super_lock);
3644 		features = btrfs_super_incompat_flags(disk_super);
3645 		if (!(features & flag)) {
3646 			features |= flag;
3647 			btrfs_set_super_incompat_flags(disk_super, features);
3648 			btrfs_info(fs_info,
3649 				"setting incompat feature flag for %s (0x%llx)",
3650 				name, flag);
3651 		}
3652 		spin_unlock(&fs_info->super_lock);
3653 	}
3654 }
3655 
3656 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3657 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3658 				  #opt)
3659 
3660 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3661 					     u64 flag, const char* name)
3662 {
3663 	struct btrfs_super_block *disk_super;
3664 	u64 features;
3665 
3666 	disk_super = fs_info->super_copy;
3667 	features = btrfs_super_incompat_flags(disk_super);
3668 	if (features & flag) {
3669 		spin_lock(&fs_info->super_lock);
3670 		features = btrfs_super_incompat_flags(disk_super);
3671 		if (features & flag) {
3672 			features &= ~flag;
3673 			btrfs_set_super_incompat_flags(disk_super, features);
3674 			btrfs_info(fs_info,
3675 				"clearing incompat feature flag for %s (0x%llx)",
3676 				name, flag);
3677 		}
3678 		spin_unlock(&fs_info->super_lock);
3679 	}
3680 }
3681 
3682 #define btrfs_fs_incompat(fs_info, opt) \
3683 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3684 
3685 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3686 {
3687 	struct btrfs_super_block *disk_super;
3688 	disk_super = fs_info->super_copy;
3689 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3690 }
3691 
3692 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3693 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3694 				 #opt)
3695 
3696 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3697 					    u64 flag, const char *name)
3698 {
3699 	struct btrfs_super_block *disk_super;
3700 	u64 features;
3701 
3702 	disk_super = fs_info->super_copy;
3703 	features = btrfs_super_compat_ro_flags(disk_super);
3704 	if (!(features & flag)) {
3705 		spin_lock(&fs_info->super_lock);
3706 		features = btrfs_super_compat_ro_flags(disk_super);
3707 		if (!(features & flag)) {
3708 			features |= flag;
3709 			btrfs_set_super_compat_ro_flags(disk_super, features);
3710 			btrfs_info(fs_info,
3711 				"setting compat-ro feature flag for %s (0x%llx)",
3712 				name, flag);
3713 		}
3714 		spin_unlock(&fs_info->super_lock);
3715 	}
3716 }
3717 
3718 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3719 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3720 				   #opt)
3721 
3722 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3723 					      u64 flag, const char *name)
3724 {
3725 	struct btrfs_super_block *disk_super;
3726 	u64 features;
3727 
3728 	disk_super = fs_info->super_copy;
3729 	features = btrfs_super_compat_ro_flags(disk_super);
3730 	if (features & flag) {
3731 		spin_lock(&fs_info->super_lock);
3732 		features = btrfs_super_compat_ro_flags(disk_super);
3733 		if (features & flag) {
3734 			features &= ~flag;
3735 			btrfs_set_super_compat_ro_flags(disk_super, features);
3736 			btrfs_info(fs_info,
3737 				"clearing compat-ro feature flag for %s (0x%llx)",
3738 				name, flag);
3739 		}
3740 		spin_unlock(&fs_info->super_lock);
3741 	}
3742 }
3743 
3744 #define btrfs_fs_compat_ro(fs_info, opt) \
3745 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3746 
3747 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3748 {
3749 	struct btrfs_super_block *disk_super;
3750 	disk_super = fs_info->super_copy;
3751 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3752 }
3753 
3754 /* acl.c */
3755 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3756 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3757 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3758 		  struct posix_acl *acl, int type);
3759 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3760 		   struct inode *inode, struct inode *dir);
3761 #else
3762 #define btrfs_get_acl NULL
3763 #define btrfs_set_acl NULL
3764 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3765 				 struct inode *inode, struct inode *dir)
3766 {
3767 	return 0;
3768 }
3769 #endif
3770 
3771 /* relocation.c */
3772 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3773 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3774 			  struct btrfs_root *root);
3775 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3776 			    struct btrfs_root *root);
3777 int btrfs_recover_relocation(struct btrfs_root *root);
3778 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3779 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3780 			  struct btrfs_root *root, struct extent_buffer *buf,
3781 			  struct extent_buffer *cow);
3782 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3783 			      u64 *bytes_to_reserve);
3784 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3785 			      struct btrfs_pending_snapshot *pending);
3786 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3787 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3788 				   u64 bytenr);
3789 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3790 
3791 /* scrub.c */
3792 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3793 		    u64 end, struct btrfs_scrub_progress *progress,
3794 		    int readonly, int is_dev_replace);
3795 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3796 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3797 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3798 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3799 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3800 			 struct btrfs_scrub_progress *progress);
3801 static inline void btrfs_init_full_stripe_locks_tree(
3802 			struct btrfs_full_stripe_locks_tree *locks_root)
3803 {
3804 	locks_root->root = RB_ROOT;
3805 	mutex_init(&locks_root->lock);
3806 }
3807 
3808 /* dev-replace.c */
3809 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3810 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3811 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3812 
3813 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3814 {
3815 	btrfs_bio_counter_sub(fs_info, 1);
3816 }
3817 
3818 static inline int is_fstree(u64 rootid)
3819 {
3820 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3821 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3822 	      !btrfs_qgroup_level(rootid)))
3823 		return 1;
3824 	return 0;
3825 }
3826 
3827 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3828 {
3829 	return signal_pending(current);
3830 }
3831 
3832 /* verity.c */
3833 #ifdef CONFIG_FS_VERITY
3834 
3835 extern const struct fsverity_operations btrfs_verityops;
3836 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3837 
3838 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3839 		   encryption, 8);
3840 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3841 		   size, 64);
3842 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3843 			 struct btrfs_verity_descriptor_item, encryption, 8);
3844 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3845 			 struct btrfs_verity_descriptor_item, size, 64);
3846 
3847 #else
3848 
3849 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3850 {
3851 	return 0;
3852 }
3853 
3854 #endif
3855 
3856 /* Sanity test specific functions */
3857 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3858 void btrfs_test_destroy_inode(struct inode *inode);
3859 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3860 {
3861 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3862 }
3863 #else
3864 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3865 {
3866 	return 0;
3867 }
3868 #endif
3869 
3870 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3871 {
3872 	return fs_info->zoned != 0;
3873 }
3874 
3875 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3876 {
3877 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3878 }
3879 
3880 /*
3881  * We use page status Private2 to indicate there is an ordered extent with
3882  * unfinished IO.
3883  *
3884  * Rename the Private2 accessors to Ordered, to improve readability.
3885  */
3886 #define PageOrdered(page)		PagePrivate2(page)
3887 #define SetPageOrdered(page)		SetPagePrivate2(page)
3888 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
3889 
3890 #endif
3891