1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #ifndef __BTRFS_CTREE__ 20 #define __BTRFS_CTREE__ 21 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/fs.h> 25 #include <linux/rwsem.h> 26 #include <linux/semaphore.h> 27 #include <linux/completion.h> 28 #include <linux/backing-dev.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/kobject.h> 32 #include <trace/events/btrfs.h> 33 #include <asm/kmap_types.h> 34 #include <linux/pagemap.h> 35 #include <linux/btrfs.h> 36 #include <linux/workqueue.h> 37 #include "extent_io.h" 38 #include "extent_map.h" 39 #include "async-thread.h" 40 41 struct btrfs_trans_handle; 42 struct btrfs_transaction; 43 struct btrfs_pending_snapshot; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_transaction_cachep; 46 extern struct kmem_cache *btrfs_bit_radix_cachep; 47 extern struct kmem_cache *btrfs_path_cachep; 48 extern struct kmem_cache *btrfs_free_space_cachep; 49 struct btrfs_ordered_sum; 50 51 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 52 #define STATIC noinline 53 #else 54 #define STATIC static noinline 55 #endif 56 57 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 58 59 #define BTRFS_MAX_MIRRORS 3 60 61 #define BTRFS_MAX_LEVEL 8 62 63 #define BTRFS_COMPAT_EXTENT_TREE_V0 64 65 /* 66 * files bigger than this get some pre-flushing when they are added 67 * to the ordered operations list. That way we limit the total 68 * work done by the commit 69 */ 70 #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024) 71 72 /* holds pointers to all of the tree roots */ 73 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 74 75 /* stores information about which extents are in use, and reference counts */ 76 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 77 78 /* 79 * chunk tree stores translations from logical -> physical block numbering 80 * the super block points to the chunk tree 81 */ 82 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 83 84 /* 85 * stores information about which areas of a given device are in use. 86 * one per device. The tree of tree roots points to the device tree 87 */ 88 #define BTRFS_DEV_TREE_OBJECTID 4ULL 89 90 /* one per subvolume, storing files and directories */ 91 #define BTRFS_FS_TREE_OBJECTID 5ULL 92 93 /* directory objectid inside the root tree */ 94 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 95 96 /* holds checksums of all the data extents */ 97 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 98 99 /* holds quota configuration and tracking */ 100 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 101 102 /* for storing items that use the BTRFS_UUID_KEY* types */ 103 #define BTRFS_UUID_TREE_OBJECTID 9ULL 104 105 /* for storing balance parameters in the root tree */ 106 #define BTRFS_BALANCE_OBJECTID -4ULL 107 108 /* orhpan objectid for tracking unlinked/truncated files */ 109 #define BTRFS_ORPHAN_OBJECTID -5ULL 110 111 /* does write ahead logging to speed up fsyncs */ 112 #define BTRFS_TREE_LOG_OBJECTID -6ULL 113 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 114 115 /* for space balancing */ 116 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 117 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 118 119 /* 120 * extent checksums all have this objectid 121 * this allows them to share the logging tree 122 * for fsyncs 123 */ 124 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 125 126 /* For storing free space cache */ 127 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 128 129 /* 130 * The inode number assigned to the special inode for storing 131 * free ino cache 132 */ 133 #define BTRFS_FREE_INO_OBJECTID -12ULL 134 135 /* dummy objectid represents multiple objectids */ 136 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 137 138 /* 139 * All files have objectids in this range. 140 */ 141 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 142 #define BTRFS_LAST_FREE_OBJECTID -256ULL 143 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 144 145 146 /* 147 * the device items go into the chunk tree. The key is in the form 148 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 149 */ 150 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 151 152 #define BTRFS_BTREE_INODE_OBJECTID 1 153 154 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 155 156 #define BTRFS_DEV_REPLACE_DEVID 0ULL 157 158 /* 159 * the max metadata block size. This limit is somewhat artificial, 160 * but the memmove costs go through the roof for larger blocks. 161 */ 162 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 163 164 /* 165 * we can actually store much bigger names, but lets not confuse the rest 166 * of linux 167 */ 168 #define BTRFS_NAME_LEN 255 169 170 /* 171 * Theoretical limit is larger, but we keep this down to a sane 172 * value. That should limit greatly the possibility of collisions on 173 * inode ref items. 174 */ 175 #define BTRFS_LINK_MAX 65535U 176 177 /* 32 bytes in various csum fields */ 178 #define BTRFS_CSUM_SIZE 32 179 180 /* csum types */ 181 #define BTRFS_CSUM_TYPE_CRC32 0 182 183 static int btrfs_csum_sizes[] = { 4, 0 }; 184 185 /* four bytes for CRC32 */ 186 #define BTRFS_EMPTY_DIR_SIZE 0 187 188 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */ 189 #define REQ_GET_READ_MIRRORS (1 << 30) 190 191 #define BTRFS_FT_UNKNOWN 0 192 #define BTRFS_FT_REG_FILE 1 193 #define BTRFS_FT_DIR 2 194 #define BTRFS_FT_CHRDEV 3 195 #define BTRFS_FT_BLKDEV 4 196 #define BTRFS_FT_FIFO 5 197 #define BTRFS_FT_SOCK 6 198 #define BTRFS_FT_SYMLINK 7 199 #define BTRFS_FT_XATTR 8 200 #define BTRFS_FT_MAX 9 201 202 /* ioprio of readahead is set to idle */ 203 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 204 205 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024) 206 207 /* 208 * The key defines the order in the tree, and so it also defines (optimal) 209 * block layout. 210 * 211 * objectid corresponds to the inode number. 212 * 213 * type tells us things about the object, and is a kind of stream selector. 214 * so for a given inode, keys with type of 1 might refer to the inode data, 215 * type of 2 may point to file data in the btree and type == 3 may point to 216 * extents. 217 * 218 * offset is the starting byte offset for this key in the stream. 219 * 220 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 221 * in cpu native order. Otherwise they are identical and their sizes 222 * should be the same (ie both packed) 223 */ 224 struct btrfs_disk_key { 225 __le64 objectid; 226 u8 type; 227 __le64 offset; 228 } __attribute__ ((__packed__)); 229 230 struct btrfs_key { 231 u64 objectid; 232 u8 type; 233 u64 offset; 234 } __attribute__ ((__packed__)); 235 236 struct btrfs_mapping_tree { 237 struct extent_map_tree map_tree; 238 }; 239 240 struct btrfs_dev_item { 241 /* the internal btrfs device id */ 242 __le64 devid; 243 244 /* size of the device */ 245 __le64 total_bytes; 246 247 /* bytes used */ 248 __le64 bytes_used; 249 250 /* optimal io alignment for this device */ 251 __le32 io_align; 252 253 /* optimal io width for this device */ 254 __le32 io_width; 255 256 /* minimal io size for this device */ 257 __le32 sector_size; 258 259 /* type and info about this device */ 260 __le64 type; 261 262 /* expected generation for this device */ 263 __le64 generation; 264 265 /* 266 * starting byte of this partition on the device, 267 * to allow for stripe alignment in the future 268 */ 269 __le64 start_offset; 270 271 /* grouping information for allocation decisions */ 272 __le32 dev_group; 273 274 /* seek speed 0-100 where 100 is fastest */ 275 u8 seek_speed; 276 277 /* bandwidth 0-100 where 100 is fastest */ 278 u8 bandwidth; 279 280 /* btrfs generated uuid for this device */ 281 u8 uuid[BTRFS_UUID_SIZE]; 282 283 /* uuid of FS who owns this device */ 284 u8 fsid[BTRFS_UUID_SIZE]; 285 } __attribute__ ((__packed__)); 286 287 struct btrfs_stripe { 288 __le64 devid; 289 __le64 offset; 290 u8 dev_uuid[BTRFS_UUID_SIZE]; 291 } __attribute__ ((__packed__)); 292 293 struct btrfs_chunk { 294 /* size of this chunk in bytes */ 295 __le64 length; 296 297 /* objectid of the root referencing this chunk */ 298 __le64 owner; 299 300 __le64 stripe_len; 301 __le64 type; 302 303 /* optimal io alignment for this chunk */ 304 __le32 io_align; 305 306 /* optimal io width for this chunk */ 307 __le32 io_width; 308 309 /* minimal io size for this chunk */ 310 __le32 sector_size; 311 312 /* 2^16 stripes is quite a lot, a second limit is the size of a single 313 * item in the btree 314 */ 315 __le16 num_stripes; 316 317 /* sub stripes only matter for raid10 */ 318 __le16 sub_stripes; 319 struct btrfs_stripe stripe; 320 /* additional stripes go here */ 321 } __attribute__ ((__packed__)); 322 323 #define BTRFS_FREE_SPACE_EXTENT 1 324 #define BTRFS_FREE_SPACE_BITMAP 2 325 326 struct btrfs_free_space_entry { 327 __le64 offset; 328 __le64 bytes; 329 u8 type; 330 } __attribute__ ((__packed__)); 331 332 struct btrfs_free_space_header { 333 struct btrfs_disk_key location; 334 __le64 generation; 335 __le64 num_entries; 336 __le64 num_bitmaps; 337 } __attribute__ ((__packed__)); 338 339 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 340 { 341 BUG_ON(num_stripes == 0); 342 return sizeof(struct btrfs_chunk) + 343 sizeof(struct btrfs_stripe) * (num_stripes - 1); 344 } 345 346 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 347 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 348 349 /* 350 * File system states 351 */ 352 #define BTRFS_FS_STATE_ERROR 0 353 #define BTRFS_FS_STATE_REMOUNTING 1 354 #define BTRFS_FS_STATE_TRANS_ABORTED 2 355 #define BTRFS_FS_STATE_DEV_REPLACING 3 356 357 /* Super block flags */ 358 /* Errors detected */ 359 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 360 361 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 362 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 363 364 #define BTRFS_BACKREF_REV_MAX 256 365 #define BTRFS_BACKREF_REV_SHIFT 56 366 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 367 BTRFS_BACKREF_REV_SHIFT) 368 369 #define BTRFS_OLD_BACKREF_REV 0 370 #define BTRFS_MIXED_BACKREF_REV 1 371 372 /* 373 * every tree block (leaf or node) starts with this header. 374 */ 375 struct btrfs_header { 376 /* these first four must match the super block */ 377 u8 csum[BTRFS_CSUM_SIZE]; 378 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 379 __le64 bytenr; /* which block this node is supposed to live in */ 380 __le64 flags; 381 382 /* allowed to be different from the super from here on down */ 383 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 384 __le64 generation; 385 __le64 owner; 386 __le32 nritems; 387 u8 level; 388 } __attribute__ ((__packed__)); 389 390 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ 391 sizeof(struct btrfs_header)) / \ 392 sizeof(struct btrfs_key_ptr)) 393 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) 394 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize)) 395 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 396 sizeof(struct btrfs_item) - \ 397 sizeof(struct btrfs_file_extent_item)) 398 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 399 sizeof(struct btrfs_item) -\ 400 sizeof(struct btrfs_dir_item)) 401 402 403 /* 404 * this is a very generous portion of the super block, giving us 405 * room to translate 14 chunks with 3 stripes each. 406 */ 407 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 408 #define BTRFS_LABEL_SIZE 256 409 410 /* 411 * just in case we somehow lose the roots and are not able to mount, 412 * we store an array of the roots from previous transactions 413 * in the super. 414 */ 415 #define BTRFS_NUM_BACKUP_ROOTS 4 416 struct btrfs_root_backup { 417 __le64 tree_root; 418 __le64 tree_root_gen; 419 420 __le64 chunk_root; 421 __le64 chunk_root_gen; 422 423 __le64 extent_root; 424 __le64 extent_root_gen; 425 426 __le64 fs_root; 427 __le64 fs_root_gen; 428 429 __le64 dev_root; 430 __le64 dev_root_gen; 431 432 __le64 csum_root; 433 __le64 csum_root_gen; 434 435 __le64 total_bytes; 436 __le64 bytes_used; 437 __le64 num_devices; 438 /* future */ 439 __le64 unused_64[4]; 440 441 u8 tree_root_level; 442 u8 chunk_root_level; 443 u8 extent_root_level; 444 u8 fs_root_level; 445 u8 dev_root_level; 446 u8 csum_root_level; 447 /* future and to align */ 448 u8 unused_8[10]; 449 } __attribute__ ((__packed__)); 450 451 /* 452 * the super block basically lists the main trees of the FS 453 * it currently lacks any block count etc etc 454 */ 455 struct btrfs_super_block { 456 u8 csum[BTRFS_CSUM_SIZE]; 457 /* the first 4 fields must match struct btrfs_header */ 458 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 459 __le64 bytenr; /* this block number */ 460 __le64 flags; 461 462 /* allowed to be different from the btrfs_header from here own down */ 463 __le64 magic; 464 __le64 generation; 465 __le64 root; 466 __le64 chunk_root; 467 __le64 log_root; 468 469 /* this will help find the new super based on the log root */ 470 __le64 log_root_transid; 471 __le64 total_bytes; 472 __le64 bytes_used; 473 __le64 root_dir_objectid; 474 __le64 num_devices; 475 __le32 sectorsize; 476 __le32 nodesize; 477 __le32 leafsize; 478 __le32 stripesize; 479 __le32 sys_chunk_array_size; 480 __le64 chunk_root_generation; 481 __le64 compat_flags; 482 __le64 compat_ro_flags; 483 __le64 incompat_flags; 484 __le16 csum_type; 485 u8 root_level; 486 u8 chunk_root_level; 487 u8 log_root_level; 488 struct btrfs_dev_item dev_item; 489 490 char label[BTRFS_LABEL_SIZE]; 491 492 __le64 cache_generation; 493 __le64 uuid_tree_generation; 494 495 /* future expansion */ 496 __le64 reserved[30]; 497 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 498 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 499 } __attribute__ ((__packed__)); 500 501 /* 502 * Compat flags that we support. If any incompat flags are set other than the 503 * ones specified below then we will fail to mount 504 */ 505 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) 506 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1) 507 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2) 508 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3) 509 /* 510 * some patches floated around with a second compression method 511 * lets save that incompat here for when they do get in 512 * Note we don't actually support it, we're just reserving the 513 * number 514 */ 515 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4) 516 517 /* 518 * older kernels tried to do bigger metadata blocks, but the 519 * code was pretty buggy. Lets not let them try anymore. 520 */ 521 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5) 522 523 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6) 524 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7) 525 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8) 526 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9) 527 528 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 529 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 530 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 531 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL 532 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 533 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 534 535 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 536 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 537 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 538 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 539 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 540 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 541 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 542 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 543 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 544 BTRFS_FEATURE_INCOMPAT_NO_HOLES) 545 546 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 547 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 548 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 549 550 /* 551 * A leaf is full of items. offset and size tell us where to find 552 * the item in the leaf (relative to the start of the data area) 553 */ 554 struct btrfs_item { 555 struct btrfs_disk_key key; 556 __le32 offset; 557 __le32 size; 558 } __attribute__ ((__packed__)); 559 560 /* 561 * leaves have an item area and a data area: 562 * [item0, item1....itemN] [free space] [dataN...data1, data0] 563 * 564 * The data is separate from the items to get the keys closer together 565 * during searches. 566 */ 567 struct btrfs_leaf { 568 struct btrfs_header header; 569 struct btrfs_item items[]; 570 } __attribute__ ((__packed__)); 571 572 /* 573 * all non-leaf blocks are nodes, they hold only keys and pointers to 574 * other blocks 575 */ 576 struct btrfs_key_ptr { 577 struct btrfs_disk_key key; 578 __le64 blockptr; 579 __le64 generation; 580 } __attribute__ ((__packed__)); 581 582 struct btrfs_node { 583 struct btrfs_header header; 584 struct btrfs_key_ptr ptrs[]; 585 } __attribute__ ((__packed__)); 586 587 /* 588 * btrfs_paths remember the path taken from the root down to the leaf. 589 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 590 * to any other levels that are present. 591 * 592 * The slots array records the index of the item or block pointer 593 * used while walking the tree. 594 */ 595 struct btrfs_path { 596 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 597 int slots[BTRFS_MAX_LEVEL]; 598 /* if there is real range locking, this locks field will change */ 599 int locks[BTRFS_MAX_LEVEL]; 600 int reada; 601 /* keep some upper locks as we walk down */ 602 int lowest_level; 603 604 /* 605 * set by btrfs_split_item, tells search_slot to keep all locks 606 * and to force calls to keep space in the nodes 607 */ 608 unsigned int search_for_split:1; 609 unsigned int keep_locks:1; 610 unsigned int skip_locking:1; 611 unsigned int leave_spinning:1; 612 unsigned int search_commit_root:1; 613 unsigned int need_commit_sem:1; 614 }; 615 616 /* 617 * items in the extent btree are used to record the objectid of the 618 * owner of the block and the number of references 619 */ 620 621 struct btrfs_extent_item { 622 __le64 refs; 623 __le64 generation; 624 __le64 flags; 625 } __attribute__ ((__packed__)); 626 627 struct btrfs_extent_item_v0 { 628 __le32 refs; 629 } __attribute__ ((__packed__)); 630 631 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \ 632 sizeof(struct btrfs_item)) 633 634 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 635 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 636 637 /* following flags only apply to tree blocks */ 638 639 /* use full backrefs for extent pointers in the block */ 640 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 641 642 /* 643 * this flag is only used internally by scrub and may be changed at any time 644 * it is only declared here to avoid collisions 645 */ 646 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 647 648 struct btrfs_tree_block_info { 649 struct btrfs_disk_key key; 650 u8 level; 651 } __attribute__ ((__packed__)); 652 653 struct btrfs_extent_data_ref { 654 __le64 root; 655 __le64 objectid; 656 __le64 offset; 657 __le32 count; 658 } __attribute__ ((__packed__)); 659 660 struct btrfs_shared_data_ref { 661 __le32 count; 662 } __attribute__ ((__packed__)); 663 664 struct btrfs_extent_inline_ref { 665 u8 type; 666 __le64 offset; 667 } __attribute__ ((__packed__)); 668 669 /* old style backrefs item */ 670 struct btrfs_extent_ref_v0 { 671 __le64 root; 672 __le64 generation; 673 __le64 objectid; 674 __le32 count; 675 } __attribute__ ((__packed__)); 676 677 678 /* dev extents record free space on individual devices. The owner 679 * field points back to the chunk allocation mapping tree that allocated 680 * the extent. The chunk tree uuid field is a way to double check the owner 681 */ 682 struct btrfs_dev_extent { 683 __le64 chunk_tree; 684 __le64 chunk_objectid; 685 __le64 chunk_offset; 686 __le64 length; 687 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 688 } __attribute__ ((__packed__)); 689 690 struct btrfs_inode_ref { 691 __le64 index; 692 __le16 name_len; 693 /* name goes here */ 694 } __attribute__ ((__packed__)); 695 696 struct btrfs_inode_extref { 697 __le64 parent_objectid; 698 __le64 index; 699 __le16 name_len; 700 __u8 name[0]; 701 /* name goes here */ 702 } __attribute__ ((__packed__)); 703 704 struct btrfs_timespec { 705 __le64 sec; 706 __le32 nsec; 707 } __attribute__ ((__packed__)); 708 709 enum btrfs_compression_type { 710 BTRFS_COMPRESS_NONE = 0, 711 BTRFS_COMPRESS_ZLIB = 1, 712 BTRFS_COMPRESS_LZO = 2, 713 BTRFS_COMPRESS_TYPES = 2, 714 BTRFS_COMPRESS_LAST = 3, 715 }; 716 717 struct btrfs_inode_item { 718 /* nfs style generation number */ 719 __le64 generation; 720 /* transid that last touched this inode */ 721 __le64 transid; 722 __le64 size; 723 __le64 nbytes; 724 __le64 block_group; 725 __le32 nlink; 726 __le32 uid; 727 __le32 gid; 728 __le32 mode; 729 __le64 rdev; 730 __le64 flags; 731 732 /* modification sequence number for NFS */ 733 __le64 sequence; 734 735 /* 736 * a little future expansion, for more than this we can 737 * just grow the inode item and version it 738 */ 739 __le64 reserved[4]; 740 struct btrfs_timespec atime; 741 struct btrfs_timespec ctime; 742 struct btrfs_timespec mtime; 743 struct btrfs_timespec otime; 744 } __attribute__ ((__packed__)); 745 746 struct btrfs_dir_log_item { 747 __le64 end; 748 } __attribute__ ((__packed__)); 749 750 struct btrfs_dir_item { 751 struct btrfs_disk_key location; 752 __le64 transid; 753 __le16 data_len; 754 __le16 name_len; 755 u8 type; 756 } __attribute__ ((__packed__)); 757 758 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 759 760 /* 761 * Internal in-memory flag that a subvolume has been marked for deletion but 762 * still visible as a directory 763 */ 764 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 765 766 struct btrfs_root_item { 767 struct btrfs_inode_item inode; 768 __le64 generation; 769 __le64 root_dirid; 770 __le64 bytenr; 771 __le64 byte_limit; 772 __le64 bytes_used; 773 __le64 last_snapshot; 774 __le64 flags; 775 __le32 refs; 776 struct btrfs_disk_key drop_progress; 777 u8 drop_level; 778 u8 level; 779 780 /* 781 * The following fields appear after subvol_uuids+subvol_times 782 * were introduced. 783 */ 784 785 /* 786 * This generation number is used to test if the new fields are valid 787 * and up to date while reading the root item. Everytime the root item 788 * is written out, the "generation" field is copied into this field. If 789 * anyone ever mounted the fs with an older kernel, we will have 790 * mismatching generation values here and thus must invalidate the 791 * new fields. See btrfs_update_root and btrfs_find_last_root for 792 * details. 793 * the offset of generation_v2 is also used as the start for the memset 794 * when invalidating the fields. 795 */ 796 __le64 generation_v2; 797 u8 uuid[BTRFS_UUID_SIZE]; 798 u8 parent_uuid[BTRFS_UUID_SIZE]; 799 u8 received_uuid[BTRFS_UUID_SIZE]; 800 __le64 ctransid; /* updated when an inode changes */ 801 __le64 otransid; /* trans when created */ 802 __le64 stransid; /* trans when sent. non-zero for received subvol */ 803 __le64 rtransid; /* trans when received. non-zero for received subvol */ 804 struct btrfs_timespec ctime; 805 struct btrfs_timespec otime; 806 struct btrfs_timespec stime; 807 struct btrfs_timespec rtime; 808 __le64 reserved[8]; /* for future */ 809 } __attribute__ ((__packed__)); 810 811 /* 812 * this is used for both forward and backward root refs 813 */ 814 struct btrfs_root_ref { 815 __le64 dirid; 816 __le64 sequence; 817 __le16 name_len; 818 } __attribute__ ((__packed__)); 819 820 struct btrfs_disk_balance_args { 821 /* 822 * profiles to operate on, single is denoted by 823 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 824 */ 825 __le64 profiles; 826 827 /* usage filter */ 828 __le64 usage; 829 830 /* devid filter */ 831 __le64 devid; 832 833 /* devid subset filter [pstart..pend) */ 834 __le64 pstart; 835 __le64 pend; 836 837 /* btrfs virtual address space subset filter [vstart..vend) */ 838 __le64 vstart; 839 __le64 vend; 840 841 /* 842 * profile to convert to, single is denoted by 843 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 844 */ 845 __le64 target; 846 847 /* BTRFS_BALANCE_ARGS_* */ 848 __le64 flags; 849 850 /* BTRFS_BALANCE_ARGS_LIMIT value */ 851 __le64 limit; 852 853 __le64 unused[7]; 854 } __attribute__ ((__packed__)); 855 856 /* 857 * store balance parameters to disk so that balance can be properly 858 * resumed after crash or unmount 859 */ 860 struct btrfs_balance_item { 861 /* BTRFS_BALANCE_* */ 862 __le64 flags; 863 864 struct btrfs_disk_balance_args data; 865 struct btrfs_disk_balance_args meta; 866 struct btrfs_disk_balance_args sys; 867 868 __le64 unused[4]; 869 } __attribute__ ((__packed__)); 870 871 #define BTRFS_FILE_EXTENT_INLINE 0 872 #define BTRFS_FILE_EXTENT_REG 1 873 #define BTRFS_FILE_EXTENT_PREALLOC 2 874 875 struct btrfs_file_extent_item { 876 /* 877 * transaction id that created this extent 878 */ 879 __le64 generation; 880 /* 881 * max number of bytes to hold this extent in ram 882 * when we split a compressed extent we can't know how big 883 * each of the resulting pieces will be. So, this is 884 * an upper limit on the size of the extent in ram instead of 885 * an exact limit. 886 */ 887 __le64 ram_bytes; 888 889 /* 890 * 32 bits for the various ways we might encode the data, 891 * including compression and encryption. If any of these 892 * are set to something a given disk format doesn't understand 893 * it is treated like an incompat flag for reading and writing, 894 * but not for stat. 895 */ 896 u8 compression; 897 u8 encryption; 898 __le16 other_encoding; /* spare for later use */ 899 900 /* are we inline data or a real extent? */ 901 u8 type; 902 903 /* 904 * disk space consumed by the extent, checksum blocks are included 905 * in these numbers 906 */ 907 __le64 disk_bytenr; 908 __le64 disk_num_bytes; 909 /* 910 * the logical offset in file blocks (no csums) 911 * this extent record is for. This allows a file extent to point 912 * into the middle of an existing extent on disk, sharing it 913 * between two snapshots (useful if some bytes in the middle of the 914 * extent have changed 915 */ 916 __le64 offset; 917 /* 918 * the logical number of file blocks (no csums included). This 919 * always reflects the size uncompressed and without encoding. 920 */ 921 __le64 num_bytes; 922 923 } __attribute__ ((__packed__)); 924 925 struct btrfs_csum_item { 926 u8 csum; 927 } __attribute__ ((__packed__)); 928 929 struct btrfs_dev_stats_item { 930 /* 931 * grow this item struct at the end for future enhancements and keep 932 * the existing values unchanged 933 */ 934 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 935 } __attribute__ ((__packed__)); 936 937 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 938 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 939 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 940 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 941 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 942 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 943 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 944 945 struct btrfs_dev_replace { 946 u64 replace_state; /* see #define above */ 947 u64 time_started; /* seconds since 1-Jan-1970 */ 948 u64 time_stopped; /* seconds since 1-Jan-1970 */ 949 atomic64_t num_write_errors; 950 atomic64_t num_uncorrectable_read_errors; 951 952 u64 cursor_left; 953 u64 committed_cursor_left; 954 u64 cursor_left_last_write_of_item; 955 u64 cursor_right; 956 957 u64 cont_reading_from_srcdev_mode; /* see #define above */ 958 959 int is_valid; 960 int item_needs_writeback; 961 struct btrfs_device *srcdev; 962 struct btrfs_device *tgtdev; 963 964 pid_t lock_owner; 965 atomic_t nesting_level; 966 struct mutex lock_finishing_cancel_unmount; 967 struct mutex lock_management_lock; 968 struct mutex lock; 969 970 struct btrfs_scrub_progress scrub_progress; 971 }; 972 973 struct btrfs_dev_replace_item { 974 /* 975 * grow this item struct at the end for future enhancements and keep 976 * the existing values unchanged 977 */ 978 __le64 src_devid; 979 __le64 cursor_left; 980 __le64 cursor_right; 981 __le64 cont_reading_from_srcdev_mode; 982 983 __le64 replace_state; 984 __le64 time_started; 985 __le64 time_stopped; 986 __le64 num_write_errors; 987 __le64 num_uncorrectable_read_errors; 988 } __attribute__ ((__packed__)); 989 990 /* different types of block groups (and chunks) */ 991 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 992 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 993 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 994 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 995 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 996 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 997 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 998 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 999 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 1000 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 1001 BTRFS_SPACE_INFO_GLOBAL_RSV) 1002 1003 enum btrfs_raid_types { 1004 BTRFS_RAID_RAID10, 1005 BTRFS_RAID_RAID1, 1006 BTRFS_RAID_DUP, 1007 BTRFS_RAID_RAID0, 1008 BTRFS_RAID_SINGLE, 1009 BTRFS_RAID_RAID5, 1010 BTRFS_RAID_RAID6, 1011 BTRFS_NR_RAID_TYPES 1012 }; 1013 1014 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 1015 BTRFS_BLOCK_GROUP_SYSTEM | \ 1016 BTRFS_BLOCK_GROUP_METADATA) 1017 1018 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 1019 BTRFS_BLOCK_GROUP_RAID1 | \ 1020 BTRFS_BLOCK_GROUP_RAID5 | \ 1021 BTRFS_BLOCK_GROUP_RAID6 | \ 1022 BTRFS_BLOCK_GROUP_DUP | \ 1023 BTRFS_BLOCK_GROUP_RAID10) 1024 /* 1025 * We need a bit for restriper to be able to tell when chunks of type 1026 * SINGLE are available. This "extended" profile format is used in 1027 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 1028 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 1029 * to avoid remappings between two formats in future. 1030 */ 1031 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 1032 1033 /* 1034 * A fake block group type that is used to communicate global block reserve 1035 * size to userspace via the SPACE_INFO ioctl. 1036 */ 1037 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 1038 1039 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 1040 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 1041 1042 static inline u64 chunk_to_extended(u64 flags) 1043 { 1044 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 1045 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1046 1047 return flags; 1048 } 1049 static inline u64 extended_to_chunk(u64 flags) 1050 { 1051 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1052 } 1053 1054 struct btrfs_block_group_item { 1055 __le64 used; 1056 __le64 chunk_objectid; 1057 __le64 flags; 1058 } __attribute__ ((__packed__)); 1059 1060 /* 1061 * is subvolume quota turned on? 1062 */ 1063 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 1064 /* 1065 * RESCAN is set during the initialization phase 1066 */ 1067 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 1068 /* 1069 * Some qgroup entries are known to be out of date, 1070 * either because the configuration has changed in a way that 1071 * makes a rescan necessary, or because the fs has been mounted 1072 * with a non-qgroup-aware version. 1073 * Turning qouta off and on again makes it inconsistent, too. 1074 */ 1075 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 1076 1077 #define BTRFS_QGROUP_STATUS_VERSION 1 1078 1079 struct btrfs_qgroup_status_item { 1080 __le64 version; 1081 /* 1082 * the generation is updated during every commit. As older 1083 * versions of btrfs are not aware of qgroups, it will be 1084 * possible to detect inconsistencies by checking the 1085 * generation on mount time 1086 */ 1087 __le64 generation; 1088 1089 /* flag definitions see above */ 1090 __le64 flags; 1091 1092 /* 1093 * only used during scanning to record the progress 1094 * of the scan. It contains a logical address 1095 */ 1096 __le64 rescan; 1097 } __attribute__ ((__packed__)); 1098 1099 struct btrfs_qgroup_info_item { 1100 __le64 generation; 1101 __le64 rfer; 1102 __le64 rfer_cmpr; 1103 __le64 excl; 1104 __le64 excl_cmpr; 1105 } __attribute__ ((__packed__)); 1106 1107 /* flags definition for qgroup limits */ 1108 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0) 1109 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1) 1110 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2) 1111 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3) 1112 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4) 1113 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5) 1114 1115 struct btrfs_qgroup_limit_item { 1116 /* 1117 * only updated when any of the other values change 1118 */ 1119 __le64 flags; 1120 __le64 max_rfer; 1121 __le64 max_excl; 1122 __le64 rsv_rfer; 1123 __le64 rsv_excl; 1124 } __attribute__ ((__packed__)); 1125 1126 /* For raid type sysfs entries */ 1127 struct raid_kobject { 1128 int raid_type; 1129 struct kobject kobj; 1130 }; 1131 1132 struct btrfs_space_info { 1133 spinlock_t lock; 1134 1135 u64 total_bytes; /* total bytes in the space, 1136 this doesn't take mirrors into account */ 1137 u64 bytes_used; /* total bytes used, 1138 this doesn't take mirrors into account */ 1139 u64 bytes_pinned; /* total bytes pinned, will be freed when the 1140 transaction finishes */ 1141 u64 bytes_reserved; /* total bytes the allocator has reserved for 1142 current allocations */ 1143 u64 bytes_may_use; /* number of bytes that may be used for 1144 delalloc/allocations */ 1145 u64 bytes_readonly; /* total bytes that are read only */ 1146 1147 unsigned int full:1; /* indicates that we cannot allocate any more 1148 chunks for this space */ 1149 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */ 1150 1151 unsigned int flush:1; /* set if we are trying to make space */ 1152 1153 unsigned int force_alloc; /* set if we need to force a chunk 1154 alloc for this space */ 1155 1156 u64 disk_used; /* total bytes used on disk */ 1157 u64 disk_total; /* total bytes on disk, takes mirrors into 1158 account */ 1159 1160 u64 flags; 1161 1162 /* 1163 * bytes_pinned is kept in line with what is actually pinned, as in 1164 * we've called update_block_group and dropped the bytes_used counter 1165 * and increased the bytes_pinned counter. However this means that 1166 * bytes_pinned does not reflect the bytes that will be pinned once the 1167 * delayed refs are flushed, so this counter is inc'ed everytime we call 1168 * btrfs_free_extent so it is a realtime count of what will be freed 1169 * once the transaction is committed. It will be zero'ed everytime the 1170 * transaction commits. 1171 */ 1172 struct percpu_counter total_bytes_pinned; 1173 1174 struct list_head list; 1175 1176 struct rw_semaphore groups_sem; 1177 /* for block groups in our same type */ 1178 struct list_head block_groups[BTRFS_NR_RAID_TYPES]; 1179 wait_queue_head_t wait; 1180 1181 struct kobject kobj; 1182 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES]; 1183 }; 1184 1185 #define BTRFS_BLOCK_RSV_GLOBAL 1 1186 #define BTRFS_BLOCK_RSV_DELALLOC 2 1187 #define BTRFS_BLOCK_RSV_TRANS 3 1188 #define BTRFS_BLOCK_RSV_CHUNK 4 1189 #define BTRFS_BLOCK_RSV_DELOPS 5 1190 #define BTRFS_BLOCK_RSV_EMPTY 6 1191 #define BTRFS_BLOCK_RSV_TEMP 7 1192 1193 struct btrfs_block_rsv { 1194 u64 size; 1195 u64 reserved; 1196 struct btrfs_space_info *space_info; 1197 spinlock_t lock; 1198 unsigned short full; 1199 unsigned short type; 1200 unsigned short failfast; 1201 }; 1202 1203 /* 1204 * free clusters are used to claim free space in relatively large chunks, 1205 * allowing us to do less seeky writes. They are used for all metadata 1206 * allocations and data allocations in ssd mode. 1207 */ 1208 struct btrfs_free_cluster { 1209 spinlock_t lock; 1210 spinlock_t refill_lock; 1211 struct rb_root root; 1212 1213 /* largest extent in this cluster */ 1214 u64 max_size; 1215 1216 /* first extent starting offset */ 1217 u64 window_start; 1218 1219 struct btrfs_block_group_cache *block_group; 1220 /* 1221 * when a cluster is allocated from a block group, we put the 1222 * cluster onto a list in the block group so that it can 1223 * be freed before the block group is freed. 1224 */ 1225 struct list_head block_group_list; 1226 }; 1227 1228 enum btrfs_caching_type { 1229 BTRFS_CACHE_NO = 0, 1230 BTRFS_CACHE_STARTED = 1, 1231 BTRFS_CACHE_FAST = 2, 1232 BTRFS_CACHE_FINISHED = 3, 1233 BTRFS_CACHE_ERROR = 4, 1234 }; 1235 1236 enum btrfs_disk_cache_state { 1237 BTRFS_DC_WRITTEN = 0, 1238 BTRFS_DC_ERROR = 1, 1239 BTRFS_DC_CLEAR = 2, 1240 BTRFS_DC_SETUP = 3, 1241 BTRFS_DC_NEED_WRITE = 4, 1242 }; 1243 1244 struct btrfs_caching_control { 1245 struct list_head list; 1246 struct mutex mutex; 1247 wait_queue_head_t wait; 1248 struct btrfs_work work; 1249 struct btrfs_block_group_cache *block_group; 1250 u64 progress; 1251 atomic_t count; 1252 }; 1253 1254 struct btrfs_block_group_cache { 1255 struct btrfs_key key; 1256 struct btrfs_block_group_item item; 1257 struct btrfs_fs_info *fs_info; 1258 struct inode *inode; 1259 spinlock_t lock; 1260 u64 pinned; 1261 u64 reserved; 1262 u64 delalloc_bytes; 1263 u64 bytes_super; 1264 u64 flags; 1265 u64 sectorsize; 1266 u64 cache_generation; 1267 1268 /* 1269 * It is just used for the delayed data space allocation because 1270 * only the data space allocation and the relative metadata update 1271 * can be done cross the transaction. 1272 */ 1273 struct rw_semaphore data_rwsem; 1274 1275 /* for raid56, this is a full stripe, without parity */ 1276 unsigned long full_stripe_len; 1277 1278 unsigned int ro:1; 1279 unsigned int dirty:1; 1280 unsigned int iref:1; 1281 1282 int disk_cache_state; 1283 1284 /* cache tracking stuff */ 1285 int cached; 1286 struct btrfs_caching_control *caching_ctl; 1287 u64 last_byte_to_unpin; 1288 1289 struct btrfs_space_info *space_info; 1290 1291 /* free space cache stuff */ 1292 struct btrfs_free_space_ctl *free_space_ctl; 1293 1294 /* block group cache stuff */ 1295 struct rb_node cache_node; 1296 1297 /* for block groups in the same raid type */ 1298 struct list_head list; 1299 1300 /* usage count */ 1301 atomic_t count; 1302 1303 /* List of struct btrfs_free_clusters for this block group. 1304 * Today it will only have one thing on it, but that may change 1305 */ 1306 struct list_head cluster_list; 1307 1308 /* For delayed block group creation */ 1309 struct list_head new_bg_list; 1310 }; 1311 1312 /* delayed seq elem */ 1313 struct seq_list { 1314 struct list_head list; 1315 u64 seq; 1316 }; 1317 1318 enum btrfs_orphan_cleanup_state { 1319 ORPHAN_CLEANUP_STARTED = 1, 1320 ORPHAN_CLEANUP_DONE = 2, 1321 }; 1322 1323 /* used by the raid56 code to lock stripes for read/modify/write */ 1324 struct btrfs_stripe_hash { 1325 struct list_head hash_list; 1326 wait_queue_head_t wait; 1327 spinlock_t lock; 1328 }; 1329 1330 /* used by the raid56 code to lock stripes for read/modify/write */ 1331 struct btrfs_stripe_hash_table { 1332 struct list_head stripe_cache; 1333 spinlock_t cache_lock; 1334 int cache_size; 1335 struct btrfs_stripe_hash table[]; 1336 }; 1337 1338 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 1339 1340 void btrfs_init_async_reclaim_work(struct work_struct *work); 1341 1342 /* fs_info */ 1343 struct reloc_control; 1344 struct btrfs_device; 1345 struct btrfs_fs_devices; 1346 struct btrfs_balance_control; 1347 struct btrfs_delayed_root; 1348 struct btrfs_fs_info { 1349 u8 fsid[BTRFS_FSID_SIZE]; 1350 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 1351 struct btrfs_root *extent_root; 1352 struct btrfs_root *tree_root; 1353 struct btrfs_root *chunk_root; 1354 struct btrfs_root *dev_root; 1355 struct btrfs_root *fs_root; 1356 struct btrfs_root *csum_root; 1357 struct btrfs_root *quota_root; 1358 struct btrfs_root *uuid_root; 1359 1360 /* the log root tree is a directory of all the other log roots */ 1361 struct btrfs_root *log_root_tree; 1362 1363 spinlock_t fs_roots_radix_lock; 1364 struct radix_tree_root fs_roots_radix; 1365 1366 /* block group cache stuff */ 1367 spinlock_t block_group_cache_lock; 1368 u64 first_logical_byte; 1369 struct rb_root block_group_cache_tree; 1370 1371 /* keep track of unallocated space */ 1372 spinlock_t free_chunk_lock; 1373 u64 free_chunk_space; 1374 1375 struct extent_io_tree freed_extents[2]; 1376 struct extent_io_tree *pinned_extents; 1377 1378 /* logical->physical extent mapping */ 1379 struct btrfs_mapping_tree mapping_tree; 1380 1381 /* 1382 * block reservation for extent, checksum, root tree and 1383 * delayed dir index item 1384 */ 1385 struct btrfs_block_rsv global_block_rsv; 1386 /* block reservation for delay allocation */ 1387 struct btrfs_block_rsv delalloc_block_rsv; 1388 /* block reservation for metadata operations */ 1389 struct btrfs_block_rsv trans_block_rsv; 1390 /* block reservation for chunk tree */ 1391 struct btrfs_block_rsv chunk_block_rsv; 1392 /* block reservation for delayed operations */ 1393 struct btrfs_block_rsv delayed_block_rsv; 1394 1395 struct btrfs_block_rsv empty_block_rsv; 1396 1397 u64 generation; 1398 u64 last_trans_committed; 1399 u64 avg_delayed_ref_runtime; 1400 1401 /* 1402 * this is updated to the current trans every time a full commit 1403 * is required instead of the faster short fsync log commits 1404 */ 1405 u64 last_trans_log_full_commit; 1406 unsigned long mount_opt; 1407 unsigned long compress_type:4; 1408 int commit_interval; 1409 /* 1410 * It is a suggestive number, the read side is safe even it gets a 1411 * wrong number because we will write out the data into a regular 1412 * extent. The write side(mount/remount) is under ->s_umount lock, 1413 * so it is also safe. 1414 */ 1415 u64 max_inline; 1416 /* 1417 * Protected by ->chunk_mutex and sb->s_umount. 1418 * 1419 * The reason that we use two lock to protect it is because only 1420 * remount and mount operations can change it and these two operations 1421 * are under sb->s_umount, but the read side (chunk allocation) can not 1422 * acquire sb->s_umount or the deadlock would happen. So we use two 1423 * locks to protect it. On the write side, we must acquire two locks, 1424 * and on the read side, we just need acquire one of them. 1425 */ 1426 u64 alloc_start; 1427 struct btrfs_transaction *running_transaction; 1428 wait_queue_head_t transaction_throttle; 1429 wait_queue_head_t transaction_wait; 1430 wait_queue_head_t transaction_blocked_wait; 1431 wait_queue_head_t async_submit_wait; 1432 1433 /* 1434 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 1435 * when they are updated. 1436 * 1437 * Because we do not clear the flags for ever, so we needn't use 1438 * the lock on the read side. 1439 * 1440 * We also needn't use the lock when we mount the fs, because 1441 * there is no other task which will update the flag. 1442 */ 1443 spinlock_t super_lock; 1444 struct btrfs_super_block *super_copy; 1445 struct btrfs_super_block *super_for_commit; 1446 struct block_device *__bdev; 1447 struct super_block *sb; 1448 struct inode *btree_inode; 1449 struct backing_dev_info bdi; 1450 struct mutex tree_log_mutex; 1451 struct mutex transaction_kthread_mutex; 1452 struct mutex cleaner_mutex; 1453 struct mutex chunk_mutex; 1454 struct mutex volume_mutex; 1455 1456 /* this is used during read/modify/write to make sure 1457 * no two ios are trying to mod the same stripe at the same 1458 * time 1459 */ 1460 struct btrfs_stripe_hash_table *stripe_hash_table; 1461 1462 /* 1463 * this protects the ordered operations list only while we are 1464 * processing all of the entries on it. This way we make 1465 * sure the commit code doesn't find the list temporarily empty 1466 * because another function happens to be doing non-waiting preflush 1467 * before jumping into the main commit. 1468 */ 1469 struct mutex ordered_operations_mutex; 1470 1471 /* 1472 * Same as ordered_operations_mutex except this is for ordered extents 1473 * and not the operations. 1474 */ 1475 struct mutex ordered_extent_flush_mutex; 1476 1477 struct rw_semaphore commit_root_sem; 1478 1479 struct rw_semaphore cleanup_work_sem; 1480 1481 struct rw_semaphore subvol_sem; 1482 struct srcu_struct subvol_srcu; 1483 1484 spinlock_t trans_lock; 1485 /* 1486 * the reloc mutex goes with the trans lock, it is taken 1487 * during commit to protect us from the relocation code 1488 */ 1489 struct mutex reloc_mutex; 1490 1491 struct list_head trans_list; 1492 struct list_head dead_roots; 1493 struct list_head caching_block_groups; 1494 1495 spinlock_t delayed_iput_lock; 1496 struct list_head delayed_iputs; 1497 1498 /* this protects tree_mod_seq_list */ 1499 spinlock_t tree_mod_seq_lock; 1500 atomic64_t tree_mod_seq; 1501 struct list_head tree_mod_seq_list; 1502 1503 /* this protects tree_mod_log */ 1504 rwlock_t tree_mod_log_lock; 1505 struct rb_root tree_mod_log; 1506 1507 atomic_t nr_async_submits; 1508 atomic_t async_submit_draining; 1509 atomic_t nr_async_bios; 1510 atomic_t async_delalloc_pages; 1511 atomic_t open_ioctl_trans; 1512 1513 /* 1514 * this is used to protect the following list -- ordered_roots. 1515 */ 1516 spinlock_t ordered_root_lock; 1517 1518 /* 1519 * all fs/file tree roots in which there are data=ordered extents 1520 * pending writeback are added into this list. 1521 * 1522 * these can span multiple transactions and basically include 1523 * every dirty data page that isn't from nodatacow 1524 */ 1525 struct list_head ordered_roots; 1526 1527 struct mutex delalloc_root_mutex; 1528 spinlock_t delalloc_root_lock; 1529 /* all fs/file tree roots that have delalloc inodes. */ 1530 struct list_head delalloc_roots; 1531 1532 /* 1533 * there is a pool of worker threads for checksumming during writes 1534 * and a pool for checksumming after reads. This is because readers 1535 * can run with FS locks held, and the writers may be waiting for 1536 * those locks. We don't want ordering in the pending list to cause 1537 * deadlocks, and so the two are serviced separately. 1538 * 1539 * A third pool does submit_bio to avoid deadlocking with the other 1540 * two 1541 */ 1542 struct btrfs_workqueue *workers; 1543 struct btrfs_workqueue *delalloc_workers; 1544 struct btrfs_workqueue *flush_workers; 1545 struct btrfs_workqueue *endio_workers; 1546 struct btrfs_workqueue *endio_meta_workers; 1547 struct btrfs_workqueue *endio_raid56_workers; 1548 struct btrfs_workqueue *rmw_workers; 1549 struct btrfs_workqueue *endio_meta_write_workers; 1550 struct btrfs_workqueue *endio_write_workers; 1551 struct btrfs_workqueue *endio_freespace_worker; 1552 struct btrfs_workqueue *submit_workers; 1553 struct btrfs_workqueue *caching_workers; 1554 struct btrfs_workqueue *readahead_workers; 1555 1556 /* 1557 * fixup workers take dirty pages that didn't properly go through 1558 * the cow mechanism and make them safe to write. It happens 1559 * for the sys_munmap function call path 1560 */ 1561 struct btrfs_workqueue *fixup_workers; 1562 struct btrfs_workqueue *delayed_workers; 1563 1564 /* the extent workers do delayed refs on the extent allocation tree */ 1565 struct btrfs_workqueue *extent_workers; 1566 struct task_struct *transaction_kthread; 1567 struct task_struct *cleaner_kthread; 1568 int thread_pool_size; 1569 1570 struct kobject super_kobj; 1571 struct kobject *space_info_kobj; 1572 struct kobject *device_dir_kobj; 1573 struct completion kobj_unregister; 1574 int do_barriers; 1575 int closing; 1576 int log_root_recovering; 1577 1578 u64 total_pinned; 1579 1580 /* used to keep from writing metadata until there is a nice batch */ 1581 struct percpu_counter dirty_metadata_bytes; 1582 struct percpu_counter delalloc_bytes; 1583 s32 dirty_metadata_batch; 1584 s32 delalloc_batch; 1585 1586 struct list_head dirty_cowonly_roots; 1587 1588 struct btrfs_fs_devices *fs_devices; 1589 1590 /* 1591 * the space_info list is almost entirely read only. It only changes 1592 * when we add a new raid type to the FS, and that happens 1593 * very rarely. RCU is used to protect it. 1594 */ 1595 struct list_head space_info; 1596 1597 struct btrfs_space_info *data_sinfo; 1598 1599 struct reloc_control *reloc_ctl; 1600 1601 /* data_alloc_cluster is only used in ssd mode */ 1602 struct btrfs_free_cluster data_alloc_cluster; 1603 1604 /* all metadata allocations go through this cluster */ 1605 struct btrfs_free_cluster meta_alloc_cluster; 1606 1607 /* auto defrag inodes go here */ 1608 spinlock_t defrag_inodes_lock; 1609 struct rb_root defrag_inodes; 1610 atomic_t defrag_running; 1611 1612 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 1613 seqlock_t profiles_lock; 1614 /* 1615 * these three are in extended format (availability of single 1616 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 1617 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 1618 */ 1619 u64 avail_data_alloc_bits; 1620 u64 avail_metadata_alloc_bits; 1621 u64 avail_system_alloc_bits; 1622 1623 /* restriper state */ 1624 spinlock_t balance_lock; 1625 struct mutex balance_mutex; 1626 atomic_t balance_running; 1627 atomic_t balance_pause_req; 1628 atomic_t balance_cancel_req; 1629 struct btrfs_balance_control *balance_ctl; 1630 wait_queue_head_t balance_wait_q; 1631 1632 unsigned data_chunk_allocations; 1633 unsigned metadata_ratio; 1634 1635 void *bdev_holder; 1636 1637 /* private scrub information */ 1638 struct mutex scrub_lock; 1639 atomic_t scrubs_running; 1640 atomic_t scrub_pause_req; 1641 atomic_t scrubs_paused; 1642 atomic_t scrub_cancel_req; 1643 wait_queue_head_t scrub_pause_wait; 1644 int scrub_workers_refcnt; 1645 struct btrfs_workqueue *scrub_workers; 1646 struct btrfs_workqueue *scrub_wr_completion_workers; 1647 struct btrfs_workqueue *scrub_nocow_workers; 1648 1649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1650 u32 check_integrity_print_mask; 1651 #endif 1652 /* 1653 * quota information 1654 */ 1655 unsigned int quota_enabled:1; 1656 1657 /* 1658 * quota_enabled only changes state after a commit. This holds the 1659 * next state. 1660 */ 1661 unsigned int pending_quota_state:1; 1662 1663 /* is qgroup tracking in a consistent state? */ 1664 u64 qgroup_flags; 1665 1666 /* holds configuration and tracking. Protected by qgroup_lock */ 1667 struct rb_root qgroup_tree; 1668 struct rb_root qgroup_op_tree; 1669 spinlock_t qgroup_lock; 1670 spinlock_t qgroup_op_lock; 1671 atomic_t qgroup_op_seq; 1672 1673 /* 1674 * used to avoid frequently calling ulist_alloc()/ulist_free() 1675 * when doing qgroup accounting, it must be protected by qgroup_lock. 1676 */ 1677 struct ulist *qgroup_ulist; 1678 1679 /* protect user change for quota operations */ 1680 struct mutex qgroup_ioctl_lock; 1681 1682 /* list of dirty qgroups to be written at next commit */ 1683 struct list_head dirty_qgroups; 1684 1685 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */ 1686 u64 qgroup_seq; 1687 1688 /* qgroup rescan items */ 1689 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1690 struct btrfs_key qgroup_rescan_progress; 1691 struct btrfs_workqueue *qgroup_rescan_workers; 1692 struct completion qgroup_rescan_completion; 1693 struct btrfs_work qgroup_rescan_work; 1694 1695 /* filesystem state */ 1696 unsigned long fs_state; 1697 1698 struct btrfs_delayed_root *delayed_root; 1699 1700 /* readahead tree */ 1701 spinlock_t reada_lock; 1702 struct radix_tree_root reada_tree; 1703 1704 /* Extent buffer radix tree */ 1705 spinlock_t buffer_lock; 1706 struct radix_tree_root buffer_radix; 1707 1708 /* next backup root to be overwritten */ 1709 int backup_root_index; 1710 1711 int num_tolerated_disk_barrier_failures; 1712 1713 /* device replace state */ 1714 struct btrfs_dev_replace dev_replace; 1715 1716 atomic_t mutually_exclusive_operation_running; 1717 1718 struct percpu_counter bio_counter; 1719 wait_queue_head_t replace_wait; 1720 1721 struct semaphore uuid_tree_rescan_sem; 1722 unsigned int update_uuid_tree_gen:1; 1723 1724 /* Used to reclaim the metadata space in the background. */ 1725 struct work_struct async_reclaim_work; 1726 }; 1727 1728 struct btrfs_subvolume_writers { 1729 struct percpu_counter counter; 1730 wait_queue_head_t wait; 1731 }; 1732 1733 /* 1734 * The state of btrfs root 1735 */ 1736 /* 1737 * btrfs_record_root_in_trans is a multi-step process, 1738 * and it can race with the balancing code. But the 1739 * race is very small, and only the first time the root 1740 * is added to each transaction. So IN_TRANS_SETUP 1741 * is used to tell us when more checks are required 1742 */ 1743 #define BTRFS_ROOT_IN_TRANS_SETUP 0 1744 #define BTRFS_ROOT_REF_COWS 1 1745 #define BTRFS_ROOT_TRACK_DIRTY 2 1746 #define BTRFS_ROOT_IN_RADIX 3 1747 #define BTRFS_ROOT_DUMMY_ROOT 4 1748 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5 1749 #define BTRFS_ROOT_DEFRAG_RUNNING 6 1750 #define BTRFS_ROOT_FORCE_COW 7 1751 #define BTRFS_ROOT_MULTI_LOG_TASKS 8 1752 1753 /* 1754 * in ram representation of the tree. extent_root is used for all allocations 1755 * and for the extent tree extent_root root. 1756 */ 1757 struct btrfs_root { 1758 struct extent_buffer *node; 1759 1760 struct extent_buffer *commit_root; 1761 struct btrfs_root *log_root; 1762 struct btrfs_root *reloc_root; 1763 1764 unsigned long state; 1765 struct btrfs_root_item root_item; 1766 struct btrfs_key root_key; 1767 struct btrfs_fs_info *fs_info; 1768 struct extent_io_tree dirty_log_pages; 1769 1770 struct kobject root_kobj; 1771 struct completion kobj_unregister; 1772 struct mutex objectid_mutex; 1773 1774 spinlock_t accounting_lock; 1775 struct btrfs_block_rsv *block_rsv; 1776 1777 /* free ino cache stuff */ 1778 struct btrfs_free_space_ctl *free_ino_ctl; 1779 enum btrfs_caching_type cached; 1780 spinlock_t cache_lock; 1781 wait_queue_head_t cache_wait; 1782 struct btrfs_free_space_ctl *free_ino_pinned; 1783 u64 cache_progress; 1784 struct inode *cache_inode; 1785 1786 struct mutex log_mutex; 1787 wait_queue_head_t log_writer_wait; 1788 wait_queue_head_t log_commit_wait[2]; 1789 struct list_head log_ctxs[2]; 1790 atomic_t log_writers; 1791 atomic_t log_commit[2]; 1792 atomic_t log_batch; 1793 int log_transid; 1794 /* No matter the commit succeeds or not*/ 1795 int log_transid_committed; 1796 /* Just be updated when the commit succeeds. */ 1797 int last_log_commit; 1798 pid_t log_start_pid; 1799 1800 u64 objectid; 1801 u64 last_trans; 1802 1803 /* data allocations are done in sectorsize units */ 1804 u32 sectorsize; 1805 1806 /* node allocations are done in nodesize units */ 1807 u32 nodesize; 1808 1809 /* leaf allocations are done in leafsize units */ 1810 u32 leafsize; 1811 1812 u32 stripesize; 1813 1814 u32 type; 1815 1816 u64 highest_objectid; 1817 1818 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1819 u64 alloc_bytenr; 1820 #endif 1821 1822 u64 defrag_trans_start; 1823 struct btrfs_key defrag_progress; 1824 struct btrfs_key defrag_max; 1825 char *name; 1826 1827 /* the dirty list is only used by non-reference counted roots */ 1828 struct list_head dirty_list; 1829 1830 struct list_head root_list; 1831 1832 spinlock_t log_extents_lock[2]; 1833 struct list_head logged_list[2]; 1834 1835 spinlock_t orphan_lock; 1836 atomic_t orphan_inodes; 1837 struct btrfs_block_rsv *orphan_block_rsv; 1838 int orphan_cleanup_state; 1839 1840 spinlock_t inode_lock; 1841 /* red-black tree that keeps track of in-memory inodes */ 1842 struct rb_root inode_tree; 1843 1844 /* 1845 * radix tree that keeps track of delayed nodes of every inode, 1846 * protected by inode_lock 1847 */ 1848 struct radix_tree_root delayed_nodes_tree; 1849 /* 1850 * right now this just gets used so that a root has its own devid 1851 * for stat. It may be used for more later 1852 */ 1853 dev_t anon_dev; 1854 1855 spinlock_t root_item_lock; 1856 atomic_t refs; 1857 1858 struct mutex delalloc_mutex; 1859 spinlock_t delalloc_lock; 1860 /* 1861 * all of the inodes that have delalloc bytes. It is possible for 1862 * this list to be empty even when there is still dirty data=ordered 1863 * extents waiting to finish IO. 1864 */ 1865 struct list_head delalloc_inodes; 1866 struct list_head delalloc_root; 1867 u64 nr_delalloc_inodes; 1868 1869 struct mutex ordered_extent_mutex; 1870 /* 1871 * this is used by the balancing code to wait for all the pending 1872 * ordered extents 1873 */ 1874 spinlock_t ordered_extent_lock; 1875 1876 /* 1877 * all of the data=ordered extents pending writeback 1878 * these can span multiple transactions and basically include 1879 * every dirty data page that isn't from nodatacow 1880 */ 1881 struct list_head ordered_extents; 1882 struct list_head ordered_root; 1883 u64 nr_ordered_extents; 1884 1885 /* 1886 * Number of currently running SEND ioctls to prevent 1887 * manipulation with the read-only status via SUBVOL_SETFLAGS 1888 */ 1889 int send_in_progress; 1890 struct btrfs_subvolume_writers *subv_writers; 1891 atomic_t will_be_snapshoted; 1892 }; 1893 1894 struct btrfs_ioctl_defrag_range_args { 1895 /* start of the defrag operation */ 1896 __u64 start; 1897 1898 /* number of bytes to defrag, use (u64)-1 to say all */ 1899 __u64 len; 1900 1901 /* 1902 * flags for the operation, which can include turning 1903 * on compression for this one defrag 1904 */ 1905 __u64 flags; 1906 1907 /* 1908 * any extent bigger than this will be considered 1909 * already defragged. Use 0 to take the kernel default 1910 * Use 1 to say every single extent must be rewritten 1911 */ 1912 __u32 extent_thresh; 1913 1914 /* 1915 * which compression method to use if turning on compression 1916 * for this defrag operation. If unspecified, zlib will 1917 * be used 1918 */ 1919 __u32 compress_type; 1920 1921 /* spare for later */ 1922 __u32 unused[4]; 1923 }; 1924 1925 1926 /* 1927 * inode items have the data typically returned from stat and store other 1928 * info about object characteristics. There is one for every file and dir in 1929 * the FS 1930 */ 1931 #define BTRFS_INODE_ITEM_KEY 1 1932 #define BTRFS_INODE_REF_KEY 12 1933 #define BTRFS_INODE_EXTREF_KEY 13 1934 #define BTRFS_XATTR_ITEM_KEY 24 1935 #define BTRFS_ORPHAN_ITEM_KEY 48 1936 /* reserve 2-15 close to the inode for later flexibility */ 1937 1938 /* 1939 * dir items are the name -> inode pointers in a directory. There is one 1940 * for every name in a directory. 1941 */ 1942 #define BTRFS_DIR_LOG_ITEM_KEY 60 1943 #define BTRFS_DIR_LOG_INDEX_KEY 72 1944 #define BTRFS_DIR_ITEM_KEY 84 1945 #define BTRFS_DIR_INDEX_KEY 96 1946 /* 1947 * extent data is for file data 1948 */ 1949 #define BTRFS_EXTENT_DATA_KEY 108 1950 1951 /* 1952 * extent csums are stored in a separate tree and hold csums for 1953 * an entire extent on disk. 1954 */ 1955 #define BTRFS_EXTENT_CSUM_KEY 128 1956 1957 /* 1958 * root items point to tree roots. They are typically in the root 1959 * tree used by the super block to find all the other trees 1960 */ 1961 #define BTRFS_ROOT_ITEM_KEY 132 1962 1963 /* 1964 * root backrefs tie subvols and snapshots to the directory entries that 1965 * reference them 1966 */ 1967 #define BTRFS_ROOT_BACKREF_KEY 144 1968 1969 /* 1970 * root refs make a fast index for listing all of the snapshots and 1971 * subvolumes referenced by a given root. They point directly to the 1972 * directory item in the root that references the subvol 1973 */ 1974 #define BTRFS_ROOT_REF_KEY 156 1975 1976 /* 1977 * extent items are in the extent map tree. These record which blocks 1978 * are used, and how many references there are to each block 1979 */ 1980 #define BTRFS_EXTENT_ITEM_KEY 168 1981 1982 /* 1983 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 1984 * the length, so we save the level in key->offset instead of the length. 1985 */ 1986 #define BTRFS_METADATA_ITEM_KEY 169 1987 1988 #define BTRFS_TREE_BLOCK_REF_KEY 176 1989 1990 #define BTRFS_EXTENT_DATA_REF_KEY 178 1991 1992 #define BTRFS_EXTENT_REF_V0_KEY 180 1993 1994 #define BTRFS_SHARED_BLOCK_REF_KEY 182 1995 1996 #define BTRFS_SHARED_DATA_REF_KEY 184 1997 1998 /* 1999 * block groups give us hints into the extent allocation trees. Which 2000 * blocks are free etc etc 2001 */ 2002 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 2003 2004 #define BTRFS_DEV_EXTENT_KEY 204 2005 #define BTRFS_DEV_ITEM_KEY 216 2006 #define BTRFS_CHUNK_ITEM_KEY 228 2007 2008 /* 2009 * Records the overall state of the qgroups. 2010 * There's only one instance of this key present, 2011 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 2012 */ 2013 #define BTRFS_QGROUP_STATUS_KEY 240 2014 /* 2015 * Records the currently used space of the qgroup. 2016 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 2017 */ 2018 #define BTRFS_QGROUP_INFO_KEY 242 2019 /* 2020 * Contains the user configured limits for the qgroup. 2021 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 2022 */ 2023 #define BTRFS_QGROUP_LIMIT_KEY 244 2024 /* 2025 * Records the child-parent relationship of qgroups. For 2026 * each relation, 2 keys are present: 2027 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 2028 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 2029 */ 2030 #define BTRFS_QGROUP_RELATION_KEY 246 2031 2032 #define BTRFS_BALANCE_ITEM_KEY 248 2033 2034 /* 2035 * Persistantly stores the io stats in the device tree. 2036 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid). 2037 */ 2038 #define BTRFS_DEV_STATS_KEY 249 2039 2040 /* 2041 * Persistantly stores the device replace state in the device tree. 2042 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 2043 */ 2044 #define BTRFS_DEV_REPLACE_KEY 250 2045 2046 /* 2047 * Stores items that allow to quickly map UUIDs to something else. 2048 * These items are part of the filesystem UUID tree. 2049 * The key is built like this: 2050 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 2051 */ 2052 #if BTRFS_UUID_SIZE != 16 2053 #error "UUID items require BTRFS_UUID_SIZE == 16!" 2054 #endif 2055 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 2056 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 2057 * received subvols */ 2058 2059 /* 2060 * string items are for debugging. They just store a short string of 2061 * data in the FS 2062 */ 2063 #define BTRFS_STRING_ITEM_KEY 253 2064 2065 /* 2066 * Flags for mount options. 2067 * 2068 * Note: don't forget to add new options to btrfs_show_options() 2069 */ 2070 #define BTRFS_MOUNT_NODATASUM (1 << 0) 2071 #define BTRFS_MOUNT_NODATACOW (1 << 1) 2072 #define BTRFS_MOUNT_NOBARRIER (1 << 2) 2073 #define BTRFS_MOUNT_SSD (1 << 3) 2074 #define BTRFS_MOUNT_DEGRADED (1 << 4) 2075 #define BTRFS_MOUNT_COMPRESS (1 << 5) 2076 #define BTRFS_MOUNT_NOTREELOG (1 << 6) 2077 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) 2078 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) 2079 #define BTRFS_MOUNT_NOSSD (1 << 9) 2080 #define BTRFS_MOUNT_DISCARD (1 << 10) 2081 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) 2082 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) 2083 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) 2084 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) 2085 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) 2086 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) 2087 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17) 2088 #define BTRFS_MOUNT_RECOVERY (1 << 18) 2089 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) 2090 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) 2091 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) 2092 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) 2093 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) 2094 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24) 2095 2096 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 2097 2098 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 2099 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 2100 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 2101 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ 2102 BTRFS_MOUNT_##opt) 2103 #define btrfs_set_and_info(root, opt, fmt, args...) \ 2104 { \ 2105 if (!btrfs_test_opt(root, opt)) \ 2106 btrfs_info(root->fs_info, fmt, ##args); \ 2107 btrfs_set_opt(root->fs_info->mount_opt, opt); \ 2108 } 2109 2110 #define btrfs_clear_and_info(root, opt, fmt, args...) \ 2111 { \ 2112 if (btrfs_test_opt(root, opt)) \ 2113 btrfs_info(root->fs_info, fmt, ##args); \ 2114 btrfs_clear_opt(root->fs_info->mount_opt, opt); \ 2115 } 2116 2117 /* 2118 * Inode flags 2119 */ 2120 #define BTRFS_INODE_NODATASUM (1 << 0) 2121 #define BTRFS_INODE_NODATACOW (1 << 1) 2122 #define BTRFS_INODE_READONLY (1 << 2) 2123 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 2124 #define BTRFS_INODE_PREALLOC (1 << 4) 2125 #define BTRFS_INODE_SYNC (1 << 5) 2126 #define BTRFS_INODE_IMMUTABLE (1 << 6) 2127 #define BTRFS_INODE_APPEND (1 << 7) 2128 #define BTRFS_INODE_NODUMP (1 << 8) 2129 #define BTRFS_INODE_NOATIME (1 << 9) 2130 #define BTRFS_INODE_DIRSYNC (1 << 10) 2131 #define BTRFS_INODE_COMPRESS (1 << 11) 2132 2133 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 2134 2135 struct btrfs_map_token { 2136 struct extent_buffer *eb; 2137 char *kaddr; 2138 unsigned long offset; 2139 }; 2140 2141 static inline void btrfs_init_map_token (struct btrfs_map_token *token) 2142 { 2143 token->kaddr = NULL; 2144 } 2145 2146 /* some macros to generate set/get funcs for the struct fields. This 2147 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 2148 * one for u8: 2149 */ 2150 #define le8_to_cpu(v) (v) 2151 #define cpu_to_le8(v) (v) 2152 #define __le8 u8 2153 2154 #define read_eb_member(eb, ptr, type, member, result) ( \ 2155 read_extent_buffer(eb, (char *)(result), \ 2156 ((unsigned long)(ptr)) + \ 2157 offsetof(type, member), \ 2158 sizeof(((type *)0)->member))) 2159 2160 #define write_eb_member(eb, ptr, type, member, result) ( \ 2161 write_extent_buffer(eb, (char *)(result), \ 2162 ((unsigned long)(ptr)) + \ 2163 offsetof(type, member), \ 2164 sizeof(((type *)0)->member))) 2165 2166 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 2167 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \ 2168 unsigned long off, \ 2169 struct btrfs_map_token *token); \ 2170 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \ 2171 unsigned long off, u##bits val, \ 2172 struct btrfs_map_token *token); \ 2173 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \ 2174 unsigned long off) \ 2175 { \ 2176 return btrfs_get_token_##bits(eb, ptr, off, NULL); \ 2177 } \ 2178 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \ 2179 unsigned long off, u##bits val) \ 2180 { \ 2181 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \ 2182 } 2183 2184 DECLARE_BTRFS_SETGET_BITS(8) 2185 DECLARE_BTRFS_SETGET_BITS(16) 2186 DECLARE_BTRFS_SETGET_BITS(32) 2187 DECLARE_BTRFS_SETGET_BITS(64) 2188 2189 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 2190 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \ 2191 { \ 2192 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2193 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 2194 } \ 2195 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \ 2196 u##bits val) \ 2197 { \ 2198 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2199 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 2200 } \ 2201 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \ 2202 struct btrfs_map_token *token) \ 2203 { \ 2204 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2205 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \ 2206 } \ 2207 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \ 2208 type *s, u##bits val, \ 2209 struct btrfs_map_token *token) \ 2210 { \ 2211 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2212 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \ 2213 } 2214 2215 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 2216 static inline u##bits btrfs_##name(struct extent_buffer *eb) \ 2217 { \ 2218 type *p = page_address(eb->pages[0]); \ 2219 u##bits res = le##bits##_to_cpu(p->member); \ 2220 return res; \ 2221 } \ 2222 static inline void btrfs_set_##name(struct extent_buffer *eb, \ 2223 u##bits val) \ 2224 { \ 2225 type *p = page_address(eb->pages[0]); \ 2226 p->member = cpu_to_le##bits(val); \ 2227 } 2228 2229 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 2230 static inline u##bits btrfs_##name(type *s) \ 2231 { \ 2232 return le##bits##_to_cpu(s->member); \ 2233 } \ 2234 static inline void btrfs_set_##name(type *s, u##bits val) \ 2235 { \ 2236 s->member = cpu_to_le##bits(val); \ 2237 } 2238 2239 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 2240 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); 2241 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 2242 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 2243 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 2244 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 2245 start_offset, 64); 2246 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 2247 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 2248 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 2249 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 2250 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 2251 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 2252 2253 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 2254 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 2255 total_bytes, 64); 2256 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 2257 bytes_used, 64); 2258 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 2259 io_align, 32); 2260 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 2261 io_width, 32); 2262 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 2263 sector_size, 32); 2264 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 2265 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 2266 dev_group, 32); 2267 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 2268 seek_speed, 8); 2269 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 2270 bandwidth, 8); 2271 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 2272 generation, 64); 2273 2274 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 2275 { 2276 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 2277 } 2278 2279 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 2280 { 2281 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 2282 } 2283 2284 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 2285 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 2286 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 2287 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 2288 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 2289 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 2290 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 2291 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 2292 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 2293 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 2294 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 2295 2296 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 2297 { 2298 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 2299 } 2300 2301 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 2302 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 2303 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 2304 stripe_len, 64); 2305 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 2306 io_align, 32); 2307 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 2308 io_width, 32); 2309 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 2310 sector_size, 32); 2311 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 2312 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 2313 num_stripes, 16); 2314 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 2315 sub_stripes, 16); 2316 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 2317 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 2318 2319 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 2320 int nr) 2321 { 2322 unsigned long offset = (unsigned long)c; 2323 offset += offsetof(struct btrfs_chunk, stripe); 2324 offset += nr * sizeof(struct btrfs_stripe); 2325 return (struct btrfs_stripe *)offset; 2326 } 2327 2328 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 2329 { 2330 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 2331 } 2332 2333 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, 2334 struct btrfs_chunk *c, int nr) 2335 { 2336 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 2337 } 2338 2339 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, 2340 struct btrfs_chunk *c, int nr) 2341 { 2342 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 2343 } 2344 2345 /* struct btrfs_block_group_item */ 2346 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, 2347 used, 64); 2348 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, 2349 used, 64); 2350 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, 2351 struct btrfs_block_group_item, chunk_objectid, 64); 2352 2353 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, 2354 struct btrfs_block_group_item, chunk_objectid, 64); 2355 BTRFS_SETGET_FUNCS(disk_block_group_flags, 2356 struct btrfs_block_group_item, flags, 64); 2357 BTRFS_SETGET_STACK_FUNCS(block_group_flags, 2358 struct btrfs_block_group_item, flags, 64); 2359 2360 /* struct btrfs_inode_ref */ 2361 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 2362 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 2363 2364 /* struct btrfs_inode_extref */ 2365 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 2366 parent_objectid, 64); 2367 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 2368 name_len, 16); 2369 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 2370 2371 /* struct btrfs_inode_item */ 2372 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 2373 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 2374 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 2375 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 2376 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 2377 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 2378 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 2379 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 2380 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 2381 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 2382 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 2383 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 2384 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 2385 generation, 64); 2386 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 2387 sequence, 64); 2388 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 2389 transid, 64); 2390 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 2391 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 2392 nbytes, 64); 2393 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 2394 block_group, 64); 2395 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 2396 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 2397 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 2398 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 2399 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 2400 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 2401 2402 static inline struct btrfs_timespec * 2403 btrfs_inode_atime(struct btrfs_inode_item *inode_item) 2404 { 2405 unsigned long ptr = (unsigned long)inode_item; 2406 ptr += offsetof(struct btrfs_inode_item, atime); 2407 return (struct btrfs_timespec *)ptr; 2408 } 2409 2410 static inline struct btrfs_timespec * 2411 btrfs_inode_mtime(struct btrfs_inode_item *inode_item) 2412 { 2413 unsigned long ptr = (unsigned long)inode_item; 2414 ptr += offsetof(struct btrfs_inode_item, mtime); 2415 return (struct btrfs_timespec *)ptr; 2416 } 2417 2418 static inline struct btrfs_timespec * 2419 btrfs_inode_ctime(struct btrfs_inode_item *inode_item) 2420 { 2421 unsigned long ptr = (unsigned long)inode_item; 2422 ptr += offsetof(struct btrfs_inode_item, ctime); 2423 return (struct btrfs_timespec *)ptr; 2424 } 2425 2426 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 2427 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 2428 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 2429 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 2430 2431 /* struct btrfs_dev_extent */ 2432 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 2433 chunk_tree, 64); 2434 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 2435 chunk_objectid, 64); 2436 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 2437 chunk_offset, 64); 2438 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 2439 2440 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) 2441 { 2442 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); 2443 return (unsigned long)dev + ptr; 2444 } 2445 2446 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 2447 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 2448 generation, 64); 2449 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 2450 2451 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32); 2452 2453 2454 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 2455 2456 static inline void btrfs_tree_block_key(struct extent_buffer *eb, 2457 struct btrfs_tree_block_info *item, 2458 struct btrfs_disk_key *key) 2459 { 2460 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2461 } 2462 2463 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb, 2464 struct btrfs_tree_block_info *item, 2465 struct btrfs_disk_key *key) 2466 { 2467 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2468 } 2469 2470 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 2471 root, 64); 2472 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 2473 objectid, 64); 2474 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 2475 offset, 64); 2476 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 2477 count, 32); 2478 2479 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 2480 count, 32); 2481 2482 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 2483 type, 8); 2484 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 2485 offset, 64); 2486 2487 static inline u32 btrfs_extent_inline_ref_size(int type) 2488 { 2489 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2490 type == BTRFS_SHARED_BLOCK_REF_KEY) 2491 return sizeof(struct btrfs_extent_inline_ref); 2492 if (type == BTRFS_SHARED_DATA_REF_KEY) 2493 return sizeof(struct btrfs_shared_data_ref) + 2494 sizeof(struct btrfs_extent_inline_ref); 2495 if (type == BTRFS_EXTENT_DATA_REF_KEY) 2496 return sizeof(struct btrfs_extent_data_ref) + 2497 offsetof(struct btrfs_extent_inline_ref, offset); 2498 BUG(); 2499 return 0; 2500 } 2501 2502 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); 2503 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, 2504 generation, 64); 2505 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); 2506 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); 2507 2508 /* struct btrfs_node */ 2509 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 2510 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 2511 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 2512 blockptr, 64); 2513 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 2514 generation, 64); 2515 2516 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) 2517 { 2518 unsigned long ptr; 2519 ptr = offsetof(struct btrfs_node, ptrs) + 2520 sizeof(struct btrfs_key_ptr) * nr; 2521 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 2522 } 2523 2524 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, 2525 int nr, u64 val) 2526 { 2527 unsigned long ptr; 2528 ptr = offsetof(struct btrfs_node, ptrs) + 2529 sizeof(struct btrfs_key_ptr) * nr; 2530 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 2531 } 2532 2533 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) 2534 { 2535 unsigned long ptr; 2536 ptr = offsetof(struct btrfs_node, ptrs) + 2537 sizeof(struct btrfs_key_ptr) * nr; 2538 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2539 } 2540 2541 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, 2542 int nr, u64 val) 2543 { 2544 unsigned long ptr; 2545 ptr = offsetof(struct btrfs_node, ptrs) + 2546 sizeof(struct btrfs_key_ptr) * nr; 2547 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2548 } 2549 2550 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2551 { 2552 return offsetof(struct btrfs_node, ptrs) + 2553 sizeof(struct btrfs_key_ptr) * nr; 2554 } 2555 2556 void btrfs_node_key(struct extent_buffer *eb, 2557 struct btrfs_disk_key *disk_key, int nr); 2558 2559 static inline void btrfs_set_node_key(struct extent_buffer *eb, 2560 struct btrfs_disk_key *disk_key, int nr) 2561 { 2562 unsigned long ptr; 2563 ptr = btrfs_node_key_ptr_offset(nr); 2564 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2565 struct btrfs_key_ptr, key, disk_key); 2566 } 2567 2568 /* struct btrfs_item */ 2569 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 2570 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 2571 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2572 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2573 2574 static inline unsigned long btrfs_item_nr_offset(int nr) 2575 { 2576 return offsetof(struct btrfs_leaf, items) + 2577 sizeof(struct btrfs_item) * nr; 2578 } 2579 2580 static inline struct btrfs_item *btrfs_item_nr(int nr) 2581 { 2582 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2583 } 2584 2585 static inline u32 btrfs_item_end(struct extent_buffer *eb, 2586 struct btrfs_item *item) 2587 { 2588 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 2589 } 2590 2591 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) 2592 { 2593 return btrfs_item_end(eb, btrfs_item_nr(nr)); 2594 } 2595 2596 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) 2597 { 2598 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 2599 } 2600 2601 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) 2602 { 2603 return btrfs_item_size(eb, btrfs_item_nr(nr)); 2604 } 2605 2606 static inline void btrfs_item_key(struct extent_buffer *eb, 2607 struct btrfs_disk_key *disk_key, int nr) 2608 { 2609 struct btrfs_item *item = btrfs_item_nr(nr); 2610 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2611 } 2612 2613 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2614 struct btrfs_disk_key *disk_key, int nr) 2615 { 2616 struct btrfs_item *item = btrfs_item_nr(nr); 2617 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2618 } 2619 2620 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2621 2622 /* 2623 * struct btrfs_root_ref 2624 */ 2625 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2626 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2627 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2628 2629 /* struct btrfs_dir_item */ 2630 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2631 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2632 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2633 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2634 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2635 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2636 data_len, 16); 2637 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2638 name_len, 16); 2639 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2640 transid, 64); 2641 2642 static inline void btrfs_dir_item_key(struct extent_buffer *eb, 2643 struct btrfs_dir_item *item, 2644 struct btrfs_disk_key *key) 2645 { 2646 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2647 } 2648 2649 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2650 struct btrfs_dir_item *item, 2651 struct btrfs_disk_key *key) 2652 { 2653 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2654 } 2655 2656 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2657 num_entries, 64); 2658 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2659 num_bitmaps, 64); 2660 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2661 generation, 64); 2662 2663 static inline void btrfs_free_space_key(struct extent_buffer *eb, 2664 struct btrfs_free_space_header *h, 2665 struct btrfs_disk_key *key) 2666 { 2667 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2668 } 2669 2670 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2671 struct btrfs_free_space_header *h, 2672 struct btrfs_disk_key *key) 2673 { 2674 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2675 } 2676 2677 /* struct btrfs_disk_key */ 2678 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2679 objectid, 64); 2680 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2681 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2682 2683 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2684 struct btrfs_disk_key *disk) 2685 { 2686 cpu->offset = le64_to_cpu(disk->offset); 2687 cpu->type = disk->type; 2688 cpu->objectid = le64_to_cpu(disk->objectid); 2689 } 2690 2691 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2692 struct btrfs_key *cpu) 2693 { 2694 disk->offset = cpu_to_le64(cpu->offset); 2695 disk->type = cpu->type; 2696 disk->objectid = cpu_to_le64(cpu->objectid); 2697 } 2698 2699 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, 2700 struct btrfs_key *key, int nr) 2701 { 2702 struct btrfs_disk_key disk_key; 2703 btrfs_node_key(eb, &disk_key, nr); 2704 btrfs_disk_key_to_cpu(key, &disk_key); 2705 } 2706 2707 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, 2708 struct btrfs_key *key, int nr) 2709 { 2710 struct btrfs_disk_key disk_key; 2711 btrfs_item_key(eb, &disk_key, nr); 2712 btrfs_disk_key_to_cpu(key, &disk_key); 2713 } 2714 2715 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, 2716 struct btrfs_dir_item *item, 2717 struct btrfs_key *key) 2718 { 2719 struct btrfs_disk_key disk_key; 2720 btrfs_dir_item_key(eb, item, &disk_key); 2721 btrfs_disk_key_to_cpu(key, &disk_key); 2722 } 2723 2724 2725 static inline u8 btrfs_key_type(struct btrfs_key *key) 2726 { 2727 return key->type; 2728 } 2729 2730 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) 2731 { 2732 key->type = val; 2733 } 2734 2735 /* struct btrfs_header */ 2736 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2737 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2738 generation, 64); 2739 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2740 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2741 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2742 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2743 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2744 generation, 64); 2745 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2746 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2747 nritems, 32); 2748 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2749 2750 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) 2751 { 2752 return (btrfs_header_flags(eb) & flag) == flag; 2753 } 2754 2755 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2756 { 2757 u64 flags = btrfs_header_flags(eb); 2758 btrfs_set_header_flags(eb, flags | flag); 2759 return (flags & flag) == flag; 2760 } 2761 2762 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2763 { 2764 u64 flags = btrfs_header_flags(eb); 2765 btrfs_set_header_flags(eb, flags & ~flag); 2766 return (flags & flag) == flag; 2767 } 2768 2769 static inline int btrfs_header_backref_rev(struct extent_buffer *eb) 2770 { 2771 u64 flags = btrfs_header_flags(eb); 2772 return flags >> BTRFS_BACKREF_REV_SHIFT; 2773 } 2774 2775 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2776 int rev) 2777 { 2778 u64 flags = btrfs_header_flags(eb); 2779 flags &= ~BTRFS_BACKREF_REV_MASK; 2780 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2781 btrfs_set_header_flags(eb, flags); 2782 } 2783 2784 static inline unsigned long btrfs_header_fsid(void) 2785 { 2786 return offsetof(struct btrfs_header, fsid); 2787 } 2788 2789 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) 2790 { 2791 return offsetof(struct btrfs_header, chunk_tree_uuid); 2792 } 2793 2794 static inline int btrfs_is_leaf(struct extent_buffer *eb) 2795 { 2796 return btrfs_header_level(eb) == 0; 2797 } 2798 2799 /* struct btrfs_root_item */ 2800 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2801 generation, 64); 2802 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2803 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2804 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2805 2806 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2807 generation, 64); 2808 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2809 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2810 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2811 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2812 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2813 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2814 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2815 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2816 last_snapshot, 64); 2817 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2818 generation_v2, 64); 2819 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2820 ctransid, 64); 2821 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2822 otransid, 64); 2823 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2824 stransid, 64); 2825 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2826 rtransid, 64); 2827 2828 static inline bool btrfs_root_readonly(struct btrfs_root *root) 2829 { 2830 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2831 } 2832 2833 static inline bool btrfs_root_dead(struct btrfs_root *root) 2834 { 2835 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2836 } 2837 2838 /* struct btrfs_root_backup */ 2839 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2840 tree_root, 64); 2841 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2842 tree_root_gen, 64); 2843 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2844 tree_root_level, 8); 2845 2846 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2847 chunk_root, 64); 2848 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2849 chunk_root_gen, 64); 2850 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2851 chunk_root_level, 8); 2852 2853 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2854 extent_root, 64); 2855 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2856 extent_root_gen, 64); 2857 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2858 extent_root_level, 8); 2859 2860 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2861 fs_root, 64); 2862 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2863 fs_root_gen, 64); 2864 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2865 fs_root_level, 8); 2866 2867 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2868 dev_root, 64); 2869 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2870 dev_root_gen, 64); 2871 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2872 dev_root_level, 8); 2873 2874 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2875 csum_root, 64); 2876 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2877 csum_root_gen, 64); 2878 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2879 csum_root_level, 8); 2880 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2881 total_bytes, 64); 2882 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2883 bytes_used, 64); 2884 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2885 num_devices, 64); 2886 2887 /* struct btrfs_balance_item */ 2888 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2889 2890 static inline void btrfs_balance_data(struct extent_buffer *eb, 2891 struct btrfs_balance_item *bi, 2892 struct btrfs_disk_balance_args *ba) 2893 { 2894 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2895 } 2896 2897 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2898 struct btrfs_balance_item *bi, 2899 struct btrfs_disk_balance_args *ba) 2900 { 2901 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2902 } 2903 2904 static inline void btrfs_balance_meta(struct extent_buffer *eb, 2905 struct btrfs_balance_item *bi, 2906 struct btrfs_disk_balance_args *ba) 2907 { 2908 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2909 } 2910 2911 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2912 struct btrfs_balance_item *bi, 2913 struct btrfs_disk_balance_args *ba) 2914 { 2915 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2916 } 2917 2918 static inline void btrfs_balance_sys(struct extent_buffer *eb, 2919 struct btrfs_balance_item *bi, 2920 struct btrfs_disk_balance_args *ba) 2921 { 2922 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2923 } 2924 2925 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2926 struct btrfs_balance_item *bi, 2927 struct btrfs_disk_balance_args *ba) 2928 { 2929 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2930 } 2931 2932 static inline void 2933 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2934 struct btrfs_disk_balance_args *disk) 2935 { 2936 memset(cpu, 0, sizeof(*cpu)); 2937 2938 cpu->profiles = le64_to_cpu(disk->profiles); 2939 cpu->usage = le64_to_cpu(disk->usage); 2940 cpu->devid = le64_to_cpu(disk->devid); 2941 cpu->pstart = le64_to_cpu(disk->pstart); 2942 cpu->pend = le64_to_cpu(disk->pend); 2943 cpu->vstart = le64_to_cpu(disk->vstart); 2944 cpu->vend = le64_to_cpu(disk->vend); 2945 cpu->target = le64_to_cpu(disk->target); 2946 cpu->flags = le64_to_cpu(disk->flags); 2947 cpu->limit = le64_to_cpu(disk->limit); 2948 } 2949 2950 static inline void 2951 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2952 struct btrfs_balance_args *cpu) 2953 { 2954 memset(disk, 0, sizeof(*disk)); 2955 2956 disk->profiles = cpu_to_le64(cpu->profiles); 2957 disk->usage = cpu_to_le64(cpu->usage); 2958 disk->devid = cpu_to_le64(cpu->devid); 2959 disk->pstart = cpu_to_le64(cpu->pstart); 2960 disk->pend = cpu_to_le64(cpu->pend); 2961 disk->vstart = cpu_to_le64(cpu->vstart); 2962 disk->vend = cpu_to_le64(cpu->vend); 2963 disk->target = cpu_to_le64(cpu->target); 2964 disk->flags = cpu_to_le64(cpu->flags); 2965 disk->limit = cpu_to_le64(cpu->limit); 2966 } 2967 2968 /* struct btrfs_super_block */ 2969 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2970 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2971 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2972 generation, 64); 2973 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2974 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2975 struct btrfs_super_block, sys_chunk_array_size, 32); 2976 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2977 struct btrfs_super_block, chunk_root_generation, 64); 2978 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2979 root_level, 8); 2980 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2981 chunk_root, 64); 2982 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2983 chunk_root_level, 8); 2984 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2985 log_root, 64); 2986 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2987 log_root_transid, 64); 2988 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2989 log_root_level, 8); 2990 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2991 total_bytes, 64); 2992 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2993 bytes_used, 64); 2994 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2995 sectorsize, 32); 2996 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2997 nodesize, 32); 2998 BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block, 2999 leafsize, 32); 3000 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 3001 stripesize, 32); 3002 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 3003 root_dir_objectid, 64); 3004 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 3005 num_devices, 64); 3006 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 3007 compat_flags, 64); 3008 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 3009 compat_ro_flags, 64); 3010 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 3011 incompat_flags, 64); 3012 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 3013 csum_type, 16); 3014 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 3015 cache_generation, 64); 3016 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 3017 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 3018 uuid_tree_generation, 64); 3019 3020 static inline int btrfs_super_csum_size(struct btrfs_super_block *s) 3021 { 3022 u16 t = btrfs_super_csum_type(s); 3023 /* 3024 * csum type is validated at mount time 3025 */ 3026 return btrfs_csum_sizes[t]; 3027 } 3028 3029 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) 3030 { 3031 return offsetof(struct btrfs_leaf, items); 3032 } 3033 3034 /* struct btrfs_file_extent_item */ 3035 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 3036 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 3037 struct btrfs_file_extent_item, disk_bytenr, 64); 3038 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 3039 struct btrfs_file_extent_item, offset, 64); 3040 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 3041 struct btrfs_file_extent_item, generation, 64); 3042 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 3043 struct btrfs_file_extent_item, num_bytes, 64); 3044 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 3045 struct btrfs_file_extent_item, disk_num_bytes, 64); 3046 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 3047 struct btrfs_file_extent_item, compression, 8); 3048 3049 static inline unsigned long 3050 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) 3051 { 3052 unsigned long offset = (unsigned long)e; 3053 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr); 3054 return offset; 3055 } 3056 3057 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 3058 { 3059 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize; 3060 } 3061 3062 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 3063 disk_bytenr, 64); 3064 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 3065 generation, 64); 3066 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 3067 disk_num_bytes, 64); 3068 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 3069 offset, 64); 3070 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 3071 num_bytes, 64); 3072 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 3073 ram_bytes, 64); 3074 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 3075 compression, 8); 3076 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 3077 encryption, 8); 3078 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 3079 other_encoding, 16); 3080 3081 /* 3082 * this returns the number of bytes used by the item on disk, minus the 3083 * size of any extent headers. If a file is compressed on disk, this is 3084 * the compressed size 3085 */ 3086 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, 3087 struct btrfs_item *e) 3088 { 3089 unsigned long offset; 3090 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr); 3091 return btrfs_item_size(eb, e) - offset; 3092 } 3093 3094 /* this returns the number of file bytes represented by the inline item. 3095 * If an item is compressed, this is the uncompressed size 3096 */ 3097 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, 3098 int slot, 3099 struct btrfs_file_extent_item *fi) 3100 { 3101 struct btrfs_map_token token; 3102 3103 btrfs_init_map_token(&token); 3104 /* 3105 * return the space used on disk if this item isn't 3106 * compressed or encoded 3107 */ 3108 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 && 3109 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 && 3110 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) { 3111 return btrfs_file_extent_inline_item_len(eb, 3112 btrfs_item_nr(slot)); 3113 } 3114 3115 /* otherwise use the ram bytes field */ 3116 return btrfs_token_file_extent_ram_bytes(eb, fi, &token); 3117 } 3118 3119 3120 /* btrfs_dev_stats_item */ 3121 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb, 3122 struct btrfs_dev_stats_item *ptr, 3123 int index) 3124 { 3125 u64 val; 3126 3127 read_extent_buffer(eb, &val, 3128 offsetof(struct btrfs_dev_stats_item, values) + 3129 ((unsigned long)ptr) + (index * sizeof(u64)), 3130 sizeof(val)); 3131 return val; 3132 } 3133 3134 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb, 3135 struct btrfs_dev_stats_item *ptr, 3136 int index, u64 val) 3137 { 3138 write_extent_buffer(eb, &val, 3139 offsetof(struct btrfs_dev_stats_item, values) + 3140 ((unsigned long)ptr) + (index * sizeof(u64)), 3141 sizeof(val)); 3142 } 3143 3144 /* btrfs_qgroup_status_item */ 3145 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 3146 generation, 64); 3147 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 3148 version, 64); 3149 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 3150 flags, 64); 3151 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 3152 rescan, 64); 3153 3154 /* btrfs_qgroup_info_item */ 3155 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 3156 generation, 64); 3157 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 3158 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 3159 rfer_cmpr, 64); 3160 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 3161 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 3162 excl_cmpr, 64); 3163 3164 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 3165 struct btrfs_qgroup_info_item, generation, 64); 3166 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 3167 rfer, 64); 3168 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 3169 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 3170 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 3171 excl, 64); 3172 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 3173 struct btrfs_qgroup_info_item, excl_cmpr, 64); 3174 3175 /* btrfs_qgroup_limit_item */ 3176 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 3177 flags, 64); 3178 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 3179 max_rfer, 64); 3180 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 3181 max_excl, 64); 3182 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 3183 rsv_rfer, 64); 3184 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 3185 rsv_excl, 64); 3186 3187 /* btrfs_dev_replace_item */ 3188 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 3189 struct btrfs_dev_replace_item, src_devid, 64); 3190 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 3191 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 3192 64); 3193 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 3194 replace_state, 64); 3195 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 3196 time_started, 64); 3197 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 3198 time_stopped, 64); 3199 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 3200 num_write_errors, 64); 3201 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 3202 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 3203 64); 3204 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 3205 cursor_left, 64); 3206 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 3207 cursor_right, 64); 3208 3209 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 3210 struct btrfs_dev_replace_item, src_devid, 64); 3211 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 3212 struct btrfs_dev_replace_item, 3213 cont_reading_from_srcdev_mode, 64); 3214 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 3215 struct btrfs_dev_replace_item, replace_state, 64); 3216 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 3217 struct btrfs_dev_replace_item, time_started, 64); 3218 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 3219 struct btrfs_dev_replace_item, time_stopped, 64); 3220 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 3221 struct btrfs_dev_replace_item, num_write_errors, 64); 3222 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 3223 struct btrfs_dev_replace_item, 3224 num_uncorrectable_read_errors, 64); 3225 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 3226 struct btrfs_dev_replace_item, cursor_left, 64); 3227 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 3228 struct btrfs_dev_replace_item, cursor_right, 64); 3229 3230 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 3231 { 3232 return sb->s_fs_info; 3233 } 3234 3235 static inline u32 btrfs_level_size(struct btrfs_root *root, int level) 3236 { 3237 if (level == 0) 3238 return root->leafsize; 3239 return root->nodesize; 3240 } 3241 3242 /* helper function to cast into the data area of the leaf. */ 3243 #define btrfs_item_ptr(leaf, slot, type) \ 3244 ((type *)(btrfs_leaf_data(leaf) + \ 3245 btrfs_item_offset_nr(leaf, slot))) 3246 3247 #define btrfs_item_ptr_offset(leaf, slot) \ 3248 ((unsigned long)(btrfs_leaf_data(leaf) + \ 3249 btrfs_item_offset_nr(leaf, slot))) 3250 3251 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) 3252 { 3253 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) && 3254 (space_info->flags & BTRFS_BLOCK_GROUP_DATA)); 3255 } 3256 3257 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 3258 { 3259 return mapping_gfp_mask(mapping) & ~__GFP_FS; 3260 } 3261 3262 /* extent-tree.c */ 3263 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root, 3264 unsigned num_items) 3265 { 3266 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3267 2 * num_items; 3268 } 3269 3270 /* 3271 * Doing a truncate won't result in new nodes or leaves, just what we need for 3272 * COW. 3273 */ 3274 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root, 3275 unsigned num_items) 3276 { 3277 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3278 num_items; 3279 } 3280 3281 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 3282 struct btrfs_root *root); 3283 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 3284 struct btrfs_root *root); 3285 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3286 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3287 struct btrfs_root *root, unsigned long count); 3288 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 3289 unsigned long count, int wait); 3290 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len); 3291 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 3292 struct btrfs_root *root, u64 bytenr, 3293 u64 offset, int metadata, u64 *refs, u64 *flags); 3294 int btrfs_pin_extent(struct btrfs_root *root, 3295 u64 bytenr, u64 num, int reserved); 3296 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 3297 u64 bytenr, u64 num_bytes); 3298 int btrfs_exclude_logged_extents(struct btrfs_root *root, 3299 struct extent_buffer *eb); 3300 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3301 struct btrfs_root *root, 3302 u64 objectid, u64 offset, u64 bytenr); 3303 struct btrfs_block_group_cache *btrfs_lookup_block_group( 3304 struct btrfs_fs_info *info, 3305 u64 bytenr); 3306 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3307 int get_block_group_index(struct btrfs_block_group_cache *cache); 3308 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 3309 struct btrfs_root *root, u32 blocksize, 3310 u64 parent, u64 root_objectid, 3311 struct btrfs_disk_key *key, int level, 3312 u64 hint, u64 empty_size); 3313 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3314 struct btrfs_root *root, 3315 struct extent_buffer *buf, 3316 u64 parent, int last_ref); 3317 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 3318 struct btrfs_root *root, 3319 u64 root_objectid, u64 owner, 3320 u64 offset, struct btrfs_key *ins); 3321 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 3322 struct btrfs_root *root, 3323 u64 root_objectid, u64 owner, u64 offset, 3324 struct btrfs_key *ins); 3325 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes, 3326 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 3327 struct btrfs_key *ins, int is_data, int delalloc); 3328 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3329 struct extent_buffer *buf, int full_backref, int no_quota); 3330 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3331 struct extent_buffer *buf, int full_backref, int no_quota); 3332 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3333 struct btrfs_root *root, 3334 u64 bytenr, u64 num_bytes, u64 flags, 3335 int level, int is_data); 3336 int btrfs_free_extent(struct btrfs_trans_handle *trans, 3337 struct btrfs_root *root, 3338 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 3339 u64 owner, u64 offset, int no_quota); 3340 3341 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len, 3342 int delalloc); 3343 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 3344 u64 start, u64 len); 3345 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 3346 struct btrfs_root *root); 3347 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 3348 struct btrfs_root *root); 3349 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 3350 struct btrfs_root *root, 3351 u64 bytenr, u64 num_bytes, u64 parent, 3352 u64 root_objectid, u64 owner, u64 offset, int no_quota); 3353 3354 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3355 struct btrfs_root *root); 3356 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); 3357 int btrfs_free_block_groups(struct btrfs_fs_info *info); 3358 int btrfs_read_block_groups(struct btrfs_root *root); 3359 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr); 3360 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 3361 struct btrfs_root *root, u64 bytes_used, 3362 u64 type, u64 chunk_objectid, u64 chunk_offset, 3363 u64 size); 3364 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 3365 struct btrfs_root *root, u64 group_start); 3366 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 3367 struct btrfs_root *root); 3368 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data); 3369 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 3370 3371 enum btrfs_reserve_flush_enum { 3372 /* If we are in the transaction, we can't flush anything.*/ 3373 BTRFS_RESERVE_NO_FLUSH, 3374 /* 3375 * Flushing delalloc may cause deadlock somewhere, in this 3376 * case, use FLUSH LIMIT 3377 */ 3378 BTRFS_RESERVE_FLUSH_LIMIT, 3379 BTRFS_RESERVE_FLUSH_ALL, 3380 }; 3381 3382 int btrfs_check_data_free_space(struct inode *inode, u64 bytes); 3383 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes); 3384 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3385 struct btrfs_root *root); 3386 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3387 struct inode *inode); 3388 void btrfs_orphan_release_metadata(struct inode *inode); 3389 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 3390 struct btrfs_block_rsv *rsv, 3391 int nitems, 3392 u64 *qgroup_reserved, bool use_global_rsv); 3393 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 3394 struct btrfs_block_rsv *rsv, 3395 u64 qgroup_reserved); 3396 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes); 3397 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes); 3398 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes); 3399 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes); 3400 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type); 3401 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 3402 unsigned short type); 3403 void btrfs_free_block_rsv(struct btrfs_root *root, 3404 struct btrfs_block_rsv *rsv); 3405 int btrfs_block_rsv_add(struct btrfs_root *root, 3406 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 3407 enum btrfs_reserve_flush_enum flush); 3408 int btrfs_block_rsv_check(struct btrfs_root *root, 3409 struct btrfs_block_rsv *block_rsv, int min_factor); 3410 int btrfs_block_rsv_refill(struct btrfs_root *root, 3411 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 3412 enum btrfs_reserve_flush_enum flush); 3413 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3414 struct btrfs_block_rsv *dst_rsv, 3415 u64 num_bytes); 3416 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 3417 struct btrfs_block_rsv *dest, u64 num_bytes, 3418 int min_factor); 3419 void btrfs_block_rsv_release(struct btrfs_root *root, 3420 struct btrfs_block_rsv *block_rsv, 3421 u64 num_bytes); 3422 int btrfs_set_block_group_ro(struct btrfs_root *root, 3423 struct btrfs_block_group_cache *cache); 3424 void btrfs_set_block_group_rw(struct btrfs_root *root, 3425 struct btrfs_block_group_cache *cache); 3426 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 3427 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 3428 int btrfs_error_unpin_extent_range(struct btrfs_root *root, 3429 u64 start, u64 end); 3430 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 3431 u64 num_bytes, u64 *actual_bytes); 3432 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 3433 struct btrfs_root *root, u64 type); 3434 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range); 3435 3436 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 3437 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 3438 struct btrfs_fs_info *fs_info); 3439 int __get_raid_index(u64 flags); 3440 int btrfs_start_nocow_write(struct btrfs_root *root); 3441 void btrfs_end_nocow_write(struct btrfs_root *root); 3442 /* ctree.c */ 3443 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 3444 int level, int *slot); 3445 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2); 3446 int btrfs_previous_item(struct btrfs_root *root, 3447 struct btrfs_path *path, u64 min_objectid, 3448 int type); 3449 int btrfs_previous_extent_item(struct btrfs_root *root, 3450 struct btrfs_path *path, u64 min_objectid); 3451 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3452 struct btrfs_key *new_key); 3453 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 3454 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); 3455 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3456 struct btrfs_key *key, int lowest_level, 3457 u64 min_trans); 3458 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3459 struct btrfs_path *path, 3460 u64 min_trans); 3461 enum btrfs_compare_tree_result { 3462 BTRFS_COMPARE_TREE_NEW, 3463 BTRFS_COMPARE_TREE_DELETED, 3464 BTRFS_COMPARE_TREE_CHANGED, 3465 BTRFS_COMPARE_TREE_SAME, 3466 }; 3467 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root, 3468 struct btrfs_root *right_root, 3469 struct btrfs_path *left_path, 3470 struct btrfs_path *right_path, 3471 struct btrfs_key *key, 3472 enum btrfs_compare_tree_result result, 3473 void *ctx); 3474 int btrfs_compare_trees(struct btrfs_root *left_root, 3475 struct btrfs_root *right_root, 3476 btrfs_changed_cb_t cb, void *ctx); 3477 int btrfs_cow_block(struct btrfs_trans_handle *trans, 3478 struct btrfs_root *root, struct extent_buffer *buf, 3479 struct extent_buffer *parent, int parent_slot, 3480 struct extent_buffer **cow_ret); 3481 int btrfs_copy_root(struct btrfs_trans_handle *trans, 3482 struct btrfs_root *root, 3483 struct extent_buffer *buf, 3484 struct extent_buffer **cow_ret, u64 new_root_objectid); 3485 int btrfs_block_can_be_shared(struct btrfs_root *root, 3486 struct extent_buffer *buf); 3487 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 3488 u32 data_size); 3489 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 3490 u32 new_size, int from_end); 3491 int btrfs_split_item(struct btrfs_trans_handle *trans, 3492 struct btrfs_root *root, 3493 struct btrfs_path *path, 3494 struct btrfs_key *new_key, 3495 unsigned long split_offset); 3496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3497 struct btrfs_root *root, 3498 struct btrfs_path *path, 3499 struct btrfs_key *new_key); 3500 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 3501 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 3502 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 3503 *root, struct btrfs_key *key, struct btrfs_path *p, int 3504 ins_len, int cow); 3505 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 3506 struct btrfs_path *p, u64 time_seq); 3507 int btrfs_search_slot_for_read(struct btrfs_root *root, 3508 struct btrfs_key *key, struct btrfs_path *p, 3509 int find_higher, int return_any); 3510 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3511 struct btrfs_root *root, struct extent_buffer *parent, 3512 int start_slot, u64 *last_ret, 3513 struct btrfs_key *progress); 3514 void btrfs_release_path(struct btrfs_path *p); 3515 struct btrfs_path *btrfs_alloc_path(void); 3516 void btrfs_free_path(struct btrfs_path *p); 3517 void btrfs_set_path_blocking(struct btrfs_path *p); 3518 void btrfs_clear_path_blocking(struct btrfs_path *p, 3519 struct extent_buffer *held, int held_rw); 3520 void btrfs_unlock_up_safe(struct btrfs_path *p, int level); 3521 3522 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3523 struct btrfs_path *path, int slot, int nr); 3524 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3525 struct btrfs_root *root, 3526 struct btrfs_path *path) 3527 { 3528 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3529 } 3530 3531 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3532 struct btrfs_key *cpu_key, u32 *data_size, 3533 u32 total_data, u32 total_size, int nr); 3534 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3535 *root, struct btrfs_key *key, void *data, u32 data_size); 3536 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3537 struct btrfs_root *root, 3538 struct btrfs_path *path, 3539 struct btrfs_key *cpu_key, u32 *data_size, int nr); 3540 3541 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3542 struct btrfs_root *root, 3543 struct btrfs_path *path, 3544 struct btrfs_key *key, 3545 u32 data_size) 3546 { 3547 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 3548 } 3549 3550 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 3551 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3552 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3553 u64 time_seq); 3554 static inline int btrfs_next_old_item(struct btrfs_root *root, 3555 struct btrfs_path *p, u64 time_seq) 3556 { 3557 ++p->slots[0]; 3558 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3559 return btrfs_next_old_leaf(root, p, time_seq); 3560 return 0; 3561 } 3562 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3563 { 3564 return btrfs_next_old_item(root, p, 0); 3565 } 3566 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); 3567 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, 3568 struct btrfs_block_rsv *block_rsv, 3569 int update_ref, int for_reloc); 3570 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3571 struct btrfs_root *root, 3572 struct extent_buffer *node, 3573 struct extent_buffer *parent); 3574 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3575 { 3576 /* 3577 * Get synced with close_ctree() 3578 */ 3579 smp_mb(); 3580 return fs_info->closing; 3581 } 3582 3583 /* 3584 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3585 * anything except sleeping. This function is used to check the status of 3586 * the fs. 3587 */ 3588 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root) 3589 { 3590 return (root->fs_info->sb->s_flags & MS_RDONLY || 3591 btrfs_fs_closing(root->fs_info)); 3592 } 3593 3594 static inline void free_fs_info(struct btrfs_fs_info *fs_info) 3595 { 3596 kfree(fs_info->balance_ctl); 3597 kfree(fs_info->delayed_root); 3598 kfree(fs_info->extent_root); 3599 kfree(fs_info->tree_root); 3600 kfree(fs_info->chunk_root); 3601 kfree(fs_info->dev_root); 3602 kfree(fs_info->csum_root); 3603 kfree(fs_info->quota_root); 3604 kfree(fs_info->uuid_root); 3605 kfree(fs_info->super_copy); 3606 kfree(fs_info->super_for_commit); 3607 kfree(fs_info); 3608 } 3609 3610 /* tree mod log functions from ctree.c */ 3611 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 3612 struct seq_list *elem); 3613 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 3614 struct seq_list *elem); 3615 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); 3616 3617 /* root-item.c */ 3618 int btrfs_find_root_ref(struct btrfs_root *tree_root, 3619 struct btrfs_path *path, 3620 u64 root_id, u64 ref_id); 3621 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 3622 struct btrfs_root *tree_root, 3623 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 3624 const char *name, int name_len); 3625 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 3626 struct btrfs_root *tree_root, 3627 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 3628 const char *name, int name_len); 3629 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3630 struct btrfs_key *key); 3631 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root 3632 *root, struct btrfs_key *key, struct btrfs_root_item 3633 *item); 3634 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3635 struct btrfs_root *root, 3636 struct btrfs_key *key, 3637 struct btrfs_root_item *item); 3638 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 3639 struct btrfs_path *path, struct btrfs_root_item *root_item, 3640 struct btrfs_key *root_key); 3641 int btrfs_find_orphan_roots(struct btrfs_root *tree_root); 3642 void btrfs_set_root_node(struct btrfs_root_item *item, 3643 struct extent_buffer *node); 3644 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3645 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3646 struct btrfs_root *root); 3647 3648 /* uuid-tree.c */ 3649 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, 3650 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3651 u64 subid); 3652 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans, 3653 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3654 u64 subid); 3655 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info, 3656 int (*check_func)(struct btrfs_fs_info *, u8 *, u8, 3657 u64)); 3658 3659 /* dir-item.c */ 3660 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3661 const char *name, int name_len); 3662 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, 3663 struct btrfs_root *root, const char *name, 3664 int name_len, struct inode *dir, 3665 struct btrfs_key *location, u8 type, u64 index); 3666 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3667 struct btrfs_root *root, 3668 struct btrfs_path *path, u64 dir, 3669 const char *name, int name_len, 3670 int mod); 3671 struct btrfs_dir_item * 3672 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3673 struct btrfs_root *root, 3674 struct btrfs_path *path, u64 dir, 3675 u64 objectid, const char *name, int name_len, 3676 int mod); 3677 struct btrfs_dir_item * 3678 btrfs_search_dir_index_item(struct btrfs_root *root, 3679 struct btrfs_path *path, u64 dirid, 3680 const char *name, int name_len); 3681 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3682 struct btrfs_root *root, 3683 struct btrfs_path *path, 3684 struct btrfs_dir_item *di); 3685 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3686 struct btrfs_root *root, 3687 struct btrfs_path *path, u64 objectid, 3688 const char *name, u16 name_len, 3689 const void *data, u16 data_len); 3690 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3691 struct btrfs_root *root, 3692 struct btrfs_path *path, u64 dir, 3693 const char *name, u16 name_len, 3694 int mod); 3695 int verify_dir_item(struct btrfs_root *root, 3696 struct extent_buffer *leaf, 3697 struct btrfs_dir_item *dir_item); 3698 3699 /* orphan.c */ 3700 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3701 struct btrfs_root *root, u64 offset); 3702 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3703 struct btrfs_root *root, u64 offset); 3704 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3705 3706 /* inode-item.c */ 3707 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3708 struct btrfs_root *root, 3709 const char *name, int name_len, 3710 u64 inode_objectid, u64 ref_objectid, u64 index); 3711 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3712 struct btrfs_root *root, 3713 const char *name, int name_len, 3714 u64 inode_objectid, u64 ref_objectid, u64 *index); 3715 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3716 struct btrfs_root *root, 3717 struct btrfs_path *path, u64 objectid); 3718 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3719 *root, struct btrfs_path *path, 3720 struct btrfs_key *location, int mod); 3721 3722 struct btrfs_inode_extref * 3723 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3724 struct btrfs_root *root, 3725 struct btrfs_path *path, 3726 const char *name, int name_len, 3727 u64 inode_objectid, u64 ref_objectid, int ins_len, 3728 int cow); 3729 3730 int btrfs_find_name_in_ext_backref(struct btrfs_path *path, 3731 u64 ref_objectid, const char *name, 3732 int name_len, 3733 struct btrfs_inode_extref **extref_ret); 3734 3735 /* file-item.c */ 3736 struct btrfs_dio_private; 3737 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3738 struct btrfs_root *root, u64 bytenr, u64 len); 3739 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, 3740 struct bio *bio, u32 *dst); 3741 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode, 3742 struct btrfs_dio_private *dip, struct bio *bio, 3743 u64 logical_offset); 3744 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3745 struct btrfs_root *root, 3746 u64 objectid, u64 pos, 3747 u64 disk_offset, u64 disk_num_bytes, 3748 u64 num_bytes, u64 offset, u64 ram_bytes, 3749 u8 compression, u8 encryption, u16 other_encoding); 3750 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3751 struct btrfs_root *root, 3752 struct btrfs_path *path, u64 objectid, 3753 u64 bytenr, int mod); 3754 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3755 struct btrfs_root *root, 3756 struct btrfs_ordered_sum *sums); 3757 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, 3758 struct bio *bio, u64 file_start, int contig); 3759 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3760 struct list_head *list, int search_commit); 3761 void btrfs_extent_item_to_extent_map(struct inode *inode, 3762 const struct btrfs_path *path, 3763 struct btrfs_file_extent_item *fi, 3764 const bool new_inline, 3765 struct extent_map *em); 3766 3767 /* inode.c */ 3768 struct btrfs_delalloc_work { 3769 struct inode *inode; 3770 int wait; 3771 int delay_iput; 3772 struct completion completion; 3773 struct list_head list; 3774 struct btrfs_work work; 3775 }; 3776 3777 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 3778 int wait, int delay_iput); 3779 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work); 3780 3781 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 3782 size_t pg_offset, u64 start, u64 len, 3783 int create); 3784 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3785 u64 *orig_start, u64 *orig_block_len, 3786 u64 *ram_bytes); 3787 3788 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ 3789 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) 3790 #define ClearPageChecked ClearPageFsMisc 3791 #define SetPageChecked SetPageFsMisc 3792 #define PageChecked PageFsMisc 3793 #endif 3794 3795 /* This forces readahead on a given range of bytes in an inode */ 3796 static inline void btrfs_force_ra(struct address_space *mapping, 3797 struct file_ra_state *ra, struct file *file, 3798 pgoff_t offset, unsigned long req_size) 3799 { 3800 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 3801 } 3802 3803 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3804 int btrfs_set_inode_index(struct inode *dir, u64 *index); 3805 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3806 struct btrfs_root *root, 3807 struct inode *dir, struct inode *inode, 3808 const char *name, int name_len); 3809 int btrfs_add_link(struct btrfs_trans_handle *trans, 3810 struct inode *parent_inode, struct inode *inode, 3811 const char *name, int name_len, int add_backref, u64 index); 3812 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3813 struct btrfs_root *root, 3814 struct inode *dir, u64 objectid, 3815 const char *name, int name_len); 3816 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3817 int front); 3818 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 struct inode *inode, u64 new_size, 3821 u32 min_type); 3822 3823 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput); 3824 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 3825 int nr); 3826 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 3827 struct extent_state **cached_state); 3828 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3829 struct btrfs_root *new_root, 3830 struct btrfs_root *parent_root, 3831 u64 new_dirid); 3832 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 3833 size_t size, struct bio *bio, 3834 unsigned long bio_flags); 3835 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 3836 int btrfs_readpage(struct file *file, struct page *page); 3837 void btrfs_evict_inode(struct inode *inode); 3838 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3839 struct inode *btrfs_alloc_inode(struct super_block *sb); 3840 void btrfs_destroy_inode(struct inode *inode); 3841 int btrfs_drop_inode(struct inode *inode); 3842 int btrfs_init_cachep(void); 3843 void btrfs_destroy_cachep(void); 3844 long btrfs_ioctl_trans_end(struct file *file); 3845 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3846 struct btrfs_root *root, int *was_new); 3847 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3848 size_t pg_offset, u64 start, u64 end, 3849 int create); 3850 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3851 struct btrfs_root *root, 3852 struct inode *inode); 3853 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3854 struct btrfs_root *root, struct inode *inode); 3855 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); 3856 int btrfs_orphan_cleanup(struct btrfs_root *root); 3857 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3858 struct btrfs_root *root); 3859 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size); 3860 void btrfs_invalidate_inodes(struct btrfs_root *root); 3861 void btrfs_add_delayed_iput(struct inode *inode); 3862 void btrfs_run_delayed_iputs(struct btrfs_root *root); 3863 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3864 u64 start, u64 num_bytes, u64 min_size, 3865 loff_t actual_len, u64 *alloc_hint); 3866 int btrfs_prealloc_file_range_trans(struct inode *inode, 3867 struct btrfs_trans_handle *trans, int mode, 3868 u64 start, u64 num_bytes, u64 min_size, 3869 loff_t actual_len, u64 *alloc_hint); 3870 extern const struct dentry_operations btrfs_dentry_operations; 3871 3872 /* ioctl.c */ 3873 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3874 void btrfs_update_iflags(struct inode *inode); 3875 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir); 3876 int btrfs_is_empty_uuid(u8 *uuid); 3877 int btrfs_defrag_file(struct inode *inode, struct file *file, 3878 struct btrfs_ioctl_defrag_range_args *range, 3879 u64 newer_than, unsigned long max_pages); 3880 void btrfs_get_block_group_info(struct list_head *groups_list, 3881 struct btrfs_ioctl_space_info *space); 3882 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3883 struct btrfs_ioctl_balance_args *bargs); 3884 3885 3886 /* file.c */ 3887 int btrfs_auto_defrag_init(void); 3888 void btrfs_auto_defrag_exit(void); 3889 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3890 struct inode *inode); 3891 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3892 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3893 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3894 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 3895 int skip_pinned); 3896 extern const struct file_operations btrfs_file_operations; 3897 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 3898 struct btrfs_root *root, struct inode *inode, 3899 struct btrfs_path *path, u64 start, u64 end, 3900 u64 *drop_end, int drop_cache, 3901 int replace_extent, 3902 u32 extent_item_size, 3903 int *key_inserted); 3904 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3905 struct btrfs_root *root, struct inode *inode, u64 start, 3906 u64 end, int drop_cache); 3907 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3908 struct inode *inode, u64 start, u64 end); 3909 int btrfs_release_file(struct inode *inode, struct file *file); 3910 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 3911 struct page **pages, size_t num_pages, 3912 loff_t pos, size_t write_bytes, 3913 struct extent_state **cached); 3914 3915 /* tree-defrag.c */ 3916 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3917 struct btrfs_root *root); 3918 3919 /* sysfs.c */ 3920 int btrfs_init_sysfs(void); 3921 void btrfs_exit_sysfs(void); 3922 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info); 3923 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info); 3924 3925 /* xattr.c */ 3926 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); 3927 3928 /* super.c */ 3929 int btrfs_parse_options(struct btrfs_root *root, char *options); 3930 int btrfs_sync_fs(struct super_block *sb, int wait); 3931 3932 #ifdef CONFIG_PRINTK 3933 __printf(2, 3) 3934 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3935 #else 3936 static inline __printf(2, 3) 3937 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3938 { 3939 } 3940 #endif 3941 3942 #define btrfs_emerg(fs_info, fmt, args...) \ 3943 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3944 #define btrfs_alert(fs_info, fmt, args...) \ 3945 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3946 #define btrfs_crit(fs_info, fmt, args...) \ 3947 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3948 #define btrfs_err(fs_info, fmt, args...) \ 3949 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3950 #define btrfs_warn(fs_info, fmt, args...) \ 3951 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3952 #define btrfs_notice(fs_info, fmt, args...) \ 3953 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3954 #define btrfs_info(fs_info, fmt, args...) \ 3955 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3956 3957 #ifdef DEBUG 3958 #define btrfs_debug(fs_info, fmt, args...) \ 3959 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3960 #else 3961 #define btrfs_debug(fs_info, fmt, args...) \ 3962 no_printk(KERN_DEBUG fmt, ##args) 3963 #endif 3964 3965 #ifdef CONFIG_BTRFS_ASSERT 3966 3967 static inline void assfail(char *expr, char *file, int line) 3968 { 3969 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d", 3970 expr, file, line); 3971 BUG(); 3972 } 3973 3974 #define ASSERT(expr) \ 3975 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__)) 3976 #else 3977 #define ASSERT(expr) ((void)0) 3978 #endif 3979 3980 #define btrfs_assert() 3981 __printf(5, 6) 3982 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 3983 unsigned int line, int errno, const char *fmt, ...); 3984 3985 3986 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3987 struct btrfs_root *root, const char *function, 3988 unsigned int line, int errno); 3989 3990 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3991 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3992 3993 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3994 u64 flag) 3995 { 3996 struct btrfs_super_block *disk_super; 3997 u64 features; 3998 3999 disk_super = fs_info->super_copy; 4000 features = btrfs_super_incompat_flags(disk_super); 4001 if (!(features & flag)) { 4002 spin_lock(&fs_info->super_lock); 4003 features = btrfs_super_incompat_flags(disk_super); 4004 if (!(features & flag)) { 4005 features |= flag; 4006 btrfs_set_super_incompat_flags(disk_super, features); 4007 btrfs_info(fs_info, "setting %llu feature flag", 4008 flag); 4009 } 4010 spin_unlock(&fs_info->super_lock); 4011 } 4012 } 4013 4014 #define btrfs_fs_incompat(fs_info, opt) \ 4015 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 4016 4017 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 4018 { 4019 struct btrfs_super_block *disk_super; 4020 disk_super = fs_info->super_copy; 4021 return !!(btrfs_super_incompat_flags(disk_super) & flag); 4022 } 4023 4024 /* 4025 * Call btrfs_abort_transaction as early as possible when an error condition is 4026 * detected, that way the exact line number is reported. 4027 */ 4028 4029 #define btrfs_abort_transaction(trans, root, errno) \ 4030 do { \ 4031 __btrfs_abort_transaction(trans, root, __func__, \ 4032 __LINE__, errno); \ 4033 } while (0) 4034 4035 #define btrfs_std_error(fs_info, errno) \ 4036 do { \ 4037 if ((errno)) \ 4038 __btrfs_std_error((fs_info), __func__, \ 4039 __LINE__, (errno), NULL); \ 4040 } while (0) 4041 4042 #define btrfs_error(fs_info, errno, fmt, args...) \ 4043 do { \ 4044 __btrfs_std_error((fs_info), __func__, __LINE__, \ 4045 (errno), fmt, ##args); \ 4046 } while (0) 4047 4048 __printf(5, 6) 4049 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 4050 unsigned int line, int errno, const char *fmt, ...); 4051 4052 /* 4053 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 4054 * will panic(). Otherwise we BUG() here. 4055 */ 4056 #define btrfs_panic(fs_info, errno, fmt, args...) \ 4057 do { \ 4058 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 4059 BUG(); \ 4060 } while (0) 4061 4062 /* acl.c */ 4063 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 4064 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 4065 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type); 4066 int btrfs_init_acl(struct btrfs_trans_handle *trans, 4067 struct inode *inode, struct inode *dir); 4068 #else 4069 #define btrfs_get_acl NULL 4070 #define btrfs_set_acl NULL 4071 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 4072 struct inode *inode, struct inode *dir) 4073 { 4074 return 0; 4075 } 4076 #endif 4077 4078 /* relocation.c */ 4079 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); 4080 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 4081 struct btrfs_root *root); 4082 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 4083 struct btrfs_root *root); 4084 int btrfs_recover_relocation(struct btrfs_root *root); 4085 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); 4086 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4087 struct btrfs_root *root, struct extent_buffer *buf, 4088 struct extent_buffer *cow); 4089 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4090 struct btrfs_pending_snapshot *pending, 4091 u64 *bytes_to_reserve); 4092 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4093 struct btrfs_pending_snapshot *pending); 4094 4095 /* scrub.c */ 4096 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4097 u64 end, struct btrfs_scrub_progress *progress, 4098 int readonly, int is_dev_replace); 4099 void btrfs_scrub_pause(struct btrfs_root *root); 4100 void btrfs_scrub_continue(struct btrfs_root *root); 4101 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 4102 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info, 4103 struct btrfs_device *dev); 4104 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4105 struct btrfs_scrub_progress *progress); 4106 4107 /* dev-replace.c */ 4108 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 4109 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 4110 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info); 4111 4112 /* reada.c */ 4113 struct reada_control { 4114 struct btrfs_root *root; /* tree to prefetch */ 4115 struct btrfs_key key_start; 4116 struct btrfs_key key_end; /* exclusive */ 4117 atomic_t elems; 4118 struct kref refcnt; 4119 wait_queue_head_t wait; 4120 }; 4121 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 4122 struct btrfs_key *start, struct btrfs_key *end); 4123 int btrfs_reada_wait(void *handle); 4124 void btrfs_reada_detach(void *handle); 4125 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, 4126 u64 start, int err); 4127 4128 static inline int is_fstree(u64 rootid) 4129 { 4130 if (rootid == BTRFS_FS_TREE_OBJECTID || 4131 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID) 4132 return 1; 4133 return 0; 4134 } 4135 4136 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4137 { 4138 return signal_pending(current); 4139 } 4140 4141 /* Sanity test specific functions */ 4142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4143 void btrfs_test_destroy_inode(struct inode *inode); 4144 int btrfs_verify_qgroup_counts(struct btrfs_fs_info *fs_info, u64 qgroupid, 4145 u64 rfer, u64 excl); 4146 #endif 4147 4148 #endif 4149