1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 53 54 /* 55 * Maximum number of mirrors that can be available for all profiles counting 56 * the target device of dev-replace as one. During an active device replace 57 * procedure, the target device of the copy operation is a mirror for the 58 * filesystem data as well that can be used to read data in order to repair 59 * read errors on other disks. 60 * 61 * Current value is derived from RAID1C4 with 4 copies. 62 */ 63 #define BTRFS_MAX_MIRRORS (4 + 1) 64 65 #define BTRFS_MAX_LEVEL 8 66 67 #define BTRFS_OLDEST_GENERATION 0ULL 68 69 /* 70 * we can actually store much bigger names, but lets not confuse the rest 71 * of linux 72 */ 73 #define BTRFS_NAME_LEN 255 74 75 /* 76 * Theoretical limit is larger, but we keep this down to a sane 77 * value. That should limit greatly the possibility of collisions on 78 * inode ref items. 79 */ 80 #define BTRFS_LINK_MAX 65535U 81 82 #define BTRFS_EMPTY_DIR_SIZE 0 83 84 /* ioprio of readahead is set to idle */ 85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 86 87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 88 89 /* 90 * Use large batch size to reduce overhead of metadata updates. On the reader 91 * side, we only read it when we are close to ENOSPC and the read overhead is 92 * mostly related to the number of CPUs, so it is OK to use arbitrary large 93 * value here. 94 */ 95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 96 97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 98 99 /* 100 * Deltas are an effective way to populate global statistics. Give macro names 101 * to make it clear what we're doing. An example is discard_extents in 102 * btrfs_free_space_ctl. 103 */ 104 #define BTRFS_STAT_NR_ENTRIES 2 105 #define BTRFS_STAT_CURR 0 106 #define BTRFS_STAT_PREV 1 107 108 /* 109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 110 */ 111 static inline u32 count_max_extents(u64 size) 112 { 113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 114 } 115 116 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 117 { 118 BUG_ON(num_stripes == 0); 119 return sizeof(struct btrfs_chunk) + 120 sizeof(struct btrfs_stripe) * (num_stripes - 1); 121 } 122 123 /* 124 * Runtime (in-memory) states of filesystem 125 */ 126 enum { 127 /* Global indicator of serious filesystem errors */ 128 BTRFS_FS_STATE_ERROR, 129 /* 130 * Filesystem is being remounted, allow to skip some operations, like 131 * defrag 132 */ 133 BTRFS_FS_STATE_REMOUNTING, 134 /* Filesystem in RO mode */ 135 BTRFS_FS_STATE_RO, 136 /* Track if a transaction abort has been reported on this filesystem */ 137 BTRFS_FS_STATE_TRANS_ABORTED, 138 /* 139 * Bio operations should be blocked on this filesystem because a source 140 * or target device is being destroyed as part of a device replace 141 */ 142 BTRFS_FS_STATE_DEV_REPLACING, 143 /* The btrfs_fs_info created for self-tests */ 144 BTRFS_FS_STATE_DUMMY_FS_INFO, 145 }; 146 147 #define BTRFS_BACKREF_REV_MAX 256 148 #define BTRFS_BACKREF_REV_SHIFT 56 149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 150 BTRFS_BACKREF_REV_SHIFT) 151 152 #define BTRFS_OLD_BACKREF_REV 0 153 #define BTRFS_MIXED_BACKREF_REV 1 154 155 /* 156 * every tree block (leaf or node) starts with this header. 157 */ 158 struct btrfs_header { 159 /* these first four must match the super block */ 160 u8 csum[BTRFS_CSUM_SIZE]; 161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 162 __le64 bytenr; /* which block this node is supposed to live in */ 163 __le64 flags; 164 165 /* allowed to be different from the super from here on down */ 166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 167 __le64 generation; 168 __le64 owner; 169 __le32 nritems; 170 u8 level; 171 } __attribute__ ((__packed__)); 172 173 /* 174 * this is a very generous portion of the super block, giving us 175 * room to translate 14 chunks with 3 stripes each. 176 */ 177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 178 179 /* 180 * just in case we somehow lose the roots and are not able to mount, 181 * we store an array of the roots from previous transactions 182 * in the super. 183 */ 184 #define BTRFS_NUM_BACKUP_ROOTS 4 185 struct btrfs_root_backup { 186 __le64 tree_root; 187 __le64 tree_root_gen; 188 189 __le64 chunk_root; 190 __le64 chunk_root_gen; 191 192 __le64 extent_root; 193 __le64 extent_root_gen; 194 195 __le64 fs_root; 196 __le64 fs_root_gen; 197 198 __le64 dev_root; 199 __le64 dev_root_gen; 200 201 __le64 csum_root; 202 __le64 csum_root_gen; 203 204 __le64 total_bytes; 205 __le64 bytes_used; 206 __le64 num_devices; 207 /* future */ 208 __le64 unused_64[4]; 209 210 u8 tree_root_level; 211 u8 chunk_root_level; 212 u8 extent_root_level; 213 u8 fs_root_level; 214 u8 dev_root_level; 215 u8 csum_root_level; 216 /* future and to align */ 217 u8 unused_8[10]; 218 } __attribute__ ((__packed__)); 219 220 /* 221 * the super block basically lists the main trees of the FS 222 * it currently lacks any block count etc etc 223 */ 224 struct btrfs_super_block { 225 /* the first 4 fields must match struct btrfs_header */ 226 u8 csum[BTRFS_CSUM_SIZE]; 227 /* FS specific UUID, visible to user */ 228 u8 fsid[BTRFS_FSID_SIZE]; 229 __le64 bytenr; /* this block number */ 230 __le64 flags; 231 232 /* allowed to be different from the btrfs_header from here own down */ 233 __le64 magic; 234 __le64 generation; 235 __le64 root; 236 __le64 chunk_root; 237 __le64 log_root; 238 239 /* this will help find the new super based on the log root */ 240 __le64 log_root_transid; 241 __le64 total_bytes; 242 __le64 bytes_used; 243 __le64 root_dir_objectid; 244 __le64 num_devices; 245 __le32 sectorsize; 246 __le32 nodesize; 247 __le32 __unused_leafsize; 248 __le32 stripesize; 249 __le32 sys_chunk_array_size; 250 __le64 chunk_root_generation; 251 __le64 compat_flags; 252 __le64 compat_ro_flags; 253 __le64 incompat_flags; 254 __le16 csum_type; 255 u8 root_level; 256 u8 chunk_root_level; 257 u8 log_root_level; 258 struct btrfs_dev_item dev_item; 259 260 char label[BTRFS_LABEL_SIZE]; 261 262 __le64 cache_generation; 263 __le64 uuid_tree_generation; 264 265 /* the UUID written into btree blocks */ 266 u8 metadata_uuid[BTRFS_FSID_SIZE]; 267 268 /* future expansion */ 269 __le64 reserved[28]; 270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 272 } __attribute__ ((__packed__)); 273 274 /* 275 * Compat flags that we support. If any incompat flags are set other than the 276 * ones specified below then we will fail to mount 277 */ 278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 281 282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID) 285 286 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 288 289 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 290 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 291 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 292 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 293 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 294 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 295 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 296 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 297 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 298 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 299 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 300 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 301 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 302 BTRFS_FEATURE_INCOMPAT_ZONED) 303 304 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 305 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 306 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 307 308 /* 309 * A leaf is full of items. offset and size tell us where to find 310 * the item in the leaf (relative to the start of the data area) 311 */ 312 struct btrfs_item { 313 struct btrfs_disk_key key; 314 __le32 offset; 315 __le32 size; 316 } __attribute__ ((__packed__)); 317 318 /* 319 * leaves have an item area and a data area: 320 * [item0, item1....itemN] [free space] [dataN...data1, data0] 321 * 322 * The data is separate from the items to get the keys closer together 323 * during searches. 324 */ 325 struct btrfs_leaf { 326 struct btrfs_header header; 327 struct btrfs_item items[]; 328 } __attribute__ ((__packed__)); 329 330 /* 331 * all non-leaf blocks are nodes, they hold only keys and pointers to 332 * other blocks 333 */ 334 struct btrfs_key_ptr { 335 struct btrfs_disk_key key; 336 __le64 blockptr; 337 __le64 generation; 338 } __attribute__ ((__packed__)); 339 340 struct btrfs_node { 341 struct btrfs_header header; 342 struct btrfs_key_ptr ptrs[]; 343 } __attribute__ ((__packed__)); 344 345 /* 346 * btrfs_paths remember the path taken from the root down to the leaf. 347 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 348 * to any other levels that are present. 349 * 350 * The slots array records the index of the item or block pointer 351 * used while walking the tree. 352 */ 353 enum { READA_NONE, READA_BACK, READA_FORWARD }; 354 struct btrfs_path { 355 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 356 int slots[BTRFS_MAX_LEVEL]; 357 /* if there is real range locking, this locks field will change */ 358 u8 locks[BTRFS_MAX_LEVEL]; 359 u8 reada; 360 /* keep some upper locks as we walk down */ 361 u8 lowest_level; 362 363 /* 364 * set by btrfs_split_item, tells search_slot to keep all locks 365 * and to force calls to keep space in the nodes 366 */ 367 unsigned int search_for_split:1; 368 unsigned int keep_locks:1; 369 unsigned int skip_locking:1; 370 unsigned int search_commit_root:1; 371 unsigned int need_commit_sem:1; 372 unsigned int skip_release_on_error:1; 373 /* 374 * Indicate that new item (btrfs_search_slot) is extending already 375 * existing item and ins_len contains only the data size and not item 376 * header (ie. sizeof(struct btrfs_item) is not included). 377 */ 378 unsigned int search_for_extension:1; 379 }; 380 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 381 sizeof(struct btrfs_item)) 382 struct btrfs_dev_replace { 383 u64 replace_state; /* see #define above */ 384 time64_t time_started; /* seconds since 1-Jan-1970 */ 385 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 386 atomic64_t num_write_errors; 387 atomic64_t num_uncorrectable_read_errors; 388 389 u64 cursor_left; 390 u64 committed_cursor_left; 391 u64 cursor_left_last_write_of_item; 392 u64 cursor_right; 393 394 u64 cont_reading_from_srcdev_mode; /* see #define above */ 395 396 int is_valid; 397 int item_needs_writeback; 398 struct btrfs_device *srcdev; 399 struct btrfs_device *tgtdev; 400 401 struct mutex lock_finishing_cancel_unmount; 402 struct rw_semaphore rwsem; 403 404 struct btrfs_scrub_progress scrub_progress; 405 406 struct percpu_counter bio_counter; 407 wait_queue_head_t replace_wait; 408 }; 409 410 /* 411 * free clusters are used to claim free space in relatively large chunks, 412 * allowing us to do less seeky writes. They are used for all metadata 413 * allocations. In ssd_spread mode they are also used for data allocations. 414 */ 415 struct btrfs_free_cluster { 416 spinlock_t lock; 417 spinlock_t refill_lock; 418 struct rb_root root; 419 420 /* largest extent in this cluster */ 421 u64 max_size; 422 423 /* first extent starting offset */ 424 u64 window_start; 425 426 /* We did a full search and couldn't create a cluster */ 427 bool fragmented; 428 429 struct btrfs_block_group *block_group; 430 /* 431 * when a cluster is allocated from a block group, we put the 432 * cluster onto a list in the block group so that it can 433 * be freed before the block group is freed. 434 */ 435 struct list_head block_group_list; 436 }; 437 438 enum btrfs_caching_type { 439 BTRFS_CACHE_NO, 440 BTRFS_CACHE_STARTED, 441 BTRFS_CACHE_FAST, 442 BTRFS_CACHE_FINISHED, 443 BTRFS_CACHE_ERROR, 444 }; 445 446 /* 447 * Tree to record all locked full stripes of a RAID5/6 block group 448 */ 449 struct btrfs_full_stripe_locks_tree { 450 struct rb_root root; 451 struct mutex lock; 452 }; 453 454 /* Discard control. */ 455 /* 456 * Async discard uses multiple lists to differentiate the discard filter 457 * parameters. Index 0 is for completely free block groups where we need to 458 * ensure the entire block group is trimmed without being lossy. Indices 459 * afterwards represent monotonically decreasing discard filter sizes to 460 * prioritize what should be discarded next. 461 */ 462 #define BTRFS_NR_DISCARD_LISTS 3 463 #define BTRFS_DISCARD_INDEX_UNUSED 0 464 #define BTRFS_DISCARD_INDEX_START 1 465 466 struct btrfs_discard_ctl { 467 struct workqueue_struct *discard_workers; 468 struct delayed_work work; 469 spinlock_t lock; 470 struct btrfs_block_group *block_group; 471 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 472 u64 prev_discard; 473 u64 prev_discard_time; 474 atomic_t discardable_extents; 475 atomic64_t discardable_bytes; 476 u64 max_discard_size; 477 u64 delay_ms; 478 u32 iops_limit; 479 u32 kbps_limit; 480 u64 discard_extent_bytes; 481 u64 discard_bitmap_bytes; 482 atomic64_t discard_bytes_saved; 483 }; 484 485 /* delayed seq elem */ 486 struct seq_list { 487 struct list_head list; 488 u64 seq; 489 }; 490 491 #define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 } 492 493 #define SEQ_LAST ((u64)-1) 494 495 enum btrfs_orphan_cleanup_state { 496 ORPHAN_CLEANUP_STARTED = 1, 497 ORPHAN_CLEANUP_DONE = 2, 498 }; 499 500 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 501 502 /* fs_info */ 503 struct reloc_control; 504 struct btrfs_device; 505 struct btrfs_fs_devices; 506 struct btrfs_balance_control; 507 struct btrfs_delayed_root; 508 509 /* 510 * Block group or device which contains an active swapfile. Used for preventing 511 * unsafe operations while a swapfile is active. 512 * 513 * These are sorted on (ptr, inode) (note that a block group or device can 514 * contain more than one swapfile). We compare the pointer values because we 515 * don't actually care what the object is, we just need a quick check whether 516 * the object exists in the rbtree. 517 */ 518 struct btrfs_swapfile_pin { 519 struct rb_node node; 520 void *ptr; 521 struct inode *inode; 522 /* 523 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 524 * points to a struct btrfs_device. 525 */ 526 bool is_block_group; 527 /* 528 * Only used when 'is_block_group' is true and it is the number of 529 * extents used by a swapfile for this block group ('ptr' field). 530 */ 531 int bg_extent_count; 532 }; 533 534 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 535 536 enum { 537 BTRFS_FS_BARRIER, 538 BTRFS_FS_CLOSING_START, 539 BTRFS_FS_CLOSING_DONE, 540 BTRFS_FS_LOG_RECOVERING, 541 BTRFS_FS_OPEN, 542 BTRFS_FS_QUOTA_ENABLED, 543 BTRFS_FS_UPDATE_UUID_TREE_GEN, 544 BTRFS_FS_CREATING_FREE_SPACE_TREE, 545 BTRFS_FS_BTREE_ERR, 546 BTRFS_FS_LOG1_ERR, 547 BTRFS_FS_LOG2_ERR, 548 BTRFS_FS_QUOTA_OVERRIDE, 549 /* Used to record internally whether fs has been frozen */ 550 BTRFS_FS_FROZEN, 551 /* 552 * Indicate that balance has been set up from the ioctl and is in the 553 * main phase. The fs_info::balance_ctl is initialized. 554 * Set and cleared while holding fs_info::balance_mutex. 555 */ 556 BTRFS_FS_BALANCE_RUNNING, 557 558 /* Indicate that the cleaner thread is awake and doing something. */ 559 BTRFS_FS_CLEANER_RUNNING, 560 561 /* 562 * The checksumming has an optimized version and is considered fast, 563 * so we don't need to offload checksums to workqueues. 564 */ 565 BTRFS_FS_CSUM_IMPL_FAST, 566 567 /* Indicate that the discard workqueue can service discards. */ 568 BTRFS_FS_DISCARD_RUNNING, 569 570 /* Indicate that we need to cleanup space cache v1 */ 571 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 572 573 /* Indicate that we can't trust the free space tree for caching yet */ 574 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 575 }; 576 577 /* 578 * Exclusive operations (device replace, resize, device add/remove, balance) 579 */ 580 enum btrfs_exclusive_operation { 581 BTRFS_EXCLOP_NONE, 582 BTRFS_EXCLOP_BALANCE, 583 BTRFS_EXCLOP_DEV_ADD, 584 BTRFS_EXCLOP_DEV_REMOVE, 585 BTRFS_EXCLOP_DEV_REPLACE, 586 BTRFS_EXCLOP_RESIZE, 587 BTRFS_EXCLOP_SWAP_ACTIVATE, 588 }; 589 590 struct btrfs_fs_info { 591 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 592 unsigned long flags; 593 struct btrfs_root *extent_root; 594 struct btrfs_root *tree_root; 595 struct btrfs_root *chunk_root; 596 struct btrfs_root *dev_root; 597 struct btrfs_root *fs_root; 598 struct btrfs_root *csum_root; 599 struct btrfs_root *quota_root; 600 struct btrfs_root *uuid_root; 601 struct btrfs_root *free_space_root; 602 struct btrfs_root *data_reloc_root; 603 604 /* the log root tree is a directory of all the other log roots */ 605 struct btrfs_root *log_root_tree; 606 607 spinlock_t fs_roots_radix_lock; 608 struct radix_tree_root fs_roots_radix; 609 610 /* block group cache stuff */ 611 spinlock_t block_group_cache_lock; 612 u64 first_logical_byte; 613 struct rb_root block_group_cache_tree; 614 615 /* keep track of unallocated space */ 616 atomic64_t free_chunk_space; 617 618 /* Track ranges which are used by log trees blocks/logged data extents */ 619 struct extent_io_tree excluded_extents; 620 621 /* logical->physical extent mapping */ 622 struct extent_map_tree mapping_tree; 623 624 /* 625 * block reservation for extent, checksum, root tree and 626 * delayed dir index item 627 */ 628 struct btrfs_block_rsv global_block_rsv; 629 /* block reservation for metadata operations */ 630 struct btrfs_block_rsv trans_block_rsv; 631 /* block reservation for chunk tree */ 632 struct btrfs_block_rsv chunk_block_rsv; 633 /* block reservation for delayed operations */ 634 struct btrfs_block_rsv delayed_block_rsv; 635 /* block reservation for delayed refs */ 636 struct btrfs_block_rsv delayed_refs_rsv; 637 638 struct btrfs_block_rsv empty_block_rsv; 639 640 u64 generation; 641 u64 last_trans_committed; 642 u64 avg_delayed_ref_runtime; 643 644 /* 645 * this is updated to the current trans every time a full commit 646 * is required instead of the faster short fsync log commits 647 */ 648 u64 last_trans_log_full_commit; 649 unsigned long mount_opt; 650 /* 651 * Track requests for actions that need to be done during transaction 652 * commit (like for some mount options). 653 */ 654 unsigned long pending_changes; 655 unsigned long compress_type:4; 656 unsigned int compress_level; 657 u32 commit_interval; 658 /* 659 * It is a suggestive number, the read side is safe even it gets a 660 * wrong number because we will write out the data into a regular 661 * extent. The write side(mount/remount) is under ->s_umount lock, 662 * so it is also safe. 663 */ 664 u64 max_inline; 665 666 struct btrfs_transaction *running_transaction; 667 wait_queue_head_t transaction_throttle; 668 wait_queue_head_t transaction_wait; 669 wait_queue_head_t transaction_blocked_wait; 670 wait_queue_head_t async_submit_wait; 671 672 /* 673 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 674 * when they are updated. 675 * 676 * Because we do not clear the flags for ever, so we needn't use 677 * the lock on the read side. 678 * 679 * We also needn't use the lock when we mount the fs, because 680 * there is no other task which will update the flag. 681 */ 682 spinlock_t super_lock; 683 struct btrfs_super_block *super_copy; 684 struct btrfs_super_block *super_for_commit; 685 struct super_block *sb; 686 struct inode *btree_inode; 687 struct mutex tree_log_mutex; 688 struct mutex transaction_kthread_mutex; 689 struct mutex cleaner_mutex; 690 struct mutex chunk_mutex; 691 692 /* 693 * this is taken to make sure we don't set block groups ro after 694 * the free space cache has been allocated on them 695 */ 696 struct mutex ro_block_group_mutex; 697 698 /* this is used during read/modify/write to make sure 699 * no two ios are trying to mod the same stripe at the same 700 * time 701 */ 702 struct btrfs_stripe_hash_table *stripe_hash_table; 703 704 /* 705 * this protects the ordered operations list only while we are 706 * processing all of the entries on it. This way we make 707 * sure the commit code doesn't find the list temporarily empty 708 * because another function happens to be doing non-waiting preflush 709 * before jumping into the main commit. 710 */ 711 struct mutex ordered_operations_mutex; 712 713 struct rw_semaphore commit_root_sem; 714 715 struct rw_semaphore cleanup_work_sem; 716 717 struct rw_semaphore subvol_sem; 718 719 spinlock_t trans_lock; 720 /* 721 * the reloc mutex goes with the trans lock, it is taken 722 * during commit to protect us from the relocation code 723 */ 724 struct mutex reloc_mutex; 725 726 struct list_head trans_list; 727 struct list_head dead_roots; 728 struct list_head caching_block_groups; 729 730 spinlock_t delayed_iput_lock; 731 struct list_head delayed_iputs; 732 atomic_t nr_delayed_iputs; 733 wait_queue_head_t delayed_iputs_wait; 734 735 atomic64_t tree_mod_seq; 736 737 /* this protects tree_mod_log and tree_mod_seq_list */ 738 rwlock_t tree_mod_log_lock; 739 struct rb_root tree_mod_log; 740 struct list_head tree_mod_seq_list; 741 742 atomic_t async_delalloc_pages; 743 744 /* 745 * this is used to protect the following list -- ordered_roots. 746 */ 747 spinlock_t ordered_root_lock; 748 749 /* 750 * all fs/file tree roots in which there are data=ordered extents 751 * pending writeback are added into this list. 752 * 753 * these can span multiple transactions and basically include 754 * every dirty data page that isn't from nodatacow 755 */ 756 struct list_head ordered_roots; 757 758 struct mutex delalloc_root_mutex; 759 spinlock_t delalloc_root_lock; 760 /* all fs/file tree roots that have delalloc inodes. */ 761 struct list_head delalloc_roots; 762 763 /* 764 * there is a pool of worker threads for checksumming during writes 765 * and a pool for checksumming after reads. This is because readers 766 * can run with FS locks held, and the writers may be waiting for 767 * those locks. We don't want ordering in the pending list to cause 768 * deadlocks, and so the two are serviced separately. 769 * 770 * A third pool does submit_bio to avoid deadlocking with the other 771 * two 772 */ 773 struct btrfs_workqueue *workers; 774 struct btrfs_workqueue *delalloc_workers; 775 struct btrfs_workqueue *flush_workers; 776 struct btrfs_workqueue *endio_workers; 777 struct btrfs_workqueue *endio_meta_workers; 778 struct btrfs_workqueue *endio_raid56_workers; 779 struct btrfs_workqueue *rmw_workers; 780 struct btrfs_workqueue *endio_meta_write_workers; 781 struct btrfs_workqueue *endio_write_workers; 782 struct btrfs_workqueue *endio_freespace_worker; 783 struct btrfs_workqueue *caching_workers; 784 struct btrfs_workqueue *readahead_workers; 785 786 /* 787 * fixup workers take dirty pages that didn't properly go through 788 * the cow mechanism and make them safe to write. It happens 789 * for the sys_munmap function call path 790 */ 791 struct btrfs_workqueue *fixup_workers; 792 struct btrfs_workqueue *delayed_workers; 793 794 struct task_struct *transaction_kthread; 795 struct task_struct *cleaner_kthread; 796 u32 thread_pool_size; 797 798 struct kobject *space_info_kobj; 799 struct kobject *qgroups_kobj; 800 801 u64 total_pinned; 802 803 /* used to keep from writing metadata until there is a nice batch */ 804 struct percpu_counter dirty_metadata_bytes; 805 struct percpu_counter delalloc_bytes; 806 struct percpu_counter ordered_bytes; 807 s32 dirty_metadata_batch; 808 s32 delalloc_batch; 809 810 struct list_head dirty_cowonly_roots; 811 812 struct btrfs_fs_devices *fs_devices; 813 814 /* 815 * The space_info list is effectively read only after initial 816 * setup. It is populated at mount time and cleaned up after 817 * all block groups are removed. RCU is used to protect it. 818 */ 819 struct list_head space_info; 820 821 struct btrfs_space_info *data_sinfo; 822 823 struct reloc_control *reloc_ctl; 824 825 /* data_alloc_cluster is only used in ssd_spread mode */ 826 struct btrfs_free_cluster data_alloc_cluster; 827 828 /* all metadata allocations go through this cluster */ 829 struct btrfs_free_cluster meta_alloc_cluster; 830 831 /* auto defrag inodes go here */ 832 spinlock_t defrag_inodes_lock; 833 struct rb_root defrag_inodes; 834 atomic_t defrag_running; 835 836 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 837 seqlock_t profiles_lock; 838 /* 839 * these three are in extended format (availability of single 840 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 841 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 842 */ 843 u64 avail_data_alloc_bits; 844 u64 avail_metadata_alloc_bits; 845 u64 avail_system_alloc_bits; 846 847 /* restriper state */ 848 spinlock_t balance_lock; 849 struct mutex balance_mutex; 850 atomic_t balance_pause_req; 851 atomic_t balance_cancel_req; 852 struct btrfs_balance_control *balance_ctl; 853 wait_queue_head_t balance_wait_q; 854 855 u32 data_chunk_allocations; 856 u32 metadata_ratio; 857 858 void *bdev_holder; 859 860 /* private scrub information */ 861 struct mutex scrub_lock; 862 atomic_t scrubs_running; 863 atomic_t scrub_pause_req; 864 atomic_t scrubs_paused; 865 atomic_t scrub_cancel_req; 866 wait_queue_head_t scrub_pause_wait; 867 /* 868 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 869 * running. 870 */ 871 refcount_t scrub_workers_refcnt; 872 struct btrfs_workqueue *scrub_workers; 873 struct btrfs_workqueue *scrub_wr_completion_workers; 874 struct btrfs_workqueue *scrub_parity_workers; 875 876 struct btrfs_discard_ctl discard_ctl; 877 878 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 879 u32 check_integrity_print_mask; 880 #endif 881 /* is qgroup tracking in a consistent state? */ 882 u64 qgroup_flags; 883 884 /* holds configuration and tracking. Protected by qgroup_lock */ 885 struct rb_root qgroup_tree; 886 spinlock_t qgroup_lock; 887 888 /* 889 * used to avoid frequently calling ulist_alloc()/ulist_free() 890 * when doing qgroup accounting, it must be protected by qgroup_lock. 891 */ 892 struct ulist *qgroup_ulist; 893 894 /* 895 * Protect user change for quota operations. If a transaction is needed, 896 * it must be started before locking this lock. 897 */ 898 struct mutex qgroup_ioctl_lock; 899 900 /* list of dirty qgroups to be written at next commit */ 901 struct list_head dirty_qgroups; 902 903 /* used by qgroup for an efficient tree traversal */ 904 u64 qgroup_seq; 905 906 /* qgroup rescan items */ 907 struct mutex qgroup_rescan_lock; /* protects the progress item */ 908 struct btrfs_key qgroup_rescan_progress; 909 struct btrfs_workqueue *qgroup_rescan_workers; 910 struct completion qgroup_rescan_completion; 911 struct btrfs_work qgroup_rescan_work; 912 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 913 914 /* filesystem state */ 915 unsigned long fs_state; 916 917 struct btrfs_delayed_root *delayed_root; 918 919 /* readahead tree */ 920 spinlock_t reada_lock; 921 struct radix_tree_root reada_tree; 922 923 /* readahead works cnt */ 924 atomic_t reada_works_cnt; 925 926 /* Extent buffer radix tree */ 927 spinlock_t buffer_lock; 928 /* Entries are eb->start / sectorsize */ 929 struct radix_tree_root buffer_radix; 930 931 /* next backup root to be overwritten */ 932 int backup_root_index; 933 934 /* device replace state */ 935 struct btrfs_dev_replace dev_replace; 936 937 struct semaphore uuid_tree_rescan_sem; 938 939 /* Used to reclaim the metadata space in the background. */ 940 struct work_struct async_reclaim_work; 941 struct work_struct async_data_reclaim_work; 942 struct work_struct preempt_reclaim_work; 943 944 spinlock_t unused_bgs_lock; 945 struct list_head unused_bgs; 946 struct mutex unused_bg_unpin_mutex; 947 struct mutex delete_unused_bgs_mutex; 948 949 /* Cached block sizes */ 950 u32 nodesize; 951 u32 sectorsize; 952 /* ilog2 of sectorsize, use to avoid 64bit division */ 953 u32 sectorsize_bits; 954 u32 csum_size; 955 u32 csums_per_leaf; 956 u32 stripesize; 957 958 /* Block groups and devices containing active swapfiles. */ 959 spinlock_t swapfile_pins_lock; 960 struct rb_root swapfile_pins; 961 962 struct crypto_shash *csum_shash; 963 964 /* 965 * Number of send operations in progress. 966 * Updated while holding fs_info::balance_mutex. 967 */ 968 int send_in_progress; 969 970 /* Type of exclusive operation running */ 971 unsigned long exclusive_operation; 972 973 /* 974 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 975 * if the mode is enabled 976 */ 977 union { 978 u64 zone_size; 979 u64 zoned; 980 }; 981 982 /* Max size to emit ZONE_APPEND write command */ 983 u64 max_zone_append_size; 984 struct mutex zoned_meta_io_lock; 985 spinlock_t treelog_bg_lock; 986 u64 treelog_bg; 987 988 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 989 spinlock_t ref_verify_lock; 990 struct rb_root block_tree; 991 #endif 992 993 #ifdef CONFIG_BTRFS_DEBUG 994 struct kobject *debug_kobj; 995 struct kobject *discard_debug_kobj; 996 struct list_head allocated_roots; 997 998 spinlock_t eb_leak_lock; 999 struct list_head allocated_ebs; 1000 #endif 1001 }; 1002 1003 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1004 { 1005 return sb->s_fs_info; 1006 } 1007 1008 /* 1009 * The state of btrfs root 1010 */ 1011 enum { 1012 /* 1013 * btrfs_record_root_in_trans is a multi-step process, and it can race 1014 * with the balancing code. But the race is very small, and only the 1015 * first time the root is added to each transaction. So IN_TRANS_SETUP 1016 * is used to tell us when more checks are required 1017 */ 1018 BTRFS_ROOT_IN_TRANS_SETUP, 1019 1020 /* 1021 * Set if tree blocks of this root can be shared by other roots. 1022 * Only subvolume trees and their reloc trees have this bit set. 1023 * Conflicts with TRACK_DIRTY bit. 1024 * 1025 * This affects two things: 1026 * 1027 * - How balance works 1028 * For shareable roots, we need to use reloc tree and do path 1029 * replacement for balance, and need various pre/post hooks for 1030 * snapshot creation to handle them. 1031 * 1032 * While for non-shareable trees, we just simply do a tree search 1033 * with COW. 1034 * 1035 * - How dirty roots are tracked 1036 * For shareable roots, btrfs_record_root_in_trans() is needed to 1037 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1038 * don't need to set this manually. 1039 */ 1040 BTRFS_ROOT_SHAREABLE, 1041 BTRFS_ROOT_TRACK_DIRTY, 1042 BTRFS_ROOT_IN_RADIX, 1043 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1044 BTRFS_ROOT_DEFRAG_RUNNING, 1045 BTRFS_ROOT_FORCE_COW, 1046 BTRFS_ROOT_MULTI_LOG_TASKS, 1047 BTRFS_ROOT_DIRTY, 1048 BTRFS_ROOT_DELETING, 1049 1050 /* 1051 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1052 * 1053 * Set for the subvolume tree owning the reloc tree. 1054 */ 1055 BTRFS_ROOT_DEAD_RELOC_TREE, 1056 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1057 BTRFS_ROOT_DEAD_TREE, 1058 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1059 BTRFS_ROOT_HAS_LOG_TREE, 1060 /* Qgroup flushing is in progress */ 1061 BTRFS_ROOT_QGROUP_FLUSHING, 1062 }; 1063 1064 /* 1065 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1066 * code. For detail check comment in fs/btrfs/qgroup.c. 1067 */ 1068 struct btrfs_qgroup_swapped_blocks { 1069 spinlock_t lock; 1070 /* RM_EMPTY_ROOT() of above blocks[] */ 1071 bool swapped; 1072 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1073 }; 1074 1075 /* 1076 * in ram representation of the tree. extent_root is used for all allocations 1077 * and for the extent tree extent_root root. 1078 */ 1079 struct btrfs_root { 1080 struct extent_buffer *node; 1081 1082 struct extent_buffer *commit_root; 1083 struct btrfs_root *log_root; 1084 struct btrfs_root *reloc_root; 1085 1086 unsigned long state; 1087 struct btrfs_root_item root_item; 1088 struct btrfs_key root_key; 1089 struct btrfs_fs_info *fs_info; 1090 struct extent_io_tree dirty_log_pages; 1091 1092 struct mutex objectid_mutex; 1093 1094 spinlock_t accounting_lock; 1095 struct btrfs_block_rsv *block_rsv; 1096 1097 struct mutex log_mutex; 1098 wait_queue_head_t log_writer_wait; 1099 wait_queue_head_t log_commit_wait[2]; 1100 struct list_head log_ctxs[2]; 1101 /* Used only for log trees of subvolumes, not for the log root tree */ 1102 atomic_t log_writers; 1103 atomic_t log_commit[2]; 1104 /* Used only for log trees of subvolumes, not for the log root tree */ 1105 atomic_t log_batch; 1106 int log_transid; 1107 /* No matter the commit succeeds or not*/ 1108 int log_transid_committed; 1109 /* Just be updated when the commit succeeds. */ 1110 int last_log_commit; 1111 pid_t log_start_pid; 1112 1113 u64 last_trans; 1114 1115 u32 type; 1116 1117 u64 free_objectid; 1118 1119 struct btrfs_key defrag_progress; 1120 struct btrfs_key defrag_max; 1121 1122 /* The dirty list is only used by non-shareable roots */ 1123 struct list_head dirty_list; 1124 1125 struct list_head root_list; 1126 1127 spinlock_t log_extents_lock[2]; 1128 struct list_head logged_list[2]; 1129 1130 int orphan_cleanup_state; 1131 1132 spinlock_t inode_lock; 1133 /* red-black tree that keeps track of in-memory inodes */ 1134 struct rb_root inode_tree; 1135 1136 /* 1137 * radix tree that keeps track of delayed nodes of every inode, 1138 * protected by inode_lock 1139 */ 1140 struct radix_tree_root delayed_nodes_tree; 1141 /* 1142 * right now this just gets used so that a root has its own devid 1143 * for stat. It may be used for more later 1144 */ 1145 dev_t anon_dev; 1146 1147 spinlock_t root_item_lock; 1148 refcount_t refs; 1149 1150 struct mutex delalloc_mutex; 1151 spinlock_t delalloc_lock; 1152 /* 1153 * all of the inodes that have delalloc bytes. It is possible for 1154 * this list to be empty even when there is still dirty data=ordered 1155 * extents waiting to finish IO. 1156 */ 1157 struct list_head delalloc_inodes; 1158 struct list_head delalloc_root; 1159 u64 nr_delalloc_inodes; 1160 1161 struct mutex ordered_extent_mutex; 1162 /* 1163 * this is used by the balancing code to wait for all the pending 1164 * ordered extents 1165 */ 1166 spinlock_t ordered_extent_lock; 1167 1168 /* 1169 * all of the data=ordered extents pending writeback 1170 * these can span multiple transactions and basically include 1171 * every dirty data page that isn't from nodatacow 1172 */ 1173 struct list_head ordered_extents; 1174 struct list_head ordered_root; 1175 u64 nr_ordered_extents; 1176 1177 /* 1178 * Not empty if this subvolume root has gone through tree block swap 1179 * (relocation) 1180 * 1181 * Will be used by reloc_control::dirty_subvol_roots. 1182 */ 1183 struct list_head reloc_dirty_list; 1184 1185 /* 1186 * Number of currently running SEND ioctls to prevent 1187 * manipulation with the read-only status via SUBVOL_SETFLAGS 1188 */ 1189 int send_in_progress; 1190 /* 1191 * Number of currently running deduplication operations that have a 1192 * destination inode belonging to this root. Protected by the lock 1193 * root_item_lock. 1194 */ 1195 int dedupe_in_progress; 1196 /* For exclusion of snapshot creation and nocow writes */ 1197 struct btrfs_drew_lock snapshot_lock; 1198 1199 atomic_t snapshot_force_cow; 1200 1201 /* For qgroup metadata reserved space */ 1202 spinlock_t qgroup_meta_rsv_lock; 1203 u64 qgroup_meta_rsv_pertrans; 1204 u64 qgroup_meta_rsv_prealloc; 1205 wait_queue_head_t qgroup_flush_wait; 1206 1207 /* Number of active swapfiles */ 1208 atomic_t nr_swapfiles; 1209 1210 /* Record pairs of swapped blocks for qgroup */ 1211 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1212 1213 /* Used only by log trees, when logging csum items */ 1214 struct extent_io_tree log_csum_range; 1215 1216 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1217 u64 alloc_bytenr; 1218 #endif 1219 1220 #ifdef CONFIG_BTRFS_DEBUG 1221 struct list_head leak_list; 1222 #endif 1223 }; 1224 1225 /* 1226 * Structure that conveys information about an extent that is going to replace 1227 * all the extents in a file range. 1228 */ 1229 struct btrfs_replace_extent_info { 1230 u64 disk_offset; 1231 u64 disk_len; 1232 u64 data_offset; 1233 u64 data_len; 1234 u64 file_offset; 1235 /* Pointer to a file extent item of type regular or prealloc. */ 1236 char *extent_buf; 1237 /* 1238 * Set to true when attempting to replace a file range with a new extent 1239 * described by this structure, set to false when attempting to clone an 1240 * existing extent into a file range. 1241 */ 1242 bool is_new_extent; 1243 /* Meaningful only if is_new_extent is true. */ 1244 int qgroup_reserved; 1245 /* 1246 * Meaningful only if is_new_extent is true. 1247 * Used to track how many extent items we have already inserted in a 1248 * subvolume tree that refer to the extent described by this structure, 1249 * so that we know when to create a new delayed ref or update an existing 1250 * one. 1251 */ 1252 int insertions; 1253 }; 1254 1255 /* Arguments for btrfs_drop_extents() */ 1256 struct btrfs_drop_extents_args { 1257 /* Input parameters */ 1258 1259 /* 1260 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1261 * If 'replace_extent' is true, this must not be NULL. Also the path 1262 * is always released except if 'replace_extent' is true and 1263 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1264 * the path is kept locked. 1265 */ 1266 struct btrfs_path *path; 1267 /* Start offset of the range to drop extents from */ 1268 u64 start; 1269 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1270 u64 end; 1271 /* If true drop all the extent maps in the range */ 1272 bool drop_cache; 1273 /* 1274 * If true it means we want to insert a new extent after dropping all 1275 * the extents in the range. If this is true, the 'extent_item_size' 1276 * parameter must be set as well and the 'extent_inserted' field will 1277 * be set to true by btrfs_drop_extents() if it could insert the new 1278 * extent. 1279 * Note: when this is set to true the path must not be NULL. 1280 */ 1281 bool replace_extent; 1282 /* 1283 * Used if 'replace_extent' is true. Size of the file extent item to 1284 * insert after dropping all existing extents in the range 1285 */ 1286 u32 extent_item_size; 1287 1288 /* Output parameters */ 1289 1290 /* 1291 * Set to the minimum between the input parameter 'end' and the end 1292 * (exclusive, last byte + 1) of the last dropped extent. This is always 1293 * set even if btrfs_drop_extents() returns an error. 1294 */ 1295 u64 drop_end; 1296 /* 1297 * The number of allocated bytes found in the range. This can be smaller 1298 * than the range's length when there are holes in the range. 1299 */ 1300 u64 bytes_found; 1301 /* 1302 * Only set if 'replace_extent' is true. Set to true if we were able 1303 * to insert a replacement extent after dropping all extents in the 1304 * range, otherwise set to false by btrfs_drop_extents(). 1305 * Also, if btrfs_drop_extents() has set this to true it means it 1306 * returned with the path locked, otherwise if it has set this to 1307 * false it has returned with the path released. 1308 */ 1309 bool extent_inserted; 1310 }; 1311 1312 struct btrfs_file_private { 1313 void *filldir_buf; 1314 }; 1315 1316 1317 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1318 { 1319 1320 return info->nodesize - sizeof(struct btrfs_header); 1321 } 1322 1323 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1324 1325 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1326 { 1327 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1328 } 1329 1330 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1331 { 1332 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1333 } 1334 1335 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1336 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1337 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1338 { 1339 return BTRFS_MAX_ITEM_SIZE(info) - 1340 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1341 } 1342 1343 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1344 { 1345 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1346 } 1347 1348 /* 1349 * Flags for mount options. 1350 * 1351 * Note: don't forget to add new options to btrfs_show_options() 1352 */ 1353 #define BTRFS_MOUNT_NODATASUM (1 << 0) 1354 #define BTRFS_MOUNT_NODATACOW (1 << 1) 1355 #define BTRFS_MOUNT_NOBARRIER (1 << 2) 1356 #define BTRFS_MOUNT_SSD (1 << 3) 1357 #define BTRFS_MOUNT_DEGRADED (1 << 4) 1358 #define BTRFS_MOUNT_COMPRESS (1 << 5) 1359 #define BTRFS_MOUNT_NOTREELOG (1 << 6) 1360 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) 1361 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) 1362 #define BTRFS_MOUNT_NOSSD (1 << 9) 1363 #define BTRFS_MOUNT_DISCARD_SYNC (1 << 10) 1364 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) 1365 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) 1366 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) 1367 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) 1368 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) 1369 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) 1370 /* bit 17 is free */ 1371 #define BTRFS_MOUNT_USEBACKUPROOT (1 << 18) 1372 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) 1373 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) 1374 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) 1375 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) 1376 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) 1377 #define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24) 1378 #define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25) 1379 #define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26) 1380 #define BTRFS_MOUNT_NOLOGREPLAY (1 << 27) 1381 #define BTRFS_MOUNT_REF_VERIFY (1 << 28) 1382 #define BTRFS_MOUNT_DISCARD_ASYNC (1 << 29) 1383 #define BTRFS_MOUNT_IGNOREBADROOTS (1 << 30) 1384 #define BTRFS_MOUNT_IGNOREDATACSUMS (1 << 31) 1385 1386 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1387 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1388 1389 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1390 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1391 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1392 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1393 BTRFS_MOUNT_##opt) 1394 1395 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1396 do { \ 1397 if (!btrfs_test_opt(fs_info, opt)) \ 1398 btrfs_info(fs_info, fmt, ##args); \ 1399 btrfs_set_opt(fs_info->mount_opt, opt); \ 1400 } while (0) 1401 1402 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1403 do { \ 1404 if (btrfs_test_opt(fs_info, opt)) \ 1405 btrfs_info(fs_info, fmt, ##args); \ 1406 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1407 } while (0) 1408 1409 /* 1410 * Requests for changes that need to be done during transaction commit. 1411 * 1412 * Internal mount options that are used for special handling of the real 1413 * mount options (eg. cannot be set during remount and have to be set during 1414 * transaction commit) 1415 */ 1416 1417 #define BTRFS_PENDING_COMMIT (0) 1418 1419 #define btrfs_test_pending(info, opt) \ 1420 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1421 #define btrfs_set_pending(info, opt) \ 1422 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1423 #define btrfs_clear_pending(info, opt) \ 1424 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1425 1426 /* 1427 * Helpers for setting pending mount option changes. 1428 * 1429 * Expects corresponding macros 1430 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1431 */ 1432 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1433 do { \ 1434 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1435 btrfs_info((info), fmt, ##args); \ 1436 btrfs_set_pending((info), SET_##opt); \ 1437 btrfs_clear_pending((info), CLEAR_##opt); \ 1438 } \ 1439 } while(0) 1440 1441 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1442 do { \ 1443 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1444 btrfs_info((info), fmt, ##args); \ 1445 btrfs_set_pending((info), CLEAR_##opt); \ 1446 btrfs_clear_pending((info), SET_##opt); \ 1447 } \ 1448 } while(0) 1449 1450 /* 1451 * Inode flags 1452 */ 1453 #define BTRFS_INODE_NODATASUM (1 << 0) 1454 #define BTRFS_INODE_NODATACOW (1 << 1) 1455 #define BTRFS_INODE_READONLY (1 << 2) 1456 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 1457 #define BTRFS_INODE_PREALLOC (1 << 4) 1458 #define BTRFS_INODE_SYNC (1 << 5) 1459 #define BTRFS_INODE_IMMUTABLE (1 << 6) 1460 #define BTRFS_INODE_APPEND (1 << 7) 1461 #define BTRFS_INODE_NODUMP (1 << 8) 1462 #define BTRFS_INODE_NOATIME (1 << 9) 1463 #define BTRFS_INODE_DIRSYNC (1 << 10) 1464 #define BTRFS_INODE_COMPRESS (1 << 11) 1465 1466 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 1467 1468 #define BTRFS_INODE_FLAG_MASK \ 1469 (BTRFS_INODE_NODATASUM | \ 1470 BTRFS_INODE_NODATACOW | \ 1471 BTRFS_INODE_READONLY | \ 1472 BTRFS_INODE_NOCOMPRESS | \ 1473 BTRFS_INODE_PREALLOC | \ 1474 BTRFS_INODE_SYNC | \ 1475 BTRFS_INODE_IMMUTABLE | \ 1476 BTRFS_INODE_APPEND | \ 1477 BTRFS_INODE_NODUMP | \ 1478 BTRFS_INODE_NOATIME | \ 1479 BTRFS_INODE_DIRSYNC | \ 1480 BTRFS_INODE_COMPRESS | \ 1481 BTRFS_INODE_ROOT_ITEM_INIT) 1482 1483 struct btrfs_map_token { 1484 struct extent_buffer *eb; 1485 char *kaddr; 1486 unsigned long offset; 1487 }; 1488 1489 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1490 ((bytes) >> (fs_info)->sectorsize_bits) 1491 1492 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1493 struct extent_buffer *eb) 1494 { 1495 token->eb = eb; 1496 token->kaddr = page_address(eb->pages[0]); 1497 token->offset = 0; 1498 } 1499 1500 /* some macros to generate set/get functions for the struct fields. This 1501 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1502 * one for u8: 1503 */ 1504 #define le8_to_cpu(v) (v) 1505 #define cpu_to_le8(v) (v) 1506 #define __le8 u8 1507 1508 static inline u8 get_unaligned_le8(const void *p) 1509 { 1510 return *(u8 *)p; 1511 } 1512 1513 static inline void put_unaligned_le8(u8 val, void *p) 1514 { 1515 *(u8 *)p = val; 1516 } 1517 1518 #define read_eb_member(eb, ptr, type, member, result) (\ 1519 read_extent_buffer(eb, (char *)(result), \ 1520 ((unsigned long)(ptr)) + \ 1521 offsetof(type, member), \ 1522 sizeof(((type *)0)->member))) 1523 1524 #define write_eb_member(eb, ptr, type, member, result) (\ 1525 write_extent_buffer(eb, (char *)(result), \ 1526 ((unsigned long)(ptr)) + \ 1527 offsetof(type, member), \ 1528 sizeof(((type *)0)->member))) 1529 1530 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1531 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1532 const void *ptr, unsigned long off); \ 1533 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1534 const void *ptr, unsigned long off, \ 1535 u##bits val); \ 1536 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1537 const void *ptr, unsigned long off); \ 1538 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1539 unsigned long off, u##bits val); 1540 1541 DECLARE_BTRFS_SETGET_BITS(8) 1542 DECLARE_BTRFS_SETGET_BITS(16) 1543 DECLARE_BTRFS_SETGET_BITS(32) 1544 DECLARE_BTRFS_SETGET_BITS(64) 1545 1546 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1547 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1548 const type *s) \ 1549 { \ 1550 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1551 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1552 } \ 1553 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1554 u##bits val) \ 1555 { \ 1556 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1557 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1558 } \ 1559 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1560 const type *s) \ 1561 { \ 1562 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1563 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1564 } \ 1565 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1566 type *s, u##bits val) \ 1567 { \ 1568 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1569 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1570 } 1571 1572 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1573 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1574 { \ 1575 const type *p = page_address(eb->pages[0]) + \ 1576 offset_in_page(eb->start); \ 1577 return get_unaligned_le##bits(&p->member); \ 1578 } \ 1579 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1580 u##bits val) \ 1581 { \ 1582 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1583 put_unaligned_le##bits(val, &p->member); \ 1584 } 1585 1586 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1587 static inline u##bits btrfs_##name(const type *s) \ 1588 { \ 1589 return get_unaligned_le##bits(&s->member); \ 1590 } \ 1591 static inline void btrfs_set_##name(type *s, u##bits val) \ 1592 { \ 1593 put_unaligned_le##bits(val, &s->member); \ 1594 } 1595 1596 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1597 struct btrfs_dev_item *s) 1598 { 1599 BUILD_BUG_ON(sizeof(u64) != 1600 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1601 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1602 total_bytes)); 1603 } 1604 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1605 struct btrfs_dev_item *s, 1606 u64 val) 1607 { 1608 BUILD_BUG_ON(sizeof(u64) != 1609 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1610 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1611 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1612 } 1613 1614 1615 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1616 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1617 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1618 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1619 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1620 start_offset, 64); 1621 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1622 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1623 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1624 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1625 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1626 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1627 1628 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1629 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1630 total_bytes, 64); 1631 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1632 bytes_used, 64); 1633 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1634 io_align, 32); 1635 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1636 io_width, 32); 1637 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1638 sector_size, 32); 1639 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1640 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1641 dev_group, 32); 1642 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1643 seek_speed, 8); 1644 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1645 bandwidth, 8); 1646 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1647 generation, 64); 1648 1649 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1650 { 1651 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1652 } 1653 1654 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1655 { 1656 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1657 } 1658 1659 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1660 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1661 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1662 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1663 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1664 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1665 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1666 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1667 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1668 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1669 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1670 1671 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1672 { 1673 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1674 } 1675 1676 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1677 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1678 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1679 stripe_len, 64); 1680 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1681 io_align, 32); 1682 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1683 io_width, 32); 1684 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1685 sector_size, 32); 1686 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1687 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1688 num_stripes, 16); 1689 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1690 sub_stripes, 16); 1691 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1692 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1693 1694 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1695 int nr) 1696 { 1697 unsigned long offset = (unsigned long)c; 1698 offset += offsetof(struct btrfs_chunk, stripe); 1699 offset += nr * sizeof(struct btrfs_stripe); 1700 return (struct btrfs_stripe *)offset; 1701 } 1702 1703 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1704 { 1705 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1706 } 1707 1708 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1709 struct btrfs_chunk *c, int nr) 1710 { 1711 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1712 } 1713 1714 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1715 struct btrfs_chunk *c, int nr) 1716 { 1717 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1718 } 1719 1720 /* struct btrfs_block_group_item */ 1721 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1722 used, 64); 1723 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1724 used, 64); 1725 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1726 struct btrfs_block_group_item, chunk_objectid, 64); 1727 1728 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1729 struct btrfs_block_group_item, chunk_objectid, 64); 1730 BTRFS_SETGET_FUNCS(block_group_flags, 1731 struct btrfs_block_group_item, flags, 64); 1732 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1733 struct btrfs_block_group_item, flags, 64); 1734 1735 /* struct btrfs_free_space_info */ 1736 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1737 extent_count, 32); 1738 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1739 1740 /* struct btrfs_inode_ref */ 1741 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1742 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1743 1744 /* struct btrfs_inode_extref */ 1745 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1746 parent_objectid, 64); 1747 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1748 name_len, 16); 1749 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1750 1751 /* struct btrfs_inode_item */ 1752 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1753 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1754 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1755 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1756 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1757 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1758 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1759 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1760 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1761 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1762 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1763 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1764 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1765 generation, 64); 1766 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1767 sequence, 64); 1768 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1769 transid, 64); 1770 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1771 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1772 nbytes, 64); 1773 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1774 block_group, 64); 1775 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1776 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1777 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1778 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1779 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1780 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1781 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1782 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1783 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1784 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1785 1786 /* struct btrfs_dev_extent */ 1787 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1788 chunk_tree, 64); 1789 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1790 chunk_objectid, 64); 1791 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1792 chunk_offset, 64); 1793 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1794 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1795 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1796 generation, 64); 1797 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1798 1799 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1800 1801 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1802 struct btrfs_tree_block_info *item, 1803 struct btrfs_disk_key *key) 1804 { 1805 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1806 } 1807 1808 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1809 struct btrfs_tree_block_info *item, 1810 struct btrfs_disk_key *key) 1811 { 1812 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1813 } 1814 1815 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1816 root, 64); 1817 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1818 objectid, 64); 1819 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1820 offset, 64); 1821 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1822 count, 32); 1823 1824 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1825 count, 32); 1826 1827 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1828 type, 8); 1829 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1830 offset, 64); 1831 1832 static inline u32 btrfs_extent_inline_ref_size(int type) 1833 { 1834 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1835 type == BTRFS_SHARED_BLOCK_REF_KEY) 1836 return sizeof(struct btrfs_extent_inline_ref); 1837 if (type == BTRFS_SHARED_DATA_REF_KEY) 1838 return sizeof(struct btrfs_shared_data_ref) + 1839 sizeof(struct btrfs_extent_inline_ref); 1840 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1841 return sizeof(struct btrfs_extent_data_ref) + 1842 offsetof(struct btrfs_extent_inline_ref, offset); 1843 return 0; 1844 } 1845 1846 /* struct btrfs_node */ 1847 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1848 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1849 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1850 blockptr, 64); 1851 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1852 generation, 64); 1853 1854 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1855 { 1856 unsigned long ptr; 1857 ptr = offsetof(struct btrfs_node, ptrs) + 1858 sizeof(struct btrfs_key_ptr) * nr; 1859 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1860 } 1861 1862 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1863 int nr, u64 val) 1864 { 1865 unsigned long ptr; 1866 ptr = offsetof(struct btrfs_node, ptrs) + 1867 sizeof(struct btrfs_key_ptr) * nr; 1868 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1869 } 1870 1871 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1872 { 1873 unsigned long ptr; 1874 ptr = offsetof(struct btrfs_node, ptrs) + 1875 sizeof(struct btrfs_key_ptr) * nr; 1876 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1877 } 1878 1879 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1880 int nr, u64 val) 1881 { 1882 unsigned long ptr; 1883 ptr = offsetof(struct btrfs_node, ptrs) + 1884 sizeof(struct btrfs_key_ptr) * nr; 1885 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1886 } 1887 1888 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1889 { 1890 return offsetof(struct btrfs_node, ptrs) + 1891 sizeof(struct btrfs_key_ptr) * nr; 1892 } 1893 1894 void btrfs_node_key(const struct extent_buffer *eb, 1895 struct btrfs_disk_key *disk_key, int nr); 1896 1897 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1898 struct btrfs_disk_key *disk_key, int nr) 1899 { 1900 unsigned long ptr; 1901 ptr = btrfs_node_key_ptr_offset(nr); 1902 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1903 struct btrfs_key_ptr, key, disk_key); 1904 } 1905 1906 /* struct btrfs_item */ 1907 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 1908 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 1909 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1910 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1911 1912 static inline unsigned long btrfs_item_nr_offset(int nr) 1913 { 1914 return offsetof(struct btrfs_leaf, items) + 1915 sizeof(struct btrfs_item) * nr; 1916 } 1917 1918 static inline struct btrfs_item *btrfs_item_nr(int nr) 1919 { 1920 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1921 } 1922 1923 static inline u32 btrfs_item_end(const struct extent_buffer *eb, 1924 struct btrfs_item *item) 1925 { 1926 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 1927 } 1928 1929 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr) 1930 { 1931 return btrfs_item_end(eb, btrfs_item_nr(nr)); 1932 } 1933 1934 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr) 1935 { 1936 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 1937 } 1938 1939 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr) 1940 { 1941 return btrfs_item_size(eb, btrfs_item_nr(nr)); 1942 } 1943 1944 static inline void btrfs_item_key(const struct extent_buffer *eb, 1945 struct btrfs_disk_key *disk_key, int nr) 1946 { 1947 struct btrfs_item *item = btrfs_item_nr(nr); 1948 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 1949 } 1950 1951 static inline void btrfs_set_item_key(struct extent_buffer *eb, 1952 struct btrfs_disk_key *disk_key, int nr) 1953 { 1954 struct btrfs_item *item = btrfs_item_nr(nr); 1955 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 1956 } 1957 1958 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 1959 1960 /* 1961 * struct btrfs_root_ref 1962 */ 1963 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 1964 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 1965 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 1966 1967 /* struct btrfs_dir_item */ 1968 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 1969 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 1970 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 1971 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 1972 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 1973 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 1974 data_len, 16); 1975 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 1976 name_len, 16); 1977 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 1978 transid, 64); 1979 1980 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 1981 const struct btrfs_dir_item *item, 1982 struct btrfs_disk_key *key) 1983 { 1984 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 1985 } 1986 1987 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 1988 struct btrfs_dir_item *item, 1989 const struct btrfs_disk_key *key) 1990 { 1991 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 1992 } 1993 1994 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 1995 num_entries, 64); 1996 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 1997 num_bitmaps, 64); 1998 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 1999 generation, 64); 2000 2001 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2002 const struct btrfs_free_space_header *h, 2003 struct btrfs_disk_key *key) 2004 { 2005 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2006 } 2007 2008 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2009 struct btrfs_free_space_header *h, 2010 const struct btrfs_disk_key *key) 2011 { 2012 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2013 } 2014 2015 /* struct btrfs_disk_key */ 2016 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2017 objectid, 64); 2018 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2019 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2020 2021 #ifdef __LITTLE_ENDIAN 2022 2023 /* 2024 * Optimized helpers for little-endian architectures where CPU and on-disk 2025 * structures have the same endianness and we can skip conversions. 2026 */ 2027 2028 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2029 const struct btrfs_disk_key *disk_key) 2030 { 2031 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2032 } 2033 2034 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2035 const struct btrfs_key *cpu_key) 2036 { 2037 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2038 } 2039 2040 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2041 struct btrfs_key *cpu_key, int nr) 2042 { 2043 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2044 2045 btrfs_node_key(eb, disk_key, nr); 2046 } 2047 2048 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2049 struct btrfs_key *cpu_key, int nr) 2050 { 2051 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2052 2053 btrfs_item_key(eb, disk_key, nr); 2054 } 2055 2056 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2057 const struct btrfs_dir_item *item, 2058 struct btrfs_key *cpu_key) 2059 { 2060 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2061 2062 btrfs_dir_item_key(eb, item, disk_key); 2063 } 2064 2065 #else 2066 2067 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2068 const struct btrfs_disk_key *disk) 2069 { 2070 cpu->offset = le64_to_cpu(disk->offset); 2071 cpu->type = disk->type; 2072 cpu->objectid = le64_to_cpu(disk->objectid); 2073 } 2074 2075 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2076 const struct btrfs_key *cpu) 2077 { 2078 disk->offset = cpu_to_le64(cpu->offset); 2079 disk->type = cpu->type; 2080 disk->objectid = cpu_to_le64(cpu->objectid); 2081 } 2082 2083 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2084 struct btrfs_key *key, int nr) 2085 { 2086 struct btrfs_disk_key disk_key; 2087 btrfs_node_key(eb, &disk_key, nr); 2088 btrfs_disk_key_to_cpu(key, &disk_key); 2089 } 2090 2091 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2092 struct btrfs_key *key, int nr) 2093 { 2094 struct btrfs_disk_key disk_key; 2095 btrfs_item_key(eb, &disk_key, nr); 2096 btrfs_disk_key_to_cpu(key, &disk_key); 2097 } 2098 2099 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2100 const struct btrfs_dir_item *item, 2101 struct btrfs_key *key) 2102 { 2103 struct btrfs_disk_key disk_key; 2104 btrfs_dir_item_key(eb, item, &disk_key); 2105 btrfs_disk_key_to_cpu(key, &disk_key); 2106 } 2107 2108 #endif 2109 2110 /* struct btrfs_header */ 2111 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2112 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2113 generation, 64); 2114 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2115 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2116 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2117 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2118 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2119 generation, 64); 2120 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2121 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2122 nritems, 32); 2123 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2124 2125 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2126 { 2127 return (btrfs_header_flags(eb) & flag) == flag; 2128 } 2129 2130 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2131 { 2132 u64 flags = btrfs_header_flags(eb); 2133 btrfs_set_header_flags(eb, flags | flag); 2134 } 2135 2136 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2137 { 2138 u64 flags = btrfs_header_flags(eb); 2139 btrfs_set_header_flags(eb, flags & ~flag); 2140 } 2141 2142 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2143 { 2144 u64 flags = btrfs_header_flags(eb); 2145 return flags >> BTRFS_BACKREF_REV_SHIFT; 2146 } 2147 2148 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2149 int rev) 2150 { 2151 u64 flags = btrfs_header_flags(eb); 2152 flags &= ~BTRFS_BACKREF_REV_MASK; 2153 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2154 btrfs_set_header_flags(eb, flags); 2155 } 2156 2157 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2158 { 2159 return btrfs_header_level(eb) == 0; 2160 } 2161 2162 /* struct btrfs_root_item */ 2163 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2164 generation, 64); 2165 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2166 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2167 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2168 2169 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2170 generation, 64); 2171 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2172 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2173 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2174 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2175 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2176 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2177 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2178 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2179 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2180 last_snapshot, 64); 2181 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2182 generation_v2, 64); 2183 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2184 ctransid, 64); 2185 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2186 otransid, 64); 2187 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2188 stransid, 64); 2189 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2190 rtransid, 64); 2191 2192 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2193 { 2194 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2195 } 2196 2197 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2198 { 2199 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2200 } 2201 2202 /* struct btrfs_root_backup */ 2203 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2204 tree_root, 64); 2205 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2206 tree_root_gen, 64); 2207 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2208 tree_root_level, 8); 2209 2210 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2211 chunk_root, 64); 2212 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2213 chunk_root_gen, 64); 2214 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2215 chunk_root_level, 8); 2216 2217 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2218 extent_root, 64); 2219 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2220 extent_root_gen, 64); 2221 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2222 extent_root_level, 8); 2223 2224 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2225 fs_root, 64); 2226 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2227 fs_root_gen, 64); 2228 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2229 fs_root_level, 8); 2230 2231 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2232 dev_root, 64); 2233 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2234 dev_root_gen, 64); 2235 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2236 dev_root_level, 8); 2237 2238 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2239 csum_root, 64); 2240 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2241 csum_root_gen, 64); 2242 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2243 csum_root_level, 8); 2244 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2245 total_bytes, 64); 2246 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2247 bytes_used, 64); 2248 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2249 num_devices, 64); 2250 2251 /* struct btrfs_balance_item */ 2252 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2253 2254 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2255 const struct btrfs_balance_item *bi, 2256 struct btrfs_disk_balance_args *ba) 2257 { 2258 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2259 } 2260 2261 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2262 struct btrfs_balance_item *bi, 2263 const struct btrfs_disk_balance_args *ba) 2264 { 2265 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2266 } 2267 2268 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2269 const struct btrfs_balance_item *bi, 2270 struct btrfs_disk_balance_args *ba) 2271 { 2272 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2273 } 2274 2275 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2276 struct btrfs_balance_item *bi, 2277 const struct btrfs_disk_balance_args *ba) 2278 { 2279 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2280 } 2281 2282 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2283 const struct btrfs_balance_item *bi, 2284 struct btrfs_disk_balance_args *ba) 2285 { 2286 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2287 } 2288 2289 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2290 struct btrfs_balance_item *bi, 2291 const struct btrfs_disk_balance_args *ba) 2292 { 2293 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2294 } 2295 2296 static inline void 2297 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2298 const struct btrfs_disk_balance_args *disk) 2299 { 2300 memset(cpu, 0, sizeof(*cpu)); 2301 2302 cpu->profiles = le64_to_cpu(disk->profiles); 2303 cpu->usage = le64_to_cpu(disk->usage); 2304 cpu->devid = le64_to_cpu(disk->devid); 2305 cpu->pstart = le64_to_cpu(disk->pstart); 2306 cpu->pend = le64_to_cpu(disk->pend); 2307 cpu->vstart = le64_to_cpu(disk->vstart); 2308 cpu->vend = le64_to_cpu(disk->vend); 2309 cpu->target = le64_to_cpu(disk->target); 2310 cpu->flags = le64_to_cpu(disk->flags); 2311 cpu->limit = le64_to_cpu(disk->limit); 2312 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2313 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2314 } 2315 2316 static inline void 2317 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2318 const struct btrfs_balance_args *cpu) 2319 { 2320 memset(disk, 0, sizeof(*disk)); 2321 2322 disk->profiles = cpu_to_le64(cpu->profiles); 2323 disk->usage = cpu_to_le64(cpu->usage); 2324 disk->devid = cpu_to_le64(cpu->devid); 2325 disk->pstart = cpu_to_le64(cpu->pstart); 2326 disk->pend = cpu_to_le64(cpu->pend); 2327 disk->vstart = cpu_to_le64(cpu->vstart); 2328 disk->vend = cpu_to_le64(cpu->vend); 2329 disk->target = cpu_to_le64(cpu->target); 2330 disk->flags = cpu_to_le64(cpu->flags); 2331 disk->limit = cpu_to_le64(cpu->limit); 2332 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2333 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2334 } 2335 2336 /* struct btrfs_super_block */ 2337 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2338 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2339 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2340 generation, 64); 2341 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2342 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2343 struct btrfs_super_block, sys_chunk_array_size, 32); 2344 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2345 struct btrfs_super_block, chunk_root_generation, 64); 2346 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2347 root_level, 8); 2348 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2349 chunk_root, 64); 2350 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2351 chunk_root_level, 8); 2352 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2353 log_root, 64); 2354 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2355 log_root_transid, 64); 2356 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2357 log_root_level, 8); 2358 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2359 total_bytes, 64); 2360 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2361 bytes_used, 64); 2362 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2363 sectorsize, 32); 2364 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2365 nodesize, 32); 2366 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2367 stripesize, 32); 2368 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2369 root_dir_objectid, 64); 2370 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2371 num_devices, 64); 2372 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2373 compat_flags, 64); 2374 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2375 compat_ro_flags, 64); 2376 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2377 incompat_flags, 64); 2378 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2379 csum_type, 16); 2380 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2381 cache_generation, 64); 2382 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2383 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2384 uuid_tree_generation, 64); 2385 2386 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2387 const char *btrfs_super_csum_name(u16 csum_type); 2388 const char *btrfs_super_csum_driver(u16 csum_type); 2389 size_t __attribute_const__ btrfs_get_num_csums(void); 2390 2391 2392 /* 2393 * The leaf data grows from end-to-front in the node. 2394 * this returns the address of the start of the last item, 2395 * which is the stop of the leaf data stack 2396 */ 2397 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2398 { 2399 u32 nr = btrfs_header_nritems(leaf); 2400 2401 if (nr == 0) 2402 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2403 return btrfs_item_offset_nr(leaf, nr - 1); 2404 } 2405 2406 /* struct btrfs_file_extent_item */ 2407 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2408 type, 8); 2409 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2410 struct btrfs_file_extent_item, disk_bytenr, 64); 2411 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2412 struct btrfs_file_extent_item, offset, 64); 2413 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2414 struct btrfs_file_extent_item, generation, 64); 2415 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2416 struct btrfs_file_extent_item, num_bytes, 64); 2417 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2418 struct btrfs_file_extent_item, ram_bytes, 64); 2419 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2420 struct btrfs_file_extent_item, disk_num_bytes, 64); 2421 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2422 struct btrfs_file_extent_item, compression, 8); 2423 2424 static inline unsigned long 2425 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2426 { 2427 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2428 } 2429 2430 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2431 { 2432 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2433 } 2434 2435 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2436 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2437 disk_bytenr, 64); 2438 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2439 generation, 64); 2440 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2441 disk_num_bytes, 64); 2442 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2443 offset, 64); 2444 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2445 num_bytes, 64); 2446 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2447 ram_bytes, 64); 2448 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2449 compression, 8); 2450 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2451 encryption, 8); 2452 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2453 other_encoding, 16); 2454 2455 /* 2456 * this returns the number of bytes used by the item on disk, minus the 2457 * size of any extent headers. If a file is compressed on disk, this is 2458 * the compressed size 2459 */ 2460 static inline u32 btrfs_file_extent_inline_item_len( 2461 const struct extent_buffer *eb, 2462 struct btrfs_item *e) 2463 { 2464 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2465 } 2466 2467 /* btrfs_qgroup_status_item */ 2468 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2469 generation, 64); 2470 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2471 version, 64); 2472 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2473 flags, 64); 2474 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2475 rescan, 64); 2476 2477 /* btrfs_qgroup_info_item */ 2478 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2479 generation, 64); 2480 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2481 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2482 rfer_cmpr, 64); 2483 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2484 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2485 excl_cmpr, 64); 2486 2487 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2488 struct btrfs_qgroup_info_item, generation, 64); 2489 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2490 rfer, 64); 2491 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2492 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2493 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2494 excl, 64); 2495 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2496 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2497 2498 /* btrfs_qgroup_limit_item */ 2499 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2500 flags, 64); 2501 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2502 max_rfer, 64); 2503 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2504 max_excl, 64); 2505 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2506 rsv_rfer, 64); 2507 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2508 rsv_excl, 64); 2509 2510 /* btrfs_dev_replace_item */ 2511 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2512 struct btrfs_dev_replace_item, src_devid, 64); 2513 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2514 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2515 64); 2516 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2517 replace_state, 64); 2518 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2519 time_started, 64); 2520 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2521 time_stopped, 64); 2522 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2523 num_write_errors, 64); 2524 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2525 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2526 64); 2527 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2528 cursor_left, 64); 2529 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2530 cursor_right, 64); 2531 2532 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2533 struct btrfs_dev_replace_item, src_devid, 64); 2534 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2535 struct btrfs_dev_replace_item, 2536 cont_reading_from_srcdev_mode, 64); 2537 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2538 struct btrfs_dev_replace_item, replace_state, 64); 2539 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2540 struct btrfs_dev_replace_item, time_started, 64); 2541 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2542 struct btrfs_dev_replace_item, time_stopped, 64); 2543 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2544 struct btrfs_dev_replace_item, num_write_errors, 64); 2545 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2546 struct btrfs_dev_replace_item, 2547 num_uncorrectable_read_errors, 64); 2548 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2549 struct btrfs_dev_replace_item, cursor_left, 64); 2550 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2551 struct btrfs_dev_replace_item, cursor_right, 64); 2552 2553 /* helper function to cast into the data area of the leaf. */ 2554 #define btrfs_item_ptr(leaf, slot, type) \ 2555 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2556 btrfs_item_offset_nr(leaf, slot))) 2557 2558 #define btrfs_item_ptr_offset(leaf, slot) \ 2559 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2560 btrfs_item_offset_nr(leaf, slot))) 2561 2562 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2563 { 2564 return crc32c(crc, address, length); 2565 } 2566 2567 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2568 { 2569 put_unaligned_le32(~crc, result); 2570 } 2571 2572 static inline u64 btrfs_name_hash(const char *name, int len) 2573 { 2574 return crc32c((u32)~1, name, len); 2575 } 2576 2577 /* 2578 * Figure the key offset of an extended inode ref 2579 */ 2580 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2581 int len) 2582 { 2583 return (u64) crc32c(parent_objectid, name, len); 2584 } 2585 2586 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2587 { 2588 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2589 } 2590 2591 /* extent-tree.c */ 2592 2593 enum btrfs_inline_ref_type { 2594 BTRFS_REF_TYPE_INVALID, 2595 BTRFS_REF_TYPE_BLOCK, 2596 BTRFS_REF_TYPE_DATA, 2597 BTRFS_REF_TYPE_ANY, 2598 }; 2599 2600 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2601 struct btrfs_extent_inline_ref *iref, 2602 enum btrfs_inline_ref_type is_data); 2603 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2604 2605 /* 2606 * Take the number of bytes to be checksummmed and figure out how many leaves 2607 * it would require to store the csums for that many bytes. 2608 */ 2609 static inline u64 btrfs_csum_bytes_to_leaves( 2610 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2611 { 2612 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2613 2614 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2615 } 2616 2617 /* 2618 * Use this if we would be adding new items, as we could split nodes as we cow 2619 * down the tree. 2620 */ 2621 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2622 unsigned num_items) 2623 { 2624 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2625 } 2626 2627 /* 2628 * Doing a truncate or a modification won't result in new nodes or leaves, just 2629 * what we need for COW. 2630 */ 2631 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2632 unsigned num_items) 2633 { 2634 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2635 } 2636 2637 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2638 u64 start, u64 num_bytes); 2639 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2640 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2641 unsigned long count); 2642 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2643 struct btrfs_delayed_ref_root *delayed_refs, 2644 struct btrfs_delayed_ref_head *head); 2645 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2646 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2647 struct btrfs_fs_info *fs_info, u64 bytenr, 2648 u64 offset, int metadata, u64 *refs, u64 *flags); 2649 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2650 int reserved); 2651 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2652 u64 bytenr, u64 num_bytes); 2653 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2654 int btrfs_cross_ref_exist(struct btrfs_root *root, 2655 u64 objectid, u64 offset, u64 bytenr, bool strict); 2656 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2657 struct btrfs_root *root, 2658 u64 parent, u64 root_objectid, 2659 const struct btrfs_disk_key *key, 2660 int level, u64 hint, 2661 u64 empty_size, 2662 enum btrfs_lock_nesting nest); 2663 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2664 struct btrfs_root *root, 2665 struct extent_buffer *buf, 2666 u64 parent, int last_ref); 2667 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2668 struct btrfs_root *root, u64 owner, 2669 u64 offset, u64 ram_bytes, 2670 struct btrfs_key *ins); 2671 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2672 u64 root_objectid, u64 owner, u64 offset, 2673 struct btrfs_key *ins); 2674 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2675 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2676 struct btrfs_key *ins, int is_data, int delalloc); 2677 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2678 struct extent_buffer *buf, int full_backref); 2679 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2680 struct extent_buffer *buf, int full_backref); 2681 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2682 struct extent_buffer *eb, u64 flags, 2683 int level, int is_data); 2684 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2685 2686 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2687 u64 start, u64 len, int delalloc); 2688 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2689 u64 len); 2690 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2691 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2692 struct btrfs_ref *generic_ref); 2693 2694 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr); 2695 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2696 2697 /* 2698 * Different levels for to flush space when doing space reservations. 2699 * 2700 * The higher the level, the more methods we try to reclaim space. 2701 */ 2702 enum btrfs_reserve_flush_enum { 2703 /* If we are in the transaction, we can't flush anything.*/ 2704 BTRFS_RESERVE_NO_FLUSH, 2705 2706 /* 2707 * Flush space by: 2708 * - Running delayed inode items 2709 * - Allocating a new chunk 2710 */ 2711 BTRFS_RESERVE_FLUSH_LIMIT, 2712 2713 /* 2714 * Flush space by: 2715 * - Running delayed inode items 2716 * - Running delayed refs 2717 * - Running delalloc and waiting for ordered extents 2718 * - Allocating a new chunk 2719 */ 2720 BTRFS_RESERVE_FLUSH_EVICT, 2721 2722 /* 2723 * Flush space by above mentioned methods and by: 2724 * - Running delayed iputs 2725 * - Commiting transaction 2726 * 2727 * Can be interruped by fatal signal. 2728 */ 2729 BTRFS_RESERVE_FLUSH_DATA, 2730 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2731 BTRFS_RESERVE_FLUSH_ALL, 2732 2733 /* 2734 * Pretty much the same as FLUSH_ALL, but can also steal space from 2735 * global rsv. 2736 * 2737 * Can be interruped by fatal signal. 2738 */ 2739 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2740 }; 2741 2742 enum btrfs_flush_state { 2743 FLUSH_DELAYED_ITEMS_NR = 1, 2744 FLUSH_DELAYED_ITEMS = 2, 2745 FLUSH_DELAYED_REFS_NR = 3, 2746 FLUSH_DELAYED_REFS = 4, 2747 FLUSH_DELALLOC = 5, 2748 FLUSH_DELALLOC_WAIT = 6, 2749 ALLOC_CHUNK = 7, 2750 ALLOC_CHUNK_FORCE = 8, 2751 RUN_DELAYED_IPUTS = 9, 2752 COMMIT_TRANS = 10, 2753 FORCE_COMMIT_TRANS = 11, 2754 }; 2755 2756 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2757 struct btrfs_block_rsv *rsv, 2758 int nitems, bool use_global_rsv); 2759 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2760 struct btrfs_block_rsv *rsv); 2761 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2762 2763 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2764 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2765 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2766 u64 start, u64 end); 2767 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2768 u64 num_bytes, u64 *actual_bytes); 2769 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2770 2771 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2772 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2773 struct btrfs_fs_info *fs_info); 2774 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2775 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2776 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2777 2778 /* ctree.c */ 2779 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2780 int *slot); 2781 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2782 int btrfs_previous_item(struct btrfs_root *root, 2783 struct btrfs_path *path, u64 min_objectid, 2784 int type); 2785 int btrfs_previous_extent_item(struct btrfs_root *root, 2786 struct btrfs_path *path, u64 min_objectid); 2787 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2788 struct btrfs_path *path, 2789 const struct btrfs_key *new_key); 2790 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2791 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2792 struct btrfs_key *key, int lowest_level, 2793 u64 min_trans); 2794 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2795 struct btrfs_path *path, 2796 u64 min_trans); 2797 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2798 int slot); 2799 2800 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2801 struct btrfs_root *root, struct extent_buffer *buf, 2802 struct extent_buffer *parent, int parent_slot, 2803 struct extent_buffer **cow_ret, 2804 enum btrfs_lock_nesting nest); 2805 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2806 struct btrfs_root *root, 2807 struct extent_buffer *buf, 2808 struct extent_buffer **cow_ret, u64 new_root_objectid); 2809 int btrfs_block_can_be_shared(struct btrfs_root *root, 2810 struct extent_buffer *buf); 2811 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2812 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2813 int btrfs_split_item(struct btrfs_trans_handle *trans, 2814 struct btrfs_root *root, 2815 struct btrfs_path *path, 2816 const struct btrfs_key *new_key, 2817 unsigned long split_offset); 2818 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2819 struct btrfs_root *root, 2820 struct btrfs_path *path, 2821 const struct btrfs_key *new_key); 2822 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2823 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2824 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2825 const struct btrfs_key *key, struct btrfs_path *p, 2826 int ins_len, int cow); 2827 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2828 struct btrfs_path *p, u64 time_seq); 2829 int btrfs_search_slot_for_read(struct btrfs_root *root, 2830 const struct btrfs_key *key, 2831 struct btrfs_path *p, int find_higher, 2832 int return_any); 2833 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2834 struct btrfs_root *root, struct extent_buffer *parent, 2835 int start_slot, u64 *last_ret, 2836 struct btrfs_key *progress); 2837 void btrfs_release_path(struct btrfs_path *p); 2838 struct btrfs_path *btrfs_alloc_path(void); 2839 void btrfs_free_path(struct btrfs_path *p); 2840 2841 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2842 struct btrfs_path *path, int slot, int nr); 2843 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct btrfs_path *path) 2846 { 2847 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2848 } 2849 2850 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 2851 const struct btrfs_key *cpu_key, u32 *data_size, 2852 int nr); 2853 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2854 const struct btrfs_key *key, void *data, u32 data_size); 2855 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2856 struct btrfs_root *root, 2857 struct btrfs_path *path, 2858 const struct btrfs_key *cpu_key, u32 *data_size, 2859 int nr); 2860 2861 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2862 struct btrfs_root *root, 2863 struct btrfs_path *path, 2864 const struct btrfs_key *key, 2865 u32 data_size) 2866 { 2867 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 2868 } 2869 2870 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 2871 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2872 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2873 u64 time_seq); 2874 static inline int btrfs_next_old_item(struct btrfs_root *root, 2875 struct btrfs_path *p, u64 time_seq) 2876 { 2877 ++p->slots[0]; 2878 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2879 return btrfs_next_old_leaf(root, p, time_seq); 2880 return 0; 2881 } 2882 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2883 { 2884 return btrfs_next_old_item(root, p, 0); 2885 } 2886 int btrfs_leaf_free_space(struct extent_buffer *leaf); 2887 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 2888 int for_reloc); 2889 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 2890 struct btrfs_root *root, 2891 struct extent_buffer *node, 2892 struct extent_buffer *parent); 2893 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 2894 { 2895 /* 2896 * Do it this way so we only ever do one test_bit in the normal case. 2897 */ 2898 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 2899 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 2900 return 2; 2901 return 1; 2902 } 2903 return 0; 2904 } 2905 2906 /* 2907 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 2908 * anything except sleeping. This function is used to check the status of 2909 * the fs. 2910 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 2911 * since setting and checking for SB_RDONLY in the superblock's flags is not 2912 * atomic. 2913 */ 2914 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 2915 { 2916 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 2917 btrfs_fs_closing(fs_info); 2918 } 2919 2920 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 2921 { 2922 sb->s_flags |= SB_RDONLY; 2923 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2924 } 2925 2926 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 2927 { 2928 sb->s_flags &= ~SB_RDONLY; 2929 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2930 } 2931 2932 /* tree mod log functions from ctree.c */ 2933 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 2934 struct seq_list *elem); 2935 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 2936 struct seq_list *elem); 2937 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); 2938 2939 /* root-item.c */ 2940 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2941 u64 ref_id, u64 dirid, u64 sequence, const char *name, 2942 int name_len); 2943 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2944 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 2945 int name_len); 2946 int btrfs_del_root(struct btrfs_trans_handle *trans, 2947 const struct btrfs_key *key); 2948 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2949 const struct btrfs_key *key, 2950 struct btrfs_root_item *item); 2951 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 2952 struct btrfs_root *root, 2953 struct btrfs_key *key, 2954 struct btrfs_root_item *item); 2955 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 2956 struct btrfs_path *path, struct btrfs_root_item *root_item, 2957 struct btrfs_key *root_key); 2958 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 2959 void btrfs_set_root_node(struct btrfs_root_item *item, 2960 struct extent_buffer *node); 2961 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 2962 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 2963 struct btrfs_root *root); 2964 2965 /* uuid-tree.c */ 2966 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2967 u64 subid); 2968 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 2969 u64 subid); 2970 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 2971 2972 /* dir-item.c */ 2973 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 2974 const char *name, int name_len); 2975 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 2976 int name_len, struct btrfs_inode *dir, 2977 struct btrfs_key *location, u8 type, u64 index); 2978 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 2979 struct btrfs_root *root, 2980 struct btrfs_path *path, u64 dir, 2981 const char *name, int name_len, 2982 int mod); 2983 struct btrfs_dir_item * 2984 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 2985 struct btrfs_root *root, 2986 struct btrfs_path *path, u64 dir, 2987 u64 objectid, const char *name, int name_len, 2988 int mod); 2989 struct btrfs_dir_item * 2990 btrfs_search_dir_index_item(struct btrfs_root *root, 2991 struct btrfs_path *path, u64 dirid, 2992 const char *name, int name_len); 2993 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 2994 struct btrfs_root *root, 2995 struct btrfs_path *path, 2996 struct btrfs_dir_item *di); 2997 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 struct btrfs_path *path, u64 objectid, 3000 const char *name, u16 name_len, 3001 const void *data, u16 data_len); 3002 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3003 struct btrfs_root *root, 3004 struct btrfs_path *path, u64 dir, 3005 const char *name, u16 name_len, 3006 int mod); 3007 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3008 struct btrfs_path *path, 3009 const char *name, 3010 int name_len); 3011 3012 /* orphan.c */ 3013 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3014 struct btrfs_root *root, u64 offset); 3015 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3016 struct btrfs_root *root, u64 offset); 3017 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3018 3019 /* inode-item.c */ 3020 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3021 struct btrfs_root *root, 3022 const char *name, int name_len, 3023 u64 inode_objectid, u64 ref_objectid, u64 index); 3024 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3025 struct btrfs_root *root, 3026 const char *name, int name_len, 3027 u64 inode_objectid, u64 ref_objectid, u64 *index); 3028 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3029 struct btrfs_root *root, 3030 struct btrfs_path *path, u64 objectid); 3031 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3032 *root, struct btrfs_path *path, 3033 struct btrfs_key *location, int mod); 3034 3035 struct btrfs_inode_extref * 3036 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3037 struct btrfs_root *root, 3038 struct btrfs_path *path, 3039 const char *name, int name_len, 3040 u64 inode_objectid, u64 ref_objectid, int ins_len, 3041 int cow); 3042 3043 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3044 int slot, const char *name, 3045 int name_len); 3046 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3047 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3048 const char *name, int name_len); 3049 /* file-item.c */ 3050 struct btrfs_dio_private; 3051 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3052 struct btrfs_root *root, u64 bytenr, u64 len); 3053 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3054 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3055 struct btrfs_root *root, 3056 u64 objectid, u64 pos, 3057 u64 disk_offset, u64 disk_num_bytes, 3058 u64 num_bytes, u64 offset, u64 ram_bytes, 3059 u8 compression, u8 encryption, u16 other_encoding); 3060 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root, 3062 struct btrfs_path *path, u64 objectid, 3063 u64 bytenr, int mod); 3064 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3065 struct btrfs_root *root, 3066 struct btrfs_ordered_sum *sums); 3067 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3068 u64 file_start, int contig); 3069 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3070 struct list_head *list, int search_commit); 3071 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3072 const struct btrfs_path *path, 3073 struct btrfs_file_extent_item *fi, 3074 const bool new_inline, 3075 struct extent_map *em); 3076 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3077 u64 len); 3078 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3079 u64 len); 3080 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3081 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3082 3083 /* inode.c */ 3084 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3085 int mirror_num, unsigned long bio_flags); 3086 int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3087 struct page *page, u64 start, u64 end, int mirror); 3088 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3089 u64 start, u64 len); 3090 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3091 u64 *orig_start, u64 *orig_block_len, 3092 u64 *ram_bytes, bool strict); 3093 3094 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3095 struct btrfs_inode *inode); 3096 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3097 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3098 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3099 struct btrfs_root *root, 3100 struct btrfs_inode *dir, struct btrfs_inode *inode, 3101 const char *name, int name_len); 3102 int btrfs_add_link(struct btrfs_trans_handle *trans, 3103 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3104 const char *name, int name_len, int add_backref, u64 index); 3105 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3106 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3107 int front); 3108 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3109 struct btrfs_root *root, 3110 struct btrfs_inode *inode, u64 new_size, 3111 u32 min_type); 3112 3113 int btrfs_start_delalloc_snapshot(struct btrfs_root *root); 3114 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3115 bool in_reclaim_context); 3116 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3117 unsigned int extra_bits, 3118 struct extent_state **cached_state); 3119 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3120 struct btrfs_root *new_root, 3121 struct btrfs_root *parent_root); 3122 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3123 unsigned *bits); 3124 void btrfs_clear_delalloc_extent(struct inode *inode, 3125 struct extent_state *state, unsigned *bits); 3126 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3127 struct extent_state *other); 3128 void btrfs_split_delalloc_extent(struct inode *inode, 3129 struct extent_state *orig, u64 split); 3130 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 3131 unsigned long bio_flags); 3132 bool btrfs_bio_fits_in_ordered_extent(struct page *page, struct bio *bio, 3133 unsigned int size); 3134 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end); 3135 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3136 int btrfs_readpage(struct file *file, struct page *page); 3137 void btrfs_evict_inode(struct inode *inode); 3138 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3139 struct inode *btrfs_alloc_inode(struct super_block *sb); 3140 void btrfs_destroy_inode(struct inode *inode); 3141 void btrfs_free_inode(struct inode *inode); 3142 int btrfs_drop_inode(struct inode *inode); 3143 int __init btrfs_init_cachep(void); 3144 void __cold btrfs_destroy_cachep(void); 3145 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3146 struct btrfs_root *root, struct btrfs_path *path); 3147 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3148 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3149 struct page *page, size_t pg_offset, 3150 u64 start, u64 end); 3151 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3152 struct btrfs_root *root, struct btrfs_inode *inode); 3153 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3154 struct btrfs_root *root, struct btrfs_inode *inode); 3155 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3156 struct btrfs_inode *inode); 3157 int btrfs_orphan_cleanup(struct btrfs_root *root); 3158 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3159 void btrfs_add_delayed_iput(struct inode *inode); 3160 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3161 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3162 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3163 u64 start, u64 num_bytes, u64 min_size, 3164 loff_t actual_len, u64 *alloc_hint); 3165 int btrfs_prealloc_file_range_trans(struct inode *inode, 3166 struct btrfs_trans_handle *trans, int mode, 3167 u64 start, u64 num_bytes, u64 min_size, 3168 loff_t actual_len, u64 *alloc_hint); 3169 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3170 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3171 struct writeback_control *wbc); 3172 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end); 3173 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start, 3174 u64 end, int uptodate); 3175 extern const struct dentry_operations btrfs_dentry_operations; 3176 extern const struct iomap_ops btrfs_dio_iomap_ops; 3177 extern const struct iomap_dio_ops btrfs_dio_ops; 3178 3179 /* Inode locking type flags, by default the exclusive lock is taken */ 3180 #define BTRFS_ILOCK_SHARED (1U << 0) 3181 #define BTRFS_ILOCK_TRY (1U << 1) 3182 3183 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3184 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3185 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3186 const u64 add_bytes, 3187 const u64 del_bytes); 3188 3189 /* ioctl.c */ 3190 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3191 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3192 int btrfs_ioctl_get_supported_features(void __user *arg); 3193 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3194 int __pure btrfs_is_empty_uuid(u8 *uuid); 3195 int btrfs_defrag_file(struct inode *inode, struct file *file, 3196 struct btrfs_ioctl_defrag_range_args *range, 3197 u64 newer_than, unsigned long max_pages); 3198 void btrfs_get_block_group_info(struct list_head *groups_list, 3199 struct btrfs_ioctl_space_info *space); 3200 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3201 struct btrfs_ioctl_balance_args *bargs); 3202 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3203 enum btrfs_exclusive_operation type); 3204 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3205 3206 /* file.c */ 3207 int __init btrfs_auto_defrag_init(void); 3208 void __cold btrfs_auto_defrag_exit(void); 3209 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3210 struct btrfs_inode *inode); 3211 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3212 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3213 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3214 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3215 int skip_pinned); 3216 extern const struct file_operations btrfs_file_operations; 3217 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3218 struct btrfs_root *root, struct btrfs_inode *inode, 3219 struct btrfs_drop_extents_args *args); 3220 int btrfs_replace_file_extents(struct inode *inode, struct btrfs_path *path, 3221 const u64 start, const u64 end, 3222 struct btrfs_replace_extent_info *extent_info, 3223 struct btrfs_trans_handle **trans_out); 3224 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3225 struct btrfs_inode *inode, u64 start, u64 end); 3226 int btrfs_release_file(struct inode *inode, struct file *file); 3227 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3228 size_t num_pages, loff_t pos, size_t write_bytes, 3229 struct extent_state **cached, bool noreserve); 3230 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3231 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3232 size_t *write_bytes); 3233 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3234 3235 /* tree-defrag.c */ 3236 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root); 3238 3239 /* super.c */ 3240 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3241 unsigned long new_flags); 3242 int btrfs_sync_fs(struct super_block *sb, int wait); 3243 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3244 u64 subvol_objectid); 3245 3246 static inline __printf(2, 3) __cold 3247 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3248 { 3249 } 3250 3251 #ifdef CONFIG_PRINTK 3252 __printf(2, 3) 3253 __cold 3254 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3255 #else 3256 #define btrfs_printk(fs_info, fmt, args...) \ 3257 btrfs_no_printk(fs_info, fmt, ##args) 3258 #endif 3259 3260 #define btrfs_emerg(fs_info, fmt, args...) \ 3261 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3262 #define btrfs_alert(fs_info, fmt, args...) \ 3263 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3264 #define btrfs_crit(fs_info, fmt, args...) \ 3265 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3266 #define btrfs_err(fs_info, fmt, args...) \ 3267 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3268 #define btrfs_warn(fs_info, fmt, args...) \ 3269 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3270 #define btrfs_notice(fs_info, fmt, args...) \ 3271 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3272 #define btrfs_info(fs_info, fmt, args...) \ 3273 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3274 3275 /* 3276 * Wrappers that use printk_in_rcu 3277 */ 3278 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3279 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3280 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3281 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3282 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3283 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3284 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3285 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3286 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3287 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3288 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3289 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3290 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3291 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3292 3293 /* 3294 * Wrappers that use a ratelimited printk_in_rcu 3295 */ 3296 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3297 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3298 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3299 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3300 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3301 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3302 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3303 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3304 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3305 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3306 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3307 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3308 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3309 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3310 3311 /* 3312 * Wrappers that use a ratelimited printk 3313 */ 3314 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3315 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3316 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3317 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3318 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3319 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3320 #define btrfs_err_rl(fs_info, fmt, args...) \ 3321 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3322 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3323 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3324 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3325 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3326 #define btrfs_info_rl(fs_info, fmt, args...) \ 3327 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3328 3329 #if defined(CONFIG_DYNAMIC_DEBUG) 3330 #define btrfs_debug(fs_info, fmt, args...) \ 3331 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3332 fs_info, KERN_DEBUG fmt, ##args) 3333 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3334 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3335 fs_info, KERN_DEBUG fmt, ##args) 3336 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3337 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3338 fs_info, KERN_DEBUG fmt, ##args) 3339 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3340 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3341 fs_info, KERN_DEBUG fmt, ##args) 3342 #elif defined(DEBUG) 3343 #define btrfs_debug(fs_info, fmt, args...) \ 3344 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3345 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3346 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3347 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3348 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3349 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3350 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3351 #else 3352 #define btrfs_debug(fs_info, fmt, args...) \ 3353 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3354 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3355 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3356 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3357 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3358 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3359 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3360 #endif 3361 3362 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3363 do { \ 3364 rcu_read_lock(); \ 3365 btrfs_printk(fs_info, fmt, ##args); \ 3366 rcu_read_unlock(); \ 3367 } while (0) 3368 3369 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3370 do { \ 3371 rcu_read_lock(); \ 3372 btrfs_no_printk(fs_info, fmt, ##args); \ 3373 rcu_read_unlock(); \ 3374 } while (0) 3375 3376 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3377 do { \ 3378 static DEFINE_RATELIMIT_STATE(_rs, \ 3379 DEFAULT_RATELIMIT_INTERVAL, \ 3380 DEFAULT_RATELIMIT_BURST); \ 3381 if (__ratelimit(&_rs)) \ 3382 btrfs_printk(fs_info, fmt, ##args); \ 3383 } while (0) 3384 3385 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3386 do { \ 3387 rcu_read_lock(); \ 3388 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3389 rcu_read_unlock(); \ 3390 } while (0) 3391 3392 #ifdef CONFIG_BTRFS_ASSERT 3393 __cold __noreturn 3394 static inline void assertfail(const char *expr, const char *file, int line) 3395 { 3396 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3397 BUG(); 3398 } 3399 3400 #define ASSERT(expr) \ 3401 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3402 3403 #else 3404 static inline void assertfail(const char *expr, const char* file, int line) { } 3405 #define ASSERT(expr) (void)(expr) 3406 #endif 3407 3408 /* 3409 * Get the correct offset inside the page of extent buffer. 3410 * 3411 * @eb: target extent buffer 3412 * @start: offset inside the extent buffer 3413 * 3414 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3415 */ 3416 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3417 unsigned long offset) 3418 { 3419 /* 3420 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3421 * to PAGE_SIZE, thus adding it won't cause any difference. 3422 * 3423 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3424 * to the eb, thus we have to take the eb->start into consideration. 3425 */ 3426 return offset_in_page(offset + eb->start); 3427 } 3428 3429 static inline unsigned long get_eb_page_index(unsigned long offset) 3430 { 3431 /* 3432 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3433 * 3434 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3435 * and have ensured that all tree blocks are contained in one page, 3436 * thus we always get index == 0. 3437 */ 3438 return offset >> PAGE_SHIFT; 3439 } 3440 3441 /* 3442 * Use that for functions that are conditionally exported for sanity tests but 3443 * otherwise static 3444 */ 3445 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3446 #define EXPORT_FOR_TESTS static 3447 #else 3448 #define EXPORT_FOR_TESTS 3449 #endif 3450 3451 __cold 3452 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3453 { 3454 btrfs_err(fs_info, 3455 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3456 } 3457 3458 __printf(5, 6) 3459 __cold 3460 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3461 unsigned int line, int errno, const char *fmt, ...); 3462 3463 const char * __attribute_const__ btrfs_decode_error(int errno); 3464 3465 __cold 3466 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3467 const char *function, 3468 unsigned int line, int errno); 3469 3470 /* 3471 * Call btrfs_abort_transaction as early as possible when an error condition is 3472 * detected, that way the exact line number is reported. 3473 */ 3474 #define btrfs_abort_transaction(trans, errno) \ 3475 do { \ 3476 /* Report first abort since mount */ \ 3477 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3478 &((trans)->fs_info->fs_state))) { \ 3479 if ((errno) != -EIO && (errno) != -EROFS) { \ 3480 WARN(1, KERN_DEBUG \ 3481 "BTRFS: Transaction aborted (error %d)\n", \ 3482 (errno)); \ 3483 } else { \ 3484 btrfs_debug((trans)->fs_info, \ 3485 "Transaction aborted (error %d)", \ 3486 (errno)); \ 3487 } \ 3488 } \ 3489 __btrfs_abort_transaction((trans), __func__, \ 3490 __LINE__, (errno)); \ 3491 } while (0) 3492 3493 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3494 do { \ 3495 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3496 (errno), fmt, ##args); \ 3497 } while (0) 3498 3499 __printf(5, 6) 3500 __cold 3501 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3502 unsigned int line, int errno, const char *fmt, ...); 3503 /* 3504 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3505 * will panic(). Otherwise we BUG() here. 3506 */ 3507 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3508 do { \ 3509 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3510 BUG(); \ 3511 } while (0) 3512 3513 3514 /* compatibility and incompatibility defines */ 3515 3516 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3517 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3518 #opt) 3519 3520 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3521 u64 flag, const char* name) 3522 { 3523 struct btrfs_super_block *disk_super; 3524 u64 features; 3525 3526 disk_super = fs_info->super_copy; 3527 features = btrfs_super_incompat_flags(disk_super); 3528 if (!(features & flag)) { 3529 spin_lock(&fs_info->super_lock); 3530 features = btrfs_super_incompat_flags(disk_super); 3531 if (!(features & flag)) { 3532 features |= flag; 3533 btrfs_set_super_incompat_flags(disk_super, features); 3534 btrfs_info(fs_info, 3535 "setting incompat feature flag for %s (0x%llx)", 3536 name, flag); 3537 } 3538 spin_unlock(&fs_info->super_lock); 3539 } 3540 } 3541 3542 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3543 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3544 #opt) 3545 3546 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3547 u64 flag, const char* name) 3548 { 3549 struct btrfs_super_block *disk_super; 3550 u64 features; 3551 3552 disk_super = fs_info->super_copy; 3553 features = btrfs_super_incompat_flags(disk_super); 3554 if (features & flag) { 3555 spin_lock(&fs_info->super_lock); 3556 features = btrfs_super_incompat_flags(disk_super); 3557 if (features & flag) { 3558 features &= ~flag; 3559 btrfs_set_super_incompat_flags(disk_super, features); 3560 btrfs_info(fs_info, 3561 "clearing incompat feature flag for %s (0x%llx)", 3562 name, flag); 3563 } 3564 spin_unlock(&fs_info->super_lock); 3565 } 3566 } 3567 3568 #define btrfs_fs_incompat(fs_info, opt) \ 3569 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3570 3571 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3572 { 3573 struct btrfs_super_block *disk_super; 3574 disk_super = fs_info->super_copy; 3575 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3576 } 3577 3578 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3579 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3580 #opt) 3581 3582 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3583 u64 flag, const char *name) 3584 { 3585 struct btrfs_super_block *disk_super; 3586 u64 features; 3587 3588 disk_super = fs_info->super_copy; 3589 features = btrfs_super_compat_ro_flags(disk_super); 3590 if (!(features & flag)) { 3591 spin_lock(&fs_info->super_lock); 3592 features = btrfs_super_compat_ro_flags(disk_super); 3593 if (!(features & flag)) { 3594 features |= flag; 3595 btrfs_set_super_compat_ro_flags(disk_super, features); 3596 btrfs_info(fs_info, 3597 "setting compat-ro feature flag for %s (0x%llx)", 3598 name, flag); 3599 } 3600 spin_unlock(&fs_info->super_lock); 3601 } 3602 } 3603 3604 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3605 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3606 #opt) 3607 3608 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3609 u64 flag, const char *name) 3610 { 3611 struct btrfs_super_block *disk_super; 3612 u64 features; 3613 3614 disk_super = fs_info->super_copy; 3615 features = btrfs_super_compat_ro_flags(disk_super); 3616 if (features & flag) { 3617 spin_lock(&fs_info->super_lock); 3618 features = btrfs_super_compat_ro_flags(disk_super); 3619 if (features & flag) { 3620 features &= ~flag; 3621 btrfs_set_super_compat_ro_flags(disk_super, features); 3622 btrfs_info(fs_info, 3623 "clearing compat-ro feature flag for %s (0x%llx)", 3624 name, flag); 3625 } 3626 spin_unlock(&fs_info->super_lock); 3627 } 3628 } 3629 3630 #define btrfs_fs_compat_ro(fs_info, opt) \ 3631 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3632 3633 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3634 { 3635 struct btrfs_super_block *disk_super; 3636 disk_super = fs_info->super_copy; 3637 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3638 } 3639 3640 /* acl.c */ 3641 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3642 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 3643 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3644 struct posix_acl *acl, int type); 3645 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3646 struct inode *inode, struct inode *dir); 3647 #else 3648 #define btrfs_get_acl NULL 3649 #define btrfs_set_acl NULL 3650 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3651 struct inode *inode, struct inode *dir) 3652 { 3653 return 0; 3654 } 3655 #endif 3656 3657 /* relocation.c */ 3658 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3659 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3660 struct btrfs_root *root); 3661 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3662 struct btrfs_root *root); 3663 int btrfs_recover_relocation(struct btrfs_root *root); 3664 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3665 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3666 struct btrfs_root *root, struct extent_buffer *buf, 3667 struct extent_buffer *cow); 3668 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3669 u64 *bytes_to_reserve); 3670 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3671 struct btrfs_pending_snapshot *pending); 3672 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3673 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3674 u64 bytenr); 3675 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3676 3677 /* scrub.c */ 3678 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3679 u64 end, struct btrfs_scrub_progress *progress, 3680 int readonly, int is_dev_replace); 3681 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3682 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3683 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3684 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3685 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3686 struct btrfs_scrub_progress *progress); 3687 static inline void btrfs_init_full_stripe_locks_tree( 3688 struct btrfs_full_stripe_locks_tree *locks_root) 3689 { 3690 locks_root->root = RB_ROOT; 3691 mutex_init(&locks_root->lock); 3692 } 3693 3694 /* dev-replace.c */ 3695 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3696 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3697 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3698 3699 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3700 { 3701 btrfs_bio_counter_sub(fs_info, 1); 3702 } 3703 3704 /* reada.c */ 3705 struct reada_control { 3706 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3707 struct btrfs_key key_start; 3708 struct btrfs_key key_end; /* exclusive */ 3709 atomic_t elems; 3710 struct kref refcnt; 3711 wait_queue_head_t wait; 3712 }; 3713 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3714 struct btrfs_key *start, struct btrfs_key *end); 3715 int btrfs_reada_wait(void *handle); 3716 void btrfs_reada_detach(void *handle); 3717 int btree_readahead_hook(struct extent_buffer *eb, int err); 3718 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3719 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3720 3721 static inline int is_fstree(u64 rootid) 3722 { 3723 if (rootid == BTRFS_FS_TREE_OBJECTID || 3724 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3725 !btrfs_qgroup_level(rootid))) 3726 return 1; 3727 return 0; 3728 } 3729 3730 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3731 { 3732 return signal_pending(current); 3733 } 3734 3735 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len)) 3736 3737 /* Sanity test specific functions */ 3738 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3739 void btrfs_test_destroy_inode(struct inode *inode); 3740 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3741 { 3742 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3743 } 3744 #else 3745 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3746 { 3747 return 0; 3748 } 3749 #endif 3750 3751 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3752 { 3753 return fs_info->zoned != 0; 3754 } 3755 3756 #endif 3757