1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 54 55 /* 56 * Maximum number of mirrors that can be available for all profiles counting 57 * the target device of dev-replace as one. During an active device replace 58 * procedure, the target device of the copy operation is a mirror for the 59 * filesystem data as well that can be used to read data in order to repair 60 * read errors on other disks. 61 * 62 * Current value is derived from RAID1C4 with 4 copies. 63 */ 64 #define BTRFS_MAX_MIRRORS (4 + 1) 65 66 #define BTRFS_MAX_LEVEL 8 67 68 #define BTRFS_OLDEST_GENERATION 0ULL 69 70 /* 71 * we can actually store much bigger names, but lets not confuse the rest 72 * of linux 73 */ 74 #define BTRFS_NAME_LEN 255 75 76 /* 77 * Theoretical limit is larger, but we keep this down to a sane 78 * value. That should limit greatly the possibility of collisions on 79 * inode ref items. 80 */ 81 #define BTRFS_LINK_MAX 65535U 82 83 #define BTRFS_EMPTY_DIR_SIZE 0 84 85 /* ioprio of readahead is set to idle */ 86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 87 88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 89 90 /* 91 * Use large batch size to reduce overhead of metadata updates. On the reader 92 * side, we only read it when we are close to ENOSPC and the read overhead is 93 * mostly related to the number of CPUs, so it is OK to use arbitrary large 94 * value here. 95 */ 96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 97 98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 99 100 /* 101 * Deltas are an effective way to populate global statistics. Give macro names 102 * to make it clear what we're doing. An example is discard_extents in 103 * btrfs_free_space_ctl. 104 */ 105 #define BTRFS_STAT_NR_ENTRIES 2 106 #define BTRFS_STAT_CURR 0 107 #define BTRFS_STAT_PREV 1 108 109 /* 110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 111 */ 112 static inline u32 count_max_extents(u64 size) 113 { 114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 115 } 116 117 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 118 { 119 BUG_ON(num_stripes == 0); 120 return sizeof(struct btrfs_chunk) + 121 sizeof(struct btrfs_stripe) * (num_stripes - 1); 122 } 123 124 /* 125 * Runtime (in-memory) states of filesystem 126 */ 127 enum { 128 /* Global indicator of serious filesystem errors */ 129 BTRFS_FS_STATE_ERROR, 130 /* 131 * Filesystem is being remounted, allow to skip some operations, like 132 * defrag 133 */ 134 BTRFS_FS_STATE_REMOUNTING, 135 /* Filesystem in RO mode */ 136 BTRFS_FS_STATE_RO, 137 /* Track if a transaction abort has been reported on this filesystem */ 138 BTRFS_FS_STATE_TRANS_ABORTED, 139 /* 140 * Bio operations should be blocked on this filesystem because a source 141 * or target device is being destroyed as part of a device replace 142 */ 143 BTRFS_FS_STATE_DEV_REPLACING, 144 /* The btrfs_fs_info created for self-tests */ 145 BTRFS_FS_STATE_DUMMY_FS_INFO, 146 147 BTRFS_FS_STATE_NO_CSUMS, 148 149 /* Indicates there was an error cleaning up a log tree. */ 150 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 151 }; 152 153 #define BTRFS_BACKREF_REV_MAX 256 154 #define BTRFS_BACKREF_REV_SHIFT 56 155 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 156 BTRFS_BACKREF_REV_SHIFT) 157 158 #define BTRFS_OLD_BACKREF_REV 0 159 #define BTRFS_MIXED_BACKREF_REV 1 160 161 /* 162 * every tree block (leaf or node) starts with this header. 163 */ 164 struct btrfs_header { 165 /* these first four must match the super block */ 166 u8 csum[BTRFS_CSUM_SIZE]; 167 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 168 __le64 bytenr; /* which block this node is supposed to live in */ 169 __le64 flags; 170 171 /* allowed to be different from the super from here on down */ 172 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 173 __le64 generation; 174 __le64 owner; 175 __le32 nritems; 176 u8 level; 177 } __attribute__ ((__packed__)); 178 179 /* 180 * this is a very generous portion of the super block, giving us 181 * room to translate 14 chunks with 3 stripes each. 182 */ 183 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 184 185 /* 186 * just in case we somehow lose the roots and are not able to mount, 187 * we store an array of the roots from previous transactions 188 * in the super. 189 */ 190 #define BTRFS_NUM_BACKUP_ROOTS 4 191 struct btrfs_root_backup { 192 __le64 tree_root; 193 __le64 tree_root_gen; 194 195 __le64 chunk_root; 196 __le64 chunk_root_gen; 197 198 __le64 extent_root; 199 __le64 extent_root_gen; 200 201 __le64 fs_root; 202 __le64 fs_root_gen; 203 204 __le64 dev_root; 205 __le64 dev_root_gen; 206 207 __le64 csum_root; 208 __le64 csum_root_gen; 209 210 __le64 total_bytes; 211 __le64 bytes_used; 212 __le64 num_devices; 213 /* future */ 214 __le64 unused_64[4]; 215 216 u8 tree_root_level; 217 u8 chunk_root_level; 218 u8 extent_root_level; 219 u8 fs_root_level; 220 u8 dev_root_level; 221 u8 csum_root_level; 222 /* future and to align */ 223 u8 unused_8[10]; 224 } __attribute__ ((__packed__)); 225 226 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 227 #define BTRFS_SUPER_INFO_SIZE 4096 228 229 /* 230 * the super block basically lists the main trees of the FS 231 * it currently lacks any block count etc etc 232 */ 233 struct btrfs_super_block { 234 /* the first 4 fields must match struct btrfs_header */ 235 u8 csum[BTRFS_CSUM_SIZE]; 236 /* FS specific UUID, visible to user */ 237 u8 fsid[BTRFS_FSID_SIZE]; 238 __le64 bytenr; /* this block number */ 239 __le64 flags; 240 241 /* allowed to be different from the btrfs_header from here own down */ 242 __le64 magic; 243 __le64 generation; 244 __le64 root; 245 __le64 chunk_root; 246 __le64 log_root; 247 248 /* this will help find the new super based on the log root */ 249 __le64 log_root_transid; 250 __le64 total_bytes; 251 __le64 bytes_used; 252 __le64 root_dir_objectid; 253 __le64 num_devices; 254 __le32 sectorsize; 255 __le32 nodesize; 256 __le32 __unused_leafsize; 257 __le32 stripesize; 258 __le32 sys_chunk_array_size; 259 __le64 chunk_root_generation; 260 __le64 compat_flags; 261 __le64 compat_ro_flags; 262 __le64 incompat_flags; 263 __le16 csum_type; 264 u8 root_level; 265 u8 chunk_root_level; 266 u8 log_root_level; 267 struct btrfs_dev_item dev_item; 268 269 char label[BTRFS_LABEL_SIZE]; 270 271 __le64 cache_generation; 272 __le64 uuid_tree_generation; 273 274 /* the UUID written into btree blocks */ 275 u8 metadata_uuid[BTRFS_FSID_SIZE]; 276 277 /* future expansion */ 278 __le64 reserved[28]; 279 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 280 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 281 282 /* Padded to 4096 bytes */ 283 u8 padding[565]; 284 } __attribute__ ((__packed__)); 285 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 286 287 /* 288 * Compat flags that we support. If any incompat flags are set other than the 289 * ones specified below then we will fail to mount 290 */ 291 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 292 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 293 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 294 295 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 296 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 297 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 298 BTRFS_FEATURE_COMPAT_RO_VERITY) 299 300 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 301 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 302 303 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 304 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 305 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 306 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 307 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 308 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 309 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 310 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 311 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 312 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 313 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 314 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 315 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 316 BTRFS_FEATURE_INCOMPAT_ZONED) 317 318 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 319 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 320 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 321 322 /* 323 * A leaf is full of items. offset and size tell us where to find 324 * the item in the leaf (relative to the start of the data area) 325 */ 326 struct btrfs_item { 327 struct btrfs_disk_key key; 328 __le32 offset; 329 __le32 size; 330 } __attribute__ ((__packed__)); 331 332 /* 333 * leaves have an item area and a data area: 334 * [item0, item1....itemN] [free space] [dataN...data1, data0] 335 * 336 * The data is separate from the items to get the keys closer together 337 * during searches. 338 */ 339 struct btrfs_leaf { 340 struct btrfs_header header; 341 struct btrfs_item items[]; 342 } __attribute__ ((__packed__)); 343 344 /* 345 * all non-leaf blocks are nodes, they hold only keys and pointers to 346 * other blocks 347 */ 348 struct btrfs_key_ptr { 349 struct btrfs_disk_key key; 350 __le64 blockptr; 351 __le64 generation; 352 } __attribute__ ((__packed__)); 353 354 struct btrfs_node { 355 struct btrfs_header header; 356 struct btrfs_key_ptr ptrs[]; 357 } __attribute__ ((__packed__)); 358 359 /* Read ahead values for struct btrfs_path.reada */ 360 enum { 361 READA_NONE, 362 READA_BACK, 363 READA_FORWARD, 364 /* 365 * Similar to READA_FORWARD but unlike it: 366 * 367 * 1) It will trigger readahead even for leaves that are not close to 368 * each other on disk; 369 * 2) It also triggers readahead for nodes; 370 * 3) During a search, even when a node or leaf is already in memory, it 371 * will still trigger readahead for other nodes and leaves that follow 372 * it. 373 * 374 * This is meant to be used only when we know we are iterating over the 375 * entire tree or a very large part of it. 376 */ 377 READA_FORWARD_ALWAYS, 378 }; 379 380 /* 381 * btrfs_paths remember the path taken from the root down to the leaf. 382 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 383 * to any other levels that are present. 384 * 385 * The slots array records the index of the item or block pointer 386 * used while walking the tree. 387 */ 388 struct btrfs_path { 389 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 390 int slots[BTRFS_MAX_LEVEL]; 391 /* if there is real range locking, this locks field will change */ 392 u8 locks[BTRFS_MAX_LEVEL]; 393 u8 reada; 394 /* keep some upper locks as we walk down */ 395 u8 lowest_level; 396 397 /* 398 * set by btrfs_split_item, tells search_slot to keep all locks 399 * and to force calls to keep space in the nodes 400 */ 401 unsigned int search_for_split:1; 402 unsigned int keep_locks:1; 403 unsigned int skip_locking:1; 404 unsigned int search_commit_root:1; 405 unsigned int need_commit_sem:1; 406 unsigned int skip_release_on_error:1; 407 /* 408 * Indicate that new item (btrfs_search_slot) is extending already 409 * existing item and ins_len contains only the data size and not item 410 * header (ie. sizeof(struct btrfs_item) is not included). 411 */ 412 unsigned int search_for_extension:1; 413 }; 414 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 415 sizeof(struct btrfs_item)) 416 struct btrfs_dev_replace { 417 u64 replace_state; /* see #define above */ 418 time64_t time_started; /* seconds since 1-Jan-1970 */ 419 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 420 atomic64_t num_write_errors; 421 atomic64_t num_uncorrectable_read_errors; 422 423 u64 cursor_left; 424 u64 committed_cursor_left; 425 u64 cursor_left_last_write_of_item; 426 u64 cursor_right; 427 428 u64 cont_reading_from_srcdev_mode; /* see #define above */ 429 430 int is_valid; 431 int item_needs_writeback; 432 struct btrfs_device *srcdev; 433 struct btrfs_device *tgtdev; 434 435 struct mutex lock_finishing_cancel_unmount; 436 struct rw_semaphore rwsem; 437 438 struct btrfs_scrub_progress scrub_progress; 439 440 struct percpu_counter bio_counter; 441 wait_queue_head_t replace_wait; 442 }; 443 444 /* 445 * free clusters are used to claim free space in relatively large chunks, 446 * allowing us to do less seeky writes. They are used for all metadata 447 * allocations. In ssd_spread mode they are also used for data allocations. 448 */ 449 struct btrfs_free_cluster { 450 spinlock_t lock; 451 spinlock_t refill_lock; 452 struct rb_root root; 453 454 /* largest extent in this cluster */ 455 u64 max_size; 456 457 /* first extent starting offset */ 458 u64 window_start; 459 460 /* We did a full search and couldn't create a cluster */ 461 bool fragmented; 462 463 struct btrfs_block_group *block_group; 464 /* 465 * when a cluster is allocated from a block group, we put the 466 * cluster onto a list in the block group so that it can 467 * be freed before the block group is freed. 468 */ 469 struct list_head block_group_list; 470 }; 471 472 enum btrfs_caching_type { 473 BTRFS_CACHE_NO, 474 BTRFS_CACHE_STARTED, 475 BTRFS_CACHE_FAST, 476 BTRFS_CACHE_FINISHED, 477 BTRFS_CACHE_ERROR, 478 }; 479 480 /* 481 * Tree to record all locked full stripes of a RAID5/6 block group 482 */ 483 struct btrfs_full_stripe_locks_tree { 484 struct rb_root root; 485 struct mutex lock; 486 }; 487 488 /* Discard control. */ 489 /* 490 * Async discard uses multiple lists to differentiate the discard filter 491 * parameters. Index 0 is for completely free block groups where we need to 492 * ensure the entire block group is trimmed without being lossy. Indices 493 * afterwards represent monotonically decreasing discard filter sizes to 494 * prioritize what should be discarded next. 495 */ 496 #define BTRFS_NR_DISCARD_LISTS 3 497 #define BTRFS_DISCARD_INDEX_UNUSED 0 498 #define BTRFS_DISCARD_INDEX_START 1 499 500 struct btrfs_discard_ctl { 501 struct workqueue_struct *discard_workers; 502 struct delayed_work work; 503 spinlock_t lock; 504 struct btrfs_block_group *block_group; 505 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 506 u64 prev_discard; 507 u64 prev_discard_time; 508 atomic_t discardable_extents; 509 atomic64_t discardable_bytes; 510 u64 max_discard_size; 511 u64 delay_ms; 512 u32 iops_limit; 513 u32 kbps_limit; 514 u64 discard_extent_bytes; 515 u64 discard_bitmap_bytes; 516 atomic64_t discard_bytes_saved; 517 }; 518 519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 520 521 /* fs_info */ 522 struct reloc_control; 523 struct btrfs_device; 524 struct btrfs_fs_devices; 525 struct btrfs_balance_control; 526 struct btrfs_delayed_root; 527 528 /* 529 * Block group or device which contains an active swapfile. Used for preventing 530 * unsafe operations while a swapfile is active. 531 * 532 * These are sorted on (ptr, inode) (note that a block group or device can 533 * contain more than one swapfile). We compare the pointer values because we 534 * don't actually care what the object is, we just need a quick check whether 535 * the object exists in the rbtree. 536 */ 537 struct btrfs_swapfile_pin { 538 struct rb_node node; 539 void *ptr; 540 struct inode *inode; 541 /* 542 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 543 * points to a struct btrfs_device. 544 */ 545 bool is_block_group; 546 /* 547 * Only used when 'is_block_group' is true and it is the number of 548 * extents used by a swapfile for this block group ('ptr' field). 549 */ 550 int bg_extent_count; 551 }; 552 553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 554 555 enum { 556 BTRFS_FS_CLOSING_START, 557 BTRFS_FS_CLOSING_DONE, 558 BTRFS_FS_LOG_RECOVERING, 559 BTRFS_FS_OPEN, 560 BTRFS_FS_QUOTA_ENABLED, 561 BTRFS_FS_UPDATE_UUID_TREE_GEN, 562 BTRFS_FS_CREATING_FREE_SPACE_TREE, 563 BTRFS_FS_BTREE_ERR, 564 BTRFS_FS_LOG1_ERR, 565 BTRFS_FS_LOG2_ERR, 566 BTRFS_FS_QUOTA_OVERRIDE, 567 /* Used to record internally whether fs has been frozen */ 568 BTRFS_FS_FROZEN, 569 /* 570 * Indicate that balance has been set up from the ioctl and is in the 571 * main phase. The fs_info::balance_ctl is initialized. 572 */ 573 BTRFS_FS_BALANCE_RUNNING, 574 575 /* 576 * Indicate that relocation of a chunk has started, it's set per chunk 577 * and is toggled between chunks. 578 */ 579 BTRFS_FS_RELOC_RUNNING, 580 581 /* Indicate that the cleaner thread is awake and doing something. */ 582 BTRFS_FS_CLEANER_RUNNING, 583 584 /* 585 * The checksumming has an optimized version and is considered fast, 586 * so we don't need to offload checksums to workqueues. 587 */ 588 BTRFS_FS_CSUM_IMPL_FAST, 589 590 /* Indicate that the discard workqueue can service discards. */ 591 BTRFS_FS_DISCARD_RUNNING, 592 593 /* Indicate that we need to cleanup space cache v1 */ 594 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 595 596 /* Indicate that we can't trust the free space tree for caching yet */ 597 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 598 599 /* Indicate whether there are any tree modification log users */ 600 BTRFS_FS_TREE_MOD_LOG_USERS, 601 602 /* Indicate that we want the transaction kthread to commit right now. */ 603 BTRFS_FS_COMMIT_TRANS, 604 605 #if BITS_PER_LONG == 32 606 /* Indicate if we have error/warn message printed on 32bit systems */ 607 BTRFS_FS_32BIT_ERROR, 608 BTRFS_FS_32BIT_WARN, 609 #endif 610 }; 611 612 /* 613 * Exclusive operations (device replace, resize, device add/remove, balance) 614 */ 615 enum btrfs_exclusive_operation { 616 BTRFS_EXCLOP_NONE, 617 BTRFS_EXCLOP_BALANCE_PAUSED, 618 BTRFS_EXCLOP_BALANCE, 619 BTRFS_EXCLOP_DEV_ADD, 620 BTRFS_EXCLOP_DEV_REMOVE, 621 BTRFS_EXCLOP_DEV_REPLACE, 622 BTRFS_EXCLOP_RESIZE, 623 BTRFS_EXCLOP_SWAP_ACTIVATE, 624 }; 625 626 struct btrfs_fs_info { 627 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 628 unsigned long flags; 629 struct btrfs_root *tree_root; 630 struct btrfs_root *chunk_root; 631 struct btrfs_root *dev_root; 632 struct btrfs_root *fs_root; 633 struct btrfs_root *quota_root; 634 struct btrfs_root *uuid_root; 635 struct btrfs_root *data_reloc_root; 636 637 /* the log root tree is a directory of all the other log roots */ 638 struct btrfs_root *log_root_tree; 639 640 /* The tree that holds the global roots (csum, extent, etc) */ 641 rwlock_t global_root_lock; 642 struct rb_root global_root_tree; 643 644 spinlock_t fs_roots_radix_lock; 645 struct radix_tree_root fs_roots_radix; 646 647 /* block group cache stuff */ 648 spinlock_t block_group_cache_lock; 649 u64 first_logical_byte; 650 struct rb_root block_group_cache_tree; 651 652 /* keep track of unallocated space */ 653 atomic64_t free_chunk_space; 654 655 /* Track ranges which are used by log trees blocks/logged data extents */ 656 struct extent_io_tree excluded_extents; 657 658 /* logical->physical extent mapping */ 659 struct extent_map_tree mapping_tree; 660 661 /* 662 * block reservation for extent, checksum, root tree and 663 * delayed dir index item 664 */ 665 struct btrfs_block_rsv global_block_rsv; 666 /* block reservation for metadata operations */ 667 struct btrfs_block_rsv trans_block_rsv; 668 /* block reservation for chunk tree */ 669 struct btrfs_block_rsv chunk_block_rsv; 670 /* block reservation for delayed operations */ 671 struct btrfs_block_rsv delayed_block_rsv; 672 /* block reservation for delayed refs */ 673 struct btrfs_block_rsv delayed_refs_rsv; 674 675 struct btrfs_block_rsv empty_block_rsv; 676 677 u64 generation; 678 u64 last_trans_committed; 679 /* 680 * Generation of the last transaction used for block group relocation 681 * since the filesystem was last mounted (or 0 if none happened yet). 682 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 683 */ 684 u64 last_reloc_trans; 685 u64 avg_delayed_ref_runtime; 686 687 /* 688 * this is updated to the current trans every time a full commit 689 * is required instead of the faster short fsync log commits 690 */ 691 u64 last_trans_log_full_commit; 692 unsigned long mount_opt; 693 /* 694 * Track requests for actions that need to be done during transaction 695 * commit (like for some mount options). 696 */ 697 unsigned long pending_changes; 698 unsigned long compress_type:4; 699 unsigned int compress_level; 700 u32 commit_interval; 701 /* 702 * It is a suggestive number, the read side is safe even it gets a 703 * wrong number because we will write out the data into a regular 704 * extent. The write side(mount/remount) is under ->s_umount lock, 705 * so it is also safe. 706 */ 707 u64 max_inline; 708 709 struct btrfs_transaction *running_transaction; 710 wait_queue_head_t transaction_throttle; 711 wait_queue_head_t transaction_wait; 712 wait_queue_head_t transaction_blocked_wait; 713 wait_queue_head_t async_submit_wait; 714 715 /* 716 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 717 * when they are updated. 718 * 719 * Because we do not clear the flags for ever, so we needn't use 720 * the lock on the read side. 721 * 722 * We also needn't use the lock when we mount the fs, because 723 * there is no other task which will update the flag. 724 */ 725 spinlock_t super_lock; 726 struct btrfs_super_block *super_copy; 727 struct btrfs_super_block *super_for_commit; 728 struct super_block *sb; 729 struct inode *btree_inode; 730 struct mutex tree_log_mutex; 731 struct mutex transaction_kthread_mutex; 732 struct mutex cleaner_mutex; 733 struct mutex chunk_mutex; 734 735 /* 736 * this is taken to make sure we don't set block groups ro after 737 * the free space cache has been allocated on them 738 */ 739 struct mutex ro_block_group_mutex; 740 741 /* this is used during read/modify/write to make sure 742 * no two ios are trying to mod the same stripe at the same 743 * time 744 */ 745 struct btrfs_stripe_hash_table *stripe_hash_table; 746 747 /* 748 * this protects the ordered operations list only while we are 749 * processing all of the entries on it. This way we make 750 * sure the commit code doesn't find the list temporarily empty 751 * because another function happens to be doing non-waiting preflush 752 * before jumping into the main commit. 753 */ 754 struct mutex ordered_operations_mutex; 755 756 struct rw_semaphore commit_root_sem; 757 758 struct rw_semaphore cleanup_work_sem; 759 760 struct rw_semaphore subvol_sem; 761 762 spinlock_t trans_lock; 763 /* 764 * the reloc mutex goes with the trans lock, it is taken 765 * during commit to protect us from the relocation code 766 */ 767 struct mutex reloc_mutex; 768 769 struct list_head trans_list; 770 struct list_head dead_roots; 771 struct list_head caching_block_groups; 772 773 spinlock_t delayed_iput_lock; 774 struct list_head delayed_iputs; 775 atomic_t nr_delayed_iputs; 776 wait_queue_head_t delayed_iputs_wait; 777 778 atomic64_t tree_mod_seq; 779 780 /* this protects tree_mod_log and tree_mod_seq_list */ 781 rwlock_t tree_mod_log_lock; 782 struct rb_root tree_mod_log; 783 struct list_head tree_mod_seq_list; 784 785 atomic_t async_delalloc_pages; 786 787 /* 788 * this is used to protect the following list -- ordered_roots. 789 */ 790 spinlock_t ordered_root_lock; 791 792 /* 793 * all fs/file tree roots in which there are data=ordered extents 794 * pending writeback are added into this list. 795 * 796 * these can span multiple transactions and basically include 797 * every dirty data page that isn't from nodatacow 798 */ 799 struct list_head ordered_roots; 800 801 struct mutex delalloc_root_mutex; 802 spinlock_t delalloc_root_lock; 803 /* all fs/file tree roots that have delalloc inodes. */ 804 struct list_head delalloc_roots; 805 806 /* 807 * there is a pool of worker threads for checksumming during writes 808 * and a pool for checksumming after reads. This is because readers 809 * can run with FS locks held, and the writers may be waiting for 810 * those locks. We don't want ordering in the pending list to cause 811 * deadlocks, and so the two are serviced separately. 812 * 813 * A third pool does submit_bio to avoid deadlocking with the other 814 * two 815 */ 816 struct btrfs_workqueue *workers; 817 struct btrfs_workqueue *delalloc_workers; 818 struct btrfs_workqueue *flush_workers; 819 struct btrfs_workqueue *endio_workers; 820 struct btrfs_workqueue *endio_meta_workers; 821 struct btrfs_workqueue *endio_raid56_workers; 822 struct btrfs_workqueue *rmw_workers; 823 struct btrfs_workqueue *endio_meta_write_workers; 824 struct btrfs_workqueue *endio_write_workers; 825 struct btrfs_workqueue *endio_freespace_worker; 826 struct btrfs_workqueue *caching_workers; 827 828 /* 829 * fixup workers take dirty pages that didn't properly go through 830 * the cow mechanism and make them safe to write. It happens 831 * for the sys_munmap function call path 832 */ 833 struct btrfs_workqueue *fixup_workers; 834 struct btrfs_workqueue *delayed_workers; 835 836 struct task_struct *transaction_kthread; 837 struct task_struct *cleaner_kthread; 838 u32 thread_pool_size; 839 840 struct kobject *space_info_kobj; 841 struct kobject *qgroups_kobj; 842 843 /* used to keep from writing metadata until there is a nice batch */ 844 struct percpu_counter dirty_metadata_bytes; 845 struct percpu_counter delalloc_bytes; 846 struct percpu_counter ordered_bytes; 847 s32 dirty_metadata_batch; 848 s32 delalloc_batch; 849 850 struct list_head dirty_cowonly_roots; 851 852 struct btrfs_fs_devices *fs_devices; 853 854 /* 855 * The space_info list is effectively read only after initial 856 * setup. It is populated at mount time and cleaned up after 857 * all block groups are removed. RCU is used to protect it. 858 */ 859 struct list_head space_info; 860 861 struct btrfs_space_info *data_sinfo; 862 863 struct reloc_control *reloc_ctl; 864 865 /* data_alloc_cluster is only used in ssd_spread mode */ 866 struct btrfs_free_cluster data_alloc_cluster; 867 868 /* all metadata allocations go through this cluster */ 869 struct btrfs_free_cluster meta_alloc_cluster; 870 871 /* auto defrag inodes go here */ 872 spinlock_t defrag_inodes_lock; 873 struct rb_root defrag_inodes; 874 atomic_t defrag_running; 875 876 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 877 seqlock_t profiles_lock; 878 /* 879 * these three are in extended format (availability of single 880 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 881 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 882 */ 883 u64 avail_data_alloc_bits; 884 u64 avail_metadata_alloc_bits; 885 u64 avail_system_alloc_bits; 886 887 /* restriper state */ 888 spinlock_t balance_lock; 889 struct mutex balance_mutex; 890 atomic_t balance_pause_req; 891 atomic_t balance_cancel_req; 892 struct btrfs_balance_control *balance_ctl; 893 wait_queue_head_t balance_wait_q; 894 895 /* Cancellation requests for chunk relocation */ 896 atomic_t reloc_cancel_req; 897 898 u32 data_chunk_allocations; 899 u32 metadata_ratio; 900 901 void *bdev_holder; 902 903 /* private scrub information */ 904 struct mutex scrub_lock; 905 atomic_t scrubs_running; 906 atomic_t scrub_pause_req; 907 atomic_t scrubs_paused; 908 atomic_t scrub_cancel_req; 909 wait_queue_head_t scrub_pause_wait; 910 /* 911 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 912 * running. 913 */ 914 refcount_t scrub_workers_refcnt; 915 struct btrfs_workqueue *scrub_workers; 916 struct btrfs_workqueue *scrub_wr_completion_workers; 917 struct btrfs_workqueue *scrub_parity_workers; 918 struct btrfs_subpage_info *subpage_info; 919 920 struct btrfs_discard_ctl discard_ctl; 921 922 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 923 u32 check_integrity_print_mask; 924 #endif 925 /* is qgroup tracking in a consistent state? */ 926 u64 qgroup_flags; 927 928 /* holds configuration and tracking. Protected by qgroup_lock */ 929 struct rb_root qgroup_tree; 930 spinlock_t qgroup_lock; 931 932 /* 933 * used to avoid frequently calling ulist_alloc()/ulist_free() 934 * when doing qgroup accounting, it must be protected by qgroup_lock. 935 */ 936 struct ulist *qgroup_ulist; 937 938 /* 939 * Protect user change for quota operations. If a transaction is needed, 940 * it must be started before locking this lock. 941 */ 942 struct mutex qgroup_ioctl_lock; 943 944 /* list of dirty qgroups to be written at next commit */ 945 struct list_head dirty_qgroups; 946 947 /* used by qgroup for an efficient tree traversal */ 948 u64 qgroup_seq; 949 950 /* qgroup rescan items */ 951 struct mutex qgroup_rescan_lock; /* protects the progress item */ 952 struct btrfs_key qgroup_rescan_progress; 953 struct btrfs_workqueue *qgroup_rescan_workers; 954 struct completion qgroup_rescan_completion; 955 struct btrfs_work qgroup_rescan_work; 956 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 957 958 /* filesystem state */ 959 unsigned long fs_state; 960 961 struct btrfs_delayed_root *delayed_root; 962 963 /* Extent buffer radix tree */ 964 spinlock_t buffer_lock; 965 /* Entries are eb->start / sectorsize */ 966 struct radix_tree_root buffer_radix; 967 968 /* next backup root to be overwritten */ 969 int backup_root_index; 970 971 /* device replace state */ 972 struct btrfs_dev_replace dev_replace; 973 974 struct semaphore uuid_tree_rescan_sem; 975 976 /* Used to reclaim the metadata space in the background. */ 977 struct work_struct async_reclaim_work; 978 struct work_struct async_data_reclaim_work; 979 struct work_struct preempt_reclaim_work; 980 981 /* Reclaim partially filled block groups in the background */ 982 struct work_struct reclaim_bgs_work; 983 struct list_head reclaim_bgs; 984 int bg_reclaim_threshold; 985 986 spinlock_t unused_bgs_lock; 987 struct list_head unused_bgs; 988 struct mutex unused_bg_unpin_mutex; 989 /* Protect block groups that are going to be deleted */ 990 struct mutex reclaim_bgs_lock; 991 992 /* Cached block sizes */ 993 u32 nodesize; 994 u32 sectorsize; 995 /* ilog2 of sectorsize, use to avoid 64bit division */ 996 u32 sectorsize_bits; 997 u32 csum_size; 998 u32 csums_per_leaf; 999 u32 stripesize; 1000 1001 /* Block groups and devices containing active swapfiles. */ 1002 spinlock_t swapfile_pins_lock; 1003 struct rb_root swapfile_pins; 1004 1005 struct crypto_shash *csum_shash; 1006 1007 /* Type of exclusive operation running, protected by super_lock */ 1008 enum btrfs_exclusive_operation exclusive_operation; 1009 1010 /* 1011 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1012 * if the mode is enabled 1013 */ 1014 union { 1015 u64 zone_size; 1016 u64 zoned; 1017 }; 1018 1019 struct mutex zoned_meta_io_lock; 1020 spinlock_t treelog_bg_lock; 1021 u64 treelog_bg; 1022 1023 /* 1024 * Start of the dedicated data relocation block group, protected by 1025 * relocation_bg_lock. 1026 */ 1027 spinlock_t relocation_bg_lock; 1028 u64 data_reloc_bg; 1029 1030 spinlock_t zone_active_bgs_lock; 1031 struct list_head zone_active_bgs; 1032 1033 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1034 spinlock_t ref_verify_lock; 1035 struct rb_root block_tree; 1036 #endif 1037 1038 #ifdef CONFIG_BTRFS_DEBUG 1039 struct kobject *debug_kobj; 1040 struct kobject *discard_debug_kobj; 1041 struct list_head allocated_roots; 1042 1043 spinlock_t eb_leak_lock; 1044 struct list_head allocated_ebs; 1045 #endif 1046 }; 1047 1048 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1049 { 1050 return sb->s_fs_info; 1051 } 1052 1053 /* 1054 * The state of btrfs root 1055 */ 1056 enum { 1057 /* 1058 * btrfs_record_root_in_trans is a multi-step process, and it can race 1059 * with the balancing code. But the race is very small, and only the 1060 * first time the root is added to each transaction. So IN_TRANS_SETUP 1061 * is used to tell us when more checks are required 1062 */ 1063 BTRFS_ROOT_IN_TRANS_SETUP, 1064 1065 /* 1066 * Set if tree blocks of this root can be shared by other roots. 1067 * Only subvolume trees and their reloc trees have this bit set. 1068 * Conflicts with TRACK_DIRTY bit. 1069 * 1070 * This affects two things: 1071 * 1072 * - How balance works 1073 * For shareable roots, we need to use reloc tree and do path 1074 * replacement for balance, and need various pre/post hooks for 1075 * snapshot creation to handle them. 1076 * 1077 * While for non-shareable trees, we just simply do a tree search 1078 * with COW. 1079 * 1080 * - How dirty roots are tracked 1081 * For shareable roots, btrfs_record_root_in_trans() is needed to 1082 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1083 * don't need to set this manually. 1084 */ 1085 BTRFS_ROOT_SHAREABLE, 1086 BTRFS_ROOT_TRACK_DIRTY, 1087 BTRFS_ROOT_IN_RADIX, 1088 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1089 BTRFS_ROOT_DEFRAG_RUNNING, 1090 BTRFS_ROOT_FORCE_COW, 1091 BTRFS_ROOT_MULTI_LOG_TASKS, 1092 BTRFS_ROOT_DIRTY, 1093 BTRFS_ROOT_DELETING, 1094 1095 /* 1096 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1097 * 1098 * Set for the subvolume tree owning the reloc tree. 1099 */ 1100 BTRFS_ROOT_DEAD_RELOC_TREE, 1101 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1102 BTRFS_ROOT_DEAD_TREE, 1103 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1104 BTRFS_ROOT_HAS_LOG_TREE, 1105 /* Qgroup flushing is in progress */ 1106 BTRFS_ROOT_QGROUP_FLUSHING, 1107 /* We started the orphan cleanup for this root. */ 1108 BTRFS_ROOT_ORPHAN_CLEANUP, 1109 }; 1110 1111 /* 1112 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1113 * code. For detail check comment in fs/btrfs/qgroup.c. 1114 */ 1115 struct btrfs_qgroup_swapped_blocks { 1116 spinlock_t lock; 1117 /* RM_EMPTY_ROOT() of above blocks[] */ 1118 bool swapped; 1119 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1120 }; 1121 1122 /* 1123 * in ram representation of the tree. extent_root is used for all allocations 1124 * and for the extent tree extent_root root. 1125 */ 1126 struct btrfs_root { 1127 struct rb_node rb_node; 1128 1129 struct extent_buffer *node; 1130 1131 struct extent_buffer *commit_root; 1132 struct btrfs_root *log_root; 1133 struct btrfs_root *reloc_root; 1134 1135 unsigned long state; 1136 struct btrfs_root_item root_item; 1137 struct btrfs_key root_key; 1138 struct btrfs_fs_info *fs_info; 1139 struct extent_io_tree dirty_log_pages; 1140 1141 struct mutex objectid_mutex; 1142 1143 spinlock_t accounting_lock; 1144 struct btrfs_block_rsv *block_rsv; 1145 1146 struct mutex log_mutex; 1147 wait_queue_head_t log_writer_wait; 1148 wait_queue_head_t log_commit_wait[2]; 1149 struct list_head log_ctxs[2]; 1150 /* Used only for log trees of subvolumes, not for the log root tree */ 1151 atomic_t log_writers; 1152 atomic_t log_commit[2]; 1153 /* Used only for log trees of subvolumes, not for the log root tree */ 1154 atomic_t log_batch; 1155 int log_transid; 1156 /* No matter the commit succeeds or not*/ 1157 int log_transid_committed; 1158 /* Just be updated when the commit succeeds. */ 1159 int last_log_commit; 1160 pid_t log_start_pid; 1161 1162 u64 last_trans; 1163 1164 u32 type; 1165 1166 u64 free_objectid; 1167 1168 struct btrfs_key defrag_progress; 1169 struct btrfs_key defrag_max; 1170 1171 /* The dirty list is only used by non-shareable roots */ 1172 struct list_head dirty_list; 1173 1174 struct list_head root_list; 1175 1176 spinlock_t log_extents_lock[2]; 1177 struct list_head logged_list[2]; 1178 1179 spinlock_t inode_lock; 1180 /* red-black tree that keeps track of in-memory inodes */ 1181 struct rb_root inode_tree; 1182 1183 /* 1184 * radix tree that keeps track of delayed nodes of every inode, 1185 * protected by inode_lock 1186 */ 1187 struct radix_tree_root delayed_nodes_tree; 1188 /* 1189 * right now this just gets used so that a root has its own devid 1190 * for stat. It may be used for more later 1191 */ 1192 dev_t anon_dev; 1193 1194 spinlock_t root_item_lock; 1195 refcount_t refs; 1196 1197 struct mutex delalloc_mutex; 1198 spinlock_t delalloc_lock; 1199 /* 1200 * all of the inodes that have delalloc bytes. It is possible for 1201 * this list to be empty even when there is still dirty data=ordered 1202 * extents waiting to finish IO. 1203 */ 1204 struct list_head delalloc_inodes; 1205 struct list_head delalloc_root; 1206 u64 nr_delalloc_inodes; 1207 1208 struct mutex ordered_extent_mutex; 1209 /* 1210 * this is used by the balancing code to wait for all the pending 1211 * ordered extents 1212 */ 1213 spinlock_t ordered_extent_lock; 1214 1215 /* 1216 * all of the data=ordered extents pending writeback 1217 * these can span multiple transactions and basically include 1218 * every dirty data page that isn't from nodatacow 1219 */ 1220 struct list_head ordered_extents; 1221 struct list_head ordered_root; 1222 u64 nr_ordered_extents; 1223 1224 /* 1225 * Not empty if this subvolume root has gone through tree block swap 1226 * (relocation) 1227 * 1228 * Will be used by reloc_control::dirty_subvol_roots. 1229 */ 1230 struct list_head reloc_dirty_list; 1231 1232 /* 1233 * Number of currently running SEND ioctls to prevent 1234 * manipulation with the read-only status via SUBVOL_SETFLAGS 1235 */ 1236 int send_in_progress; 1237 /* 1238 * Number of currently running deduplication operations that have a 1239 * destination inode belonging to this root. Protected by the lock 1240 * root_item_lock. 1241 */ 1242 int dedupe_in_progress; 1243 /* For exclusion of snapshot creation and nocow writes */ 1244 struct btrfs_drew_lock snapshot_lock; 1245 1246 atomic_t snapshot_force_cow; 1247 1248 /* For qgroup metadata reserved space */ 1249 spinlock_t qgroup_meta_rsv_lock; 1250 u64 qgroup_meta_rsv_pertrans; 1251 u64 qgroup_meta_rsv_prealloc; 1252 wait_queue_head_t qgroup_flush_wait; 1253 1254 /* Number of active swapfiles */ 1255 atomic_t nr_swapfiles; 1256 1257 /* Record pairs of swapped blocks for qgroup */ 1258 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1259 1260 /* Used only by log trees, when logging csum items */ 1261 struct extent_io_tree log_csum_range; 1262 1263 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1264 u64 alloc_bytenr; 1265 #endif 1266 1267 #ifdef CONFIG_BTRFS_DEBUG 1268 struct list_head leak_list; 1269 #endif 1270 }; 1271 1272 /* 1273 * Structure that conveys information about an extent that is going to replace 1274 * all the extents in a file range. 1275 */ 1276 struct btrfs_replace_extent_info { 1277 u64 disk_offset; 1278 u64 disk_len; 1279 u64 data_offset; 1280 u64 data_len; 1281 u64 file_offset; 1282 /* Pointer to a file extent item of type regular or prealloc. */ 1283 char *extent_buf; 1284 /* 1285 * Set to true when attempting to replace a file range with a new extent 1286 * described by this structure, set to false when attempting to clone an 1287 * existing extent into a file range. 1288 */ 1289 bool is_new_extent; 1290 /* Meaningful only if is_new_extent is true. */ 1291 int qgroup_reserved; 1292 /* 1293 * Meaningful only if is_new_extent is true. 1294 * Used to track how many extent items we have already inserted in a 1295 * subvolume tree that refer to the extent described by this structure, 1296 * so that we know when to create a new delayed ref or update an existing 1297 * one. 1298 */ 1299 int insertions; 1300 }; 1301 1302 /* Arguments for btrfs_drop_extents() */ 1303 struct btrfs_drop_extents_args { 1304 /* Input parameters */ 1305 1306 /* 1307 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1308 * If 'replace_extent' is true, this must not be NULL. Also the path 1309 * is always released except if 'replace_extent' is true and 1310 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1311 * the path is kept locked. 1312 */ 1313 struct btrfs_path *path; 1314 /* Start offset of the range to drop extents from */ 1315 u64 start; 1316 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1317 u64 end; 1318 /* If true drop all the extent maps in the range */ 1319 bool drop_cache; 1320 /* 1321 * If true it means we want to insert a new extent after dropping all 1322 * the extents in the range. If this is true, the 'extent_item_size' 1323 * parameter must be set as well and the 'extent_inserted' field will 1324 * be set to true by btrfs_drop_extents() if it could insert the new 1325 * extent. 1326 * Note: when this is set to true the path must not be NULL. 1327 */ 1328 bool replace_extent; 1329 /* 1330 * Used if 'replace_extent' is true. Size of the file extent item to 1331 * insert after dropping all existing extents in the range 1332 */ 1333 u32 extent_item_size; 1334 1335 /* Output parameters */ 1336 1337 /* 1338 * Set to the minimum between the input parameter 'end' and the end 1339 * (exclusive, last byte + 1) of the last dropped extent. This is always 1340 * set even if btrfs_drop_extents() returns an error. 1341 */ 1342 u64 drop_end; 1343 /* 1344 * The number of allocated bytes found in the range. This can be smaller 1345 * than the range's length when there are holes in the range. 1346 */ 1347 u64 bytes_found; 1348 /* 1349 * Only set if 'replace_extent' is true. Set to true if we were able 1350 * to insert a replacement extent after dropping all extents in the 1351 * range, otherwise set to false by btrfs_drop_extents(). 1352 * Also, if btrfs_drop_extents() has set this to true it means it 1353 * returned with the path locked, otherwise if it has set this to 1354 * false it has returned with the path released. 1355 */ 1356 bool extent_inserted; 1357 }; 1358 1359 struct btrfs_file_private { 1360 void *filldir_buf; 1361 }; 1362 1363 1364 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1365 { 1366 1367 return info->nodesize - sizeof(struct btrfs_header); 1368 } 1369 1370 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1371 1372 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1373 { 1374 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1375 } 1376 1377 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1378 { 1379 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1380 } 1381 1382 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1383 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1384 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1385 { 1386 return BTRFS_MAX_ITEM_SIZE(info) - 1387 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1388 } 1389 1390 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1391 { 1392 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1393 } 1394 1395 /* 1396 * Flags for mount options. 1397 * 1398 * Note: don't forget to add new options to btrfs_show_options() 1399 */ 1400 enum { 1401 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1402 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1403 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1404 BTRFS_MOUNT_SSD = (1UL << 3), 1405 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1406 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1407 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1408 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1409 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1410 BTRFS_MOUNT_NOSSD = (1UL << 9), 1411 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1412 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1413 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1414 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1415 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1416 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1417 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1418 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1419 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1420 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1421 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1422 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1423 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1424 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1425 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1426 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1427 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1428 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1429 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1430 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1431 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1432 }; 1433 1434 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1435 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1436 1437 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1438 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1439 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1440 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1441 BTRFS_MOUNT_##opt) 1442 1443 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1444 do { \ 1445 if (!btrfs_test_opt(fs_info, opt)) \ 1446 btrfs_info(fs_info, fmt, ##args); \ 1447 btrfs_set_opt(fs_info->mount_opt, opt); \ 1448 } while (0) 1449 1450 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1451 do { \ 1452 if (btrfs_test_opt(fs_info, opt)) \ 1453 btrfs_info(fs_info, fmt, ##args); \ 1454 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1455 } while (0) 1456 1457 /* 1458 * Requests for changes that need to be done during transaction commit. 1459 * 1460 * Internal mount options that are used for special handling of the real 1461 * mount options (eg. cannot be set during remount and have to be set during 1462 * transaction commit) 1463 */ 1464 1465 #define BTRFS_PENDING_COMMIT (0) 1466 1467 #define btrfs_test_pending(info, opt) \ 1468 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1469 #define btrfs_set_pending(info, opt) \ 1470 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1471 #define btrfs_clear_pending(info, opt) \ 1472 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1473 1474 /* 1475 * Helpers for setting pending mount option changes. 1476 * 1477 * Expects corresponding macros 1478 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1479 */ 1480 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1481 do { \ 1482 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1483 btrfs_info((info), fmt, ##args); \ 1484 btrfs_set_pending((info), SET_##opt); \ 1485 btrfs_clear_pending((info), CLEAR_##opt); \ 1486 } \ 1487 } while(0) 1488 1489 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1490 do { \ 1491 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1492 btrfs_info((info), fmt, ##args); \ 1493 btrfs_set_pending((info), CLEAR_##opt); \ 1494 btrfs_clear_pending((info), SET_##opt); \ 1495 } \ 1496 } while(0) 1497 1498 /* 1499 * Inode flags 1500 */ 1501 #define BTRFS_INODE_NODATASUM (1U << 0) 1502 #define BTRFS_INODE_NODATACOW (1U << 1) 1503 #define BTRFS_INODE_READONLY (1U << 2) 1504 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1505 #define BTRFS_INODE_PREALLOC (1U << 4) 1506 #define BTRFS_INODE_SYNC (1U << 5) 1507 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1508 #define BTRFS_INODE_APPEND (1U << 7) 1509 #define BTRFS_INODE_NODUMP (1U << 8) 1510 #define BTRFS_INODE_NOATIME (1U << 9) 1511 #define BTRFS_INODE_DIRSYNC (1U << 10) 1512 #define BTRFS_INODE_COMPRESS (1U << 11) 1513 1514 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1515 1516 #define BTRFS_INODE_FLAG_MASK \ 1517 (BTRFS_INODE_NODATASUM | \ 1518 BTRFS_INODE_NODATACOW | \ 1519 BTRFS_INODE_READONLY | \ 1520 BTRFS_INODE_NOCOMPRESS | \ 1521 BTRFS_INODE_PREALLOC | \ 1522 BTRFS_INODE_SYNC | \ 1523 BTRFS_INODE_IMMUTABLE | \ 1524 BTRFS_INODE_APPEND | \ 1525 BTRFS_INODE_NODUMP | \ 1526 BTRFS_INODE_NOATIME | \ 1527 BTRFS_INODE_DIRSYNC | \ 1528 BTRFS_INODE_COMPRESS | \ 1529 BTRFS_INODE_ROOT_ITEM_INIT) 1530 1531 #define BTRFS_INODE_RO_VERITY (1U << 0) 1532 1533 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1534 1535 struct btrfs_map_token { 1536 struct extent_buffer *eb; 1537 char *kaddr; 1538 unsigned long offset; 1539 }; 1540 1541 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1542 ((bytes) >> (fs_info)->sectorsize_bits) 1543 1544 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1545 struct extent_buffer *eb) 1546 { 1547 token->eb = eb; 1548 token->kaddr = page_address(eb->pages[0]); 1549 token->offset = 0; 1550 } 1551 1552 /* some macros to generate set/get functions for the struct fields. This 1553 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1554 * one for u8: 1555 */ 1556 #define le8_to_cpu(v) (v) 1557 #define cpu_to_le8(v) (v) 1558 #define __le8 u8 1559 1560 static inline u8 get_unaligned_le8(const void *p) 1561 { 1562 return *(u8 *)p; 1563 } 1564 1565 static inline void put_unaligned_le8(u8 val, void *p) 1566 { 1567 *(u8 *)p = val; 1568 } 1569 1570 #define read_eb_member(eb, ptr, type, member, result) (\ 1571 read_extent_buffer(eb, (char *)(result), \ 1572 ((unsigned long)(ptr)) + \ 1573 offsetof(type, member), \ 1574 sizeof(((type *)0)->member))) 1575 1576 #define write_eb_member(eb, ptr, type, member, result) (\ 1577 write_extent_buffer(eb, (char *)(result), \ 1578 ((unsigned long)(ptr)) + \ 1579 offsetof(type, member), \ 1580 sizeof(((type *)0)->member))) 1581 1582 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1583 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1584 const void *ptr, unsigned long off); \ 1585 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1586 const void *ptr, unsigned long off, \ 1587 u##bits val); \ 1588 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1589 const void *ptr, unsigned long off); \ 1590 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1591 unsigned long off, u##bits val); 1592 1593 DECLARE_BTRFS_SETGET_BITS(8) 1594 DECLARE_BTRFS_SETGET_BITS(16) 1595 DECLARE_BTRFS_SETGET_BITS(32) 1596 DECLARE_BTRFS_SETGET_BITS(64) 1597 1598 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1599 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1600 const type *s) \ 1601 { \ 1602 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1603 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1604 } \ 1605 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1606 u##bits val) \ 1607 { \ 1608 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1609 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1610 } \ 1611 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1612 const type *s) \ 1613 { \ 1614 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1615 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1616 } \ 1617 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1618 type *s, u##bits val) \ 1619 { \ 1620 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1621 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1622 } 1623 1624 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1625 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1626 { \ 1627 const type *p = page_address(eb->pages[0]) + \ 1628 offset_in_page(eb->start); \ 1629 return get_unaligned_le##bits(&p->member); \ 1630 } \ 1631 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1632 u##bits val) \ 1633 { \ 1634 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1635 put_unaligned_le##bits(val, &p->member); \ 1636 } 1637 1638 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1639 static inline u##bits btrfs_##name(const type *s) \ 1640 { \ 1641 return get_unaligned_le##bits(&s->member); \ 1642 } \ 1643 static inline void btrfs_set_##name(type *s, u##bits val) \ 1644 { \ 1645 put_unaligned_le##bits(val, &s->member); \ 1646 } 1647 1648 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1649 struct btrfs_dev_item *s) 1650 { 1651 BUILD_BUG_ON(sizeof(u64) != 1652 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1653 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1654 total_bytes)); 1655 } 1656 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1657 struct btrfs_dev_item *s, 1658 u64 val) 1659 { 1660 BUILD_BUG_ON(sizeof(u64) != 1661 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1662 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1663 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1664 } 1665 1666 1667 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1668 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1669 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1670 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1671 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1672 start_offset, 64); 1673 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1674 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1675 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1676 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1677 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1678 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1679 1680 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1681 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1682 total_bytes, 64); 1683 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1684 bytes_used, 64); 1685 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1686 io_align, 32); 1687 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1688 io_width, 32); 1689 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1690 sector_size, 32); 1691 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1692 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1693 dev_group, 32); 1694 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1695 seek_speed, 8); 1696 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1697 bandwidth, 8); 1698 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1699 generation, 64); 1700 1701 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1702 { 1703 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1704 } 1705 1706 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1707 { 1708 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1709 } 1710 1711 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1712 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1713 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1714 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1715 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1716 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1717 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1718 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1719 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1720 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1721 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1722 1723 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1724 { 1725 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1726 } 1727 1728 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1729 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1730 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1731 stripe_len, 64); 1732 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1733 io_align, 32); 1734 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1735 io_width, 32); 1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1737 sector_size, 32); 1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1739 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1740 num_stripes, 16); 1741 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1742 sub_stripes, 16); 1743 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1744 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1745 1746 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1747 int nr) 1748 { 1749 unsigned long offset = (unsigned long)c; 1750 offset += offsetof(struct btrfs_chunk, stripe); 1751 offset += nr * sizeof(struct btrfs_stripe); 1752 return (struct btrfs_stripe *)offset; 1753 } 1754 1755 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1756 { 1757 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1758 } 1759 1760 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1761 struct btrfs_chunk *c, int nr) 1762 { 1763 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1764 } 1765 1766 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1767 struct btrfs_chunk *c, int nr) 1768 { 1769 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1770 } 1771 1772 /* struct btrfs_block_group_item */ 1773 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1774 used, 64); 1775 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1776 used, 64); 1777 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1778 struct btrfs_block_group_item, chunk_objectid, 64); 1779 1780 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1781 struct btrfs_block_group_item, chunk_objectid, 64); 1782 BTRFS_SETGET_FUNCS(block_group_flags, 1783 struct btrfs_block_group_item, flags, 64); 1784 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1785 struct btrfs_block_group_item, flags, 64); 1786 1787 /* struct btrfs_free_space_info */ 1788 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1789 extent_count, 32); 1790 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1791 1792 /* struct btrfs_inode_ref */ 1793 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1794 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1795 1796 /* struct btrfs_inode_extref */ 1797 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1798 parent_objectid, 64); 1799 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1800 name_len, 16); 1801 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1802 1803 /* struct btrfs_inode_item */ 1804 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1805 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1806 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1807 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1808 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1809 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1810 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1811 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1812 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1813 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1814 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1815 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1816 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1817 generation, 64); 1818 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1819 sequence, 64); 1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1821 transid, 64); 1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1823 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1824 nbytes, 64); 1825 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1826 block_group, 64); 1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1830 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1833 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1834 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1835 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1836 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1837 1838 /* struct btrfs_dev_extent */ 1839 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1840 chunk_tree, 64); 1841 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1842 chunk_objectid, 64); 1843 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1844 chunk_offset, 64); 1845 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1846 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1847 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1848 generation, 64); 1849 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1850 1851 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1852 1853 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1854 struct btrfs_tree_block_info *item, 1855 struct btrfs_disk_key *key) 1856 { 1857 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1858 } 1859 1860 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1861 struct btrfs_tree_block_info *item, 1862 struct btrfs_disk_key *key) 1863 { 1864 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1865 } 1866 1867 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1868 root, 64); 1869 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1870 objectid, 64); 1871 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1872 offset, 64); 1873 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1874 count, 32); 1875 1876 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1877 count, 32); 1878 1879 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1880 type, 8); 1881 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1882 offset, 64); 1883 1884 static inline u32 btrfs_extent_inline_ref_size(int type) 1885 { 1886 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1887 type == BTRFS_SHARED_BLOCK_REF_KEY) 1888 return sizeof(struct btrfs_extent_inline_ref); 1889 if (type == BTRFS_SHARED_DATA_REF_KEY) 1890 return sizeof(struct btrfs_shared_data_ref) + 1891 sizeof(struct btrfs_extent_inline_ref); 1892 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1893 return sizeof(struct btrfs_extent_data_ref) + 1894 offsetof(struct btrfs_extent_inline_ref, offset); 1895 return 0; 1896 } 1897 1898 /* struct btrfs_node */ 1899 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1900 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1901 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1902 blockptr, 64); 1903 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1904 generation, 64); 1905 1906 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1907 { 1908 unsigned long ptr; 1909 ptr = offsetof(struct btrfs_node, ptrs) + 1910 sizeof(struct btrfs_key_ptr) * nr; 1911 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1912 } 1913 1914 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1915 int nr, u64 val) 1916 { 1917 unsigned long ptr; 1918 ptr = offsetof(struct btrfs_node, ptrs) + 1919 sizeof(struct btrfs_key_ptr) * nr; 1920 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1921 } 1922 1923 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1924 { 1925 unsigned long ptr; 1926 ptr = offsetof(struct btrfs_node, ptrs) + 1927 sizeof(struct btrfs_key_ptr) * nr; 1928 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1929 } 1930 1931 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1932 int nr, u64 val) 1933 { 1934 unsigned long ptr; 1935 ptr = offsetof(struct btrfs_node, ptrs) + 1936 sizeof(struct btrfs_key_ptr) * nr; 1937 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1938 } 1939 1940 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1941 { 1942 return offsetof(struct btrfs_node, ptrs) + 1943 sizeof(struct btrfs_key_ptr) * nr; 1944 } 1945 1946 void btrfs_node_key(const struct extent_buffer *eb, 1947 struct btrfs_disk_key *disk_key, int nr); 1948 1949 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1950 struct btrfs_disk_key *disk_key, int nr) 1951 { 1952 unsigned long ptr; 1953 ptr = btrfs_node_key_ptr_offset(nr); 1954 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1955 struct btrfs_key_ptr, key, disk_key); 1956 } 1957 1958 /* struct btrfs_item */ 1959 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 1960 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 1961 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1962 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1963 1964 static inline unsigned long btrfs_item_nr_offset(int nr) 1965 { 1966 return offsetof(struct btrfs_leaf, items) + 1967 sizeof(struct btrfs_item) * nr; 1968 } 1969 1970 static inline struct btrfs_item *btrfs_item_nr(int nr) 1971 { 1972 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1973 } 1974 1975 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 1976 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 1977 int slot) \ 1978 { \ 1979 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 1980 } \ 1981 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 1982 int slot, u32 val) \ 1983 { \ 1984 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 1985 } \ 1986 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 1987 int slot) \ 1988 { \ 1989 struct btrfs_item *item = btrfs_item_nr(slot); \ 1990 return btrfs_token_raw_item_##member(token, item); \ 1991 } \ 1992 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 1993 int slot, u32 val) \ 1994 { \ 1995 struct btrfs_item *item = btrfs_item_nr(slot); \ 1996 btrfs_set_token_raw_item_##member(token, item, val); \ 1997 } 1998 1999 BTRFS_ITEM_SETGET_FUNCS(offset) 2000 BTRFS_ITEM_SETGET_FUNCS(size); 2001 2002 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2003 { 2004 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2005 } 2006 2007 static inline void btrfs_item_key(const struct extent_buffer *eb, 2008 struct btrfs_disk_key *disk_key, int nr) 2009 { 2010 struct btrfs_item *item = btrfs_item_nr(nr); 2011 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2012 } 2013 2014 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2015 struct btrfs_disk_key *disk_key, int nr) 2016 { 2017 struct btrfs_item *item = btrfs_item_nr(nr); 2018 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2019 } 2020 2021 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2022 2023 /* 2024 * struct btrfs_root_ref 2025 */ 2026 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2027 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2028 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2029 2030 /* struct btrfs_dir_item */ 2031 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2032 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2033 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2034 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2035 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2036 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2037 data_len, 16); 2038 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2039 name_len, 16); 2040 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2041 transid, 64); 2042 2043 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2044 const struct btrfs_dir_item *item, 2045 struct btrfs_disk_key *key) 2046 { 2047 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2048 } 2049 2050 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2051 struct btrfs_dir_item *item, 2052 const struct btrfs_disk_key *key) 2053 { 2054 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2055 } 2056 2057 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2058 num_entries, 64); 2059 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2060 num_bitmaps, 64); 2061 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2062 generation, 64); 2063 2064 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2065 const struct btrfs_free_space_header *h, 2066 struct btrfs_disk_key *key) 2067 { 2068 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2069 } 2070 2071 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2072 struct btrfs_free_space_header *h, 2073 const struct btrfs_disk_key *key) 2074 { 2075 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2076 } 2077 2078 /* struct btrfs_disk_key */ 2079 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2080 objectid, 64); 2081 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2082 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2083 2084 #ifdef __LITTLE_ENDIAN 2085 2086 /* 2087 * Optimized helpers for little-endian architectures where CPU and on-disk 2088 * structures have the same endianness and we can skip conversions. 2089 */ 2090 2091 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2092 const struct btrfs_disk_key *disk_key) 2093 { 2094 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2095 } 2096 2097 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2098 const struct btrfs_key *cpu_key) 2099 { 2100 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2101 } 2102 2103 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2104 struct btrfs_key *cpu_key, int nr) 2105 { 2106 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2107 2108 btrfs_node_key(eb, disk_key, nr); 2109 } 2110 2111 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2112 struct btrfs_key *cpu_key, int nr) 2113 { 2114 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2115 2116 btrfs_item_key(eb, disk_key, nr); 2117 } 2118 2119 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2120 const struct btrfs_dir_item *item, 2121 struct btrfs_key *cpu_key) 2122 { 2123 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2124 2125 btrfs_dir_item_key(eb, item, disk_key); 2126 } 2127 2128 #else 2129 2130 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2131 const struct btrfs_disk_key *disk) 2132 { 2133 cpu->offset = le64_to_cpu(disk->offset); 2134 cpu->type = disk->type; 2135 cpu->objectid = le64_to_cpu(disk->objectid); 2136 } 2137 2138 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2139 const struct btrfs_key *cpu) 2140 { 2141 disk->offset = cpu_to_le64(cpu->offset); 2142 disk->type = cpu->type; 2143 disk->objectid = cpu_to_le64(cpu->objectid); 2144 } 2145 2146 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2147 struct btrfs_key *key, int nr) 2148 { 2149 struct btrfs_disk_key disk_key; 2150 btrfs_node_key(eb, &disk_key, nr); 2151 btrfs_disk_key_to_cpu(key, &disk_key); 2152 } 2153 2154 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2155 struct btrfs_key *key, int nr) 2156 { 2157 struct btrfs_disk_key disk_key; 2158 btrfs_item_key(eb, &disk_key, nr); 2159 btrfs_disk_key_to_cpu(key, &disk_key); 2160 } 2161 2162 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2163 const struct btrfs_dir_item *item, 2164 struct btrfs_key *key) 2165 { 2166 struct btrfs_disk_key disk_key; 2167 btrfs_dir_item_key(eb, item, &disk_key); 2168 btrfs_disk_key_to_cpu(key, &disk_key); 2169 } 2170 2171 #endif 2172 2173 /* struct btrfs_header */ 2174 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2175 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2176 generation, 64); 2177 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2178 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2179 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2180 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2181 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2182 generation, 64); 2183 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2184 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2185 nritems, 32); 2186 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2187 2188 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2189 { 2190 return (btrfs_header_flags(eb) & flag) == flag; 2191 } 2192 2193 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2194 { 2195 u64 flags = btrfs_header_flags(eb); 2196 btrfs_set_header_flags(eb, flags | flag); 2197 } 2198 2199 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2200 { 2201 u64 flags = btrfs_header_flags(eb); 2202 btrfs_set_header_flags(eb, flags & ~flag); 2203 } 2204 2205 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2206 { 2207 u64 flags = btrfs_header_flags(eb); 2208 return flags >> BTRFS_BACKREF_REV_SHIFT; 2209 } 2210 2211 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2212 int rev) 2213 { 2214 u64 flags = btrfs_header_flags(eb); 2215 flags &= ~BTRFS_BACKREF_REV_MASK; 2216 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2217 btrfs_set_header_flags(eb, flags); 2218 } 2219 2220 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2221 { 2222 return btrfs_header_level(eb) == 0; 2223 } 2224 2225 /* struct btrfs_root_item */ 2226 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2227 generation, 64); 2228 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2229 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2230 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2231 2232 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2233 generation, 64); 2234 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2235 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2236 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2237 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2238 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2239 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2240 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2241 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2242 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2243 last_snapshot, 64); 2244 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2245 generation_v2, 64); 2246 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2247 ctransid, 64); 2248 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2249 otransid, 64); 2250 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2251 stransid, 64); 2252 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2253 rtransid, 64); 2254 2255 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2256 { 2257 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2258 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2259 } 2260 2261 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2262 { 2263 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2264 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2265 } 2266 2267 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2268 { 2269 return root->root_key.objectid; 2270 } 2271 2272 /* struct btrfs_root_backup */ 2273 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2274 tree_root, 64); 2275 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2276 tree_root_gen, 64); 2277 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2278 tree_root_level, 8); 2279 2280 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2281 chunk_root, 64); 2282 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2283 chunk_root_gen, 64); 2284 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2285 chunk_root_level, 8); 2286 2287 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2288 extent_root, 64); 2289 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2290 extent_root_gen, 64); 2291 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2292 extent_root_level, 8); 2293 2294 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2295 fs_root, 64); 2296 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2297 fs_root_gen, 64); 2298 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2299 fs_root_level, 8); 2300 2301 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2302 dev_root, 64); 2303 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2304 dev_root_gen, 64); 2305 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2306 dev_root_level, 8); 2307 2308 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2309 csum_root, 64); 2310 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2311 csum_root_gen, 64); 2312 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2313 csum_root_level, 8); 2314 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2315 total_bytes, 64); 2316 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2317 bytes_used, 64); 2318 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2319 num_devices, 64); 2320 2321 /* struct btrfs_balance_item */ 2322 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2323 2324 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2325 const struct btrfs_balance_item *bi, 2326 struct btrfs_disk_balance_args *ba) 2327 { 2328 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2329 } 2330 2331 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2332 struct btrfs_balance_item *bi, 2333 const struct btrfs_disk_balance_args *ba) 2334 { 2335 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2336 } 2337 2338 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2339 const struct btrfs_balance_item *bi, 2340 struct btrfs_disk_balance_args *ba) 2341 { 2342 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2343 } 2344 2345 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2346 struct btrfs_balance_item *bi, 2347 const struct btrfs_disk_balance_args *ba) 2348 { 2349 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2350 } 2351 2352 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2353 const struct btrfs_balance_item *bi, 2354 struct btrfs_disk_balance_args *ba) 2355 { 2356 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2357 } 2358 2359 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2360 struct btrfs_balance_item *bi, 2361 const struct btrfs_disk_balance_args *ba) 2362 { 2363 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2364 } 2365 2366 static inline void 2367 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2368 const struct btrfs_disk_balance_args *disk) 2369 { 2370 memset(cpu, 0, sizeof(*cpu)); 2371 2372 cpu->profiles = le64_to_cpu(disk->profiles); 2373 cpu->usage = le64_to_cpu(disk->usage); 2374 cpu->devid = le64_to_cpu(disk->devid); 2375 cpu->pstart = le64_to_cpu(disk->pstart); 2376 cpu->pend = le64_to_cpu(disk->pend); 2377 cpu->vstart = le64_to_cpu(disk->vstart); 2378 cpu->vend = le64_to_cpu(disk->vend); 2379 cpu->target = le64_to_cpu(disk->target); 2380 cpu->flags = le64_to_cpu(disk->flags); 2381 cpu->limit = le64_to_cpu(disk->limit); 2382 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2383 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2384 } 2385 2386 static inline void 2387 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2388 const struct btrfs_balance_args *cpu) 2389 { 2390 memset(disk, 0, sizeof(*disk)); 2391 2392 disk->profiles = cpu_to_le64(cpu->profiles); 2393 disk->usage = cpu_to_le64(cpu->usage); 2394 disk->devid = cpu_to_le64(cpu->devid); 2395 disk->pstart = cpu_to_le64(cpu->pstart); 2396 disk->pend = cpu_to_le64(cpu->pend); 2397 disk->vstart = cpu_to_le64(cpu->vstart); 2398 disk->vend = cpu_to_le64(cpu->vend); 2399 disk->target = cpu_to_le64(cpu->target); 2400 disk->flags = cpu_to_le64(cpu->flags); 2401 disk->limit = cpu_to_le64(cpu->limit); 2402 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2403 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2404 } 2405 2406 /* struct btrfs_super_block */ 2407 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2408 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2409 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2410 generation, 64); 2411 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2412 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2413 struct btrfs_super_block, sys_chunk_array_size, 32); 2414 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2415 struct btrfs_super_block, chunk_root_generation, 64); 2416 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2417 root_level, 8); 2418 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2419 chunk_root, 64); 2420 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2421 chunk_root_level, 8); 2422 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2423 log_root, 64); 2424 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2425 log_root_transid, 64); 2426 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2427 log_root_level, 8); 2428 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2429 total_bytes, 64); 2430 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2431 bytes_used, 64); 2432 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2433 sectorsize, 32); 2434 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2435 nodesize, 32); 2436 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2437 stripesize, 32); 2438 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2439 root_dir_objectid, 64); 2440 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2441 num_devices, 64); 2442 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2443 compat_flags, 64); 2444 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2445 compat_ro_flags, 64); 2446 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2447 incompat_flags, 64); 2448 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2449 csum_type, 16); 2450 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2451 cache_generation, 64); 2452 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2453 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2454 uuid_tree_generation, 64); 2455 2456 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2457 const char *btrfs_super_csum_name(u16 csum_type); 2458 const char *btrfs_super_csum_driver(u16 csum_type); 2459 size_t __attribute_const__ btrfs_get_num_csums(void); 2460 2461 2462 /* 2463 * The leaf data grows from end-to-front in the node. 2464 * this returns the address of the start of the last item, 2465 * which is the stop of the leaf data stack 2466 */ 2467 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2468 { 2469 u32 nr = btrfs_header_nritems(leaf); 2470 2471 if (nr == 0) 2472 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2473 return btrfs_item_offset(leaf, nr - 1); 2474 } 2475 2476 /* struct btrfs_file_extent_item */ 2477 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2478 type, 8); 2479 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2480 struct btrfs_file_extent_item, disk_bytenr, 64); 2481 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2482 struct btrfs_file_extent_item, offset, 64); 2483 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2484 struct btrfs_file_extent_item, generation, 64); 2485 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2486 struct btrfs_file_extent_item, num_bytes, 64); 2487 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2488 struct btrfs_file_extent_item, ram_bytes, 64); 2489 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2490 struct btrfs_file_extent_item, disk_num_bytes, 64); 2491 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2492 struct btrfs_file_extent_item, compression, 8); 2493 2494 static inline unsigned long 2495 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2496 { 2497 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2498 } 2499 2500 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2501 { 2502 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2503 } 2504 2505 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2506 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2507 disk_bytenr, 64); 2508 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2509 generation, 64); 2510 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2511 disk_num_bytes, 64); 2512 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2513 offset, 64); 2514 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2515 num_bytes, 64); 2516 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2517 ram_bytes, 64); 2518 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2519 compression, 8); 2520 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2521 encryption, 8); 2522 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2523 other_encoding, 16); 2524 2525 /* 2526 * this returns the number of bytes used by the item on disk, minus the 2527 * size of any extent headers. If a file is compressed on disk, this is 2528 * the compressed size 2529 */ 2530 static inline u32 btrfs_file_extent_inline_item_len( 2531 const struct extent_buffer *eb, 2532 int nr) 2533 { 2534 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2535 } 2536 2537 /* btrfs_qgroup_status_item */ 2538 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2539 generation, 64); 2540 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2541 version, 64); 2542 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2543 flags, 64); 2544 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2545 rescan, 64); 2546 2547 /* btrfs_qgroup_info_item */ 2548 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2549 generation, 64); 2550 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2551 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2552 rfer_cmpr, 64); 2553 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2554 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2555 excl_cmpr, 64); 2556 2557 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2558 struct btrfs_qgroup_info_item, generation, 64); 2559 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2560 rfer, 64); 2561 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2562 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2563 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2564 excl, 64); 2565 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2566 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2567 2568 /* btrfs_qgroup_limit_item */ 2569 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2570 flags, 64); 2571 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2572 max_rfer, 64); 2573 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2574 max_excl, 64); 2575 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2576 rsv_rfer, 64); 2577 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2578 rsv_excl, 64); 2579 2580 /* btrfs_dev_replace_item */ 2581 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2582 struct btrfs_dev_replace_item, src_devid, 64); 2583 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2584 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2585 64); 2586 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2587 replace_state, 64); 2588 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2589 time_started, 64); 2590 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2591 time_stopped, 64); 2592 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2593 num_write_errors, 64); 2594 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2595 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2596 64); 2597 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2598 cursor_left, 64); 2599 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2600 cursor_right, 64); 2601 2602 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2603 struct btrfs_dev_replace_item, src_devid, 64); 2604 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2605 struct btrfs_dev_replace_item, 2606 cont_reading_from_srcdev_mode, 64); 2607 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2608 struct btrfs_dev_replace_item, replace_state, 64); 2609 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2610 struct btrfs_dev_replace_item, time_started, 64); 2611 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2612 struct btrfs_dev_replace_item, time_stopped, 64); 2613 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2614 struct btrfs_dev_replace_item, num_write_errors, 64); 2615 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2616 struct btrfs_dev_replace_item, 2617 num_uncorrectable_read_errors, 64); 2618 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2619 struct btrfs_dev_replace_item, cursor_left, 64); 2620 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2621 struct btrfs_dev_replace_item, cursor_right, 64); 2622 2623 /* helper function to cast into the data area of the leaf. */ 2624 #define btrfs_item_ptr(leaf, slot, type) \ 2625 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2626 btrfs_item_offset(leaf, slot))) 2627 2628 #define btrfs_item_ptr_offset(leaf, slot) \ 2629 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2630 btrfs_item_offset(leaf, slot))) 2631 2632 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2633 { 2634 return crc32c(crc, address, length); 2635 } 2636 2637 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2638 { 2639 put_unaligned_le32(~crc, result); 2640 } 2641 2642 static inline u64 btrfs_name_hash(const char *name, int len) 2643 { 2644 return crc32c((u32)~1, name, len); 2645 } 2646 2647 /* 2648 * Figure the key offset of an extended inode ref 2649 */ 2650 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2651 int len) 2652 { 2653 return (u64) crc32c(parent_objectid, name, len); 2654 } 2655 2656 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2657 { 2658 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2659 } 2660 2661 /* extent-tree.c */ 2662 2663 enum btrfs_inline_ref_type { 2664 BTRFS_REF_TYPE_INVALID, 2665 BTRFS_REF_TYPE_BLOCK, 2666 BTRFS_REF_TYPE_DATA, 2667 BTRFS_REF_TYPE_ANY, 2668 }; 2669 2670 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2671 struct btrfs_extent_inline_ref *iref, 2672 enum btrfs_inline_ref_type is_data); 2673 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2674 2675 /* 2676 * Take the number of bytes to be checksummmed and figure out how many leaves 2677 * it would require to store the csums for that many bytes. 2678 */ 2679 static inline u64 btrfs_csum_bytes_to_leaves( 2680 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2681 { 2682 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2683 2684 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2685 } 2686 2687 /* 2688 * Use this if we would be adding new items, as we could split nodes as we cow 2689 * down the tree. 2690 */ 2691 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2692 unsigned num_items) 2693 { 2694 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2695 } 2696 2697 /* 2698 * Doing a truncate or a modification won't result in new nodes or leaves, just 2699 * what we need for COW. 2700 */ 2701 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2702 unsigned num_items) 2703 { 2704 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2705 } 2706 2707 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2708 u64 start, u64 num_bytes); 2709 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2710 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2711 unsigned long count); 2712 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2713 struct btrfs_delayed_ref_root *delayed_refs, 2714 struct btrfs_delayed_ref_head *head); 2715 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2716 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2717 struct btrfs_fs_info *fs_info, u64 bytenr, 2718 u64 offset, int metadata, u64 *refs, u64 *flags); 2719 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2720 int reserved); 2721 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2722 u64 bytenr, u64 num_bytes); 2723 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2724 int btrfs_cross_ref_exist(struct btrfs_root *root, 2725 u64 objectid, u64 offset, u64 bytenr, bool strict); 2726 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2727 struct btrfs_root *root, 2728 u64 parent, u64 root_objectid, 2729 const struct btrfs_disk_key *key, 2730 int level, u64 hint, 2731 u64 empty_size, 2732 enum btrfs_lock_nesting nest); 2733 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2734 u64 root_id, 2735 struct extent_buffer *buf, 2736 u64 parent, int last_ref); 2737 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2738 struct btrfs_root *root, u64 owner, 2739 u64 offset, u64 ram_bytes, 2740 struct btrfs_key *ins); 2741 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2742 u64 root_objectid, u64 owner, u64 offset, 2743 struct btrfs_key *ins); 2744 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2745 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2746 struct btrfs_key *ins, int is_data, int delalloc); 2747 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2748 struct extent_buffer *buf, int full_backref); 2749 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2750 struct extent_buffer *buf, int full_backref); 2751 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2752 struct extent_buffer *eb, u64 flags, 2753 int level, int is_data); 2754 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2755 2756 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2757 u64 start, u64 len, int delalloc); 2758 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2759 u64 len); 2760 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2761 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2762 struct btrfs_ref *generic_ref); 2763 2764 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2765 2766 /* 2767 * Different levels for to flush space when doing space reservations. 2768 * 2769 * The higher the level, the more methods we try to reclaim space. 2770 */ 2771 enum btrfs_reserve_flush_enum { 2772 /* If we are in the transaction, we can't flush anything.*/ 2773 BTRFS_RESERVE_NO_FLUSH, 2774 2775 /* 2776 * Flush space by: 2777 * - Running delayed inode items 2778 * - Allocating a new chunk 2779 */ 2780 BTRFS_RESERVE_FLUSH_LIMIT, 2781 2782 /* 2783 * Flush space by: 2784 * - Running delayed inode items 2785 * - Running delayed refs 2786 * - Running delalloc and waiting for ordered extents 2787 * - Allocating a new chunk 2788 */ 2789 BTRFS_RESERVE_FLUSH_EVICT, 2790 2791 /* 2792 * Flush space by above mentioned methods and by: 2793 * - Running delayed iputs 2794 * - Committing transaction 2795 * 2796 * Can be interrupted by a fatal signal. 2797 */ 2798 BTRFS_RESERVE_FLUSH_DATA, 2799 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2800 BTRFS_RESERVE_FLUSH_ALL, 2801 2802 /* 2803 * Pretty much the same as FLUSH_ALL, but can also steal space from 2804 * global rsv. 2805 * 2806 * Can be interrupted by a fatal signal. 2807 */ 2808 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2809 }; 2810 2811 enum btrfs_flush_state { 2812 FLUSH_DELAYED_ITEMS_NR = 1, 2813 FLUSH_DELAYED_ITEMS = 2, 2814 FLUSH_DELAYED_REFS_NR = 3, 2815 FLUSH_DELAYED_REFS = 4, 2816 FLUSH_DELALLOC = 5, 2817 FLUSH_DELALLOC_WAIT = 6, 2818 FLUSH_DELALLOC_FULL = 7, 2819 ALLOC_CHUNK = 8, 2820 ALLOC_CHUNK_FORCE = 9, 2821 RUN_DELAYED_IPUTS = 10, 2822 COMMIT_TRANS = 11, 2823 }; 2824 2825 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2826 struct btrfs_block_rsv *rsv, 2827 int nitems, bool use_global_rsv); 2828 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2829 struct btrfs_block_rsv *rsv); 2830 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2831 2832 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2833 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2834 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2835 u64 start, u64 end); 2836 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2837 u64 num_bytes, u64 *actual_bytes); 2838 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2839 2840 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2841 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2842 struct btrfs_fs_info *fs_info); 2843 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2844 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2845 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2846 2847 /* ctree.c */ 2848 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2849 int *slot); 2850 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2851 int btrfs_previous_item(struct btrfs_root *root, 2852 struct btrfs_path *path, u64 min_objectid, 2853 int type); 2854 int btrfs_previous_extent_item(struct btrfs_root *root, 2855 struct btrfs_path *path, u64 min_objectid); 2856 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2857 struct btrfs_path *path, 2858 const struct btrfs_key *new_key); 2859 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2860 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2861 struct btrfs_key *key, int lowest_level, 2862 u64 min_trans); 2863 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2864 struct btrfs_path *path, 2865 u64 min_trans); 2866 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2867 int slot); 2868 2869 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2870 struct btrfs_root *root, struct extent_buffer *buf, 2871 struct extent_buffer *parent, int parent_slot, 2872 struct extent_buffer **cow_ret, 2873 enum btrfs_lock_nesting nest); 2874 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 struct extent_buffer *buf, 2877 struct extent_buffer **cow_ret, u64 new_root_objectid); 2878 int btrfs_block_can_be_shared(struct btrfs_root *root, 2879 struct extent_buffer *buf); 2880 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2881 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2882 int btrfs_split_item(struct btrfs_trans_handle *trans, 2883 struct btrfs_root *root, 2884 struct btrfs_path *path, 2885 const struct btrfs_key *new_key, 2886 unsigned long split_offset); 2887 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2888 struct btrfs_root *root, 2889 struct btrfs_path *path, 2890 const struct btrfs_key *new_key); 2891 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2892 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2893 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2894 const struct btrfs_key *key, struct btrfs_path *p, 2895 int ins_len, int cow); 2896 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2897 struct btrfs_path *p, u64 time_seq); 2898 int btrfs_search_slot_for_read(struct btrfs_root *root, 2899 const struct btrfs_key *key, 2900 struct btrfs_path *p, int find_higher, 2901 int return_any); 2902 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2903 struct btrfs_root *root, struct extent_buffer *parent, 2904 int start_slot, u64 *last_ret, 2905 struct btrfs_key *progress); 2906 void btrfs_release_path(struct btrfs_path *p); 2907 struct btrfs_path *btrfs_alloc_path(void); 2908 void btrfs_free_path(struct btrfs_path *p); 2909 2910 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2911 struct btrfs_path *path, int slot, int nr); 2912 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2913 struct btrfs_root *root, 2914 struct btrfs_path *path) 2915 { 2916 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2917 } 2918 2919 /* 2920 * Describes a batch of items to insert in a btree. This is used by 2921 * btrfs_insert_empty_items(). 2922 */ 2923 struct btrfs_item_batch { 2924 /* 2925 * Pointer to an array containing the keys of the items to insert (in 2926 * sorted order). 2927 */ 2928 const struct btrfs_key *keys; 2929 /* Pointer to an array containing the data size for each item to insert. */ 2930 const u32 *data_sizes; 2931 /* 2932 * The sum of data sizes for all items. The caller can compute this while 2933 * setting up the data_sizes array, so it ends up being more efficient 2934 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2935 * doing it, as it would avoid an extra loop over a potentially large 2936 * array, and in the case of setup_item_for_insert(), we would be doing 2937 * it while holding a write lock on a leaf and often on upper level nodes 2938 * too, unnecessarily increasing the size of a critical section. 2939 */ 2940 u32 total_data_size; 2941 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 2942 int nr; 2943 }; 2944 2945 void btrfs_setup_item_for_insert(struct btrfs_root *root, 2946 struct btrfs_path *path, 2947 const struct btrfs_key *key, 2948 u32 data_size); 2949 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2950 const struct btrfs_key *key, void *data, u32 data_size); 2951 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2952 struct btrfs_root *root, 2953 struct btrfs_path *path, 2954 const struct btrfs_item_batch *batch); 2955 2956 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2957 struct btrfs_root *root, 2958 struct btrfs_path *path, 2959 const struct btrfs_key *key, 2960 u32 data_size) 2961 { 2962 struct btrfs_item_batch batch; 2963 2964 batch.keys = key; 2965 batch.data_sizes = &data_size; 2966 batch.total_data_size = data_size; 2967 batch.nr = 1; 2968 2969 return btrfs_insert_empty_items(trans, root, path, &batch); 2970 } 2971 2972 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2973 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2974 u64 time_seq); 2975 2976 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2977 struct btrfs_path *path); 2978 2979 static inline int btrfs_next_old_item(struct btrfs_root *root, 2980 struct btrfs_path *p, u64 time_seq) 2981 { 2982 ++p->slots[0]; 2983 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2984 return btrfs_next_old_leaf(root, p, time_seq); 2985 return 0; 2986 } 2987 2988 /* 2989 * Search the tree again to find a leaf with greater keys. 2990 * 2991 * Returns 0 if it found something or 1 if there are no greater leaves. 2992 * Returns < 0 on error. 2993 */ 2994 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 2995 { 2996 return btrfs_next_old_leaf(root, path, 0); 2997 } 2998 2999 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3000 { 3001 return btrfs_next_old_item(root, p, 0); 3002 } 3003 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3004 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3005 int for_reloc); 3006 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3007 struct btrfs_root *root, 3008 struct extent_buffer *node, 3009 struct extent_buffer *parent); 3010 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3011 { 3012 /* 3013 * Do it this way so we only ever do one test_bit in the normal case. 3014 */ 3015 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3016 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3017 return 2; 3018 return 1; 3019 } 3020 return 0; 3021 } 3022 3023 /* 3024 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3025 * anything except sleeping. This function is used to check the status of 3026 * the fs. 3027 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3028 * since setting and checking for SB_RDONLY in the superblock's flags is not 3029 * atomic. 3030 */ 3031 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3032 { 3033 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3034 btrfs_fs_closing(fs_info); 3035 } 3036 3037 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3038 { 3039 sb->s_flags |= SB_RDONLY; 3040 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3041 } 3042 3043 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3044 { 3045 sb->s_flags &= ~SB_RDONLY; 3046 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3047 } 3048 3049 /* root-item.c */ 3050 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3051 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3052 int name_len); 3053 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3054 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3055 int name_len); 3056 int btrfs_del_root(struct btrfs_trans_handle *trans, 3057 const struct btrfs_key *key); 3058 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3059 const struct btrfs_key *key, 3060 struct btrfs_root_item *item); 3061 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3062 struct btrfs_root *root, 3063 struct btrfs_key *key, 3064 struct btrfs_root_item *item); 3065 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3066 struct btrfs_path *path, struct btrfs_root_item *root_item, 3067 struct btrfs_key *root_key); 3068 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3069 void btrfs_set_root_node(struct btrfs_root_item *item, 3070 struct extent_buffer *node); 3071 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3072 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3073 struct btrfs_root *root); 3074 3075 /* uuid-tree.c */ 3076 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3077 u64 subid); 3078 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3079 u64 subid); 3080 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3081 3082 /* dir-item.c */ 3083 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3084 const char *name, int name_len); 3085 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3086 int name_len, struct btrfs_inode *dir, 3087 struct btrfs_key *location, u8 type, u64 index); 3088 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3089 struct btrfs_root *root, 3090 struct btrfs_path *path, u64 dir, 3091 const char *name, int name_len, 3092 int mod); 3093 struct btrfs_dir_item * 3094 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3095 struct btrfs_root *root, 3096 struct btrfs_path *path, u64 dir, 3097 u64 index, const char *name, int name_len, 3098 int mod); 3099 struct btrfs_dir_item * 3100 btrfs_search_dir_index_item(struct btrfs_root *root, 3101 struct btrfs_path *path, u64 dirid, 3102 const char *name, int name_len); 3103 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3104 struct btrfs_root *root, 3105 struct btrfs_path *path, 3106 struct btrfs_dir_item *di); 3107 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3108 struct btrfs_root *root, 3109 struct btrfs_path *path, u64 objectid, 3110 const char *name, u16 name_len, 3111 const void *data, u16 data_len); 3112 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3113 struct btrfs_root *root, 3114 struct btrfs_path *path, u64 dir, 3115 const char *name, u16 name_len, 3116 int mod); 3117 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3118 struct btrfs_path *path, 3119 const char *name, 3120 int name_len); 3121 3122 /* orphan.c */ 3123 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3124 struct btrfs_root *root, u64 offset); 3125 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3126 struct btrfs_root *root, u64 offset); 3127 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3128 3129 /* file-item.c */ 3130 struct btrfs_dio_private; 3131 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, u64 bytenr, u64 len); 3133 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3134 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root, 3136 u64 objectid, u64 pos, 3137 u64 disk_offset, u64 disk_num_bytes, 3138 u64 num_bytes, u64 offset, u64 ram_bytes, 3139 u8 compression, u8 encryption, u16 other_encoding); 3140 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3141 struct btrfs_root *root, 3142 struct btrfs_path *path, u64 objectid, 3143 u64 bytenr, int mod); 3144 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3145 struct btrfs_root *root, 3146 struct btrfs_ordered_sum *sums); 3147 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3148 u64 file_start, int contig); 3149 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3150 struct list_head *list, int search_commit); 3151 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3152 const struct btrfs_path *path, 3153 struct btrfs_file_extent_item *fi, 3154 const bool new_inline, 3155 struct extent_map *em); 3156 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3157 u64 len); 3158 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3159 u64 len); 3160 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3161 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3162 3163 /* inode.c */ 3164 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3165 int mirror_num, unsigned long bio_flags); 3166 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3167 u32 bio_offset, struct page *page, 3168 u64 start, u64 end); 3169 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3170 u64 start, u64 len); 3171 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3172 u64 *orig_start, u64 *orig_block_len, 3173 u64 *ram_bytes, bool strict); 3174 3175 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3176 struct btrfs_inode *inode); 3177 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3178 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3179 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3180 struct btrfs_inode *dir, struct btrfs_inode *inode, 3181 const char *name, int name_len); 3182 int btrfs_add_link(struct btrfs_trans_handle *trans, 3183 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3184 const char *name, int name_len, int add_backref, u64 index); 3185 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3186 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3187 int front); 3188 3189 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3190 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3191 bool in_reclaim_context); 3192 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3193 unsigned int extra_bits, 3194 struct extent_state **cached_state); 3195 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3196 struct btrfs_root *new_root, 3197 struct btrfs_root *parent_root, 3198 struct user_namespace *mnt_userns); 3199 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3200 unsigned *bits); 3201 void btrfs_clear_delalloc_extent(struct inode *inode, 3202 struct extent_state *state, unsigned *bits); 3203 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3204 struct extent_state *other); 3205 void btrfs_split_delalloc_extent(struct inode *inode, 3206 struct extent_state *orig, u64 split); 3207 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3208 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3209 int btrfs_readpage(struct file *file, struct page *page); 3210 void btrfs_evict_inode(struct inode *inode); 3211 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3212 struct inode *btrfs_alloc_inode(struct super_block *sb); 3213 void btrfs_destroy_inode(struct inode *inode); 3214 void btrfs_free_inode(struct inode *inode); 3215 int btrfs_drop_inode(struct inode *inode); 3216 int __init btrfs_init_cachep(void); 3217 void __cold btrfs_destroy_cachep(void); 3218 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3219 struct btrfs_root *root, struct btrfs_path *path); 3220 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3221 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3222 struct page *page, size_t pg_offset, 3223 u64 start, u64 end); 3224 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *root, struct btrfs_inode *inode); 3226 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3227 struct btrfs_root *root, struct btrfs_inode *inode); 3228 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3229 struct btrfs_inode *inode); 3230 int btrfs_orphan_cleanup(struct btrfs_root *root); 3231 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3232 void btrfs_add_delayed_iput(struct inode *inode); 3233 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3234 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3235 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3236 u64 start, u64 num_bytes, u64 min_size, 3237 loff_t actual_len, u64 *alloc_hint); 3238 int btrfs_prealloc_file_range_trans(struct inode *inode, 3239 struct btrfs_trans_handle *trans, int mode, 3240 u64 start, u64 num_bytes, u64 min_size, 3241 loff_t actual_len, u64 *alloc_hint); 3242 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3243 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3244 struct writeback_control *wbc); 3245 int btrfs_writepage_cow_fixup(struct page *page); 3246 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3247 struct page *page, u64 start, 3248 u64 end, bool uptodate); 3249 extern const struct dentry_operations btrfs_dentry_operations; 3250 extern const struct iomap_ops btrfs_dio_iomap_ops; 3251 extern const struct iomap_dio_ops btrfs_dio_ops; 3252 3253 /* Inode locking type flags, by default the exclusive lock is taken */ 3254 #define BTRFS_ILOCK_SHARED (1U << 0) 3255 #define BTRFS_ILOCK_TRY (1U << 1) 3256 #define BTRFS_ILOCK_MMAP (1U << 2) 3257 3258 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3259 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3260 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3261 const u64 add_bytes, 3262 const u64 del_bytes); 3263 3264 /* ioctl.c */ 3265 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3266 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3267 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3268 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3269 struct dentry *dentry, struct fileattr *fa); 3270 int btrfs_ioctl_get_supported_features(void __user *arg); 3271 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3272 int __pure btrfs_is_empty_uuid(u8 *uuid); 3273 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3274 struct btrfs_ioctl_defrag_range_args *range, 3275 u64 newer_than, unsigned long max_to_defrag); 3276 void btrfs_get_block_group_info(struct list_head *groups_list, 3277 struct btrfs_ioctl_space_info *space); 3278 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3279 struct btrfs_ioctl_balance_args *bargs); 3280 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3281 enum btrfs_exclusive_operation type); 3282 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3283 enum btrfs_exclusive_operation type); 3284 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3285 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3286 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3287 enum btrfs_exclusive_operation op); 3288 3289 3290 /* file.c */ 3291 int __init btrfs_auto_defrag_init(void); 3292 void __cold btrfs_auto_defrag_exit(void); 3293 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3294 struct btrfs_inode *inode); 3295 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3296 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3297 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3298 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3299 int skip_pinned); 3300 extern const struct file_operations btrfs_file_operations; 3301 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3302 struct btrfs_root *root, struct btrfs_inode *inode, 3303 struct btrfs_drop_extents_args *args); 3304 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3305 struct btrfs_path *path, const u64 start, 3306 const u64 end, 3307 struct btrfs_replace_extent_info *extent_info, 3308 struct btrfs_trans_handle **trans_out); 3309 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3310 struct btrfs_inode *inode, u64 start, u64 end); 3311 int btrfs_release_file(struct inode *inode, struct file *file); 3312 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3313 size_t num_pages, loff_t pos, size_t write_bytes, 3314 struct extent_state **cached, bool noreserve); 3315 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3316 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3317 size_t *write_bytes); 3318 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3319 3320 /* tree-defrag.c */ 3321 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3322 struct btrfs_root *root); 3323 3324 /* super.c */ 3325 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3326 unsigned long new_flags); 3327 int btrfs_sync_fs(struct super_block *sb, int wait); 3328 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3329 u64 subvol_objectid); 3330 3331 static inline __printf(2, 3) __cold 3332 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3333 { 3334 } 3335 3336 #ifdef CONFIG_PRINTK 3337 __printf(2, 3) 3338 __cold 3339 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3340 #else 3341 #define btrfs_printk(fs_info, fmt, args...) \ 3342 btrfs_no_printk(fs_info, fmt, ##args) 3343 #endif 3344 3345 #define btrfs_emerg(fs_info, fmt, args...) \ 3346 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3347 #define btrfs_alert(fs_info, fmt, args...) \ 3348 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3349 #define btrfs_crit(fs_info, fmt, args...) \ 3350 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3351 #define btrfs_err(fs_info, fmt, args...) \ 3352 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3353 #define btrfs_warn(fs_info, fmt, args...) \ 3354 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3355 #define btrfs_notice(fs_info, fmt, args...) \ 3356 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3357 #define btrfs_info(fs_info, fmt, args...) \ 3358 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3359 3360 /* 3361 * Wrappers that use printk_in_rcu 3362 */ 3363 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3364 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3365 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3366 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3367 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3368 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3369 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3370 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3371 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3372 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3373 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3374 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3375 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3376 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3377 3378 /* 3379 * Wrappers that use a ratelimited printk_in_rcu 3380 */ 3381 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3382 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3383 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3384 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3385 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3386 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3387 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3388 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3389 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3390 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3391 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3392 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3393 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3394 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3395 3396 /* 3397 * Wrappers that use a ratelimited printk 3398 */ 3399 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3400 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3401 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3402 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3403 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3404 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3405 #define btrfs_err_rl(fs_info, fmt, args...) \ 3406 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3407 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3408 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3409 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3410 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3411 #define btrfs_info_rl(fs_info, fmt, args...) \ 3412 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3413 3414 #if defined(CONFIG_DYNAMIC_DEBUG) 3415 #define btrfs_debug(fs_info, fmt, args...) \ 3416 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3417 fs_info, KERN_DEBUG fmt, ##args) 3418 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3419 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3420 fs_info, KERN_DEBUG fmt, ##args) 3421 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3422 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3423 fs_info, KERN_DEBUG fmt, ##args) 3424 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3425 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3426 fs_info, KERN_DEBUG fmt, ##args) 3427 #elif defined(DEBUG) 3428 #define btrfs_debug(fs_info, fmt, args...) \ 3429 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3430 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3431 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3432 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3433 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3434 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3435 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3436 #else 3437 #define btrfs_debug(fs_info, fmt, args...) \ 3438 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3439 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3440 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3441 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3442 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3443 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3444 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3445 #endif 3446 3447 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3448 do { \ 3449 rcu_read_lock(); \ 3450 btrfs_printk(fs_info, fmt, ##args); \ 3451 rcu_read_unlock(); \ 3452 } while (0) 3453 3454 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3455 do { \ 3456 rcu_read_lock(); \ 3457 btrfs_no_printk(fs_info, fmt, ##args); \ 3458 rcu_read_unlock(); \ 3459 } while (0) 3460 3461 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3462 do { \ 3463 static DEFINE_RATELIMIT_STATE(_rs, \ 3464 DEFAULT_RATELIMIT_INTERVAL, \ 3465 DEFAULT_RATELIMIT_BURST); \ 3466 if (__ratelimit(&_rs)) \ 3467 btrfs_printk(fs_info, fmt, ##args); \ 3468 } while (0) 3469 3470 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3471 do { \ 3472 rcu_read_lock(); \ 3473 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3474 rcu_read_unlock(); \ 3475 } while (0) 3476 3477 #ifdef CONFIG_BTRFS_ASSERT 3478 __cold __noreturn 3479 static inline void assertfail(const char *expr, const char *file, int line) 3480 { 3481 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3482 BUG(); 3483 } 3484 3485 #define ASSERT(expr) \ 3486 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3487 3488 #else 3489 static inline void assertfail(const char *expr, const char* file, int line) { } 3490 #define ASSERT(expr) (void)(expr) 3491 #endif 3492 3493 #if BITS_PER_LONG == 32 3494 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3495 /* 3496 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3497 * addresses of extents. 3498 * 3499 * For 4K page size it's about 10T, for 64K it's 160T. 3500 */ 3501 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3502 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3503 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3504 #endif 3505 3506 /* 3507 * Get the correct offset inside the page of extent buffer. 3508 * 3509 * @eb: target extent buffer 3510 * @start: offset inside the extent buffer 3511 * 3512 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3513 */ 3514 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3515 unsigned long offset) 3516 { 3517 /* 3518 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3519 * to PAGE_SIZE, thus adding it won't cause any difference. 3520 * 3521 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3522 * to the eb, thus we have to take the eb->start into consideration. 3523 */ 3524 return offset_in_page(offset + eb->start); 3525 } 3526 3527 static inline unsigned long get_eb_page_index(unsigned long offset) 3528 { 3529 /* 3530 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3531 * 3532 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3533 * and have ensured that all tree blocks are contained in one page, 3534 * thus we always get index == 0. 3535 */ 3536 return offset >> PAGE_SHIFT; 3537 } 3538 3539 /* 3540 * Use that for functions that are conditionally exported for sanity tests but 3541 * otherwise static 3542 */ 3543 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3544 #define EXPORT_FOR_TESTS static 3545 #else 3546 #define EXPORT_FOR_TESTS 3547 #endif 3548 3549 __cold 3550 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3551 { 3552 btrfs_err(fs_info, 3553 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3554 } 3555 3556 __printf(5, 6) 3557 __cold 3558 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3559 unsigned int line, int errno, const char *fmt, ...); 3560 3561 const char * __attribute_const__ btrfs_decode_error(int errno); 3562 3563 __cold 3564 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3565 const char *function, 3566 unsigned int line, int errno); 3567 3568 /* 3569 * Call btrfs_abort_transaction as early as possible when an error condition is 3570 * detected, that way the exact line number is reported. 3571 */ 3572 #define btrfs_abort_transaction(trans, errno) \ 3573 do { \ 3574 /* Report first abort since mount */ \ 3575 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3576 &((trans)->fs_info->fs_state))) { \ 3577 if ((errno) != -EIO && (errno) != -EROFS) { \ 3578 WARN(1, KERN_DEBUG \ 3579 "BTRFS: Transaction aborted (error %d)\n", \ 3580 (errno)); \ 3581 } else { \ 3582 btrfs_debug((trans)->fs_info, \ 3583 "Transaction aborted (error %d)", \ 3584 (errno)); \ 3585 } \ 3586 } \ 3587 __btrfs_abort_transaction((trans), __func__, \ 3588 __LINE__, (errno)); \ 3589 } while (0) 3590 3591 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3592 do { \ 3593 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3594 (errno), fmt, ##args); \ 3595 } while (0) 3596 3597 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3598 &(fs_info)->fs_state))) 3599 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3600 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3601 &(fs_info)->fs_state))) 3602 3603 __printf(5, 6) 3604 __cold 3605 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3606 unsigned int line, int errno, const char *fmt, ...); 3607 /* 3608 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3609 * will panic(). Otherwise we BUG() here. 3610 */ 3611 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3612 do { \ 3613 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3614 BUG(); \ 3615 } while (0) 3616 3617 3618 /* compatibility and incompatibility defines */ 3619 3620 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3621 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3622 #opt) 3623 3624 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3625 u64 flag, const char* name) 3626 { 3627 struct btrfs_super_block *disk_super; 3628 u64 features; 3629 3630 disk_super = fs_info->super_copy; 3631 features = btrfs_super_incompat_flags(disk_super); 3632 if (!(features & flag)) { 3633 spin_lock(&fs_info->super_lock); 3634 features = btrfs_super_incompat_flags(disk_super); 3635 if (!(features & flag)) { 3636 features |= flag; 3637 btrfs_set_super_incompat_flags(disk_super, features); 3638 btrfs_info(fs_info, 3639 "setting incompat feature flag for %s (0x%llx)", 3640 name, flag); 3641 } 3642 spin_unlock(&fs_info->super_lock); 3643 } 3644 } 3645 3646 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3647 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3648 #opt) 3649 3650 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3651 u64 flag, const char* name) 3652 { 3653 struct btrfs_super_block *disk_super; 3654 u64 features; 3655 3656 disk_super = fs_info->super_copy; 3657 features = btrfs_super_incompat_flags(disk_super); 3658 if (features & flag) { 3659 spin_lock(&fs_info->super_lock); 3660 features = btrfs_super_incompat_flags(disk_super); 3661 if (features & flag) { 3662 features &= ~flag; 3663 btrfs_set_super_incompat_flags(disk_super, features); 3664 btrfs_info(fs_info, 3665 "clearing incompat feature flag for %s (0x%llx)", 3666 name, flag); 3667 } 3668 spin_unlock(&fs_info->super_lock); 3669 } 3670 } 3671 3672 #define btrfs_fs_incompat(fs_info, opt) \ 3673 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3674 3675 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3676 { 3677 struct btrfs_super_block *disk_super; 3678 disk_super = fs_info->super_copy; 3679 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3680 } 3681 3682 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3683 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3684 #opt) 3685 3686 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3687 u64 flag, const char *name) 3688 { 3689 struct btrfs_super_block *disk_super; 3690 u64 features; 3691 3692 disk_super = fs_info->super_copy; 3693 features = btrfs_super_compat_ro_flags(disk_super); 3694 if (!(features & flag)) { 3695 spin_lock(&fs_info->super_lock); 3696 features = btrfs_super_compat_ro_flags(disk_super); 3697 if (!(features & flag)) { 3698 features |= flag; 3699 btrfs_set_super_compat_ro_flags(disk_super, features); 3700 btrfs_info(fs_info, 3701 "setting compat-ro feature flag for %s (0x%llx)", 3702 name, flag); 3703 } 3704 spin_unlock(&fs_info->super_lock); 3705 } 3706 } 3707 3708 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3709 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3710 #opt) 3711 3712 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3713 u64 flag, const char *name) 3714 { 3715 struct btrfs_super_block *disk_super; 3716 u64 features; 3717 3718 disk_super = fs_info->super_copy; 3719 features = btrfs_super_compat_ro_flags(disk_super); 3720 if (features & flag) { 3721 spin_lock(&fs_info->super_lock); 3722 features = btrfs_super_compat_ro_flags(disk_super); 3723 if (features & flag) { 3724 features &= ~flag; 3725 btrfs_set_super_compat_ro_flags(disk_super, features); 3726 btrfs_info(fs_info, 3727 "clearing compat-ro feature flag for %s (0x%llx)", 3728 name, flag); 3729 } 3730 spin_unlock(&fs_info->super_lock); 3731 } 3732 } 3733 3734 #define btrfs_fs_compat_ro(fs_info, opt) \ 3735 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3736 3737 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3738 { 3739 struct btrfs_super_block *disk_super; 3740 disk_super = fs_info->super_copy; 3741 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3742 } 3743 3744 /* acl.c */ 3745 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3746 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3747 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3748 struct posix_acl *acl, int type); 3749 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3750 struct inode *inode, struct inode *dir); 3751 #else 3752 #define btrfs_get_acl NULL 3753 #define btrfs_set_acl NULL 3754 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3755 struct inode *inode, struct inode *dir) 3756 { 3757 return 0; 3758 } 3759 #endif 3760 3761 /* relocation.c */ 3762 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3763 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3764 struct btrfs_root *root); 3765 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3766 struct btrfs_root *root); 3767 int btrfs_recover_relocation(struct btrfs_root *root); 3768 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3769 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3770 struct btrfs_root *root, struct extent_buffer *buf, 3771 struct extent_buffer *cow); 3772 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3773 u64 *bytes_to_reserve); 3774 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3775 struct btrfs_pending_snapshot *pending); 3776 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3777 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3778 u64 bytenr); 3779 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3780 3781 /* scrub.c */ 3782 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3783 u64 end, struct btrfs_scrub_progress *progress, 3784 int readonly, int is_dev_replace); 3785 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3786 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3787 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3788 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3789 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3790 struct btrfs_scrub_progress *progress); 3791 static inline void btrfs_init_full_stripe_locks_tree( 3792 struct btrfs_full_stripe_locks_tree *locks_root) 3793 { 3794 locks_root->root = RB_ROOT; 3795 mutex_init(&locks_root->lock); 3796 } 3797 3798 /* dev-replace.c */ 3799 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3800 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3801 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3802 3803 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3804 { 3805 btrfs_bio_counter_sub(fs_info, 1); 3806 } 3807 3808 static inline int is_fstree(u64 rootid) 3809 { 3810 if (rootid == BTRFS_FS_TREE_OBJECTID || 3811 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3812 !btrfs_qgroup_level(rootid))) 3813 return 1; 3814 return 0; 3815 } 3816 3817 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3818 { 3819 return signal_pending(current); 3820 } 3821 3822 /* verity.c */ 3823 #ifdef CONFIG_FS_VERITY 3824 3825 extern const struct fsverity_operations btrfs_verityops; 3826 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3827 3828 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3829 encryption, 8); 3830 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3831 size, 64); 3832 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3833 struct btrfs_verity_descriptor_item, encryption, 8); 3834 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3835 struct btrfs_verity_descriptor_item, size, 64); 3836 3837 #else 3838 3839 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3840 { 3841 return 0; 3842 } 3843 3844 #endif 3845 3846 /* Sanity test specific functions */ 3847 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3848 void btrfs_test_destroy_inode(struct inode *inode); 3849 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3850 { 3851 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3852 } 3853 #else 3854 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3855 { 3856 return 0; 3857 } 3858 #endif 3859 3860 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3861 { 3862 return fs_info->zoned != 0; 3863 } 3864 3865 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3866 { 3867 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3868 } 3869 3870 /* 3871 * We use page status Private2 to indicate there is an ordered extent with 3872 * unfinished IO. 3873 * 3874 * Rename the Private2 accessors to Ordered, to improve readability. 3875 */ 3876 #define PageOrdered(page) PagePrivate2(page) 3877 #define SetPageOrdered(page) SetPagePrivate2(page) 3878 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3879 3880 #endif 3881