xref: /openbmc/linux/fs/btrfs/ctree.h (revision d88e0493)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 
53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
54 
55 /*
56  * Maximum number of mirrors that can be available for all profiles counting
57  * the target device of dev-replace as one. During an active device replace
58  * procedure, the target device of the copy operation is a mirror for the
59  * filesystem data as well that can be used to read data in order to repair
60  * read errors on other disks.
61  *
62  * Current value is derived from RAID1C4 with 4 copies.
63  */
64 #define BTRFS_MAX_MIRRORS (4 + 1)
65 
66 #define BTRFS_MAX_LEVEL 8
67 
68 #define BTRFS_OLDEST_GENERATION	0ULL
69 
70 /*
71  * we can actually store much bigger names, but lets not confuse the rest
72  * of linux
73  */
74 #define BTRFS_NAME_LEN 255
75 
76 /*
77  * Theoretical limit is larger, but we keep this down to a sane
78  * value. That should limit greatly the possibility of collisions on
79  * inode ref items.
80  */
81 #define BTRFS_LINK_MAX 65535U
82 
83 #define BTRFS_EMPTY_DIR_SIZE 0
84 
85 /* ioprio of readahead is set to idle */
86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
87 
88 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
89 
90 /*
91  * Use large batch size to reduce overhead of metadata updates.  On the reader
92  * side, we only read it when we are close to ENOSPC and the read overhead is
93  * mostly related to the number of CPUs, so it is OK to use arbitrary large
94  * value here.
95  */
96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
97 
98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
99 
100 /*
101  * Deltas are an effective way to populate global statistics.  Give macro names
102  * to make it clear what we're doing.  An example is discard_extents in
103  * btrfs_free_space_ctl.
104  */
105 #define BTRFS_STAT_NR_ENTRIES	2
106 #define BTRFS_STAT_CURR		0
107 #define BTRFS_STAT_PREV		1
108 
109 /*
110  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
111  */
112 static inline u32 count_max_extents(u64 size)
113 {
114 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
115 }
116 
117 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
118 {
119 	BUG_ON(num_stripes == 0);
120 	return sizeof(struct btrfs_chunk) +
121 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
122 }
123 
124 /*
125  * Runtime (in-memory) states of filesystem
126  */
127 enum {
128 	/* Global indicator of serious filesystem errors */
129 	BTRFS_FS_STATE_ERROR,
130 	/*
131 	 * Filesystem is being remounted, allow to skip some operations, like
132 	 * defrag
133 	 */
134 	BTRFS_FS_STATE_REMOUNTING,
135 	/* Filesystem in RO mode */
136 	BTRFS_FS_STATE_RO,
137 	/* Track if a transaction abort has been reported on this filesystem */
138 	BTRFS_FS_STATE_TRANS_ABORTED,
139 	/*
140 	 * Bio operations should be blocked on this filesystem because a source
141 	 * or target device is being destroyed as part of a device replace
142 	 */
143 	BTRFS_FS_STATE_DEV_REPLACING,
144 	/* The btrfs_fs_info created for self-tests */
145 	BTRFS_FS_STATE_DUMMY_FS_INFO,
146 
147 	BTRFS_FS_STATE_NO_CSUMS,
148 };
149 
150 #define BTRFS_BACKREF_REV_MAX		256
151 #define BTRFS_BACKREF_REV_SHIFT		56
152 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
153 					 BTRFS_BACKREF_REV_SHIFT)
154 
155 #define BTRFS_OLD_BACKREF_REV		0
156 #define BTRFS_MIXED_BACKREF_REV		1
157 
158 /*
159  * every tree block (leaf or node) starts with this header.
160  */
161 struct btrfs_header {
162 	/* these first four must match the super block */
163 	u8 csum[BTRFS_CSUM_SIZE];
164 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
165 	__le64 bytenr; /* which block this node is supposed to live in */
166 	__le64 flags;
167 
168 	/* allowed to be different from the super from here on down */
169 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
170 	__le64 generation;
171 	__le64 owner;
172 	__le32 nritems;
173 	u8 level;
174 } __attribute__ ((__packed__));
175 
176 /*
177  * this is a very generous portion of the super block, giving us
178  * room to translate 14 chunks with 3 stripes each.
179  */
180 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
181 
182 /*
183  * just in case we somehow lose the roots and are not able to mount,
184  * we store an array of the roots from previous transactions
185  * in the super.
186  */
187 #define BTRFS_NUM_BACKUP_ROOTS 4
188 struct btrfs_root_backup {
189 	__le64 tree_root;
190 	__le64 tree_root_gen;
191 
192 	__le64 chunk_root;
193 	__le64 chunk_root_gen;
194 
195 	__le64 extent_root;
196 	__le64 extent_root_gen;
197 
198 	__le64 fs_root;
199 	__le64 fs_root_gen;
200 
201 	__le64 dev_root;
202 	__le64 dev_root_gen;
203 
204 	__le64 csum_root;
205 	__le64 csum_root_gen;
206 
207 	__le64 total_bytes;
208 	__le64 bytes_used;
209 	__le64 num_devices;
210 	/* future */
211 	__le64 unused_64[4];
212 
213 	u8 tree_root_level;
214 	u8 chunk_root_level;
215 	u8 extent_root_level;
216 	u8 fs_root_level;
217 	u8 dev_root_level;
218 	u8 csum_root_level;
219 	/* future and to align */
220 	u8 unused_8[10];
221 } __attribute__ ((__packed__));
222 
223 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
224 #define BTRFS_SUPER_INFO_SIZE			4096
225 
226 /*
227  * the super block basically lists the main trees of the FS
228  * it currently lacks any block count etc etc
229  */
230 struct btrfs_super_block {
231 	/* the first 4 fields must match struct btrfs_header */
232 	u8 csum[BTRFS_CSUM_SIZE];
233 	/* FS specific UUID, visible to user */
234 	u8 fsid[BTRFS_FSID_SIZE];
235 	__le64 bytenr; /* this block number */
236 	__le64 flags;
237 
238 	/* allowed to be different from the btrfs_header from here own down */
239 	__le64 magic;
240 	__le64 generation;
241 	__le64 root;
242 	__le64 chunk_root;
243 	__le64 log_root;
244 
245 	/* this will help find the new super based on the log root */
246 	__le64 log_root_transid;
247 	__le64 total_bytes;
248 	__le64 bytes_used;
249 	__le64 root_dir_objectid;
250 	__le64 num_devices;
251 	__le32 sectorsize;
252 	__le32 nodesize;
253 	__le32 __unused_leafsize;
254 	__le32 stripesize;
255 	__le32 sys_chunk_array_size;
256 	__le64 chunk_root_generation;
257 	__le64 compat_flags;
258 	__le64 compat_ro_flags;
259 	__le64 incompat_flags;
260 	__le16 csum_type;
261 	u8 root_level;
262 	u8 chunk_root_level;
263 	u8 log_root_level;
264 	struct btrfs_dev_item dev_item;
265 
266 	char label[BTRFS_LABEL_SIZE];
267 
268 	__le64 cache_generation;
269 	__le64 uuid_tree_generation;
270 
271 	/* the UUID written into btree blocks */
272 	u8 metadata_uuid[BTRFS_FSID_SIZE];
273 
274 	/* future expansion */
275 	__le64 reserved[28];
276 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
277 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
278 
279 	/* Padded to 4096 bytes */
280 	u8 padding[565];
281 } __attribute__ ((__packed__));
282 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
283 
284 /*
285  * Compat flags that we support.  If any incompat flags are set other than the
286  * ones specified below then we will fail to mount
287  */
288 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
289 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
290 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
291 
292 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
293 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
294 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
295 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
296 
297 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
298 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
299 
300 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
301 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
302 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
303 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
304 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
305 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
306 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
307 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
308 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
309 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
310 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
311 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
312 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
313 	 BTRFS_FEATURE_INCOMPAT_ZONED)
314 
315 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
316 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
317 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
318 
319 /*
320  * A leaf is full of items. offset and size tell us where to find
321  * the item in the leaf (relative to the start of the data area)
322  */
323 struct btrfs_item {
324 	struct btrfs_disk_key key;
325 	__le32 offset;
326 	__le32 size;
327 } __attribute__ ((__packed__));
328 
329 /*
330  * leaves have an item area and a data area:
331  * [item0, item1....itemN] [free space] [dataN...data1, data0]
332  *
333  * The data is separate from the items to get the keys closer together
334  * during searches.
335  */
336 struct btrfs_leaf {
337 	struct btrfs_header header;
338 	struct btrfs_item items[];
339 } __attribute__ ((__packed__));
340 
341 /*
342  * all non-leaf blocks are nodes, they hold only keys and pointers to
343  * other blocks
344  */
345 struct btrfs_key_ptr {
346 	struct btrfs_disk_key key;
347 	__le64 blockptr;
348 	__le64 generation;
349 } __attribute__ ((__packed__));
350 
351 struct btrfs_node {
352 	struct btrfs_header header;
353 	struct btrfs_key_ptr ptrs[];
354 } __attribute__ ((__packed__));
355 
356 /* Read ahead values for struct btrfs_path.reada */
357 enum {
358 	READA_NONE,
359 	READA_BACK,
360 	READA_FORWARD,
361 	/*
362 	 * Similar to READA_FORWARD but unlike it:
363 	 *
364 	 * 1) It will trigger readahead even for leaves that are not close to
365 	 *    each other on disk;
366 	 * 2) It also triggers readahead for nodes;
367 	 * 3) During a search, even when a node or leaf is already in memory, it
368 	 *    will still trigger readahead for other nodes and leaves that follow
369 	 *    it.
370 	 *
371 	 * This is meant to be used only when we know we are iterating over the
372 	 * entire tree or a very large part of it.
373 	 */
374 	READA_FORWARD_ALWAYS,
375 };
376 
377 /*
378  * btrfs_paths remember the path taken from the root down to the leaf.
379  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
380  * to any other levels that are present.
381  *
382  * The slots array records the index of the item or block pointer
383  * used while walking the tree.
384  */
385 struct btrfs_path {
386 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
387 	int slots[BTRFS_MAX_LEVEL];
388 	/* if there is real range locking, this locks field will change */
389 	u8 locks[BTRFS_MAX_LEVEL];
390 	u8 reada;
391 	/* keep some upper locks as we walk down */
392 	u8 lowest_level;
393 
394 	/*
395 	 * set by btrfs_split_item, tells search_slot to keep all locks
396 	 * and to force calls to keep space in the nodes
397 	 */
398 	unsigned int search_for_split:1;
399 	unsigned int keep_locks:1;
400 	unsigned int skip_locking:1;
401 	unsigned int search_commit_root:1;
402 	unsigned int need_commit_sem:1;
403 	unsigned int skip_release_on_error:1;
404 	/*
405 	 * Indicate that new item (btrfs_search_slot) is extending already
406 	 * existing item and ins_len contains only the data size and not item
407 	 * header (ie. sizeof(struct btrfs_item) is not included).
408 	 */
409 	unsigned int search_for_extension:1;
410 };
411 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
412 					sizeof(struct btrfs_item))
413 struct btrfs_dev_replace {
414 	u64 replace_state;	/* see #define above */
415 	time64_t time_started;	/* seconds since 1-Jan-1970 */
416 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
417 	atomic64_t num_write_errors;
418 	atomic64_t num_uncorrectable_read_errors;
419 
420 	u64 cursor_left;
421 	u64 committed_cursor_left;
422 	u64 cursor_left_last_write_of_item;
423 	u64 cursor_right;
424 
425 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
426 
427 	int is_valid;
428 	int item_needs_writeback;
429 	struct btrfs_device *srcdev;
430 	struct btrfs_device *tgtdev;
431 
432 	struct mutex lock_finishing_cancel_unmount;
433 	struct rw_semaphore rwsem;
434 
435 	struct btrfs_scrub_progress scrub_progress;
436 
437 	struct percpu_counter bio_counter;
438 	wait_queue_head_t replace_wait;
439 };
440 
441 /*
442  * free clusters are used to claim free space in relatively large chunks,
443  * allowing us to do less seeky writes. They are used for all metadata
444  * allocations. In ssd_spread mode they are also used for data allocations.
445  */
446 struct btrfs_free_cluster {
447 	spinlock_t lock;
448 	spinlock_t refill_lock;
449 	struct rb_root root;
450 
451 	/* largest extent in this cluster */
452 	u64 max_size;
453 
454 	/* first extent starting offset */
455 	u64 window_start;
456 
457 	/* We did a full search and couldn't create a cluster */
458 	bool fragmented;
459 
460 	struct btrfs_block_group *block_group;
461 	/*
462 	 * when a cluster is allocated from a block group, we put the
463 	 * cluster onto a list in the block group so that it can
464 	 * be freed before the block group is freed.
465 	 */
466 	struct list_head block_group_list;
467 };
468 
469 enum btrfs_caching_type {
470 	BTRFS_CACHE_NO,
471 	BTRFS_CACHE_STARTED,
472 	BTRFS_CACHE_FAST,
473 	BTRFS_CACHE_FINISHED,
474 	BTRFS_CACHE_ERROR,
475 };
476 
477 /*
478  * Tree to record all locked full stripes of a RAID5/6 block group
479  */
480 struct btrfs_full_stripe_locks_tree {
481 	struct rb_root root;
482 	struct mutex lock;
483 };
484 
485 /* Discard control. */
486 /*
487  * Async discard uses multiple lists to differentiate the discard filter
488  * parameters.  Index 0 is for completely free block groups where we need to
489  * ensure the entire block group is trimmed without being lossy.  Indices
490  * afterwards represent monotonically decreasing discard filter sizes to
491  * prioritize what should be discarded next.
492  */
493 #define BTRFS_NR_DISCARD_LISTS		3
494 #define BTRFS_DISCARD_INDEX_UNUSED	0
495 #define BTRFS_DISCARD_INDEX_START	1
496 
497 struct btrfs_discard_ctl {
498 	struct workqueue_struct *discard_workers;
499 	struct delayed_work work;
500 	spinlock_t lock;
501 	struct btrfs_block_group *block_group;
502 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
503 	u64 prev_discard;
504 	u64 prev_discard_time;
505 	atomic_t discardable_extents;
506 	atomic64_t discardable_bytes;
507 	u64 max_discard_size;
508 	u64 delay_ms;
509 	u32 iops_limit;
510 	u32 kbps_limit;
511 	u64 discard_extent_bytes;
512 	u64 discard_bitmap_bytes;
513 	atomic64_t discard_bytes_saved;
514 };
515 
516 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
517 
518 /* fs_info */
519 struct reloc_control;
520 struct btrfs_device;
521 struct btrfs_fs_devices;
522 struct btrfs_balance_control;
523 struct btrfs_delayed_root;
524 
525 /*
526  * Block group or device which contains an active swapfile. Used for preventing
527  * unsafe operations while a swapfile is active.
528  *
529  * These are sorted on (ptr, inode) (note that a block group or device can
530  * contain more than one swapfile). We compare the pointer values because we
531  * don't actually care what the object is, we just need a quick check whether
532  * the object exists in the rbtree.
533  */
534 struct btrfs_swapfile_pin {
535 	struct rb_node node;
536 	void *ptr;
537 	struct inode *inode;
538 	/*
539 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
540 	 * points to a struct btrfs_device.
541 	 */
542 	bool is_block_group;
543 	/*
544 	 * Only used when 'is_block_group' is true and it is the number of
545 	 * extents used by a swapfile for this block group ('ptr' field).
546 	 */
547 	int bg_extent_count;
548 };
549 
550 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
551 
552 enum {
553 	BTRFS_FS_CLOSING_START,
554 	BTRFS_FS_CLOSING_DONE,
555 	BTRFS_FS_LOG_RECOVERING,
556 	BTRFS_FS_OPEN,
557 	BTRFS_FS_QUOTA_ENABLED,
558 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
559 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
560 	BTRFS_FS_BTREE_ERR,
561 	BTRFS_FS_LOG1_ERR,
562 	BTRFS_FS_LOG2_ERR,
563 	BTRFS_FS_QUOTA_OVERRIDE,
564 	/* Used to record internally whether fs has been frozen */
565 	BTRFS_FS_FROZEN,
566 	/*
567 	 * Indicate that balance has been set up from the ioctl and is in the
568 	 * main phase. The fs_info::balance_ctl is initialized.
569 	 */
570 	BTRFS_FS_BALANCE_RUNNING,
571 
572 	/*
573 	 * Indicate that relocation of a chunk has started, it's set per chunk
574 	 * and is toggled between chunks.
575 	 */
576 	BTRFS_FS_RELOC_RUNNING,
577 
578 	/* Indicate that the cleaner thread is awake and doing something. */
579 	BTRFS_FS_CLEANER_RUNNING,
580 
581 	/*
582 	 * The checksumming has an optimized version and is considered fast,
583 	 * so we don't need to offload checksums to workqueues.
584 	 */
585 	BTRFS_FS_CSUM_IMPL_FAST,
586 
587 	/* Indicate that the discard workqueue can service discards. */
588 	BTRFS_FS_DISCARD_RUNNING,
589 
590 	/* Indicate that we need to cleanup space cache v1 */
591 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
592 
593 	/* Indicate that we can't trust the free space tree for caching yet */
594 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
595 
596 	/* Indicate whether there are any tree modification log users */
597 	BTRFS_FS_TREE_MOD_LOG_USERS,
598 
599 	/* Indicate that we want the transaction kthread to commit right now. */
600 	BTRFS_FS_COMMIT_TRANS,
601 
602 #if BITS_PER_LONG == 32
603 	/* Indicate if we have error/warn message printed on 32bit systems */
604 	BTRFS_FS_32BIT_ERROR,
605 	BTRFS_FS_32BIT_WARN,
606 #endif
607 };
608 
609 /*
610  * Exclusive operations (device replace, resize, device add/remove, balance)
611  */
612 enum btrfs_exclusive_operation {
613 	BTRFS_EXCLOP_NONE,
614 	BTRFS_EXCLOP_BALANCE_PAUSED,
615 	BTRFS_EXCLOP_BALANCE,
616 	BTRFS_EXCLOP_DEV_ADD,
617 	BTRFS_EXCLOP_DEV_REMOVE,
618 	BTRFS_EXCLOP_DEV_REPLACE,
619 	BTRFS_EXCLOP_RESIZE,
620 	BTRFS_EXCLOP_SWAP_ACTIVATE,
621 };
622 
623 struct btrfs_fs_info {
624 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
625 	unsigned long flags;
626 	struct btrfs_root *tree_root;
627 	struct btrfs_root *chunk_root;
628 	struct btrfs_root *dev_root;
629 	struct btrfs_root *fs_root;
630 	struct btrfs_root *quota_root;
631 	struct btrfs_root *uuid_root;
632 	struct btrfs_root *data_reloc_root;
633 
634 	/* the log root tree is a directory of all the other log roots */
635 	struct btrfs_root *log_root_tree;
636 
637 	/* The tree that holds the global roots (csum, extent, etc) */
638 	rwlock_t global_root_lock;
639 	struct rb_root global_root_tree;
640 
641 	spinlock_t fs_roots_radix_lock;
642 	struct radix_tree_root fs_roots_radix;
643 
644 	/* block group cache stuff */
645 	spinlock_t block_group_cache_lock;
646 	u64 first_logical_byte;
647 	struct rb_root block_group_cache_tree;
648 
649 	/* keep track of unallocated space */
650 	atomic64_t free_chunk_space;
651 
652 	/* Track ranges which are used by log trees blocks/logged data extents */
653 	struct extent_io_tree excluded_extents;
654 
655 	/* logical->physical extent mapping */
656 	struct extent_map_tree mapping_tree;
657 
658 	/*
659 	 * block reservation for extent, checksum, root tree and
660 	 * delayed dir index item
661 	 */
662 	struct btrfs_block_rsv global_block_rsv;
663 	/* block reservation for metadata operations */
664 	struct btrfs_block_rsv trans_block_rsv;
665 	/* block reservation for chunk tree */
666 	struct btrfs_block_rsv chunk_block_rsv;
667 	/* block reservation for delayed operations */
668 	struct btrfs_block_rsv delayed_block_rsv;
669 	/* block reservation for delayed refs */
670 	struct btrfs_block_rsv delayed_refs_rsv;
671 
672 	struct btrfs_block_rsv empty_block_rsv;
673 
674 	u64 generation;
675 	u64 last_trans_committed;
676 	/*
677 	 * Generation of the last transaction used for block group relocation
678 	 * since the filesystem was last mounted (or 0 if none happened yet).
679 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
680 	 */
681 	u64 last_reloc_trans;
682 	u64 avg_delayed_ref_runtime;
683 
684 	/*
685 	 * this is updated to the current trans every time a full commit
686 	 * is required instead of the faster short fsync log commits
687 	 */
688 	u64 last_trans_log_full_commit;
689 	unsigned long mount_opt;
690 	/*
691 	 * Track requests for actions that need to be done during transaction
692 	 * commit (like for some mount options).
693 	 */
694 	unsigned long pending_changes;
695 	unsigned long compress_type:4;
696 	unsigned int compress_level;
697 	u32 commit_interval;
698 	/*
699 	 * It is a suggestive number, the read side is safe even it gets a
700 	 * wrong number because we will write out the data into a regular
701 	 * extent. The write side(mount/remount) is under ->s_umount lock,
702 	 * so it is also safe.
703 	 */
704 	u64 max_inline;
705 
706 	struct btrfs_transaction *running_transaction;
707 	wait_queue_head_t transaction_throttle;
708 	wait_queue_head_t transaction_wait;
709 	wait_queue_head_t transaction_blocked_wait;
710 	wait_queue_head_t async_submit_wait;
711 
712 	/*
713 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
714 	 * when they are updated.
715 	 *
716 	 * Because we do not clear the flags for ever, so we needn't use
717 	 * the lock on the read side.
718 	 *
719 	 * We also needn't use the lock when we mount the fs, because
720 	 * there is no other task which will update the flag.
721 	 */
722 	spinlock_t super_lock;
723 	struct btrfs_super_block *super_copy;
724 	struct btrfs_super_block *super_for_commit;
725 	struct super_block *sb;
726 	struct inode *btree_inode;
727 	struct mutex tree_log_mutex;
728 	struct mutex transaction_kthread_mutex;
729 	struct mutex cleaner_mutex;
730 	struct mutex chunk_mutex;
731 
732 	/*
733 	 * this is taken to make sure we don't set block groups ro after
734 	 * the free space cache has been allocated on them
735 	 */
736 	struct mutex ro_block_group_mutex;
737 
738 	/* this is used during read/modify/write to make sure
739 	 * no two ios are trying to mod the same stripe at the same
740 	 * time
741 	 */
742 	struct btrfs_stripe_hash_table *stripe_hash_table;
743 
744 	/*
745 	 * this protects the ordered operations list only while we are
746 	 * processing all of the entries on it.  This way we make
747 	 * sure the commit code doesn't find the list temporarily empty
748 	 * because another function happens to be doing non-waiting preflush
749 	 * before jumping into the main commit.
750 	 */
751 	struct mutex ordered_operations_mutex;
752 
753 	struct rw_semaphore commit_root_sem;
754 
755 	struct rw_semaphore cleanup_work_sem;
756 
757 	struct rw_semaphore subvol_sem;
758 
759 	spinlock_t trans_lock;
760 	/*
761 	 * the reloc mutex goes with the trans lock, it is taken
762 	 * during commit to protect us from the relocation code
763 	 */
764 	struct mutex reloc_mutex;
765 
766 	struct list_head trans_list;
767 	struct list_head dead_roots;
768 	struct list_head caching_block_groups;
769 
770 	spinlock_t delayed_iput_lock;
771 	struct list_head delayed_iputs;
772 	atomic_t nr_delayed_iputs;
773 	wait_queue_head_t delayed_iputs_wait;
774 
775 	atomic64_t tree_mod_seq;
776 
777 	/* this protects tree_mod_log and tree_mod_seq_list */
778 	rwlock_t tree_mod_log_lock;
779 	struct rb_root tree_mod_log;
780 	struct list_head tree_mod_seq_list;
781 
782 	atomic_t async_delalloc_pages;
783 
784 	/*
785 	 * this is used to protect the following list -- ordered_roots.
786 	 */
787 	spinlock_t ordered_root_lock;
788 
789 	/*
790 	 * all fs/file tree roots in which there are data=ordered extents
791 	 * pending writeback are added into this list.
792 	 *
793 	 * these can span multiple transactions and basically include
794 	 * every dirty data page that isn't from nodatacow
795 	 */
796 	struct list_head ordered_roots;
797 
798 	struct mutex delalloc_root_mutex;
799 	spinlock_t delalloc_root_lock;
800 	/* all fs/file tree roots that have delalloc inodes. */
801 	struct list_head delalloc_roots;
802 
803 	/*
804 	 * there is a pool of worker threads for checksumming during writes
805 	 * and a pool for checksumming after reads.  This is because readers
806 	 * can run with FS locks held, and the writers may be waiting for
807 	 * those locks.  We don't want ordering in the pending list to cause
808 	 * deadlocks, and so the two are serviced separately.
809 	 *
810 	 * A third pool does submit_bio to avoid deadlocking with the other
811 	 * two
812 	 */
813 	struct btrfs_workqueue *workers;
814 	struct btrfs_workqueue *delalloc_workers;
815 	struct btrfs_workqueue *flush_workers;
816 	struct btrfs_workqueue *endio_workers;
817 	struct btrfs_workqueue *endio_meta_workers;
818 	struct btrfs_workqueue *endio_raid56_workers;
819 	struct btrfs_workqueue *rmw_workers;
820 	struct btrfs_workqueue *endio_meta_write_workers;
821 	struct btrfs_workqueue *endio_write_workers;
822 	struct btrfs_workqueue *endio_freespace_worker;
823 	struct btrfs_workqueue *caching_workers;
824 
825 	/*
826 	 * fixup workers take dirty pages that didn't properly go through
827 	 * the cow mechanism and make them safe to write.  It happens
828 	 * for the sys_munmap function call path
829 	 */
830 	struct btrfs_workqueue *fixup_workers;
831 	struct btrfs_workqueue *delayed_workers;
832 
833 	struct task_struct *transaction_kthread;
834 	struct task_struct *cleaner_kthread;
835 	u32 thread_pool_size;
836 
837 	struct kobject *space_info_kobj;
838 	struct kobject *qgroups_kobj;
839 
840 	/* used to keep from writing metadata until there is a nice batch */
841 	struct percpu_counter dirty_metadata_bytes;
842 	struct percpu_counter delalloc_bytes;
843 	struct percpu_counter ordered_bytes;
844 	s32 dirty_metadata_batch;
845 	s32 delalloc_batch;
846 
847 	struct list_head dirty_cowonly_roots;
848 
849 	struct btrfs_fs_devices *fs_devices;
850 
851 	/*
852 	 * The space_info list is effectively read only after initial
853 	 * setup.  It is populated at mount time and cleaned up after
854 	 * all block groups are removed.  RCU is used to protect it.
855 	 */
856 	struct list_head space_info;
857 
858 	struct btrfs_space_info *data_sinfo;
859 
860 	struct reloc_control *reloc_ctl;
861 
862 	/* data_alloc_cluster is only used in ssd_spread mode */
863 	struct btrfs_free_cluster data_alloc_cluster;
864 
865 	/* all metadata allocations go through this cluster */
866 	struct btrfs_free_cluster meta_alloc_cluster;
867 
868 	/* auto defrag inodes go here */
869 	spinlock_t defrag_inodes_lock;
870 	struct rb_root defrag_inodes;
871 	atomic_t defrag_running;
872 
873 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
874 	seqlock_t profiles_lock;
875 	/*
876 	 * these three are in extended format (availability of single
877 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
878 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
879 	 */
880 	u64 avail_data_alloc_bits;
881 	u64 avail_metadata_alloc_bits;
882 	u64 avail_system_alloc_bits;
883 
884 	/* restriper state */
885 	spinlock_t balance_lock;
886 	struct mutex balance_mutex;
887 	atomic_t balance_pause_req;
888 	atomic_t balance_cancel_req;
889 	struct btrfs_balance_control *balance_ctl;
890 	wait_queue_head_t balance_wait_q;
891 
892 	/* Cancellation requests for chunk relocation */
893 	atomic_t reloc_cancel_req;
894 
895 	u32 data_chunk_allocations;
896 	u32 metadata_ratio;
897 
898 	void *bdev_holder;
899 
900 	/* private scrub information */
901 	struct mutex scrub_lock;
902 	atomic_t scrubs_running;
903 	atomic_t scrub_pause_req;
904 	atomic_t scrubs_paused;
905 	atomic_t scrub_cancel_req;
906 	wait_queue_head_t scrub_pause_wait;
907 	/*
908 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
909 	 * running.
910 	 */
911 	refcount_t scrub_workers_refcnt;
912 	struct btrfs_workqueue *scrub_workers;
913 	struct btrfs_workqueue *scrub_wr_completion_workers;
914 	struct btrfs_workqueue *scrub_parity_workers;
915 	struct btrfs_subpage_info *subpage_info;
916 
917 	struct btrfs_discard_ctl discard_ctl;
918 
919 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
920 	u32 check_integrity_print_mask;
921 #endif
922 	/* is qgroup tracking in a consistent state? */
923 	u64 qgroup_flags;
924 
925 	/* holds configuration and tracking. Protected by qgroup_lock */
926 	struct rb_root qgroup_tree;
927 	spinlock_t qgroup_lock;
928 
929 	/*
930 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
931 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
932 	 */
933 	struct ulist *qgroup_ulist;
934 
935 	/*
936 	 * Protect user change for quota operations. If a transaction is needed,
937 	 * it must be started before locking this lock.
938 	 */
939 	struct mutex qgroup_ioctl_lock;
940 
941 	/* list of dirty qgroups to be written at next commit */
942 	struct list_head dirty_qgroups;
943 
944 	/* used by qgroup for an efficient tree traversal */
945 	u64 qgroup_seq;
946 
947 	/* qgroup rescan items */
948 	struct mutex qgroup_rescan_lock; /* protects the progress item */
949 	struct btrfs_key qgroup_rescan_progress;
950 	struct btrfs_workqueue *qgroup_rescan_workers;
951 	struct completion qgroup_rescan_completion;
952 	struct btrfs_work qgroup_rescan_work;
953 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
954 
955 	/* filesystem state */
956 	unsigned long fs_state;
957 
958 	struct btrfs_delayed_root *delayed_root;
959 
960 	/* Extent buffer radix tree */
961 	spinlock_t buffer_lock;
962 	/* Entries are eb->start / sectorsize */
963 	struct radix_tree_root buffer_radix;
964 
965 	/* next backup root to be overwritten */
966 	int backup_root_index;
967 
968 	/* device replace state */
969 	struct btrfs_dev_replace dev_replace;
970 
971 	struct semaphore uuid_tree_rescan_sem;
972 
973 	/* Used to reclaim the metadata space in the background. */
974 	struct work_struct async_reclaim_work;
975 	struct work_struct async_data_reclaim_work;
976 	struct work_struct preempt_reclaim_work;
977 
978 	/* Reclaim partially filled block groups in the background */
979 	struct work_struct reclaim_bgs_work;
980 	struct list_head reclaim_bgs;
981 	int bg_reclaim_threshold;
982 
983 	spinlock_t unused_bgs_lock;
984 	struct list_head unused_bgs;
985 	struct mutex unused_bg_unpin_mutex;
986 	/* Protect block groups that are going to be deleted */
987 	struct mutex reclaim_bgs_lock;
988 
989 	/* Cached block sizes */
990 	u32 nodesize;
991 	u32 sectorsize;
992 	/* ilog2 of sectorsize, use to avoid 64bit division */
993 	u32 sectorsize_bits;
994 	u32 csum_size;
995 	u32 csums_per_leaf;
996 	u32 stripesize;
997 
998 	/* Block groups and devices containing active swapfiles. */
999 	spinlock_t swapfile_pins_lock;
1000 	struct rb_root swapfile_pins;
1001 
1002 	struct crypto_shash *csum_shash;
1003 
1004 	/* Type of exclusive operation running, protected by super_lock */
1005 	enum btrfs_exclusive_operation exclusive_operation;
1006 
1007 	/*
1008 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1009 	 * if the mode is enabled
1010 	 */
1011 	union {
1012 		u64 zone_size;
1013 		u64 zoned;
1014 	};
1015 
1016 	struct mutex zoned_meta_io_lock;
1017 	spinlock_t treelog_bg_lock;
1018 	u64 treelog_bg;
1019 
1020 	/*
1021 	 * Start of the dedicated data relocation block group, protected by
1022 	 * relocation_bg_lock.
1023 	 */
1024 	spinlock_t relocation_bg_lock;
1025 	u64 data_reloc_bg;
1026 
1027 	spinlock_t zone_active_bgs_lock;
1028 	struct list_head zone_active_bgs;
1029 
1030 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1031 	spinlock_t ref_verify_lock;
1032 	struct rb_root block_tree;
1033 #endif
1034 
1035 #ifdef CONFIG_BTRFS_DEBUG
1036 	struct kobject *debug_kobj;
1037 	struct kobject *discard_debug_kobj;
1038 	struct list_head allocated_roots;
1039 
1040 	spinlock_t eb_leak_lock;
1041 	struct list_head allocated_ebs;
1042 #endif
1043 };
1044 
1045 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1046 {
1047 	return sb->s_fs_info;
1048 }
1049 
1050 /*
1051  * The state of btrfs root
1052  */
1053 enum {
1054 	/*
1055 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1056 	 * with the balancing code.   But the race is very small, and only the
1057 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1058 	 * is used to tell us when more checks are required
1059 	 */
1060 	BTRFS_ROOT_IN_TRANS_SETUP,
1061 
1062 	/*
1063 	 * Set if tree blocks of this root can be shared by other roots.
1064 	 * Only subvolume trees and their reloc trees have this bit set.
1065 	 * Conflicts with TRACK_DIRTY bit.
1066 	 *
1067 	 * This affects two things:
1068 	 *
1069 	 * - How balance works
1070 	 *   For shareable roots, we need to use reloc tree and do path
1071 	 *   replacement for balance, and need various pre/post hooks for
1072 	 *   snapshot creation to handle them.
1073 	 *
1074 	 *   While for non-shareable trees, we just simply do a tree search
1075 	 *   with COW.
1076 	 *
1077 	 * - How dirty roots are tracked
1078 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1079 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1080 	 *   don't need to set this manually.
1081 	 */
1082 	BTRFS_ROOT_SHAREABLE,
1083 	BTRFS_ROOT_TRACK_DIRTY,
1084 	BTRFS_ROOT_IN_RADIX,
1085 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1086 	BTRFS_ROOT_DEFRAG_RUNNING,
1087 	BTRFS_ROOT_FORCE_COW,
1088 	BTRFS_ROOT_MULTI_LOG_TASKS,
1089 	BTRFS_ROOT_DIRTY,
1090 	BTRFS_ROOT_DELETING,
1091 
1092 	/*
1093 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1094 	 *
1095 	 * Set for the subvolume tree owning the reloc tree.
1096 	 */
1097 	BTRFS_ROOT_DEAD_RELOC_TREE,
1098 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1099 	BTRFS_ROOT_DEAD_TREE,
1100 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1101 	BTRFS_ROOT_HAS_LOG_TREE,
1102 	/* Qgroup flushing is in progress */
1103 	BTRFS_ROOT_QGROUP_FLUSHING,
1104 	/* We started the orphan cleanup for this root. */
1105 	BTRFS_ROOT_ORPHAN_CLEANUP,
1106 };
1107 
1108 /*
1109  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1110  * code. For detail check comment in fs/btrfs/qgroup.c.
1111  */
1112 struct btrfs_qgroup_swapped_blocks {
1113 	spinlock_t lock;
1114 	/* RM_EMPTY_ROOT() of above blocks[] */
1115 	bool swapped;
1116 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1117 };
1118 
1119 /*
1120  * in ram representation of the tree.  extent_root is used for all allocations
1121  * and for the extent tree extent_root root.
1122  */
1123 struct btrfs_root {
1124 	struct rb_node rb_node;
1125 
1126 	struct extent_buffer *node;
1127 
1128 	struct extent_buffer *commit_root;
1129 	struct btrfs_root *log_root;
1130 	struct btrfs_root *reloc_root;
1131 
1132 	unsigned long state;
1133 	struct btrfs_root_item root_item;
1134 	struct btrfs_key root_key;
1135 	struct btrfs_fs_info *fs_info;
1136 	struct extent_io_tree dirty_log_pages;
1137 
1138 	struct mutex objectid_mutex;
1139 
1140 	spinlock_t accounting_lock;
1141 	struct btrfs_block_rsv *block_rsv;
1142 
1143 	struct mutex log_mutex;
1144 	wait_queue_head_t log_writer_wait;
1145 	wait_queue_head_t log_commit_wait[2];
1146 	struct list_head log_ctxs[2];
1147 	/* Used only for log trees of subvolumes, not for the log root tree */
1148 	atomic_t log_writers;
1149 	atomic_t log_commit[2];
1150 	/* Used only for log trees of subvolumes, not for the log root tree */
1151 	atomic_t log_batch;
1152 	int log_transid;
1153 	/* No matter the commit succeeds or not*/
1154 	int log_transid_committed;
1155 	/* Just be updated when the commit succeeds. */
1156 	int last_log_commit;
1157 	pid_t log_start_pid;
1158 
1159 	u64 last_trans;
1160 
1161 	u32 type;
1162 
1163 	u64 free_objectid;
1164 
1165 	struct btrfs_key defrag_progress;
1166 	struct btrfs_key defrag_max;
1167 
1168 	/* The dirty list is only used by non-shareable roots */
1169 	struct list_head dirty_list;
1170 
1171 	struct list_head root_list;
1172 
1173 	spinlock_t log_extents_lock[2];
1174 	struct list_head logged_list[2];
1175 
1176 	spinlock_t inode_lock;
1177 	/* red-black tree that keeps track of in-memory inodes */
1178 	struct rb_root inode_tree;
1179 
1180 	/*
1181 	 * radix tree that keeps track of delayed nodes of every inode,
1182 	 * protected by inode_lock
1183 	 */
1184 	struct radix_tree_root delayed_nodes_tree;
1185 	/*
1186 	 * right now this just gets used so that a root has its own devid
1187 	 * for stat.  It may be used for more later
1188 	 */
1189 	dev_t anon_dev;
1190 
1191 	spinlock_t root_item_lock;
1192 	refcount_t refs;
1193 
1194 	struct mutex delalloc_mutex;
1195 	spinlock_t delalloc_lock;
1196 	/*
1197 	 * all of the inodes that have delalloc bytes.  It is possible for
1198 	 * this list to be empty even when there is still dirty data=ordered
1199 	 * extents waiting to finish IO.
1200 	 */
1201 	struct list_head delalloc_inodes;
1202 	struct list_head delalloc_root;
1203 	u64 nr_delalloc_inodes;
1204 
1205 	struct mutex ordered_extent_mutex;
1206 	/*
1207 	 * this is used by the balancing code to wait for all the pending
1208 	 * ordered extents
1209 	 */
1210 	spinlock_t ordered_extent_lock;
1211 
1212 	/*
1213 	 * all of the data=ordered extents pending writeback
1214 	 * these can span multiple transactions and basically include
1215 	 * every dirty data page that isn't from nodatacow
1216 	 */
1217 	struct list_head ordered_extents;
1218 	struct list_head ordered_root;
1219 	u64 nr_ordered_extents;
1220 
1221 	/*
1222 	 * Not empty if this subvolume root has gone through tree block swap
1223 	 * (relocation)
1224 	 *
1225 	 * Will be used by reloc_control::dirty_subvol_roots.
1226 	 */
1227 	struct list_head reloc_dirty_list;
1228 
1229 	/*
1230 	 * Number of currently running SEND ioctls to prevent
1231 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1232 	 */
1233 	int send_in_progress;
1234 	/*
1235 	 * Number of currently running deduplication operations that have a
1236 	 * destination inode belonging to this root. Protected by the lock
1237 	 * root_item_lock.
1238 	 */
1239 	int dedupe_in_progress;
1240 	/* For exclusion of snapshot creation and nocow writes */
1241 	struct btrfs_drew_lock snapshot_lock;
1242 
1243 	atomic_t snapshot_force_cow;
1244 
1245 	/* For qgroup metadata reserved space */
1246 	spinlock_t qgroup_meta_rsv_lock;
1247 	u64 qgroup_meta_rsv_pertrans;
1248 	u64 qgroup_meta_rsv_prealloc;
1249 	wait_queue_head_t qgroup_flush_wait;
1250 
1251 	/* Number of active swapfiles */
1252 	atomic_t nr_swapfiles;
1253 
1254 	/* Record pairs of swapped blocks for qgroup */
1255 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1256 
1257 	/* Used only by log trees, when logging csum items */
1258 	struct extent_io_tree log_csum_range;
1259 
1260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1261 	u64 alloc_bytenr;
1262 #endif
1263 
1264 #ifdef CONFIG_BTRFS_DEBUG
1265 	struct list_head leak_list;
1266 #endif
1267 };
1268 
1269 /*
1270  * Structure that conveys information about an extent that is going to replace
1271  * all the extents in a file range.
1272  */
1273 struct btrfs_replace_extent_info {
1274 	u64 disk_offset;
1275 	u64 disk_len;
1276 	u64 data_offset;
1277 	u64 data_len;
1278 	u64 file_offset;
1279 	/* Pointer to a file extent item of type regular or prealloc. */
1280 	char *extent_buf;
1281 	/*
1282 	 * Set to true when attempting to replace a file range with a new extent
1283 	 * described by this structure, set to false when attempting to clone an
1284 	 * existing extent into a file range.
1285 	 */
1286 	bool is_new_extent;
1287 	/* Meaningful only if is_new_extent is true. */
1288 	int qgroup_reserved;
1289 	/*
1290 	 * Meaningful only if is_new_extent is true.
1291 	 * Used to track how many extent items we have already inserted in a
1292 	 * subvolume tree that refer to the extent described by this structure,
1293 	 * so that we know when to create a new delayed ref or update an existing
1294 	 * one.
1295 	 */
1296 	int insertions;
1297 };
1298 
1299 /* Arguments for btrfs_drop_extents() */
1300 struct btrfs_drop_extents_args {
1301 	/* Input parameters */
1302 
1303 	/*
1304 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1305 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1306 	 * is always released except if 'replace_extent' is true and
1307 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1308 	 * the path is kept locked.
1309 	 */
1310 	struct btrfs_path *path;
1311 	/* Start offset of the range to drop extents from */
1312 	u64 start;
1313 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1314 	u64 end;
1315 	/* If true drop all the extent maps in the range */
1316 	bool drop_cache;
1317 	/*
1318 	 * If true it means we want to insert a new extent after dropping all
1319 	 * the extents in the range. If this is true, the 'extent_item_size'
1320 	 * parameter must be set as well and the 'extent_inserted' field will
1321 	 * be set to true by btrfs_drop_extents() if it could insert the new
1322 	 * extent.
1323 	 * Note: when this is set to true the path must not be NULL.
1324 	 */
1325 	bool replace_extent;
1326 	/*
1327 	 * Used if 'replace_extent' is true. Size of the file extent item to
1328 	 * insert after dropping all existing extents in the range
1329 	 */
1330 	u32 extent_item_size;
1331 
1332 	/* Output parameters */
1333 
1334 	/*
1335 	 * Set to the minimum between the input parameter 'end' and the end
1336 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1337 	 * set even if btrfs_drop_extents() returns an error.
1338 	 */
1339 	u64 drop_end;
1340 	/*
1341 	 * The number of allocated bytes found in the range. This can be smaller
1342 	 * than the range's length when there are holes in the range.
1343 	 */
1344 	u64 bytes_found;
1345 	/*
1346 	 * Only set if 'replace_extent' is true. Set to true if we were able
1347 	 * to insert a replacement extent after dropping all extents in the
1348 	 * range, otherwise set to false by btrfs_drop_extents().
1349 	 * Also, if btrfs_drop_extents() has set this to true it means it
1350 	 * returned with the path locked, otherwise if it has set this to
1351 	 * false it has returned with the path released.
1352 	 */
1353 	bool extent_inserted;
1354 };
1355 
1356 struct btrfs_file_private {
1357 	void *filldir_buf;
1358 };
1359 
1360 
1361 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1362 {
1363 
1364 	return info->nodesize - sizeof(struct btrfs_header);
1365 }
1366 
1367 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1368 
1369 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1370 {
1371 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1372 }
1373 
1374 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1375 {
1376 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1377 }
1378 
1379 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1380 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1381 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1382 {
1383 	return BTRFS_MAX_ITEM_SIZE(info) -
1384 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1385 }
1386 
1387 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1388 {
1389 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1390 }
1391 
1392 /*
1393  * Flags for mount options.
1394  *
1395  * Note: don't forget to add new options to btrfs_show_options()
1396  */
1397 enum {
1398 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1399 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1400 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1401 	BTRFS_MOUNT_SSD				= (1UL << 3),
1402 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1403 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1404 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1405 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1406 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1407 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1408 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1409 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1410 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1411 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1412 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1413 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1414 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1415 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1416 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1417 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1418 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1419 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1420 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1421 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1422 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1423 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1424 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1425 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1426 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1427 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1428 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1429 };
1430 
1431 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1432 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1433 
1434 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1435 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1436 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1437 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1438 					 BTRFS_MOUNT_##opt)
1439 
1440 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1441 do {									\
1442 	if (!btrfs_test_opt(fs_info, opt))				\
1443 		btrfs_info(fs_info, fmt, ##args);			\
1444 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1445 } while (0)
1446 
1447 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1448 do {									\
1449 	if (btrfs_test_opt(fs_info, opt))				\
1450 		btrfs_info(fs_info, fmt, ##args);			\
1451 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1452 } while (0)
1453 
1454 /*
1455  * Requests for changes that need to be done during transaction commit.
1456  *
1457  * Internal mount options that are used for special handling of the real
1458  * mount options (eg. cannot be set during remount and have to be set during
1459  * transaction commit)
1460  */
1461 
1462 #define BTRFS_PENDING_COMMIT			(0)
1463 
1464 #define btrfs_test_pending(info, opt)	\
1465 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1466 #define btrfs_set_pending(info, opt)	\
1467 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1468 #define btrfs_clear_pending(info, opt)	\
1469 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1470 
1471 /*
1472  * Helpers for setting pending mount option changes.
1473  *
1474  * Expects corresponding macros
1475  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1476  */
1477 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1478 do {                                                                   \
1479        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1480                btrfs_info((info), fmt, ##args);                        \
1481                btrfs_set_pending((info), SET_##opt);                   \
1482                btrfs_clear_pending((info), CLEAR_##opt);               \
1483        }                                                               \
1484 } while(0)
1485 
1486 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1487 do {                                                                   \
1488        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1489                btrfs_info((info), fmt, ##args);                        \
1490                btrfs_set_pending((info), CLEAR_##opt);                 \
1491                btrfs_clear_pending((info), SET_##opt);                 \
1492        }                                                               \
1493 } while(0)
1494 
1495 /*
1496  * Inode flags
1497  */
1498 #define BTRFS_INODE_NODATASUM		(1U << 0)
1499 #define BTRFS_INODE_NODATACOW		(1U << 1)
1500 #define BTRFS_INODE_READONLY		(1U << 2)
1501 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1502 #define BTRFS_INODE_PREALLOC		(1U << 4)
1503 #define BTRFS_INODE_SYNC		(1U << 5)
1504 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1505 #define BTRFS_INODE_APPEND		(1U << 7)
1506 #define BTRFS_INODE_NODUMP		(1U << 8)
1507 #define BTRFS_INODE_NOATIME		(1U << 9)
1508 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1509 #define BTRFS_INODE_COMPRESS		(1U << 11)
1510 
1511 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1512 
1513 #define BTRFS_INODE_FLAG_MASK						\
1514 	(BTRFS_INODE_NODATASUM |					\
1515 	 BTRFS_INODE_NODATACOW |					\
1516 	 BTRFS_INODE_READONLY |						\
1517 	 BTRFS_INODE_NOCOMPRESS |					\
1518 	 BTRFS_INODE_PREALLOC |						\
1519 	 BTRFS_INODE_SYNC |						\
1520 	 BTRFS_INODE_IMMUTABLE |					\
1521 	 BTRFS_INODE_APPEND |						\
1522 	 BTRFS_INODE_NODUMP |						\
1523 	 BTRFS_INODE_NOATIME |						\
1524 	 BTRFS_INODE_DIRSYNC |						\
1525 	 BTRFS_INODE_COMPRESS |						\
1526 	 BTRFS_INODE_ROOT_ITEM_INIT)
1527 
1528 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1529 
1530 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1531 
1532 struct btrfs_map_token {
1533 	struct extent_buffer *eb;
1534 	char *kaddr;
1535 	unsigned long offset;
1536 };
1537 
1538 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1539 				((bytes) >> (fs_info)->sectorsize_bits)
1540 
1541 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1542 					struct extent_buffer *eb)
1543 {
1544 	token->eb = eb;
1545 	token->kaddr = page_address(eb->pages[0]);
1546 	token->offset = 0;
1547 }
1548 
1549 /* some macros to generate set/get functions for the struct fields.  This
1550  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1551  * one for u8:
1552  */
1553 #define le8_to_cpu(v) (v)
1554 #define cpu_to_le8(v) (v)
1555 #define __le8 u8
1556 
1557 static inline u8 get_unaligned_le8(const void *p)
1558 {
1559        return *(u8 *)p;
1560 }
1561 
1562 static inline void put_unaligned_le8(u8 val, void *p)
1563 {
1564        *(u8 *)p = val;
1565 }
1566 
1567 #define read_eb_member(eb, ptr, type, member, result) (\
1568 	read_extent_buffer(eb, (char *)(result),			\
1569 			   ((unsigned long)(ptr)) +			\
1570 			    offsetof(type, member),			\
1571 			   sizeof(((type *)0)->member)))
1572 
1573 #define write_eb_member(eb, ptr, type, member, result) (\
1574 	write_extent_buffer(eb, (char *)(result),			\
1575 			   ((unsigned long)(ptr)) +			\
1576 			    offsetof(type, member),			\
1577 			   sizeof(((type *)0)->member)))
1578 
1579 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1580 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1581 			       const void *ptr, unsigned long off);	\
1582 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1583 			    const void *ptr, unsigned long off,		\
1584 			    u##bits val);				\
1585 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1586 			 const void *ptr, unsigned long off);		\
1587 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1588 		      unsigned long off, u##bits val);
1589 
1590 DECLARE_BTRFS_SETGET_BITS(8)
1591 DECLARE_BTRFS_SETGET_BITS(16)
1592 DECLARE_BTRFS_SETGET_BITS(32)
1593 DECLARE_BTRFS_SETGET_BITS(64)
1594 
1595 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1596 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1597 				   const type *s)			\
1598 {									\
1599 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1600 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1601 }									\
1602 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1603 				    u##bits val)			\
1604 {									\
1605 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1606 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1607 }									\
1608 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1609 					 const type *s)			\
1610 {									\
1611 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1612 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1613 }									\
1614 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1615 					  type *s, u##bits val)		\
1616 {									\
1617 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1618 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1619 }
1620 
1621 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1622 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1623 {									\
1624 	const type *p = page_address(eb->pages[0]) +			\
1625 			offset_in_page(eb->start);			\
1626 	return get_unaligned_le##bits(&p->member);			\
1627 }									\
1628 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1629 				    u##bits val)			\
1630 {									\
1631 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1632 	put_unaligned_le##bits(val, &p->member);			\
1633 }
1634 
1635 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1636 static inline u##bits btrfs_##name(const type *s)			\
1637 {									\
1638 	return get_unaligned_le##bits(&s->member);			\
1639 }									\
1640 static inline void btrfs_set_##name(type *s, u##bits val)		\
1641 {									\
1642 	put_unaligned_le##bits(val, &s->member);			\
1643 }
1644 
1645 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1646 					   struct btrfs_dev_item *s)
1647 {
1648 	BUILD_BUG_ON(sizeof(u64) !=
1649 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1650 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1651 					    total_bytes));
1652 }
1653 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1654 						struct btrfs_dev_item *s,
1655 						u64 val)
1656 {
1657 	BUILD_BUG_ON(sizeof(u64) !=
1658 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1659 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1660 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1661 }
1662 
1663 
1664 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1665 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1666 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1667 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1668 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1669 		   start_offset, 64);
1670 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1671 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1672 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1673 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1674 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1675 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1676 
1677 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1678 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1679 			 total_bytes, 64);
1680 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1681 			 bytes_used, 64);
1682 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1683 			 io_align, 32);
1684 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1685 			 io_width, 32);
1686 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1687 			 sector_size, 32);
1688 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1689 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1690 			 dev_group, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1692 			 seek_speed, 8);
1693 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1694 			 bandwidth, 8);
1695 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1696 			 generation, 64);
1697 
1698 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1699 {
1700 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1701 }
1702 
1703 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1704 {
1705 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1706 }
1707 
1708 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1709 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1710 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1711 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1712 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1713 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1714 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1715 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1716 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1717 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1718 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1719 
1720 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1721 {
1722 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1723 }
1724 
1725 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1726 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1727 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1728 			 stripe_len, 64);
1729 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1730 			 io_align, 32);
1731 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1732 			 io_width, 32);
1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1734 			 sector_size, 32);
1735 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1737 			 num_stripes, 16);
1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1739 			 sub_stripes, 16);
1740 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1741 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1742 
1743 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1744 						   int nr)
1745 {
1746 	unsigned long offset = (unsigned long)c;
1747 	offset += offsetof(struct btrfs_chunk, stripe);
1748 	offset += nr * sizeof(struct btrfs_stripe);
1749 	return (struct btrfs_stripe *)offset;
1750 }
1751 
1752 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1753 {
1754 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1755 }
1756 
1757 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1758 					 struct btrfs_chunk *c, int nr)
1759 {
1760 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1761 }
1762 
1763 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1764 					 struct btrfs_chunk *c, int nr)
1765 {
1766 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1767 }
1768 
1769 /* struct btrfs_block_group_item */
1770 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1771 			 used, 64);
1772 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1773 			 used, 64);
1774 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1775 			struct btrfs_block_group_item, chunk_objectid, 64);
1776 
1777 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1778 		   struct btrfs_block_group_item, chunk_objectid, 64);
1779 BTRFS_SETGET_FUNCS(block_group_flags,
1780 		   struct btrfs_block_group_item, flags, 64);
1781 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1782 			struct btrfs_block_group_item, flags, 64);
1783 
1784 /* struct btrfs_free_space_info */
1785 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1786 		   extent_count, 32);
1787 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1788 
1789 /* struct btrfs_inode_ref */
1790 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1791 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1792 
1793 /* struct btrfs_inode_extref */
1794 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1795 		   parent_objectid, 64);
1796 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1797 		   name_len, 16);
1798 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1799 
1800 /* struct btrfs_inode_item */
1801 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1802 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1803 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1804 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1805 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1806 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1807 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1808 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1809 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1810 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1811 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1812 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1813 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1814 			 generation, 64);
1815 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1816 			 sequence, 64);
1817 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1818 			 transid, 64);
1819 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1821 			 nbytes, 64);
1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1823 			 block_group, 64);
1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1825 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1830 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1831 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1832 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1833 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1834 
1835 /* struct btrfs_dev_extent */
1836 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1837 		   chunk_tree, 64);
1838 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1839 		   chunk_objectid, 64);
1840 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1841 		   chunk_offset, 64);
1842 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1843 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1844 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1845 		   generation, 64);
1846 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1847 
1848 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1849 
1850 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1851 					struct btrfs_tree_block_info *item,
1852 					struct btrfs_disk_key *key)
1853 {
1854 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1855 }
1856 
1857 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1858 					    struct btrfs_tree_block_info *item,
1859 					    struct btrfs_disk_key *key)
1860 {
1861 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1862 }
1863 
1864 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1865 		   root, 64);
1866 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1867 		   objectid, 64);
1868 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1869 		   offset, 64);
1870 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1871 		   count, 32);
1872 
1873 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1874 		   count, 32);
1875 
1876 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1877 		   type, 8);
1878 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1879 		   offset, 64);
1880 
1881 static inline u32 btrfs_extent_inline_ref_size(int type)
1882 {
1883 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1884 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1885 		return sizeof(struct btrfs_extent_inline_ref);
1886 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1887 		return sizeof(struct btrfs_shared_data_ref) +
1888 		       sizeof(struct btrfs_extent_inline_ref);
1889 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1890 		return sizeof(struct btrfs_extent_data_ref) +
1891 		       offsetof(struct btrfs_extent_inline_ref, offset);
1892 	return 0;
1893 }
1894 
1895 /* struct btrfs_node */
1896 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1897 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1898 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1899 			 blockptr, 64);
1900 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1901 			 generation, 64);
1902 
1903 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1904 {
1905 	unsigned long ptr;
1906 	ptr = offsetof(struct btrfs_node, ptrs) +
1907 		sizeof(struct btrfs_key_ptr) * nr;
1908 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1909 }
1910 
1911 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1912 					   int nr, u64 val)
1913 {
1914 	unsigned long ptr;
1915 	ptr = offsetof(struct btrfs_node, ptrs) +
1916 		sizeof(struct btrfs_key_ptr) * nr;
1917 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1918 }
1919 
1920 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1921 {
1922 	unsigned long ptr;
1923 	ptr = offsetof(struct btrfs_node, ptrs) +
1924 		sizeof(struct btrfs_key_ptr) * nr;
1925 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1926 }
1927 
1928 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1929 						 int nr, u64 val)
1930 {
1931 	unsigned long ptr;
1932 	ptr = offsetof(struct btrfs_node, ptrs) +
1933 		sizeof(struct btrfs_key_ptr) * nr;
1934 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1935 }
1936 
1937 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1938 {
1939 	return offsetof(struct btrfs_node, ptrs) +
1940 		sizeof(struct btrfs_key_ptr) * nr;
1941 }
1942 
1943 void btrfs_node_key(const struct extent_buffer *eb,
1944 		    struct btrfs_disk_key *disk_key, int nr);
1945 
1946 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1947 				      struct btrfs_disk_key *disk_key, int nr)
1948 {
1949 	unsigned long ptr;
1950 	ptr = btrfs_node_key_ptr_offset(nr);
1951 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1952 		       struct btrfs_key_ptr, key, disk_key);
1953 }
1954 
1955 /* struct btrfs_item */
1956 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
1957 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
1958 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1959 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1960 
1961 static inline unsigned long btrfs_item_nr_offset(int nr)
1962 {
1963 	return offsetof(struct btrfs_leaf, items) +
1964 		sizeof(struct btrfs_item) * nr;
1965 }
1966 
1967 static inline struct btrfs_item *btrfs_item_nr(int nr)
1968 {
1969 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1970 }
1971 
1972 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
1973 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
1974 				      int slot)					\
1975 {										\
1976 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
1977 }										\
1978 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
1979 					   int slot, u32 val)			\
1980 {										\
1981 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
1982 }										\
1983 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
1984 					    int slot)				\
1985 {										\
1986 	struct btrfs_item *item = btrfs_item_nr(slot);				\
1987 	return btrfs_token_raw_item_##member(token, item);			\
1988 }										\
1989 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
1990 						 int slot, u32 val)		\
1991 {										\
1992 	struct btrfs_item *item = btrfs_item_nr(slot);				\
1993 	btrfs_set_token_raw_item_##member(token, item, val);			\
1994 }
1995 
1996 BTRFS_ITEM_SETGET_FUNCS(offset)
1997 BTRFS_ITEM_SETGET_FUNCS(size);
1998 
1999 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2000 {
2001 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2002 }
2003 
2004 static inline void btrfs_item_key(const struct extent_buffer *eb,
2005 			   struct btrfs_disk_key *disk_key, int nr)
2006 {
2007 	struct btrfs_item *item = btrfs_item_nr(nr);
2008 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2009 }
2010 
2011 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2012 			       struct btrfs_disk_key *disk_key, int nr)
2013 {
2014 	struct btrfs_item *item = btrfs_item_nr(nr);
2015 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2016 }
2017 
2018 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2019 
2020 /*
2021  * struct btrfs_root_ref
2022  */
2023 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2024 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2025 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2026 
2027 /* struct btrfs_dir_item */
2028 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2029 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2030 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2031 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2032 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2033 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2034 			 data_len, 16);
2035 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2036 			 name_len, 16);
2037 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2038 			 transid, 64);
2039 
2040 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2041 				      const struct btrfs_dir_item *item,
2042 				      struct btrfs_disk_key *key)
2043 {
2044 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2045 }
2046 
2047 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2048 					  struct btrfs_dir_item *item,
2049 					  const struct btrfs_disk_key *key)
2050 {
2051 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2052 }
2053 
2054 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2055 		   num_entries, 64);
2056 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2057 		   num_bitmaps, 64);
2058 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2059 		   generation, 64);
2060 
2061 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2062 					const struct btrfs_free_space_header *h,
2063 					struct btrfs_disk_key *key)
2064 {
2065 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2066 }
2067 
2068 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2069 					    struct btrfs_free_space_header *h,
2070 					    const struct btrfs_disk_key *key)
2071 {
2072 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2073 }
2074 
2075 /* struct btrfs_disk_key */
2076 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2077 			 objectid, 64);
2078 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2079 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2080 
2081 #ifdef __LITTLE_ENDIAN
2082 
2083 /*
2084  * Optimized helpers for little-endian architectures where CPU and on-disk
2085  * structures have the same endianness and we can skip conversions.
2086  */
2087 
2088 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2089 					 const struct btrfs_disk_key *disk_key)
2090 {
2091 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2092 }
2093 
2094 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2095 					 const struct btrfs_key *cpu_key)
2096 {
2097 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2098 }
2099 
2100 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2101 					 struct btrfs_key *cpu_key, int nr)
2102 {
2103 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2104 
2105 	btrfs_node_key(eb, disk_key, nr);
2106 }
2107 
2108 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2109 					 struct btrfs_key *cpu_key, int nr)
2110 {
2111 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2112 
2113 	btrfs_item_key(eb, disk_key, nr);
2114 }
2115 
2116 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2117 					     const struct btrfs_dir_item *item,
2118 					     struct btrfs_key *cpu_key)
2119 {
2120 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2121 
2122 	btrfs_dir_item_key(eb, item, disk_key);
2123 }
2124 
2125 #else
2126 
2127 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2128 					 const struct btrfs_disk_key *disk)
2129 {
2130 	cpu->offset = le64_to_cpu(disk->offset);
2131 	cpu->type = disk->type;
2132 	cpu->objectid = le64_to_cpu(disk->objectid);
2133 }
2134 
2135 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2136 					 const struct btrfs_key *cpu)
2137 {
2138 	disk->offset = cpu_to_le64(cpu->offset);
2139 	disk->type = cpu->type;
2140 	disk->objectid = cpu_to_le64(cpu->objectid);
2141 }
2142 
2143 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2144 					 struct btrfs_key *key, int nr)
2145 {
2146 	struct btrfs_disk_key disk_key;
2147 	btrfs_node_key(eb, &disk_key, nr);
2148 	btrfs_disk_key_to_cpu(key, &disk_key);
2149 }
2150 
2151 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2152 					 struct btrfs_key *key, int nr)
2153 {
2154 	struct btrfs_disk_key disk_key;
2155 	btrfs_item_key(eb, &disk_key, nr);
2156 	btrfs_disk_key_to_cpu(key, &disk_key);
2157 }
2158 
2159 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2160 					     const struct btrfs_dir_item *item,
2161 					     struct btrfs_key *key)
2162 {
2163 	struct btrfs_disk_key disk_key;
2164 	btrfs_dir_item_key(eb, item, &disk_key);
2165 	btrfs_disk_key_to_cpu(key, &disk_key);
2166 }
2167 
2168 #endif
2169 
2170 /* struct btrfs_header */
2171 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2172 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2173 			  generation, 64);
2174 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2175 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2176 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2177 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2178 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2179 			 generation, 64);
2180 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2181 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2182 			 nritems, 32);
2183 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2184 
2185 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2186 {
2187 	return (btrfs_header_flags(eb) & flag) == flag;
2188 }
2189 
2190 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2191 {
2192 	u64 flags = btrfs_header_flags(eb);
2193 	btrfs_set_header_flags(eb, flags | flag);
2194 }
2195 
2196 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2197 {
2198 	u64 flags = btrfs_header_flags(eb);
2199 	btrfs_set_header_flags(eb, flags & ~flag);
2200 }
2201 
2202 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2203 {
2204 	u64 flags = btrfs_header_flags(eb);
2205 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2206 }
2207 
2208 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2209 						int rev)
2210 {
2211 	u64 flags = btrfs_header_flags(eb);
2212 	flags &= ~BTRFS_BACKREF_REV_MASK;
2213 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2214 	btrfs_set_header_flags(eb, flags);
2215 }
2216 
2217 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2218 {
2219 	return btrfs_header_level(eb) == 0;
2220 }
2221 
2222 /* struct btrfs_root_item */
2223 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2224 		   generation, 64);
2225 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2226 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2227 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2228 
2229 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2230 			 generation, 64);
2231 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2232 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2233 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2234 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2235 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2236 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2237 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2238 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2239 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2240 			 last_snapshot, 64);
2241 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2242 			 generation_v2, 64);
2243 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2244 			 ctransid, 64);
2245 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2246 			 otransid, 64);
2247 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2248 			 stransid, 64);
2249 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2250 			 rtransid, 64);
2251 
2252 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2253 {
2254 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2255 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2256 }
2257 
2258 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2259 {
2260 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2261 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2262 }
2263 
2264 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2265 {
2266 	return root->root_key.objectid;
2267 }
2268 
2269 /* struct btrfs_root_backup */
2270 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2271 		   tree_root, 64);
2272 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2273 		   tree_root_gen, 64);
2274 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2275 		   tree_root_level, 8);
2276 
2277 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2278 		   chunk_root, 64);
2279 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2280 		   chunk_root_gen, 64);
2281 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2282 		   chunk_root_level, 8);
2283 
2284 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2285 		   extent_root, 64);
2286 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2287 		   extent_root_gen, 64);
2288 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2289 		   extent_root_level, 8);
2290 
2291 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2292 		   fs_root, 64);
2293 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2294 		   fs_root_gen, 64);
2295 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2296 		   fs_root_level, 8);
2297 
2298 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2299 		   dev_root, 64);
2300 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2301 		   dev_root_gen, 64);
2302 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2303 		   dev_root_level, 8);
2304 
2305 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2306 		   csum_root, 64);
2307 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2308 		   csum_root_gen, 64);
2309 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2310 		   csum_root_level, 8);
2311 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2312 		   total_bytes, 64);
2313 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2314 		   bytes_used, 64);
2315 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2316 		   num_devices, 64);
2317 
2318 /* struct btrfs_balance_item */
2319 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2320 
2321 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2322 				      const struct btrfs_balance_item *bi,
2323 				      struct btrfs_disk_balance_args *ba)
2324 {
2325 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2326 }
2327 
2328 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2329 				  struct btrfs_balance_item *bi,
2330 				  const struct btrfs_disk_balance_args *ba)
2331 {
2332 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2333 }
2334 
2335 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2336 				      const struct btrfs_balance_item *bi,
2337 				      struct btrfs_disk_balance_args *ba)
2338 {
2339 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2340 }
2341 
2342 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2343 				  struct btrfs_balance_item *bi,
2344 				  const struct btrfs_disk_balance_args *ba)
2345 {
2346 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2347 }
2348 
2349 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2350 				     const struct btrfs_balance_item *bi,
2351 				     struct btrfs_disk_balance_args *ba)
2352 {
2353 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2354 }
2355 
2356 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2357 				 struct btrfs_balance_item *bi,
2358 				 const struct btrfs_disk_balance_args *ba)
2359 {
2360 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2361 }
2362 
2363 static inline void
2364 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2365 			       const struct btrfs_disk_balance_args *disk)
2366 {
2367 	memset(cpu, 0, sizeof(*cpu));
2368 
2369 	cpu->profiles = le64_to_cpu(disk->profiles);
2370 	cpu->usage = le64_to_cpu(disk->usage);
2371 	cpu->devid = le64_to_cpu(disk->devid);
2372 	cpu->pstart = le64_to_cpu(disk->pstart);
2373 	cpu->pend = le64_to_cpu(disk->pend);
2374 	cpu->vstart = le64_to_cpu(disk->vstart);
2375 	cpu->vend = le64_to_cpu(disk->vend);
2376 	cpu->target = le64_to_cpu(disk->target);
2377 	cpu->flags = le64_to_cpu(disk->flags);
2378 	cpu->limit = le64_to_cpu(disk->limit);
2379 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2380 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2381 }
2382 
2383 static inline void
2384 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2385 			       const struct btrfs_balance_args *cpu)
2386 {
2387 	memset(disk, 0, sizeof(*disk));
2388 
2389 	disk->profiles = cpu_to_le64(cpu->profiles);
2390 	disk->usage = cpu_to_le64(cpu->usage);
2391 	disk->devid = cpu_to_le64(cpu->devid);
2392 	disk->pstart = cpu_to_le64(cpu->pstart);
2393 	disk->pend = cpu_to_le64(cpu->pend);
2394 	disk->vstart = cpu_to_le64(cpu->vstart);
2395 	disk->vend = cpu_to_le64(cpu->vend);
2396 	disk->target = cpu_to_le64(cpu->target);
2397 	disk->flags = cpu_to_le64(cpu->flags);
2398 	disk->limit = cpu_to_le64(cpu->limit);
2399 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2400 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2401 }
2402 
2403 /* struct btrfs_super_block */
2404 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2405 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2406 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2407 			 generation, 64);
2408 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2409 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2410 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2411 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2412 			 struct btrfs_super_block, chunk_root_generation, 64);
2413 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2414 			 root_level, 8);
2415 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2416 			 chunk_root, 64);
2417 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2418 			 chunk_root_level, 8);
2419 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2420 			 log_root, 64);
2421 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2422 			 log_root_transid, 64);
2423 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2424 			 log_root_level, 8);
2425 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2426 			 total_bytes, 64);
2427 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2428 			 bytes_used, 64);
2429 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2430 			 sectorsize, 32);
2431 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2432 			 nodesize, 32);
2433 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2434 			 stripesize, 32);
2435 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2436 			 root_dir_objectid, 64);
2437 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2438 			 num_devices, 64);
2439 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2440 			 compat_flags, 64);
2441 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2442 			 compat_ro_flags, 64);
2443 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2444 			 incompat_flags, 64);
2445 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2446 			 csum_type, 16);
2447 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2448 			 cache_generation, 64);
2449 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2450 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2451 			 uuid_tree_generation, 64);
2452 
2453 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2454 const char *btrfs_super_csum_name(u16 csum_type);
2455 const char *btrfs_super_csum_driver(u16 csum_type);
2456 size_t __attribute_const__ btrfs_get_num_csums(void);
2457 
2458 
2459 /*
2460  * The leaf data grows from end-to-front in the node.
2461  * this returns the address of the start of the last item,
2462  * which is the stop of the leaf data stack
2463  */
2464 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2465 {
2466 	u32 nr = btrfs_header_nritems(leaf);
2467 
2468 	if (nr == 0)
2469 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2470 	return btrfs_item_offset(leaf, nr - 1);
2471 }
2472 
2473 /* struct btrfs_file_extent_item */
2474 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2475 			 type, 8);
2476 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2477 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2478 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2479 			 struct btrfs_file_extent_item, offset, 64);
2480 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2481 			 struct btrfs_file_extent_item, generation, 64);
2482 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2483 			 struct btrfs_file_extent_item, num_bytes, 64);
2484 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2485 			 struct btrfs_file_extent_item, ram_bytes, 64);
2486 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2487 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2488 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2489 			 struct btrfs_file_extent_item, compression, 8);
2490 
2491 static inline unsigned long
2492 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2493 {
2494 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2495 }
2496 
2497 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2498 {
2499 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2500 }
2501 
2502 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2503 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2504 		   disk_bytenr, 64);
2505 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2506 		   generation, 64);
2507 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2508 		   disk_num_bytes, 64);
2509 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2510 		  offset, 64);
2511 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2512 		   num_bytes, 64);
2513 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2514 		   ram_bytes, 64);
2515 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2516 		   compression, 8);
2517 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2518 		   encryption, 8);
2519 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2520 		   other_encoding, 16);
2521 
2522 /*
2523  * this returns the number of bytes used by the item on disk, minus the
2524  * size of any extent headers.  If a file is compressed on disk, this is
2525  * the compressed size
2526  */
2527 static inline u32 btrfs_file_extent_inline_item_len(
2528 						const struct extent_buffer *eb,
2529 						int nr)
2530 {
2531 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2532 }
2533 
2534 /* btrfs_qgroup_status_item */
2535 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2536 		   generation, 64);
2537 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2538 		   version, 64);
2539 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2540 		   flags, 64);
2541 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2542 		   rescan, 64);
2543 
2544 /* btrfs_qgroup_info_item */
2545 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2546 		   generation, 64);
2547 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2548 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2549 		   rfer_cmpr, 64);
2550 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2551 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2552 		   excl_cmpr, 64);
2553 
2554 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2555 			 struct btrfs_qgroup_info_item, generation, 64);
2556 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2557 			 rfer, 64);
2558 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2559 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2560 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2561 			 excl, 64);
2562 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2563 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2564 
2565 /* btrfs_qgroup_limit_item */
2566 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2567 		   flags, 64);
2568 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2569 		   max_rfer, 64);
2570 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2571 		   max_excl, 64);
2572 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2573 		   rsv_rfer, 64);
2574 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2575 		   rsv_excl, 64);
2576 
2577 /* btrfs_dev_replace_item */
2578 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2579 		   struct btrfs_dev_replace_item, src_devid, 64);
2580 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2581 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2582 		   64);
2583 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2584 		   replace_state, 64);
2585 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2586 		   time_started, 64);
2587 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2588 		   time_stopped, 64);
2589 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2590 		   num_write_errors, 64);
2591 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2592 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2593 		   64);
2594 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2595 		   cursor_left, 64);
2596 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2597 		   cursor_right, 64);
2598 
2599 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2600 			 struct btrfs_dev_replace_item, src_devid, 64);
2601 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2602 			 struct btrfs_dev_replace_item,
2603 			 cont_reading_from_srcdev_mode, 64);
2604 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2605 			 struct btrfs_dev_replace_item, replace_state, 64);
2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2607 			 struct btrfs_dev_replace_item, time_started, 64);
2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2609 			 struct btrfs_dev_replace_item, time_stopped, 64);
2610 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2611 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2612 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2613 			 struct btrfs_dev_replace_item,
2614 			 num_uncorrectable_read_errors, 64);
2615 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2616 			 struct btrfs_dev_replace_item, cursor_left, 64);
2617 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2618 			 struct btrfs_dev_replace_item, cursor_right, 64);
2619 
2620 /* helper function to cast into the data area of the leaf. */
2621 #define btrfs_item_ptr(leaf, slot, type) \
2622 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2623 	btrfs_item_offset(leaf, slot)))
2624 
2625 #define btrfs_item_ptr_offset(leaf, slot) \
2626 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2627 	btrfs_item_offset(leaf, slot)))
2628 
2629 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2630 {
2631 	return crc32c(crc, address, length);
2632 }
2633 
2634 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2635 {
2636 	put_unaligned_le32(~crc, result);
2637 }
2638 
2639 static inline u64 btrfs_name_hash(const char *name, int len)
2640 {
2641        return crc32c((u32)~1, name, len);
2642 }
2643 
2644 /*
2645  * Figure the key offset of an extended inode ref
2646  */
2647 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2648                                    int len)
2649 {
2650        return (u64) crc32c(parent_objectid, name, len);
2651 }
2652 
2653 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2654 {
2655 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2656 }
2657 
2658 /* extent-tree.c */
2659 
2660 enum btrfs_inline_ref_type {
2661 	BTRFS_REF_TYPE_INVALID,
2662 	BTRFS_REF_TYPE_BLOCK,
2663 	BTRFS_REF_TYPE_DATA,
2664 	BTRFS_REF_TYPE_ANY,
2665 };
2666 
2667 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2668 				     struct btrfs_extent_inline_ref *iref,
2669 				     enum btrfs_inline_ref_type is_data);
2670 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2671 
2672 /*
2673  * Take the number of bytes to be checksummmed and figure out how many leaves
2674  * it would require to store the csums for that many bytes.
2675  */
2676 static inline u64 btrfs_csum_bytes_to_leaves(
2677 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2678 {
2679 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2680 
2681 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2682 }
2683 
2684 /*
2685  * Use this if we would be adding new items, as we could split nodes as we cow
2686  * down the tree.
2687  */
2688 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2689 						  unsigned num_items)
2690 {
2691 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2692 }
2693 
2694 /*
2695  * Doing a truncate or a modification won't result in new nodes or leaves, just
2696  * what we need for COW.
2697  */
2698 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2699 						 unsigned num_items)
2700 {
2701 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2702 }
2703 
2704 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2705 			      u64 start, u64 num_bytes);
2706 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2707 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2708 			   unsigned long count);
2709 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2710 				  struct btrfs_delayed_ref_root *delayed_refs,
2711 				  struct btrfs_delayed_ref_head *head);
2712 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2713 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2714 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2715 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2716 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2717 		     int reserved);
2718 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2719 				    u64 bytenr, u64 num_bytes);
2720 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2721 int btrfs_cross_ref_exist(struct btrfs_root *root,
2722 			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2723 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2724 					     struct btrfs_root *root,
2725 					     u64 parent, u64 root_objectid,
2726 					     const struct btrfs_disk_key *key,
2727 					     int level, u64 hint,
2728 					     u64 empty_size,
2729 					     enum btrfs_lock_nesting nest);
2730 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2731 			   u64 root_id,
2732 			   struct extent_buffer *buf,
2733 			   u64 parent, int last_ref);
2734 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2735 				     struct btrfs_root *root, u64 owner,
2736 				     u64 offset, u64 ram_bytes,
2737 				     struct btrfs_key *ins);
2738 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2739 				   u64 root_objectid, u64 owner, u64 offset,
2740 				   struct btrfs_key *ins);
2741 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2742 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2743 			 struct btrfs_key *ins, int is_data, int delalloc);
2744 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2745 		  struct extent_buffer *buf, int full_backref);
2746 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2747 		  struct extent_buffer *buf, int full_backref);
2748 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2749 				struct extent_buffer *eb, u64 flags,
2750 				int level, int is_data);
2751 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2752 
2753 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2754 			       u64 start, u64 len, int delalloc);
2755 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2756 			      u64 len);
2757 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2758 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2759 			 struct btrfs_ref *generic_ref);
2760 
2761 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2762 
2763 /*
2764  * Different levels for to flush space when doing space reservations.
2765  *
2766  * The higher the level, the more methods we try to reclaim space.
2767  */
2768 enum btrfs_reserve_flush_enum {
2769 	/* If we are in the transaction, we can't flush anything.*/
2770 	BTRFS_RESERVE_NO_FLUSH,
2771 
2772 	/*
2773 	 * Flush space by:
2774 	 * - Running delayed inode items
2775 	 * - Allocating a new chunk
2776 	 */
2777 	BTRFS_RESERVE_FLUSH_LIMIT,
2778 
2779 	/*
2780 	 * Flush space by:
2781 	 * - Running delayed inode items
2782 	 * - Running delayed refs
2783 	 * - Running delalloc and waiting for ordered extents
2784 	 * - Allocating a new chunk
2785 	 */
2786 	BTRFS_RESERVE_FLUSH_EVICT,
2787 
2788 	/*
2789 	 * Flush space by above mentioned methods and by:
2790 	 * - Running delayed iputs
2791 	 * - Committing transaction
2792 	 *
2793 	 * Can be interrupted by a fatal signal.
2794 	 */
2795 	BTRFS_RESERVE_FLUSH_DATA,
2796 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2797 	BTRFS_RESERVE_FLUSH_ALL,
2798 
2799 	/*
2800 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2801 	 * global rsv.
2802 	 *
2803 	 * Can be interrupted by a fatal signal.
2804 	 */
2805 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2806 };
2807 
2808 enum btrfs_flush_state {
2809 	FLUSH_DELAYED_ITEMS_NR	=	1,
2810 	FLUSH_DELAYED_ITEMS	=	2,
2811 	FLUSH_DELAYED_REFS_NR	=	3,
2812 	FLUSH_DELAYED_REFS	=	4,
2813 	FLUSH_DELALLOC		=	5,
2814 	FLUSH_DELALLOC_WAIT	=	6,
2815 	FLUSH_DELALLOC_FULL	=	7,
2816 	ALLOC_CHUNK		=	8,
2817 	ALLOC_CHUNK_FORCE	=	9,
2818 	RUN_DELAYED_IPUTS	=	10,
2819 	COMMIT_TRANS		=	11,
2820 };
2821 
2822 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2823 				     struct btrfs_block_rsv *rsv,
2824 				     int nitems, bool use_global_rsv);
2825 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2826 				      struct btrfs_block_rsv *rsv);
2827 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2828 
2829 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2830 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2831 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2832 				   u64 start, u64 end);
2833 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2834 			 u64 num_bytes, u64 *actual_bytes);
2835 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2836 
2837 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2838 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2839 					 struct btrfs_fs_info *fs_info);
2840 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2841 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2842 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2843 
2844 /* ctree.c */
2845 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2846 		     int *slot);
2847 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2848 int btrfs_previous_item(struct btrfs_root *root,
2849 			struct btrfs_path *path, u64 min_objectid,
2850 			int type);
2851 int btrfs_previous_extent_item(struct btrfs_root *root,
2852 			struct btrfs_path *path, u64 min_objectid);
2853 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2854 			     struct btrfs_path *path,
2855 			     const struct btrfs_key *new_key);
2856 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2857 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2858 			struct btrfs_key *key, int lowest_level,
2859 			u64 min_trans);
2860 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2861 			 struct btrfs_path *path,
2862 			 u64 min_trans);
2863 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2864 					   int slot);
2865 
2866 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2867 		    struct btrfs_root *root, struct extent_buffer *buf,
2868 		    struct extent_buffer *parent, int parent_slot,
2869 		    struct extent_buffer **cow_ret,
2870 		    enum btrfs_lock_nesting nest);
2871 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2872 		      struct btrfs_root *root,
2873 		      struct extent_buffer *buf,
2874 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2875 int btrfs_block_can_be_shared(struct btrfs_root *root,
2876 			      struct extent_buffer *buf);
2877 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2878 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2879 int btrfs_split_item(struct btrfs_trans_handle *trans,
2880 		     struct btrfs_root *root,
2881 		     struct btrfs_path *path,
2882 		     const struct btrfs_key *new_key,
2883 		     unsigned long split_offset);
2884 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2885 			 struct btrfs_root *root,
2886 			 struct btrfs_path *path,
2887 			 const struct btrfs_key *new_key);
2888 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2889 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2890 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2891 		      const struct btrfs_key *key, struct btrfs_path *p,
2892 		      int ins_len, int cow);
2893 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2894 			  struct btrfs_path *p, u64 time_seq);
2895 int btrfs_search_slot_for_read(struct btrfs_root *root,
2896 			       const struct btrfs_key *key,
2897 			       struct btrfs_path *p, int find_higher,
2898 			       int return_any);
2899 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2900 		       struct btrfs_root *root, struct extent_buffer *parent,
2901 		       int start_slot, u64 *last_ret,
2902 		       struct btrfs_key *progress);
2903 void btrfs_release_path(struct btrfs_path *p);
2904 struct btrfs_path *btrfs_alloc_path(void);
2905 void btrfs_free_path(struct btrfs_path *p);
2906 
2907 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2908 		   struct btrfs_path *path, int slot, int nr);
2909 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2910 				 struct btrfs_root *root,
2911 				 struct btrfs_path *path)
2912 {
2913 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2914 }
2915 
2916 /*
2917  * Describes a batch of items to insert in a btree. This is used by
2918  * btrfs_insert_empty_items().
2919  */
2920 struct btrfs_item_batch {
2921 	/*
2922 	 * Pointer to an array containing the keys of the items to insert (in
2923 	 * sorted order).
2924 	 */
2925 	const struct btrfs_key *keys;
2926 	/* Pointer to an array containing the data size for each item to insert. */
2927 	const u32 *data_sizes;
2928 	/*
2929 	 * The sum of data sizes for all items. The caller can compute this while
2930 	 * setting up the data_sizes array, so it ends up being more efficient
2931 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2932 	 * doing it, as it would avoid an extra loop over a potentially large
2933 	 * array, and in the case of setup_item_for_insert(), we would be doing
2934 	 * it while holding a write lock on a leaf and often on upper level nodes
2935 	 * too, unnecessarily increasing the size of a critical section.
2936 	 */
2937 	u32 total_data_size;
2938 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
2939 	int nr;
2940 };
2941 
2942 void btrfs_setup_item_for_insert(struct btrfs_root *root,
2943 				 struct btrfs_path *path,
2944 				 const struct btrfs_key *key,
2945 				 u32 data_size);
2946 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2947 		      const struct btrfs_key *key, void *data, u32 data_size);
2948 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2949 			     struct btrfs_root *root,
2950 			     struct btrfs_path *path,
2951 			     const struct btrfs_item_batch *batch);
2952 
2953 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2954 					  struct btrfs_root *root,
2955 					  struct btrfs_path *path,
2956 					  const struct btrfs_key *key,
2957 					  u32 data_size)
2958 {
2959 	struct btrfs_item_batch batch;
2960 
2961 	batch.keys = key;
2962 	batch.data_sizes = &data_size;
2963 	batch.total_data_size = data_size;
2964 	batch.nr = 1;
2965 
2966 	return btrfs_insert_empty_items(trans, root, path, &batch);
2967 }
2968 
2969 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2970 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2971 			u64 time_seq);
2972 
2973 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2974 			   struct btrfs_path *path);
2975 
2976 static inline int btrfs_next_old_item(struct btrfs_root *root,
2977 				      struct btrfs_path *p, u64 time_seq)
2978 {
2979 	++p->slots[0];
2980 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2981 		return btrfs_next_old_leaf(root, p, time_seq);
2982 	return 0;
2983 }
2984 
2985 /*
2986  * Search the tree again to find a leaf with greater keys.
2987  *
2988  * Returns 0 if it found something or 1 if there are no greater leaves.
2989  * Returns < 0 on error.
2990  */
2991 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2992 {
2993 	return btrfs_next_old_leaf(root, path, 0);
2994 }
2995 
2996 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2997 {
2998 	return btrfs_next_old_item(root, p, 0);
2999 }
3000 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3001 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3002 				     int for_reloc);
3003 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3004 			struct btrfs_root *root,
3005 			struct extent_buffer *node,
3006 			struct extent_buffer *parent);
3007 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3008 {
3009 	/*
3010 	 * Do it this way so we only ever do one test_bit in the normal case.
3011 	 */
3012 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3013 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3014 			return 2;
3015 		return 1;
3016 	}
3017 	return 0;
3018 }
3019 
3020 /*
3021  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3022  * anything except sleeping. This function is used to check the status of
3023  * the fs.
3024  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3025  * since setting and checking for SB_RDONLY in the superblock's flags is not
3026  * atomic.
3027  */
3028 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3029 {
3030 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3031 		btrfs_fs_closing(fs_info);
3032 }
3033 
3034 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3035 {
3036 	sb->s_flags |= SB_RDONLY;
3037 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3038 }
3039 
3040 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3041 {
3042 	sb->s_flags &= ~SB_RDONLY;
3043 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3044 }
3045 
3046 /* root-item.c */
3047 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3048 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3049 		       int name_len);
3050 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3051 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3052 		       int name_len);
3053 int btrfs_del_root(struct btrfs_trans_handle *trans,
3054 		   const struct btrfs_key *key);
3055 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3056 		      const struct btrfs_key *key,
3057 		      struct btrfs_root_item *item);
3058 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3059 				   struct btrfs_root *root,
3060 				   struct btrfs_key *key,
3061 				   struct btrfs_root_item *item);
3062 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3063 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3064 		    struct btrfs_key *root_key);
3065 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3066 void btrfs_set_root_node(struct btrfs_root_item *item,
3067 			 struct extent_buffer *node);
3068 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3069 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3070 			     struct btrfs_root *root);
3071 
3072 /* uuid-tree.c */
3073 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3074 			u64 subid);
3075 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3076 			u64 subid);
3077 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3078 
3079 /* dir-item.c */
3080 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3081 			  const char *name, int name_len);
3082 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3083 			  int name_len, struct btrfs_inode *dir,
3084 			  struct btrfs_key *location, u8 type, u64 index);
3085 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3086 					     struct btrfs_root *root,
3087 					     struct btrfs_path *path, u64 dir,
3088 					     const char *name, int name_len,
3089 					     int mod);
3090 struct btrfs_dir_item *
3091 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3092 			    struct btrfs_root *root,
3093 			    struct btrfs_path *path, u64 dir,
3094 			    u64 index, const char *name, int name_len,
3095 			    int mod);
3096 struct btrfs_dir_item *
3097 btrfs_search_dir_index_item(struct btrfs_root *root,
3098 			    struct btrfs_path *path, u64 dirid,
3099 			    const char *name, int name_len);
3100 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3101 			      struct btrfs_root *root,
3102 			      struct btrfs_path *path,
3103 			      struct btrfs_dir_item *di);
3104 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3105 			    struct btrfs_root *root,
3106 			    struct btrfs_path *path, u64 objectid,
3107 			    const char *name, u16 name_len,
3108 			    const void *data, u16 data_len);
3109 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3110 					  struct btrfs_root *root,
3111 					  struct btrfs_path *path, u64 dir,
3112 					  const char *name, u16 name_len,
3113 					  int mod);
3114 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3115 						 struct btrfs_path *path,
3116 						 const char *name,
3117 						 int name_len);
3118 
3119 /* orphan.c */
3120 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3121 			     struct btrfs_root *root, u64 offset);
3122 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3123 			  struct btrfs_root *root, u64 offset);
3124 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3125 
3126 /* file-item.c */
3127 struct btrfs_dio_private;
3128 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3129 		    struct btrfs_root *root, u64 bytenr, u64 len);
3130 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3131 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3132 			     struct btrfs_root *root,
3133 			     u64 objectid, u64 pos,
3134 			     u64 disk_offset, u64 disk_num_bytes,
3135 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3136 			     u8 compression, u8 encryption, u16 other_encoding);
3137 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3138 			     struct btrfs_root *root,
3139 			     struct btrfs_path *path, u64 objectid,
3140 			     u64 bytenr, int mod);
3141 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3142 			   struct btrfs_root *root,
3143 			   struct btrfs_ordered_sum *sums);
3144 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3145 				u64 file_start, int contig);
3146 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3147 			     struct list_head *list, int search_commit);
3148 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3149 				     const struct btrfs_path *path,
3150 				     struct btrfs_file_extent_item *fi,
3151 				     const bool new_inline,
3152 				     struct extent_map *em);
3153 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3154 					u64 len);
3155 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3156 				      u64 len);
3157 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3158 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3159 
3160 /* inode.c */
3161 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3162 				   int mirror_num, unsigned long bio_flags);
3163 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3164 				    u32 bio_offset, struct page *page,
3165 				    u64 start, u64 end);
3166 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3167 					   u64 start, u64 len);
3168 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3169 			      u64 *orig_start, u64 *orig_block_len,
3170 			      u64 *ram_bytes, bool strict);
3171 
3172 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3173 				struct btrfs_inode *inode);
3174 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3175 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3176 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3177 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3178 		       const char *name, int name_len);
3179 int btrfs_add_link(struct btrfs_trans_handle *trans,
3180 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3181 		   const char *name, int name_len, int add_backref, u64 index);
3182 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3183 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3184 			 int front);
3185 
3186 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3187 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3188 			       bool in_reclaim_context);
3189 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3190 			      unsigned int extra_bits,
3191 			      struct extent_state **cached_state);
3192 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3193 			     struct btrfs_root *new_root,
3194 			     struct btrfs_root *parent_root,
3195 			     struct user_namespace *mnt_userns);
3196  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3197 			       unsigned *bits);
3198 void btrfs_clear_delalloc_extent(struct inode *inode,
3199 				 struct extent_state *state, unsigned *bits);
3200 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3201 				 struct extent_state *other);
3202 void btrfs_split_delalloc_extent(struct inode *inode,
3203 				 struct extent_state *orig, u64 split);
3204 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3205 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3206 int btrfs_readpage(struct file *file, struct page *page);
3207 void btrfs_evict_inode(struct inode *inode);
3208 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3209 struct inode *btrfs_alloc_inode(struct super_block *sb);
3210 void btrfs_destroy_inode(struct inode *inode);
3211 void btrfs_free_inode(struct inode *inode);
3212 int btrfs_drop_inode(struct inode *inode);
3213 int __init btrfs_init_cachep(void);
3214 void __cold btrfs_destroy_cachep(void);
3215 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3216 			      struct btrfs_root *root, struct btrfs_path *path);
3217 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3218 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3219 				    struct page *page, size_t pg_offset,
3220 				    u64 start, u64 end);
3221 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3222 		       struct btrfs_root *root, struct btrfs_inode *inode);
3223 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3224 				struct btrfs_root *root, struct btrfs_inode *inode);
3225 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3226 		struct btrfs_inode *inode);
3227 int btrfs_orphan_cleanup(struct btrfs_root *root);
3228 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3229 void btrfs_add_delayed_iput(struct inode *inode);
3230 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3231 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3232 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3233 			      u64 start, u64 num_bytes, u64 min_size,
3234 			      loff_t actual_len, u64 *alloc_hint);
3235 int btrfs_prealloc_file_range_trans(struct inode *inode,
3236 				    struct btrfs_trans_handle *trans, int mode,
3237 				    u64 start, u64 num_bytes, u64 min_size,
3238 				    loff_t actual_len, u64 *alloc_hint);
3239 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3240 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3241 		struct writeback_control *wbc);
3242 int btrfs_writepage_cow_fixup(struct page *page);
3243 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3244 					  struct page *page, u64 start,
3245 					  u64 end, bool uptodate);
3246 extern const struct dentry_operations btrfs_dentry_operations;
3247 extern const struct iomap_ops btrfs_dio_iomap_ops;
3248 extern const struct iomap_dio_ops btrfs_dio_ops;
3249 
3250 /* Inode locking type flags, by default the exclusive lock is taken */
3251 #define BTRFS_ILOCK_SHARED	(1U << 0)
3252 #define BTRFS_ILOCK_TRY 	(1U << 1)
3253 #define BTRFS_ILOCK_MMAP	(1U << 2)
3254 
3255 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3256 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3257 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3258 			      const u64 add_bytes,
3259 			      const u64 del_bytes);
3260 
3261 /* ioctl.c */
3262 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3263 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3264 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3265 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3266 		       struct dentry *dentry, struct fileattr *fa);
3267 int btrfs_ioctl_get_supported_features(void __user *arg);
3268 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3269 int __pure btrfs_is_empty_uuid(u8 *uuid);
3270 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3271 		      struct btrfs_ioctl_defrag_range_args *range,
3272 		      u64 newer_than, unsigned long max_to_defrag);
3273 void btrfs_get_block_group_info(struct list_head *groups_list,
3274 				struct btrfs_ioctl_space_info *space);
3275 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3276 			       struct btrfs_ioctl_balance_args *bargs);
3277 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3278 			enum btrfs_exclusive_operation type);
3279 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3280 				 enum btrfs_exclusive_operation type);
3281 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3282 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3283 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3284 			  enum btrfs_exclusive_operation op);
3285 
3286 
3287 /* file.c */
3288 int __init btrfs_auto_defrag_init(void);
3289 void __cold btrfs_auto_defrag_exit(void);
3290 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3291 			   struct btrfs_inode *inode);
3292 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3293 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3294 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3295 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3296 			     int skip_pinned);
3297 extern const struct file_operations btrfs_file_operations;
3298 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3299 		       struct btrfs_root *root, struct btrfs_inode *inode,
3300 		       struct btrfs_drop_extents_args *args);
3301 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3302 			   struct btrfs_path *path, const u64 start,
3303 			   const u64 end,
3304 			   struct btrfs_replace_extent_info *extent_info,
3305 			   struct btrfs_trans_handle **trans_out);
3306 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3307 			      struct btrfs_inode *inode, u64 start, u64 end);
3308 int btrfs_release_file(struct inode *inode, struct file *file);
3309 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3310 		      size_t num_pages, loff_t pos, size_t write_bytes,
3311 		      struct extent_state **cached, bool noreserve);
3312 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3313 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3314 			   size_t *write_bytes);
3315 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3316 
3317 /* tree-defrag.c */
3318 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3319 			struct btrfs_root *root);
3320 
3321 /* super.c */
3322 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3323 			unsigned long new_flags);
3324 int btrfs_sync_fs(struct super_block *sb, int wait);
3325 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3326 					  u64 subvol_objectid);
3327 
3328 static inline __printf(2, 3) __cold
3329 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3330 {
3331 }
3332 
3333 #ifdef CONFIG_PRINTK
3334 __printf(2, 3)
3335 __cold
3336 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3337 #else
3338 #define btrfs_printk(fs_info, fmt, args...) \
3339 	btrfs_no_printk(fs_info, fmt, ##args)
3340 #endif
3341 
3342 #define btrfs_emerg(fs_info, fmt, args...) \
3343 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3344 #define btrfs_alert(fs_info, fmt, args...) \
3345 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3346 #define btrfs_crit(fs_info, fmt, args...) \
3347 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3348 #define btrfs_err(fs_info, fmt, args...) \
3349 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3350 #define btrfs_warn(fs_info, fmt, args...) \
3351 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3352 #define btrfs_notice(fs_info, fmt, args...) \
3353 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3354 #define btrfs_info(fs_info, fmt, args...) \
3355 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3356 
3357 /*
3358  * Wrappers that use printk_in_rcu
3359  */
3360 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3361 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3362 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3363 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3364 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3365 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3366 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3367 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3368 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3369 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3370 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3371 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3372 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3373 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3374 
3375 /*
3376  * Wrappers that use a ratelimited printk_in_rcu
3377  */
3378 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3379 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3380 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3381 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3382 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3383 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3384 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3385 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3386 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3387 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3388 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3389 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3390 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3391 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3392 
3393 /*
3394  * Wrappers that use a ratelimited printk
3395  */
3396 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3397 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3398 #define btrfs_alert_rl(fs_info, fmt, args...) \
3399 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3400 #define btrfs_crit_rl(fs_info, fmt, args...) \
3401 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3402 #define btrfs_err_rl(fs_info, fmt, args...) \
3403 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3404 #define btrfs_warn_rl(fs_info, fmt, args...) \
3405 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3406 #define btrfs_notice_rl(fs_info, fmt, args...) \
3407 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3408 #define btrfs_info_rl(fs_info, fmt, args...) \
3409 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3410 
3411 #if defined(CONFIG_DYNAMIC_DEBUG)
3412 #define btrfs_debug(fs_info, fmt, args...)				\
3413 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3414 				   fs_info, KERN_DEBUG fmt, ##args)
3415 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3416 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3417 				   fs_info, KERN_DEBUG fmt, ##args)
3418 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3419 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3420 				   fs_info, KERN_DEBUG fmt, ##args)
3421 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3422 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3423 				   fs_info, KERN_DEBUG fmt, ##args)
3424 #elif defined(DEBUG)
3425 #define btrfs_debug(fs_info, fmt, args...) \
3426 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3427 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3428 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3429 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3430 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3431 #define btrfs_debug_rl(fs_info, fmt, args...) \
3432 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3433 #else
3434 #define btrfs_debug(fs_info, fmt, args...) \
3435 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3436 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3437 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3438 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3439 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3440 #define btrfs_debug_rl(fs_info, fmt, args...) \
3441 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3442 #endif
3443 
3444 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3445 do {							\
3446 	rcu_read_lock();				\
3447 	btrfs_printk(fs_info, fmt, ##args);		\
3448 	rcu_read_unlock();				\
3449 } while (0)
3450 
3451 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3452 do {							\
3453 	rcu_read_lock();				\
3454 	btrfs_no_printk(fs_info, fmt, ##args);		\
3455 	rcu_read_unlock();				\
3456 } while (0)
3457 
3458 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3459 do {								\
3460 	static DEFINE_RATELIMIT_STATE(_rs,			\
3461 		DEFAULT_RATELIMIT_INTERVAL,			\
3462 		DEFAULT_RATELIMIT_BURST);       		\
3463 	if (__ratelimit(&_rs))					\
3464 		btrfs_printk(fs_info, fmt, ##args);		\
3465 } while (0)
3466 
3467 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3468 do {								\
3469 	rcu_read_lock();					\
3470 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3471 	rcu_read_unlock();					\
3472 } while (0)
3473 
3474 #ifdef CONFIG_BTRFS_ASSERT
3475 __cold __noreturn
3476 static inline void assertfail(const char *expr, const char *file, int line)
3477 {
3478 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3479 	BUG();
3480 }
3481 
3482 #define ASSERT(expr)						\
3483 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3484 
3485 #else
3486 static inline void assertfail(const char *expr, const char* file, int line) { }
3487 #define ASSERT(expr)	(void)(expr)
3488 #endif
3489 
3490 #if BITS_PER_LONG == 32
3491 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3492 /*
3493  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3494  * addresses of extents.
3495  *
3496  * For 4K page size it's about 10T, for 64K it's 160T.
3497  */
3498 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3499 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3500 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3501 #endif
3502 
3503 /*
3504  * Get the correct offset inside the page of extent buffer.
3505  *
3506  * @eb:		target extent buffer
3507  * @start:	offset inside the extent buffer
3508  *
3509  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3510  */
3511 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3512 					   unsigned long offset)
3513 {
3514 	/*
3515 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3516 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3517 	 *
3518 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3519 	 * to the eb, thus we have to take the eb->start into consideration.
3520 	 */
3521 	return offset_in_page(offset + eb->start);
3522 }
3523 
3524 static inline unsigned long get_eb_page_index(unsigned long offset)
3525 {
3526 	/*
3527 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3528 	 *
3529 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3530 	 * and have ensured that all tree blocks are contained in one page,
3531 	 * thus we always get index == 0.
3532 	 */
3533 	return offset >> PAGE_SHIFT;
3534 }
3535 
3536 /*
3537  * Use that for functions that are conditionally exported for sanity tests but
3538  * otherwise static
3539  */
3540 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3541 #define EXPORT_FOR_TESTS static
3542 #else
3543 #define EXPORT_FOR_TESTS
3544 #endif
3545 
3546 __cold
3547 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3548 {
3549 	btrfs_err(fs_info,
3550 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3551 }
3552 
3553 __printf(5, 6)
3554 __cold
3555 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3556 		     unsigned int line, int errno, const char *fmt, ...);
3557 
3558 const char * __attribute_const__ btrfs_decode_error(int errno);
3559 
3560 __cold
3561 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3562 			       const char *function,
3563 			       unsigned int line, int errno);
3564 
3565 /*
3566  * Call btrfs_abort_transaction as early as possible when an error condition is
3567  * detected, that way the exact line number is reported.
3568  */
3569 #define btrfs_abort_transaction(trans, errno)		\
3570 do {								\
3571 	/* Report first abort since mount */			\
3572 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3573 			&((trans)->fs_info->fs_state))) {	\
3574 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3575 			WARN(1, KERN_DEBUG				\
3576 			"BTRFS: Transaction aborted (error %d)\n",	\
3577 			(errno));					\
3578 		} else {						\
3579 			btrfs_debug((trans)->fs_info,			\
3580 				    "Transaction aborted (error %d)", \
3581 				  (errno));			\
3582 		}						\
3583 	}							\
3584 	__btrfs_abort_transaction((trans), __func__,		\
3585 				  __LINE__, (errno));		\
3586 } while (0)
3587 
3588 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3589 do {								\
3590 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3591 			  (errno), fmt, ##args);		\
3592 } while (0)
3593 
3594 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3595 						   &(fs_info)->fs_state)))
3596 
3597 __printf(5, 6)
3598 __cold
3599 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3600 		   unsigned int line, int errno, const char *fmt, ...);
3601 /*
3602  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3603  * will panic().  Otherwise we BUG() here.
3604  */
3605 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3606 do {									\
3607 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3608 	BUG();								\
3609 } while (0)
3610 
3611 
3612 /* compatibility and incompatibility defines */
3613 
3614 #define btrfs_set_fs_incompat(__fs_info, opt) \
3615 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3616 				#opt)
3617 
3618 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3619 					   u64 flag, const char* name)
3620 {
3621 	struct btrfs_super_block *disk_super;
3622 	u64 features;
3623 
3624 	disk_super = fs_info->super_copy;
3625 	features = btrfs_super_incompat_flags(disk_super);
3626 	if (!(features & flag)) {
3627 		spin_lock(&fs_info->super_lock);
3628 		features = btrfs_super_incompat_flags(disk_super);
3629 		if (!(features & flag)) {
3630 			features |= flag;
3631 			btrfs_set_super_incompat_flags(disk_super, features);
3632 			btrfs_info(fs_info,
3633 				"setting incompat feature flag for %s (0x%llx)",
3634 				name, flag);
3635 		}
3636 		spin_unlock(&fs_info->super_lock);
3637 	}
3638 }
3639 
3640 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3641 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3642 				  #opt)
3643 
3644 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3645 					     u64 flag, const char* name)
3646 {
3647 	struct btrfs_super_block *disk_super;
3648 	u64 features;
3649 
3650 	disk_super = fs_info->super_copy;
3651 	features = btrfs_super_incompat_flags(disk_super);
3652 	if (features & flag) {
3653 		spin_lock(&fs_info->super_lock);
3654 		features = btrfs_super_incompat_flags(disk_super);
3655 		if (features & flag) {
3656 			features &= ~flag;
3657 			btrfs_set_super_incompat_flags(disk_super, features);
3658 			btrfs_info(fs_info,
3659 				"clearing incompat feature flag for %s (0x%llx)",
3660 				name, flag);
3661 		}
3662 		spin_unlock(&fs_info->super_lock);
3663 	}
3664 }
3665 
3666 #define btrfs_fs_incompat(fs_info, opt) \
3667 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3668 
3669 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3670 {
3671 	struct btrfs_super_block *disk_super;
3672 	disk_super = fs_info->super_copy;
3673 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3674 }
3675 
3676 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3677 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3678 				 #opt)
3679 
3680 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3681 					    u64 flag, const char *name)
3682 {
3683 	struct btrfs_super_block *disk_super;
3684 	u64 features;
3685 
3686 	disk_super = fs_info->super_copy;
3687 	features = btrfs_super_compat_ro_flags(disk_super);
3688 	if (!(features & flag)) {
3689 		spin_lock(&fs_info->super_lock);
3690 		features = btrfs_super_compat_ro_flags(disk_super);
3691 		if (!(features & flag)) {
3692 			features |= flag;
3693 			btrfs_set_super_compat_ro_flags(disk_super, features);
3694 			btrfs_info(fs_info,
3695 				"setting compat-ro feature flag for %s (0x%llx)",
3696 				name, flag);
3697 		}
3698 		spin_unlock(&fs_info->super_lock);
3699 	}
3700 }
3701 
3702 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3703 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3704 				   #opt)
3705 
3706 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3707 					      u64 flag, const char *name)
3708 {
3709 	struct btrfs_super_block *disk_super;
3710 	u64 features;
3711 
3712 	disk_super = fs_info->super_copy;
3713 	features = btrfs_super_compat_ro_flags(disk_super);
3714 	if (features & flag) {
3715 		spin_lock(&fs_info->super_lock);
3716 		features = btrfs_super_compat_ro_flags(disk_super);
3717 		if (features & flag) {
3718 			features &= ~flag;
3719 			btrfs_set_super_compat_ro_flags(disk_super, features);
3720 			btrfs_info(fs_info,
3721 				"clearing compat-ro feature flag for %s (0x%llx)",
3722 				name, flag);
3723 		}
3724 		spin_unlock(&fs_info->super_lock);
3725 	}
3726 }
3727 
3728 #define btrfs_fs_compat_ro(fs_info, opt) \
3729 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3730 
3731 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3732 {
3733 	struct btrfs_super_block *disk_super;
3734 	disk_super = fs_info->super_copy;
3735 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3736 }
3737 
3738 /* acl.c */
3739 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3740 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3741 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3742 		  struct posix_acl *acl, int type);
3743 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3744 		   struct inode *inode, struct inode *dir);
3745 #else
3746 #define btrfs_get_acl NULL
3747 #define btrfs_set_acl NULL
3748 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3749 				 struct inode *inode, struct inode *dir)
3750 {
3751 	return 0;
3752 }
3753 #endif
3754 
3755 /* relocation.c */
3756 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3757 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3758 			  struct btrfs_root *root);
3759 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3760 			    struct btrfs_root *root);
3761 int btrfs_recover_relocation(struct btrfs_root *root);
3762 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3763 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3764 			  struct btrfs_root *root, struct extent_buffer *buf,
3765 			  struct extent_buffer *cow);
3766 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3767 			      u64 *bytes_to_reserve);
3768 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3769 			      struct btrfs_pending_snapshot *pending);
3770 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3771 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3772 				   u64 bytenr);
3773 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3774 
3775 /* scrub.c */
3776 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3777 		    u64 end, struct btrfs_scrub_progress *progress,
3778 		    int readonly, int is_dev_replace);
3779 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3780 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3781 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3782 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3783 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3784 			 struct btrfs_scrub_progress *progress);
3785 static inline void btrfs_init_full_stripe_locks_tree(
3786 			struct btrfs_full_stripe_locks_tree *locks_root)
3787 {
3788 	locks_root->root = RB_ROOT;
3789 	mutex_init(&locks_root->lock);
3790 }
3791 
3792 /* dev-replace.c */
3793 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3794 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3795 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3796 
3797 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3798 {
3799 	btrfs_bio_counter_sub(fs_info, 1);
3800 }
3801 
3802 static inline int is_fstree(u64 rootid)
3803 {
3804 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3805 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3806 	      !btrfs_qgroup_level(rootid)))
3807 		return 1;
3808 	return 0;
3809 }
3810 
3811 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3812 {
3813 	return signal_pending(current);
3814 }
3815 
3816 /* verity.c */
3817 #ifdef CONFIG_FS_VERITY
3818 
3819 extern const struct fsverity_operations btrfs_verityops;
3820 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3821 
3822 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3823 		   encryption, 8);
3824 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3825 		   size, 64);
3826 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3827 			 struct btrfs_verity_descriptor_item, encryption, 8);
3828 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3829 			 struct btrfs_verity_descriptor_item, size, 64);
3830 
3831 #else
3832 
3833 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3834 {
3835 	return 0;
3836 }
3837 
3838 #endif
3839 
3840 /* Sanity test specific functions */
3841 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3842 void btrfs_test_destroy_inode(struct inode *inode);
3843 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3844 {
3845 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3846 }
3847 #else
3848 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3849 {
3850 	return 0;
3851 }
3852 #endif
3853 
3854 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3855 {
3856 	return fs_info->zoned != 0;
3857 }
3858 
3859 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3860 {
3861 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3862 }
3863 
3864 /*
3865  * We use page status Private2 to indicate there is an ordered extent with
3866  * unfinished IO.
3867  *
3868  * Rename the Private2 accessors to Ordered, to improve readability.
3869  */
3870 #define PageOrdered(page)		PagePrivate2(page)
3871 #define SetPageOrdered(page)		SetPagePrivate2(page)
3872 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
3873 
3874 #endif
3875