1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 /* 111 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 112 */ 113 static inline u32 count_max_extents(u64 size) 114 { 115 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 116 } 117 118 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 119 { 120 BUG_ON(num_stripes == 0); 121 return sizeof(struct btrfs_chunk) + 122 sizeof(struct btrfs_stripe) * (num_stripes - 1); 123 } 124 125 /* 126 * Runtime (in-memory) states of filesystem 127 */ 128 enum { 129 /* Global indicator of serious filesystem errors */ 130 BTRFS_FS_STATE_ERROR, 131 /* 132 * Filesystem is being remounted, allow to skip some operations, like 133 * defrag 134 */ 135 BTRFS_FS_STATE_REMOUNTING, 136 /* Filesystem in RO mode */ 137 BTRFS_FS_STATE_RO, 138 /* Track if a transaction abort has been reported on this filesystem */ 139 BTRFS_FS_STATE_TRANS_ABORTED, 140 /* 141 * Bio operations should be blocked on this filesystem because a source 142 * or target device is being destroyed as part of a device replace 143 */ 144 BTRFS_FS_STATE_DEV_REPLACING, 145 /* The btrfs_fs_info created for self-tests */ 146 BTRFS_FS_STATE_DUMMY_FS_INFO, 147 148 BTRFS_FS_STATE_NO_CSUMS, 149 150 /* Indicates there was an error cleaning up a log tree. */ 151 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 152 153 BTRFS_FS_STATE_COUNT 154 }; 155 156 #define BTRFS_BACKREF_REV_MAX 256 157 #define BTRFS_BACKREF_REV_SHIFT 56 158 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 159 BTRFS_BACKREF_REV_SHIFT) 160 161 #define BTRFS_OLD_BACKREF_REV 0 162 #define BTRFS_MIXED_BACKREF_REV 1 163 164 /* 165 * every tree block (leaf or node) starts with this header. 166 */ 167 struct btrfs_header { 168 /* these first four must match the super block */ 169 u8 csum[BTRFS_CSUM_SIZE]; 170 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 171 __le64 bytenr; /* which block this node is supposed to live in */ 172 __le64 flags; 173 174 /* allowed to be different from the super from here on down */ 175 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 176 __le64 generation; 177 __le64 owner; 178 __le32 nritems; 179 u8 level; 180 } __attribute__ ((__packed__)); 181 182 /* 183 * this is a very generous portion of the super block, giving us 184 * room to translate 14 chunks with 3 stripes each. 185 */ 186 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 187 188 /* 189 * just in case we somehow lose the roots and are not able to mount, 190 * we store an array of the roots from previous transactions 191 * in the super. 192 */ 193 #define BTRFS_NUM_BACKUP_ROOTS 4 194 struct btrfs_root_backup { 195 __le64 tree_root; 196 __le64 tree_root_gen; 197 198 __le64 chunk_root; 199 __le64 chunk_root_gen; 200 201 __le64 extent_root; 202 __le64 extent_root_gen; 203 204 __le64 fs_root; 205 __le64 fs_root_gen; 206 207 __le64 dev_root; 208 __le64 dev_root_gen; 209 210 __le64 csum_root; 211 __le64 csum_root_gen; 212 213 __le64 total_bytes; 214 __le64 bytes_used; 215 __le64 num_devices; 216 /* future */ 217 __le64 unused_64[4]; 218 219 u8 tree_root_level; 220 u8 chunk_root_level; 221 u8 extent_root_level; 222 u8 fs_root_level; 223 u8 dev_root_level; 224 u8 csum_root_level; 225 /* future and to align */ 226 u8 unused_8[10]; 227 } __attribute__ ((__packed__)); 228 229 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 230 #define BTRFS_SUPER_INFO_SIZE 4096 231 232 /* 233 * the super block basically lists the main trees of the FS 234 * it currently lacks any block count etc etc 235 */ 236 struct btrfs_super_block { 237 /* the first 4 fields must match struct btrfs_header */ 238 u8 csum[BTRFS_CSUM_SIZE]; 239 /* FS specific UUID, visible to user */ 240 u8 fsid[BTRFS_FSID_SIZE]; 241 __le64 bytenr; /* this block number */ 242 __le64 flags; 243 244 /* allowed to be different from the btrfs_header from here own down */ 245 __le64 magic; 246 __le64 generation; 247 __le64 root; 248 __le64 chunk_root; 249 __le64 log_root; 250 251 /* this will help find the new super based on the log root */ 252 __le64 log_root_transid; 253 __le64 total_bytes; 254 __le64 bytes_used; 255 __le64 root_dir_objectid; 256 __le64 num_devices; 257 __le32 sectorsize; 258 __le32 nodesize; 259 __le32 __unused_leafsize; 260 __le32 stripesize; 261 __le32 sys_chunk_array_size; 262 __le64 chunk_root_generation; 263 __le64 compat_flags; 264 __le64 compat_ro_flags; 265 __le64 incompat_flags; 266 __le16 csum_type; 267 u8 root_level; 268 u8 chunk_root_level; 269 u8 log_root_level; 270 struct btrfs_dev_item dev_item; 271 272 char label[BTRFS_LABEL_SIZE]; 273 274 __le64 cache_generation; 275 __le64 uuid_tree_generation; 276 277 /* the UUID written into btree blocks */ 278 u8 metadata_uuid[BTRFS_FSID_SIZE]; 279 280 /* Extent tree v2 */ 281 __le64 block_group_root; 282 __le64 block_group_root_generation; 283 u8 block_group_root_level; 284 285 /* future expansion */ 286 u8 reserved8[7]; 287 __le64 reserved[25]; 288 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 289 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 290 291 /* Padded to 4096 bytes */ 292 u8 padding[565]; 293 } __attribute__ ((__packed__)); 294 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 295 296 /* 297 * Compat flags that we support. If any incompat flags are set other than the 298 * ones specified below then we will fail to mount 299 */ 300 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 301 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 302 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 303 304 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 305 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 306 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 307 BTRFS_FEATURE_COMPAT_RO_VERITY) 308 309 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 310 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 311 312 #ifdef CONFIG_BTRFS_DEBUG 313 /* 314 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 315 */ 316 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 317 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 318 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 319 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 320 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 321 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 322 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 323 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 324 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 325 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 326 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 327 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 328 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 329 BTRFS_FEATURE_INCOMPAT_ZONED | \ 330 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 331 #else 332 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 333 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 334 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 335 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 336 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 337 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 338 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 339 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 340 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 341 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 342 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 343 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 344 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 345 BTRFS_FEATURE_INCOMPAT_ZONED) 346 #endif 347 348 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 349 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 350 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 351 352 /* 353 * A leaf is full of items. offset and size tell us where to find 354 * the item in the leaf (relative to the start of the data area) 355 */ 356 struct btrfs_item { 357 struct btrfs_disk_key key; 358 __le32 offset; 359 __le32 size; 360 } __attribute__ ((__packed__)); 361 362 /* 363 * leaves have an item area and a data area: 364 * [item0, item1....itemN] [free space] [dataN...data1, data0] 365 * 366 * The data is separate from the items to get the keys closer together 367 * during searches. 368 */ 369 struct btrfs_leaf { 370 struct btrfs_header header; 371 struct btrfs_item items[]; 372 } __attribute__ ((__packed__)); 373 374 /* 375 * all non-leaf blocks are nodes, they hold only keys and pointers to 376 * other blocks 377 */ 378 struct btrfs_key_ptr { 379 struct btrfs_disk_key key; 380 __le64 blockptr; 381 __le64 generation; 382 } __attribute__ ((__packed__)); 383 384 struct btrfs_node { 385 struct btrfs_header header; 386 struct btrfs_key_ptr ptrs[]; 387 } __attribute__ ((__packed__)); 388 389 /* Read ahead values for struct btrfs_path.reada */ 390 enum { 391 READA_NONE, 392 READA_BACK, 393 READA_FORWARD, 394 /* 395 * Similar to READA_FORWARD but unlike it: 396 * 397 * 1) It will trigger readahead even for leaves that are not close to 398 * each other on disk; 399 * 2) It also triggers readahead for nodes; 400 * 3) During a search, even when a node or leaf is already in memory, it 401 * will still trigger readahead for other nodes and leaves that follow 402 * it. 403 * 404 * This is meant to be used only when we know we are iterating over the 405 * entire tree or a very large part of it. 406 */ 407 READA_FORWARD_ALWAYS, 408 }; 409 410 /* 411 * btrfs_paths remember the path taken from the root down to the leaf. 412 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 413 * to any other levels that are present. 414 * 415 * The slots array records the index of the item or block pointer 416 * used while walking the tree. 417 */ 418 struct btrfs_path { 419 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 420 int slots[BTRFS_MAX_LEVEL]; 421 /* if there is real range locking, this locks field will change */ 422 u8 locks[BTRFS_MAX_LEVEL]; 423 u8 reada; 424 /* keep some upper locks as we walk down */ 425 u8 lowest_level; 426 427 /* 428 * set by btrfs_split_item, tells search_slot to keep all locks 429 * and to force calls to keep space in the nodes 430 */ 431 unsigned int search_for_split:1; 432 unsigned int keep_locks:1; 433 unsigned int skip_locking:1; 434 unsigned int search_commit_root:1; 435 unsigned int need_commit_sem:1; 436 unsigned int skip_release_on_error:1; 437 /* 438 * Indicate that new item (btrfs_search_slot) is extending already 439 * existing item and ins_len contains only the data size and not item 440 * header (ie. sizeof(struct btrfs_item) is not included). 441 */ 442 unsigned int search_for_extension:1; 443 }; 444 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 445 sizeof(struct btrfs_item)) 446 struct btrfs_dev_replace { 447 u64 replace_state; /* see #define above */ 448 time64_t time_started; /* seconds since 1-Jan-1970 */ 449 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 450 atomic64_t num_write_errors; 451 atomic64_t num_uncorrectable_read_errors; 452 453 u64 cursor_left; 454 u64 committed_cursor_left; 455 u64 cursor_left_last_write_of_item; 456 u64 cursor_right; 457 458 u64 cont_reading_from_srcdev_mode; /* see #define above */ 459 460 int is_valid; 461 int item_needs_writeback; 462 struct btrfs_device *srcdev; 463 struct btrfs_device *tgtdev; 464 465 struct mutex lock_finishing_cancel_unmount; 466 struct rw_semaphore rwsem; 467 468 struct btrfs_scrub_progress scrub_progress; 469 470 struct percpu_counter bio_counter; 471 wait_queue_head_t replace_wait; 472 }; 473 474 /* 475 * free clusters are used to claim free space in relatively large chunks, 476 * allowing us to do less seeky writes. They are used for all metadata 477 * allocations. In ssd_spread mode they are also used for data allocations. 478 */ 479 struct btrfs_free_cluster { 480 spinlock_t lock; 481 spinlock_t refill_lock; 482 struct rb_root root; 483 484 /* largest extent in this cluster */ 485 u64 max_size; 486 487 /* first extent starting offset */ 488 u64 window_start; 489 490 /* We did a full search and couldn't create a cluster */ 491 bool fragmented; 492 493 struct btrfs_block_group *block_group; 494 /* 495 * when a cluster is allocated from a block group, we put the 496 * cluster onto a list in the block group so that it can 497 * be freed before the block group is freed. 498 */ 499 struct list_head block_group_list; 500 }; 501 502 enum btrfs_caching_type { 503 BTRFS_CACHE_NO, 504 BTRFS_CACHE_STARTED, 505 BTRFS_CACHE_FAST, 506 BTRFS_CACHE_FINISHED, 507 BTRFS_CACHE_ERROR, 508 }; 509 510 /* 511 * Tree to record all locked full stripes of a RAID5/6 block group 512 */ 513 struct btrfs_full_stripe_locks_tree { 514 struct rb_root root; 515 struct mutex lock; 516 }; 517 518 /* Discard control. */ 519 /* 520 * Async discard uses multiple lists to differentiate the discard filter 521 * parameters. Index 0 is for completely free block groups where we need to 522 * ensure the entire block group is trimmed without being lossy. Indices 523 * afterwards represent monotonically decreasing discard filter sizes to 524 * prioritize what should be discarded next. 525 */ 526 #define BTRFS_NR_DISCARD_LISTS 3 527 #define BTRFS_DISCARD_INDEX_UNUSED 0 528 #define BTRFS_DISCARD_INDEX_START 1 529 530 struct btrfs_discard_ctl { 531 struct workqueue_struct *discard_workers; 532 struct delayed_work work; 533 spinlock_t lock; 534 struct btrfs_block_group *block_group; 535 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 536 u64 prev_discard; 537 u64 prev_discard_time; 538 atomic_t discardable_extents; 539 atomic64_t discardable_bytes; 540 u64 max_discard_size; 541 u64 delay_ms; 542 u32 iops_limit; 543 u32 kbps_limit; 544 u64 discard_extent_bytes; 545 u64 discard_bitmap_bytes; 546 atomic64_t discard_bytes_saved; 547 }; 548 549 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 550 551 /* fs_info */ 552 struct reloc_control; 553 struct btrfs_device; 554 struct btrfs_fs_devices; 555 struct btrfs_balance_control; 556 struct btrfs_delayed_root; 557 558 /* 559 * Block group or device which contains an active swapfile. Used for preventing 560 * unsafe operations while a swapfile is active. 561 * 562 * These are sorted on (ptr, inode) (note that a block group or device can 563 * contain more than one swapfile). We compare the pointer values because we 564 * don't actually care what the object is, we just need a quick check whether 565 * the object exists in the rbtree. 566 */ 567 struct btrfs_swapfile_pin { 568 struct rb_node node; 569 void *ptr; 570 struct inode *inode; 571 /* 572 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 573 * points to a struct btrfs_device. 574 */ 575 bool is_block_group; 576 /* 577 * Only used when 'is_block_group' is true and it is the number of 578 * extents used by a swapfile for this block group ('ptr' field). 579 */ 580 int bg_extent_count; 581 }; 582 583 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 584 585 enum { 586 BTRFS_FS_CLOSING_START, 587 BTRFS_FS_CLOSING_DONE, 588 BTRFS_FS_LOG_RECOVERING, 589 BTRFS_FS_OPEN, 590 BTRFS_FS_QUOTA_ENABLED, 591 BTRFS_FS_UPDATE_UUID_TREE_GEN, 592 BTRFS_FS_CREATING_FREE_SPACE_TREE, 593 BTRFS_FS_BTREE_ERR, 594 BTRFS_FS_LOG1_ERR, 595 BTRFS_FS_LOG2_ERR, 596 BTRFS_FS_QUOTA_OVERRIDE, 597 /* Used to record internally whether fs has been frozen */ 598 BTRFS_FS_FROZEN, 599 /* 600 * Indicate that balance has been set up from the ioctl and is in the 601 * main phase. The fs_info::balance_ctl is initialized. 602 */ 603 BTRFS_FS_BALANCE_RUNNING, 604 605 /* 606 * Indicate that relocation of a chunk has started, it's set per chunk 607 * and is toggled between chunks. 608 */ 609 BTRFS_FS_RELOC_RUNNING, 610 611 /* Indicate that the cleaner thread is awake and doing something. */ 612 BTRFS_FS_CLEANER_RUNNING, 613 614 /* 615 * The checksumming has an optimized version and is considered fast, 616 * so we don't need to offload checksums to workqueues. 617 */ 618 BTRFS_FS_CSUM_IMPL_FAST, 619 620 /* Indicate that the discard workqueue can service discards. */ 621 BTRFS_FS_DISCARD_RUNNING, 622 623 /* Indicate that we need to cleanup space cache v1 */ 624 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 625 626 /* Indicate that we can't trust the free space tree for caching yet */ 627 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 628 629 /* Indicate whether there are any tree modification log users */ 630 BTRFS_FS_TREE_MOD_LOG_USERS, 631 632 /* Indicate that we want the transaction kthread to commit right now. */ 633 BTRFS_FS_COMMIT_TRANS, 634 635 /* Indicate we have half completed snapshot deletions pending. */ 636 BTRFS_FS_UNFINISHED_DROPS, 637 638 #if BITS_PER_LONG == 32 639 /* Indicate if we have error/warn message printed on 32bit systems */ 640 BTRFS_FS_32BIT_ERROR, 641 BTRFS_FS_32BIT_WARN, 642 #endif 643 }; 644 645 /* 646 * Exclusive operations (device replace, resize, device add/remove, balance) 647 */ 648 enum btrfs_exclusive_operation { 649 BTRFS_EXCLOP_NONE, 650 BTRFS_EXCLOP_BALANCE_PAUSED, 651 BTRFS_EXCLOP_BALANCE, 652 BTRFS_EXCLOP_DEV_ADD, 653 BTRFS_EXCLOP_DEV_REMOVE, 654 BTRFS_EXCLOP_DEV_REPLACE, 655 BTRFS_EXCLOP_RESIZE, 656 BTRFS_EXCLOP_SWAP_ACTIVATE, 657 }; 658 659 struct btrfs_fs_info { 660 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 661 unsigned long flags; 662 struct btrfs_root *tree_root; 663 struct btrfs_root *chunk_root; 664 struct btrfs_root *dev_root; 665 struct btrfs_root *fs_root; 666 struct btrfs_root *quota_root; 667 struct btrfs_root *uuid_root; 668 struct btrfs_root *data_reloc_root; 669 struct btrfs_root *block_group_root; 670 671 /* the log root tree is a directory of all the other log roots */ 672 struct btrfs_root *log_root_tree; 673 674 /* The tree that holds the global roots (csum, extent, etc) */ 675 rwlock_t global_root_lock; 676 struct rb_root global_root_tree; 677 678 /* The xarray that holds all the FS roots */ 679 spinlock_t fs_roots_lock; 680 struct xarray fs_roots; 681 682 /* block group cache stuff */ 683 rwlock_t block_group_cache_lock; 684 struct rb_root_cached block_group_cache_tree; 685 686 /* keep track of unallocated space */ 687 atomic64_t free_chunk_space; 688 689 /* Track ranges which are used by log trees blocks/logged data extents */ 690 struct extent_io_tree excluded_extents; 691 692 /* logical->physical extent mapping */ 693 struct extent_map_tree mapping_tree; 694 695 /* 696 * block reservation for extent, checksum, root tree and 697 * delayed dir index item 698 */ 699 struct btrfs_block_rsv global_block_rsv; 700 /* block reservation for metadata operations */ 701 struct btrfs_block_rsv trans_block_rsv; 702 /* block reservation for chunk tree */ 703 struct btrfs_block_rsv chunk_block_rsv; 704 /* block reservation for delayed operations */ 705 struct btrfs_block_rsv delayed_block_rsv; 706 /* block reservation for delayed refs */ 707 struct btrfs_block_rsv delayed_refs_rsv; 708 709 struct btrfs_block_rsv empty_block_rsv; 710 711 u64 generation; 712 u64 last_trans_committed; 713 /* 714 * Generation of the last transaction used for block group relocation 715 * since the filesystem was last mounted (or 0 if none happened yet). 716 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 717 */ 718 u64 last_reloc_trans; 719 u64 avg_delayed_ref_runtime; 720 721 /* 722 * this is updated to the current trans every time a full commit 723 * is required instead of the faster short fsync log commits 724 */ 725 u64 last_trans_log_full_commit; 726 unsigned long mount_opt; 727 /* 728 * Track requests for actions that need to be done during transaction 729 * commit (like for some mount options). 730 */ 731 unsigned long pending_changes; 732 unsigned long compress_type:4; 733 unsigned int compress_level; 734 u32 commit_interval; 735 /* 736 * It is a suggestive number, the read side is safe even it gets a 737 * wrong number because we will write out the data into a regular 738 * extent. The write side(mount/remount) is under ->s_umount lock, 739 * so it is also safe. 740 */ 741 u64 max_inline; 742 743 struct btrfs_transaction *running_transaction; 744 wait_queue_head_t transaction_throttle; 745 wait_queue_head_t transaction_wait; 746 wait_queue_head_t transaction_blocked_wait; 747 wait_queue_head_t async_submit_wait; 748 749 /* 750 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 751 * when they are updated. 752 * 753 * Because we do not clear the flags for ever, so we needn't use 754 * the lock on the read side. 755 * 756 * We also needn't use the lock when we mount the fs, because 757 * there is no other task which will update the flag. 758 */ 759 spinlock_t super_lock; 760 struct btrfs_super_block *super_copy; 761 struct btrfs_super_block *super_for_commit; 762 struct super_block *sb; 763 struct inode *btree_inode; 764 struct mutex tree_log_mutex; 765 struct mutex transaction_kthread_mutex; 766 struct mutex cleaner_mutex; 767 struct mutex chunk_mutex; 768 769 /* 770 * this is taken to make sure we don't set block groups ro after 771 * the free space cache has been allocated on them 772 */ 773 struct mutex ro_block_group_mutex; 774 775 /* this is used during read/modify/write to make sure 776 * no two ios are trying to mod the same stripe at the same 777 * time 778 */ 779 struct btrfs_stripe_hash_table *stripe_hash_table; 780 781 /* 782 * this protects the ordered operations list only while we are 783 * processing all of the entries on it. This way we make 784 * sure the commit code doesn't find the list temporarily empty 785 * because another function happens to be doing non-waiting preflush 786 * before jumping into the main commit. 787 */ 788 struct mutex ordered_operations_mutex; 789 790 struct rw_semaphore commit_root_sem; 791 792 struct rw_semaphore cleanup_work_sem; 793 794 struct rw_semaphore subvol_sem; 795 796 spinlock_t trans_lock; 797 /* 798 * the reloc mutex goes with the trans lock, it is taken 799 * during commit to protect us from the relocation code 800 */ 801 struct mutex reloc_mutex; 802 803 struct list_head trans_list; 804 struct list_head dead_roots; 805 struct list_head caching_block_groups; 806 807 spinlock_t delayed_iput_lock; 808 struct list_head delayed_iputs; 809 atomic_t nr_delayed_iputs; 810 wait_queue_head_t delayed_iputs_wait; 811 812 atomic64_t tree_mod_seq; 813 814 /* this protects tree_mod_log and tree_mod_seq_list */ 815 rwlock_t tree_mod_log_lock; 816 struct rb_root tree_mod_log; 817 struct list_head tree_mod_seq_list; 818 819 atomic_t async_delalloc_pages; 820 821 /* 822 * this is used to protect the following list -- ordered_roots. 823 */ 824 spinlock_t ordered_root_lock; 825 826 /* 827 * all fs/file tree roots in which there are data=ordered extents 828 * pending writeback are added into this list. 829 * 830 * these can span multiple transactions and basically include 831 * every dirty data page that isn't from nodatacow 832 */ 833 struct list_head ordered_roots; 834 835 struct mutex delalloc_root_mutex; 836 spinlock_t delalloc_root_lock; 837 /* all fs/file tree roots that have delalloc inodes. */ 838 struct list_head delalloc_roots; 839 840 /* 841 * there is a pool of worker threads for checksumming during writes 842 * and a pool for checksumming after reads. This is because readers 843 * can run with FS locks held, and the writers may be waiting for 844 * those locks. We don't want ordering in the pending list to cause 845 * deadlocks, and so the two are serviced separately. 846 * 847 * A third pool does submit_bio to avoid deadlocking with the other 848 * two 849 */ 850 struct btrfs_workqueue *workers; 851 struct btrfs_workqueue *hipri_workers; 852 struct btrfs_workqueue *delalloc_workers; 853 struct btrfs_workqueue *flush_workers; 854 struct btrfs_workqueue *endio_workers; 855 struct btrfs_workqueue *endio_meta_workers; 856 struct btrfs_workqueue *endio_raid56_workers; 857 struct workqueue_struct *rmw_workers; 858 struct btrfs_workqueue *endio_meta_write_workers; 859 struct btrfs_workqueue *endio_write_workers; 860 struct btrfs_workqueue *endio_freespace_worker; 861 struct btrfs_workqueue *caching_workers; 862 863 /* 864 * fixup workers take dirty pages that didn't properly go through 865 * the cow mechanism and make them safe to write. It happens 866 * for the sys_munmap function call path 867 */ 868 struct btrfs_workqueue *fixup_workers; 869 struct btrfs_workqueue *delayed_workers; 870 871 struct task_struct *transaction_kthread; 872 struct task_struct *cleaner_kthread; 873 u32 thread_pool_size; 874 875 struct kobject *space_info_kobj; 876 struct kobject *qgroups_kobj; 877 878 /* used to keep from writing metadata until there is a nice batch */ 879 struct percpu_counter dirty_metadata_bytes; 880 struct percpu_counter delalloc_bytes; 881 struct percpu_counter ordered_bytes; 882 s32 dirty_metadata_batch; 883 s32 delalloc_batch; 884 885 struct list_head dirty_cowonly_roots; 886 887 struct btrfs_fs_devices *fs_devices; 888 889 /* 890 * The space_info list is effectively read only after initial 891 * setup. It is populated at mount time and cleaned up after 892 * all block groups are removed. RCU is used to protect it. 893 */ 894 struct list_head space_info; 895 896 struct btrfs_space_info *data_sinfo; 897 898 struct reloc_control *reloc_ctl; 899 900 /* data_alloc_cluster is only used in ssd_spread mode */ 901 struct btrfs_free_cluster data_alloc_cluster; 902 903 /* all metadata allocations go through this cluster */ 904 struct btrfs_free_cluster meta_alloc_cluster; 905 906 /* auto defrag inodes go here */ 907 spinlock_t defrag_inodes_lock; 908 struct rb_root defrag_inodes; 909 atomic_t defrag_running; 910 911 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 912 seqlock_t profiles_lock; 913 /* 914 * these three are in extended format (availability of single 915 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 916 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 917 */ 918 u64 avail_data_alloc_bits; 919 u64 avail_metadata_alloc_bits; 920 u64 avail_system_alloc_bits; 921 922 /* restriper state */ 923 spinlock_t balance_lock; 924 struct mutex balance_mutex; 925 atomic_t balance_pause_req; 926 atomic_t balance_cancel_req; 927 struct btrfs_balance_control *balance_ctl; 928 wait_queue_head_t balance_wait_q; 929 930 /* Cancellation requests for chunk relocation */ 931 atomic_t reloc_cancel_req; 932 933 u32 data_chunk_allocations; 934 u32 metadata_ratio; 935 936 void *bdev_holder; 937 938 /* private scrub information */ 939 struct mutex scrub_lock; 940 atomic_t scrubs_running; 941 atomic_t scrub_pause_req; 942 atomic_t scrubs_paused; 943 atomic_t scrub_cancel_req; 944 wait_queue_head_t scrub_pause_wait; 945 /* 946 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 947 * running. 948 */ 949 refcount_t scrub_workers_refcnt; 950 struct workqueue_struct *scrub_workers; 951 struct workqueue_struct *scrub_wr_completion_workers; 952 struct workqueue_struct *scrub_parity_workers; 953 struct btrfs_subpage_info *subpage_info; 954 955 struct btrfs_discard_ctl discard_ctl; 956 957 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 958 u32 check_integrity_print_mask; 959 #endif 960 /* is qgroup tracking in a consistent state? */ 961 u64 qgroup_flags; 962 963 /* holds configuration and tracking. Protected by qgroup_lock */ 964 struct rb_root qgroup_tree; 965 spinlock_t qgroup_lock; 966 967 /* 968 * used to avoid frequently calling ulist_alloc()/ulist_free() 969 * when doing qgroup accounting, it must be protected by qgroup_lock. 970 */ 971 struct ulist *qgroup_ulist; 972 973 /* 974 * Protect user change for quota operations. If a transaction is needed, 975 * it must be started before locking this lock. 976 */ 977 struct mutex qgroup_ioctl_lock; 978 979 /* list of dirty qgroups to be written at next commit */ 980 struct list_head dirty_qgroups; 981 982 /* used by qgroup for an efficient tree traversal */ 983 u64 qgroup_seq; 984 985 /* qgroup rescan items */ 986 struct mutex qgroup_rescan_lock; /* protects the progress item */ 987 struct btrfs_key qgroup_rescan_progress; 988 struct btrfs_workqueue *qgroup_rescan_workers; 989 struct completion qgroup_rescan_completion; 990 struct btrfs_work qgroup_rescan_work; 991 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 992 993 /* filesystem state */ 994 unsigned long fs_state; 995 996 struct btrfs_delayed_root *delayed_root; 997 998 /* Extent buffer xarray */ 999 spinlock_t buffer_lock; 1000 /* Entries are eb->start / sectorsize */ 1001 struct xarray extent_buffers; 1002 1003 /* next backup root to be overwritten */ 1004 int backup_root_index; 1005 1006 /* device replace state */ 1007 struct btrfs_dev_replace dev_replace; 1008 1009 struct semaphore uuid_tree_rescan_sem; 1010 1011 /* Used to reclaim the metadata space in the background. */ 1012 struct work_struct async_reclaim_work; 1013 struct work_struct async_data_reclaim_work; 1014 struct work_struct preempt_reclaim_work; 1015 1016 /* Reclaim partially filled block groups in the background */ 1017 struct work_struct reclaim_bgs_work; 1018 struct list_head reclaim_bgs; 1019 int bg_reclaim_threshold; 1020 1021 spinlock_t unused_bgs_lock; 1022 struct list_head unused_bgs; 1023 struct mutex unused_bg_unpin_mutex; 1024 /* Protect block groups that are going to be deleted */ 1025 struct mutex reclaim_bgs_lock; 1026 1027 /* Cached block sizes */ 1028 u32 nodesize; 1029 u32 sectorsize; 1030 /* ilog2 of sectorsize, use to avoid 64bit division */ 1031 u32 sectorsize_bits; 1032 u32 csum_size; 1033 u32 csums_per_leaf; 1034 u32 stripesize; 1035 1036 /* Block groups and devices containing active swapfiles. */ 1037 spinlock_t swapfile_pins_lock; 1038 struct rb_root swapfile_pins; 1039 1040 struct crypto_shash *csum_shash; 1041 1042 /* Type of exclusive operation running, protected by super_lock */ 1043 enum btrfs_exclusive_operation exclusive_operation; 1044 1045 /* 1046 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1047 * if the mode is enabled 1048 */ 1049 u64 zone_size; 1050 1051 struct mutex zoned_meta_io_lock; 1052 spinlock_t treelog_bg_lock; 1053 u64 treelog_bg; 1054 1055 /* 1056 * Start of the dedicated data relocation block group, protected by 1057 * relocation_bg_lock. 1058 */ 1059 spinlock_t relocation_bg_lock; 1060 u64 data_reloc_bg; 1061 struct mutex zoned_data_reloc_io_lock; 1062 1063 u64 nr_global_roots; 1064 1065 spinlock_t zone_active_bgs_lock; 1066 struct list_head zone_active_bgs; 1067 1068 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1069 spinlock_t ref_verify_lock; 1070 struct rb_root block_tree; 1071 #endif 1072 1073 #ifdef CONFIG_BTRFS_DEBUG 1074 struct kobject *debug_kobj; 1075 struct kobject *discard_debug_kobj; 1076 struct list_head allocated_roots; 1077 1078 spinlock_t eb_leak_lock; 1079 struct list_head allocated_ebs; 1080 #endif 1081 }; 1082 1083 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1084 { 1085 return sb->s_fs_info; 1086 } 1087 1088 /* 1089 * The state of btrfs root 1090 */ 1091 enum { 1092 /* 1093 * btrfs_record_root_in_trans is a multi-step process, and it can race 1094 * with the balancing code. But the race is very small, and only the 1095 * first time the root is added to each transaction. So IN_TRANS_SETUP 1096 * is used to tell us when more checks are required 1097 */ 1098 BTRFS_ROOT_IN_TRANS_SETUP, 1099 1100 /* 1101 * Set if tree blocks of this root can be shared by other roots. 1102 * Only subvolume trees and their reloc trees have this bit set. 1103 * Conflicts with TRACK_DIRTY bit. 1104 * 1105 * This affects two things: 1106 * 1107 * - How balance works 1108 * For shareable roots, we need to use reloc tree and do path 1109 * replacement for balance, and need various pre/post hooks for 1110 * snapshot creation to handle them. 1111 * 1112 * While for non-shareable trees, we just simply do a tree search 1113 * with COW. 1114 * 1115 * - How dirty roots are tracked 1116 * For shareable roots, btrfs_record_root_in_trans() is needed to 1117 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1118 * don't need to set this manually. 1119 */ 1120 BTRFS_ROOT_SHAREABLE, 1121 BTRFS_ROOT_TRACK_DIRTY, 1122 /* The root is tracked in fs_info::fs_roots */ 1123 BTRFS_ROOT_REGISTERED, 1124 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1125 BTRFS_ROOT_DEFRAG_RUNNING, 1126 BTRFS_ROOT_FORCE_COW, 1127 BTRFS_ROOT_MULTI_LOG_TASKS, 1128 BTRFS_ROOT_DIRTY, 1129 BTRFS_ROOT_DELETING, 1130 1131 /* 1132 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1133 * 1134 * Set for the subvolume tree owning the reloc tree. 1135 */ 1136 BTRFS_ROOT_DEAD_RELOC_TREE, 1137 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1138 BTRFS_ROOT_DEAD_TREE, 1139 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1140 BTRFS_ROOT_HAS_LOG_TREE, 1141 /* Qgroup flushing is in progress */ 1142 BTRFS_ROOT_QGROUP_FLUSHING, 1143 /* We started the orphan cleanup for this root. */ 1144 BTRFS_ROOT_ORPHAN_CLEANUP, 1145 /* This root has a drop operation that was started previously. */ 1146 BTRFS_ROOT_UNFINISHED_DROP, 1147 }; 1148 1149 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1150 { 1151 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1152 } 1153 1154 /* 1155 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1156 * code. For detail check comment in fs/btrfs/qgroup.c. 1157 */ 1158 struct btrfs_qgroup_swapped_blocks { 1159 spinlock_t lock; 1160 /* RM_EMPTY_ROOT() of above blocks[] */ 1161 bool swapped; 1162 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1163 }; 1164 1165 /* 1166 * in ram representation of the tree. extent_root is used for all allocations 1167 * and for the extent tree extent_root root. 1168 */ 1169 struct btrfs_root { 1170 struct rb_node rb_node; 1171 1172 struct extent_buffer *node; 1173 1174 struct extent_buffer *commit_root; 1175 struct btrfs_root *log_root; 1176 struct btrfs_root *reloc_root; 1177 1178 unsigned long state; 1179 struct btrfs_root_item root_item; 1180 struct btrfs_key root_key; 1181 struct btrfs_fs_info *fs_info; 1182 struct extent_io_tree dirty_log_pages; 1183 1184 struct mutex objectid_mutex; 1185 1186 spinlock_t accounting_lock; 1187 struct btrfs_block_rsv *block_rsv; 1188 1189 struct mutex log_mutex; 1190 wait_queue_head_t log_writer_wait; 1191 wait_queue_head_t log_commit_wait[2]; 1192 struct list_head log_ctxs[2]; 1193 /* Used only for log trees of subvolumes, not for the log root tree */ 1194 atomic_t log_writers; 1195 atomic_t log_commit[2]; 1196 /* Used only for log trees of subvolumes, not for the log root tree */ 1197 atomic_t log_batch; 1198 int log_transid; 1199 /* No matter the commit succeeds or not*/ 1200 int log_transid_committed; 1201 /* Just be updated when the commit succeeds. */ 1202 int last_log_commit; 1203 pid_t log_start_pid; 1204 1205 u64 last_trans; 1206 1207 u32 type; 1208 1209 u64 free_objectid; 1210 1211 struct btrfs_key defrag_progress; 1212 struct btrfs_key defrag_max; 1213 1214 /* The dirty list is only used by non-shareable roots */ 1215 struct list_head dirty_list; 1216 1217 struct list_head root_list; 1218 1219 spinlock_t log_extents_lock[2]; 1220 struct list_head logged_list[2]; 1221 1222 spinlock_t inode_lock; 1223 /* red-black tree that keeps track of in-memory inodes */ 1224 struct rb_root inode_tree; 1225 1226 /* 1227 * Xarray that keeps track of delayed nodes of every inode, protected 1228 * by inode_lock 1229 */ 1230 struct xarray delayed_nodes; 1231 /* 1232 * right now this just gets used so that a root has its own devid 1233 * for stat. It may be used for more later 1234 */ 1235 dev_t anon_dev; 1236 1237 spinlock_t root_item_lock; 1238 refcount_t refs; 1239 1240 struct mutex delalloc_mutex; 1241 spinlock_t delalloc_lock; 1242 /* 1243 * all of the inodes that have delalloc bytes. It is possible for 1244 * this list to be empty even when there is still dirty data=ordered 1245 * extents waiting to finish IO. 1246 */ 1247 struct list_head delalloc_inodes; 1248 struct list_head delalloc_root; 1249 u64 nr_delalloc_inodes; 1250 1251 struct mutex ordered_extent_mutex; 1252 /* 1253 * this is used by the balancing code to wait for all the pending 1254 * ordered extents 1255 */ 1256 spinlock_t ordered_extent_lock; 1257 1258 /* 1259 * all of the data=ordered extents pending writeback 1260 * these can span multiple transactions and basically include 1261 * every dirty data page that isn't from nodatacow 1262 */ 1263 struct list_head ordered_extents; 1264 struct list_head ordered_root; 1265 u64 nr_ordered_extents; 1266 1267 /* 1268 * Not empty if this subvolume root has gone through tree block swap 1269 * (relocation) 1270 * 1271 * Will be used by reloc_control::dirty_subvol_roots. 1272 */ 1273 struct list_head reloc_dirty_list; 1274 1275 /* 1276 * Number of currently running SEND ioctls to prevent 1277 * manipulation with the read-only status via SUBVOL_SETFLAGS 1278 */ 1279 int send_in_progress; 1280 /* 1281 * Number of currently running deduplication operations that have a 1282 * destination inode belonging to this root. Protected by the lock 1283 * root_item_lock. 1284 */ 1285 int dedupe_in_progress; 1286 /* For exclusion of snapshot creation and nocow writes */ 1287 struct btrfs_drew_lock snapshot_lock; 1288 1289 atomic_t snapshot_force_cow; 1290 1291 /* For qgroup metadata reserved space */ 1292 spinlock_t qgroup_meta_rsv_lock; 1293 u64 qgroup_meta_rsv_pertrans; 1294 u64 qgroup_meta_rsv_prealloc; 1295 wait_queue_head_t qgroup_flush_wait; 1296 1297 /* Number of active swapfiles */ 1298 atomic_t nr_swapfiles; 1299 1300 /* Record pairs of swapped blocks for qgroup */ 1301 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1302 1303 /* Used only by log trees, when logging csum items */ 1304 struct extent_io_tree log_csum_range; 1305 1306 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1307 u64 alloc_bytenr; 1308 #endif 1309 1310 #ifdef CONFIG_BTRFS_DEBUG 1311 struct list_head leak_list; 1312 #endif 1313 }; 1314 1315 /* 1316 * Structure that conveys information about an extent that is going to replace 1317 * all the extents in a file range. 1318 */ 1319 struct btrfs_replace_extent_info { 1320 u64 disk_offset; 1321 u64 disk_len; 1322 u64 data_offset; 1323 u64 data_len; 1324 u64 file_offset; 1325 /* Pointer to a file extent item of type regular or prealloc. */ 1326 char *extent_buf; 1327 /* 1328 * Set to true when attempting to replace a file range with a new extent 1329 * described by this structure, set to false when attempting to clone an 1330 * existing extent into a file range. 1331 */ 1332 bool is_new_extent; 1333 /* Meaningful only if is_new_extent is true. */ 1334 int qgroup_reserved; 1335 /* 1336 * Meaningful only if is_new_extent is true. 1337 * Used to track how many extent items we have already inserted in a 1338 * subvolume tree that refer to the extent described by this structure, 1339 * so that we know when to create a new delayed ref or update an existing 1340 * one. 1341 */ 1342 int insertions; 1343 }; 1344 1345 /* Arguments for btrfs_drop_extents() */ 1346 struct btrfs_drop_extents_args { 1347 /* Input parameters */ 1348 1349 /* 1350 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1351 * If 'replace_extent' is true, this must not be NULL. Also the path 1352 * is always released except if 'replace_extent' is true and 1353 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1354 * the path is kept locked. 1355 */ 1356 struct btrfs_path *path; 1357 /* Start offset of the range to drop extents from */ 1358 u64 start; 1359 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1360 u64 end; 1361 /* If true drop all the extent maps in the range */ 1362 bool drop_cache; 1363 /* 1364 * If true it means we want to insert a new extent after dropping all 1365 * the extents in the range. If this is true, the 'extent_item_size' 1366 * parameter must be set as well and the 'extent_inserted' field will 1367 * be set to true by btrfs_drop_extents() if it could insert the new 1368 * extent. 1369 * Note: when this is set to true the path must not be NULL. 1370 */ 1371 bool replace_extent; 1372 /* 1373 * Used if 'replace_extent' is true. Size of the file extent item to 1374 * insert after dropping all existing extents in the range 1375 */ 1376 u32 extent_item_size; 1377 1378 /* Output parameters */ 1379 1380 /* 1381 * Set to the minimum between the input parameter 'end' and the end 1382 * (exclusive, last byte + 1) of the last dropped extent. This is always 1383 * set even if btrfs_drop_extents() returns an error. 1384 */ 1385 u64 drop_end; 1386 /* 1387 * The number of allocated bytes found in the range. This can be smaller 1388 * than the range's length when there are holes in the range. 1389 */ 1390 u64 bytes_found; 1391 /* 1392 * Only set if 'replace_extent' is true. Set to true if we were able 1393 * to insert a replacement extent after dropping all extents in the 1394 * range, otherwise set to false by btrfs_drop_extents(). 1395 * Also, if btrfs_drop_extents() has set this to true it means it 1396 * returned with the path locked, otherwise if it has set this to 1397 * false it has returned with the path released. 1398 */ 1399 bool extent_inserted; 1400 }; 1401 1402 struct btrfs_file_private { 1403 void *filldir_buf; 1404 }; 1405 1406 1407 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1408 { 1409 1410 return info->nodesize - sizeof(struct btrfs_header); 1411 } 1412 1413 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1414 1415 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1416 { 1417 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1418 } 1419 1420 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1421 { 1422 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1423 } 1424 1425 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1426 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1427 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1428 { 1429 return BTRFS_MAX_ITEM_SIZE(info) - 1430 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1431 } 1432 1433 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1434 { 1435 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1436 } 1437 1438 /* 1439 * Flags for mount options. 1440 * 1441 * Note: don't forget to add new options to btrfs_show_options() 1442 */ 1443 enum { 1444 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1445 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1446 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1447 BTRFS_MOUNT_SSD = (1UL << 3), 1448 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1449 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1450 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1451 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1452 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1453 BTRFS_MOUNT_NOSSD = (1UL << 9), 1454 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1455 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1456 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1457 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1458 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1459 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1460 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1461 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1462 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1463 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1464 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1465 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1466 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1467 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1468 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1469 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1470 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1471 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1472 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1473 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1474 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1475 }; 1476 1477 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1478 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1479 1480 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1481 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1482 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1483 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1484 BTRFS_MOUNT_##opt) 1485 1486 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1487 do { \ 1488 if (!btrfs_test_opt(fs_info, opt)) \ 1489 btrfs_info(fs_info, fmt, ##args); \ 1490 btrfs_set_opt(fs_info->mount_opt, opt); \ 1491 } while (0) 1492 1493 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1494 do { \ 1495 if (btrfs_test_opt(fs_info, opt)) \ 1496 btrfs_info(fs_info, fmt, ##args); \ 1497 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1498 } while (0) 1499 1500 /* 1501 * Requests for changes that need to be done during transaction commit. 1502 * 1503 * Internal mount options that are used for special handling of the real 1504 * mount options (eg. cannot be set during remount and have to be set during 1505 * transaction commit) 1506 */ 1507 1508 #define BTRFS_PENDING_COMMIT (0) 1509 1510 #define btrfs_test_pending(info, opt) \ 1511 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1512 #define btrfs_set_pending(info, opt) \ 1513 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1514 #define btrfs_clear_pending(info, opt) \ 1515 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1516 1517 /* 1518 * Helpers for setting pending mount option changes. 1519 * 1520 * Expects corresponding macros 1521 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1522 */ 1523 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1524 do { \ 1525 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1526 btrfs_info((info), fmt, ##args); \ 1527 btrfs_set_pending((info), SET_##opt); \ 1528 btrfs_clear_pending((info), CLEAR_##opt); \ 1529 } \ 1530 } while(0) 1531 1532 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1533 do { \ 1534 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1535 btrfs_info((info), fmt, ##args); \ 1536 btrfs_set_pending((info), CLEAR_##opt); \ 1537 btrfs_clear_pending((info), SET_##opt); \ 1538 } \ 1539 } while(0) 1540 1541 /* 1542 * Inode flags 1543 */ 1544 #define BTRFS_INODE_NODATASUM (1U << 0) 1545 #define BTRFS_INODE_NODATACOW (1U << 1) 1546 #define BTRFS_INODE_READONLY (1U << 2) 1547 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1548 #define BTRFS_INODE_PREALLOC (1U << 4) 1549 #define BTRFS_INODE_SYNC (1U << 5) 1550 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1551 #define BTRFS_INODE_APPEND (1U << 7) 1552 #define BTRFS_INODE_NODUMP (1U << 8) 1553 #define BTRFS_INODE_NOATIME (1U << 9) 1554 #define BTRFS_INODE_DIRSYNC (1U << 10) 1555 #define BTRFS_INODE_COMPRESS (1U << 11) 1556 1557 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1558 1559 #define BTRFS_INODE_FLAG_MASK \ 1560 (BTRFS_INODE_NODATASUM | \ 1561 BTRFS_INODE_NODATACOW | \ 1562 BTRFS_INODE_READONLY | \ 1563 BTRFS_INODE_NOCOMPRESS | \ 1564 BTRFS_INODE_PREALLOC | \ 1565 BTRFS_INODE_SYNC | \ 1566 BTRFS_INODE_IMMUTABLE | \ 1567 BTRFS_INODE_APPEND | \ 1568 BTRFS_INODE_NODUMP | \ 1569 BTRFS_INODE_NOATIME | \ 1570 BTRFS_INODE_DIRSYNC | \ 1571 BTRFS_INODE_COMPRESS | \ 1572 BTRFS_INODE_ROOT_ITEM_INIT) 1573 1574 #define BTRFS_INODE_RO_VERITY (1U << 0) 1575 1576 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1577 1578 struct btrfs_map_token { 1579 struct extent_buffer *eb; 1580 char *kaddr; 1581 unsigned long offset; 1582 }; 1583 1584 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1585 ((bytes) >> (fs_info)->sectorsize_bits) 1586 1587 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1588 struct extent_buffer *eb) 1589 { 1590 token->eb = eb; 1591 token->kaddr = page_address(eb->pages[0]); 1592 token->offset = 0; 1593 } 1594 1595 /* some macros to generate set/get functions for the struct fields. This 1596 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1597 * one for u8: 1598 */ 1599 #define le8_to_cpu(v) (v) 1600 #define cpu_to_le8(v) (v) 1601 #define __le8 u8 1602 1603 static inline u8 get_unaligned_le8(const void *p) 1604 { 1605 return *(u8 *)p; 1606 } 1607 1608 static inline void put_unaligned_le8(u8 val, void *p) 1609 { 1610 *(u8 *)p = val; 1611 } 1612 1613 #define read_eb_member(eb, ptr, type, member, result) (\ 1614 read_extent_buffer(eb, (char *)(result), \ 1615 ((unsigned long)(ptr)) + \ 1616 offsetof(type, member), \ 1617 sizeof(((type *)0)->member))) 1618 1619 #define write_eb_member(eb, ptr, type, member, result) (\ 1620 write_extent_buffer(eb, (char *)(result), \ 1621 ((unsigned long)(ptr)) + \ 1622 offsetof(type, member), \ 1623 sizeof(((type *)0)->member))) 1624 1625 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1626 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1627 const void *ptr, unsigned long off); \ 1628 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1629 const void *ptr, unsigned long off, \ 1630 u##bits val); \ 1631 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1632 const void *ptr, unsigned long off); \ 1633 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1634 unsigned long off, u##bits val); 1635 1636 DECLARE_BTRFS_SETGET_BITS(8) 1637 DECLARE_BTRFS_SETGET_BITS(16) 1638 DECLARE_BTRFS_SETGET_BITS(32) 1639 DECLARE_BTRFS_SETGET_BITS(64) 1640 1641 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1642 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1643 const type *s) \ 1644 { \ 1645 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1646 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1647 } \ 1648 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1649 u##bits val) \ 1650 { \ 1651 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1652 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1653 } \ 1654 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1655 const type *s) \ 1656 { \ 1657 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1658 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1659 } \ 1660 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1661 type *s, u##bits val) \ 1662 { \ 1663 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1664 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1665 } 1666 1667 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1668 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1669 { \ 1670 const type *p = page_address(eb->pages[0]) + \ 1671 offset_in_page(eb->start); \ 1672 return get_unaligned_le##bits(&p->member); \ 1673 } \ 1674 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1675 u##bits val) \ 1676 { \ 1677 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1678 put_unaligned_le##bits(val, &p->member); \ 1679 } 1680 1681 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1682 static inline u##bits btrfs_##name(const type *s) \ 1683 { \ 1684 return get_unaligned_le##bits(&s->member); \ 1685 } \ 1686 static inline void btrfs_set_##name(type *s, u##bits val) \ 1687 { \ 1688 put_unaligned_le##bits(val, &s->member); \ 1689 } 1690 1691 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1692 struct btrfs_dev_item *s) 1693 { 1694 static_assert(sizeof(u64) == 1695 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1696 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1697 total_bytes)); 1698 } 1699 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1700 struct btrfs_dev_item *s, 1701 u64 val) 1702 { 1703 static_assert(sizeof(u64) == 1704 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1705 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1706 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1707 } 1708 1709 1710 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1711 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1712 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1713 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1714 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1715 start_offset, 64); 1716 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1717 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1718 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1719 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1720 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1721 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1722 1723 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1724 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1725 total_bytes, 64); 1726 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1727 bytes_used, 64); 1728 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1729 io_align, 32); 1730 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1731 io_width, 32); 1732 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1733 sector_size, 32); 1734 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1735 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1736 dev_group, 32); 1737 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1738 seek_speed, 8); 1739 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1740 bandwidth, 8); 1741 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1742 generation, 64); 1743 1744 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1745 { 1746 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1747 } 1748 1749 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1750 { 1751 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1752 } 1753 1754 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1755 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1756 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1757 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1758 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1759 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1760 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1761 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1762 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1763 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1764 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1765 1766 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1767 { 1768 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1769 } 1770 1771 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1772 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1773 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1774 stripe_len, 64); 1775 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1776 io_align, 32); 1777 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1778 io_width, 32); 1779 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1780 sector_size, 32); 1781 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1782 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1783 num_stripes, 16); 1784 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1785 sub_stripes, 16); 1786 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1787 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1788 1789 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1790 int nr) 1791 { 1792 unsigned long offset = (unsigned long)c; 1793 offset += offsetof(struct btrfs_chunk, stripe); 1794 offset += nr * sizeof(struct btrfs_stripe); 1795 return (struct btrfs_stripe *)offset; 1796 } 1797 1798 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1799 { 1800 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1801 } 1802 1803 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1804 struct btrfs_chunk *c, int nr) 1805 { 1806 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1807 } 1808 1809 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1810 struct btrfs_chunk *c, int nr) 1811 { 1812 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1813 } 1814 1815 /* struct btrfs_block_group_item */ 1816 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1817 used, 64); 1818 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1819 used, 64); 1820 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1821 struct btrfs_block_group_item, chunk_objectid, 64); 1822 1823 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1824 struct btrfs_block_group_item, chunk_objectid, 64); 1825 BTRFS_SETGET_FUNCS(block_group_flags, 1826 struct btrfs_block_group_item, flags, 64); 1827 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1828 struct btrfs_block_group_item, flags, 64); 1829 1830 /* struct btrfs_free_space_info */ 1831 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1832 extent_count, 32); 1833 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1834 1835 /* struct btrfs_inode_ref */ 1836 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1837 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1838 1839 /* struct btrfs_inode_extref */ 1840 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1841 parent_objectid, 64); 1842 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1843 name_len, 16); 1844 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1845 1846 /* struct btrfs_inode_item */ 1847 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1848 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1849 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1850 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1851 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1852 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1853 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1854 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1855 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1856 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1857 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1858 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1859 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1860 generation, 64); 1861 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1862 sequence, 64); 1863 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1864 transid, 64); 1865 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1866 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1867 nbytes, 64); 1868 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1869 block_group, 64); 1870 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1871 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1873 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1876 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1877 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1878 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1879 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1880 1881 /* struct btrfs_dev_extent */ 1882 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1883 chunk_tree, 64); 1884 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1885 chunk_objectid, 64); 1886 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1887 chunk_offset, 64); 1888 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1889 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1890 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1891 generation, 64); 1892 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1893 1894 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1895 1896 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1897 struct btrfs_tree_block_info *item, 1898 struct btrfs_disk_key *key) 1899 { 1900 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1901 } 1902 1903 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1904 struct btrfs_tree_block_info *item, 1905 struct btrfs_disk_key *key) 1906 { 1907 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1908 } 1909 1910 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1911 root, 64); 1912 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1913 objectid, 64); 1914 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1915 offset, 64); 1916 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1917 count, 32); 1918 1919 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1920 count, 32); 1921 1922 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1923 type, 8); 1924 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1925 offset, 64); 1926 1927 static inline u32 btrfs_extent_inline_ref_size(int type) 1928 { 1929 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1930 type == BTRFS_SHARED_BLOCK_REF_KEY) 1931 return sizeof(struct btrfs_extent_inline_ref); 1932 if (type == BTRFS_SHARED_DATA_REF_KEY) 1933 return sizeof(struct btrfs_shared_data_ref) + 1934 sizeof(struct btrfs_extent_inline_ref); 1935 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1936 return sizeof(struct btrfs_extent_data_ref) + 1937 offsetof(struct btrfs_extent_inline_ref, offset); 1938 return 0; 1939 } 1940 1941 /* struct btrfs_node */ 1942 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1943 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1944 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1945 blockptr, 64); 1946 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1947 generation, 64); 1948 1949 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1950 { 1951 unsigned long ptr; 1952 ptr = offsetof(struct btrfs_node, ptrs) + 1953 sizeof(struct btrfs_key_ptr) * nr; 1954 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1955 } 1956 1957 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1958 int nr, u64 val) 1959 { 1960 unsigned long ptr; 1961 ptr = offsetof(struct btrfs_node, ptrs) + 1962 sizeof(struct btrfs_key_ptr) * nr; 1963 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1964 } 1965 1966 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1967 { 1968 unsigned long ptr; 1969 ptr = offsetof(struct btrfs_node, ptrs) + 1970 sizeof(struct btrfs_key_ptr) * nr; 1971 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1972 } 1973 1974 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1975 int nr, u64 val) 1976 { 1977 unsigned long ptr; 1978 ptr = offsetof(struct btrfs_node, ptrs) + 1979 sizeof(struct btrfs_key_ptr) * nr; 1980 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1981 } 1982 1983 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1984 { 1985 return offsetof(struct btrfs_node, ptrs) + 1986 sizeof(struct btrfs_key_ptr) * nr; 1987 } 1988 1989 void btrfs_node_key(const struct extent_buffer *eb, 1990 struct btrfs_disk_key *disk_key, int nr); 1991 1992 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1993 struct btrfs_disk_key *disk_key, int nr) 1994 { 1995 unsigned long ptr; 1996 ptr = btrfs_node_key_ptr_offset(nr); 1997 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1998 struct btrfs_key_ptr, key, disk_key); 1999 } 2000 2001 /* struct btrfs_item */ 2002 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2003 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2004 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2005 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2006 2007 static inline unsigned long btrfs_item_nr_offset(int nr) 2008 { 2009 return offsetof(struct btrfs_leaf, items) + 2010 sizeof(struct btrfs_item) * nr; 2011 } 2012 2013 static inline struct btrfs_item *btrfs_item_nr(int nr) 2014 { 2015 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2016 } 2017 2018 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2019 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2020 int slot) \ 2021 { \ 2022 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2023 } \ 2024 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2025 int slot, u32 val) \ 2026 { \ 2027 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2028 } \ 2029 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2030 int slot) \ 2031 { \ 2032 struct btrfs_item *item = btrfs_item_nr(slot); \ 2033 return btrfs_token_raw_item_##member(token, item); \ 2034 } \ 2035 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2036 int slot, u32 val) \ 2037 { \ 2038 struct btrfs_item *item = btrfs_item_nr(slot); \ 2039 btrfs_set_token_raw_item_##member(token, item, val); \ 2040 } 2041 2042 BTRFS_ITEM_SETGET_FUNCS(offset) 2043 BTRFS_ITEM_SETGET_FUNCS(size); 2044 2045 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2046 { 2047 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2048 } 2049 2050 static inline void btrfs_item_key(const struct extent_buffer *eb, 2051 struct btrfs_disk_key *disk_key, int nr) 2052 { 2053 struct btrfs_item *item = btrfs_item_nr(nr); 2054 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2055 } 2056 2057 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2058 struct btrfs_disk_key *disk_key, int nr) 2059 { 2060 struct btrfs_item *item = btrfs_item_nr(nr); 2061 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2062 } 2063 2064 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2065 2066 /* 2067 * struct btrfs_root_ref 2068 */ 2069 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2070 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2071 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2072 2073 /* struct btrfs_dir_item */ 2074 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2075 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2076 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2077 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2078 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2079 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2080 data_len, 16); 2081 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2082 name_len, 16); 2083 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2084 transid, 64); 2085 2086 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2087 const struct btrfs_dir_item *item, 2088 struct btrfs_disk_key *key) 2089 { 2090 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2091 } 2092 2093 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2094 struct btrfs_dir_item *item, 2095 const struct btrfs_disk_key *key) 2096 { 2097 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2098 } 2099 2100 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2101 num_entries, 64); 2102 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2103 num_bitmaps, 64); 2104 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2105 generation, 64); 2106 2107 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2108 const struct btrfs_free_space_header *h, 2109 struct btrfs_disk_key *key) 2110 { 2111 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2112 } 2113 2114 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2115 struct btrfs_free_space_header *h, 2116 const struct btrfs_disk_key *key) 2117 { 2118 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2119 } 2120 2121 /* struct btrfs_disk_key */ 2122 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2123 objectid, 64); 2124 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2125 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2126 2127 #ifdef __LITTLE_ENDIAN 2128 2129 /* 2130 * Optimized helpers for little-endian architectures where CPU and on-disk 2131 * structures have the same endianness and we can skip conversions. 2132 */ 2133 2134 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2135 const struct btrfs_disk_key *disk_key) 2136 { 2137 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2138 } 2139 2140 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2141 const struct btrfs_key *cpu_key) 2142 { 2143 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2144 } 2145 2146 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2147 struct btrfs_key *cpu_key, int nr) 2148 { 2149 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2150 2151 btrfs_node_key(eb, disk_key, nr); 2152 } 2153 2154 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2155 struct btrfs_key *cpu_key, int nr) 2156 { 2157 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2158 2159 btrfs_item_key(eb, disk_key, nr); 2160 } 2161 2162 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2163 const struct btrfs_dir_item *item, 2164 struct btrfs_key *cpu_key) 2165 { 2166 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2167 2168 btrfs_dir_item_key(eb, item, disk_key); 2169 } 2170 2171 #else 2172 2173 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2174 const struct btrfs_disk_key *disk) 2175 { 2176 cpu->offset = le64_to_cpu(disk->offset); 2177 cpu->type = disk->type; 2178 cpu->objectid = le64_to_cpu(disk->objectid); 2179 } 2180 2181 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2182 const struct btrfs_key *cpu) 2183 { 2184 disk->offset = cpu_to_le64(cpu->offset); 2185 disk->type = cpu->type; 2186 disk->objectid = cpu_to_le64(cpu->objectid); 2187 } 2188 2189 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2190 struct btrfs_key *key, int nr) 2191 { 2192 struct btrfs_disk_key disk_key; 2193 btrfs_node_key(eb, &disk_key, nr); 2194 btrfs_disk_key_to_cpu(key, &disk_key); 2195 } 2196 2197 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2198 struct btrfs_key *key, int nr) 2199 { 2200 struct btrfs_disk_key disk_key; 2201 btrfs_item_key(eb, &disk_key, nr); 2202 btrfs_disk_key_to_cpu(key, &disk_key); 2203 } 2204 2205 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2206 const struct btrfs_dir_item *item, 2207 struct btrfs_key *key) 2208 { 2209 struct btrfs_disk_key disk_key; 2210 btrfs_dir_item_key(eb, item, &disk_key); 2211 btrfs_disk_key_to_cpu(key, &disk_key); 2212 } 2213 2214 #endif 2215 2216 /* struct btrfs_header */ 2217 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2218 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2219 generation, 64); 2220 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2221 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2222 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2223 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2224 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2225 generation, 64); 2226 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2227 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2228 nritems, 32); 2229 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2230 2231 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2232 { 2233 return (btrfs_header_flags(eb) & flag) == flag; 2234 } 2235 2236 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2237 { 2238 u64 flags = btrfs_header_flags(eb); 2239 btrfs_set_header_flags(eb, flags | flag); 2240 } 2241 2242 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2243 { 2244 u64 flags = btrfs_header_flags(eb); 2245 btrfs_set_header_flags(eb, flags & ~flag); 2246 } 2247 2248 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2249 { 2250 u64 flags = btrfs_header_flags(eb); 2251 return flags >> BTRFS_BACKREF_REV_SHIFT; 2252 } 2253 2254 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2255 int rev) 2256 { 2257 u64 flags = btrfs_header_flags(eb); 2258 flags &= ~BTRFS_BACKREF_REV_MASK; 2259 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2260 btrfs_set_header_flags(eb, flags); 2261 } 2262 2263 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2264 { 2265 return btrfs_header_level(eb) == 0; 2266 } 2267 2268 /* struct btrfs_root_item */ 2269 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2270 generation, 64); 2271 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2272 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2273 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2274 2275 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2276 generation, 64); 2277 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2278 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2279 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2280 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2281 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2282 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2283 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2284 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2285 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2286 last_snapshot, 64); 2287 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2288 generation_v2, 64); 2289 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2290 ctransid, 64); 2291 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2292 otransid, 64); 2293 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2294 stransid, 64); 2295 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2296 rtransid, 64); 2297 2298 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2299 { 2300 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2301 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2302 } 2303 2304 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2305 { 2306 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2307 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2308 } 2309 2310 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2311 { 2312 return root->root_key.objectid; 2313 } 2314 2315 /* struct btrfs_root_backup */ 2316 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2317 tree_root, 64); 2318 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2319 tree_root_gen, 64); 2320 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2321 tree_root_level, 8); 2322 2323 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2324 chunk_root, 64); 2325 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2326 chunk_root_gen, 64); 2327 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2328 chunk_root_level, 8); 2329 2330 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2331 extent_root, 64); 2332 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2333 extent_root_gen, 64); 2334 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2335 extent_root_level, 8); 2336 2337 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2338 fs_root, 64); 2339 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2340 fs_root_gen, 64); 2341 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2342 fs_root_level, 8); 2343 2344 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2345 dev_root, 64); 2346 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2347 dev_root_gen, 64); 2348 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2349 dev_root_level, 8); 2350 2351 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2352 csum_root, 64); 2353 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2354 csum_root_gen, 64); 2355 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2356 csum_root_level, 8); 2357 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2358 total_bytes, 64); 2359 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2360 bytes_used, 64); 2361 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2362 num_devices, 64); 2363 2364 /* 2365 * For extent tree v2 we overload the extent root with the block group root, as 2366 * we will have multiple extent roots. 2367 */ 2368 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2369 extent_root, 64); 2370 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2371 extent_root_gen, 64); 2372 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2373 struct btrfs_root_backup, extent_root_level, 8); 2374 2375 /* struct btrfs_balance_item */ 2376 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2377 2378 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2379 const struct btrfs_balance_item *bi, 2380 struct btrfs_disk_balance_args *ba) 2381 { 2382 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2383 } 2384 2385 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2386 struct btrfs_balance_item *bi, 2387 const struct btrfs_disk_balance_args *ba) 2388 { 2389 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2390 } 2391 2392 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2393 const struct btrfs_balance_item *bi, 2394 struct btrfs_disk_balance_args *ba) 2395 { 2396 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2397 } 2398 2399 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2400 struct btrfs_balance_item *bi, 2401 const struct btrfs_disk_balance_args *ba) 2402 { 2403 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2404 } 2405 2406 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2407 const struct btrfs_balance_item *bi, 2408 struct btrfs_disk_balance_args *ba) 2409 { 2410 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2411 } 2412 2413 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2414 struct btrfs_balance_item *bi, 2415 const struct btrfs_disk_balance_args *ba) 2416 { 2417 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2418 } 2419 2420 static inline void 2421 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2422 const struct btrfs_disk_balance_args *disk) 2423 { 2424 memset(cpu, 0, sizeof(*cpu)); 2425 2426 cpu->profiles = le64_to_cpu(disk->profiles); 2427 cpu->usage = le64_to_cpu(disk->usage); 2428 cpu->devid = le64_to_cpu(disk->devid); 2429 cpu->pstart = le64_to_cpu(disk->pstart); 2430 cpu->pend = le64_to_cpu(disk->pend); 2431 cpu->vstart = le64_to_cpu(disk->vstart); 2432 cpu->vend = le64_to_cpu(disk->vend); 2433 cpu->target = le64_to_cpu(disk->target); 2434 cpu->flags = le64_to_cpu(disk->flags); 2435 cpu->limit = le64_to_cpu(disk->limit); 2436 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2437 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2438 } 2439 2440 static inline void 2441 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2442 const struct btrfs_balance_args *cpu) 2443 { 2444 memset(disk, 0, sizeof(*disk)); 2445 2446 disk->profiles = cpu_to_le64(cpu->profiles); 2447 disk->usage = cpu_to_le64(cpu->usage); 2448 disk->devid = cpu_to_le64(cpu->devid); 2449 disk->pstart = cpu_to_le64(cpu->pstart); 2450 disk->pend = cpu_to_le64(cpu->pend); 2451 disk->vstart = cpu_to_le64(cpu->vstart); 2452 disk->vend = cpu_to_le64(cpu->vend); 2453 disk->target = cpu_to_le64(cpu->target); 2454 disk->flags = cpu_to_le64(cpu->flags); 2455 disk->limit = cpu_to_le64(cpu->limit); 2456 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2457 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2458 } 2459 2460 /* struct btrfs_super_block */ 2461 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2462 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2463 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2464 generation, 64); 2465 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2466 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2467 struct btrfs_super_block, sys_chunk_array_size, 32); 2468 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2469 struct btrfs_super_block, chunk_root_generation, 64); 2470 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2471 root_level, 8); 2472 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2473 chunk_root, 64); 2474 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2475 chunk_root_level, 8); 2476 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2477 log_root, 64); 2478 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2479 log_root_transid, 64); 2480 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2481 log_root_level, 8); 2482 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2483 total_bytes, 64); 2484 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2485 bytes_used, 64); 2486 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2487 sectorsize, 32); 2488 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2489 nodesize, 32); 2490 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2491 stripesize, 32); 2492 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2493 root_dir_objectid, 64); 2494 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2495 num_devices, 64); 2496 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2497 compat_flags, 64); 2498 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2499 compat_ro_flags, 64); 2500 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2501 incompat_flags, 64); 2502 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2503 csum_type, 16); 2504 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2505 cache_generation, 64); 2506 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2507 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2508 uuid_tree_generation, 64); 2509 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2510 block_group_root, 64); 2511 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2512 struct btrfs_super_block, 2513 block_group_root_generation, 64); 2514 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2515 block_group_root_level, 8); 2516 2517 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2518 const char *btrfs_super_csum_name(u16 csum_type); 2519 const char *btrfs_super_csum_driver(u16 csum_type); 2520 size_t __attribute_const__ btrfs_get_num_csums(void); 2521 2522 2523 /* 2524 * The leaf data grows from end-to-front in the node. 2525 * this returns the address of the start of the last item, 2526 * which is the stop of the leaf data stack 2527 */ 2528 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2529 { 2530 u32 nr = btrfs_header_nritems(leaf); 2531 2532 if (nr == 0) 2533 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2534 return btrfs_item_offset(leaf, nr - 1); 2535 } 2536 2537 /* struct btrfs_file_extent_item */ 2538 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2539 type, 8); 2540 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2541 struct btrfs_file_extent_item, disk_bytenr, 64); 2542 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2543 struct btrfs_file_extent_item, offset, 64); 2544 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2545 struct btrfs_file_extent_item, generation, 64); 2546 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2547 struct btrfs_file_extent_item, num_bytes, 64); 2548 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2549 struct btrfs_file_extent_item, ram_bytes, 64); 2550 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2551 struct btrfs_file_extent_item, disk_num_bytes, 64); 2552 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2553 struct btrfs_file_extent_item, compression, 8); 2554 2555 static inline unsigned long 2556 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2557 { 2558 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2559 } 2560 2561 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2562 { 2563 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2564 } 2565 2566 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2567 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2568 disk_bytenr, 64); 2569 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2570 generation, 64); 2571 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2572 disk_num_bytes, 64); 2573 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2574 offset, 64); 2575 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2576 num_bytes, 64); 2577 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2578 ram_bytes, 64); 2579 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2580 compression, 8); 2581 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2582 encryption, 8); 2583 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2584 other_encoding, 16); 2585 2586 /* 2587 * this returns the number of bytes used by the item on disk, minus the 2588 * size of any extent headers. If a file is compressed on disk, this is 2589 * the compressed size 2590 */ 2591 static inline u32 btrfs_file_extent_inline_item_len( 2592 const struct extent_buffer *eb, 2593 int nr) 2594 { 2595 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2596 } 2597 2598 /* btrfs_qgroup_status_item */ 2599 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2600 generation, 64); 2601 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2602 version, 64); 2603 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2604 flags, 64); 2605 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2606 rescan, 64); 2607 2608 /* btrfs_qgroup_info_item */ 2609 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2610 generation, 64); 2611 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2612 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2613 rfer_cmpr, 64); 2614 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2615 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2616 excl_cmpr, 64); 2617 2618 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2619 struct btrfs_qgroup_info_item, generation, 64); 2620 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2621 rfer, 64); 2622 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2623 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2624 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2625 excl, 64); 2626 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2627 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2628 2629 /* btrfs_qgroup_limit_item */ 2630 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2631 flags, 64); 2632 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2633 max_rfer, 64); 2634 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2635 max_excl, 64); 2636 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2637 rsv_rfer, 64); 2638 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2639 rsv_excl, 64); 2640 2641 /* btrfs_dev_replace_item */ 2642 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2643 struct btrfs_dev_replace_item, src_devid, 64); 2644 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2645 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2646 64); 2647 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2648 replace_state, 64); 2649 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2650 time_started, 64); 2651 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2652 time_stopped, 64); 2653 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2654 num_write_errors, 64); 2655 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2656 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2657 64); 2658 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2659 cursor_left, 64); 2660 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2661 cursor_right, 64); 2662 2663 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2664 struct btrfs_dev_replace_item, src_devid, 64); 2665 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2666 struct btrfs_dev_replace_item, 2667 cont_reading_from_srcdev_mode, 64); 2668 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2669 struct btrfs_dev_replace_item, replace_state, 64); 2670 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2671 struct btrfs_dev_replace_item, time_started, 64); 2672 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2673 struct btrfs_dev_replace_item, time_stopped, 64); 2674 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2675 struct btrfs_dev_replace_item, num_write_errors, 64); 2676 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2677 struct btrfs_dev_replace_item, 2678 num_uncorrectable_read_errors, 64); 2679 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2680 struct btrfs_dev_replace_item, cursor_left, 64); 2681 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2682 struct btrfs_dev_replace_item, cursor_right, 64); 2683 2684 /* helper function to cast into the data area of the leaf. */ 2685 #define btrfs_item_ptr(leaf, slot, type) \ 2686 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2687 btrfs_item_offset(leaf, slot))) 2688 2689 #define btrfs_item_ptr_offset(leaf, slot) \ 2690 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2691 btrfs_item_offset(leaf, slot))) 2692 2693 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2694 { 2695 return crc32c(crc, address, length); 2696 } 2697 2698 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2699 { 2700 put_unaligned_le32(~crc, result); 2701 } 2702 2703 static inline u64 btrfs_name_hash(const char *name, int len) 2704 { 2705 return crc32c((u32)~1, name, len); 2706 } 2707 2708 /* 2709 * Figure the key offset of an extended inode ref 2710 */ 2711 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2712 int len) 2713 { 2714 return (u64) crc32c(parent_objectid, name, len); 2715 } 2716 2717 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2718 { 2719 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2720 } 2721 2722 /* extent-tree.c */ 2723 2724 enum btrfs_inline_ref_type { 2725 BTRFS_REF_TYPE_INVALID, 2726 BTRFS_REF_TYPE_BLOCK, 2727 BTRFS_REF_TYPE_DATA, 2728 BTRFS_REF_TYPE_ANY, 2729 }; 2730 2731 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2732 struct btrfs_extent_inline_ref *iref, 2733 enum btrfs_inline_ref_type is_data); 2734 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2735 2736 /* 2737 * Take the number of bytes to be checksummmed and figure out how many leaves 2738 * it would require to store the csums for that many bytes. 2739 */ 2740 static inline u64 btrfs_csum_bytes_to_leaves( 2741 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2742 { 2743 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2744 2745 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2746 } 2747 2748 /* 2749 * Use this if we would be adding new items, as we could split nodes as we cow 2750 * down the tree. 2751 */ 2752 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2753 unsigned num_items) 2754 { 2755 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2756 } 2757 2758 /* 2759 * Doing a truncate or a modification won't result in new nodes or leaves, just 2760 * what we need for COW. 2761 */ 2762 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2763 unsigned num_items) 2764 { 2765 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2766 } 2767 2768 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2769 u64 start, u64 num_bytes); 2770 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2771 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2772 unsigned long count); 2773 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2774 struct btrfs_delayed_ref_root *delayed_refs, 2775 struct btrfs_delayed_ref_head *head); 2776 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2777 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2778 struct btrfs_fs_info *fs_info, u64 bytenr, 2779 u64 offset, int metadata, u64 *refs, u64 *flags); 2780 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2781 int reserved); 2782 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2783 u64 bytenr, u64 num_bytes); 2784 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2785 int btrfs_cross_ref_exist(struct btrfs_root *root, 2786 u64 objectid, u64 offset, u64 bytenr, bool strict, 2787 struct btrfs_path *path); 2788 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 u64 parent, u64 root_objectid, 2791 const struct btrfs_disk_key *key, 2792 int level, u64 hint, 2793 u64 empty_size, 2794 enum btrfs_lock_nesting nest); 2795 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2796 u64 root_id, 2797 struct extent_buffer *buf, 2798 u64 parent, int last_ref); 2799 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2800 struct btrfs_root *root, u64 owner, 2801 u64 offset, u64 ram_bytes, 2802 struct btrfs_key *ins); 2803 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2804 u64 root_objectid, u64 owner, u64 offset, 2805 struct btrfs_key *ins); 2806 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2807 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2808 struct btrfs_key *ins, int is_data, int delalloc); 2809 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2810 struct extent_buffer *buf, int full_backref); 2811 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2812 struct extent_buffer *buf, int full_backref); 2813 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2814 struct extent_buffer *eb, u64 flags, int level); 2815 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2816 2817 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2818 u64 start, u64 len, int delalloc); 2819 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2820 u64 len); 2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2822 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2823 struct btrfs_ref *generic_ref); 2824 2825 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2826 2827 /* 2828 * Different levels for to flush space when doing space reservations. 2829 * 2830 * The higher the level, the more methods we try to reclaim space. 2831 */ 2832 enum btrfs_reserve_flush_enum { 2833 /* If we are in the transaction, we can't flush anything.*/ 2834 BTRFS_RESERVE_NO_FLUSH, 2835 2836 /* 2837 * Flush space by: 2838 * - Running delayed inode items 2839 * - Allocating a new chunk 2840 */ 2841 BTRFS_RESERVE_FLUSH_LIMIT, 2842 2843 /* 2844 * Flush space by: 2845 * - Running delayed inode items 2846 * - Running delayed refs 2847 * - Running delalloc and waiting for ordered extents 2848 * - Allocating a new chunk 2849 */ 2850 BTRFS_RESERVE_FLUSH_EVICT, 2851 2852 /* 2853 * Flush space by above mentioned methods and by: 2854 * - Running delayed iputs 2855 * - Committing transaction 2856 * 2857 * Can be interrupted by a fatal signal. 2858 */ 2859 BTRFS_RESERVE_FLUSH_DATA, 2860 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2861 BTRFS_RESERVE_FLUSH_ALL, 2862 2863 /* 2864 * Pretty much the same as FLUSH_ALL, but can also steal space from 2865 * global rsv. 2866 * 2867 * Can be interrupted by a fatal signal. 2868 */ 2869 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2870 }; 2871 2872 enum btrfs_flush_state { 2873 FLUSH_DELAYED_ITEMS_NR = 1, 2874 FLUSH_DELAYED_ITEMS = 2, 2875 FLUSH_DELAYED_REFS_NR = 3, 2876 FLUSH_DELAYED_REFS = 4, 2877 FLUSH_DELALLOC = 5, 2878 FLUSH_DELALLOC_WAIT = 6, 2879 FLUSH_DELALLOC_FULL = 7, 2880 ALLOC_CHUNK = 8, 2881 ALLOC_CHUNK_FORCE = 9, 2882 RUN_DELAYED_IPUTS = 10, 2883 COMMIT_TRANS = 11, 2884 }; 2885 2886 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2887 struct btrfs_block_rsv *rsv, 2888 int nitems, bool use_global_rsv); 2889 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2890 struct btrfs_block_rsv *rsv); 2891 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2892 2893 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2894 u64 disk_num_bytes, bool noflush); 2895 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2896 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2897 u64 start, u64 end); 2898 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2899 u64 num_bytes, u64 *actual_bytes); 2900 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2901 2902 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2903 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2904 struct btrfs_fs_info *fs_info); 2905 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2906 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2907 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2908 2909 /* ctree.c */ 2910 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2911 int *slot); 2912 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2913 int btrfs_previous_item(struct btrfs_root *root, 2914 struct btrfs_path *path, u64 min_objectid, 2915 int type); 2916 int btrfs_previous_extent_item(struct btrfs_root *root, 2917 struct btrfs_path *path, u64 min_objectid); 2918 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2919 struct btrfs_path *path, 2920 const struct btrfs_key *new_key); 2921 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2922 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2923 struct btrfs_key *key, int lowest_level, 2924 u64 min_trans); 2925 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2926 struct btrfs_path *path, 2927 u64 min_trans); 2928 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2929 int slot); 2930 2931 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2932 struct btrfs_root *root, struct extent_buffer *buf, 2933 struct extent_buffer *parent, int parent_slot, 2934 struct extent_buffer **cow_ret, 2935 enum btrfs_lock_nesting nest); 2936 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2937 struct btrfs_root *root, 2938 struct extent_buffer *buf, 2939 struct extent_buffer **cow_ret, u64 new_root_objectid); 2940 int btrfs_block_can_be_shared(struct btrfs_root *root, 2941 struct extent_buffer *buf); 2942 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2943 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2944 int btrfs_split_item(struct btrfs_trans_handle *trans, 2945 struct btrfs_root *root, 2946 struct btrfs_path *path, 2947 const struct btrfs_key *new_key, 2948 unsigned long split_offset); 2949 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2950 struct btrfs_root *root, 2951 struct btrfs_path *path, 2952 const struct btrfs_key *new_key); 2953 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2954 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2955 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2956 const struct btrfs_key *key, struct btrfs_path *p, 2957 int ins_len, int cow); 2958 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2959 struct btrfs_path *p, u64 time_seq); 2960 int btrfs_search_slot_for_read(struct btrfs_root *root, 2961 const struct btrfs_key *key, 2962 struct btrfs_path *p, int find_higher, 2963 int return_any); 2964 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2965 struct btrfs_root *root, struct extent_buffer *parent, 2966 int start_slot, u64 *last_ret, 2967 struct btrfs_key *progress); 2968 void btrfs_release_path(struct btrfs_path *p); 2969 struct btrfs_path *btrfs_alloc_path(void); 2970 void btrfs_free_path(struct btrfs_path *p); 2971 2972 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2973 struct btrfs_path *path, int slot, int nr); 2974 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2975 struct btrfs_root *root, 2976 struct btrfs_path *path) 2977 { 2978 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2979 } 2980 2981 /* 2982 * Describes a batch of items to insert in a btree. This is used by 2983 * btrfs_insert_empty_items(). 2984 */ 2985 struct btrfs_item_batch { 2986 /* 2987 * Pointer to an array containing the keys of the items to insert (in 2988 * sorted order). 2989 */ 2990 const struct btrfs_key *keys; 2991 /* Pointer to an array containing the data size for each item to insert. */ 2992 const u32 *data_sizes; 2993 /* 2994 * The sum of data sizes for all items. The caller can compute this while 2995 * setting up the data_sizes array, so it ends up being more efficient 2996 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2997 * doing it, as it would avoid an extra loop over a potentially large 2998 * array, and in the case of setup_item_for_insert(), we would be doing 2999 * it while holding a write lock on a leaf and often on upper level nodes 3000 * too, unnecessarily increasing the size of a critical section. 3001 */ 3002 u32 total_data_size; 3003 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3004 int nr; 3005 }; 3006 3007 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3008 struct btrfs_path *path, 3009 const struct btrfs_key *key, 3010 u32 data_size); 3011 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3012 const struct btrfs_key *key, void *data, u32 data_size); 3013 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3014 struct btrfs_root *root, 3015 struct btrfs_path *path, 3016 const struct btrfs_item_batch *batch); 3017 3018 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3019 struct btrfs_root *root, 3020 struct btrfs_path *path, 3021 const struct btrfs_key *key, 3022 u32 data_size) 3023 { 3024 struct btrfs_item_batch batch; 3025 3026 batch.keys = key; 3027 batch.data_sizes = &data_size; 3028 batch.total_data_size = data_size; 3029 batch.nr = 1; 3030 3031 return btrfs_insert_empty_items(trans, root, path, &batch); 3032 } 3033 3034 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3035 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3036 u64 time_seq); 3037 3038 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3039 struct btrfs_path *path); 3040 3041 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3042 struct btrfs_path *path); 3043 3044 /* 3045 * Search in @root for a given @key, and store the slot found in @found_key. 3046 * 3047 * @root: The root node of the tree. 3048 * @key: The key we are looking for. 3049 * @found_key: Will hold the found item. 3050 * @path: Holds the current slot/leaf. 3051 * @iter_ret: Contains the value returned from btrfs_search_slot or 3052 * btrfs_get_next_valid_item, whichever was executed last. 3053 * 3054 * The @iter_ret is an output variable that will contain the return value of 3055 * btrfs_search_slot, if it encountered an error, or the value returned from 3056 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3057 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3058 * 3059 * It's recommended to use a separate variable for iter_ret and then use it to 3060 * set the function return value so there's no confusion of the 0/1/errno 3061 * values stemming from btrfs_search_slot. 3062 */ 3063 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3064 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3065 (iter_ret) >= 0 && \ 3066 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3067 (path)->slots[0]++ \ 3068 ) 3069 3070 static inline int btrfs_next_old_item(struct btrfs_root *root, 3071 struct btrfs_path *p, u64 time_seq) 3072 { 3073 ++p->slots[0]; 3074 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3075 return btrfs_next_old_leaf(root, p, time_seq); 3076 return 0; 3077 } 3078 3079 /* 3080 * Search the tree again to find a leaf with greater keys. 3081 * 3082 * Returns 0 if it found something or 1 if there are no greater leaves. 3083 * Returns < 0 on error. 3084 */ 3085 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3086 { 3087 return btrfs_next_old_leaf(root, path, 0); 3088 } 3089 3090 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3091 { 3092 return btrfs_next_old_item(root, p, 0); 3093 } 3094 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3095 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3096 int for_reloc); 3097 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3098 struct btrfs_root *root, 3099 struct extent_buffer *node, 3100 struct extent_buffer *parent); 3101 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3102 { 3103 /* 3104 * Do it this way so we only ever do one test_bit in the normal case. 3105 */ 3106 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3107 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3108 return 2; 3109 return 1; 3110 } 3111 return 0; 3112 } 3113 3114 /* 3115 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3116 * anything except sleeping. This function is used to check the status of 3117 * the fs. 3118 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3119 * since setting and checking for SB_RDONLY in the superblock's flags is not 3120 * atomic. 3121 */ 3122 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3123 { 3124 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3125 btrfs_fs_closing(fs_info); 3126 } 3127 3128 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3129 { 3130 sb->s_flags |= SB_RDONLY; 3131 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3132 } 3133 3134 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3135 { 3136 sb->s_flags &= ~SB_RDONLY; 3137 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3138 } 3139 3140 /* root-item.c */ 3141 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3142 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3143 int name_len); 3144 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3145 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3146 int name_len); 3147 int btrfs_del_root(struct btrfs_trans_handle *trans, 3148 const struct btrfs_key *key); 3149 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3150 const struct btrfs_key *key, 3151 struct btrfs_root_item *item); 3152 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3153 struct btrfs_root *root, 3154 struct btrfs_key *key, 3155 struct btrfs_root_item *item); 3156 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3157 struct btrfs_path *path, struct btrfs_root_item *root_item, 3158 struct btrfs_key *root_key); 3159 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3160 void btrfs_set_root_node(struct btrfs_root_item *item, 3161 struct extent_buffer *node); 3162 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3163 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3164 struct btrfs_root *root); 3165 3166 /* uuid-tree.c */ 3167 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3168 u64 subid); 3169 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3170 u64 subid); 3171 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3172 3173 /* dir-item.c */ 3174 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3175 const char *name, int name_len); 3176 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3177 int name_len, struct btrfs_inode *dir, 3178 struct btrfs_key *location, u8 type, u64 index); 3179 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3180 struct btrfs_root *root, 3181 struct btrfs_path *path, u64 dir, 3182 const char *name, int name_len, 3183 int mod); 3184 struct btrfs_dir_item * 3185 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3186 struct btrfs_root *root, 3187 struct btrfs_path *path, u64 dir, 3188 u64 index, const char *name, int name_len, 3189 int mod); 3190 struct btrfs_dir_item * 3191 btrfs_search_dir_index_item(struct btrfs_root *root, 3192 struct btrfs_path *path, u64 dirid, 3193 const char *name, int name_len); 3194 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3195 struct btrfs_root *root, 3196 struct btrfs_path *path, 3197 struct btrfs_dir_item *di); 3198 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3199 struct btrfs_root *root, 3200 struct btrfs_path *path, u64 objectid, 3201 const char *name, u16 name_len, 3202 const void *data, u16 data_len); 3203 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3204 struct btrfs_root *root, 3205 struct btrfs_path *path, u64 dir, 3206 const char *name, u16 name_len, 3207 int mod); 3208 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3209 struct btrfs_path *path, 3210 const char *name, 3211 int name_len); 3212 3213 /* orphan.c */ 3214 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3215 struct btrfs_root *root, u64 offset); 3216 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3217 struct btrfs_root *root, u64 offset); 3218 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3219 3220 /* file-item.c */ 3221 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3222 struct btrfs_root *root, u64 bytenr, u64 len); 3223 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3224 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *root, 3226 u64 objectid, u64 pos, 3227 u64 disk_offset, u64 disk_num_bytes, 3228 u64 num_bytes, u64 offset, u64 ram_bytes, 3229 u8 compression, u8 encryption, u16 other_encoding); 3230 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3231 struct btrfs_root *root, 3232 struct btrfs_path *path, u64 objectid, 3233 u64 bytenr, int mod); 3234 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3235 struct btrfs_root *root, 3236 struct btrfs_ordered_sum *sums); 3237 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3238 u64 offset, bool one_ordered); 3239 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3240 struct list_head *list, int search_commit); 3241 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3242 const struct btrfs_path *path, 3243 struct btrfs_file_extent_item *fi, 3244 const bool new_inline, 3245 struct extent_map *em); 3246 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3247 u64 len); 3248 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3249 u64 len); 3250 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3251 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3252 3253 /* inode.c */ 3254 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3255 int mirror_num, enum btrfs_compression_type compress_type); 3256 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3257 u32 bio_offset, struct page *page, 3258 u64 start, u64 end); 3259 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3260 u64 start, u64 len); 3261 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3262 u64 *orig_start, u64 *orig_block_len, 3263 u64 *ram_bytes, bool strict); 3264 3265 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3266 struct btrfs_inode *inode); 3267 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3268 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3269 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3270 struct btrfs_inode *dir, struct btrfs_inode *inode, 3271 const char *name, int name_len); 3272 int btrfs_add_link(struct btrfs_trans_handle *trans, 3273 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3274 const char *name, int name_len, int add_backref, u64 index); 3275 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3276 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3277 int front); 3278 3279 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3280 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3281 bool in_reclaim_context); 3282 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3283 unsigned int extra_bits, 3284 struct extent_state **cached_state); 3285 struct btrfs_new_inode_args { 3286 /* Input */ 3287 struct inode *dir; 3288 struct dentry *dentry; 3289 struct inode *inode; 3290 bool orphan; 3291 bool subvol; 3292 3293 /* 3294 * Output from btrfs_new_inode_prepare(), input to 3295 * btrfs_create_new_inode(). 3296 */ 3297 struct posix_acl *default_acl; 3298 struct posix_acl *acl; 3299 }; 3300 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3301 unsigned int *trans_num_items); 3302 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3303 struct btrfs_new_inode_args *args); 3304 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3305 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3306 struct inode *dir); 3307 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3308 unsigned *bits); 3309 void btrfs_clear_delalloc_extent(struct inode *inode, 3310 struct extent_state *state, unsigned *bits); 3311 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3312 struct extent_state *other); 3313 void btrfs_split_delalloc_extent(struct inode *inode, 3314 struct extent_state *orig, u64 split); 3315 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3316 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3317 void btrfs_evict_inode(struct inode *inode); 3318 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3319 struct inode *btrfs_alloc_inode(struct super_block *sb); 3320 void btrfs_destroy_inode(struct inode *inode); 3321 void btrfs_free_inode(struct inode *inode); 3322 int btrfs_drop_inode(struct inode *inode); 3323 int __init btrfs_init_cachep(void); 3324 void __cold btrfs_destroy_cachep(void); 3325 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3326 struct btrfs_root *root, struct btrfs_path *path); 3327 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3328 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3329 struct page *page, size_t pg_offset, 3330 u64 start, u64 end); 3331 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3332 struct btrfs_root *root, struct btrfs_inode *inode); 3333 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3334 struct btrfs_root *root, struct btrfs_inode *inode); 3335 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3336 struct btrfs_inode *inode); 3337 int btrfs_orphan_cleanup(struct btrfs_root *root); 3338 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3339 void btrfs_add_delayed_iput(struct inode *inode); 3340 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3341 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3342 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3343 u64 start, u64 num_bytes, u64 min_size, 3344 loff_t actual_len, u64 *alloc_hint); 3345 int btrfs_prealloc_file_range_trans(struct inode *inode, 3346 struct btrfs_trans_handle *trans, int mode, 3347 u64 start, u64 num_bytes, u64 min_size, 3348 loff_t actual_len, u64 *alloc_hint); 3349 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3350 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3351 struct writeback_control *wbc); 3352 int btrfs_writepage_cow_fixup(struct page *page); 3353 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3354 struct page *page, u64 start, 3355 u64 end, bool uptodate); 3356 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3357 struct btrfs_ioctl_encoded_io_args *encoded); 3358 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3359 const struct btrfs_ioctl_encoded_io_args *encoded); 3360 3361 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3362 3363 extern const struct dentry_operations btrfs_dentry_operations; 3364 3365 /* Inode locking type flags, by default the exclusive lock is taken */ 3366 #define BTRFS_ILOCK_SHARED (1U << 0) 3367 #define BTRFS_ILOCK_TRY (1U << 1) 3368 #define BTRFS_ILOCK_MMAP (1U << 2) 3369 3370 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3371 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3372 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3373 const u64 add_bytes, 3374 const u64 del_bytes); 3375 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3376 3377 /* ioctl.c */ 3378 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3379 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3380 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3381 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3382 struct dentry *dentry, struct fileattr *fa); 3383 int btrfs_ioctl_get_supported_features(void __user *arg); 3384 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3385 int __pure btrfs_is_empty_uuid(u8 *uuid); 3386 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3387 struct btrfs_ioctl_defrag_range_args *range, 3388 u64 newer_than, unsigned long max_to_defrag); 3389 void btrfs_get_block_group_info(struct list_head *groups_list, 3390 struct btrfs_ioctl_space_info *space); 3391 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3392 struct btrfs_ioctl_balance_args *bargs); 3393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3394 enum btrfs_exclusive_operation type); 3395 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3396 enum btrfs_exclusive_operation type); 3397 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3398 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3399 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3400 enum btrfs_exclusive_operation op); 3401 3402 3403 /* file.c */ 3404 int __init btrfs_auto_defrag_init(void); 3405 void __cold btrfs_auto_defrag_exit(void); 3406 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3407 struct btrfs_inode *inode, u32 extent_thresh); 3408 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3409 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3410 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3411 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3412 int skip_pinned); 3413 extern const struct file_operations btrfs_file_operations; 3414 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3415 struct btrfs_root *root, struct btrfs_inode *inode, 3416 struct btrfs_drop_extents_args *args); 3417 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3418 struct btrfs_path *path, const u64 start, 3419 const u64 end, 3420 struct btrfs_replace_extent_info *extent_info, 3421 struct btrfs_trans_handle **trans_out); 3422 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3423 struct btrfs_inode *inode, u64 start, u64 end); 3424 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3425 const struct btrfs_ioctl_encoded_io_args *encoded); 3426 int btrfs_release_file(struct inode *inode, struct file *file); 3427 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3428 size_t num_pages, loff_t pos, size_t write_bytes, 3429 struct extent_state **cached, bool noreserve); 3430 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3431 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3432 size_t *write_bytes); 3433 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3434 3435 /* tree-defrag.c */ 3436 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3437 struct btrfs_root *root); 3438 3439 /* super.c */ 3440 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3441 unsigned long new_flags); 3442 int btrfs_sync_fs(struct super_block *sb, int wait); 3443 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3444 u64 subvol_objectid); 3445 3446 static inline __printf(2, 3) __cold 3447 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3448 { 3449 } 3450 3451 #ifdef CONFIG_PRINTK_INDEX 3452 3453 #define btrfs_printk(fs_info, fmt, args...) \ 3454 do { \ 3455 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3456 _btrfs_printk(fs_info, fmt, ##args); \ 3457 } while (0) 3458 3459 __printf(2, 3) 3460 __cold 3461 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3462 3463 #elif defined(CONFIG_PRINTK) 3464 3465 #define btrfs_printk(fs_info, fmt, args...) \ 3466 _btrfs_printk(fs_info, fmt, ##args) 3467 3468 __printf(2, 3) 3469 __cold 3470 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3471 3472 #else 3473 3474 #define btrfs_printk(fs_info, fmt, args...) \ 3475 btrfs_no_printk(fs_info, fmt, ##args) 3476 #endif 3477 3478 #define btrfs_emerg(fs_info, fmt, args...) \ 3479 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3480 #define btrfs_alert(fs_info, fmt, args...) \ 3481 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3482 #define btrfs_crit(fs_info, fmt, args...) \ 3483 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3484 #define btrfs_err(fs_info, fmt, args...) \ 3485 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3486 #define btrfs_warn(fs_info, fmt, args...) \ 3487 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3488 #define btrfs_notice(fs_info, fmt, args...) \ 3489 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3490 #define btrfs_info(fs_info, fmt, args...) \ 3491 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3492 3493 /* 3494 * Wrappers that use printk_in_rcu 3495 */ 3496 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3497 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3498 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3499 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3500 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3501 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3502 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3503 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3504 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3505 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3506 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3507 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3508 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3509 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3510 3511 /* 3512 * Wrappers that use a ratelimited printk_in_rcu 3513 */ 3514 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3515 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3516 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3517 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3518 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3519 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3520 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3521 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3522 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3523 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3524 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3525 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3526 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3527 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3528 3529 /* 3530 * Wrappers that use a ratelimited printk 3531 */ 3532 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3533 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3534 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3535 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3536 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3537 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3538 #define btrfs_err_rl(fs_info, fmt, args...) \ 3539 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3540 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3541 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3542 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3543 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3544 #define btrfs_info_rl(fs_info, fmt, args...) \ 3545 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3546 3547 #if defined(CONFIG_DYNAMIC_DEBUG) 3548 #define btrfs_debug(fs_info, fmt, args...) \ 3549 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3550 fs_info, KERN_DEBUG fmt, ##args) 3551 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3552 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3553 fs_info, KERN_DEBUG fmt, ##args) 3554 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3555 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3556 fs_info, KERN_DEBUG fmt, ##args) 3557 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3558 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3559 fs_info, KERN_DEBUG fmt, ##args) 3560 #elif defined(DEBUG) 3561 #define btrfs_debug(fs_info, fmt, args...) \ 3562 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3563 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3564 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3565 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3566 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3567 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3568 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3569 #else 3570 #define btrfs_debug(fs_info, fmt, args...) \ 3571 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3572 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3573 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3574 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3575 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3576 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3577 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3578 #endif 3579 3580 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3581 do { \ 3582 rcu_read_lock(); \ 3583 btrfs_printk(fs_info, fmt, ##args); \ 3584 rcu_read_unlock(); \ 3585 } while (0) 3586 3587 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3588 do { \ 3589 rcu_read_lock(); \ 3590 btrfs_no_printk(fs_info, fmt, ##args); \ 3591 rcu_read_unlock(); \ 3592 } while (0) 3593 3594 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3595 do { \ 3596 static DEFINE_RATELIMIT_STATE(_rs, \ 3597 DEFAULT_RATELIMIT_INTERVAL, \ 3598 DEFAULT_RATELIMIT_BURST); \ 3599 if (__ratelimit(&_rs)) \ 3600 btrfs_printk(fs_info, fmt, ##args); \ 3601 } while (0) 3602 3603 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3604 do { \ 3605 rcu_read_lock(); \ 3606 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3607 rcu_read_unlock(); \ 3608 } while (0) 3609 3610 #ifdef CONFIG_BTRFS_ASSERT 3611 __cold __noreturn 3612 static inline void assertfail(const char *expr, const char *file, int line) 3613 { 3614 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3615 BUG(); 3616 } 3617 3618 #define ASSERT(expr) \ 3619 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3620 3621 #else 3622 static inline void assertfail(const char *expr, const char* file, int line) { } 3623 #define ASSERT(expr) (void)(expr) 3624 #endif 3625 3626 #if BITS_PER_LONG == 32 3627 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3628 /* 3629 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3630 * addresses of extents. 3631 * 3632 * For 4K page size it's about 10T, for 64K it's 160T. 3633 */ 3634 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3635 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3636 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3637 #endif 3638 3639 /* 3640 * Get the correct offset inside the page of extent buffer. 3641 * 3642 * @eb: target extent buffer 3643 * @start: offset inside the extent buffer 3644 * 3645 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3646 */ 3647 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3648 unsigned long offset) 3649 { 3650 /* 3651 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3652 * to PAGE_SIZE, thus adding it won't cause any difference. 3653 * 3654 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3655 * to the eb, thus we have to take the eb->start into consideration. 3656 */ 3657 return offset_in_page(offset + eb->start); 3658 } 3659 3660 static inline unsigned long get_eb_page_index(unsigned long offset) 3661 { 3662 /* 3663 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3664 * 3665 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3666 * and have ensured that all tree blocks are contained in one page, 3667 * thus we always get index == 0. 3668 */ 3669 return offset >> PAGE_SHIFT; 3670 } 3671 3672 /* 3673 * Use that for functions that are conditionally exported for sanity tests but 3674 * otherwise static 3675 */ 3676 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3677 #define EXPORT_FOR_TESTS static 3678 #else 3679 #define EXPORT_FOR_TESTS 3680 #endif 3681 3682 __cold 3683 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3684 { 3685 btrfs_err(fs_info, 3686 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3687 } 3688 3689 __printf(5, 6) 3690 __cold 3691 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3692 unsigned int line, int errno, const char *fmt, ...); 3693 3694 const char * __attribute_const__ btrfs_decode_error(int errno); 3695 3696 __cold 3697 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3698 const char *function, 3699 unsigned int line, int errno); 3700 3701 /* 3702 * Call btrfs_abort_transaction as early as possible when an error condition is 3703 * detected, that way the exact line number is reported. 3704 */ 3705 #define btrfs_abort_transaction(trans, errno) \ 3706 do { \ 3707 /* Report first abort since mount */ \ 3708 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3709 &((trans)->fs_info->fs_state))) { \ 3710 if ((errno) != -EIO && (errno) != -EROFS) { \ 3711 WARN(1, KERN_DEBUG \ 3712 "BTRFS: Transaction aborted (error %d)\n", \ 3713 (errno)); \ 3714 } else { \ 3715 btrfs_debug((trans)->fs_info, \ 3716 "Transaction aborted (error %d)", \ 3717 (errno)); \ 3718 } \ 3719 } \ 3720 __btrfs_abort_transaction((trans), __func__, \ 3721 __LINE__, (errno)); \ 3722 } while (0) 3723 3724 #ifdef CONFIG_PRINTK_INDEX 3725 3726 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3727 do { \ 3728 printk_index_subsys_emit( \ 3729 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3730 KERN_CRIT, fmt); \ 3731 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3732 (errno), fmt, ##args); \ 3733 } while (0) 3734 3735 #else 3736 3737 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3738 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3739 (errno), fmt, ##args) 3740 3741 #endif 3742 3743 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3744 &(fs_info)->fs_state))) 3745 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3746 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3747 &(fs_info)->fs_state))) 3748 3749 __printf(5, 6) 3750 __cold 3751 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3752 unsigned int line, int errno, const char *fmt, ...); 3753 /* 3754 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3755 * will panic(). Otherwise we BUG() here. 3756 */ 3757 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3758 do { \ 3759 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3760 BUG(); \ 3761 } while (0) 3762 3763 3764 /* compatibility and incompatibility defines */ 3765 3766 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3767 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3768 #opt) 3769 3770 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3771 u64 flag, const char* name) 3772 { 3773 struct btrfs_super_block *disk_super; 3774 u64 features; 3775 3776 disk_super = fs_info->super_copy; 3777 features = btrfs_super_incompat_flags(disk_super); 3778 if (!(features & flag)) { 3779 spin_lock(&fs_info->super_lock); 3780 features = btrfs_super_incompat_flags(disk_super); 3781 if (!(features & flag)) { 3782 features |= flag; 3783 btrfs_set_super_incompat_flags(disk_super, features); 3784 btrfs_info(fs_info, 3785 "setting incompat feature flag for %s (0x%llx)", 3786 name, flag); 3787 } 3788 spin_unlock(&fs_info->super_lock); 3789 } 3790 } 3791 3792 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3793 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3794 #opt) 3795 3796 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3797 u64 flag, const char* name) 3798 { 3799 struct btrfs_super_block *disk_super; 3800 u64 features; 3801 3802 disk_super = fs_info->super_copy; 3803 features = btrfs_super_incompat_flags(disk_super); 3804 if (features & flag) { 3805 spin_lock(&fs_info->super_lock); 3806 features = btrfs_super_incompat_flags(disk_super); 3807 if (features & flag) { 3808 features &= ~flag; 3809 btrfs_set_super_incompat_flags(disk_super, features); 3810 btrfs_info(fs_info, 3811 "clearing incompat feature flag for %s (0x%llx)", 3812 name, flag); 3813 } 3814 spin_unlock(&fs_info->super_lock); 3815 } 3816 } 3817 3818 #define btrfs_fs_incompat(fs_info, opt) \ 3819 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3820 3821 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3822 { 3823 struct btrfs_super_block *disk_super; 3824 disk_super = fs_info->super_copy; 3825 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3826 } 3827 3828 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3829 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3830 #opt) 3831 3832 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3833 u64 flag, const char *name) 3834 { 3835 struct btrfs_super_block *disk_super; 3836 u64 features; 3837 3838 disk_super = fs_info->super_copy; 3839 features = btrfs_super_compat_ro_flags(disk_super); 3840 if (!(features & flag)) { 3841 spin_lock(&fs_info->super_lock); 3842 features = btrfs_super_compat_ro_flags(disk_super); 3843 if (!(features & flag)) { 3844 features |= flag; 3845 btrfs_set_super_compat_ro_flags(disk_super, features); 3846 btrfs_info(fs_info, 3847 "setting compat-ro feature flag for %s (0x%llx)", 3848 name, flag); 3849 } 3850 spin_unlock(&fs_info->super_lock); 3851 } 3852 } 3853 3854 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3855 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3856 #opt) 3857 3858 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3859 u64 flag, const char *name) 3860 { 3861 struct btrfs_super_block *disk_super; 3862 u64 features; 3863 3864 disk_super = fs_info->super_copy; 3865 features = btrfs_super_compat_ro_flags(disk_super); 3866 if (features & flag) { 3867 spin_lock(&fs_info->super_lock); 3868 features = btrfs_super_compat_ro_flags(disk_super); 3869 if (features & flag) { 3870 features &= ~flag; 3871 btrfs_set_super_compat_ro_flags(disk_super, features); 3872 btrfs_info(fs_info, 3873 "clearing compat-ro feature flag for %s (0x%llx)", 3874 name, flag); 3875 } 3876 spin_unlock(&fs_info->super_lock); 3877 } 3878 } 3879 3880 #define btrfs_fs_compat_ro(fs_info, opt) \ 3881 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3882 3883 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3884 { 3885 struct btrfs_super_block *disk_super; 3886 disk_super = fs_info->super_copy; 3887 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3888 } 3889 3890 /* acl.c */ 3891 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3892 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3893 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3894 struct posix_acl *acl, int type); 3895 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3896 struct posix_acl *acl, int type); 3897 #else 3898 #define btrfs_get_acl NULL 3899 #define btrfs_set_acl NULL 3900 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3901 struct inode *inode, struct posix_acl *acl, 3902 int type) 3903 { 3904 return -EOPNOTSUPP; 3905 } 3906 #endif 3907 3908 /* relocation.c */ 3909 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3910 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3911 struct btrfs_root *root); 3912 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3913 struct btrfs_root *root); 3914 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3915 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3916 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3917 struct btrfs_root *root, struct extent_buffer *buf, 3918 struct extent_buffer *cow); 3919 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3920 u64 *bytes_to_reserve); 3921 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3922 struct btrfs_pending_snapshot *pending); 3923 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3924 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3925 u64 bytenr); 3926 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3927 3928 /* scrub.c */ 3929 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3930 u64 end, struct btrfs_scrub_progress *progress, 3931 int readonly, int is_dev_replace); 3932 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3933 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3934 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3935 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3936 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3937 struct btrfs_scrub_progress *progress); 3938 static inline void btrfs_init_full_stripe_locks_tree( 3939 struct btrfs_full_stripe_locks_tree *locks_root) 3940 { 3941 locks_root->root = RB_ROOT; 3942 mutex_init(&locks_root->lock); 3943 } 3944 3945 /* dev-replace.c */ 3946 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3947 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3948 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3949 3950 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3951 { 3952 btrfs_bio_counter_sub(fs_info, 1); 3953 } 3954 3955 static inline int is_fstree(u64 rootid) 3956 { 3957 if (rootid == BTRFS_FS_TREE_OBJECTID || 3958 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3959 !btrfs_qgroup_level(rootid))) 3960 return 1; 3961 return 0; 3962 } 3963 3964 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3965 { 3966 return signal_pending(current); 3967 } 3968 3969 /* verity.c */ 3970 #ifdef CONFIG_FS_VERITY 3971 3972 extern const struct fsverity_operations btrfs_verityops; 3973 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3974 3975 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3976 encryption, 8); 3977 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3978 size, 64); 3979 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3980 struct btrfs_verity_descriptor_item, encryption, 8); 3981 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3982 struct btrfs_verity_descriptor_item, size, 64); 3983 3984 #else 3985 3986 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3987 { 3988 return 0; 3989 } 3990 3991 #endif 3992 3993 /* Sanity test specific functions */ 3994 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3995 void btrfs_test_destroy_inode(struct inode *inode); 3996 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3997 { 3998 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3999 } 4000 #else 4001 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4002 { 4003 return 0; 4004 } 4005 #endif 4006 4007 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4008 { 4009 return fs_info->zone_size > 0; 4010 } 4011 4012 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4013 { 4014 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4015 } 4016 4017 /* 4018 * We use page status Private2 to indicate there is an ordered extent with 4019 * unfinished IO. 4020 * 4021 * Rename the Private2 accessors to Ordered, to improve readability. 4022 */ 4023 #define PageOrdered(page) PagePrivate2(page) 4024 #define SetPageOrdered(page) SetPagePrivate2(page) 4025 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4026 #define folio_test_ordered(folio) folio_test_private_2(folio) 4027 #define folio_set_ordered(folio) folio_set_private_2(folio) 4028 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4029 4030 #endif 4031