xref: /openbmc/linux/fs/btrfs/ctree.h (revision acf50233)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 /*
111  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
112  */
113 static inline u32 count_max_extents(u64 size)
114 {
115 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
116 }
117 
118 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
119 {
120 	BUG_ON(num_stripes == 0);
121 	return sizeof(struct btrfs_chunk) +
122 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
123 }
124 
125 /*
126  * Runtime (in-memory) states of filesystem
127  */
128 enum {
129 	/* Global indicator of serious filesystem errors */
130 	BTRFS_FS_STATE_ERROR,
131 	/*
132 	 * Filesystem is being remounted, allow to skip some operations, like
133 	 * defrag
134 	 */
135 	BTRFS_FS_STATE_REMOUNTING,
136 	/* Filesystem in RO mode */
137 	BTRFS_FS_STATE_RO,
138 	/* Track if a transaction abort has been reported on this filesystem */
139 	BTRFS_FS_STATE_TRANS_ABORTED,
140 	/*
141 	 * Bio operations should be blocked on this filesystem because a source
142 	 * or target device is being destroyed as part of a device replace
143 	 */
144 	BTRFS_FS_STATE_DEV_REPLACING,
145 	/* The btrfs_fs_info created for self-tests */
146 	BTRFS_FS_STATE_DUMMY_FS_INFO,
147 
148 	BTRFS_FS_STATE_NO_CSUMS,
149 
150 	/* Indicates there was an error cleaning up a log tree. */
151 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
152 
153 	BTRFS_FS_STATE_COUNT
154 };
155 
156 #define BTRFS_BACKREF_REV_MAX		256
157 #define BTRFS_BACKREF_REV_SHIFT		56
158 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
159 					 BTRFS_BACKREF_REV_SHIFT)
160 
161 #define BTRFS_OLD_BACKREF_REV		0
162 #define BTRFS_MIXED_BACKREF_REV		1
163 
164 /*
165  * every tree block (leaf or node) starts with this header.
166  */
167 struct btrfs_header {
168 	/* these first four must match the super block */
169 	u8 csum[BTRFS_CSUM_SIZE];
170 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
171 	__le64 bytenr; /* which block this node is supposed to live in */
172 	__le64 flags;
173 
174 	/* allowed to be different from the super from here on down */
175 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
176 	__le64 generation;
177 	__le64 owner;
178 	__le32 nritems;
179 	u8 level;
180 } __attribute__ ((__packed__));
181 
182 /*
183  * this is a very generous portion of the super block, giving us
184  * room to translate 14 chunks with 3 stripes each.
185  */
186 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
187 
188 /*
189  * just in case we somehow lose the roots and are not able to mount,
190  * we store an array of the roots from previous transactions
191  * in the super.
192  */
193 #define BTRFS_NUM_BACKUP_ROOTS 4
194 struct btrfs_root_backup {
195 	__le64 tree_root;
196 	__le64 tree_root_gen;
197 
198 	__le64 chunk_root;
199 	__le64 chunk_root_gen;
200 
201 	__le64 extent_root;
202 	__le64 extent_root_gen;
203 
204 	__le64 fs_root;
205 	__le64 fs_root_gen;
206 
207 	__le64 dev_root;
208 	__le64 dev_root_gen;
209 
210 	__le64 csum_root;
211 	__le64 csum_root_gen;
212 
213 	__le64 total_bytes;
214 	__le64 bytes_used;
215 	__le64 num_devices;
216 	/* future */
217 	__le64 unused_64[4];
218 
219 	u8 tree_root_level;
220 	u8 chunk_root_level;
221 	u8 extent_root_level;
222 	u8 fs_root_level;
223 	u8 dev_root_level;
224 	u8 csum_root_level;
225 	/* future and to align */
226 	u8 unused_8[10];
227 } __attribute__ ((__packed__));
228 
229 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
230 #define BTRFS_SUPER_INFO_SIZE			4096
231 
232 /*
233  * the super block basically lists the main trees of the FS
234  * it currently lacks any block count etc etc
235  */
236 struct btrfs_super_block {
237 	/* the first 4 fields must match struct btrfs_header */
238 	u8 csum[BTRFS_CSUM_SIZE];
239 	/* FS specific UUID, visible to user */
240 	u8 fsid[BTRFS_FSID_SIZE];
241 	__le64 bytenr; /* this block number */
242 	__le64 flags;
243 
244 	/* allowed to be different from the btrfs_header from here own down */
245 	__le64 magic;
246 	__le64 generation;
247 	__le64 root;
248 	__le64 chunk_root;
249 	__le64 log_root;
250 
251 	/* this will help find the new super based on the log root */
252 	__le64 log_root_transid;
253 	__le64 total_bytes;
254 	__le64 bytes_used;
255 	__le64 root_dir_objectid;
256 	__le64 num_devices;
257 	__le32 sectorsize;
258 	__le32 nodesize;
259 	__le32 __unused_leafsize;
260 	__le32 stripesize;
261 	__le32 sys_chunk_array_size;
262 	__le64 chunk_root_generation;
263 	__le64 compat_flags;
264 	__le64 compat_ro_flags;
265 	__le64 incompat_flags;
266 	__le16 csum_type;
267 	u8 root_level;
268 	u8 chunk_root_level;
269 	u8 log_root_level;
270 	struct btrfs_dev_item dev_item;
271 
272 	char label[BTRFS_LABEL_SIZE];
273 
274 	__le64 cache_generation;
275 	__le64 uuid_tree_generation;
276 
277 	/* the UUID written into btree blocks */
278 	u8 metadata_uuid[BTRFS_FSID_SIZE];
279 
280 	/* Extent tree v2 */
281 	__le64 block_group_root;
282 	__le64 block_group_root_generation;
283 	u8 block_group_root_level;
284 
285 	/* future expansion */
286 	u8 reserved8[7];
287 	__le64 reserved[25];
288 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
289 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
290 
291 	/* Padded to 4096 bytes */
292 	u8 padding[565];
293 } __attribute__ ((__packed__));
294 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
295 
296 /*
297  * Compat flags that we support.  If any incompat flags are set other than the
298  * ones specified below then we will fail to mount
299  */
300 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
301 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
302 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
303 
304 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
305 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
306 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
307 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
308 
309 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
310 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
311 
312 #ifdef CONFIG_BTRFS_DEBUG
313 /*
314  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
315  */
316 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
317 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
318 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
319 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
320 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
321 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
322 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
323 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
324 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
325 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
326 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
327 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
328 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
329 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
330 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
331 #else
332 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
333 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
334 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
335 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
336 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
337 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
338 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
339 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
340 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
341 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
342 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
343 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
344 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
345 	 BTRFS_FEATURE_INCOMPAT_ZONED)
346 #endif
347 
348 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
349 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
350 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
351 
352 /*
353  * A leaf is full of items. offset and size tell us where to find
354  * the item in the leaf (relative to the start of the data area)
355  */
356 struct btrfs_item {
357 	struct btrfs_disk_key key;
358 	__le32 offset;
359 	__le32 size;
360 } __attribute__ ((__packed__));
361 
362 /*
363  * leaves have an item area and a data area:
364  * [item0, item1....itemN] [free space] [dataN...data1, data0]
365  *
366  * The data is separate from the items to get the keys closer together
367  * during searches.
368  */
369 struct btrfs_leaf {
370 	struct btrfs_header header;
371 	struct btrfs_item items[];
372 } __attribute__ ((__packed__));
373 
374 /*
375  * all non-leaf blocks are nodes, they hold only keys and pointers to
376  * other blocks
377  */
378 struct btrfs_key_ptr {
379 	struct btrfs_disk_key key;
380 	__le64 blockptr;
381 	__le64 generation;
382 } __attribute__ ((__packed__));
383 
384 struct btrfs_node {
385 	struct btrfs_header header;
386 	struct btrfs_key_ptr ptrs[];
387 } __attribute__ ((__packed__));
388 
389 /* Read ahead values for struct btrfs_path.reada */
390 enum {
391 	READA_NONE,
392 	READA_BACK,
393 	READA_FORWARD,
394 	/*
395 	 * Similar to READA_FORWARD but unlike it:
396 	 *
397 	 * 1) It will trigger readahead even for leaves that are not close to
398 	 *    each other on disk;
399 	 * 2) It also triggers readahead for nodes;
400 	 * 3) During a search, even when a node or leaf is already in memory, it
401 	 *    will still trigger readahead for other nodes and leaves that follow
402 	 *    it.
403 	 *
404 	 * This is meant to be used only when we know we are iterating over the
405 	 * entire tree or a very large part of it.
406 	 */
407 	READA_FORWARD_ALWAYS,
408 };
409 
410 /*
411  * btrfs_paths remember the path taken from the root down to the leaf.
412  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
413  * to any other levels that are present.
414  *
415  * The slots array records the index of the item or block pointer
416  * used while walking the tree.
417  */
418 struct btrfs_path {
419 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
420 	int slots[BTRFS_MAX_LEVEL];
421 	/* if there is real range locking, this locks field will change */
422 	u8 locks[BTRFS_MAX_LEVEL];
423 	u8 reada;
424 	/* keep some upper locks as we walk down */
425 	u8 lowest_level;
426 
427 	/*
428 	 * set by btrfs_split_item, tells search_slot to keep all locks
429 	 * and to force calls to keep space in the nodes
430 	 */
431 	unsigned int search_for_split:1;
432 	unsigned int keep_locks:1;
433 	unsigned int skip_locking:1;
434 	unsigned int search_commit_root:1;
435 	unsigned int need_commit_sem:1;
436 	unsigned int skip_release_on_error:1;
437 	/*
438 	 * Indicate that new item (btrfs_search_slot) is extending already
439 	 * existing item and ins_len contains only the data size and not item
440 	 * header (ie. sizeof(struct btrfs_item) is not included).
441 	 */
442 	unsigned int search_for_extension:1;
443 };
444 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
445 					sizeof(struct btrfs_item))
446 struct btrfs_dev_replace {
447 	u64 replace_state;	/* see #define above */
448 	time64_t time_started;	/* seconds since 1-Jan-1970 */
449 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
450 	atomic64_t num_write_errors;
451 	atomic64_t num_uncorrectable_read_errors;
452 
453 	u64 cursor_left;
454 	u64 committed_cursor_left;
455 	u64 cursor_left_last_write_of_item;
456 	u64 cursor_right;
457 
458 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
459 
460 	int is_valid;
461 	int item_needs_writeback;
462 	struct btrfs_device *srcdev;
463 	struct btrfs_device *tgtdev;
464 
465 	struct mutex lock_finishing_cancel_unmount;
466 	struct rw_semaphore rwsem;
467 
468 	struct btrfs_scrub_progress scrub_progress;
469 
470 	struct percpu_counter bio_counter;
471 	wait_queue_head_t replace_wait;
472 };
473 
474 /*
475  * free clusters are used to claim free space in relatively large chunks,
476  * allowing us to do less seeky writes. They are used for all metadata
477  * allocations. In ssd_spread mode they are also used for data allocations.
478  */
479 struct btrfs_free_cluster {
480 	spinlock_t lock;
481 	spinlock_t refill_lock;
482 	struct rb_root root;
483 
484 	/* largest extent in this cluster */
485 	u64 max_size;
486 
487 	/* first extent starting offset */
488 	u64 window_start;
489 
490 	/* We did a full search and couldn't create a cluster */
491 	bool fragmented;
492 
493 	struct btrfs_block_group *block_group;
494 	/*
495 	 * when a cluster is allocated from a block group, we put the
496 	 * cluster onto a list in the block group so that it can
497 	 * be freed before the block group is freed.
498 	 */
499 	struct list_head block_group_list;
500 };
501 
502 enum btrfs_caching_type {
503 	BTRFS_CACHE_NO,
504 	BTRFS_CACHE_STARTED,
505 	BTRFS_CACHE_FAST,
506 	BTRFS_CACHE_FINISHED,
507 	BTRFS_CACHE_ERROR,
508 };
509 
510 /*
511  * Tree to record all locked full stripes of a RAID5/6 block group
512  */
513 struct btrfs_full_stripe_locks_tree {
514 	struct rb_root root;
515 	struct mutex lock;
516 };
517 
518 /* Discard control. */
519 /*
520  * Async discard uses multiple lists to differentiate the discard filter
521  * parameters.  Index 0 is for completely free block groups where we need to
522  * ensure the entire block group is trimmed without being lossy.  Indices
523  * afterwards represent monotonically decreasing discard filter sizes to
524  * prioritize what should be discarded next.
525  */
526 #define BTRFS_NR_DISCARD_LISTS		3
527 #define BTRFS_DISCARD_INDEX_UNUSED	0
528 #define BTRFS_DISCARD_INDEX_START	1
529 
530 struct btrfs_discard_ctl {
531 	struct workqueue_struct *discard_workers;
532 	struct delayed_work work;
533 	spinlock_t lock;
534 	struct btrfs_block_group *block_group;
535 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
536 	u64 prev_discard;
537 	u64 prev_discard_time;
538 	atomic_t discardable_extents;
539 	atomic64_t discardable_bytes;
540 	u64 max_discard_size;
541 	u64 delay_ms;
542 	u32 iops_limit;
543 	u32 kbps_limit;
544 	u64 discard_extent_bytes;
545 	u64 discard_bitmap_bytes;
546 	atomic64_t discard_bytes_saved;
547 };
548 
549 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
550 
551 /* fs_info */
552 struct reloc_control;
553 struct btrfs_device;
554 struct btrfs_fs_devices;
555 struct btrfs_balance_control;
556 struct btrfs_delayed_root;
557 
558 /*
559  * Block group or device which contains an active swapfile. Used for preventing
560  * unsafe operations while a swapfile is active.
561  *
562  * These are sorted on (ptr, inode) (note that a block group or device can
563  * contain more than one swapfile). We compare the pointer values because we
564  * don't actually care what the object is, we just need a quick check whether
565  * the object exists in the rbtree.
566  */
567 struct btrfs_swapfile_pin {
568 	struct rb_node node;
569 	void *ptr;
570 	struct inode *inode;
571 	/*
572 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
573 	 * points to a struct btrfs_device.
574 	 */
575 	bool is_block_group;
576 	/*
577 	 * Only used when 'is_block_group' is true and it is the number of
578 	 * extents used by a swapfile for this block group ('ptr' field).
579 	 */
580 	int bg_extent_count;
581 };
582 
583 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
584 
585 enum {
586 	BTRFS_FS_CLOSING_START,
587 	BTRFS_FS_CLOSING_DONE,
588 	BTRFS_FS_LOG_RECOVERING,
589 	BTRFS_FS_OPEN,
590 	BTRFS_FS_QUOTA_ENABLED,
591 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
592 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
593 	BTRFS_FS_BTREE_ERR,
594 	BTRFS_FS_LOG1_ERR,
595 	BTRFS_FS_LOG2_ERR,
596 	BTRFS_FS_QUOTA_OVERRIDE,
597 	/* Used to record internally whether fs has been frozen */
598 	BTRFS_FS_FROZEN,
599 	/*
600 	 * Indicate that balance has been set up from the ioctl and is in the
601 	 * main phase. The fs_info::balance_ctl is initialized.
602 	 */
603 	BTRFS_FS_BALANCE_RUNNING,
604 
605 	/*
606 	 * Indicate that relocation of a chunk has started, it's set per chunk
607 	 * and is toggled between chunks.
608 	 */
609 	BTRFS_FS_RELOC_RUNNING,
610 
611 	/* Indicate that the cleaner thread is awake and doing something. */
612 	BTRFS_FS_CLEANER_RUNNING,
613 
614 	/*
615 	 * The checksumming has an optimized version and is considered fast,
616 	 * so we don't need to offload checksums to workqueues.
617 	 */
618 	BTRFS_FS_CSUM_IMPL_FAST,
619 
620 	/* Indicate that the discard workqueue can service discards. */
621 	BTRFS_FS_DISCARD_RUNNING,
622 
623 	/* Indicate that we need to cleanup space cache v1 */
624 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
625 
626 	/* Indicate that we can't trust the free space tree for caching yet */
627 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
628 
629 	/* Indicate whether there are any tree modification log users */
630 	BTRFS_FS_TREE_MOD_LOG_USERS,
631 
632 	/* Indicate that we want the transaction kthread to commit right now. */
633 	BTRFS_FS_COMMIT_TRANS,
634 
635 	/* Indicate we have half completed snapshot deletions pending. */
636 	BTRFS_FS_UNFINISHED_DROPS,
637 
638 #if BITS_PER_LONG == 32
639 	/* Indicate if we have error/warn message printed on 32bit systems */
640 	BTRFS_FS_32BIT_ERROR,
641 	BTRFS_FS_32BIT_WARN,
642 #endif
643 };
644 
645 /*
646  * Exclusive operations (device replace, resize, device add/remove, balance)
647  */
648 enum btrfs_exclusive_operation {
649 	BTRFS_EXCLOP_NONE,
650 	BTRFS_EXCLOP_BALANCE_PAUSED,
651 	BTRFS_EXCLOP_BALANCE,
652 	BTRFS_EXCLOP_DEV_ADD,
653 	BTRFS_EXCLOP_DEV_REMOVE,
654 	BTRFS_EXCLOP_DEV_REPLACE,
655 	BTRFS_EXCLOP_RESIZE,
656 	BTRFS_EXCLOP_SWAP_ACTIVATE,
657 };
658 
659 struct btrfs_fs_info {
660 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
661 	unsigned long flags;
662 	struct btrfs_root *tree_root;
663 	struct btrfs_root *chunk_root;
664 	struct btrfs_root *dev_root;
665 	struct btrfs_root *fs_root;
666 	struct btrfs_root *quota_root;
667 	struct btrfs_root *uuid_root;
668 	struct btrfs_root *data_reloc_root;
669 	struct btrfs_root *block_group_root;
670 
671 	/* the log root tree is a directory of all the other log roots */
672 	struct btrfs_root *log_root_tree;
673 
674 	/* The tree that holds the global roots (csum, extent, etc) */
675 	rwlock_t global_root_lock;
676 	struct rb_root global_root_tree;
677 
678 	/* The xarray that holds all the FS roots */
679 	spinlock_t fs_roots_lock;
680 	struct xarray fs_roots;
681 
682 	/* block group cache stuff */
683 	rwlock_t block_group_cache_lock;
684 	struct rb_root_cached block_group_cache_tree;
685 
686 	/* keep track of unallocated space */
687 	atomic64_t free_chunk_space;
688 
689 	/* Track ranges which are used by log trees blocks/logged data extents */
690 	struct extent_io_tree excluded_extents;
691 
692 	/* logical->physical extent mapping */
693 	struct extent_map_tree mapping_tree;
694 
695 	/*
696 	 * block reservation for extent, checksum, root tree and
697 	 * delayed dir index item
698 	 */
699 	struct btrfs_block_rsv global_block_rsv;
700 	/* block reservation for metadata operations */
701 	struct btrfs_block_rsv trans_block_rsv;
702 	/* block reservation for chunk tree */
703 	struct btrfs_block_rsv chunk_block_rsv;
704 	/* block reservation for delayed operations */
705 	struct btrfs_block_rsv delayed_block_rsv;
706 	/* block reservation for delayed refs */
707 	struct btrfs_block_rsv delayed_refs_rsv;
708 
709 	struct btrfs_block_rsv empty_block_rsv;
710 
711 	u64 generation;
712 	u64 last_trans_committed;
713 	/*
714 	 * Generation of the last transaction used for block group relocation
715 	 * since the filesystem was last mounted (or 0 if none happened yet).
716 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
717 	 */
718 	u64 last_reloc_trans;
719 	u64 avg_delayed_ref_runtime;
720 
721 	/*
722 	 * this is updated to the current trans every time a full commit
723 	 * is required instead of the faster short fsync log commits
724 	 */
725 	u64 last_trans_log_full_commit;
726 	unsigned long mount_opt;
727 	/*
728 	 * Track requests for actions that need to be done during transaction
729 	 * commit (like for some mount options).
730 	 */
731 	unsigned long pending_changes;
732 	unsigned long compress_type:4;
733 	unsigned int compress_level;
734 	u32 commit_interval;
735 	/*
736 	 * It is a suggestive number, the read side is safe even it gets a
737 	 * wrong number because we will write out the data into a regular
738 	 * extent. The write side(mount/remount) is under ->s_umount lock,
739 	 * so it is also safe.
740 	 */
741 	u64 max_inline;
742 
743 	struct btrfs_transaction *running_transaction;
744 	wait_queue_head_t transaction_throttle;
745 	wait_queue_head_t transaction_wait;
746 	wait_queue_head_t transaction_blocked_wait;
747 	wait_queue_head_t async_submit_wait;
748 
749 	/*
750 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
751 	 * when they are updated.
752 	 *
753 	 * Because we do not clear the flags for ever, so we needn't use
754 	 * the lock on the read side.
755 	 *
756 	 * We also needn't use the lock when we mount the fs, because
757 	 * there is no other task which will update the flag.
758 	 */
759 	spinlock_t super_lock;
760 	struct btrfs_super_block *super_copy;
761 	struct btrfs_super_block *super_for_commit;
762 	struct super_block *sb;
763 	struct inode *btree_inode;
764 	struct mutex tree_log_mutex;
765 	struct mutex transaction_kthread_mutex;
766 	struct mutex cleaner_mutex;
767 	struct mutex chunk_mutex;
768 
769 	/*
770 	 * this is taken to make sure we don't set block groups ro after
771 	 * the free space cache has been allocated on them
772 	 */
773 	struct mutex ro_block_group_mutex;
774 
775 	/* this is used during read/modify/write to make sure
776 	 * no two ios are trying to mod the same stripe at the same
777 	 * time
778 	 */
779 	struct btrfs_stripe_hash_table *stripe_hash_table;
780 
781 	/*
782 	 * this protects the ordered operations list only while we are
783 	 * processing all of the entries on it.  This way we make
784 	 * sure the commit code doesn't find the list temporarily empty
785 	 * because another function happens to be doing non-waiting preflush
786 	 * before jumping into the main commit.
787 	 */
788 	struct mutex ordered_operations_mutex;
789 
790 	struct rw_semaphore commit_root_sem;
791 
792 	struct rw_semaphore cleanup_work_sem;
793 
794 	struct rw_semaphore subvol_sem;
795 
796 	spinlock_t trans_lock;
797 	/*
798 	 * the reloc mutex goes with the trans lock, it is taken
799 	 * during commit to protect us from the relocation code
800 	 */
801 	struct mutex reloc_mutex;
802 
803 	struct list_head trans_list;
804 	struct list_head dead_roots;
805 	struct list_head caching_block_groups;
806 
807 	spinlock_t delayed_iput_lock;
808 	struct list_head delayed_iputs;
809 	atomic_t nr_delayed_iputs;
810 	wait_queue_head_t delayed_iputs_wait;
811 
812 	atomic64_t tree_mod_seq;
813 
814 	/* this protects tree_mod_log and tree_mod_seq_list */
815 	rwlock_t tree_mod_log_lock;
816 	struct rb_root tree_mod_log;
817 	struct list_head tree_mod_seq_list;
818 
819 	atomic_t async_delalloc_pages;
820 
821 	/*
822 	 * this is used to protect the following list -- ordered_roots.
823 	 */
824 	spinlock_t ordered_root_lock;
825 
826 	/*
827 	 * all fs/file tree roots in which there are data=ordered extents
828 	 * pending writeback are added into this list.
829 	 *
830 	 * these can span multiple transactions and basically include
831 	 * every dirty data page that isn't from nodatacow
832 	 */
833 	struct list_head ordered_roots;
834 
835 	struct mutex delalloc_root_mutex;
836 	spinlock_t delalloc_root_lock;
837 	/* all fs/file tree roots that have delalloc inodes. */
838 	struct list_head delalloc_roots;
839 
840 	/*
841 	 * there is a pool of worker threads for checksumming during writes
842 	 * and a pool for checksumming after reads.  This is because readers
843 	 * can run with FS locks held, and the writers may be waiting for
844 	 * those locks.  We don't want ordering in the pending list to cause
845 	 * deadlocks, and so the two are serviced separately.
846 	 *
847 	 * A third pool does submit_bio to avoid deadlocking with the other
848 	 * two
849 	 */
850 	struct btrfs_workqueue *workers;
851 	struct btrfs_workqueue *hipri_workers;
852 	struct btrfs_workqueue *delalloc_workers;
853 	struct btrfs_workqueue *flush_workers;
854 	struct btrfs_workqueue *endio_workers;
855 	struct btrfs_workqueue *endio_meta_workers;
856 	struct btrfs_workqueue *endio_raid56_workers;
857 	struct workqueue_struct *rmw_workers;
858 	struct btrfs_workqueue *endio_meta_write_workers;
859 	struct btrfs_workqueue *endio_write_workers;
860 	struct btrfs_workqueue *endio_freespace_worker;
861 	struct btrfs_workqueue *caching_workers;
862 
863 	/*
864 	 * fixup workers take dirty pages that didn't properly go through
865 	 * the cow mechanism and make them safe to write.  It happens
866 	 * for the sys_munmap function call path
867 	 */
868 	struct btrfs_workqueue *fixup_workers;
869 	struct btrfs_workqueue *delayed_workers;
870 
871 	struct task_struct *transaction_kthread;
872 	struct task_struct *cleaner_kthread;
873 	u32 thread_pool_size;
874 
875 	struct kobject *space_info_kobj;
876 	struct kobject *qgroups_kobj;
877 
878 	/* used to keep from writing metadata until there is a nice batch */
879 	struct percpu_counter dirty_metadata_bytes;
880 	struct percpu_counter delalloc_bytes;
881 	struct percpu_counter ordered_bytes;
882 	s32 dirty_metadata_batch;
883 	s32 delalloc_batch;
884 
885 	struct list_head dirty_cowonly_roots;
886 
887 	struct btrfs_fs_devices *fs_devices;
888 
889 	/*
890 	 * The space_info list is effectively read only after initial
891 	 * setup.  It is populated at mount time and cleaned up after
892 	 * all block groups are removed.  RCU is used to protect it.
893 	 */
894 	struct list_head space_info;
895 
896 	struct btrfs_space_info *data_sinfo;
897 
898 	struct reloc_control *reloc_ctl;
899 
900 	/* data_alloc_cluster is only used in ssd_spread mode */
901 	struct btrfs_free_cluster data_alloc_cluster;
902 
903 	/* all metadata allocations go through this cluster */
904 	struct btrfs_free_cluster meta_alloc_cluster;
905 
906 	/* auto defrag inodes go here */
907 	spinlock_t defrag_inodes_lock;
908 	struct rb_root defrag_inodes;
909 	atomic_t defrag_running;
910 
911 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
912 	seqlock_t profiles_lock;
913 	/*
914 	 * these three are in extended format (availability of single
915 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
916 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
917 	 */
918 	u64 avail_data_alloc_bits;
919 	u64 avail_metadata_alloc_bits;
920 	u64 avail_system_alloc_bits;
921 
922 	/* restriper state */
923 	spinlock_t balance_lock;
924 	struct mutex balance_mutex;
925 	atomic_t balance_pause_req;
926 	atomic_t balance_cancel_req;
927 	struct btrfs_balance_control *balance_ctl;
928 	wait_queue_head_t balance_wait_q;
929 
930 	/* Cancellation requests for chunk relocation */
931 	atomic_t reloc_cancel_req;
932 
933 	u32 data_chunk_allocations;
934 	u32 metadata_ratio;
935 
936 	void *bdev_holder;
937 
938 	/* private scrub information */
939 	struct mutex scrub_lock;
940 	atomic_t scrubs_running;
941 	atomic_t scrub_pause_req;
942 	atomic_t scrubs_paused;
943 	atomic_t scrub_cancel_req;
944 	wait_queue_head_t scrub_pause_wait;
945 	/*
946 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
947 	 * running.
948 	 */
949 	refcount_t scrub_workers_refcnt;
950 	struct workqueue_struct *scrub_workers;
951 	struct workqueue_struct *scrub_wr_completion_workers;
952 	struct workqueue_struct *scrub_parity_workers;
953 	struct btrfs_subpage_info *subpage_info;
954 
955 	struct btrfs_discard_ctl discard_ctl;
956 
957 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
958 	u32 check_integrity_print_mask;
959 #endif
960 	/* is qgroup tracking in a consistent state? */
961 	u64 qgroup_flags;
962 
963 	/* holds configuration and tracking. Protected by qgroup_lock */
964 	struct rb_root qgroup_tree;
965 	spinlock_t qgroup_lock;
966 
967 	/*
968 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
969 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
970 	 */
971 	struct ulist *qgroup_ulist;
972 
973 	/*
974 	 * Protect user change for quota operations. If a transaction is needed,
975 	 * it must be started before locking this lock.
976 	 */
977 	struct mutex qgroup_ioctl_lock;
978 
979 	/* list of dirty qgroups to be written at next commit */
980 	struct list_head dirty_qgroups;
981 
982 	/* used by qgroup for an efficient tree traversal */
983 	u64 qgroup_seq;
984 
985 	/* qgroup rescan items */
986 	struct mutex qgroup_rescan_lock; /* protects the progress item */
987 	struct btrfs_key qgroup_rescan_progress;
988 	struct btrfs_workqueue *qgroup_rescan_workers;
989 	struct completion qgroup_rescan_completion;
990 	struct btrfs_work qgroup_rescan_work;
991 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
992 
993 	/* filesystem state */
994 	unsigned long fs_state;
995 
996 	struct btrfs_delayed_root *delayed_root;
997 
998 	/* Extent buffer xarray */
999 	spinlock_t buffer_lock;
1000 	/* Entries are eb->start / sectorsize */
1001 	struct xarray extent_buffers;
1002 
1003 	/* next backup root to be overwritten */
1004 	int backup_root_index;
1005 
1006 	/* device replace state */
1007 	struct btrfs_dev_replace dev_replace;
1008 
1009 	struct semaphore uuid_tree_rescan_sem;
1010 
1011 	/* Used to reclaim the metadata space in the background. */
1012 	struct work_struct async_reclaim_work;
1013 	struct work_struct async_data_reclaim_work;
1014 	struct work_struct preempt_reclaim_work;
1015 
1016 	/* Reclaim partially filled block groups in the background */
1017 	struct work_struct reclaim_bgs_work;
1018 	struct list_head reclaim_bgs;
1019 	int bg_reclaim_threshold;
1020 
1021 	spinlock_t unused_bgs_lock;
1022 	struct list_head unused_bgs;
1023 	struct mutex unused_bg_unpin_mutex;
1024 	/* Protect block groups that are going to be deleted */
1025 	struct mutex reclaim_bgs_lock;
1026 
1027 	/* Cached block sizes */
1028 	u32 nodesize;
1029 	u32 sectorsize;
1030 	/* ilog2 of sectorsize, use to avoid 64bit division */
1031 	u32 sectorsize_bits;
1032 	u32 csum_size;
1033 	u32 csums_per_leaf;
1034 	u32 stripesize;
1035 
1036 	/* Block groups and devices containing active swapfiles. */
1037 	spinlock_t swapfile_pins_lock;
1038 	struct rb_root swapfile_pins;
1039 
1040 	struct crypto_shash *csum_shash;
1041 
1042 	/* Type of exclusive operation running, protected by super_lock */
1043 	enum btrfs_exclusive_operation exclusive_operation;
1044 
1045 	/*
1046 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1047 	 * if the mode is enabled
1048 	 */
1049 	u64 zone_size;
1050 
1051 	struct mutex zoned_meta_io_lock;
1052 	spinlock_t treelog_bg_lock;
1053 	u64 treelog_bg;
1054 
1055 	/*
1056 	 * Start of the dedicated data relocation block group, protected by
1057 	 * relocation_bg_lock.
1058 	 */
1059 	spinlock_t relocation_bg_lock;
1060 	u64 data_reloc_bg;
1061 	struct mutex zoned_data_reloc_io_lock;
1062 
1063 	u64 nr_global_roots;
1064 
1065 	spinlock_t zone_active_bgs_lock;
1066 	struct list_head zone_active_bgs;
1067 
1068 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1069 	spinlock_t ref_verify_lock;
1070 	struct rb_root block_tree;
1071 #endif
1072 
1073 #ifdef CONFIG_BTRFS_DEBUG
1074 	struct kobject *debug_kobj;
1075 	struct kobject *discard_debug_kobj;
1076 	struct list_head allocated_roots;
1077 
1078 	spinlock_t eb_leak_lock;
1079 	struct list_head allocated_ebs;
1080 #endif
1081 };
1082 
1083 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1084 {
1085 	return sb->s_fs_info;
1086 }
1087 
1088 /*
1089  * The state of btrfs root
1090  */
1091 enum {
1092 	/*
1093 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1094 	 * with the balancing code.   But the race is very small, and only the
1095 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1096 	 * is used to tell us when more checks are required
1097 	 */
1098 	BTRFS_ROOT_IN_TRANS_SETUP,
1099 
1100 	/*
1101 	 * Set if tree blocks of this root can be shared by other roots.
1102 	 * Only subvolume trees and their reloc trees have this bit set.
1103 	 * Conflicts with TRACK_DIRTY bit.
1104 	 *
1105 	 * This affects two things:
1106 	 *
1107 	 * - How balance works
1108 	 *   For shareable roots, we need to use reloc tree and do path
1109 	 *   replacement for balance, and need various pre/post hooks for
1110 	 *   snapshot creation to handle them.
1111 	 *
1112 	 *   While for non-shareable trees, we just simply do a tree search
1113 	 *   with COW.
1114 	 *
1115 	 * - How dirty roots are tracked
1116 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1117 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1118 	 *   don't need to set this manually.
1119 	 */
1120 	BTRFS_ROOT_SHAREABLE,
1121 	BTRFS_ROOT_TRACK_DIRTY,
1122 	/* The root is tracked in fs_info::fs_roots */
1123 	BTRFS_ROOT_REGISTERED,
1124 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1125 	BTRFS_ROOT_DEFRAG_RUNNING,
1126 	BTRFS_ROOT_FORCE_COW,
1127 	BTRFS_ROOT_MULTI_LOG_TASKS,
1128 	BTRFS_ROOT_DIRTY,
1129 	BTRFS_ROOT_DELETING,
1130 
1131 	/*
1132 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1133 	 *
1134 	 * Set for the subvolume tree owning the reloc tree.
1135 	 */
1136 	BTRFS_ROOT_DEAD_RELOC_TREE,
1137 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1138 	BTRFS_ROOT_DEAD_TREE,
1139 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1140 	BTRFS_ROOT_HAS_LOG_TREE,
1141 	/* Qgroup flushing is in progress */
1142 	BTRFS_ROOT_QGROUP_FLUSHING,
1143 	/* We started the orphan cleanup for this root. */
1144 	BTRFS_ROOT_ORPHAN_CLEANUP,
1145 	/* This root has a drop operation that was started previously. */
1146 	BTRFS_ROOT_UNFINISHED_DROP,
1147 };
1148 
1149 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1150 {
1151 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1152 }
1153 
1154 /*
1155  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1156  * code. For detail check comment in fs/btrfs/qgroup.c.
1157  */
1158 struct btrfs_qgroup_swapped_blocks {
1159 	spinlock_t lock;
1160 	/* RM_EMPTY_ROOT() of above blocks[] */
1161 	bool swapped;
1162 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1163 };
1164 
1165 /*
1166  * in ram representation of the tree.  extent_root is used for all allocations
1167  * and for the extent tree extent_root root.
1168  */
1169 struct btrfs_root {
1170 	struct rb_node rb_node;
1171 
1172 	struct extent_buffer *node;
1173 
1174 	struct extent_buffer *commit_root;
1175 	struct btrfs_root *log_root;
1176 	struct btrfs_root *reloc_root;
1177 
1178 	unsigned long state;
1179 	struct btrfs_root_item root_item;
1180 	struct btrfs_key root_key;
1181 	struct btrfs_fs_info *fs_info;
1182 	struct extent_io_tree dirty_log_pages;
1183 
1184 	struct mutex objectid_mutex;
1185 
1186 	spinlock_t accounting_lock;
1187 	struct btrfs_block_rsv *block_rsv;
1188 
1189 	struct mutex log_mutex;
1190 	wait_queue_head_t log_writer_wait;
1191 	wait_queue_head_t log_commit_wait[2];
1192 	struct list_head log_ctxs[2];
1193 	/* Used only for log trees of subvolumes, not for the log root tree */
1194 	atomic_t log_writers;
1195 	atomic_t log_commit[2];
1196 	/* Used only for log trees of subvolumes, not for the log root tree */
1197 	atomic_t log_batch;
1198 	int log_transid;
1199 	/* No matter the commit succeeds or not*/
1200 	int log_transid_committed;
1201 	/* Just be updated when the commit succeeds. */
1202 	int last_log_commit;
1203 	pid_t log_start_pid;
1204 
1205 	u64 last_trans;
1206 
1207 	u32 type;
1208 
1209 	u64 free_objectid;
1210 
1211 	struct btrfs_key defrag_progress;
1212 	struct btrfs_key defrag_max;
1213 
1214 	/* The dirty list is only used by non-shareable roots */
1215 	struct list_head dirty_list;
1216 
1217 	struct list_head root_list;
1218 
1219 	spinlock_t log_extents_lock[2];
1220 	struct list_head logged_list[2];
1221 
1222 	spinlock_t inode_lock;
1223 	/* red-black tree that keeps track of in-memory inodes */
1224 	struct rb_root inode_tree;
1225 
1226 	/*
1227 	 * Xarray that keeps track of delayed nodes of every inode, protected
1228 	 * by inode_lock
1229 	 */
1230 	struct xarray delayed_nodes;
1231 	/*
1232 	 * right now this just gets used so that a root has its own devid
1233 	 * for stat.  It may be used for more later
1234 	 */
1235 	dev_t anon_dev;
1236 
1237 	spinlock_t root_item_lock;
1238 	refcount_t refs;
1239 
1240 	struct mutex delalloc_mutex;
1241 	spinlock_t delalloc_lock;
1242 	/*
1243 	 * all of the inodes that have delalloc bytes.  It is possible for
1244 	 * this list to be empty even when there is still dirty data=ordered
1245 	 * extents waiting to finish IO.
1246 	 */
1247 	struct list_head delalloc_inodes;
1248 	struct list_head delalloc_root;
1249 	u64 nr_delalloc_inodes;
1250 
1251 	struct mutex ordered_extent_mutex;
1252 	/*
1253 	 * this is used by the balancing code to wait for all the pending
1254 	 * ordered extents
1255 	 */
1256 	spinlock_t ordered_extent_lock;
1257 
1258 	/*
1259 	 * all of the data=ordered extents pending writeback
1260 	 * these can span multiple transactions and basically include
1261 	 * every dirty data page that isn't from nodatacow
1262 	 */
1263 	struct list_head ordered_extents;
1264 	struct list_head ordered_root;
1265 	u64 nr_ordered_extents;
1266 
1267 	/*
1268 	 * Not empty if this subvolume root has gone through tree block swap
1269 	 * (relocation)
1270 	 *
1271 	 * Will be used by reloc_control::dirty_subvol_roots.
1272 	 */
1273 	struct list_head reloc_dirty_list;
1274 
1275 	/*
1276 	 * Number of currently running SEND ioctls to prevent
1277 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1278 	 */
1279 	int send_in_progress;
1280 	/*
1281 	 * Number of currently running deduplication operations that have a
1282 	 * destination inode belonging to this root. Protected by the lock
1283 	 * root_item_lock.
1284 	 */
1285 	int dedupe_in_progress;
1286 	/* For exclusion of snapshot creation and nocow writes */
1287 	struct btrfs_drew_lock snapshot_lock;
1288 
1289 	atomic_t snapshot_force_cow;
1290 
1291 	/* For qgroup metadata reserved space */
1292 	spinlock_t qgroup_meta_rsv_lock;
1293 	u64 qgroup_meta_rsv_pertrans;
1294 	u64 qgroup_meta_rsv_prealloc;
1295 	wait_queue_head_t qgroup_flush_wait;
1296 
1297 	/* Number of active swapfiles */
1298 	atomic_t nr_swapfiles;
1299 
1300 	/* Record pairs of swapped blocks for qgroup */
1301 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1302 
1303 	/* Used only by log trees, when logging csum items */
1304 	struct extent_io_tree log_csum_range;
1305 
1306 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1307 	u64 alloc_bytenr;
1308 #endif
1309 
1310 #ifdef CONFIG_BTRFS_DEBUG
1311 	struct list_head leak_list;
1312 #endif
1313 };
1314 
1315 /*
1316  * Structure that conveys information about an extent that is going to replace
1317  * all the extents in a file range.
1318  */
1319 struct btrfs_replace_extent_info {
1320 	u64 disk_offset;
1321 	u64 disk_len;
1322 	u64 data_offset;
1323 	u64 data_len;
1324 	u64 file_offset;
1325 	/* Pointer to a file extent item of type regular or prealloc. */
1326 	char *extent_buf;
1327 	/*
1328 	 * Set to true when attempting to replace a file range with a new extent
1329 	 * described by this structure, set to false when attempting to clone an
1330 	 * existing extent into a file range.
1331 	 */
1332 	bool is_new_extent;
1333 	/* Indicate if we should update the inode's mtime and ctime. */
1334 	bool update_times;
1335 	/* Meaningful only if is_new_extent is true. */
1336 	int qgroup_reserved;
1337 	/*
1338 	 * Meaningful only if is_new_extent is true.
1339 	 * Used to track how many extent items we have already inserted in a
1340 	 * subvolume tree that refer to the extent described by this structure,
1341 	 * so that we know when to create a new delayed ref or update an existing
1342 	 * one.
1343 	 */
1344 	int insertions;
1345 };
1346 
1347 /* Arguments for btrfs_drop_extents() */
1348 struct btrfs_drop_extents_args {
1349 	/* Input parameters */
1350 
1351 	/*
1352 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1353 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1354 	 * is always released except if 'replace_extent' is true and
1355 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1356 	 * the path is kept locked.
1357 	 */
1358 	struct btrfs_path *path;
1359 	/* Start offset of the range to drop extents from */
1360 	u64 start;
1361 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1362 	u64 end;
1363 	/* If true drop all the extent maps in the range */
1364 	bool drop_cache;
1365 	/*
1366 	 * If true it means we want to insert a new extent after dropping all
1367 	 * the extents in the range. If this is true, the 'extent_item_size'
1368 	 * parameter must be set as well and the 'extent_inserted' field will
1369 	 * be set to true by btrfs_drop_extents() if it could insert the new
1370 	 * extent.
1371 	 * Note: when this is set to true the path must not be NULL.
1372 	 */
1373 	bool replace_extent;
1374 	/*
1375 	 * Used if 'replace_extent' is true. Size of the file extent item to
1376 	 * insert after dropping all existing extents in the range
1377 	 */
1378 	u32 extent_item_size;
1379 
1380 	/* Output parameters */
1381 
1382 	/*
1383 	 * Set to the minimum between the input parameter 'end' and the end
1384 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1385 	 * set even if btrfs_drop_extents() returns an error.
1386 	 */
1387 	u64 drop_end;
1388 	/*
1389 	 * The number of allocated bytes found in the range. This can be smaller
1390 	 * than the range's length when there are holes in the range.
1391 	 */
1392 	u64 bytes_found;
1393 	/*
1394 	 * Only set if 'replace_extent' is true. Set to true if we were able
1395 	 * to insert a replacement extent after dropping all extents in the
1396 	 * range, otherwise set to false by btrfs_drop_extents().
1397 	 * Also, if btrfs_drop_extents() has set this to true it means it
1398 	 * returned with the path locked, otherwise if it has set this to
1399 	 * false it has returned with the path released.
1400 	 */
1401 	bool extent_inserted;
1402 };
1403 
1404 struct btrfs_file_private {
1405 	void *filldir_buf;
1406 };
1407 
1408 
1409 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1410 {
1411 
1412 	return info->nodesize - sizeof(struct btrfs_header);
1413 }
1414 
1415 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1416 
1417 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1418 {
1419 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1420 }
1421 
1422 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1423 {
1424 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1425 }
1426 
1427 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1428 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1429 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1430 {
1431 	return BTRFS_MAX_ITEM_SIZE(info) -
1432 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1433 }
1434 
1435 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1436 {
1437 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1438 }
1439 
1440 /*
1441  * Flags for mount options.
1442  *
1443  * Note: don't forget to add new options to btrfs_show_options()
1444  */
1445 enum {
1446 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1447 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1448 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1449 	BTRFS_MOUNT_SSD				= (1UL << 3),
1450 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1451 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1452 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1453 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1454 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1455 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1456 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1457 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1458 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1459 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1460 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1461 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1462 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1463 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1464 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1465 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1466 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1467 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1468 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1469 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1470 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1471 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1472 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1473 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1474 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1475 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1476 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1477 };
1478 
1479 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1480 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1481 
1482 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1483 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1484 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1485 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1486 					 BTRFS_MOUNT_##opt)
1487 
1488 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1489 do {									\
1490 	if (!btrfs_test_opt(fs_info, opt))				\
1491 		btrfs_info(fs_info, fmt, ##args);			\
1492 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1493 } while (0)
1494 
1495 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1496 do {									\
1497 	if (btrfs_test_opt(fs_info, opt))				\
1498 		btrfs_info(fs_info, fmt, ##args);			\
1499 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1500 } while (0)
1501 
1502 /*
1503  * Requests for changes that need to be done during transaction commit.
1504  *
1505  * Internal mount options that are used for special handling of the real
1506  * mount options (eg. cannot be set during remount and have to be set during
1507  * transaction commit)
1508  */
1509 
1510 #define BTRFS_PENDING_COMMIT			(0)
1511 
1512 #define btrfs_test_pending(info, opt)	\
1513 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1514 #define btrfs_set_pending(info, opt)	\
1515 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1516 #define btrfs_clear_pending(info, opt)	\
1517 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1518 
1519 /*
1520  * Helpers for setting pending mount option changes.
1521  *
1522  * Expects corresponding macros
1523  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1524  */
1525 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1526 do {                                                                   \
1527        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1528                btrfs_info((info), fmt, ##args);                        \
1529                btrfs_set_pending((info), SET_##opt);                   \
1530                btrfs_clear_pending((info), CLEAR_##opt);               \
1531        }                                                               \
1532 } while(0)
1533 
1534 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1535 do {                                                                   \
1536        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1537                btrfs_info((info), fmt, ##args);                        \
1538                btrfs_set_pending((info), CLEAR_##opt);                 \
1539                btrfs_clear_pending((info), SET_##opt);                 \
1540        }                                                               \
1541 } while(0)
1542 
1543 /*
1544  * Inode flags
1545  */
1546 #define BTRFS_INODE_NODATASUM		(1U << 0)
1547 #define BTRFS_INODE_NODATACOW		(1U << 1)
1548 #define BTRFS_INODE_READONLY		(1U << 2)
1549 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1550 #define BTRFS_INODE_PREALLOC		(1U << 4)
1551 #define BTRFS_INODE_SYNC		(1U << 5)
1552 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1553 #define BTRFS_INODE_APPEND		(1U << 7)
1554 #define BTRFS_INODE_NODUMP		(1U << 8)
1555 #define BTRFS_INODE_NOATIME		(1U << 9)
1556 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1557 #define BTRFS_INODE_COMPRESS		(1U << 11)
1558 
1559 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1560 
1561 #define BTRFS_INODE_FLAG_MASK						\
1562 	(BTRFS_INODE_NODATASUM |					\
1563 	 BTRFS_INODE_NODATACOW |					\
1564 	 BTRFS_INODE_READONLY |						\
1565 	 BTRFS_INODE_NOCOMPRESS |					\
1566 	 BTRFS_INODE_PREALLOC |						\
1567 	 BTRFS_INODE_SYNC |						\
1568 	 BTRFS_INODE_IMMUTABLE |					\
1569 	 BTRFS_INODE_APPEND |						\
1570 	 BTRFS_INODE_NODUMP |						\
1571 	 BTRFS_INODE_NOATIME |						\
1572 	 BTRFS_INODE_DIRSYNC |						\
1573 	 BTRFS_INODE_COMPRESS |						\
1574 	 BTRFS_INODE_ROOT_ITEM_INIT)
1575 
1576 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1577 
1578 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1579 
1580 struct btrfs_map_token {
1581 	struct extent_buffer *eb;
1582 	char *kaddr;
1583 	unsigned long offset;
1584 };
1585 
1586 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1587 				((bytes) >> (fs_info)->sectorsize_bits)
1588 
1589 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1590 					struct extent_buffer *eb)
1591 {
1592 	token->eb = eb;
1593 	token->kaddr = page_address(eb->pages[0]);
1594 	token->offset = 0;
1595 }
1596 
1597 /* some macros to generate set/get functions for the struct fields.  This
1598  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1599  * one for u8:
1600  */
1601 #define le8_to_cpu(v) (v)
1602 #define cpu_to_le8(v) (v)
1603 #define __le8 u8
1604 
1605 static inline u8 get_unaligned_le8(const void *p)
1606 {
1607        return *(u8 *)p;
1608 }
1609 
1610 static inline void put_unaligned_le8(u8 val, void *p)
1611 {
1612        *(u8 *)p = val;
1613 }
1614 
1615 #define read_eb_member(eb, ptr, type, member, result) (\
1616 	read_extent_buffer(eb, (char *)(result),			\
1617 			   ((unsigned long)(ptr)) +			\
1618 			    offsetof(type, member),			\
1619 			   sizeof(((type *)0)->member)))
1620 
1621 #define write_eb_member(eb, ptr, type, member, result) (\
1622 	write_extent_buffer(eb, (char *)(result),			\
1623 			   ((unsigned long)(ptr)) +			\
1624 			    offsetof(type, member),			\
1625 			   sizeof(((type *)0)->member)))
1626 
1627 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1628 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1629 			       const void *ptr, unsigned long off);	\
1630 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1631 			    const void *ptr, unsigned long off,		\
1632 			    u##bits val);				\
1633 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1634 			 const void *ptr, unsigned long off);		\
1635 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1636 		      unsigned long off, u##bits val);
1637 
1638 DECLARE_BTRFS_SETGET_BITS(8)
1639 DECLARE_BTRFS_SETGET_BITS(16)
1640 DECLARE_BTRFS_SETGET_BITS(32)
1641 DECLARE_BTRFS_SETGET_BITS(64)
1642 
1643 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1644 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1645 				   const type *s)			\
1646 {									\
1647 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1648 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1649 }									\
1650 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1651 				    u##bits val)			\
1652 {									\
1653 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1654 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1655 }									\
1656 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1657 					 const type *s)			\
1658 {									\
1659 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1660 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1661 }									\
1662 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1663 					  type *s, u##bits val)		\
1664 {									\
1665 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1666 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1667 }
1668 
1669 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1670 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1671 {									\
1672 	const type *p = page_address(eb->pages[0]) +			\
1673 			offset_in_page(eb->start);			\
1674 	return get_unaligned_le##bits(&p->member);			\
1675 }									\
1676 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1677 				    u##bits val)			\
1678 {									\
1679 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1680 	put_unaligned_le##bits(val, &p->member);			\
1681 }
1682 
1683 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1684 static inline u##bits btrfs_##name(const type *s)			\
1685 {									\
1686 	return get_unaligned_le##bits(&s->member);			\
1687 }									\
1688 static inline void btrfs_set_##name(type *s, u##bits val)		\
1689 {									\
1690 	put_unaligned_le##bits(val, &s->member);			\
1691 }
1692 
1693 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1694 					   struct btrfs_dev_item *s)
1695 {
1696 	static_assert(sizeof(u64) ==
1697 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1698 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1699 					    total_bytes));
1700 }
1701 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1702 						struct btrfs_dev_item *s,
1703 						u64 val)
1704 {
1705 	static_assert(sizeof(u64) ==
1706 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1707 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1708 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1709 }
1710 
1711 
1712 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1713 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1714 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1715 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1716 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1717 		   start_offset, 64);
1718 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1719 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1720 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1721 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1722 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1723 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1724 
1725 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1726 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1727 			 total_bytes, 64);
1728 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1729 			 bytes_used, 64);
1730 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1731 			 io_align, 32);
1732 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1733 			 io_width, 32);
1734 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1735 			 sector_size, 32);
1736 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1737 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1738 			 dev_group, 32);
1739 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1740 			 seek_speed, 8);
1741 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1742 			 bandwidth, 8);
1743 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1744 			 generation, 64);
1745 
1746 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1747 {
1748 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1749 }
1750 
1751 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1752 {
1753 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1754 }
1755 
1756 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1757 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1758 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1759 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1760 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1761 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1762 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1763 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1764 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1765 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1766 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1767 
1768 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1769 {
1770 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1771 }
1772 
1773 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1774 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1775 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1776 			 stripe_len, 64);
1777 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1778 			 io_align, 32);
1779 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1780 			 io_width, 32);
1781 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1782 			 sector_size, 32);
1783 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1784 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1785 			 num_stripes, 16);
1786 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1787 			 sub_stripes, 16);
1788 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1789 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1790 
1791 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1792 						   int nr)
1793 {
1794 	unsigned long offset = (unsigned long)c;
1795 	offset += offsetof(struct btrfs_chunk, stripe);
1796 	offset += nr * sizeof(struct btrfs_stripe);
1797 	return (struct btrfs_stripe *)offset;
1798 }
1799 
1800 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1801 {
1802 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1803 }
1804 
1805 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1806 					 struct btrfs_chunk *c, int nr)
1807 {
1808 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1809 }
1810 
1811 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1812 					 struct btrfs_chunk *c, int nr)
1813 {
1814 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1815 }
1816 
1817 /* struct btrfs_block_group_item */
1818 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1819 			 used, 64);
1820 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1821 			 used, 64);
1822 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1823 			struct btrfs_block_group_item, chunk_objectid, 64);
1824 
1825 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1826 		   struct btrfs_block_group_item, chunk_objectid, 64);
1827 BTRFS_SETGET_FUNCS(block_group_flags,
1828 		   struct btrfs_block_group_item, flags, 64);
1829 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1830 			struct btrfs_block_group_item, flags, 64);
1831 
1832 /* struct btrfs_free_space_info */
1833 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1834 		   extent_count, 32);
1835 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1836 
1837 /* struct btrfs_inode_ref */
1838 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1839 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1840 
1841 /* struct btrfs_inode_extref */
1842 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1843 		   parent_objectid, 64);
1844 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1845 		   name_len, 16);
1846 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1847 
1848 /* struct btrfs_inode_item */
1849 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1850 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1851 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1852 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1853 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1854 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1855 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1856 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1857 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1858 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1859 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1860 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1861 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1862 			 generation, 64);
1863 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1864 			 sequence, 64);
1865 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1866 			 transid, 64);
1867 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1868 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1869 			 nbytes, 64);
1870 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1871 			 block_group, 64);
1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1873 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1876 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1877 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1878 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1879 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1880 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1881 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1882 
1883 /* struct btrfs_dev_extent */
1884 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1885 		   chunk_tree, 64);
1886 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1887 		   chunk_objectid, 64);
1888 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1889 		   chunk_offset, 64);
1890 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1891 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1892 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1893 		   generation, 64);
1894 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1895 
1896 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1897 
1898 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1899 					struct btrfs_tree_block_info *item,
1900 					struct btrfs_disk_key *key)
1901 {
1902 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1903 }
1904 
1905 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1906 					    struct btrfs_tree_block_info *item,
1907 					    struct btrfs_disk_key *key)
1908 {
1909 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1910 }
1911 
1912 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1913 		   root, 64);
1914 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1915 		   objectid, 64);
1916 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1917 		   offset, 64);
1918 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1919 		   count, 32);
1920 
1921 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1922 		   count, 32);
1923 
1924 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1925 		   type, 8);
1926 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1927 		   offset, 64);
1928 
1929 static inline u32 btrfs_extent_inline_ref_size(int type)
1930 {
1931 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1932 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1933 		return sizeof(struct btrfs_extent_inline_ref);
1934 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1935 		return sizeof(struct btrfs_shared_data_ref) +
1936 		       sizeof(struct btrfs_extent_inline_ref);
1937 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1938 		return sizeof(struct btrfs_extent_data_ref) +
1939 		       offsetof(struct btrfs_extent_inline_ref, offset);
1940 	return 0;
1941 }
1942 
1943 /* struct btrfs_node */
1944 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1945 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1946 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1947 			 blockptr, 64);
1948 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1949 			 generation, 64);
1950 
1951 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1952 {
1953 	unsigned long ptr;
1954 	ptr = offsetof(struct btrfs_node, ptrs) +
1955 		sizeof(struct btrfs_key_ptr) * nr;
1956 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1957 }
1958 
1959 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1960 					   int nr, u64 val)
1961 {
1962 	unsigned long ptr;
1963 	ptr = offsetof(struct btrfs_node, ptrs) +
1964 		sizeof(struct btrfs_key_ptr) * nr;
1965 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1966 }
1967 
1968 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1969 {
1970 	unsigned long ptr;
1971 	ptr = offsetof(struct btrfs_node, ptrs) +
1972 		sizeof(struct btrfs_key_ptr) * nr;
1973 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1974 }
1975 
1976 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1977 						 int nr, u64 val)
1978 {
1979 	unsigned long ptr;
1980 	ptr = offsetof(struct btrfs_node, ptrs) +
1981 		sizeof(struct btrfs_key_ptr) * nr;
1982 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1983 }
1984 
1985 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1986 {
1987 	return offsetof(struct btrfs_node, ptrs) +
1988 		sizeof(struct btrfs_key_ptr) * nr;
1989 }
1990 
1991 void btrfs_node_key(const struct extent_buffer *eb,
1992 		    struct btrfs_disk_key *disk_key, int nr);
1993 
1994 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1995 				      struct btrfs_disk_key *disk_key, int nr)
1996 {
1997 	unsigned long ptr;
1998 	ptr = btrfs_node_key_ptr_offset(nr);
1999 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2000 		       struct btrfs_key_ptr, key, disk_key);
2001 }
2002 
2003 /* struct btrfs_item */
2004 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2005 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2006 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2007 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2008 
2009 static inline unsigned long btrfs_item_nr_offset(int nr)
2010 {
2011 	return offsetof(struct btrfs_leaf, items) +
2012 		sizeof(struct btrfs_item) * nr;
2013 }
2014 
2015 static inline struct btrfs_item *btrfs_item_nr(int nr)
2016 {
2017 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2018 }
2019 
2020 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2021 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2022 				      int slot)					\
2023 {										\
2024 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2025 }										\
2026 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2027 					   int slot, u32 val)			\
2028 {										\
2029 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2030 }										\
2031 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2032 					    int slot)				\
2033 {										\
2034 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2035 	return btrfs_token_raw_item_##member(token, item);			\
2036 }										\
2037 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2038 						 int slot, u32 val)		\
2039 {										\
2040 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2041 	btrfs_set_token_raw_item_##member(token, item, val);			\
2042 }
2043 
2044 BTRFS_ITEM_SETGET_FUNCS(offset)
2045 BTRFS_ITEM_SETGET_FUNCS(size);
2046 
2047 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2048 {
2049 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2050 }
2051 
2052 static inline void btrfs_item_key(const struct extent_buffer *eb,
2053 			   struct btrfs_disk_key *disk_key, int nr)
2054 {
2055 	struct btrfs_item *item = btrfs_item_nr(nr);
2056 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2057 }
2058 
2059 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2060 			       struct btrfs_disk_key *disk_key, int nr)
2061 {
2062 	struct btrfs_item *item = btrfs_item_nr(nr);
2063 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2064 }
2065 
2066 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2067 
2068 /*
2069  * struct btrfs_root_ref
2070  */
2071 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2072 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2073 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2074 
2075 /* struct btrfs_dir_item */
2076 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2077 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2078 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2079 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2080 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2081 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2082 			 data_len, 16);
2083 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2084 			 name_len, 16);
2085 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2086 			 transid, 64);
2087 
2088 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2089 				      const struct btrfs_dir_item *item,
2090 				      struct btrfs_disk_key *key)
2091 {
2092 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2093 }
2094 
2095 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2096 					  struct btrfs_dir_item *item,
2097 					  const struct btrfs_disk_key *key)
2098 {
2099 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2100 }
2101 
2102 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2103 		   num_entries, 64);
2104 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2105 		   num_bitmaps, 64);
2106 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2107 		   generation, 64);
2108 
2109 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2110 					const struct btrfs_free_space_header *h,
2111 					struct btrfs_disk_key *key)
2112 {
2113 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2114 }
2115 
2116 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2117 					    struct btrfs_free_space_header *h,
2118 					    const struct btrfs_disk_key *key)
2119 {
2120 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2121 }
2122 
2123 /* struct btrfs_disk_key */
2124 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2125 			 objectid, 64);
2126 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2127 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2128 
2129 #ifdef __LITTLE_ENDIAN
2130 
2131 /*
2132  * Optimized helpers for little-endian architectures where CPU and on-disk
2133  * structures have the same endianness and we can skip conversions.
2134  */
2135 
2136 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2137 					 const struct btrfs_disk_key *disk_key)
2138 {
2139 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2140 }
2141 
2142 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2143 					 const struct btrfs_key *cpu_key)
2144 {
2145 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2146 }
2147 
2148 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2149 					 struct btrfs_key *cpu_key, int nr)
2150 {
2151 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2152 
2153 	btrfs_node_key(eb, disk_key, nr);
2154 }
2155 
2156 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2157 					 struct btrfs_key *cpu_key, int nr)
2158 {
2159 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2160 
2161 	btrfs_item_key(eb, disk_key, nr);
2162 }
2163 
2164 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2165 					     const struct btrfs_dir_item *item,
2166 					     struct btrfs_key *cpu_key)
2167 {
2168 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2169 
2170 	btrfs_dir_item_key(eb, item, disk_key);
2171 }
2172 
2173 #else
2174 
2175 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2176 					 const struct btrfs_disk_key *disk)
2177 {
2178 	cpu->offset = le64_to_cpu(disk->offset);
2179 	cpu->type = disk->type;
2180 	cpu->objectid = le64_to_cpu(disk->objectid);
2181 }
2182 
2183 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2184 					 const struct btrfs_key *cpu)
2185 {
2186 	disk->offset = cpu_to_le64(cpu->offset);
2187 	disk->type = cpu->type;
2188 	disk->objectid = cpu_to_le64(cpu->objectid);
2189 }
2190 
2191 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2192 					 struct btrfs_key *key, int nr)
2193 {
2194 	struct btrfs_disk_key disk_key;
2195 	btrfs_node_key(eb, &disk_key, nr);
2196 	btrfs_disk_key_to_cpu(key, &disk_key);
2197 }
2198 
2199 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2200 					 struct btrfs_key *key, int nr)
2201 {
2202 	struct btrfs_disk_key disk_key;
2203 	btrfs_item_key(eb, &disk_key, nr);
2204 	btrfs_disk_key_to_cpu(key, &disk_key);
2205 }
2206 
2207 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2208 					     const struct btrfs_dir_item *item,
2209 					     struct btrfs_key *key)
2210 {
2211 	struct btrfs_disk_key disk_key;
2212 	btrfs_dir_item_key(eb, item, &disk_key);
2213 	btrfs_disk_key_to_cpu(key, &disk_key);
2214 }
2215 
2216 #endif
2217 
2218 /* struct btrfs_header */
2219 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2220 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2221 			  generation, 64);
2222 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2223 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2224 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2225 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2226 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2227 			 generation, 64);
2228 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2229 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2230 			 nritems, 32);
2231 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2232 
2233 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2234 {
2235 	return (btrfs_header_flags(eb) & flag) == flag;
2236 }
2237 
2238 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2239 {
2240 	u64 flags = btrfs_header_flags(eb);
2241 	btrfs_set_header_flags(eb, flags | flag);
2242 }
2243 
2244 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2245 {
2246 	u64 flags = btrfs_header_flags(eb);
2247 	btrfs_set_header_flags(eb, flags & ~flag);
2248 }
2249 
2250 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2251 {
2252 	u64 flags = btrfs_header_flags(eb);
2253 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2254 }
2255 
2256 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2257 						int rev)
2258 {
2259 	u64 flags = btrfs_header_flags(eb);
2260 	flags &= ~BTRFS_BACKREF_REV_MASK;
2261 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2262 	btrfs_set_header_flags(eb, flags);
2263 }
2264 
2265 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2266 {
2267 	return btrfs_header_level(eb) == 0;
2268 }
2269 
2270 /* struct btrfs_root_item */
2271 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2272 		   generation, 64);
2273 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2274 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2275 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2276 
2277 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2278 			 generation, 64);
2279 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2280 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2281 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2282 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2283 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2284 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2285 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2286 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2287 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2288 			 last_snapshot, 64);
2289 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2290 			 generation_v2, 64);
2291 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2292 			 ctransid, 64);
2293 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2294 			 otransid, 64);
2295 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2296 			 stransid, 64);
2297 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2298 			 rtransid, 64);
2299 
2300 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2301 {
2302 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2303 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2304 }
2305 
2306 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2307 {
2308 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2309 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2310 }
2311 
2312 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2313 {
2314 	return root->root_key.objectid;
2315 }
2316 
2317 /* struct btrfs_root_backup */
2318 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2319 		   tree_root, 64);
2320 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2321 		   tree_root_gen, 64);
2322 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2323 		   tree_root_level, 8);
2324 
2325 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2326 		   chunk_root, 64);
2327 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2328 		   chunk_root_gen, 64);
2329 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2330 		   chunk_root_level, 8);
2331 
2332 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2333 		   extent_root, 64);
2334 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2335 		   extent_root_gen, 64);
2336 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2337 		   extent_root_level, 8);
2338 
2339 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2340 		   fs_root, 64);
2341 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2342 		   fs_root_gen, 64);
2343 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2344 		   fs_root_level, 8);
2345 
2346 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2347 		   dev_root, 64);
2348 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2349 		   dev_root_gen, 64);
2350 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2351 		   dev_root_level, 8);
2352 
2353 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2354 		   csum_root, 64);
2355 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2356 		   csum_root_gen, 64);
2357 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2358 		   csum_root_level, 8);
2359 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2360 		   total_bytes, 64);
2361 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2362 		   bytes_used, 64);
2363 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2364 		   num_devices, 64);
2365 
2366 /*
2367  * For extent tree v2 we overload the extent root with the block group root, as
2368  * we will have multiple extent roots.
2369  */
2370 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2371 			 extent_root, 64);
2372 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2373 			 extent_root_gen, 64);
2374 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2375 			 struct btrfs_root_backup, extent_root_level, 8);
2376 
2377 /* struct btrfs_balance_item */
2378 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2379 
2380 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2381 				      const struct btrfs_balance_item *bi,
2382 				      struct btrfs_disk_balance_args *ba)
2383 {
2384 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2385 }
2386 
2387 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2388 				  struct btrfs_balance_item *bi,
2389 				  const struct btrfs_disk_balance_args *ba)
2390 {
2391 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2392 }
2393 
2394 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2395 				      const struct btrfs_balance_item *bi,
2396 				      struct btrfs_disk_balance_args *ba)
2397 {
2398 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2399 }
2400 
2401 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2402 				  struct btrfs_balance_item *bi,
2403 				  const struct btrfs_disk_balance_args *ba)
2404 {
2405 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2406 }
2407 
2408 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2409 				     const struct btrfs_balance_item *bi,
2410 				     struct btrfs_disk_balance_args *ba)
2411 {
2412 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2413 }
2414 
2415 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2416 				 struct btrfs_balance_item *bi,
2417 				 const struct btrfs_disk_balance_args *ba)
2418 {
2419 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2420 }
2421 
2422 static inline void
2423 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2424 			       const struct btrfs_disk_balance_args *disk)
2425 {
2426 	memset(cpu, 0, sizeof(*cpu));
2427 
2428 	cpu->profiles = le64_to_cpu(disk->profiles);
2429 	cpu->usage = le64_to_cpu(disk->usage);
2430 	cpu->devid = le64_to_cpu(disk->devid);
2431 	cpu->pstart = le64_to_cpu(disk->pstart);
2432 	cpu->pend = le64_to_cpu(disk->pend);
2433 	cpu->vstart = le64_to_cpu(disk->vstart);
2434 	cpu->vend = le64_to_cpu(disk->vend);
2435 	cpu->target = le64_to_cpu(disk->target);
2436 	cpu->flags = le64_to_cpu(disk->flags);
2437 	cpu->limit = le64_to_cpu(disk->limit);
2438 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2439 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2440 }
2441 
2442 static inline void
2443 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2444 			       const struct btrfs_balance_args *cpu)
2445 {
2446 	memset(disk, 0, sizeof(*disk));
2447 
2448 	disk->profiles = cpu_to_le64(cpu->profiles);
2449 	disk->usage = cpu_to_le64(cpu->usage);
2450 	disk->devid = cpu_to_le64(cpu->devid);
2451 	disk->pstart = cpu_to_le64(cpu->pstart);
2452 	disk->pend = cpu_to_le64(cpu->pend);
2453 	disk->vstart = cpu_to_le64(cpu->vstart);
2454 	disk->vend = cpu_to_le64(cpu->vend);
2455 	disk->target = cpu_to_le64(cpu->target);
2456 	disk->flags = cpu_to_le64(cpu->flags);
2457 	disk->limit = cpu_to_le64(cpu->limit);
2458 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2459 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2460 }
2461 
2462 /* struct btrfs_super_block */
2463 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2464 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2465 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2466 			 generation, 64);
2467 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2468 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2469 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2470 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2471 			 struct btrfs_super_block, chunk_root_generation, 64);
2472 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2473 			 root_level, 8);
2474 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2475 			 chunk_root, 64);
2476 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2477 			 chunk_root_level, 8);
2478 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2479 			 log_root, 64);
2480 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2481 			 log_root_transid, 64);
2482 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2483 			 log_root_level, 8);
2484 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2485 			 total_bytes, 64);
2486 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2487 			 bytes_used, 64);
2488 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2489 			 sectorsize, 32);
2490 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2491 			 nodesize, 32);
2492 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2493 			 stripesize, 32);
2494 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2495 			 root_dir_objectid, 64);
2496 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2497 			 num_devices, 64);
2498 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2499 			 compat_flags, 64);
2500 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2501 			 compat_ro_flags, 64);
2502 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2503 			 incompat_flags, 64);
2504 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2505 			 csum_type, 16);
2506 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2507 			 cache_generation, 64);
2508 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2509 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2510 			 uuid_tree_generation, 64);
2511 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2512 			 block_group_root, 64);
2513 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2514 			 struct btrfs_super_block,
2515 			 block_group_root_generation, 64);
2516 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2517 			 block_group_root_level, 8);
2518 
2519 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2520 const char *btrfs_super_csum_name(u16 csum_type);
2521 const char *btrfs_super_csum_driver(u16 csum_type);
2522 size_t __attribute_const__ btrfs_get_num_csums(void);
2523 
2524 
2525 /*
2526  * The leaf data grows from end-to-front in the node.
2527  * this returns the address of the start of the last item,
2528  * which is the stop of the leaf data stack
2529  */
2530 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2531 {
2532 	u32 nr = btrfs_header_nritems(leaf);
2533 
2534 	if (nr == 0)
2535 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2536 	return btrfs_item_offset(leaf, nr - 1);
2537 }
2538 
2539 /* struct btrfs_file_extent_item */
2540 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2541 			 type, 8);
2542 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2543 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2544 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2545 			 struct btrfs_file_extent_item, offset, 64);
2546 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2547 			 struct btrfs_file_extent_item, generation, 64);
2548 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2549 			 struct btrfs_file_extent_item, num_bytes, 64);
2550 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2551 			 struct btrfs_file_extent_item, ram_bytes, 64);
2552 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2553 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2554 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2555 			 struct btrfs_file_extent_item, compression, 8);
2556 
2557 static inline unsigned long
2558 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2559 {
2560 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2561 }
2562 
2563 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2564 {
2565 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2566 }
2567 
2568 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2569 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2570 		   disk_bytenr, 64);
2571 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2572 		   generation, 64);
2573 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2574 		   disk_num_bytes, 64);
2575 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2576 		  offset, 64);
2577 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2578 		   num_bytes, 64);
2579 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2580 		   ram_bytes, 64);
2581 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2582 		   compression, 8);
2583 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2584 		   encryption, 8);
2585 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2586 		   other_encoding, 16);
2587 
2588 /*
2589  * this returns the number of bytes used by the item on disk, minus the
2590  * size of any extent headers.  If a file is compressed on disk, this is
2591  * the compressed size
2592  */
2593 static inline u32 btrfs_file_extent_inline_item_len(
2594 						const struct extent_buffer *eb,
2595 						int nr)
2596 {
2597 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2598 }
2599 
2600 /* btrfs_qgroup_status_item */
2601 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2602 		   generation, 64);
2603 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2604 		   version, 64);
2605 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2606 		   flags, 64);
2607 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2608 		   rescan, 64);
2609 
2610 /* btrfs_qgroup_info_item */
2611 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2612 		   generation, 64);
2613 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2614 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2615 		   rfer_cmpr, 64);
2616 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2617 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2618 		   excl_cmpr, 64);
2619 
2620 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2621 			 struct btrfs_qgroup_info_item, generation, 64);
2622 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2623 			 rfer, 64);
2624 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2625 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2626 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2627 			 excl, 64);
2628 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2629 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2630 
2631 /* btrfs_qgroup_limit_item */
2632 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2633 		   flags, 64);
2634 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2635 		   max_rfer, 64);
2636 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2637 		   max_excl, 64);
2638 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2639 		   rsv_rfer, 64);
2640 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2641 		   rsv_excl, 64);
2642 
2643 /* btrfs_dev_replace_item */
2644 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2645 		   struct btrfs_dev_replace_item, src_devid, 64);
2646 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2647 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2648 		   64);
2649 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2650 		   replace_state, 64);
2651 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2652 		   time_started, 64);
2653 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2654 		   time_stopped, 64);
2655 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2656 		   num_write_errors, 64);
2657 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2658 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2659 		   64);
2660 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2661 		   cursor_left, 64);
2662 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2663 		   cursor_right, 64);
2664 
2665 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2666 			 struct btrfs_dev_replace_item, src_devid, 64);
2667 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2668 			 struct btrfs_dev_replace_item,
2669 			 cont_reading_from_srcdev_mode, 64);
2670 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2671 			 struct btrfs_dev_replace_item, replace_state, 64);
2672 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2673 			 struct btrfs_dev_replace_item, time_started, 64);
2674 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2675 			 struct btrfs_dev_replace_item, time_stopped, 64);
2676 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2677 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2678 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2679 			 struct btrfs_dev_replace_item,
2680 			 num_uncorrectable_read_errors, 64);
2681 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2682 			 struct btrfs_dev_replace_item, cursor_left, 64);
2683 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2684 			 struct btrfs_dev_replace_item, cursor_right, 64);
2685 
2686 /* helper function to cast into the data area of the leaf. */
2687 #define btrfs_item_ptr(leaf, slot, type) \
2688 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2689 	btrfs_item_offset(leaf, slot)))
2690 
2691 #define btrfs_item_ptr_offset(leaf, slot) \
2692 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2693 	btrfs_item_offset(leaf, slot)))
2694 
2695 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2696 {
2697 	return crc32c(crc, address, length);
2698 }
2699 
2700 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2701 {
2702 	put_unaligned_le32(~crc, result);
2703 }
2704 
2705 static inline u64 btrfs_name_hash(const char *name, int len)
2706 {
2707        return crc32c((u32)~1, name, len);
2708 }
2709 
2710 /*
2711  * Figure the key offset of an extended inode ref
2712  */
2713 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2714                                    int len)
2715 {
2716        return (u64) crc32c(parent_objectid, name, len);
2717 }
2718 
2719 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2720 {
2721 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2722 }
2723 
2724 /* extent-tree.c */
2725 
2726 enum btrfs_inline_ref_type {
2727 	BTRFS_REF_TYPE_INVALID,
2728 	BTRFS_REF_TYPE_BLOCK,
2729 	BTRFS_REF_TYPE_DATA,
2730 	BTRFS_REF_TYPE_ANY,
2731 };
2732 
2733 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2734 				     struct btrfs_extent_inline_ref *iref,
2735 				     enum btrfs_inline_ref_type is_data);
2736 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2737 
2738 /*
2739  * Take the number of bytes to be checksummmed and figure out how many leaves
2740  * it would require to store the csums for that many bytes.
2741  */
2742 static inline u64 btrfs_csum_bytes_to_leaves(
2743 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2744 {
2745 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2746 
2747 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2748 }
2749 
2750 /*
2751  * Use this if we would be adding new items, as we could split nodes as we cow
2752  * down the tree.
2753  */
2754 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2755 						  unsigned num_items)
2756 {
2757 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2758 }
2759 
2760 /*
2761  * Doing a truncate or a modification won't result in new nodes or leaves, just
2762  * what we need for COW.
2763  */
2764 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2765 						 unsigned num_items)
2766 {
2767 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2768 }
2769 
2770 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2771 			      u64 start, u64 num_bytes);
2772 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2773 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2774 			   unsigned long count);
2775 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2776 				  struct btrfs_delayed_ref_root *delayed_refs,
2777 				  struct btrfs_delayed_ref_head *head);
2778 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2779 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2780 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2781 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2782 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2783 		     int reserved);
2784 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2785 				    u64 bytenr, u64 num_bytes);
2786 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2787 int btrfs_cross_ref_exist(struct btrfs_root *root,
2788 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2789 			  struct btrfs_path *path);
2790 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2791 					     struct btrfs_root *root,
2792 					     u64 parent, u64 root_objectid,
2793 					     const struct btrfs_disk_key *key,
2794 					     int level, u64 hint,
2795 					     u64 empty_size,
2796 					     enum btrfs_lock_nesting nest);
2797 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2798 			   u64 root_id,
2799 			   struct extent_buffer *buf,
2800 			   u64 parent, int last_ref);
2801 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2802 				     struct btrfs_root *root, u64 owner,
2803 				     u64 offset, u64 ram_bytes,
2804 				     struct btrfs_key *ins);
2805 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2806 				   u64 root_objectid, u64 owner, u64 offset,
2807 				   struct btrfs_key *ins);
2808 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2809 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2810 			 struct btrfs_key *ins, int is_data, int delalloc);
2811 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2812 		  struct extent_buffer *buf, int full_backref);
2813 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2814 		  struct extent_buffer *buf, int full_backref);
2815 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2816 				struct extent_buffer *eb, u64 flags, int level);
2817 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2818 
2819 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2820 			       u64 start, u64 len, int delalloc);
2821 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2822 			      u64 len);
2823 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2824 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2825 			 struct btrfs_ref *generic_ref);
2826 
2827 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2828 
2829 /*
2830  * Different levels for to flush space when doing space reservations.
2831  *
2832  * The higher the level, the more methods we try to reclaim space.
2833  */
2834 enum btrfs_reserve_flush_enum {
2835 	/* If we are in the transaction, we can't flush anything.*/
2836 	BTRFS_RESERVE_NO_FLUSH,
2837 
2838 	/*
2839 	 * Flush space by:
2840 	 * - Running delayed inode items
2841 	 * - Allocating a new chunk
2842 	 */
2843 	BTRFS_RESERVE_FLUSH_LIMIT,
2844 
2845 	/*
2846 	 * Flush space by:
2847 	 * - Running delayed inode items
2848 	 * - Running delayed refs
2849 	 * - Running delalloc and waiting for ordered extents
2850 	 * - Allocating a new chunk
2851 	 */
2852 	BTRFS_RESERVE_FLUSH_EVICT,
2853 
2854 	/*
2855 	 * Flush space by above mentioned methods and by:
2856 	 * - Running delayed iputs
2857 	 * - Committing transaction
2858 	 *
2859 	 * Can be interrupted by a fatal signal.
2860 	 */
2861 	BTRFS_RESERVE_FLUSH_DATA,
2862 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2863 	BTRFS_RESERVE_FLUSH_ALL,
2864 
2865 	/*
2866 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2867 	 * global rsv.
2868 	 *
2869 	 * Can be interrupted by a fatal signal.
2870 	 */
2871 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2872 };
2873 
2874 enum btrfs_flush_state {
2875 	FLUSH_DELAYED_ITEMS_NR	=	1,
2876 	FLUSH_DELAYED_ITEMS	=	2,
2877 	FLUSH_DELAYED_REFS_NR	=	3,
2878 	FLUSH_DELAYED_REFS	=	4,
2879 	FLUSH_DELALLOC		=	5,
2880 	FLUSH_DELALLOC_WAIT	=	6,
2881 	FLUSH_DELALLOC_FULL	=	7,
2882 	ALLOC_CHUNK		=	8,
2883 	ALLOC_CHUNK_FORCE	=	9,
2884 	RUN_DELAYED_IPUTS	=	10,
2885 	COMMIT_TRANS		=	11,
2886 };
2887 
2888 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2889 				     struct btrfs_block_rsv *rsv,
2890 				     int nitems, bool use_global_rsv);
2891 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2892 				      struct btrfs_block_rsv *rsv);
2893 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2894 
2895 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2896 				    u64 disk_num_bytes, bool noflush);
2897 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2898 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2899 				   u64 start, u64 end);
2900 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2901 			 u64 num_bytes, u64 *actual_bytes);
2902 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2903 
2904 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2905 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2906 					 struct btrfs_fs_info *fs_info);
2907 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2908 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2909 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2910 
2911 /* ctree.c */
2912 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2913 		     int *slot);
2914 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2915 int btrfs_previous_item(struct btrfs_root *root,
2916 			struct btrfs_path *path, u64 min_objectid,
2917 			int type);
2918 int btrfs_previous_extent_item(struct btrfs_root *root,
2919 			struct btrfs_path *path, u64 min_objectid);
2920 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2921 			     struct btrfs_path *path,
2922 			     const struct btrfs_key *new_key);
2923 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2924 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2925 			struct btrfs_key *key, int lowest_level,
2926 			u64 min_trans);
2927 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2928 			 struct btrfs_path *path,
2929 			 u64 min_trans);
2930 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2931 					   int slot);
2932 
2933 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2934 		    struct btrfs_root *root, struct extent_buffer *buf,
2935 		    struct extent_buffer *parent, int parent_slot,
2936 		    struct extent_buffer **cow_ret,
2937 		    enum btrfs_lock_nesting nest);
2938 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2939 		      struct btrfs_root *root,
2940 		      struct extent_buffer *buf,
2941 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2942 int btrfs_block_can_be_shared(struct btrfs_root *root,
2943 			      struct extent_buffer *buf);
2944 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2945 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2946 int btrfs_split_item(struct btrfs_trans_handle *trans,
2947 		     struct btrfs_root *root,
2948 		     struct btrfs_path *path,
2949 		     const struct btrfs_key *new_key,
2950 		     unsigned long split_offset);
2951 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2952 			 struct btrfs_root *root,
2953 			 struct btrfs_path *path,
2954 			 const struct btrfs_key *new_key);
2955 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2956 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2957 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2958 		      const struct btrfs_key *key, struct btrfs_path *p,
2959 		      int ins_len, int cow);
2960 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2961 			  struct btrfs_path *p, u64 time_seq);
2962 int btrfs_search_slot_for_read(struct btrfs_root *root,
2963 			       const struct btrfs_key *key,
2964 			       struct btrfs_path *p, int find_higher,
2965 			       int return_any);
2966 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2967 		       struct btrfs_root *root, struct extent_buffer *parent,
2968 		       int start_slot, u64 *last_ret,
2969 		       struct btrfs_key *progress);
2970 void btrfs_release_path(struct btrfs_path *p);
2971 struct btrfs_path *btrfs_alloc_path(void);
2972 void btrfs_free_path(struct btrfs_path *p);
2973 
2974 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2975 		   struct btrfs_path *path, int slot, int nr);
2976 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2977 				 struct btrfs_root *root,
2978 				 struct btrfs_path *path)
2979 {
2980 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2981 }
2982 
2983 /*
2984  * Describes a batch of items to insert in a btree. This is used by
2985  * btrfs_insert_empty_items().
2986  */
2987 struct btrfs_item_batch {
2988 	/*
2989 	 * Pointer to an array containing the keys of the items to insert (in
2990 	 * sorted order).
2991 	 */
2992 	const struct btrfs_key *keys;
2993 	/* Pointer to an array containing the data size for each item to insert. */
2994 	const u32 *data_sizes;
2995 	/*
2996 	 * The sum of data sizes for all items. The caller can compute this while
2997 	 * setting up the data_sizes array, so it ends up being more efficient
2998 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2999 	 * doing it, as it would avoid an extra loop over a potentially large
3000 	 * array, and in the case of setup_item_for_insert(), we would be doing
3001 	 * it while holding a write lock on a leaf and often on upper level nodes
3002 	 * too, unnecessarily increasing the size of a critical section.
3003 	 */
3004 	u32 total_data_size;
3005 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3006 	int nr;
3007 };
3008 
3009 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3010 				 struct btrfs_path *path,
3011 				 const struct btrfs_key *key,
3012 				 u32 data_size);
3013 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3014 		      const struct btrfs_key *key, void *data, u32 data_size);
3015 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3016 			     struct btrfs_root *root,
3017 			     struct btrfs_path *path,
3018 			     const struct btrfs_item_batch *batch);
3019 
3020 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3021 					  struct btrfs_root *root,
3022 					  struct btrfs_path *path,
3023 					  const struct btrfs_key *key,
3024 					  u32 data_size)
3025 {
3026 	struct btrfs_item_batch batch;
3027 
3028 	batch.keys = key;
3029 	batch.data_sizes = &data_size;
3030 	batch.total_data_size = data_size;
3031 	batch.nr = 1;
3032 
3033 	return btrfs_insert_empty_items(trans, root, path, &batch);
3034 }
3035 
3036 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3037 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3038 			u64 time_seq);
3039 
3040 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3041 			   struct btrfs_path *path);
3042 
3043 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3044 			      struct btrfs_path *path);
3045 
3046 /*
3047  * Search in @root for a given @key, and store the slot found in @found_key.
3048  *
3049  * @root:	The root node of the tree.
3050  * @key:	The key we are looking for.
3051  * @found_key:	Will hold the found item.
3052  * @path:	Holds the current slot/leaf.
3053  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3054  * 		btrfs_get_next_valid_item, whichever was executed last.
3055  *
3056  * The @iter_ret is an output variable that will contain the return value of
3057  * btrfs_search_slot, if it encountered an error, or the value returned from
3058  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3059  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3060  *
3061  * It's recommended to use a separate variable for iter_ret and then use it to
3062  * set the function return value so there's no confusion of the 0/1/errno
3063  * values stemming from btrfs_search_slot.
3064  */
3065 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3066 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3067 		(iter_ret) >= 0 &&						\
3068 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3069 		(path)->slots[0]++						\
3070 	)
3071 
3072 static inline int btrfs_next_old_item(struct btrfs_root *root,
3073 				      struct btrfs_path *p, u64 time_seq)
3074 {
3075 	++p->slots[0];
3076 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3077 		return btrfs_next_old_leaf(root, p, time_seq);
3078 	return 0;
3079 }
3080 
3081 /*
3082  * Search the tree again to find a leaf with greater keys.
3083  *
3084  * Returns 0 if it found something or 1 if there are no greater leaves.
3085  * Returns < 0 on error.
3086  */
3087 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3088 {
3089 	return btrfs_next_old_leaf(root, path, 0);
3090 }
3091 
3092 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3093 {
3094 	return btrfs_next_old_item(root, p, 0);
3095 }
3096 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3097 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3098 				     int for_reloc);
3099 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3100 			struct btrfs_root *root,
3101 			struct extent_buffer *node,
3102 			struct extent_buffer *parent);
3103 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3104 {
3105 	/*
3106 	 * Do it this way so we only ever do one test_bit in the normal case.
3107 	 */
3108 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3109 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3110 			return 2;
3111 		return 1;
3112 	}
3113 	return 0;
3114 }
3115 
3116 /*
3117  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3118  * anything except sleeping. This function is used to check the status of
3119  * the fs.
3120  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3121  * since setting and checking for SB_RDONLY in the superblock's flags is not
3122  * atomic.
3123  */
3124 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3125 {
3126 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3127 		btrfs_fs_closing(fs_info);
3128 }
3129 
3130 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3131 {
3132 	sb->s_flags |= SB_RDONLY;
3133 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3134 }
3135 
3136 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3137 {
3138 	sb->s_flags &= ~SB_RDONLY;
3139 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3140 }
3141 
3142 /* root-item.c */
3143 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3144 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3145 		       int name_len);
3146 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3147 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3148 		       int name_len);
3149 int btrfs_del_root(struct btrfs_trans_handle *trans,
3150 		   const struct btrfs_key *key);
3151 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3152 		      const struct btrfs_key *key,
3153 		      struct btrfs_root_item *item);
3154 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3155 				   struct btrfs_root *root,
3156 				   struct btrfs_key *key,
3157 				   struct btrfs_root_item *item);
3158 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3159 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3160 		    struct btrfs_key *root_key);
3161 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3162 void btrfs_set_root_node(struct btrfs_root_item *item,
3163 			 struct extent_buffer *node);
3164 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3165 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3166 			     struct btrfs_root *root);
3167 
3168 /* uuid-tree.c */
3169 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3170 			u64 subid);
3171 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3172 			u64 subid);
3173 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3174 
3175 /* dir-item.c */
3176 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3177 			  const char *name, int name_len);
3178 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3179 			  int name_len, struct btrfs_inode *dir,
3180 			  struct btrfs_key *location, u8 type, u64 index);
3181 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3182 					     struct btrfs_root *root,
3183 					     struct btrfs_path *path, u64 dir,
3184 					     const char *name, int name_len,
3185 					     int mod);
3186 struct btrfs_dir_item *
3187 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3188 			    struct btrfs_root *root,
3189 			    struct btrfs_path *path, u64 dir,
3190 			    u64 index, const char *name, int name_len,
3191 			    int mod);
3192 struct btrfs_dir_item *
3193 btrfs_search_dir_index_item(struct btrfs_root *root,
3194 			    struct btrfs_path *path, u64 dirid,
3195 			    const char *name, int name_len);
3196 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3197 			      struct btrfs_root *root,
3198 			      struct btrfs_path *path,
3199 			      struct btrfs_dir_item *di);
3200 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3201 			    struct btrfs_root *root,
3202 			    struct btrfs_path *path, u64 objectid,
3203 			    const char *name, u16 name_len,
3204 			    const void *data, u16 data_len);
3205 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3206 					  struct btrfs_root *root,
3207 					  struct btrfs_path *path, u64 dir,
3208 					  const char *name, u16 name_len,
3209 					  int mod);
3210 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3211 						 struct btrfs_path *path,
3212 						 const char *name,
3213 						 int name_len);
3214 
3215 /* orphan.c */
3216 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3217 			     struct btrfs_root *root, u64 offset);
3218 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3219 			  struct btrfs_root *root, u64 offset);
3220 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3221 
3222 /* file-item.c */
3223 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3224 		    struct btrfs_root *root, u64 bytenr, u64 len);
3225 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3226 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3227 			     struct btrfs_root *root,
3228 			     u64 objectid, u64 pos,
3229 			     u64 disk_offset, u64 disk_num_bytes,
3230 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3231 			     u8 compression, u8 encryption, u16 other_encoding);
3232 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3233 			     struct btrfs_root *root,
3234 			     struct btrfs_path *path, u64 objectid,
3235 			     u64 bytenr, int mod);
3236 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3237 			   struct btrfs_root *root,
3238 			   struct btrfs_ordered_sum *sums);
3239 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3240 				u64 offset, bool one_ordered);
3241 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3242 			     struct list_head *list, int search_commit);
3243 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3244 				     const struct btrfs_path *path,
3245 				     struct btrfs_file_extent_item *fi,
3246 				     const bool new_inline,
3247 				     struct extent_map *em);
3248 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3249 					u64 len);
3250 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3251 				      u64 len);
3252 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3253 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3254 
3255 /* inode.c */
3256 void btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3257 			   int mirror_num, enum btrfs_compression_type compress_type);
3258 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3259 				    u32 bio_offset, struct page *page,
3260 				    u64 start, u64 end);
3261 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3262 					   u64 start, u64 len);
3263 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3264 			      u64 *orig_start, u64 *orig_block_len,
3265 			      u64 *ram_bytes, bool strict);
3266 
3267 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3268 				struct btrfs_inode *inode);
3269 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3270 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3271 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3272 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3273 		       const char *name, int name_len);
3274 int btrfs_add_link(struct btrfs_trans_handle *trans,
3275 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3276 		   const char *name, int name_len, int add_backref, u64 index);
3277 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3278 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3279 			 int front);
3280 
3281 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3282 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3283 			       bool in_reclaim_context);
3284 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3285 			      unsigned int extra_bits,
3286 			      struct extent_state **cached_state);
3287 struct btrfs_new_inode_args {
3288 	/* Input */
3289 	struct inode *dir;
3290 	struct dentry *dentry;
3291 	struct inode *inode;
3292 	bool orphan;
3293 	bool subvol;
3294 
3295 	/*
3296 	 * Output from btrfs_new_inode_prepare(), input to
3297 	 * btrfs_create_new_inode().
3298 	 */
3299 	struct posix_acl *default_acl;
3300 	struct posix_acl *acl;
3301 };
3302 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3303 			    unsigned int *trans_num_items);
3304 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3305 			   struct btrfs_new_inode_args *args);
3306 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3307 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3308 				     struct inode *dir);
3309  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3310 			       unsigned *bits);
3311 void btrfs_clear_delalloc_extent(struct inode *inode,
3312 				 struct extent_state *state, unsigned *bits);
3313 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3314 				 struct extent_state *other);
3315 void btrfs_split_delalloc_extent(struct inode *inode,
3316 				 struct extent_state *orig, u64 split);
3317 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3318 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3319 void btrfs_evict_inode(struct inode *inode);
3320 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3321 struct inode *btrfs_alloc_inode(struct super_block *sb);
3322 void btrfs_destroy_inode(struct inode *inode);
3323 void btrfs_free_inode(struct inode *inode);
3324 int btrfs_drop_inode(struct inode *inode);
3325 int __init btrfs_init_cachep(void);
3326 void __cold btrfs_destroy_cachep(void);
3327 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3328 			      struct btrfs_root *root, struct btrfs_path *path);
3329 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3330 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3331 				    struct page *page, size_t pg_offset,
3332 				    u64 start, u64 end);
3333 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3334 		       struct btrfs_root *root, struct btrfs_inode *inode);
3335 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3336 				struct btrfs_root *root, struct btrfs_inode *inode);
3337 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3338 		struct btrfs_inode *inode);
3339 int btrfs_orphan_cleanup(struct btrfs_root *root);
3340 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3341 void btrfs_add_delayed_iput(struct inode *inode);
3342 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3343 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3344 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3345 			      u64 start, u64 num_bytes, u64 min_size,
3346 			      loff_t actual_len, u64 *alloc_hint);
3347 int btrfs_prealloc_file_range_trans(struct inode *inode,
3348 				    struct btrfs_trans_handle *trans, int mode,
3349 				    u64 start, u64 num_bytes, u64 min_size,
3350 				    loff_t actual_len, u64 *alloc_hint);
3351 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3352 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3353 		struct writeback_control *wbc);
3354 int btrfs_writepage_cow_fixup(struct page *page);
3355 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3356 					  struct page *page, u64 start,
3357 					  u64 end, bool uptodate);
3358 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3359 			   struct btrfs_ioctl_encoded_io_args *encoded);
3360 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3361 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3362 
3363 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3364 
3365 extern const struct dentry_operations btrfs_dentry_operations;
3366 
3367 /* Inode locking type flags, by default the exclusive lock is taken */
3368 #define BTRFS_ILOCK_SHARED	(1U << 0)
3369 #define BTRFS_ILOCK_TRY 	(1U << 1)
3370 #define BTRFS_ILOCK_MMAP	(1U << 2)
3371 
3372 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3373 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3374 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3375 			      const u64 add_bytes,
3376 			      const u64 del_bytes);
3377 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3378 
3379 /* ioctl.c */
3380 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3381 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3382 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3383 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3384 		       struct dentry *dentry, struct fileattr *fa);
3385 int btrfs_ioctl_get_supported_features(void __user *arg);
3386 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3387 int __pure btrfs_is_empty_uuid(u8 *uuid);
3388 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3389 		      struct btrfs_ioctl_defrag_range_args *range,
3390 		      u64 newer_than, unsigned long max_to_defrag);
3391 void btrfs_get_block_group_info(struct list_head *groups_list,
3392 				struct btrfs_ioctl_space_info *space);
3393 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3394 			       struct btrfs_ioctl_balance_args *bargs);
3395 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3396 			enum btrfs_exclusive_operation type);
3397 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3398 				 enum btrfs_exclusive_operation type);
3399 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3400 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3401 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3402 			  enum btrfs_exclusive_operation op);
3403 
3404 
3405 /* file.c */
3406 int __init btrfs_auto_defrag_init(void);
3407 void __cold btrfs_auto_defrag_exit(void);
3408 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3409 			   struct btrfs_inode *inode, u32 extent_thresh);
3410 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3411 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3412 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3413 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3414 			     int skip_pinned);
3415 extern const struct file_operations btrfs_file_operations;
3416 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3417 		       struct btrfs_root *root, struct btrfs_inode *inode,
3418 		       struct btrfs_drop_extents_args *args);
3419 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3420 			   struct btrfs_path *path, const u64 start,
3421 			   const u64 end,
3422 			   struct btrfs_replace_extent_info *extent_info,
3423 			   struct btrfs_trans_handle **trans_out);
3424 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3425 			      struct btrfs_inode *inode, u64 start, u64 end);
3426 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3427 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3428 int btrfs_release_file(struct inode *inode, struct file *file);
3429 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3430 		      size_t num_pages, loff_t pos, size_t write_bytes,
3431 		      struct extent_state **cached, bool noreserve);
3432 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3433 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3434 			   size_t *write_bytes);
3435 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3436 
3437 /* tree-defrag.c */
3438 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3439 			struct btrfs_root *root);
3440 
3441 /* super.c */
3442 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3443 			unsigned long new_flags);
3444 int btrfs_sync_fs(struct super_block *sb, int wait);
3445 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3446 					  u64 subvol_objectid);
3447 
3448 static inline __printf(2, 3) __cold
3449 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3450 {
3451 }
3452 
3453 #ifdef CONFIG_PRINTK_INDEX
3454 
3455 #define btrfs_printk(fs_info, fmt, args...)					\
3456 do {										\
3457 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3458 	_btrfs_printk(fs_info, fmt, ##args);					\
3459 } while (0)
3460 
3461 __printf(2, 3)
3462 __cold
3463 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3464 
3465 #elif defined(CONFIG_PRINTK)
3466 
3467 #define btrfs_printk(fs_info, fmt, args...)				\
3468 	_btrfs_printk(fs_info, fmt, ##args)
3469 
3470 __printf(2, 3)
3471 __cold
3472 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3473 
3474 #else
3475 
3476 #define btrfs_printk(fs_info, fmt, args...) \
3477 	btrfs_no_printk(fs_info, fmt, ##args)
3478 #endif
3479 
3480 #define btrfs_emerg(fs_info, fmt, args...) \
3481 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3482 #define btrfs_alert(fs_info, fmt, args...) \
3483 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3484 #define btrfs_crit(fs_info, fmt, args...) \
3485 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3486 #define btrfs_err(fs_info, fmt, args...) \
3487 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3488 #define btrfs_warn(fs_info, fmt, args...) \
3489 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3490 #define btrfs_notice(fs_info, fmt, args...) \
3491 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3492 #define btrfs_info(fs_info, fmt, args...) \
3493 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3494 
3495 /*
3496  * Wrappers that use printk_in_rcu
3497  */
3498 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3499 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3500 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3501 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3502 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3503 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3504 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3505 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3506 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3507 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3508 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3509 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3510 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3511 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3512 
3513 /*
3514  * Wrappers that use a ratelimited printk_in_rcu
3515  */
3516 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3517 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3518 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3519 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3520 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3521 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3522 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3523 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3524 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3525 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3526 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3527 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3528 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3529 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3530 
3531 /*
3532  * Wrappers that use a ratelimited printk
3533  */
3534 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3535 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3536 #define btrfs_alert_rl(fs_info, fmt, args...) \
3537 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3538 #define btrfs_crit_rl(fs_info, fmt, args...) \
3539 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3540 #define btrfs_err_rl(fs_info, fmt, args...) \
3541 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3542 #define btrfs_warn_rl(fs_info, fmt, args...) \
3543 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3544 #define btrfs_notice_rl(fs_info, fmt, args...) \
3545 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3546 #define btrfs_info_rl(fs_info, fmt, args...) \
3547 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3548 
3549 #if defined(CONFIG_DYNAMIC_DEBUG)
3550 #define btrfs_debug(fs_info, fmt, args...)				\
3551 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3552 				   fs_info, KERN_DEBUG fmt, ##args)
3553 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3554 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3555 				   fs_info, KERN_DEBUG fmt, ##args)
3556 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3557 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3558 				   fs_info, KERN_DEBUG fmt, ##args)
3559 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3560 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3561 				   fs_info, KERN_DEBUG fmt, ##args)
3562 #elif defined(DEBUG)
3563 #define btrfs_debug(fs_info, fmt, args...) \
3564 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3565 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3566 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3567 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3568 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3569 #define btrfs_debug_rl(fs_info, fmt, args...) \
3570 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3571 #else
3572 #define btrfs_debug(fs_info, fmt, args...) \
3573 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3574 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3575 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3576 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3577 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3578 #define btrfs_debug_rl(fs_info, fmt, args...) \
3579 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3580 #endif
3581 
3582 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3583 do {							\
3584 	rcu_read_lock();				\
3585 	btrfs_printk(fs_info, fmt, ##args);		\
3586 	rcu_read_unlock();				\
3587 } while (0)
3588 
3589 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3590 do {							\
3591 	rcu_read_lock();				\
3592 	btrfs_no_printk(fs_info, fmt, ##args);		\
3593 	rcu_read_unlock();				\
3594 } while (0)
3595 
3596 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3597 do {								\
3598 	static DEFINE_RATELIMIT_STATE(_rs,			\
3599 		DEFAULT_RATELIMIT_INTERVAL,			\
3600 		DEFAULT_RATELIMIT_BURST);       		\
3601 	if (__ratelimit(&_rs))					\
3602 		btrfs_printk(fs_info, fmt, ##args);		\
3603 } while (0)
3604 
3605 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3606 do {								\
3607 	rcu_read_lock();					\
3608 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3609 	rcu_read_unlock();					\
3610 } while (0)
3611 
3612 #ifdef CONFIG_BTRFS_ASSERT
3613 __cold __noreturn
3614 static inline void assertfail(const char *expr, const char *file, int line)
3615 {
3616 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3617 	BUG();
3618 }
3619 
3620 #define ASSERT(expr)						\
3621 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3622 
3623 #else
3624 static inline void assertfail(const char *expr, const char* file, int line) { }
3625 #define ASSERT(expr)	(void)(expr)
3626 #endif
3627 
3628 #if BITS_PER_LONG == 32
3629 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3630 /*
3631  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3632  * addresses of extents.
3633  *
3634  * For 4K page size it's about 10T, for 64K it's 160T.
3635  */
3636 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3637 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3638 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3639 #endif
3640 
3641 /*
3642  * Get the correct offset inside the page of extent buffer.
3643  *
3644  * @eb:		target extent buffer
3645  * @start:	offset inside the extent buffer
3646  *
3647  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3648  */
3649 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3650 					   unsigned long offset)
3651 {
3652 	/*
3653 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3654 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3655 	 *
3656 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3657 	 * to the eb, thus we have to take the eb->start into consideration.
3658 	 */
3659 	return offset_in_page(offset + eb->start);
3660 }
3661 
3662 static inline unsigned long get_eb_page_index(unsigned long offset)
3663 {
3664 	/*
3665 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3666 	 *
3667 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3668 	 * and have ensured that all tree blocks are contained in one page,
3669 	 * thus we always get index == 0.
3670 	 */
3671 	return offset >> PAGE_SHIFT;
3672 }
3673 
3674 /*
3675  * Use that for functions that are conditionally exported for sanity tests but
3676  * otherwise static
3677  */
3678 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3679 #define EXPORT_FOR_TESTS static
3680 #else
3681 #define EXPORT_FOR_TESTS
3682 #endif
3683 
3684 __cold
3685 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3686 {
3687 	btrfs_err(fs_info,
3688 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3689 }
3690 
3691 __printf(5, 6)
3692 __cold
3693 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3694 		     unsigned int line, int errno, const char *fmt, ...);
3695 
3696 const char * __attribute_const__ btrfs_decode_error(int errno);
3697 
3698 __cold
3699 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3700 			       const char *function,
3701 			       unsigned int line, int errno);
3702 
3703 /*
3704  * Call btrfs_abort_transaction as early as possible when an error condition is
3705  * detected, that way the exact line number is reported.
3706  */
3707 #define btrfs_abort_transaction(trans, errno)		\
3708 do {								\
3709 	/* Report first abort since mount */			\
3710 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3711 			&((trans)->fs_info->fs_state))) {	\
3712 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3713 			WARN(1, KERN_DEBUG				\
3714 			"BTRFS: Transaction aborted (error %d)\n",	\
3715 			(errno));					\
3716 		} else {						\
3717 			btrfs_debug((trans)->fs_info,			\
3718 				    "Transaction aborted (error %d)", \
3719 				  (errno));			\
3720 		}						\
3721 	}							\
3722 	__btrfs_abort_transaction((trans), __func__,		\
3723 				  __LINE__, (errno));		\
3724 } while (0)
3725 
3726 #ifdef CONFIG_PRINTK_INDEX
3727 
3728 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3729 do {									\
3730 	printk_index_subsys_emit(					\
3731 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3732 		KERN_CRIT, fmt);					\
3733 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3734 				(errno), fmt, ##args);			\
3735 } while (0)
3736 
3737 #else
3738 
3739 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3740 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3741 				(errno), fmt, ##args)
3742 
3743 #endif
3744 
3745 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3746 						   &(fs_info)->fs_state)))
3747 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3748 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3749 			   &(fs_info)->fs_state)))
3750 
3751 __printf(5, 6)
3752 __cold
3753 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3754 		   unsigned int line, int errno, const char *fmt, ...);
3755 /*
3756  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3757  * will panic().  Otherwise we BUG() here.
3758  */
3759 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3760 do {									\
3761 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3762 	BUG();								\
3763 } while (0)
3764 
3765 
3766 /* compatibility and incompatibility defines */
3767 
3768 #define btrfs_set_fs_incompat(__fs_info, opt) \
3769 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3770 				#opt)
3771 
3772 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3773 					   u64 flag, const char* name)
3774 {
3775 	struct btrfs_super_block *disk_super;
3776 	u64 features;
3777 
3778 	disk_super = fs_info->super_copy;
3779 	features = btrfs_super_incompat_flags(disk_super);
3780 	if (!(features & flag)) {
3781 		spin_lock(&fs_info->super_lock);
3782 		features = btrfs_super_incompat_flags(disk_super);
3783 		if (!(features & flag)) {
3784 			features |= flag;
3785 			btrfs_set_super_incompat_flags(disk_super, features);
3786 			btrfs_info(fs_info,
3787 				"setting incompat feature flag for %s (0x%llx)",
3788 				name, flag);
3789 		}
3790 		spin_unlock(&fs_info->super_lock);
3791 	}
3792 }
3793 
3794 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3795 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3796 				  #opt)
3797 
3798 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3799 					     u64 flag, const char* name)
3800 {
3801 	struct btrfs_super_block *disk_super;
3802 	u64 features;
3803 
3804 	disk_super = fs_info->super_copy;
3805 	features = btrfs_super_incompat_flags(disk_super);
3806 	if (features & flag) {
3807 		spin_lock(&fs_info->super_lock);
3808 		features = btrfs_super_incompat_flags(disk_super);
3809 		if (features & flag) {
3810 			features &= ~flag;
3811 			btrfs_set_super_incompat_flags(disk_super, features);
3812 			btrfs_info(fs_info,
3813 				"clearing incompat feature flag for %s (0x%llx)",
3814 				name, flag);
3815 		}
3816 		spin_unlock(&fs_info->super_lock);
3817 	}
3818 }
3819 
3820 #define btrfs_fs_incompat(fs_info, opt) \
3821 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3822 
3823 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3824 {
3825 	struct btrfs_super_block *disk_super;
3826 	disk_super = fs_info->super_copy;
3827 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3828 }
3829 
3830 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3831 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3832 				 #opt)
3833 
3834 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3835 					    u64 flag, const char *name)
3836 {
3837 	struct btrfs_super_block *disk_super;
3838 	u64 features;
3839 
3840 	disk_super = fs_info->super_copy;
3841 	features = btrfs_super_compat_ro_flags(disk_super);
3842 	if (!(features & flag)) {
3843 		spin_lock(&fs_info->super_lock);
3844 		features = btrfs_super_compat_ro_flags(disk_super);
3845 		if (!(features & flag)) {
3846 			features |= flag;
3847 			btrfs_set_super_compat_ro_flags(disk_super, features);
3848 			btrfs_info(fs_info,
3849 				"setting compat-ro feature flag for %s (0x%llx)",
3850 				name, flag);
3851 		}
3852 		spin_unlock(&fs_info->super_lock);
3853 	}
3854 }
3855 
3856 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3857 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3858 				   #opt)
3859 
3860 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3861 					      u64 flag, const char *name)
3862 {
3863 	struct btrfs_super_block *disk_super;
3864 	u64 features;
3865 
3866 	disk_super = fs_info->super_copy;
3867 	features = btrfs_super_compat_ro_flags(disk_super);
3868 	if (features & flag) {
3869 		spin_lock(&fs_info->super_lock);
3870 		features = btrfs_super_compat_ro_flags(disk_super);
3871 		if (features & flag) {
3872 			features &= ~flag;
3873 			btrfs_set_super_compat_ro_flags(disk_super, features);
3874 			btrfs_info(fs_info,
3875 				"clearing compat-ro feature flag for %s (0x%llx)",
3876 				name, flag);
3877 		}
3878 		spin_unlock(&fs_info->super_lock);
3879 	}
3880 }
3881 
3882 #define btrfs_fs_compat_ro(fs_info, opt) \
3883 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3884 
3885 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3886 {
3887 	struct btrfs_super_block *disk_super;
3888 	disk_super = fs_info->super_copy;
3889 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3890 }
3891 
3892 /* acl.c */
3893 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3894 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3895 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3896 		  struct posix_acl *acl, int type);
3897 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3898 		    struct posix_acl *acl, int type);
3899 #else
3900 #define btrfs_get_acl NULL
3901 #define btrfs_set_acl NULL
3902 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3903 				  struct inode *inode, struct posix_acl *acl,
3904 				  int type)
3905 {
3906 	return -EOPNOTSUPP;
3907 }
3908 #endif
3909 
3910 /* relocation.c */
3911 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3912 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3913 			  struct btrfs_root *root);
3914 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3915 			    struct btrfs_root *root);
3916 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3917 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3918 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3919 			  struct btrfs_root *root, struct extent_buffer *buf,
3920 			  struct extent_buffer *cow);
3921 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3922 			      u64 *bytes_to_reserve);
3923 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3924 			      struct btrfs_pending_snapshot *pending);
3925 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3926 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3927 				   u64 bytenr);
3928 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3929 
3930 /* scrub.c */
3931 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3932 		    u64 end, struct btrfs_scrub_progress *progress,
3933 		    int readonly, int is_dev_replace);
3934 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3935 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3936 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3937 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3938 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3939 			 struct btrfs_scrub_progress *progress);
3940 static inline void btrfs_init_full_stripe_locks_tree(
3941 			struct btrfs_full_stripe_locks_tree *locks_root)
3942 {
3943 	locks_root->root = RB_ROOT;
3944 	mutex_init(&locks_root->lock);
3945 }
3946 
3947 /* dev-replace.c */
3948 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3949 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3950 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3951 
3952 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3953 {
3954 	btrfs_bio_counter_sub(fs_info, 1);
3955 }
3956 
3957 static inline int is_fstree(u64 rootid)
3958 {
3959 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3960 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3961 	      !btrfs_qgroup_level(rootid)))
3962 		return 1;
3963 	return 0;
3964 }
3965 
3966 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3967 {
3968 	return signal_pending(current);
3969 }
3970 
3971 /* verity.c */
3972 #ifdef CONFIG_FS_VERITY
3973 
3974 extern const struct fsverity_operations btrfs_verityops;
3975 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3976 
3977 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3978 		   encryption, 8);
3979 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3980 		   size, 64);
3981 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3982 			 struct btrfs_verity_descriptor_item, encryption, 8);
3983 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3984 			 struct btrfs_verity_descriptor_item, size, 64);
3985 
3986 #else
3987 
3988 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3989 {
3990 	return 0;
3991 }
3992 
3993 #endif
3994 
3995 /* Sanity test specific functions */
3996 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3997 void btrfs_test_destroy_inode(struct inode *inode);
3998 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3999 {
4000 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4001 }
4002 #else
4003 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4004 {
4005 	return 0;
4006 }
4007 #endif
4008 
4009 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4010 {
4011 	return fs_info->zone_size > 0;
4012 }
4013 
4014 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4015 {
4016 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4017 }
4018 
4019 /*
4020  * We use page status Private2 to indicate there is an ordered extent with
4021  * unfinished IO.
4022  *
4023  * Rename the Private2 accessors to Ordered, to improve readability.
4024  */
4025 #define PageOrdered(page)		PagePrivate2(page)
4026 #define SetPageOrdered(page)		SetPagePrivate2(page)
4027 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4028 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4029 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4030 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4031 
4032 #endif
4033