xref: /openbmc/linux/fs/btrfs/ctree.h (revision a2faac39)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111 {
112 	BUG_ON(num_stripes == 0);
113 	return sizeof(struct btrfs_chunk) +
114 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
115 }
116 
117 /*
118  * Runtime (in-memory) states of filesystem
119  */
120 enum {
121 	/* Global indicator of serious filesystem errors */
122 	BTRFS_FS_STATE_ERROR,
123 	/*
124 	 * Filesystem is being remounted, allow to skip some operations, like
125 	 * defrag
126 	 */
127 	BTRFS_FS_STATE_REMOUNTING,
128 	/* Filesystem in RO mode */
129 	BTRFS_FS_STATE_RO,
130 	/* Track if a transaction abort has been reported on this filesystem */
131 	BTRFS_FS_STATE_TRANS_ABORTED,
132 	/*
133 	 * Bio operations should be blocked on this filesystem because a source
134 	 * or target device is being destroyed as part of a device replace
135 	 */
136 	BTRFS_FS_STATE_DEV_REPLACING,
137 	/* The btrfs_fs_info created for self-tests */
138 	BTRFS_FS_STATE_DUMMY_FS_INFO,
139 
140 	BTRFS_FS_STATE_NO_CSUMS,
141 
142 	/* Indicates there was an error cleaning up a log tree. */
143 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144 
145 	BTRFS_FS_STATE_COUNT
146 };
147 
148 #define BTRFS_BACKREF_REV_MAX		256
149 #define BTRFS_BACKREF_REV_SHIFT		56
150 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 					 BTRFS_BACKREF_REV_SHIFT)
152 
153 #define BTRFS_OLD_BACKREF_REV		0
154 #define BTRFS_MIXED_BACKREF_REV		1
155 
156 /*
157  * every tree block (leaf or node) starts with this header.
158  */
159 struct btrfs_header {
160 	/* these first four must match the super block */
161 	u8 csum[BTRFS_CSUM_SIZE];
162 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 	__le64 bytenr; /* which block this node is supposed to live in */
164 	__le64 flags;
165 
166 	/* allowed to be different from the super from here on down */
167 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 	__le64 generation;
169 	__le64 owner;
170 	__le32 nritems;
171 	u8 level;
172 } __attribute__ ((__packed__));
173 
174 /*
175  * this is a very generous portion of the super block, giving us
176  * room to translate 14 chunks with 3 stripes each.
177  */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179 
180 /*
181  * just in case we somehow lose the roots and are not able to mount,
182  * we store an array of the roots from previous transactions
183  * in the super.
184  */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 	__le64 tree_root;
188 	__le64 tree_root_gen;
189 
190 	__le64 chunk_root;
191 	__le64 chunk_root_gen;
192 
193 	__le64 extent_root;
194 	__le64 extent_root_gen;
195 
196 	__le64 fs_root;
197 	__le64 fs_root_gen;
198 
199 	__le64 dev_root;
200 	__le64 dev_root_gen;
201 
202 	__le64 csum_root;
203 	__le64 csum_root_gen;
204 
205 	__le64 total_bytes;
206 	__le64 bytes_used;
207 	__le64 num_devices;
208 	/* future */
209 	__le64 unused_64[4];
210 
211 	u8 tree_root_level;
212 	u8 chunk_root_level;
213 	u8 extent_root_level;
214 	u8 fs_root_level;
215 	u8 dev_root_level;
216 	u8 csum_root_level;
217 	/* future and to align */
218 	u8 unused_8[10];
219 } __attribute__ ((__packed__));
220 
221 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE			4096
223 
224 /*
225  * The reserved space at the beginning of each device.
226  * It covers the primary super block and leaves space for potential use by other
227  * tools like bootloaders or to lower potential damage of accidental overwrite.
228  */
229 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
230 
231 /*
232  * the super block basically lists the main trees of the FS
233  * it currently lacks any block count etc etc
234  */
235 struct btrfs_super_block {
236 	/* the first 4 fields must match struct btrfs_header */
237 	u8 csum[BTRFS_CSUM_SIZE];
238 	/* FS specific UUID, visible to user */
239 	u8 fsid[BTRFS_FSID_SIZE];
240 	__le64 bytenr; /* this block number */
241 	__le64 flags;
242 
243 	/* allowed to be different from the btrfs_header from here own down */
244 	__le64 magic;
245 	__le64 generation;
246 	__le64 root;
247 	__le64 chunk_root;
248 	__le64 log_root;
249 
250 	/*
251 	 * This member has never been utilized since the very beginning, thus
252 	 * it's always 0 regardless of kernel version.  We always use
253 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
254 	 */
255 	__le64 __unused_log_root_transid;
256 	__le64 total_bytes;
257 	__le64 bytes_used;
258 	__le64 root_dir_objectid;
259 	__le64 num_devices;
260 	__le32 sectorsize;
261 	__le32 nodesize;
262 	__le32 __unused_leafsize;
263 	__le32 stripesize;
264 	__le32 sys_chunk_array_size;
265 	__le64 chunk_root_generation;
266 	__le64 compat_flags;
267 	__le64 compat_ro_flags;
268 	__le64 incompat_flags;
269 	__le16 csum_type;
270 	u8 root_level;
271 	u8 chunk_root_level;
272 	u8 log_root_level;
273 	struct btrfs_dev_item dev_item;
274 
275 	char label[BTRFS_LABEL_SIZE];
276 
277 	__le64 cache_generation;
278 	__le64 uuid_tree_generation;
279 
280 	/* the UUID written into btree blocks */
281 	u8 metadata_uuid[BTRFS_FSID_SIZE];
282 
283 	/* Extent tree v2 */
284 	__le64 block_group_root;
285 	__le64 block_group_root_generation;
286 	u8 block_group_root_level;
287 
288 	/* future expansion */
289 	u8 reserved8[7];
290 	__le64 reserved[25];
291 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293 
294 	/* Padded to 4096 bytes */
295 	u8 padding[565];
296 } __attribute__ ((__packed__));
297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298 
299 /*
300  * Compat flags that we support.  If any incompat flags are set other than the
301  * ones specified below then we will fail to mount
302  */
303 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
308 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
309 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
311 
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
314 
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318  */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
320 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
321 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
322 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
323 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
324 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
326 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
327 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
328 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
329 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
330 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
331 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
332 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
333 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
336 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
337 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
338 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
339 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
340 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
342 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
343 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
344 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
345 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
346 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
347 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
348 	 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350 
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
352 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
354 
355 /*
356  * A leaf is full of items. offset and size tell us where to find
357  * the item in the leaf (relative to the start of the data area)
358  */
359 struct btrfs_item {
360 	struct btrfs_disk_key key;
361 	__le32 offset;
362 	__le32 size;
363 } __attribute__ ((__packed__));
364 
365 /*
366  * leaves have an item area and a data area:
367  * [item0, item1....itemN] [free space] [dataN...data1, data0]
368  *
369  * The data is separate from the items to get the keys closer together
370  * during searches.
371  */
372 struct btrfs_leaf {
373 	struct btrfs_header header;
374 	struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376 
377 /*
378  * all non-leaf blocks are nodes, they hold only keys and pointers to
379  * other blocks
380  */
381 struct btrfs_key_ptr {
382 	struct btrfs_disk_key key;
383 	__le64 blockptr;
384 	__le64 generation;
385 } __attribute__ ((__packed__));
386 
387 struct btrfs_node {
388 	struct btrfs_header header;
389 	struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391 
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 	READA_NONE,
395 	READA_BACK,
396 	READA_FORWARD,
397 	/*
398 	 * Similar to READA_FORWARD but unlike it:
399 	 *
400 	 * 1) It will trigger readahead even for leaves that are not close to
401 	 *    each other on disk;
402 	 * 2) It also triggers readahead for nodes;
403 	 * 3) During a search, even when a node or leaf is already in memory, it
404 	 *    will still trigger readahead for other nodes and leaves that follow
405 	 *    it.
406 	 *
407 	 * This is meant to be used only when we know we are iterating over the
408 	 * entire tree or a very large part of it.
409 	 */
410 	READA_FORWARD_ALWAYS,
411 };
412 
413 /*
414  * btrfs_paths remember the path taken from the root down to the leaf.
415  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416  * to any other levels that are present.
417  *
418  * The slots array records the index of the item or block pointer
419  * used while walking the tree.
420  */
421 struct btrfs_path {
422 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 	int slots[BTRFS_MAX_LEVEL];
424 	/* if there is real range locking, this locks field will change */
425 	u8 locks[BTRFS_MAX_LEVEL];
426 	u8 reada;
427 	/* keep some upper locks as we walk down */
428 	u8 lowest_level;
429 
430 	/*
431 	 * set by btrfs_split_item, tells search_slot to keep all locks
432 	 * and to force calls to keep space in the nodes
433 	 */
434 	unsigned int search_for_split:1;
435 	unsigned int keep_locks:1;
436 	unsigned int skip_locking:1;
437 	unsigned int search_commit_root:1;
438 	unsigned int need_commit_sem:1;
439 	unsigned int skip_release_on_error:1;
440 	/*
441 	 * Indicate that new item (btrfs_search_slot) is extending already
442 	 * existing item and ins_len contains only the data size and not item
443 	 * header (ie. sizeof(struct btrfs_item) is not included).
444 	 */
445 	unsigned int search_for_extension:1;
446 };
447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
448 					sizeof(struct btrfs_item))
449 struct btrfs_dev_replace {
450 	u64 replace_state;	/* see #define above */
451 	time64_t time_started;	/* seconds since 1-Jan-1970 */
452 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
453 	atomic64_t num_write_errors;
454 	atomic64_t num_uncorrectable_read_errors;
455 
456 	u64 cursor_left;
457 	u64 committed_cursor_left;
458 	u64 cursor_left_last_write_of_item;
459 	u64 cursor_right;
460 
461 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
462 
463 	int is_valid;
464 	int item_needs_writeback;
465 	struct btrfs_device *srcdev;
466 	struct btrfs_device *tgtdev;
467 
468 	struct mutex lock_finishing_cancel_unmount;
469 	struct rw_semaphore rwsem;
470 
471 	struct btrfs_scrub_progress scrub_progress;
472 
473 	struct percpu_counter bio_counter;
474 	wait_queue_head_t replace_wait;
475 };
476 
477 /*
478  * free clusters are used to claim free space in relatively large chunks,
479  * allowing us to do less seeky writes. They are used for all metadata
480  * allocations. In ssd_spread mode they are also used for data allocations.
481  */
482 struct btrfs_free_cluster {
483 	spinlock_t lock;
484 	spinlock_t refill_lock;
485 	struct rb_root root;
486 
487 	/* largest extent in this cluster */
488 	u64 max_size;
489 
490 	/* first extent starting offset */
491 	u64 window_start;
492 
493 	/* We did a full search and couldn't create a cluster */
494 	bool fragmented;
495 
496 	struct btrfs_block_group *block_group;
497 	/*
498 	 * when a cluster is allocated from a block group, we put the
499 	 * cluster onto a list in the block group so that it can
500 	 * be freed before the block group is freed.
501 	 */
502 	struct list_head block_group_list;
503 };
504 
505 enum btrfs_caching_type {
506 	BTRFS_CACHE_NO,
507 	BTRFS_CACHE_STARTED,
508 	BTRFS_CACHE_FINISHED,
509 	BTRFS_CACHE_ERROR,
510 };
511 
512 /*
513  * Tree to record all locked full stripes of a RAID5/6 block group
514  */
515 struct btrfs_full_stripe_locks_tree {
516 	struct rb_root root;
517 	struct mutex lock;
518 };
519 
520 /* Discard control. */
521 /*
522  * Async discard uses multiple lists to differentiate the discard filter
523  * parameters.  Index 0 is for completely free block groups where we need to
524  * ensure the entire block group is trimmed without being lossy.  Indices
525  * afterwards represent monotonically decreasing discard filter sizes to
526  * prioritize what should be discarded next.
527  */
528 #define BTRFS_NR_DISCARD_LISTS		3
529 #define BTRFS_DISCARD_INDEX_UNUSED	0
530 #define BTRFS_DISCARD_INDEX_START	1
531 
532 struct btrfs_discard_ctl {
533 	struct workqueue_struct *discard_workers;
534 	struct delayed_work work;
535 	spinlock_t lock;
536 	struct btrfs_block_group *block_group;
537 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
538 	u64 prev_discard;
539 	u64 prev_discard_time;
540 	atomic_t discardable_extents;
541 	atomic64_t discardable_bytes;
542 	u64 max_discard_size;
543 	u64 delay_ms;
544 	u32 iops_limit;
545 	u32 kbps_limit;
546 	u64 discard_extent_bytes;
547 	u64 discard_bitmap_bytes;
548 	atomic64_t discard_bytes_saved;
549 };
550 
551 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
552 
553 /* fs_info */
554 struct reloc_control;
555 struct btrfs_device;
556 struct btrfs_fs_devices;
557 struct btrfs_balance_control;
558 struct btrfs_delayed_root;
559 
560 /*
561  * Block group or device which contains an active swapfile. Used for preventing
562  * unsafe operations while a swapfile is active.
563  *
564  * These are sorted on (ptr, inode) (note that a block group or device can
565  * contain more than one swapfile). We compare the pointer values because we
566  * don't actually care what the object is, we just need a quick check whether
567  * the object exists in the rbtree.
568  */
569 struct btrfs_swapfile_pin {
570 	struct rb_node node;
571 	void *ptr;
572 	struct inode *inode;
573 	/*
574 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
575 	 * points to a struct btrfs_device.
576 	 */
577 	bool is_block_group;
578 	/*
579 	 * Only used when 'is_block_group' is true and it is the number of
580 	 * extents used by a swapfile for this block group ('ptr' field).
581 	 */
582 	int bg_extent_count;
583 };
584 
585 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
586 
587 enum {
588 	BTRFS_FS_CLOSING_START,
589 	BTRFS_FS_CLOSING_DONE,
590 	BTRFS_FS_LOG_RECOVERING,
591 	BTRFS_FS_OPEN,
592 	BTRFS_FS_QUOTA_ENABLED,
593 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
594 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
595 	BTRFS_FS_BTREE_ERR,
596 	BTRFS_FS_LOG1_ERR,
597 	BTRFS_FS_LOG2_ERR,
598 	BTRFS_FS_QUOTA_OVERRIDE,
599 	/* Used to record internally whether fs has been frozen */
600 	BTRFS_FS_FROZEN,
601 	/*
602 	 * Indicate that balance has been set up from the ioctl and is in the
603 	 * main phase. The fs_info::balance_ctl is initialized.
604 	 */
605 	BTRFS_FS_BALANCE_RUNNING,
606 
607 	/*
608 	 * Indicate that relocation of a chunk has started, it's set per chunk
609 	 * and is toggled between chunks.
610 	 */
611 	BTRFS_FS_RELOC_RUNNING,
612 
613 	/* Indicate that the cleaner thread is awake and doing something. */
614 	BTRFS_FS_CLEANER_RUNNING,
615 
616 	/*
617 	 * The checksumming has an optimized version and is considered fast,
618 	 * so we don't need to offload checksums to workqueues.
619 	 */
620 	BTRFS_FS_CSUM_IMPL_FAST,
621 
622 	/* Indicate that the discard workqueue can service discards. */
623 	BTRFS_FS_DISCARD_RUNNING,
624 
625 	/* Indicate that we need to cleanup space cache v1 */
626 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
627 
628 	/* Indicate that we can't trust the free space tree for caching yet */
629 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
630 
631 	/* Indicate whether there are any tree modification log users */
632 	BTRFS_FS_TREE_MOD_LOG_USERS,
633 
634 	/* Indicate that we want the transaction kthread to commit right now. */
635 	BTRFS_FS_COMMIT_TRANS,
636 
637 	/* Indicate we have half completed snapshot deletions pending. */
638 	BTRFS_FS_UNFINISHED_DROPS,
639 
640 	/* Indicate we have to finish a zone to do next allocation. */
641 	BTRFS_FS_NEED_ZONE_FINISH,
642 
643 #if BITS_PER_LONG == 32
644 	/* Indicate if we have error/warn message printed on 32bit systems */
645 	BTRFS_FS_32BIT_ERROR,
646 	BTRFS_FS_32BIT_WARN,
647 #endif
648 };
649 
650 /*
651  * Exclusive operations (device replace, resize, device add/remove, balance)
652  */
653 enum btrfs_exclusive_operation {
654 	BTRFS_EXCLOP_NONE,
655 	BTRFS_EXCLOP_BALANCE_PAUSED,
656 	BTRFS_EXCLOP_BALANCE,
657 	BTRFS_EXCLOP_DEV_ADD,
658 	BTRFS_EXCLOP_DEV_REMOVE,
659 	BTRFS_EXCLOP_DEV_REPLACE,
660 	BTRFS_EXCLOP_RESIZE,
661 	BTRFS_EXCLOP_SWAP_ACTIVATE,
662 };
663 
664 /* Store data about transaction commits, exported via sysfs. */
665 struct btrfs_commit_stats {
666 	/* Total number of commits */
667 	u64 commit_count;
668 	/* The maximum commit duration so far in ns */
669 	u64 max_commit_dur;
670 	/* The last commit duration in ns */
671 	u64 last_commit_dur;
672 	/* The total commit duration in ns */
673 	u64 total_commit_dur;
674 };
675 
676 struct btrfs_fs_info {
677 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
678 	unsigned long flags;
679 	struct btrfs_root *tree_root;
680 	struct btrfs_root *chunk_root;
681 	struct btrfs_root *dev_root;
682 	struct btrfs_root *fs_root;
683 	struct btrfs_root *quota_root;
684 	struct btrfs_root *uuid_root;
685 	struct btrfs_root *data_reloc_root;
686 	struct btrfs_root *block_group_root;
687 
688 	/* the log root tree is a directory of all the other log roots */
689 	struct btrfs_root *log_root_tree;
690 
691 	/* The tree that holds the global roots (csum, extent, etc) */
692 	rwlock_t global_root_lock;
693 	struct rb_root global_root_tree;
694 
695 	spinlock_t fs_roots_radix_lock;
696 	struct radix_tree_root fs_roots_radix;
697 
698 	/* block group cache stuff */
699 	rwlock_t block_group_cache_lock;
700 	struct rb_root_cached block_group_cache_tree;
701 
702 	/* keep track of unallocated space */
703 	atomic64_t free_chunk_space;
704 
705 	/* Track ranges which are used by log trees blocks/logged data extents */
706 	struct extent_io_tree excluded_extents;
707 
708 	/* logical->physical extent mapping */
709 	struct extent_map_tree mapping_tree;
710 
711 	/*
712 	 * block reservation for extent, checksum, root tree and
713 	 * delayed dir index item
714 	 */
715 	struct btrfs_block_rsv global_block_rsv;
716 	/* block reservation for metadata operations */
717 	struct btrfs_block_rsv trans_block_rsv;
718 	/* block reservation for chunk tree */
719 	struct btrfs_block_rsv chunk_block_rsv;
720 	/* block reservation for delayed operations */
721 	struct btrfs_block_rsv delayed_block_rsv;
722 	/* block reservation for delayed refs */
723 	struct btrfs_block_rsv delayed_refs_rsv;
724 
725 	struct btrfs_block_rsv empty_block_rsv;
726 
727 	u64 generation;
728 	u64 last_trans_committed;
729 	/*
730 	 * Generation of the last transaction used for block group relocation
731 	 * since the filesystem was last mounted (or 0 if none happened yet).
732 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
733 	 */
734 	u64 last_reloc_trans;
735 	u64 avg_delayed_ref_runtime;
736 
737 	/*
738 	 * this is updated to the current trans every time a full commit
739 	 * is required instead of the faster short fsync log commits
740 	 */
741 	u64 last_trans_log_full_commit;
742 	unsigned long mount_opt;
743 	/*
744 	 * Track requests for actions that need to be done during transaction
745 	 * commit (like for some mount options).
746 	 */
747 	unsigned long pending_changes;
748 	unsigned long compress_type:4;
749 	unsigned int compress_level;
750 	u32 commit_interval;
751 	/*
752 	 * It is a suggestive number, the read side is safe even it gets a
753 	 * wrong number because we will write out the data into a regular
754 	 * extent. The write side(mount/remount) is under ->s_umount lock,
755 	 * so it is also safe.
756 	 */
757 	u64 max_inline;
758 
759 	struct btrfs_transaction *running_transaction;
760 	wait_queue_head_t transaction_throttle;
761 	wait_queue_head_t transaction_wait;
762 	wait_queue_head_t transaction_blocked_wait;
763 	wait_queue_head_t async_submit_wait;
764 
765 	/*
766 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
767 	 * when they are updated.
768 	 *
769 	 * Because we do not clear the flags for ever, so we needn't use
770 	 * the lock on the read side.
771 	 *
772 	 * We also needn't use the lock when we mount the fs, because
773 	 * there is no other task which will update the flag.
774 	 */
775 	spinlock_t super_lock;
776 	struct btrfs_super_block *super_copy;
777 	struct btrfs_super_block *super_for_commit;
778 	struct super_block *sb;
779 	struct inode *btree_inode;
780 	struct mutex tree_log_mutex;
781 	struct mutex transaction_kthread_mutex;
782 	struct mutex cleaner_mutex;
783 	struct mutex chunk_mutex;
784 
785 	/*
786 	 * this is taken to make sure we don't set block groups ro after
787 	 * the free space cache has been allocated on them
788 	 */
789 	struct mutex ro_block_group_mutex;
790 
791 	/* this is used during read/modify/write to make sure
792 	 * no two ios are trying to mod the same stripe at the same
793 	 * time
794 	 */
795 	struct btrfs_stripe_hash_table *stripe_hash_table;
796 
797 	/*
798 	 * this protects the ordered operations list only while we are
799 	 * processing all of the entries on it.  This way we make
800 	 * sure the commit code doesn't find the list temporarily empty
801 	 * because another function happens to be doing non-waiting preflush
802 	 * before jumping into the main commit.
803 	 */
804 	struct mutex ordered_operations_mutex;
805 
806 	struct rw_semaphore commit_root_sem;
807 
808 	struct rw_semaphore cleanup_work_sem;
809 
810 	struct rw_semaphore subvol_sem;
811 
812 	spinlock_t trans_lock;
813 	/*
814 	 * the reloc mutex goes with the trans lock, it is taken
815 	 * during commit to protect us from the relocation code
816 	 */
817 	struct mutex reloc_mutex;
818 
819 	struct list_head trans_list;
820 	struct list_head dead_roots;
821 	struct list_head caching_block_groups;
822 
823 	spinlock_t delayed_iput_lock;
824 	struct list_head delayed_iputs;
825 	atomic_t nr_delayed_iputs;
826 	wait_queue_head_t delayed_iputs_wait;
827 
828 	atomic64_t tree_mod_seq;
829 
830 	/* this protects tree_mod_log and tree_mod_seq_list */
831 	rwlock_t tree_mod_log_lock;
832 	struct rb_root tree_mod_log;
833 	struct list_head tree_mod_seq_list;
834 
835 	atomic_t async_delalloc_pages;
836 
837 	/*
838 	 * this is used to protect the following list -- ordered_roots.
839 	 */
840 	spinlock_t ordered_root_lock;
841 
842 	/*
843 	 * all fs/file tree roots in which there are data=ordered extents
844 	 * pending writeback are added into this list.
845 	 *
846 	 * these can span multiple transactions and basically include
847 	 * every dirty data page that isn't from nodatacow
848 	 */
849 	struct list_head ordered_roots;
850 
851 	struct mutex delalloc_root_mutex;
852 	spinlock_t delalloc_root_lock;
853 	/* all fs/file tree roots that have delalloc inodes. */
854 	struct list_head delalloc_roots;
855 
856 	/*
857 	 * there is a pool of worker threads for checksumming during writes
858 	 * and a pool for checksumming after reads.  This is because readers
859 	 * can run with FS locks held, and the writers may be waiting for
860 	 * those locks.  We don't want ordering in the pending list to cause
861 	 * deadlocks, and so the two are serviced separately.
862 	 *
863 	 * A third pool does submit_bio to avoid deadlocking with the other
864 	 * two
865 	 */
866 	struct btrfs_workqueue *workers;
867 	struct btrfs_workqueue *hipri_workers;
868 	struct btrfs_workqueue *delalloc_workers;
869 	struct btrfs_workqueue *flush_workers;
870 	struct workqueue_struct *endio_workers;
871 	struct workqueue_struct *endio_meta_workers;
872 	struct workqueue_struct *endio_raid56_workers;
873 	struct workqueue_struct *rmw_workers;
874 	struct workqueue_struct *compressed_write_workers;
875 	struct btrfs_workqueue *endio_write_workers;
876 	struct btrfs_workqueue *endio_freespace_worker;
877 	struct btrfs_workqueue *caching_workers;
878 
879 	/*
880 	 * fixup workers take dirty pages that didn't properly go through
881 	 * the cow mechanism and make them safe to write.  It happens
882 	 * for the sys_munmap function call path
883 	 */
884 	struct btrfs_workqueue *fixup_workers;
885 	struct btrfs_workqueue *delayed_workers;
886 
887 	struct task_struct *transaction_kthread;
888 	struct task_struct *cleaner_kthread;
889 	u32 thread_pool_size;
890 
891 	struct kobject *space_info_kobj;
892 	struct kobject *qgroups_kobj;
893 
894 	/* used to keep from writing metadata until there is a nice batch */
895 	struct percpu_counter dirty_metadata_bytes;
896 	struct percpu_counter delalloc_bytes;
897 	struct percpu_counter ordered_bytes;
898 	s32 dirty_metadata_batch;
899 	s32 delalloc_batch;
900 
901 	struct list_head dirty_cowonly_roots;
902 
903 	struct btrfs_fs_devices *fs_devices;
904 
905 	/*
906 	 * The space_info list is effectively read only after initial
907 	 * setup.  It is populated at mount time and cleaned up after
908 	 * all block groups are removed.  RCU is used to protect it.
909 	 */
910 	struct list_head space_info;
911 
912 	struct btrfs_space_info *data_sinfo;
913 
914 	struct reloc_control *reloc_ctl;
915 
916 	/* data_alloc_cluster is only used in ssd_spread mode */
917 	struct btrfs_free_cluster data_alloc_cluster;
918 
919 	/* all metadata allocations go through this cluster */
920 	struct btrfs_free_cluster meta_alloc_cluster;
921 
922 	/* auto defrag inodes go here */
923 	spinlock_t defrag_inodes_lock;
924 	struct rb_root defrag_inodes;
925 	atomic_t defrag_running;
926 
927 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
928 	seqlock_t profiles_lock;
929 	/*
930 	 * these three are in extended format (availability of single
931 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
932 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
933 	 */
934 	u64 avail_data_alloc_bits;
935 	u64 avail_metadata_alloc_bits;
936 	u64 avail_system_alloc_bits;
937 
938 	/* restriper state */
939 	spinlock_t balance_lock;
940 	struct mutex balance_mutex;
941 	atomic_t balance_pause_req;
942 	atomic_t balance_cancel_req;
943 	struct btrfs_balance_control *balance_ctl;
944 	wait_queue_head_t balance_wait_q;
945 
946 	/* Cancellation requests for chunk relocation */
947 	atomic_t reloc_cancel_req;
948 
949 	u32 data_chunk_allocations;
950 	u32 metadata_ratio;
951 
952 	void *bdev_holder;
953 
954 	/* private scrub information */
955 	struct mutex scrub_lock;
956 	atomic_t scrubs_running;
957 	atomic_t scrub_pause_req;
958 	atomic_t scrubs_paused;
959 	atomic_t scrub_cancel_req;
960 	wait_queue_head_t scrub_pause_wait;
961 	/*
962 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
963 	 * running.
964 	 */
965 	refcount_t scrub_workers_refcnt;
966 	struct workqueue_struct *scrub_workers;
967 	struct workqueue_struct *scrub_wr_completion_workers;
968 	struct workqueue_struct *scrub_parity_workers;
969 	struct btrfs_subpage_info *subpage_info;
970 
971 	struct btrfs_discard_ctl discard_ctl;
972 
973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
974 	u32 check_integrity_print_mask;
975 #endif
976 	/* is qgroup tracking in a consistent state? */
977 	u64 qgroup_flags;
978 
979 	/* holds configuration and tracking. Protected by qgroup_lock */
980 	struct rb_root qgroup_tree;
981 	spinlock_t qgroup_lock;
982 
983 	/*
984 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
985 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
986 	 */
987 	struct ulist *qgroup_ulist;
988 
989 	/*
990 	 * Protect user change for quota operations. If a transaction is needed,
991 	 * it must be started before locking this lock.
992 	 */
993 	struct mutex qgroup_ioctl_lock;
994 
995 	/* list of dirty qgroups to be written at next commit */
996 	struct list_head dirty_qgroups;
997 
998 	/* used by qgroup for an efficient tree traversal */
999 	u64 qgroup_seq;
1000 
1001 	/* qgroup rescan items */
1002 	struct mutex qgroup_rescan_lock; /* protects the progress item */
1003 	struct btrfs_key qgroup_rescan_progress;
1004 	struct btrfs_workqueue *qgroup_rescan_workers;
1005 	struct completion qgroup_rescan_completion;
1006 	struct btrfs_work qgroup_rescan_work;
1007 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
1008 
1009 	/* filesystem state */
1010 	unsigned long fs_state;
1011 
1012 	struct btrfs_delayed_root *delayed_root;
1013 
1014 	/* Extent buffer radix tree */
1015 	spinlock_t buffer_lock;
1016 	/* Entries are eb->start / sectorsize */
1017 	struct radix_tree_root buffer_radix;
1018 
1019 	/* next backup root to be overwritten */
1020 	int backup_root_index;
1021 
1022 	/* device replace state */
1023 	struct btrfs_dev_replace dev_replace;
1024 
1025 	struct semaphore uuid_tree_rescan_sem;
1026 
1027 	/* Used to reclaim the metadata space in the background. */
1028 	struct work_struct async_reclaim_work;
1029 	struct work_struct async_data_reclaim_work;
1030 	struct work_struct preempt_reclaim_work;
1031 
1032 	/* Reclaim partially filled block groups in the background */
1033 	struct work_struct reclaim_bgs_work;
1034 	struct list_head reclaim_bgs;
1035 	int bg_reclaim_threshold;
1036 
1037 	spinlock_t unused_bgs_lock;
1038 	struct list_head unused_bgs;
1039 	struct mutex unused_bg_unpin_mutex;
1040 	/* Protect block groups that are going to be deleted */
1041 	struct mutex reclaim_bgs_lock;
1042 
1043 	/* Cached block sizes */
1044 	u32 nodesize;
1045 	u32 sectorsize;
1046 	/* ilog2 of sectorsize, use to avoid 64bit division */
1047 	u32 sectorsize_bits;
1048 	u32 csum_size;
1049 	u32 csums_per_leaf;
1050 	u32 stripesize;
1051 
1052 	/*
1053 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1054 	 * filesystem, on zoned it depends on the device constraints.
1055 	 */
1056 	u64 max_extent_size;
1057 
1058 	/* Block groups and devices containing active swapfiles. */
1059 	spinlock_t swapfile_pins_lock;
1060 	struct rb_root swapfile_pins;
1061 
1062 	struct crypto_shash *csum_shash;
1063 
1064 	/* Type of exclusive operation running, protected by super_lock */
1065 	enum btrfs_exclusive_operation exclusive_operation;
1066 
1067 	/*
1068 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1069 	 * if the mode is enabled
1070 	 */
1071 	u64 zone_size;
1072 
1073 	/* Max size to emit ZONE_APPEND write command */
1074 	u64 max_zone_append_size;
1075 	struct mutex zoned_meta_io_lock;
1076 	spinlock_t treelog_bg_lock;
1077 	u64 treelog_bg;
1078 
1079 	/*
1080 	 * Start of the dedicated data relocation block group, protected by
1081 	 * relocation_bg_lock.
1082 	 */
1083 	spinlock_t relocation_bg_lock;
1084 	u64 data_reloc_bg;
1085 	struct mutex zoned_data_reloc_io_lock;
1086 
1087 	u64 nr_global_roots;
1088 
1089 	spinlock_t zone_active_bgs_lock;
1090 	struct list_head zone_active_bgs;
1091 	/* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */
1092 	wait_queue_head_t zone_finish_wait;
1093 
1094 	/* Updates are not protected by any lock */
1095 	struct btrfs_commit_stats commit_stats;
1096 
1097 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1098 	spinlock_t ref_verify_lock;
1099 	struct rb_root block_tree;
1100 #endif
1101 
1102 #ifdef CONFIG_BTRFS_DEBUG
1103 	struct kobject *debug_kobj;
1104 	struct kobject *discard_debug_kobj;
1105 	struct list_head allocated_roots;
1106 
1107 	spinlock_t eb_leak_lock;
1108 	struct list_head allocated_ebs;
1109 #endif
1110 };
1111 
1112 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1113 {
1114 	return sb->s_fs_info;
1115 }
1116 
1117 /*
1118  * The state of btrfs root
1119  */
1120 enum {
1121 	/*
1122 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1123 	 * with the balancing code.   But the race is very small, and only the
1124 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1125 	 * is used to tell us when more checks are required
1126 	 */
1127 	BTRFS_ROOT_IN_TRANS_SETUP,
1128 
1129 	/*
1130 	 * Set if tree blocks of this root can be shared by other roots.
1131 	 * Only subvolume trees and their reloc trees have this bit set.
1132 	 * Conflicts with TRACK_DIRTY bit.
1133 	 *
1134 	 * This affects two things:
1135 	 *
1136 	 * - How balance works
1137 	 *   For shareable roots, we need to use reloc tree and do path
1138 	 *   replacement for balance, and need various pre/post hooks for
1139 	 *   snapshot creation to handle them.
1140 	 *
1141 	 *   While for non-shareable trees, we just simply do a tree search
1142 	 *   with COW.
1143 	 *
1144 	 * - How dirty roots are tracked
1145 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1146 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1147 	 *   don't need to set this manually.
1148 	 */
1149 	BTRFS_ROOT_SHAREABLE,
1150 	BTRFS_ROOT_TRACK_DIRTY,
1151 	BTRFS_ROOT_IN_RADIX,
1152 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1153 	BTRFS_ROOT_DEFRAG_RUNNING,
1154 	BTRFS_ROOT_FORCE_COW,
1155 	BTRFS_ROOT_MULTI_LOG_TASKS,
1156 	BTRFS_ROOT_DIRTY,
1157 	BTRFS_ROOT_DELETING,
1158 
1159 	/*
1160 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1161 	 *
1162 	 * Set for the subvolume tree owning the reloc tree.
1163 	 */
1164 	BTRFS_ROOT_DEAD_RELOC_TREE,
1165 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1166 	BTRFS_ROOT_DEAD_TREE,
1167 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1168 	BTRFS_ROOT_HAS_LOG_TREE,
1169 	/* Qgroup flushing is in progress */
1170 	BTRFS_ROOT_QGROUP_FLUSHING,
1171 	/* We started the orphan cleanup for this root. */
1172 	BTRFS_ROOT_ORPHAN_CLEANUP,
1173 	/* This root has a drop operation that was started previously. */
1174 	BTRFS_ROOT_UNFINISHED_DROP,
1175 	/* This reloc root needs to have its buffers lockdep class reset. */
1176 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1177 };
1178 
1179 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1180 {
1181 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1182 }
1183 
1184 /*
1185  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1186  * code. For detail check comment in fs/btrfs/qgroup.c.
1187  */
1188 struct btrfs_qgroup_swapped_blocks {
1189 	spinlock_t lock;
1190 	/* RM_EMPTY_ROOT() of above blocks[] */
1191 	bool swapped;
1192 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1193 };
1194 
1195 /*
1196  * in ram representation of the tree.  extent_root is used for all allocations
1197  * and for the extent tree extent_root root.
1198  */
1199 struct btrfs_root {
1200 	struct rb_node rb_node;
1201 
1202 	struct extent_buffer *node;
1203 
1204 	struct extent_buffer *commit_root;
1205 	struct btrfs_root *log_root;
1206 	struct btrfs_root *reloc_root;
1207 
1208 	unsigned long state;
1209 	struct btrfs_root_item root_item;
1210 	struct btrfs_key root_key;
1211 	struct btrfs_fs_info *fs_info;
1212 	struct extent_io_tree dirty_log_pages;
1213 
1214 	struct mutex objectid_mutex;
1215 
1216 	spinlock_t accounting_lock;
1217 	struct btrfs_block_rsv *block_rsv;
1218 
1219 	struct mutex log_mutex;
1220 	wait_queue_head_t log_writer_wait;
1221 	wait_queue_head_t log_commit_wait[2];
1222 	struct list_head log_ctxs[2];
1223 	/* Used only for log trees of subvolumes, not for the log root tree */
1224 	atomic_t log_writers;
1225 	atomic_t log_commit[2];
1226 	/* Used only for log trees of subvolumes, not for the log root tree */
1227 	atomic_t log_batch;
1228 	int log_transid;
1229 	/* No matter the commit succeeds or not*/
1230 	int log_transid_committed;
1231 	/* Just be updated when the commit succeeds. */
1232 	int last_log_commit;
1233 	pid_t log_start_pid;
1234 
1235 	u64 last_trans;
1236 
1237 	u32 type;
1238 
1239 	u64 free_objectid;
1240 
1241 	struct btrfs_key defrag_progress;
1242 	struct btrfs_key defrag_max;
1243 
1244 	/* The dirty list is only used by non-shareable roots */
1245 	struct list_head dirty_list;
1246 
1247 	struct list_head root_list;
1248 
1249 	spinlock_t log_extents_lock[2];
1250 	struct list_head logged_list[2];
1251 
1252 	spinlock_t inode_lock;
1253 	/* red-black tree that keeps track of in-memory inodes */
1254 	struct rb_root inode_tree;
1255 
1256 	/*
1257 	 * radix tree that keeps track of delayed nodes of every inode,
1258 	 * protected by inode_lock
1259 	 */
1260 	struct radix_tree_root delayed_nodes_tree;
1261 	/*
1262 	 * right now this just gets used so that a root has its own devid
1263 	 * for stat.  It may be used for more later
1264 	 */
1265 	dev_t anon_dev;
1266 
1267 	spinlock_t root_item_lock;
1268 	refcount_t refs;
1269 
1270 	struct mutex delalloc_mutex;
1271 	spinlock_t delalloc_lock;
1272 	/*
1273 	 * all of the inodes that have delalloc bytes.  It is possible for
1274 	 * this list to be empty even when there is still dirty data=ordered
1275 	 * extents waiting to finish IO.
1276 	 */
1277 	struct list_head delalloc_inodes;
1278 	struct list_head delalloc_root;
1279 	u64 nr_delalloc_inodes;
1280 
1281 	struct mutex ordered_extent_mutex;
1282 	/*
1283 	 * this is used by the balancing code to wait for all the pending
1284 	 * ordered extents
1285 	 */
1286 	spinlock_t ordered_extent_lock;
1287 
1288 	/*
1289 	 * all of the data=ordered extents pending writeback
1290 	 * these can span multiple transactions and basically include
1291 	 * every dirty data page that isn't from nodatacow
1292 	 */
1293 	struct list_head ordered_extents;
1294 	struct list_head ordered_root;
1295 	u64 nr_ordered_extents;
1296 
1297 	/*
1298 	 * Not empty if this subvolume root has gone through tree block swap
1299 	 * (relocation)
1300 	 *
1301 	 * Will be used by reloc_control::dirty_subvol_roots.
1302 	 */
1303 	struct list_head reloc_dirty_list;
1304 
1305 	/*
1306 	 * Number of currently running SEND ioctls to prevent
1307 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1308 	 */
1309 	int send_in_progress;
1310 	/*
1311 	 * Number of currently running deduplication operations that have a
1312 	 * destination inode belonging to this root. Protected by the lock
1313 	 * root_item_lock.
1314 	 */
1315 	int dedupe_in_progress;
1316 	/* For exclusion of snapshot creation and nocow writes */
1317 	struct btrfs_drew_lock snapshot_lock;
1318 
1319 	atomic_t snapshot_force_cow;
1320 
1321 	/* For qgroup metadata reserved space */
1322 	spinlock_t qgroup_meta_rsv_lock;
1323 	u64 qgroup_meta_rsv_pertrans;
1324 	u64 qgroup_meta_rsv_prealloc;
1325 	wait_queue_head_t qgroup_flush_wait;
1326 
1327 	/* Number of active swapfiles */
1328 	atomic_t nr_swapfiles;
1329 
1330 	/* Record pairs of swapped blocks for qgroup */
1331 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1332 
1333 	/* Used only by log trees, when logging csum items */
1334 	struct extent_io_tree log_csum_range;
1335 
1336 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1337 	u64 alloc_bytenr;
1338 #endif
1339 
1340 #ifdef CONFIG_BTRFS_DEBUG
1341 	struct list_head leak_list;
1342 #endif
1343 };
1344 
1345 /*
1346  * Structure that conveys information about an extent that is going to replace
1347  * all the extents in a file range.
1348  */
1349 struct btrfs_replace_extent_info {
1350 	u64 disk_offset;
1351 	u64 disk_len;
1352 	u64 data_offset;
1353 	u64 data_len;
1354 	u64 file_offset;
1355 	/* Pointer to a file extent item of type regular or prealloc. */
1356 	char *extent_buf;
1357 	/*
1358 	 * Set to true when attempting to replace a file range with a new extent
1359 	 * described by this structure, set to false when attempting to clone an
1360 	 * existing extent into a file range.
1361 	 */
1362 	bool is_new_extent;
1363 	/* Indicate if we should update the inode's mtime and ctime. */
1364 	bool update_times;
1365 	/* Meaningful only if is_new_extent is true. */
1366 	int qgroup_reserved;
1367 	/*
1368 	 * Meaningful only if is_new_extent is true.
1369 	 * Used to track how many extent items we have already inserted in a
1370 	 * subvolume tree that refer to the extent described by this structure,
1371 	 * so that we know when to create a new delayed ref or update an existing
1372 	 * one.
1373 	 */
1374 	int insertions;
1375 };
1376 
1377 /* Arguments for btrfs_drop_extents() */
1378 struct btrfs_drop_extents_args {
1379 	/* Input parameters */
1380 
1381 	/*
1382 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1383 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1384 	 * is always released except if 'replace_extent' is true and
1385 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1386 	 * the path is kept locked.
1387 	 */
1388 	struct btrfs_path *path;
1389 	/* Start offset of the range to drop extents from */
1390 	u64 start;
1391 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1392 	u64 end;
1393 	/* If true drop all the extent maps in the range */
1394 	bool drop_cache;
1395 	/*
1396 	 * If true it means we want to insert a new extent after dropping all
1397 	 * the extents in the range. If this is true, the 'extent_item_size'
1398 	 * parameter must be set as well and the 'extent_inserted' field will
1399 	 * be set to true by btrfs_drop_extents() if it could insert the new
1400 	 * extent.
1401 	 * Note: when this is set to true the path must not be NULL.
1402 	 */
1403 	bool replace_extent;
1404 	/*
1405 	 * Used if 'replace_extent' is true. Size of the file extent item to
1406 	 * insert after dropping all existing extents in the range
1407 	 */
1408 	u32 extent_item_size;
1409 
1410 	/* Output parameters */
1411 
1412 	/*
1413 	 * Set to the minimum between the input parameter 'end' and the end
1414 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1415 	 * set even if btrfs_drop_extents() returns an error.
1416 	 */
1417 	u64 drop_end;
1418 	/*
1419 	 * The number of allocated bytes found in the range. This can be smaller
1420 	 * than the range's length when there are holes in the range.
1421 	 */
1422 	u64 bytes_found;
1423 	/*
1424 	 * Only set if 'replace_extent' is true. Set to true if we were able
1425 	 * to insert a replacement extent after dropping all extents in the
1426 	 * range, otherwise set to false by btrfs_drop_extents().
1427 	 * Also, if btrfs_drop_extents() has set this to true it means it
1428 	 * returned with the path locked, otherwise if it has set this to
1429 	 * false it has returned with the path released.
1430 	 */
1431 	bool extent_inserted;
1432 };
1433 
1434 struct btrfs_file_private {
1435 	void *filldir_buf;
1436 };
1437 
1438 
1439 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1440 {
1441 
1442 	return info->nodesize - sizeof(struct btrfs_header);
1443 }
1444 
1445 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1446 
1447 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1448 {
1449 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1450 }
1451 
1452 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1453 {
1454 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1455 }
1456 
1457 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1458 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1459 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1460 {
1461 	return BTRFS_MAX_ITEM_SIZE(info) -
1462 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1463 }
1464 
1465 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1466 {
1467 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1468 }
1469 
1470 /*
1471  * Flags for mount options.
1472  *
1473  * Note: don't forget to add new options to btrfs_show_options()
1474  */
1475 enum {
1476 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1477 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1478 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1479 	BTRFS_MOUNT_SSD				= (1UL << 3),
1480 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1481 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1482 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1483 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1484 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1485 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1486 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1487 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1488 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1489 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1490 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1491 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1492 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1493 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1494 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1495 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1496 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1497 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1498 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1499 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1500 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1501 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1502 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1503 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1504 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1505 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1506 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1507 };
1508 
1509 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1510 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1511 
1512 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1513 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1514 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1515 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1516 					 BTRFS_MOUNT_##opt)
1517 
1518 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1519 do {									\
1520 	if (!btrfs_test_opt(fs_info, opt))				\
1521 		btrfs_info(fs_info, fmt, ##args);			\
1522 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1523 } while (0)
1524 
1525 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1526 do {									\
1527 	if (btrfs_test_opt(fs_info, opt))				\
1528 		btrfs_info(fs_info, fmt, ##args);			\
1529 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1530 } while (0)
1531 
1532 /*
1533  * Requests for changes that need to be done during transaction commit.
1534  *
1535  * Internal mount options that are used for special handling of the real
1536  * mount options (eg. cannot be set during remount and have to be set during
1537  * transaction commit)
1538  */
1539 
1540 #define BTRFS_PENDING_COMMIT			(0)
1541 
1542 #define btrfs_test_pending(info, opt)	\
1543 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1544 #define btrfs_set_pending(info, opt)	\
1545 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1546 #define btrfs_clear_pending(info, opt)	\
1547 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1548 
1549 /*
1550  * Helpers for setting pending mount option changes.
1551  *
1552  * Expects corresponding macros
1553  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1554  */
1555 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1556 do {                                                                   \
1557        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1558                btrfs_info((info), fmt, ##args);                        \
1559                btrfs_set_pending((info), SET_##opt);                   \
1560                btrfs_clear_pending((info), CLEAR_##opt);               \
1561        }                                                               \
1562 } while(0)
1563 
1564 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1565 do {                                                                   \
1566        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1567                btrfs_info((info), fmt, ##args);                        \
1568                btrfs_set_pending((info), CLEAR_##opt);                 \
1569                btrfs_clear_pending((info), SET_##opt);                 \
1570        }                                                               \
1571 } while(0)
1572 
1573 /*
1574  * Inode flags
1575  */
1576 #define BTRFS_INODE_NODATASUM		(1U << 0)
1577 #define BTRFS_INODE_NODATACOW		(1U << 1)
1578 #define BTRFS_INODE_READONLY		(1U << 2)
1579 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1580 #define BTRFS_INODE_PREALLOC		(1U << 4)
1581 #define BTRFS_INODE_SYNC		(1U << 5)
1582 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1583 #define BTRFS_INODE_APPEND		(1U << 7)
1584 #define BTRFS_INODE_NODUMP		(1U << 8)
1585 #define BTRFS_INODE_NOATIME		(1U << 9)
1586 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1587 #define BTRFS_INODE_COMPRESS		(1U << 11)
1588 
1589 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1590 
1591 #define BTRFS_INODE_FLAG_MASK						\
1592 	(BTRFS_INODE_NODATASUM |					\
1593 	 BTRFS_INODE_NODATACOW |					\
1594 	 BTRFS_INODE_READONLY |						\
1595 	 BTRFS_INODE_NOCOMPRESS |					\
1596 	 BTRFS_INODE_PREALLOC |						\
1597 	 BTRFS_INODE_SYNC |						\
1598 	 BTRFS_INODE_IMMUTABLE |					\
1599 	 BTRFS_INODE_APPEND |						\
1600 	 BTRFS_INODE_NODUMP |						\
1601 	 BTRFS_INODE_NOATIME |						\
1602 	 BTRFS_INODE_DIRSYNC |						\
1603 	 BTRFS_INODE_COMPRESS |						\
1604 	 BTRFS_INODE_ROOT_ITEM_INIT)
1605 
1606 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1607 
1608 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1609 
1610 struct btrfs_map_token {
1611 	struct extent_buffer *eb;
1612 	char *kaddr;
1613 	unsigned long offset;
1614 };
1615 
1616 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1617 				((bytes) >> (fs_info)->sectorsize_bits)
1618 
1619 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1620 					struct extent_buffer *eb)
1621 {
1622 	token->eb = eb;
1623 	token->kaddr = page_address(eb->pages[0]);
1624 	token->offset = 0;
1625 }
1626 
1627 /* some macros to generate set/get functions for the struct fields.  This
1628  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1629  * one for u8:
1630  */
1631 #define le8_to_cpu(v) (v)
1632 #define cpu_to_le8(v) (v)
1633 #define __le8 u8
1634 
1635 static inline u8 get_unaligned_le8(const void *p)
1636 {
1637        return *(u8 *)p;
1638 }
1639 
1640 static inline void put_unaligned_le8(u8 val, void *p)
1641 {
1642        *(u8 *)p = val;
1643 }
1644 
1645 #define read_eb_member(eb, ptr, type, member, result) (\
1646 	read_extent_buffer(eb, (char *)(result),			\
1647 			   ((unsigned long)(ptr)) +			\
1648 			    offsetof(type, member),			\
1649 			   sizeof(((type *)0)->member)))
1650 
1651 #define write_eb_member(eb, ptr, type, member, result) (\
1652 	write_extent_buffer(eb, (char *)(result),			\
1653 			   ((unsigned long)(ptr)) +			\
1654 			    offsetof(type, member),			\
1655 			   sizeof(((type *)0)->member)))
1656 
1657 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1658 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1659 			       const void *ptr, unsigned long off);	\
1660 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1661 			    const void *ptr, unsigned long off,		\
1662 			    u##bits val);				\
1663 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1664 			 const void *ptr, unsigned long off);		\
1665 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1666 		      unsigned long off, u##bits val);
1667 
1668 DECLARE_BTRFS_SETGET_BITS(8)
1669 DECLARE_BTRFS_SETGET_BITS(16)
1670 DECLARE_BTRFS_SETGET_BITS(32)
1671 DECLARE_BTRFS_SETGET_BITS(64)
1672 
1673 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1674 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1675 				   const type *s)			\
1676 {									\
1677 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1678 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1679 }									\
1680 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1681 				    u##bits val)			\
1682 {									\
1683 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1684 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1685 }									\
1686 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1687 					 const type *s)			\
1688 {									\
1689 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1690 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1691 }									\
1692 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1693 					  type *s, u##bits val)		\
1694 {									\
1695 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1696 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1697 }
1698 
1699 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1700 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1701 {									\
1702 	const type *p = page_address(eb->pages[0]) +			\
1703 			offset_in_page(eb->start);			\
1704 	return get_unaligned_le##bits(&p->member);			\
1705 }									\
1706 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1707 				    u##bits val)			\
1708 {									\
1709 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1710 	put_unaligned_le##bits(val, &p->member);			\
1711 }
1712 
1713 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1714 static inline u##bits btrfs_##name(const type *s)			\
1715 {									\
1716 	return get_unaligned_le##bits(&s->member);			\
1717 }									\
1718 static inline void btrfs_set_##name(type *s, u##bits val)		\
1719 {									\
1720 	put_unaligned_le##bits(val, &s->member);			\
1721 }
1722 
1723 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1724 					   struct btrfs_dev_item *s)
1725 {
1726 	static_assert(sizeof(u64) ==
1727 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1728 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1729 					    total_bytes));
1730 }
1731 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1732 						struct btrfs_dev_item *s,
1733 						u64 val)
1734 {
1735 	static_assert(sizeof(u64) ==
1736 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1737 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1738 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1739 }
1740 
1741 
1742 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1743 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1744 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1745 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1746 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1747 		   start_offset, 64);
1748 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1749 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1750 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1751 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1752 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1753 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1754 
1755 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1756 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1757 			 total_bytes, 64);
1758 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1759 			 bytes_used, 64);
1760 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1761 			 io_align, 32);
1762 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1763 			 io_width, 32);
1764 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1765 			 sector_size, 32);
1766 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1767 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1768 			 dev_group, 32);
1769 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1770 			 seek_speed, 8);
1771 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1772 			 bandwidth, 8);
1773 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1774 			 generation, 64);
1775 
1776 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1777 {
1778 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1779 }
1780 
1781 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1782 {
1783 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1784 }
1785 
1786 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1787 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1788 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1789 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1790 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1791 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1792 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1793 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1794 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1795 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1796 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1797 
1798 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1799 {
1800 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1801 }
1802 
1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1806 			 stripe_len, 64);
1807 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1808 			 io_align, 32);
1809 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1810 			 io_width, 32);
1811 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1812 			 sector_size, 32);
1813 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1815 			 num_stripes, 16);
1816 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1817 			 sub_stripes, 16);
1818 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1819 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1820 
1821 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1822 						   int nr)
1823 {
1824 	unsigned long offset = (unsigned long)c;
1825 	offset += offsetof(struct btrfs_chunk, stripe);
1826 	offset += nr * sizeof(struct btrfs_stripe);
1827 	return (struct btrfs_stripe *)offset;
1828 }
1829 
1830 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1831 {
1832 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1833 }
1834 
1835 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1836 					 struct btrfs_chunk *c, int nr)
1837 {
1838 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1839 }
1840 
1841 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1842 					 struct btrfs_chunk *c, int nr)
1843 {
1844 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1845 }
1846 
1847 /* struct btrfs_block_group_item */
1848 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1849 			 used, 64);
1850 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1851 			 used, 64);
1852 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1853 			struct btrfs_block_group_item, chunk_objectid, 64);
1854 
1855 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1856 		   struct btrfs_block_group_item, chunk_objectid, 64);
1857 BTRFS_SETGET_FUNCS(block_group_flags,
1858 		   struct btrfs_block_group_item, flags, 64);
1859 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1860 			struct btrfs_block_group_item, flags, 64);
1861 
1862 /* struct btrfs_free_space_info */
1863 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1864 		   extent_count, 32);
1865 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1866 
1867 /* struct btrfs_inode_ref */
1868 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1869 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1870 
1871 /* struct btrfs_inode_extref */
1872 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1873 		   parent_objectid, 64);
1874 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1875 		   name_len, 16);
1876 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1877 
1878 /* struct btrfs_inode_item */
1879 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1880 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1881 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1882 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1883 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1884 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1885 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1886 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1887 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1888 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1889 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1890 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1891 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1892 			 generation, 64);
1893 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1894 			 sequence, 64);
1895 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1896 			 transid, 64);
1897 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1899 			 nbytes, 64);
1900 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1901 			 block_group, 64);
1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1907 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1908 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1909 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1910 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1911 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1912 
1913 /* struct btrfs_dev_extent */
1914 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1915 		   chunk_tree, 64);
1916 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1917 		   chunk_objectid, 64);
1918 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1919 		   chunk_offset, 64);
1920 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1921 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1922 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1923 		   generation, 64);
1924 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1925 
1926 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1927 
1928 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1929 					struct btrfs_tree_block_info *item,
1930 					struct btrfs_disk_key *key)
1931 {
1932 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1933 }
1934 
1935 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1936 					    struct btrfs_tree_block_info *item,
1937 					    struct btrfs_disk_key *key)
1938 {
1939 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1940 }
1941 
1942 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1943 		   root, 64);
1944 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1945 		   objectid, 64);
1946 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1947 		   offset, 64);
1948 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1949 		   count, 32);
1950 
1951 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1952 		   count, 32);
1953 
1954 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1955 		   type, 8);
1956 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1957 		   offset, 64);
1958 
1959 static inline u32 btrfs_extent_inline_ref_size(int type)
1960 {
1961 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1962 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1963 		return sizeof(struct btrfs_extent_inline_ref);
1964 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1965 		return sizeof(struct btrfs_shared_data_ref) +
1966 		       sizeof(struct btrfs_extent_inline_ref);
1967 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1968 		return sizeof(struct btrfs_extent_data_ref) +
1969 		       offsetof(struct btrfs_extent_inline_ref, offset);
1970 	return 0;
1971 }
1972 
1973 /* struct btrfs_node */
1974 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1975 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1976 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1977 			 blockptr, 64);
1978 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1979 			 generation, 64);
1980 
1981 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1982 {
1983 	unsigned long ptr;
1984 	ptr = offsetof(struct btrfs_node, ptrs) +
1985 		sizeof(struct btrfs_key_ptr) * nr;
1986 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1987 }
1988 
1989 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1990 					   int nr, u64 val)
1991 {
1992 	unsigned long ptr;
1993 	ptr = offsetof(struct btrfs_node, ptrs) +
1994 		sizeof(struct btrfs_key_ptr) * nr;
1995 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1996 }
1997 
1998 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1999 {
2000 	unsigned long ptr;
2001 	ptr = offsetof(struct btrfs_node, ptrs) +
2002 		sizeof(struct btrfs_key_ptr) * nr;
2003 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2004 }
2005 
2006 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2007 						 int nr, u64 val)
2008 {
2009 	unsigned long ptr;
2010 	ptr = offsetof(struct btrfs_node, ptrs) +
2011 		sizeof(struct btrfs_key_ptr) * nr;
2012 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2013 }
2014 
2015 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2016 {
2017 	return offsetof(struct btrfs_node, ptrs) +
2018 		sizeof(struct btrfs_key_ptr) * nr;
2019 }
2020 
2021 void btrfs_node_key(const struct extent_buffer *eb,
2022 		    struct btrfs_disk_key *disk_key, int nr);
2023 
2024 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2025 				      struct btrfs_disk_key *disk_key, int nr)
2026 {
2027 	unsigned long ptr;
2028 	ptr = btrfs_node_key_ptr_offset(nr);
2029 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2030 		       struct btrfs_key_ptr, key, disk_key);
2031 }
2032 
2033 /* struct btrfs_item */
2034 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2035 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2036 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2037 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2038 
2039 static inline unsigned long btrfs_item_nr_offset(int nr)
2040 {
2041 	return offsetof(struct btrfs_leaf, items) +
2042 		sizeof(struct btrfs_item) * nr;
2043 }
2044 
2045 static inline struct btrfs_item *btrfs_item_nr(int nr)
2046 {
2047 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2048 }
2049 
2050 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2051 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2052 				      int slot)					\
2053 {										\
2054 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2055 }										\
2056 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2057 					   int slot, u32 val)			\
2058 {										\
2059 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2060 }										\
2061 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2062 					    int slot)				\
2063 {										\
2064 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2065 	return btrfs_token_raw_item_##member(token, item);			\
2066 }										\
2067 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2068 						 int slot, u32 val)		\
2069 {										\
2070 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2071 	btrfs_set_token_raw_item_##member(token, item, val);			\
2072 }
2073 
2074 BTRFS_ITEM_SETGET_FUNCS(offset)
2075 BTRFS_ITEM_SETGET_FUNCS(size);
2076 
2077 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2078 {
2079 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2080 }
2081 
2082 static inline void btrfs_item_key(const struct extent_buffer *eb,
2083 			   struct btrfs_disk_key *disk_key, int nr)
2084 {
2085 	struct btrfs_item *item = btrfs_item_nr(nr);
2086 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2087 }
2088 
2089 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2090 			       struct btrfs_disk_key *disk_key, int nr)
2091 {
2092 	struct btrfs_item *item = btrfs_item_nr(nr);
2093 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2094 }
2095 
2096 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2097 
2098 /*
2099  * struct btrfs_root_ref
2100  */
2101 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2102 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2103 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2104 
2105 /* struct btrfs_dir_item */
2106 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2107 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2108 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2109 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2110 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2112 			 data_len, 16);
2113 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2114 			 name_len, 16);
2115 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2116 			 transid, 64);
2117 
2118 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2119 				      const struct btrfs_dir_item *item,
2120 				      struct btrfs_disk_key *key)
2121 {
2122 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2123 }
2124 
2125 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2126 					  struct btrfs_dir_item *item,
2127 					  const struct btrfs_disk_key *key)
2128 {
2129 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2130 }
2131 
2132 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2133 		   num_entries, 64);
2134 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2135 		   num_bitmaps, 64);
2136 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2137 		   generation, 64);
2138 
2139 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2140 					const struct btrfs_free_space_header *h,
2141 					struct btrfs_disk_key *key)
2142 {
2143 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2144 }
2145 
2146 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2147 					    struct btrfs_free_space_header *h,
2148 					    const struct btrfs_disk_key *key)
2149 {
2150 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2151 }
2152 
2153 /* struct btrfs_disk_key */
2154 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2155 			 objectid, 64);
2156 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2157 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2158 
2159 #ifdef __LITTLE_ENDIAN
2160 
2161 /*
2162  * Optimized helpers for little-endian architectures where CPU and on-disk
2163  * structures have the same endianness and we can skip conversions.
2164  */
2165 
2166 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2167 					 const struct btrfs_disk_key *disk_key)
2168 {
2169 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2170 }
2171 
2172 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2173 					 const struct btrfs_key *cpu_key)
2174 {
2175 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2176 }
2177 
2178 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2179 					 struct btrfs_key *cpu_key, int nr)
2180 {
2181 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2182 
2183 	btrfs_node_key(eb, disk_key, nr);
2184 }
2185 
2186 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2187 					 struct btrfs_key *cpu_key, int nr)
2188 {
2189 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2190 
2191 	btrfs_item_key(eb, disk_key, nr);
2192 }
2193 
2194 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2195 					     const struct btrfs_dir_item *item,
2196 					     struct btrfs_key *cpu_key)
2197 {
2198 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2199 
2200 	btrfs_dir_item_key(eb, item, disk_key);
2201 }
2202 
2203 #else
2204 
2205 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2206 					 const struct btrfs_disk_key *disk)
2207 {
2208 	cpu->offset = le64_to_cpu(disk->offset);
2209 	cpu->type = disk->type;
2210 	cpu->objectid = le64_to_cpu(disk->objectid);
2211 }
2212 
2213 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2214 					 const struct btrfs_key *cpu)
2215 {
2216 	disk->offset = cpu_to_le64(cpu->offset);
2217 	disk->type = cpu->type;
2218 	disk->objectid = cpu_to_le64(cpu->objectid);
2219 }
2220 
2221 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2222 					 struct btrfs_key *key, int nr)
2223 {
2224 	struct btrfs_disk_key disk_key;
2225 	btrfs_node_key(eb, &disk_key, nr);
2226 	btrfs_disk_key_to_cpu(key, &disk_key);
2227 }
2228 
2229 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2230 					 struct btrfs_key *key, int nr)
2231 {
2232 	struct btrfs_disk_key disk_key;
2233 	btrfs_item_key(eb, &disk_key, nr);
2234 	btrfs_disk_key_to_cpu(key, &disk_key);
2235 }
2236 
2237 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2238 					     const struct btrfs_dir_item *item,
2239 					     struct btrfs_key *key)
2240 {
2241 	struct btrfs_disk_key disk_key;
2242 	btrfs_dir_item_key(eb, item, &disk_key);
2243 	btrfs_disk_key_to_cpu(key, &disk_key);
2244 }
2245 
2246 #endif
2247 
2248 /* struct btrfs_header */
2249 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2250 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2251 			  generation, 64);
2252 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2253 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2254 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2255 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2256 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2257 			 generation, 64);
2258 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2259 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2260 			 nritems, 32);
2261 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2262 
2263 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2264 {
2265 	return (btrfs_header_flags(eb) & flag) == flag;
2266 }
2267 
2268 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2269 {
2270 	u64 flags = btrfs_header_flags(eb);
2271 	btrfs_set_header_flags(eb, flags | flag);
2272 }
2273 
2274 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2275 {
2276 	u64 flags = btrfs_header_flags(eb);
2277 	btrfs_set_header_flags(eb, flags & ~flag);
2278 }
2279 
2280 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2281 {
2282 	u64 flags = btrfs_header_flags(eb);
2283 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2284 }
2285 
2286 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2287 						int rev)
2288 {
2289 	u64 flags = btrfs_header_flags(eb);
2290 	flags &= ~BTRFS_BACKREF_REV_MASK;
2291 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2292 	btrfs_set_header_flags(eb, flags);
2293 }
2294 
2295 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2296 {
2297 	return btrfs_header_level(eb) == 0;
2298 }
2299 
2300 /* struct btrfs_root_item */
2301 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2302 		   generation, 64);
2303 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2304 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2305 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2306 
2307 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2308 			 generation, 64);
2309 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2310 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2311 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2312 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2313 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2314 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2315 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2316 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2317 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2318 			 last_snapshot, 64);
2319 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2320 			 generation_v2, 64);
2321 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2322 			 ctransid, 64);
2323 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2324 			 otransid, 64);
2325 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2326 			 stransid, 64);
2327 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2328 			 rtransid, 64);
2329 
2330 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2331 {
2332 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2333 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2334 }
2335 
2336 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2337 {
2338 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2339 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2340 }
2341 
2342 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2343 {
2344 	return root->root_key.objectid;
2345 }
2346 
2347 /* struct btrfs_root_backup */
2348 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2349 		   tree_root, 64);
2350 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2351 		   tree_root_gen, 64);
2352 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2353 		   tree_root_level, 8);
2354 
2355 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2356 		   chunk_root, 64);
2357 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2358 		   chunk_root_gen, 64);
2359 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2360 		   chunk_root_level, 8);
2361 
2362 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2363 		   extent_root, 64);
2364 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2365 		   extent_root_gen, 64);
2366 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2367 		   extent_root_level, 8);
2368 
2369 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2370 		   fs_root, 64);
2371 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2372 		   fs_root_gen, 64);
2373 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2374 		   fs_root_level, 8);
2375 
2376 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2377 		   dev_root, 64);
2378 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2379 		   dev_root_gen, 64);
2380 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2381 		   dev_root_level, 8);
2382 
2383 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2384 		   csum_root, 64);
2385 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2386 		   csum_root_gen, 64);
2387 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2388 		   csum_root_level, 8);
2389 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2390 		   total_bytes, 64);
2391 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2392 		   bytes_used, 64);
2393 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2394 		   num_devices, 64);
2395 
2396 /*
2397  * For extent tree v2 we overload the extent root with the block group root, as
2398  * we will have multiple extent roots.
2399  */
2400 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2401 			 extent_root, 64);
2402 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2403 			 extent_root_gen, 64);
2404 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2405 			 struct btrfs_root_backup, extent_root_level, 8);
2406 
2407 /* struct btrfs_balance_item */
2408 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2409 
2410 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2411 				      const struct btrfs_balance_item *bi,
2412 				      struct btrfs_disk_balance_args *ba)
2413 {
2414 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2415 }
2416 
2417 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2418 				  struct btrfs_balance_item *bi,
2419 				  const struct btrfs_disk_balance_args *ba)
2420 {
2421 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2422 }
2423 
2424 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2425 				      const struct btrfs_balance_item *bi,
2426 				      struct btrfs_disk_balance_args *ba)
2427 {
2428 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2429 }
2430 
2431 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2432 				  struct btrfs_balance_item *bi,
2433 				  const struct btrfs_disk_balance_args *ba)
2434 {
2435 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2436 }
2437 
2438 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2439 				     const struct btrfs_balance_item *bi,
2440 				     struct btrfs_disk_balance_args *ba)
2441 {
2442 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2443 }
2444 
2445 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2446 				 struct btrfs_balance_item *bi,
2447 				 const struct btrfs_disk_balance_args *ba)
2448 {
2449 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2450 }
2451 
2452 static inline void
2453 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2454 			       const struct btrfs_disk_balance_args *disk)
2455 {
2456 	memset(cpu, 0, sizeof(*cpu));
2457 
2458 	cpu->profiles = le64_to_cpu(disk->profiles);
2459 	cpu->usage = le64_to_cpu(disk->usage);
2460 	cpu->devid = le64_to_cpu(disk->devid);
2461 	cpu->pstart = le64_to_cpu(disk->pstart);
2462 	cpu->pend = le64_to_cpu(disk->pend);
2463 	cpu->vstart = le64_to_cpu(disk->vstart);
2464 	cpu->vend = le64_to_cpu(disk->vend);
2465 	cpu->target = le64_to_cpu(disk->target);
2466 	cpu->flags = le64_to_cpu(disk->flags);
2467 	cpu->limit = le64_to_cpu(disk->limit);
2468 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2469 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2470 }
2471 
2472 static inline void
2473 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2474 			       const struct btrfs_balance_args *cpu)
2475 {
2476 	memset(disk, 0, sizeof(*disk));
2477 
2478 	disk->profiles = cpu_to_le64(cpu->profiles);
2479 	disk->usage = cpu_to_le64(cpu->usage);
2480 	disk->devid = cpu_to_le64(cpu->devid);
2481 	disk->pstart = cpu_to_le64(cpu->pstart);
2482 	disk->pend = cpu_to_le64(cpu->pend);
2483 	disk->vstart = cpu_to_le64(cpu->vstart);
2484 	disk->vend = cpu_to_le64(cpu->vend);
2485 	disk->target = cpu_to_le64(cpu->target);
2486 	disk->flags = cpu_to_le64(cpu->flags);
2487 	disk->limit = cpu_to_le64(cpu->limit);
2488 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2489 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2490 }
2491 
2492 /* struct btrfs_super_block */
2493 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2494 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2495 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2496 			 generation, 64);
2497 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2498 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2499 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2500 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2501 			 struct btrfs_super_block, chunk_root_generation, 64);
2502 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2503 			 root_level, 8);
2504 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2505 			 chunk_root, 64);
2506 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2507 			 chunk_root_level, 8);
2508 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2509 			 log_root, 64);
2510 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2511 			 log_root_level, 8);
2512 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2513 			 total_bytes, 64);
2514 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2515 			 bytes_used, 64);
2516 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2517 			 sectorsize, 32);
2518 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2519 			 nodesize, 32);
2520 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2521 			 stripesize, 32);
2522 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2523 			 root_dir_objectid, 64);
2524 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2525 			 num_devices, 64);
2526 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2527 			 compat_flags, 64);
2528 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2529 			 compat_ro_flags, 64);
2530 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2531 			 incompat_flags, 64);
2532 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2533 			 csum_type, 16);
2534 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2535 			 cache_generation, 64);
2536 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2537 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2538 			 uuid_tree_generation, 64);
2539 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2540 			 block_group_root, 64);
2541 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2542 			 struct btrfs_super_block,
2543 			 block_group_root_generation, 64);
2544 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2545 			 block_group_root_level, 8);
2546 
2547 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2548 const char *btrfs_super_csum_name(u16 csum_type);
2549 const char *btrfs_super_csum_driver(u16 csum_type);
2550 size_t __attribute_const__ btrfs_get_num_csums(void);
2551 
2552 
2553 /*
2554  * The leaf data grows from end-to-front in the node.
2555  * this returns the address of the start of the last item,
2556  * which is the stop of the leaf data stack
2557  */
2558 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2559 {
2560 	u32 nr = btrfs_header_nritems(leaf);
2561 
2562 	if (nr == 0)
2563 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2564 	return btrfs_item_offset(leaf, nr - 1);
2565 }
2566 
2567 /* struct btrfs_file_extent_item */
2568 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2569 			 type, 8);
2570 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2571 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2572 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2573 			 struct btrfs_file_extent_item, offset, 64);
2574 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2575 			 struct btrfs_file_extent_item, generation, 64);
2576 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2577 			 struct btrfs_file_extent_item, num_bytes, 64);
2578 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2579 			 struct btrfs_file_extent_item, ram_bytes, 64);
2580 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2581 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2582 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2583 			 struct btrfs_file_extent_item, compression, 8);
2584 
2585 static inline unsigned long
2586 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2587 {
2588 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2589 }
2590 
2591 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2592 {
2593 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2594 }
2595 
2596 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2597 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2598 		   disk_bytenr, 64);
2599 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2600 		   generation, 64);
2601 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2602 		   disk_num_bytes, 64);
2603 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2604 		  offset, 64);
2605 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2606 		   num_bytes, 64);
2607 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2608 		   ram_bytes, 64);
2609 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2610 		   compression, 8);
2611 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2612 		   encryption, 8);
2613 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2614 		   other_encoding, 16);
2615 
2616 /*
2617  * this returns the number of bytes used by the item on disk, minus the
2618  * size of any extent headers.  If a file is compressed on disk, this is
2619  * the compressed size
2620  */
2621 static inline u32 btrfs_file_extent_inline_item_len(
2622 						const struct extent_buffer *eb,
2623 						int nr)
2624 {
2625 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2626 }
2627 
2628 /* btrfs_qgroup_status_item */
2629 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2630 		   generation, 64);
2631 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2632 		   version, 64);
2633 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2634 		   flags, 64);
2635 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2636 		   rescan, 64);
2637 
2638 /* btrfs_qgroup_info_item */
2639 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2640 		   generation, 64);
2641 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2642 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2643 		   rfer_cmpr, 64);
2644 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2645 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2646 		   excl_cmpr, 64);
2647 
2648 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2649 			 struct btrfs_qgroup_info_item, generation, 64);
2650 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2651 			 rfer, 64);
2652 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2653 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2654 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2655 			 excl, 64);
2656 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2657 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2658 
2659 /* btrfs_qgroup_limit_item */
2660 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2661 		   flags, 64);
2662 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2663 		   max_rfer, 64);
2664 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2665 		   max_excl, 64);
2666 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2667 		   rsv_rfer, 64);
2668 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2669 		   rsv_excl, 64);
2670 
2671 /* btrfs_dev_replace_item */
2672 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2673 		   struct btrfs_dev_replace_item, src_devid, 64);
2674 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2675 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2676 		   64);
2677 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2678 		   replace_state, 64);
2679 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2680 		   time_started, 64);
2681 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2682 		   time_stopped, 64);
2683 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2684 		   num_write_errors, 64);
2685 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2686 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2687 		   64);
2688 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2689 		   cursor_left, 64);
2690 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2691 		   cursor_right, 64);
2692 
2693 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2694 			 struct btrfs_dev_replace_item, src_devid, 64);
2695 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2696 			 struct btrfs_dev_replace_item,
2697 			 cont_reading_from_srcdev_mode, 64);
2698 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2699 			 struct btrfs_dev_replace_item, replace_state, 64);
2700 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2701 			 struct btrfs_dev_replace_item, time_started, 64);
2702 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2703 			 struct btrfs_dev_replace_item, time_stopped, 64);
2704 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2705 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2706 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2707 			 struct btrfs_dev_replace_item,
2708 			 num_uncorrectable_read_errors, 64);
2709 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2710 			 struct btrfs_dev_replace_item, cursor_left, 64);
2711 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2712 			 struct btrfs_dev_replace_item, cursor_right, 64);
2713 
2714 /* helper function to cast into the data area of the leaf. */
2715 #define btrfs_item_ptr(leaf, slot, type) \
2716 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2717 	btrfs_item_offset(leaf, slot)))
2718 
2719 #define btrfs_item_ptr_offset(leaf, slot) \
2720 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2721 	btrfs_item_offset(leaf, slot)))
2722 
2723 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2724 {
2725 	return crc32c(crc, address, length);
2726 }
2727 
2728 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2729 {
2730 	put_unaligned_le32(~crc, result);
2731 }
2732 
2733 static inline u64 btrfs_name_hash(const char *name, int len)
2734 {
2735        return crc32c((u32)~1, name, len);
2736 }
2737 
2738 /*
2739  * Figure the key offset of an extended inode ref
2740  */
2741 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2742                                    int len)
2743 {
2744        return (u64) crc32c(parent_objectid, name, len);
2745 }
2746 
2747 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2748 {
2749 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2750 }
2751 
2752 /* extent-tree.c */
2753 
2754 enum btrfs_inline_ref_type {
2755 	BTRFS_REF_TYPE_INVALID,
2756 	BTRFS_REF_TYPE_BLOCK,
2757 	BTRFS_REF_TYPE_DATA,
2758 	BTRFS_REF_TYPE_ANY,
2759 };
2760 
2761 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2762 				     struct btrfs_extent_inline_ref *iref,
2763 				     enum btrfs_inline_ref_type is_data);
2764 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2765 
2766 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums,
2767 				 u64 offset)
2768 {
2769 	u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
2770 
2771 	return csums + offset_in_sectors * fs_info->csum_size;
2772 }
2773 
2774 /*
2775  * Take the number of bytes to be checksummed and figure out how many leaves
2776  * it would require to store the csums for that many bytes.
2777  */
2778 static inline u64 btrfs_csum_bytes_to_leaves(
2779 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2780 {
2781 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2782 
2783 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2784 }
2785 
2786 /*
2787  * Use this if we would be adding new items, as we could split nodes as we cow
2788  * down the tree.
2789  */
2790 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2791 						  unsigned num_items)
2792 {
2793 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2794 }
2795 
2796 /*
2797  * Doing a truncate or a modification won't result in new nodes or leaves, just
2798  * what we need for COW.
2799  */
2800 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2801 						 unsigned num_items)
2802 {
2803 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2804 }
2805 
2806 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2807 			      u64 start, u64 num_bytes);
2808 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2809 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2810 			   unsigned long count);
2811 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2812 				  struct btrfs_delayed_ref_root *delayed_refs,
2813 				  struct btrfs_delayed_ref_head *head);
2814 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2815 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2816 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2817 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2818 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2819 		     int reserved);
2820 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2821 				    u64 bytenr, u64 num_bytes);
2822 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2823 int btrfs_cross_ref_exist(struct btrfs_root *root,
2824 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2825 			  struct btrfs_path *path);
2826 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2827 					     struct btrfs_root *root,
2828 					     u64 parent, u64 root_objectid,
2829 					     const struct btrfs_disk_key *key,
2830 					     int level, u64 hint,
2831 					     u64 empty_size,
2832 					     enum btrfs_lock_nesting nest);
2833 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2834 			   u64 root_id,
2835 			   struct extent_buffer *buf,
2836 			   u64 parent, int last_ref);
2837 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2838 				     struct btrfs_root *root, u64 owner,
2839 				     u64 offset, u64 ram_bytes,
2840 				     struct btrfs_key *ins);
2841 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2842 				   u64 root_objectid, u64 owner, u64 offset,
2843 				   struct btrfs_key *ins);
2844 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2845 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2846 			 struct btrfs_key *ins, int is_data, int delalloc);
2847 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2848 		  struct extent_buffer *buf, int full_backref);
2849 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2850 		  struct extent_buffer *buf, int full_backref);
2851 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2852 				struct extent_buffer *eb, u64 flags, int level);
2853 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2854 
2855 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2856 			       u64 start, u64 len, int delalloc);
2857 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2858 			      u64 len);
2859 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2860 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2861 			 struct btrfs_ref *generic_ref);
2862 
2863 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2864 
2865 /*
2866  * Different levels for to flush space when doing space reservations.
2867  *
2868  * The higher the level, the more methods we try to reclaim space.
2869  */
2870 enum btrfs_reserve_flush_enum {
2871 	/* If we are in the transaction, we can't flush anything.*/
2872 	BTRFS_RESERVE_NO_FLUSH,
2873 
2874 	/*
2875 	 * Flush space by:
2876 	 * - Running delayed inode items
2877 	 * - Allocating a new chunk
2878 	 */
2879 	BTRFS_RESERVE_FLUSH_LIMIT,
2880 
2881 	/*
2882 	 * Flush space by:
2883 	 * - Running delayed inode items
2884 	 * - Running delayed refs
2885 	 * - Running delalloc and waiting for ordered extents
2886 	 * - Allocating a new chunk
2887 	 */
2888 	BTRFS_RESERVE_FLUSH_EVICT,
2889 
2890 	/*
2891 	 * Flush space by above mentioned methods and by:
2892 	 * - Running delayed iputs
2893 	 * - Committing transaction
2894 	 *
2895 	 * Can be interrupted by a fatal signal.
2896 	 */
2897 	BTRFS_RESERVE_FLUSH_DATA,
2898 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2899 	BTRFS_RESERVE_FLUSH_ALL,
2900 
2901 	/*
2902 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2903 	 * global rsv.
2904 	 *
2905 	 * Can be interrupted by a fatal signal.
2906 	 */
2907 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2908 };
2909 
2910 enum btrfs_flush_state {
2911 	FLUSH_DELAYED_ITEMS_NR	=	1,
2912 	FLUSH_DELAYED_ITEMS	=	2,
2913 	FLUSH_DELAYED_REFS_NR	=	3,
2914 	FLUSH_DELAYED_REFS	=	4,
2915 	FLUSH_DELALLOC		=	5,
2916 	FLUSH_DELALLOC_WAIT	=	6,
2917 	FLUSH_DELALLOC_FULL	=	7,
2918 	ALLOC_CHUNK		=	8,
2919 	ALLOC_CHUNK_FORCE	=	9,
2920 	RUN_DELAYED_IPUTS	=	10,
2921 	COMMIT_TRANS		=	11,
2922 };
2923 
2924 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2925 				     struct btrfs_block_rsv *rsv,
2926 				     int nitems, bool use_global_rsv);
2927 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2928 				      struct btrfs_block_rsv *rsv);
2929 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2930 
2931 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2932 				    u64 disk_num_bytes, bool noflush);
2933 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2934 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2935 				   u64 start, u64 end);
2936 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2937 			 u64 num_bytes, u64 *actual_bytes);
2938 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2939 
2940 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2941 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2942 					 struct btrfs_fs_info *fs_info);
2943 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2944 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2945 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2946 
2947 /* ctree.c */
2948 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2949 		     int *slot);
2950 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2951 int btrfs_previous_item(struct btrfs_root *root,
2952 			struct btrfs_path *path, u64 min_objectid,
2953 			int type);
2954 int btrfs_previous_extent_item(struct btrfs_root *root,
2955 			struct btrfs_path *path, u64 min_objectid);
2956 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2957 			     struct btrfs_path *path,
2958 			     const struct btrfs_key *new_key);
2959 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2960 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2961 			struct btrfs_key *key, int lowest_level,
2962 			u64 min_trans);
2963 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2964 			 struct btrfs_path *path,
2965 			 u64 min_trans);
2966 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2967 					   int slot);
2968 
2969 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2970 		    struct btrfs_root *root, struct extent_buffer *buf,
2971 		    struct extent_buffer *parent, int parent_slot,
2972 		    struct extent_buffer **cow_ret,
2973 		    enum btrfs_lock_nesting nest);
2974 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2975 		      struct btrfs_root *root,
2976 		      struct extent_buffer *buf,
2977 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2978 int btrfs_block_can_be_shared(struct btrfs_root *root,
2979 			      struct extent_buffer *buf);
2980 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2981 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2982 int btrfs_split_item(struct btrfs_trans_handle *trans,
2983 		     struct btrfs_root *root,
2984 		     struct btrfs_path *path,
2985 		     const struct btrfs_key *new_key,
2986 		     unsigned long split_offset);
2987 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2988 			 struct btrfs_root *root,
2989 			 struct btrfs_path *path,
2990 			 const struct btrfs_key *new_key);
2991 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2992 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2993 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2994 		      const struct btrfs_key *key, struct btrfs_path *p,
2995 		      int ins_len, int cow);
2996 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2997 			  struct btrfs_path *p, u64 time_seq);
2998 int btrfs_search_slot_for_read(struct btrfs_root *root,
2999 			       const struct btrfs_key *key,
3000 			       struct btrfs_path *p, int find_higher,
3001 			       int return_any);
3002 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3003 		       struct btrfs_root *root, struct extent_buffer *parent,
3004 		       int start_slot, u64 *last_ret,
3005 		       struct btrfs_key *progress);
3006 void btrfs_release_path(struct btrfs_path *p);
3007 struct btrfs_path *btrfs_alloc_path(void);
3008 void btrfs_free_path(struct btrfs_path *p);
3009 
3010 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3011 		   struct btrfs_path *path, int slot, int nr);
3012 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3013 				 struct btrfs_root *root,
3014 				 struct btrfs_path *path)
3015 {
3016 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3017 }
3018 
3019 /*
3020  * Describes a batch of items to insert in a btree. This is used by
3021  * btrfs_insert_empty_items().
3022  */
3023 struct btrfs_item_batch {
3024 	/*
3025 	 * Pointer to an array containing the keys of the items to insert (in
3026 	 * sorted order).
3027 	 */
3028 	const struct btrfs_key *keys;
3029 	/* Pointer to an array containing the data size for each item to insert. */
3030 	const u32 *data_sizes;
3031 	/*
3032 	 * The sum of data sizes for all items. The caller can compute this while
3033 	 * setting up the data_sizes array, so it ends up being more efficient
3034 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3035 	 * doing it, as it would avoid an extra loop over a potentially large
3036 	 * array, and in the case of setup_item_for_insert(), we would be doing
3037 	 * it while holding a write lock on a leaf and often on upper level nodes
3038 	 * too, unnecessarily increasing the size of a critical section.
3039 	 */
3040 	u32 total_data_size;
3041 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3042 	int nr;
3043 };
3044 
3045 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3046 				 struct btrfs_path *path,
3047 				 const struct btrfs_key *key,
3048 				 u32 data_size);
3049 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3050 		      const struct btrfs_key *key, void *data, u32 data_size);
3051 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3052 			     struct btrfs_root *root,
3053 			     struct btrfs_path *path,
3054 			     const struct btrfs_item_batch *batch);
3055 
3056 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3057 					  struct btrfs_root *root,
3058 					  struct btrfs_path *path,
3059 					  const struct btrfs_key *key,
3060 					  u32 data_size)
3061 {
3062 	struct btrfs_item_batch batch;
3063 
3064 	batch.keys = key;
3065 	batch.data_sizes = &data_size;
3066 	batch.total_data_size = data_size;
3067 	batch.nr = 1;
3068 
3069 	return btrfs_insert_empty_items(trans, root, path, &batch);
3070 }
3071 
3072 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3073 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3074 			u64 time_seq);
3075 
3076 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3077 			   struct btrfs_path *path);
3078 
3079 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3080 			      struct btrfs_path *path);
3081 
3082 /*
3083  * Search in @root for a given @key, and store the slot found in @found_key.
3084  *
3085  * @root:	The root node of the tree.
3086  * @key:	The key we are looking for.
3087  * @found_key:	Will hold the found item.
3088  * @path:	Holds the current slot/leaf.
3089  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3090  * 		btrfs_get_next_valid_item, whichever was executed last.
3091  *
3092  * The @iter_ret is an output variable that will contain the return value of
3093  * btrfs_search_slot, if it encountered an error, or the value returned from
3094  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3095  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3096  *
3097  * It's recommended to use a separate variable for iter_ret and then use it to
3098  * set the function return value so there's no confusion of the 0/1/errno
3099  * values stemming from btrfs_search_slot.
3100  */
3101 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3102 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3103 		(iter_ret) >= 0 &&						\
3104 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3105 		(path)->slots[0]++						\
3106 	)
3107 
3108 static inline int btrfs_next_old_item(struct btrfs_root *root,
3109 				      struct btrfs_path *p, u64 time_seq)
3110 {
3111 	++p->slots[0];
3112 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3113 		return btrfs_next_old_leaf(root, p, time_seq);
3114 	return 0;
3115 }
3116 
3117 /*
3118  * Search the tree again to find a leaf with greater keys.
3119  *
3120  * Returns 0 if it found something or 1 if there are no greater leaves.
3121  * Returns < 0 on error.
3122  */
3123 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3124 {
3125 	return btrfs_next_old_leaf(root, path, 0);
3126 }
3127 
3128 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3129 {
3130 	return btrfs_next_old_item(root, p, 0);
3131 }
3132 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3133 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3134 				     int for_reloc);
3135 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3136 			struct btrfs_root *root,
3137 			struct extent_buffer *node,
3138 			struct extent_buffer *parent);
3139 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3140 {
3141 	/*
3142 	 * Do it this way so we only ever do one test_bit in the normal case.
3143 	 */
3144 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3145 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3146 			return 2;
3147 		return 1;
3148 	}
3149 	return 0;
3150 }
3151 
3152 /*
3153  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3154  * anything except sleeping. This function is used to check the status of
3155  * the fs.
3156  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3157  * since setting and checking for SB_RDONLY in the superblock's flags is not
3158  * atomic.
3159  */
3160 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3161 {
3162 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3163 		btrfs_fs_closing(fs_info);
3164 }
3165 
3166 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3167 {
3168 	sb->s_flags |= SB_RDONLY;
3169 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3170 }
3171 
3172 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3173 {
3174 	sb->s_flags &= ~SB_RDONLY;
3175 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3176 }
3177 
3178 /* root-item.c */
3179 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3180 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3181 		       int name_len);
3182 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3183 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3184 		       int name_len);
3185 int btrfs_del_root(struct btrfs_trans_handle *trans,
3186 		   const struct btrfs_key *key);
3187 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3188 		      const struct btrfs_key *key,
3189 		      struct btrfs_root_item *item);
3190 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3191 				   struct btrfs_root *root,
3192 				   struct btrfs_key *key,
3193 				   struct btrfs_root_item *item);
3194 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3195 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3196 		    struct btrfs_key *root_key);
3197 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3198 void btrfs_set_root_node(struct btrfs_root_item *item,
3199 			 struct extent_buffer *node);
3200 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3201 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3202 			     struct btrfs_root *root);
3203 
3204 /* uuid-tree.c */
3205 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3206 			u64 subid);
3207 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3208 			u64 subid);
3209 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3210 
3211 /* dir-item.c */
3212 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3213 			  const char *name, int name_len);
3214 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3215 			  int name_len, struct btrfs_inode *dir,
3216 			  struct btrfs_key *location, u8 type, u64 index);
3217 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3218 					     struct btrfs_root *root,
3219 					     struct btrfs_path *path, u64 dir,
3220 					     const char *name, int name_len,
3221 					     int mod);
3222 struct btrfs_dir_item *
3223 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3224 			    struct btrfs_root *root,
3225 			    struct btrfs_path *path, u64 dir,
3226 			    u64 index, const char *name, int name_len,
3227 			    int mod);
3228 struct btrfs_dir_item *
3229 btrfs_search_dir_index_item(struct btrfs_root *root,
3230 			    struct btrfs_path *path, u64 dirid,
3231 			    const char *name, int name_len);
3232 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3233 			      struct btrfs_root *root,
3234 			      struct btrfs_path *path,
3235 			      struct btrfs_dir_item *di);
3236 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3237 			    struct btrfs_root *root,
3238 			    struct btrfs_path *path, u64 objectid,
3239 			    const char *name, u16 name_len,
3240 			    const void *data, u16 data_len);
3241 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3242 					  struct btrfs_root *root,
3243 					  struct btrfs_path *path, u64 dir,
3244 					  const char *name, u16 name_len,
3245 					  int mod);
3246 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3247 						 struct btrfs_path *path,
3248 						 const char *name,
3249 						 int name_len);
3250 
3251 /* orphan.c */
3252 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3253 			     struct btrfs_root *root, u64 offset);
3254 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3255 			  struct btrfs_root *root, u64 offset);
3256 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3257 
3258 /* file-item.c */
3259 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3260 		    struct btrfs_root *root, u64 bytenr, u64 len);
3261 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3262 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3263 			     struct btrfs_root *root,
3264 			     u64 objectid, u64 pos,
3265 			     u64 disk_offset, u64 disk_num_bytes,
3266 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3267 			     u8 compression, u8 encryption, u16 other_encoding);
3268 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3269 			     struct btrfs_root *root,
3270 			     struct btrfs_path *path, u64 objectid,
3271 			     u64 bytenr, int mod);
3272 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3273 			   struct btrfs_root *root,
3274 			   struct btrfs_ordered_sum *sums);
3275 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3276 				u64 offset, bool one_ordered);
3277 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3278 			     struct list_head *list, int search_commit);
3279 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3280 				     const struct btrfs_path *path,
3281 				     struct btrfs_file_extent_item *fi,
3282 				     const bool new_inline,
3283 				     struct extent_map *em);
3284 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3285 					u64 len);
3286 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3287 				      u64 len);
3288 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3289 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3290 
3291 /* inode.c */
3292 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3293 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3294 			int mirror_num, enum btrfs_compression_type compress_type);
3295 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3296 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3297 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3298 			  u32 bio_offset, struct page *page, u32 pgoff);
3299 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3300 				    u32 bio_offset, struct page *page,
3301 				    u64 start, u64 end);
3302 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3303 			  u32 bio_offset, struct page *page, u32 pgoff);
3304 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3305 					   u64 start, u64 len);
3306 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3307 			      u64 *orig_start, u64 *orig_block_len,
3308 			      u64 *ram_bytes, bool strict);
3309 
3310 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3311 				struct btrfs_inode *inode);
3312 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3313 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3314 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3315 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3316 		       const char *name, int name_len);
3317 int btrfs_add_link(struct btrfs_trans_handle *trans,
3318 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3319 		   const char *name, int name_len, int add_backref, u64 index);
3320 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3321 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3322 			 int front);
3323 
3324 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3325 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3326 			       bool in_reclaim_context);
3327 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3328 			      unsigned int extra_bits,
3329 			      struct extent_state **cached_state);
3330 struct btrfs_new_inode_args {
3331 	/* Input */
3332 	struct inode *dir;
3333 	struct dentry *dentry;
3334 	struct inode *inode;
3335 	bool orphan;
3336 	bool subvol;
3337 
3338 	/*
3339 	 * Output from btrfs_new_inode_prepare(), input to
3340 	 * btrfs_create_new_inode().
3341 	 */
3342 	struct posix_acl *default_acl;
3343 	struct posix_acl *acl;
3344 };
3345 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3346 			    unsigned int *trans_num_items);
3347 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3348 			   struct btrfs_new_inode_args *args);
3349 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3350 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3351 				     struct inode *dir);
3352  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3353 			        u32 bits);
3354 void btrfs_clear_delalloc_extent(struct inode *inode,
3355 				 struct extent_state *state, u32 bits);
3356 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3357 				 struct extent_state *other);
3358 void btrfs_split_delalloc_extent(struct inode *inode,
3359 				 struct extent_state *orig, u64 split);
3360 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3361 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3362 void btrfs_evict_inode(struct inode *inode);
3363 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3364 struct inode *btrfs_alloc_inode(struct super_block *sb);
3365 void btrfs_destroy_inode(struct inode *inode);
3366 void btrfs_free_inode(struct inode *inode);
3367 int btrfs_drop_inode(struct inode *inode);
3368 int __init btrfs_init_cachep(void);
3369 void __cold btrfs_destroy_cachep(void);
3370 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3371 			      struct btrfs_root *root, struct btrfs_path *path);
3372 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3373 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3374 				    struct page *page, size_t pg_offset,
3375 				    u64 start, u64 end);
3376 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3377 		       struct btrfs_root *root, struct btrfs_inode *inode);
3378 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3379 				struct btrfs_root *root, struct btrfs_inode *inode);
3380 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3381 		struct btrfs_inode *inode);
3382 int btrfs_orphan_cleanup(struct btrfs_root *root);
3383 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3384 void btrfs_add_delayed_iput(struct inode *inode);
3385 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3386 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3387 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3388 			      u64 start, u64 num_bytes, u64 min_size,
3389 			      loff_t actual_len, u64 *alloc_hint);
3390 int btrfs_prealloc_file_range_trans(struct inode *inode,
3391 				    struct btrfs_trans_handle *trans, int mode,
3392 				    u64 start, u64 num_bytes, u64 min_size,
3393 				    loff_t actual_len, u64 *alloc_hint);
3394 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3395 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3396 		struct writeback_control *wbc);
3397 int btrfs_writepage_cow_fixup(struct page *page);
3398 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3399 					  struct page *page, u64 start,
3400 					  u64 end, bool uptodate);
3401 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3402 					     int compress_type);
3403 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3404 					  u64 file_offset, u64 disk_bytenr,
3405 					  u64 disk_io_size,
3406 					  struct page **pages);
3407 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3408 			   struct btrfs_ioctl_encoded_io_args *encoded);
3409 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3410 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3411 
3412 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3413 
3414 extern const struct dentry_operations btrfs_dentry_operations;
3415 
3416 /* Inode locking type flags, by default the exclusive lock is taken */
3417 #define BTRFS_ILOCK_SHARED	(1U << 0)
3418 #define BTRFS_ILOCK_TRY 	(1U << 1)
3419 #define BTRFS_ILOCK_MMAP	(1U << 2)
3420 
3421 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3422 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3423 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3424 			      const u64 add_bytes,
3425 			      const u64 del_bytes);
3426 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3427 
3428 /* ioctl.c */
3429 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3430 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3431 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3432 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3433 		       struct dentry *dentry, struct fileattr *fa);
3434 int btrfs_ioctl_get_supported_features(void __user *arg);
3435 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3436 int __pure btrfs_is_empty_uuid(u8 *uuid);
3437 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3438 		      struct btrfs_ioctl_defrag_range_args *range,
3439 		      u64 newer_than, unsigned long max_to_defrag);
3440 void btrfs_get_block_group_info(struct list_head *groups_list,
3441 				struct btrfs_ioctl_space_info *space);
3442 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3443 			       struct btrfs_ioctl_balance_args *bargs);
3444 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3445 			enum btrfs_exclusive_operation type);
3446 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3447 				 enum btrfs_exclusive_operation type);
3448 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3449 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3451 			  enum btrfs_exclusive_operation op);
3452 
3453 
3454 /* file.c */
3455 int __init btrfs_auto_defrag_init(void);
3456 void __cold btrfs_auto_defrag_exit(void);
3457 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3458 			   struct btrfs_inode *inode, u32 extent_thresh);
3459 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3460 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3461 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3462 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3463 			     int skip_pinned);
3464 extern const struct file_operations btrfs_file_operations;
3465 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3466 		       struct btrfs_root *root, struct btrfs_inode *inode,
3467 		       struct btrfs_drop_extents_args *args);
3468 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3469 			   struct btrfs_path *path, const u64 start,
3470 			   const u64 end,
3471 			   struct btrfs_replace_extent_info *extent_info,
3472 			   struct btrfs_trans_handle **trans_out);
3473 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3474 			      struct btrfs_inode *inode, u64 start, u64 end);
3475 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3476 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3477 int btrfs_release_file(struct inode *inode, struct file *file);
3478 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3479 		      size_t num_pages, loff_t pos, size_t write_bytes,
3480 		      struct extent_state **cached, bool noreserve);
3481 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3482 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3483 			   size_t *write_bytes);
3484 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3485 
3486 /* tree-defrag.c */
3487 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3488 			struct btrfs_root *root);
3489 
3490 /* super.c */
3491 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3492 			unsigned long new_flags);
3493 int btrfs_sync_fs(struct super_block *sb, int wait);
3494 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3495 					  u64 subvol_objectid);
3496 
3497 static inline __printf(2, 3) __cold
3498 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3499 {
3500 }
3501 
3502 #ifdef CONFIG_PRINTK_INDEX
3503 
3504 #define btrfs_printk(fs_info, fmt, args...)					\
3505 do {										\
3506 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3507 	_btrfs_printk(fs_info, fmt, ##args);					\
3508 } while (0)
3509 
3510 __printf(2, 3)
3511 __cold
3512 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3513 
3514 #elif defined(CONFIG_PRINTK)
3515 
3516 #define btrfs_printk(fs_info, fmt, args...)				\
3517 	_btrfs_printk(fs_info, fmt, ##args)
3518 
3519 __printf(2, 3)
3520 __cold
3521 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3522 
3523 #else
3524 
3525 #define btrfs_printk(fs_info, fmt, args...) \
3526 	btrfs_no_printk(fs_info, fmt, ##args)
3527 #endif
3528 
3529 #define btrfs_emerg(fs_info, fmt, args...) \
3530 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3531 #define btrfs_alert(fs_info, fmt, args...) \
3532 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3533 #define btrfs_crit(fs_info, fmt, args...) \
3534 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3535 #define btrfs_err(fs_info, fmt, args...) \
3536 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3537 #define btrfs_warn(fs_info, fmt, args...) \
3538 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3539 #define btrfs_notice(fs_info, fmt, args...) \
3540 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3541 #define btrfs_info(fs_info, fmt, args...) \
3542 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3543 
3544 /*
3545  * Wrappers that use printk_in_rcu
3546  */
3547 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3548 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3549 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3550 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3551 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3552 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3553 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3554 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3555 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3556 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3557 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3558 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3559 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3560 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3561 
3562 /*
3563  * Wrappers that use a ratelimited printk_in_rcu
3564  */
3565 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3566 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3567 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3568 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3569 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3570 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3571 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3572 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3573 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3574 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3575 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3576 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3577 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3578 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3579 
3580 /*
3581  * Wrappers that use a ratelimited printk
3582  */
3583 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3584 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3585 #define btrfs_alert_rl(fs_info, fmt, args...) \
3586 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3587 #define btrfs_crit_rl(fs_info, fmt, args...) \
3588 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3589 #define btrfs_err_rl(fs_info, fmt, args...) \
3590 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3591 #define btrfs_warn_rl(fs_info, fmt, args...) \
3592 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3593 #define btrfs_notice_rl(fs_info, fmt, args...) \
3594 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3595 #define btrfs_info_rl(fs_info, fmt, args...) \
3596 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3597 
3598 #if defined(CONFIG_DYNAMIC_DEBUG)
3599 #define btrfs_debug(fs_info, fmt, args...)				\
3600 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3601 				   fs_info, KERN_DEBUG fmt, ##args)
3602 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3603 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3604 				   fs_info, KERN_DEBUG fmt, ##args)
3605 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3606 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3607 				   fs_info, KERN_DEBUG fmt, ##args)
3608 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3609 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3610 				   fs_info, KERN_DEBUG fmt, ##args)
3611 #elif defined(DEBUG)
3612 #define btrfs_debug(fs_info, fmt, args...) \
3613 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3614 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3615 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3616 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3617 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3618 #define btrfs_debug_rl(fs_info, fmt, args...) \
3619 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3620 #else
3621 #define btrfs_debug(fs_info, fmt, args...) \
3622 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3623 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3624 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3625 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3626 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3627 #define btrfs_debug_rl(fs_info, fmt, args...) \
3628 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3629 #endif
3630 
3631 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3632 do {							\
3633 	rcu_read_lock();				\
3634 	btrfs_printk(fs_info, fmt, ##args);		\
3635 	rcu_read_unlock();				\
3636 } while (0)
3637 
3638 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3639 do {							\
3640 	rcu_read_lock();				\
3641 	btrfs_no_printk(fs_info, fmt, ##args);		\
3642 	rcu_read_unlock();				\
3643 } while (0)
3644 
3645 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3646 do {								\
3647 	static DEFINE_RATELIMIT_STATE(_rs,			\
3648 		DEFAULT_RATELIMIT_INTERVAL,			\
3649 		DEFAULT_RATELIMIT_BURST);       		\
3650 	if (__ratelimit(&_rs))					\
3651 		btrfs_printk(fs_info, fmt, ##args);		\
3652 } while (0)
3653 
3654 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3655 do {								\
3656 	rcu_read_lock();					\
3657 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3658 	rcu_read_unlock();					\
3659 } while (0)
3660 
3661 #ifdef CONFIG_BTRFS_ASSERT
3662 __cold __noreturn
3663 static inline void assertfail(const char *expr, const char *file, int line)
3664 {
3665 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3666 	BUG();
3667 }
3668 
3669 #define ASSERT(expr)						\
3670 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3671 
3672 #else
3673 static inline void assertfail(const char *expr, const char* file, int line) { }
3674 #define ASSERT(expr)	(void)(expr)
3675 #endif
3676 
3677 #if BITS_PER_LONG == 32
3678 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3679 /*
3680  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3681  * addresses of extents.
3682  *
3683  * For 4K page size it's about 10T, for 64K it's 160T.
3684  */
3685 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3686 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3687 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3688 #endif
3689 
3690 /*
3691  * Get the correct offset inside the page of extent buffer.
3692  *
3693  * @eb:		target extent buffer
3694  * @start:	offset inside the extent buffer
3695  *
3696  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3697  */
3698 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3699 					   unsigned long offset)
3700 {
3701 	/*
3702 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3703 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3704 	 *
3705 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3706 	 * to the eb, thus we have to take the eb->start into consideration.
3707 	 */
3708 	return offset_in_page(offset + eb->start);
3709 }
3710 
3711 static inline unsigned long get_eb_page_index(unsigned long offset)
3712 {
3713 	/*
3714 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3715 	 *
3716 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3717 	 * and have ensured that all tree blocks are contained in one page,
3718 	 * thus we always get index == 0.
3719 	 */
3720 	return offset >> PAGE_SHIFT;
3721 }
3722 
3723 /*
3724  * Use that for functions that are conditionally exported for sanity tests but
3725  * otherwise static
3726  */
3727 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3728 #define EXPORT_FOR_TESTS static
3729 #else
3730 #define EXPORT_FOR_TESTS
3731 #endif
3732 
3733 __cold
3734 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3735 {
3736 	btrfs_err(fs_info,
3737 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3738 }
3739 
3740 __printf(5, 6)
3741 __cold
3742 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3743 		     unsigned int line, int errno, const char *fmt, ...);
3744 
3745 const char * __attribute_const__ btrfs_decode_error(int errno);
3746 
3747 __cold
3748 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3749 			       const char *function,
3750 			       unsigned int line, int errno);
3751 
3752 /*
3753  * Call btrfs_abort_transaction as early as possible when an error condition is
3754  * detected, that way the exact line number is reported.
3755  */
3756 #define btrfs_abort_transaction(trans, errno)		\
3757 do {								\
3758 	/* Report first abort since mount */			\
3759 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3760 			&((trans)->fs_info->fs_state))) {	\
3761 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3762 			WARN(1, KERN_DEBUG				\
3763 			"BTRFS: Transaction aborted (error %d)\n",	\
3764 			(errno));					\
3765 		} else {						\
3766 			btrfs_debug((trans)->fs_info,			\
3767 				    "Transaction aborted (error %d)", \
3768 				  (errno));			\
3769 		}						\
3770 	}							\
3771 	__btrfs_abort_transaction((trans), __func__,		\
3772 				  __LINE__, (errno));		\
3773 } while (0)
3774 
3775 #ifdef CONFIG_PRINTK_INDEX
3776 
3777 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3778 do {									\
3779 	printk_index_subsys_emit(					\
3780 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3781 		KERN_CRIT, fmt);					\
3782 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3783 				(errno), fmt, ##args);			\
3784 } while (0)
3785 
3786 #else
3787 
3788 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3789 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3790 				(errno), fmt, ##args)
3791 
3792 #endif
3793 
3794 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3795 						   &(fs_info)->fs_state)))
3796 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3797 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3798 			   &(fs_info)->fs_state)))
3799 
3800 __printf(5, 6)
3801 __cold
3802 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3803 		   unsigned int line, int errno, const char *fmt, ...);
3804 /*
3805  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3806  * will panic().  Otherwise we BUG() here.
3807  */
3808 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3809 do {									\
3810 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3811 	BUG();								\
3812 } while (0)
3813 
3814 
3815 /* compatibility and incompatibility defines */
3816 
3817 #define btrfs_set_fs_incompat(__fs_info, opt) \
3818 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3819 				#opt)
3820 
3821 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3822 					   u64 flag, const char* name)
3823 {
3824 	struct btrfs_super_block *disk_super;
3825 	u64 features;
3826 
3827 	disk_super = fs_info->super_copy;
3828 	features = btrfs_super_incompat_flags(disk_super);
3829 	if (!(features & flag)) {
3830 		spin_lock(&fs_info->super_lock);
3831 		features = btrfs_super_incompat_flags(disk_super);
3832 		if (!(features & flag)) {
3833 			features |= flag;
3834 			btrfs_set_super_incompat_flags(disk_super, features);
3835 			btrfs_info(fs_info,
3836 				"setting incompat feature flag for %s (0x%llx)",
3837 				name, flag);
3838 		}
3839 		spin_unlock(&fs_info->super_lock);
3840 	}
3841 }
3842 
3843 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3844 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3845 				  #opt)
3846 
3847 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3848 					     u64 flag, const char* name)
3849 {
3850 	struct btrfs_super_block *disk_super;
3851 	u64 features;
3852 
3853 	disk_super = fs_info->super_copy;
3854 	features = btrfs_super_incompat_flags(disk_super);
3855 	if (features & flag) {
3856 		spin_lock(&fs_info->super_lock);
3857 		features = btrfs_super_incompat_flags(disk_super);
3858 		if (features & flag) {
3859 			features &= ~flag;
3860 			btrfs_set_super_incompat_flags(disk_super, features);
3861 			btrfs_info(fs_info,
3862 				"clearing incompat feature flag for %s (0x%llx)",
3863 				name, flag);
3864 		}
3865 		spin_unlock(&fs_info->super_lock);
3866 	}
3867 }
3868 
3869 #define btrfs_fs_incompat(fs_info, opt) \
3870 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3871 
3872 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3873 {
3874 	struct btrfs_super_block *disk_super;
3875 	disk_super = fs_info->super_copy;
3876 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3877 }
3878 
3879 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3880 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3881 				 #opt)
3882 
3883 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3884 					    u64 flag, const char *name)
3885 {
3886 	struct btrfs_super_block *disk_super;
3887 	u64 features;
3888 
3889 	disk_super = fs_info->super_copy;
3890 	features = btrfs_super_compat_ro_flags(disk_super);
3891 	if (!(features & flag)) {
3892 		spin_lock(&fs_info->super_lock);
3893 		features = btrfs_super_compat_ro_flags(disk_super);
3894 		if (!(features & flag)) {
3895 			features |= flag;
3896 			btrfs_set_super_compat_ro_flags(disk_super, features);
3897 			btrfs_info(fs_info,
3898 				"setting compat-ro feature flag for %s (0x%llx)",
3899 				name, flag);
3900 		}
3901 		spin_unlock(&fs_info->super_lock);
3902 	}
3903 }
3904 
3905 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3906 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3907 				   #opt)
3908 
3909 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3910 					      u64 flag, const char *name)
3911 {
3912 	struct btrfs_super_block *disk_super;
3913 	u64 features;
3914 
3915 	disk_super = fs_info->super_copy;
3916 	features = btrfs_super_compat_ro_flags(disk_super);
3917 	if (features & flag) {
3918 		spin_lock(&fs_info->super_lock);
3919 		features = btrfs_super_compat_ro_flags(disk_super);
3920 		if (features & flag) {
3921 			features &= ~flag;
3922 			btrfs_set_super_compat_ro_flags(disk_super, features);
3923 			btrfs_info(fs_info,
3924 				"clearing compat-ro feature flag for %s (0x%llx)",
3925 				name, flag);
3926 		}
3927 		spin_unlock(&fs_info->super_lock);
3928 	}
3929 }
3930 
3931 #define btrfs_fs_compat_ro(fs_info, opt) \
3932 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3933 
3934 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3935 {
3936 	struct btrfs_super_block *disk_super;
3937 	disk_super = fs_info->super_copy;
3938 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3939 }
3940 
3941 /* acl.c */
3942 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3943 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3944 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3945 		  struct posix_acl *acl, int type);
3946 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3947 		    struct posix_acl *acl, int type);
3948 #else
3949 #define btrfs_get_acl NULL
3950 #define btrfs_set_acl NULL
3951 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3952 				  struct inode *inode, struct posix_acl *acl,
3953 				  int type)
3954 {
3955 	return -EOPNOTSUPP;
3956 }
3957 #endif
3958 
3959 /* relocation.c */
3960 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3961 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3962 			  struct btrfs_root *root);
3963 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3964 			    struct btrfs_root *root);
3965 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3966 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3967 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3968 			  struct btrfs_root *root, struct extent_buffer *buf,
3969 			  struct extent_buffer *cow);
3970 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3971 			      u64 *bytes_to_reserve);
3972 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3973 			      struct btrfs_pending_snapshot *pending);
3974 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3975 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3976 				   u64 bytenr);
3977 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3978 
3979 /* scrub.c */
3980 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3981 		    u64 end, struct btrfs_scrub_progress *progress,
3982 		    int readonly, int is_dev_replace);
3983 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3984 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3985 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3986 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3987 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3988 			 struct btrfs_scrub_progress *progress);
3989 static inline void btrfs_init_full_stripe_locks_tree(
3990 			struct btrfs_full_stripe_locks_tree *locks_root)
3991 {
3992 	locks_root->root = RB_ROOT;
3993 	mutex_init(&locks_root->lock);
3994 }
3995 
3996 /* dev-replace.c */
3997 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3998 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3999 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4000 
4001 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4002 {
4003 	btrfs_bio_counter_sub(fs_info, 1);
4004 }
4005 
4006 static inline int is_fstree(u64 rootid)
4007 {
4008 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4009 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4010 	      !btrfs_qgroup_level(rootid)))
4011 		return 1;
4012 	return 0;
4013 }
4014 
4015 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4016 {
4017 	return signal_pending(current);
4018 }
4019 
4020 /* verity.c */
4021 #ifdef CONFIG_FS_VERITY
4022 
4023 extern const struct fsverity_operations btrfs_verityops;
4024 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4025 
4026 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4027 		   encryption, 8);
4028 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4029 		   size, 64);
4030 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4031 			 struct btrfs_verity_descriptor_item, encryption, 8);
4032 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4033 			 struct btrfs_verity_descriptor_item, size, 64);
4034 
4035 #else
4036 
4037 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4038 {
4039 	return 0;
4040 }
4041 
4042 #endif
4043 
4044 /* Sanity test specific functions */
4045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4046 void btrfs_test_destroy_inode(struct inode *inode);
4047 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4048 {
4049 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4050 }
4051 #else
4052 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4053 {
4054 	return 0;
4055 }
4056 #endif
4057 
4058 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4059 {
4060 	return fs_info->zone_size > 0;
4061 }
4062 
4063 /*
4064  * Count how many fs_info->max_extent_size cover the @size
4065  */
4066 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4067 {
4068 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4069 	if (!fs_info)
4070 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4071 #endif
4072 
4073 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4074 }
4075 
4076 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4077 {
4078 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4079 }
4080 
4081 /*
4082  * We use page status Private2 to indicate there is an ordered extent with
4083  * unfinished IO.
4084  *
4085  * Rename the Private2 accessors to Ordered, to improve readability.
4086  */
4087 #define PageOrdered(page)		PagePrivate2(page)
4088 #define SetPageOrdered(page)		SetPagePrivate2(page)
4089 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4090 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4091 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4092 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4093 
4094 #endif
4095