1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_path_cachep; 46 extern struct kmem_cache *btrfs_free_space_cachep; 47 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 48 struct btrfs_ordered_sum; 49 struct btrfs_ref; 50 struct btrfs_bio; 51 struct btrfs_ioctl_encoded_io_args; 52 struct btrfs_device; 53 struct btrfs_fs_devices; 54 struct btrfs_balance_control; 55 struct btrfs_delayed_root; 56 struct reloc_control; 57 58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 59 60 /* 61 * Maximum number of mirrors that can be available for all profiles counting 62 * the target device of dev-replace as one. During an active device replace 63 * procedure, the target device of the copy operation is a mirror for the 64 * filesystem data as well that can be used to read data in order to repair 65 * read errors on other disks. 66 * 67 * Current value is derived from RAID1C4 with 4 copies. 68 */ 69 #define BTRFS_MAX_MIRRORS (4 + 1) 70 71 #define BTRFS_MAX_LEVEL 8 72 73 #define BTRFS_OLDEST_GENERATION 0ULL 74 75 /* 76 * we can actually store much bigger names, but lets not confuse the rest 77 * of linux 78 */ 79 #define BTRFS_NAME_LEN 255 80 81 /* 82 * Theoretical limit is larger, but we keep this down to a sane 83 * value. That should limit greatly the possibility of collisions on 84 * inode ref items. 85 */ 86 #define BTRFS_LINK_MAX 65535U 87 88 #define BTRFS_EMPTY_DIR_SIZE 0 89 90 /* ioprio of readahead is set to idle */ 91 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 92 93 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 94 95 /* 96 * Use large batch size to reduce overhead of metadata updates. On the reader 97 * side, we only read it when we are close to ENOSPC and the read overhead is 98 * mostly related to the number of CPUs, so it is OK to use arbitrary large 99 * value here. 100 */ 101 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 102 103 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 104 105 /* 106 * Deltas are an effective way to populate global statistics. Give macro names 107 * to make it clear what we're doing. An example is discard_extents in 108 * btrfs_free_space_ctl. 109 */ 110 #define BTRFS_STAT_NR_ENTRIES 2 111 #define BTRFS_STAT_CURR 0 112 #define BTRFS_STAT_PREV 1 113 114 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 115 { 116 BUG_ON(num_stripes == 0); 117 return sizeof(struct btrfs_chunk) + 118 sizeof(struct btrfs_stripe) * (num_stripes - 1); 119 } 120 121 /* 122 * Runtime (in-memory) states of filesystem 123 */ 124 enum { 125 /* Global indicator of serious filesystem errors */ 126 BTRFS_FS_STATE_ERROR, 127 /* 128 * Filesystem is being remounted, allow to skip some operations, like 129 * defrag 130 */ 131 BTRFS_FS_STATE_REMOUNTING, 132 /* Filesystem in RO mode */ 133 BTRFS_FS_STATE_RO, 134 /* Track if a transaction abort has been reported on this filesystem */ 135 BTRFS_FS_STATE_TRANS_ABORTED, 136 /* 137 * Bio operations should be blocked on this filesystem because a source 138 * or target device is being destroyed as part of a device replace 139 */ 140 BTRFS_FS_STATE_DEV_REPLACING, 141 /* The btrfs_fs_info created for self-tests */ 142 BTRFS_FS_STATE_DUMMY_FS_INFO, 143 144 BTRFS_FS_STATE_NO_CSUMS, 145 146 /* Indicates there was an error cleaning up a log tree. */ 147 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 148 149 BTRFS_FS_STATE_COUNT 150 }; 151 152 #define BTRFS_BACKREF_REV_MAX 256 153 #define BTRFS_BACKREF_REV_SHIFT 56 154 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 155 BTRFS_BACKREF_REV_SHIFT) 156 157 #define BTRFS_OLD_BACKREF_REV 0 158 #define BTRFS_MIXED_BACKREF_REV 1 159 160 /* 161 * every tree block (leaf or node) starts with this header. 162 */ 163 struct btrfs_header { 164 /* these first four must match the super block */ 165 u8 csum[BTRFS_CSUM_SIZE]; 166 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 167 __le64 bytenr; /* which block this node is supposed to live in */ 168 __le64 flags; 169 170 /* allowed to be different from the super from here on down */ 171 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 172 __le64 generation; 173 __le64 owner; 174 __le32 nritems; 175 u8 level; 176 } __attribute__ ((__packed__)); 177 178 /* 179 * this is a very generous portion of the super block, giving us 180 * room to translate 14 chunks with 3 stripes each. 181 */ 182 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 183 184 /* 185 * just in case we somehow lose the roots and are not able to mount, 186 * we store an array of the roots from previous transactions 187 * in the super. 188 */ 189 #define BTRFS_NUM_BACKUP_ROOTS 4 190 struct btrfs_root_backup { 191 __le64 tree_root; 192 __le64 tree_root_gen; 193 194 __le64 chunk_root; 195 __le64 chunk_root_gen; 196 197 __le64 extent_root; 198 __le64 extent_root_gen; 199 200 __le64 fs_root; 201 __le64 fs_root_gen; 202 203 __le64 dev_root; 204 __le64 dev_root_gen; 205 206 __le64 csum_root; 207 __le64 csum_root_gen; 208 209 __le64 total_bytes; 210 __le64 bytes_used; 211 __le64 num_devices; 212 /* future */ 213 __le64 unused_64[4]; 214 215 u8 tree_root_level; 216 u8 chunk_root_level; 217 u8 extent_root_level; 218 u8 fs_root_level; 219 u8 dev_root_level; 220 u8 csum_root_level; 221 /* future and to align */ 222 u8 unused_8[10]; 223 } __attribute__ ((__packed__)); 224 225 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 226 #define BTRFS_SUPER_INFO_SIZE 4096 227 228 /* 229 * The reserved space at the beginning of each device. 230 * It covers the primary super block and leaves space for potential use by other 231 * tools like bootloaders or to lower potential damage of accidental overwrite. 232 */ 233 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) 234 235 /* 236 * the super block basically lists the main trees of the FS 237 * it currently lacks any block count etc etc 238 */ 239 struct btrfs_super_block { 240 /* the first 4 fields must match struct btrfs_header */ 241 u8 csum[BTRFS_CSUM_SIZE]; 242 /* FS specific UUID, visible to user */ 243 u8 fsid[BTRFS_FSID_SIZE]; 244 __le64 bytenr; /* this block number */ 245 __le64 flags; 246 247 /* allowed to be different from the btrfs_header from here own down */ 248 __le64 magic; 249 __le64 generation; 250 __le64 root; 251 __le64 chunk_root; 252 __le64 log_root; 253 254 /* 255 * This member has never been utilized since the very beginning, thus 256 * it's always 0 regardless of kernel version. We always use 257 * generation + 1 to read log tree root. So here we mark it deprecated. 258 */ 259 __le64 __unused_log_root_transid; 260 __le64 total_bytes; 261 __le64 bytes_used; 262 __le64 root_dir_objectid; 263 __le64 num_devices; 264 __le32 sectorsize; 265 __le32 nodesize; 266 __le32 __unused_leafsize; 267 __le32 stripesize; 268 __le32 sys_chunk_array_size; 269 __le64 chunk_root_generation; 270 __le64 compat_flags; 271 __le64 compat_ro_flags; 272 __le64 incompat_flags; 273 __le16 csum_type; 274 u8 root_level; 275 u8 chunk_root_level; 276 u8 log_root_level; 277 struct btrfs_dev_item dev_item; 278 279 char label[BTRFS_LABEL_SIZE]; 280 281 __le64 cache_generation; 282 __le64 uuid_tree_generation; 283 284 /* the UUID written into btree blocks */ 285 u8 metadata_uuid[BTRFS_FSID_SIZE]; 286 287 /* future expansion */ 288 u8 reserved8[8]; 289 __le64 reserved[27]; 290 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 291 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 292 293 /* Padded to 4096 bytes */ 294 u8 padding[565]; 295 } __attribute__ ((__packed__)); 296 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 297 298 /* 299 * Compat flags that we support. If any incompat flags are set other than the 300 * ones specified below then we will fail to mount 301 */ 302 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 303 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 304 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 305 306 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 307 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 308 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 309 BTRFS_FEATURE_COMPAT_RO_VERITY | \ 310 BTRFS_FEATURE_COMPAT_RO_BLOCK_GROUP_TREE) 311 312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 314 315 #ifdef CONFIG_BTRFS_DEBUG 316 /* 317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 318 */ 319 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 326 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 332 BTRFS_FEATURE_INCOMPAT_ZONED | \ 333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 334 #else 335 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 342 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 348 BTRFS_FEATURE_INCOMPAT_ZONED) 349 #endif 350 351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 354 355 /* 356 * A leaf is full of items. offset and size tell us where to find 357 * the item in the leaf (relative to the start of the data area) 358 */ 359 struct btrfs_item { 360 struct btrfs_disk_key key; 361 __le32 offset; 362 __le32 size; 363 } __attribute__ ((__packed__)); 364 365 /* 366 * leaves have an item area and a data area: 367 * [item0, item1....itemN] [free space] [dataN...data1, data0] 368 * 369 * The data is separate from the items to get the keys closer together 370 * during searches. 371 */ 372 struct btrfs_leaf { 373 struct btrfs_header header; 374 struct btrfs_item items[]; 375 } __attribute__ ((__packed__)); 376 377 /* 378 * all non-leaf blocks are nodes, they hold only keys and pointers to 379 * other blocks 380 */ 381 struct btrfs_key_ptr { 382 struct btrfs_disk_key key; 383 __le64 blockptr; 384 __le64 generation; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_node { 388 struct btrfs_header header; 389 struct btrfs_key_ptr ptrs[]; 390 } __attribute__ ((__packed__)); 391 392 /* Read ahead values for struct btrfs_path.reada */ 393 enum { 394 READA_NONE, 395 READA_BACK, 396 READA_FORWARD, 397 /* 398 * Similar to READA_FORWARD but unlike it: 399 * 400 * 1) It will trigger readahead even for leaves that are not close to 401 * each other on disk; 402 * 2) It also triggers readahead for nodes; 403 * 3) During a search, even when a node or leaf is already in memory, it 404 * will still trigger readahead for other nodes and leaves that follow 405 * it. 406 * 407 * This is meant to be used only when we know we are iterating over the 408 * entire tree or a very large part of it. 409 */ 410 READA_FORWARD_ALWAYS, 411 }; 412 413 /* 414 * btrfs_paths remember the path taken from the root down to the leaf. 415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 416 * to any other levels that are present. 417 * 418 * The slots array records the index of the item or block pointer 419 * used while walking the tree. 420 */ 421 struct btrfs_path { 422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 423 int slots[BTRFS_MAX_LEVEL]; 424 /* if there is real range locking, this locks field will change */ 425 u8 locks[BTRFS_MAX_LEVEL]; 426 u8 reada; 427 /* keep some upper locks as we walk down */ 428 u8 lowest_level; 429 430 /* 431 * set by btrfs_split_item, tells search_slot to keep all locks 432 * and to force calls to keep space in the nodes 433 */ 434 unsigned int search_for_split:1; 435 unsigned int keep_locks:1; 436 unsigned int skip_locking:1; 437 unsigned int search_commit_root:1; 438 unsigned int need_commit_sem:1; 439 unsigned int skip_release_on_error:1; 440 /* 441 * Indicate that new item (btrfs_search_slot) is extending already 442 * existing item and ins_len contains only the data size and not item 443 * header (ie. sizeof(struct btrfs_item) is not included). 444 */ 445 unsigned int search_for_extension:1; 446 /* Stop search if any locks need to be taken (for read) */ 447 unsigned int nowait:1; 448 }; 449 450 struct btrfs_dev_replace { 451 u64 replace_state; /* see #define above */ 452 time64_t time_started; /* seconds since 1-Jan-1970 */ 453 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 454 atomic64_t num_write_errors; 455 atomic64_t num_uncorrectable_read_errors; 456 457 u64 cursor_left; 458 u64 committed_cursor_left; 459 u64 cursor_left_last_write_of_item; 460 u64 cursor_right; 461 462 u64 cont_reading_from_srcdev_mode; /* see #define above */ 463 464 int is_valid; 465 int item_needs_writeback; 466 struct btrfs_device *srcdev; 467 struct btrfs_device *tgtdev; 468 469 struct mutex lock_finishing_cancel_unmount; 470 struct rw_semaphore rwsem; 471 472 struct btrfs_scrub_progress scrub_progress; 473 474 struct percpu_counter bio_counter; 475 wait_queue_head_t replace_wait; 476 }; 477 478 /* 479 * free clusters are used to claim free space in relatively large chunks, 480 * allowing us to do less seeky writes. They are used for all metadata 481 * allocations. In ssd_spread mode they are also used for data allocations. 482 */ 483 struct btrfs_free_cluster { 484 spinlock_t lock; 485 spinlock_t refill_lock; 486 struct rb_root root; 487 488 /* largest extent in this cluster */ 489 u64 max_size; 490 491 /* first extent starting offset */ 492 u64 window_start; 493 494 /* We did a full search and couldn't create a cluster */ 495 bool fragmented; 496 497 struct btrfs_block_group *block_group; 498 /* 499 * when a cluster is allocated from a block group, we put the 500 * cluster onto a list in the block group so that it can 501 * be freed before the block group is freed. 502 */ 503 struct list_head block_group_list; 504 }; 505 506 /* Discard control. */ 507 /* 508 * Async discard uses multiple lists to differentiate the discard filter 509 * parameters. Index 0 is for completely free block groups where we need to 510 * ensure the entire block group is trimmed without being lossy. Indices 511 * afterwards represent monotonically decreasing discard filter sizes to 512 * prioritize what should be discarded next. 513 */ 514 #define BTRFS_NR_DISCARD_LISTS 3 515 #define BTRFS_DISCARD_INDEX_UNUSED 0 516 #define BTRFS_DISCARD_INDEX_START 1 517 518 struct btrfs_discard_ctl { 519 struct workqueue_struct *discard_workers; 520 struct delayed_work work; 521 spinlock_t lock; 522 struct btrfs_block_group *block_group; 523 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 524 u64 prev_discard; 525 u64 prev_discard_time; 526 atomic_t discardable_extents; 527 atomic64_t discardable_bytes; 528 u64 max_discard_size; 529 u64 delay_ms; 530 u32 iops_limit; 531 u32 kbps_limit; 532 u64 discard_extent_bytes; 533 u64 discard_bitmap_bytes; 534 atomic64_t discard_bytes_saved; 535 }; 536 537 enum { 538 BTRFS_FS_CLOSING_START, 539 BTRFS_FS_CLOSING_DONE, 540 BTRFS_FS_LOG_RECOVERING, 541 BTRFS_FS_OPEN, 542 BTRFS_FS_QUOTA_ENABLED, 543 BTRFS_FS_UPDATE_UUID_TREE_GEN, 544 BTRFS_FS_CREATING_FREE_SPACE_TREE, 545 BTRFS_FS_BTREE_ERR, 546 BTRFS_FS_LOG1_ERR, 547 BTRFS_FS_LOG2_ERR, 548 BTRFS_FS_QUOTA_OVERRIDE, 549 /* Used to record internally whether fs has been frozen */ 550 BTRFS_FS_FROZEN, 551 /* 552 * Indicate that balance has been set up from the ioctl and is in the 553 * main phase. The fs_info::balance_ctl is initialized. 554 */ 555 BTRFS_FS_BALANCE_RUNNING, 556 557 /* 558 * Indicate that relocation of a chunk has started, it's set per chunk 559 * and is toggled between chunks. 560 */ 561 BTRFS_FS_RELOC_RUNNING, 562 563 /* Indicate that the cleaner thread is awake and doing something. */ 564 BTRFS_FS_CLEANER_RUNNING, 565 566 /* 567 * The checksumming has an optimized version and is considered fast, 568 * so we don't need to offload checksums to workqueues. 569 */ 570 BTRFS_FS_CSUM_IMPL_FAST, 571 572 /* Indicate that the discard workqueue can service discards. */ 573 BTRFS_FS_DISCARD_RUNNING, 574 575 /* Indicate that we need to cleanup space cache v1 */ 576 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 577 578 /* Indicate that we can't trust the free space tree for caching yet */ 579 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 580 581 /* Indicate whether there are any tree modification log users */ 582 BTRFS_FS_TREE_MOD_LOG_USERS, 583 584 /* Indicate that we want the transaction kthread to commit right now. */ 585 BTRFS_FS_COMMIT_TRANS, 586 587 /* Indicate we have half completed snapshot deletions pending. */ 588 BTRFS_FS_UNFINISHED_DROPS, 589 590 /* Indicate we have to finish a zone to do next allocation. */ 591 BTRFS_FS_NEED_ZONE_FINISH, 592 593 #if BITS_PER_LONG == 32 594 /* Indicate if we have error/warn message printed on 32bit systems */ 595 BTRFS_FS_32BIT_ERROR, 596 BTRFS_FS_32BIT_WARN, 597 #endif 598 }; 599 600 /* 601 * Exclusive operations (device replace, resize, device add/remove, balance) 602 */ 603 enum btrfs_exclusive_operation { 604 BTRFS_EXCLOP_NONE, 605 BTRFS_EXCLOP_BALANCE_PAUSED, 606 BTRFS_EXCLOP_BALANCE, 607 BTRFS_EXCLOP_DEV_ADD, 608 BTRFS_EXCLOP_DEV_REMOVE, 609 BTRFS_EXCLOP_DEV_REPLACE, 610 BTRFS_EXCLOP_RESIZE, 611 BTRFS_EXCLOP_SWAP_ACTIVATE, 612 }; 613 614 /* Store data about transaction commits, exported via sysfs. */ 615 struct btrfs_commit_stats { 616 /* Total number of commits */ 617 u64 commit_count; 618 /* The maximum commit duration so far in ns */ 619 u64 max_commit_dur; 620 /* The last commit duration in ns */ 621 u64 last_commit_dur; 622 /* The total commit duration in ns */ 623 u64 total_commit_dur; 624 }; 625 626 struct btrfs_fs_info { 627 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 628 unsigned long flags; 629 struct btrfs_root *tree_root; 630 struct btrfs_root *chunk_root; 631 struct btrfs_root *dev_root; 632 struct btrfs_root *fs_root; 633 struct btrfs_root *quota_root; 634 struct btrfs_root *uuid_root; 635 struct btrfs_root *data_reloc_root; 636 struct btrfs_root *block_group_root; 637 638 /* the log root tree is a directory of all the other log roots */ 639 struct btrfs_root *log_root_tree; 640 641 /* The tree that holds the global roots (csum, extent, etc) */ 642 rwlock_t global_root_lock; 643 struct rb_root global_root_tree; 644 645 spinlock_t fs_roots_radix_lock; 646 struct radix_tree_root fs_roots_radix; 647 648 /* block group cache stuff */ 649 rwlock_t block_group_cache_lock; 650 struct rb_root_cached block_group_cache_tree; 651 652 /* keep track of unallocated space */ 653 atomic64_t free_chunk_space; 654 655 /* Track ranges which are used by log trees blocks/logged data extents */ 656 struct extent_io_tree excluded_extents; 657 658 /* logical->physical extent mapping */ 659 struct extent_map_tree mapping_tree; 660 661 /* 662 * block reservation for extent, checksum, root tree and 663 * delayed dir index item 664 */ 665 struct btrfs_block_rsv global_block_rsv; 666 /* block reservation for metadata operations */ 667 struct btrfs_block_rsv trans_block_rsv; 668 /* block reservation for chunk tree */ 669 struct btrfs_block_rsv chunk_block_rsv; 670 /* block reservation for delayed operations */ 671 struct btrfs_block_rsv delayed_block_rsv; 672 /* block reservation for delayed refs */ 673 struct btrfs_block_rsv delayed_refs_rsv; 674 675 struct btrfs_block_rsv empty_block_rsv; 676 677 u64 generation; 678 u64 last_trans_committed; 679 /* 680 * Generation of the last transaction used for block group relocation 681 * since the filesystem was last mounted (or 0 if none happened yet). 682 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 683 */ 684 u64 last_reloc_trans; 685 u64 avg_delayed_ref_runtime; 686 687 /* 688 * this is updated to the current trans every time a full commit 689 * is required instead of the faster short fsync log commits 690 */ 691 u64 last_trans_log_full_commit; 692 unsigned long mount_opt; 693 /* 694 * Track requests for actions that need to be done during transaction 695 * commit (like for some mount options). 696 */ 697 unsigned long pending_changes; 698 unsigned long compress_type:4; 699 unsigned int compress_level; 700 u32 commit_interval; 701 /* 702 * It is a suggestive number, the read side is safe even it gets a 703 * wrong number because we will write out the data into a regular 704 * extent. The write side(mount/remount) is under ->s_umount lock, 705 * so it is also safe. 706 */ 707 u64 max_inline; 708 709 struct btrfs_transaction *running_transaction; 710 wait_queue_head_t transaction_throttle; 711 wait_queue_head_t transaction_wait; 712 wait_queue_head_t transaction_blocked_wait; 713 wait_queue_head_t async_submit_wait; 714 715 /* 716 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 717 * when they are updated. 718 * 719 * Because we do not clear the flags for ever, so we needn't use 720 * the lock on the read side. 721 * 722 * We also needn't use the lock when we mount the fs, because 723 * there is no other task which will update the flag. 724 */ 725 spinlock_t super_lock; 726 struct btrfs_super_block *super_copy; 727 struct btrfs_super_block *super_for_commit; 728 struct super_block *sb; 729 struct inode *btree_inode; 730 struct mutex tree_log_mutex; 731 struct mutex transaction_kthread_mutex; 732 struct mutex cleaner_mutex; 733 struct mutex chunk_mutex; 734 735 /* 736 * this is taken to make sure we don't set block groups ro after 737 * the free space cache has been allocated on them 738 */ 739 struct mutex ro_block_group_mutex; 740 741 /* this is used during read/modify/write to make sure 742 * no two ios are trying to mod the same stripe at the same 743 * time 744 */ 745 struct btrfs_stripe_hash_table *stripe_hash_table; 746 747 /* 748 * this protects the ordered operations list only while we are 749 * processing all of the entries on it. This way we make 750 * sure the commit code doesn't find the list temporarily empty 751 * because another function happens to be doing non-waiting preflush 752 * before jumping into the main commit. 753 */ 754 struct mutex ordered_operations_mutex; 755 756 struct rw_semaphore commit_root_sem; 757 758 struct rw_semaphore cleanup_work_sem; 759 760 struct rw_semaphore subvol_sem; 761 762 spinlock_t trans_lock; 763 /* 764 * the reloc mutex goes with the trans lock, it is taken 765 * during commit to protect us from the relocation code 766 */ 767 struct mutex reloc_mutex; 768 769 struct list_head trans_list; 770 struct list_head dead_roots; 771 struct list_head caching_block_groups; 772 773 spinlock_t delayed_iput_lock; 774 struct list_head delayed_iputs; 775 atomic_t nr_delayed_iputs; 776 wait_queue_head_t delayed_iputs_wait; 777 778 atomic64_t tree_mod_seq; 779 780 /* this protects tree_mod_log and tree_mod_seq_list */ 781 rwlock_t tree_mod_log_lock; 782 struct rb_root tree_mod_log; 783 struct list_head tree_mod_seq_list; 784 785 atomic_t async_delalloc_pages; 786 787 /* 788 * this is used to protect the following list -- ordered_roots. 789 */ 790 spinlock_t ordered_root_lock; 791 792 /* 793 * all fs/file tree roots in which there are data=ordered extents 794 * pending writeback are added into this list. 795 * 796 * these can span multiple transactions and basically include 797 * every dirty data page that isn't from nodatacow 798 */ 799 struct list_head ordered_roots; 800 801 struct mutex delalloc_root_mutex; 802 spinlock_t delalloc_root_lock; 803 /* all fs/file tree roots that have delalloc inodes. */ 804 struct list_head delalloc_roots; 805 806 /* 807 * there is a pool of worker threads for checksumming during writes 808 * and a pool for checksumming after reads. This is because readers 809 * can run with FS locks held, and the writers may be waiting for 810 * those locks. We don't want ordering in the pending list to cause 811 * deadlocks, and so the two are serviced separately. 812 * 813 * A third pool does submit_bio to avoid deadlocking with the other 814 * two 815 */ 816 struct btrfs_workqueue *workers; 817 struct btrfs_workqueue *hipri_workers; 818 struct btrfs_workqueue *delalloc_workers; 819 struct btrfs_workqueue *flush_workers; 820 struct workqueue_struct *endio_workers; 821 struct workqueue_struct *endio_meta_workers; 822 struct workqueue_struct *endio_raid56_workers; 823 struct workqueue_struct *rmw_workers; 824 struct workqueue_struct *compressed_write_workers; 825 struct btrfs_workqueue *endio_write_workers; 826 struct btrfs_workqueue *endio_freespace_worker; 827 struct btrfs_workqueue *caching_workers; 828 829 /* 830 * fixup workers take dirty pages that didn't properly go through 831 * the cow mechanism and make them safe to write. It happens 832 * for the sys_munmap function call path 833 */ 834 struct btrfs_workqueue *fixup_workers; 835 struct btrfs_workqueue *delayed_workers; 836 837 struct task_struct *transaction_kthread; 838 struct task_struct *cleaner_kthread; 839 u32 thread_pool_size; 840 841 struct kobject *space_info_kobj; 842 struct kobject *qgroups_kobj; 843 struct kobject *discard_kobj; 844 845 /* used to keep from writing metadata until there is a nice batch */ 846 struct percpu_counter dirty_metadata_bytes; 847 struct percpu_counter delalloc_bytes; 848 struct percpu_counter ordered_bytes; 849 s32 dirty_metadata_batch; 850 s32 delalloc_batch; 851 852 struct list_head dirty_cowonly_roots; 853 854 struct btrfs_fs_devices *fs_devices; 855 856 /* 857 * The space_info list is effectively read only after initial 858 * setup. It is populated at mount time and cleaned up after 859 * all block groups are removed. RCU is used to protect it. 860 */ 861 struct list_head space_info; 862 863 struct btrfs_space_info *data_sinfo; 864 865 struct reloc_control *reloc_ctl; 866 867 /* data_alloc_cluster is only used in ssd_spread mode */ 868 struct btrfs_free_cluster data_alloc_cluster; 869 870 /* all metadata allocations go through this cluster */ 871 struct btrfs_free_cluster meta_alloc_cluster; 872 873 /* auto defrag inodes go here */ 874 spinlock_t defrag_inodes_lock; 875 struct rb_root defrag_inodes; 876 atomic_t defrag_running; 877 878 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 879 seqlock_t profiles_lock; 880 /* 881 * these three are in extended format (availability of single 882 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 883 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 884 */ 885 u64 avail_data_alloc_bits; 886 u64 avail_metadata_alloc_bits; 887 u64 avail_system_alloc_bits; 888 889 /* restriper state */ 890 spinlock_t balance_lock; 891 struct mutex balance_mutex; 892 atomic_t balance_pause_req; 893 atomic_t balance_cancel_req; 894 struct btrfs_balance_control *balance_ctl; 895 wait_queue_head_t balance_wait_q; 896 897 /* Cancellation requests for chunk relocation */ 898 atomic_t reloc_cancel_req; 899 900 u32 data_chunk_allocations; 901 u32 metadata_ratio; 902 903 void *bdev_holder; 904 905 /* private scrub information */ 906 struct mutex scrub_lock; 907 atomic_t scrubs_running; 908 atomic_t scrub_pause_req; 909 atomic_t scrubs_paused; 910 atomic_t scrub_cancel_req; 911 wait_queue_head_t scrub_pause_wait; 912 /* 913 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 914 * running. 915 */ 916 refcount_t scrub_workers_refcnt; 917 struct workqueue_struct *scrub_workers; 918 struct workqueue_struct *scrub_wr_completion_workers; 919 struct workqueue_struct *scrub_parity_workers; 920 struct btrfs_subpage_info *subpage_info; 921 922 struct btrfs_discard_ctl discard_ctl; 923 924 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 925 u32 check_integrity_print_mask; 926 #endif 927 /* is qgroup tracking in a consistent state? */ 928 u64 qgroup_flags; 929 930 /* holds configuration and tracking. Protected by qgroup_lock */ 931 struct rb_root qgroup_tree; 932 spinlock_t qgroup_lock; 933 934 /* 935 * used to avoid frequently calling ulist_alloc()/ulist_free() 936 * when doing qgroup accounting, it must be protected by qgroup_lock. 937 */ 938 struct ulist *qgroup_ulist; 939 940 /* 941 * Protect user change for quota operations. If a transaction is needed, 942 * it must be started before locking this lock. 943 */ 944 struct mutex qgroup_ioctl_lock; 945 946 /* list of dirty qgroups to be written at next commit */ 947 struct list_head dirty_qgroups; 948 949 /* used by qgroup for an efficient tree traversal */ 950 u64 qgroup_seq; 951 952 /* qgroup rescan items */ 953 struct mutex qgroup_rescan_lock; /* protects the progress item */ 954 struct btrfs_key qgroup_rescan_progress; 955 struct btrfs_workqueue *qgroup_rescan_workers; 956 struct completion qgroup_rescan_completion; 957 struct btrfs_work qgroup_rescan_work; 958 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 959 u8 qgroup_drop_subtree_thres; 960 961 /* filesystem state */ 962 unsigned long fs_state; 963 964 struct btrfs_delayed_root *delayed_root; 965 966 /* Extent buffer radix tree */ 967 spinlock_t buffer_lock; 968 /* Entries are eb->start / sectorsize */ 969 struct radix_tree_root buffer_radix; 970 971 /* next backup root to be overwritten */ 972 int backup_root_index; 973 974 /* device replace state */ 975 struct btrfs_dev_replace dev_replace; 976 977 struct semaphore uuid_tree_rescan_sem; 978 979 /* Used to reclaim the metadata space in the background. */ 980 struct work_struct async_reclaim_work; 981 struct work_struct async_data_reclaim_work; 982 struct work_struct preempt_reclaim_work; 983 984 /* Reclaim partially filled block groups in the background */ 985 struct work_struct reclaim_bgs_work; 986 struct list_head reclaim_bgs; 987 int bg_reclaim_threshold; 988 989 spinlock_t unused_bgs_lock; 990 struct list_head unused_bgs; 991 struct mutex unused_bg_unpin_mutex; 992 /* Protect block groups that are going to be deleted */ 993 struct mutex reclaim_bgs_lock; 994 995 /* Cached block sizes */ 996 u32 nodesize; 997 u32 sectorsize; 998 /* ilog2 of sectorsize, use to avoid 64bit division */ 999 u32 sectorsize_bits; 1000 u32 csum_size; 1001 u32 csums_per_leaf; 1002 u32 stripesize; 1003 1004 /* 1005 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular 1006 * filesystem, on zoned it depends on the device constraints. 1007 */ 1008 u64 max_extent_size; 1009 1010 /* Block groups and devices containing active swapfiles. */ 1011 spinlock_t swapfile_pins_lock; 1012 struct rb_root swapfile_pins; 1013 1014 struct crypto_shash *csum_shash; 1015 1016 /* Type of exclusive operation running, protected by super_lock */ 1017 enum btrfs_exclusive_operation exclusive_operation; 1018 1019 /* 1020 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1021 * if the mode is enabled 1022 */ 1023 u64 zone_size; 1024 1025 /* Max size to emit ZONE_APPEND write command */ 1026 u64 max_zone_append_size; 1027 struct mutex zoned_meta_io_lock; 1028 spinlock_t treelog_bg_lock; 1029 u64 treelog_bg; 1030 1031 /* 1032 * Start of the dedicated data relocation block group, protected by 1033 * relocation_bg_lock. 1034 */ 1035 spinlock_t relocation_bg_lock; 1036 u64 data_reloc_bg; 1037 struct mutex zoned_data_reloc_io_lock; 1038 1039 u64 nr_global_roots; 1040 1041 spinlock_t zone_active_bgs_lock; 1042 struct list_head zone_active_bgs; 1043 1044 /* Updates are not protected by any lock */ 1045 struct btrfs_commit_stats commit_stats; 1046 1047 /* 1048 * Last generation where we dropped a non-relocation root. 1049 * Use btrfs_set_last_root_drop_gen() and btrfs_get_last_root_drop_gen() 1050 * to change it and to read it, respectively. 1051 */ 1052 u64 last_root_drop_gen; 1053 1054 /* 1055 * Annotations for transaction events (structures are empty when 1056 * compiled without lockdep). 1057 */ 1058 struct lockdep_map btrfs_trans_num_writers_map; 1059 struct lockdep_map btrfs_trans_num_extwriters_map; 1060 struct lockdep_map btrfs_state_change_map[4]; 1061 struct lockdep_map btrfs_trans_pending_ordered_map; 1062 struct lockdep_map btrfs_ordered_extent_map; 1063 1064 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1065 spinlock_t ref_verify_lock; 1066 struct rb_root block_tree; 1067 #endif 1068 1069 #ifdef CONFIG_BTRFS_DEBUG 1070 struct kobject *debug_kobj; 1071 struct list_head allocated_roots; 1072 1073 spinlock_t eb_leak_lock; 1074 struct list_head allocated_ebs; 1075 #endif 1076 }; 1077 1078 static inline void btrfs_set_last_root_drop_gen(struct btrfs_fs_info *fs_info, 1079 u64 gen) 1080 { 1081 WRITE_ONCE(fs_info->last_root_drop_gen, gen); 1082 } 1083 1084 static inline u64 btrfs_get_last_root_drop_gen(const struct btrfs_fs_info *fs_info) 1085 { 1086 return READ_ONCE(fs_info->last_root_drop_gen); 1087 } 1088 1089 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1090 { 1091 return sb->s_fs_info; 1092 } 1093 1094 /* 1095 * Take the number of bytes to be checksummed and figure out how many leaves 1096 * it would require to store the csums for that many bytes. 1097 */ 1098 static inline u64 btrfs_csum_bytes_to_leaves( 1099 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 1100 { 1101 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 1102 1103 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 1104 } 1105 1106 /* 1107 * Use this if we would be adding new items, as we could split nodes as we cow 1108 * down the tree. 1109 */ 1110 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 1111 unsigned num_items) 1112 { 1113 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 1114 } 1115 1116 /* 1117 * Doing a truncate or a modification won't result in new nodes or leaves, just 1118 * what we need for COW. 1119 */ 1120 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 1121 unsigned num_items) 1122 { 1123 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 1124 } 1125 1126 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 1127 sizeof(struct btrfs_item)) 1128 1129 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 1130 { 1131 return fs_info->zone_size > 0; 1132 } 1133 1134 /* 1135 * Count how many fs_info->max_extent_size cover the @size 1136 */ 1137 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size) 1138 { 1139 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1140 if (!fs_info) 1141 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 1142 #endif 1143 1144 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); 1145 } 1146 1147 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 1148 enum btrfs_exclusive_operation type); 1149 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 1150 enum btrfs_exclusive_operation type); 1151 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 1152 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 1153 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 1154 enum btrfs_exclusive_operation op); 1155 1156 /* 1157 * The state of btrfs root 1158 */ 1159 enum { 1160 /* 1161 * btrfs_record_root_in_trans is a multi-step process, and it can race 1162 * with the balancing code. But the race is very small, and only the 1163 * first time the root is added to each transaction. So IN_TRANS_SETUP 1164 * is used to tell us when more checks are required 1165 */ 1166 BTRFS_ROOT_IN_TRANS_SETUP, 1167 1168 /* 1169 * Set if tree blocks of this root can be shared by other roots. 1170 * Only subvolume trees and their reloc trees have this bit set. 1171 * Conflicts with TRACK_DIRTY bit. 1172 * 1173 * This affects two things: 1174 * 1175 * - How balance works 1176 * For shareable roots, we need to use reloc tree and do path 1177 * replacement for balance, and need various pre/post hooks for 1178 * snapshot creation to handle them. 1179 * 1180 * While for non-shareable trees, we just simply do a tree search 1181 * with COW. 1182 * 1183 * - How dirty roots are tracked 1184 * For shareable roots, btrfs_record_root_in_trans() is needed to 1185 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1186 * don't need to set this manually. 1187 */ 1188 BTRFS_ROOT_SHAREABLE, 1189 BTRFS_ROOT_TRACK_DIRTY, 1190 BTRFS_ROOT_IN_RADIX, 1191 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1192 BTRFS_ROOT_DEFRAG_RUNNING, 1193 BTRFS_ROOT_FORCE_COW, 1194 BTRFS_ROOT_MULTI_LOG_TASKS, 1195 BTRFS_ROOT_DIRTY, 1196 BTRFS_ROOT_DELETING, 1197 1198 /* 1199 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1200 * 1201 * Set for the subvolume tree owning the reloc tree. 1202 */ 1203 BTRFS_ROOT_DEAD_RELOC_TREE, 1204 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1205 BTRFS_ROOT_DEAD_TREE, 1206 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1207 BTRFS_ROOT_HAS_LOG_TREE, 1208 /* Qgroup flushing is in progress */ 1209 BTRFS_ROOT_QGROUP_FLUSHING, 1210 /* We started the orphan cleanup for this root. */ 1211 BTRFS_ROOT_ORPHAN_CLEANUP, 1212 /* This root has a drop operation that was started previously. */ 1213 BTRFS_ROOT_UNFINISHED_DROP, 1214 /* This reloc root needs to have its buffers lockdep class reset. */ 1215 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 1216 }; 1217 1218 enum btrfs_lockdep_trans_states { 1219 BTRFS_LOCKDEP_TRANS_COMMIT_START, 1220 BTRFS_LOCKDEP_TRANS_UNBLOCKED, 1221 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED, 1222 BTRFS_LOCKDEP_TRANS_COMPLETED, 1223 }; 1224 1225 /* 1226 * Lockdep annotation for wait events. 1227 * 1228 * @owner: The struct where the lockdep map is defined 1229 * @lock: The lockdep map corresponding to a wait event 1230 * 1231 * This macro is used to annotate a wait event. In this case a thread acquires 1232 * the lockdep map as writer (exclusive lock) because it has to block until all 1233 * the threads that hold the lock as readers signal the condition for the wait 1234 * event and release their locks. 1235 */ 1236 #define btrfs_might_wait_for_event(owner, lock) \ 1237 do { \ 1238 rwsem_acquire(&owner->lock##_map, 0, 0, _THIS_IP_); \ 1239 rwsem_release(&owner->lock##_map, _THIS_IP_); \ 1240 } while (0) 1241 1242 /* 1243 * Protection for the resource/condition of a wait event. 1244 * 1245 * @owner: The struct where the lockdep map is defined 1246 * @lock: The lockdep map corresponding to a wait event 1247 * 1248 * Many threads can modify the condition for the wait event at the same time 1249 * and signal the threads that block on the wait event. The threads that modify 1250 * the condition and do the signaling acquire the lock as readers (shared 1251 * lock). 1252 */ 1253 #define btrfs_lockdep_acquire(owner, lock) \ 1254 rwsem_acquire_read(&owner->lock##_map, 0, 0, _THIS_IP_) 1255 1256 /* 1257 * Used after signaling the condition for a wait event to release the lockdep 1258 * map held by a reader thread. 1259 */ 1260 #define btrfs_lockdep_release(owner, lock) \ 1261 rwsem_release(&owner->lock##_map, _THIS_IP_) 1262 1263 /* 1264 * Macros for the transaction states wait events, similar to the generic wait 1265 * event macros. 1266 */ 1267 #define btrfs_might_wait_for_state(owner, i) \ 1268 do { \ 1269 rwsem_acquire(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_); \ 1270 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_); \ 1271 } while (0) 1272 1273 #define btrfs_trans_state_lockdep_acquire(owner, i) \ 1274 rwsem_acquire_read(&owner->btrfs_state_change_map[i], 0, 0, _THIS_IP_) 1275 1276 #define btrfs_trans_state_lockdep_release(owner, i) \ 1277 rwsem_release(&owner->btrfs_state_change_map[i], _THIS_IP_) 1278 1279 /* Initialization of the lockdep map */ 1280 #define btrfs_lockdep_init_map(owner, lock) \ 1281 do { \ 1282 static struct lock_class_key lock##_key; \ 1283 lockdep_init_map(&owner->lock##_map, #lock, &lock##_key, 0); \ 1284 } while (0) 1285 1286 /* Initialization of the transaction states lockdep maps. */ 1287 #define btrfs_state_lockdep_init_map(owner, lock, state) \ 1288 do { \ 1289 static struct lock_class_key lock##_key; \ 1290 lockdep_init_map(&owner->btrfs_state_change_map[state], #lock, \ 1291 &lock##_key, 0); \ 1292 } while (0) 1293 1294 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1295 { 1296 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1297 } 1298 1299 /* 1300 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1301 * code. For detail check comment in fs/btrfs/qgroup.c. 1302 */ 1303 struct btrfs_qgroup_swapped_blocks { 1304 spinlock_t lock; 1305 /* RM_EMPTY_ROOT() of above blocks[] */ 1306 bool swapped; 1307 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1308 }; 1309 1310 /* 1311 * in ram representation of the tree. extent_root is used for all allocations 1312 * and for the extent tree extent_root root. 1313 */ 1314 struct btrfs_root { 1315 struct rb_node rb_node; 1316 1317 struct extent_buffer *node; 1318 1319 struct extent_buffer *commit_root; 1320 struct btrfs_root *log_root; 1321 struct btrfs_root *reloc_root; 1322 1323 unsigned long state; 1324 struct btrfs_root_item root_item; 1325 struct btrfs_key root_key; 1326 struct btrfs_fs_info *fs_info; 1327 struct extent_io_tree dirty_log_pages; 1328 1329 struct mutex objectid_mutex; 1330 1331 spinlock_t accounting_lock; 1332 struct btrfs_block_rsv *block_rsv; 1333 1334 struct mutex log_mutex; 1335 wait_queue_head_t log_writer_wait; 1336 wait_queue_head_t log_commit_wait[2]; 1337 struct list_head log_ctxs[2]; 1338 /* Used only for log trees of subvolumes, not for the log root tree */ 1339 atomic_t log_writers; 1340 atomic_t log_commit[2]; 1341 /* Used only for log trees of subvolumes, not for the log root tree */ 1342 atomic_t log_batch; 1343 int log_transid; 1344 /* No matter the commit succeeds or not*/ 1345 int log_transid_committed; 1346 /* Just be updated when the commit succeeds. */ 1347 int last_log_commit; 1348 pid_t log_start_pid; 1349 1350 u64 last_trans; 1351 1352 u32 type; 1353 1354 u64 free_objectid; 1355 1356 struct btrfs_key defrag_progress; 1357 struct btrfs_key defrag_max; 1358 1359 /* The dirty list is only used by non-shareable roots */ 1360 struct list_head dirty_list; 1361 1362 struct list_head root_list; 1363 1364 spinlock_t log_extents_lock[2]; 1365 struct list_head logged_list[2]; 1366 1367 spinlock_t inode_lock; 1368 /* red-black tree that keeps track of in-memory inodes */ 1369 struct rb_root inode_tree; 1370 1371 /* 1372 * radix tree that keeps track of delayed nodes of every inode, 1373 * protected by inode_lock 1374 */ 1375 struct radix_tree_root delayed_nodes_tree; 1376 /* 1377 * right now this just gets used so that a root has its own devid 1378 * for stat. It may be used for more later 1379 */ 1380 dev_t anon_dev; 1381 1382 spinlock_t root_item_lock; 1383 refcount_t refs; 1384 1385 struct mutex delalloc_mutex; 1386 spinlock_t delalloc_lock; 1387 /* 1388 * all of the inodes that have delalloc bytes. It is possible for 1389 * this list to be empty even when there is still dirty data=ordered 1390 * extents waiting to finish IO. 1391 */ 1392 struct list_head delalloc_inodes; 1393 struct list_head delalloc_root; 1394 u64 nr_delalloc_inodes; 1395 1396 struct mutex ordered_extent_mutex; 1397 /* 1398 * this is used by the balancing code to wait for all the pending 1399 * ordered extents 1400 */ 1401 spinlock_t ordered_extent_lock; 1402 1403 /* 1404 * all of the data=ordered extents pending writeback 1405 * these can span multiple transactions and basically include 1406 * every dirty data page that isn't from nodatacow 1407 */ 1408 struct list_head ordered_extents; 1409 struct list_head ordered_root; 1410 u64 nr_ordered_extents; 1411 1412 /* 1413 * Not empty if this subvolume root has gone through tree block swap 1414 * (relocation) 1415 * 1416 * Will be used by reloc_control::dirty_subvol_roots. 1417 */ 1418 struct list_head reloc_dirty_list; 1419 1420 /* 1421 * Number of currently running SEND ioctls to prevent 1422 * manipulation with the read-only status via SUBVOL_SETFLAGS 1423 */ 1424 int send_in_progress; 1425 /* 1426 * Number of currently running deduplication operations that have a 1427 * destination inode belonging to this root. Protected by the lock 1428 * root_item_lock. 1429 */ 1430 int dedupe_in_progress; 1431 /* For exclusion of snapshot creation and nocow writes */ 1432 struct btrfs_drew_lock snapshot_lock; 1433 1434 atomic_t snapshot_force_cow; 1435 1436 /* For qgroup metadata reserved space */ 1437 spinlock_t qgroup_meta_rsv_lock; 1438 u64 qgroup_meta_rsv_pertrans; 1439 u64 qgroup_meta_rsv_prealloc; 1440 wait_queue_head_t qgroup_flush_wait; 1441 1442 /* Number of active swapfiles */ 1443 atomic_t nr_swapfiles; 1444 1445 /* Record pairs of swapped blocks for qgroup */ 1446 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1447 1448 /* Used only by log trees, when logging csum items */ 1449 struct extent_io_tree log_csum_range; 1450 1451 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1452 u64 alloc_bytenr; 1453 #endif 1454 1455 #ifdef CONFIG_BTRFS_DEBUG 1456 struct list_head leak_list; 1457 #endif 1458 }; 1459 1460 /* 1461 * Structure that conveys information about an extent that is going to replace 1462 * all the extents in a file range. 1463 */ 1464 struct btrfs_replace_extent_info { 1465 u64 disk_offset; 1466 u64 disk_len; 1467 u64 data_offset; 1468 u64 data_len; 1469 u64 file_offset; 1470 /* Pointer to a file extent item of type regular or prealloc. */ 1471 char *extent_buf; 1472 /* 1473 * Set to true when attempting to replace a file range with a new extent 1474 * described by this structure, set to false when attempting to clone an 1475 * existing extent into a file range. 1476 */ 1477 bool is_new_extent; 1478 /* Indicate if we should update the inode's mtime and ctime. */ 1479 bool update_times; 1480 /* Meaningful only if is_new_extent is true. */ 1481 int qgroup_reserved; 1482 /* 1483 * Meaningful only if is_new_extent is true. 1484 * Used to track how many extent items we have already inserted in a 1485 * subvolume tree that refer to the extent described by this structure, 1486 * so that we know when to create a new delayed ref or update an existing 1487 * one. 1488 */ 1489 int insertions; 1490 }; 1491 1492 /* Arguments for btrfs_drop_extents() */ 1493 struct btrfs_drop_extents_args { 1494 /* Input parameters */ 1495 1496 /* 1497 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1498 * If 'replace_extent' is true, this must not be NULL. Also the path 1499 * is always released except if 'replace_extent' is true and 1500 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1501 * the path is kept locked. 1502 */ 1503 struct btrfs_path *path; 1504 /* Start offset of the range to drop extents from */ 1505 u64 start; 1506 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1507 u64 end; 1508 /* If true drop all the extent maps in the range */ 1509 bool drop_cache; 1510 /* 1511 * If true it means we want to insert a new extent after dropping all 1512 * the extents in the range. If this is true, the 'extent_item_size' 1513 * parameter must be set as well and the 'extent_inserted' field will 1514 * be set to true by btrfs_drop_extents() if it could insert the new 1515 * extent. 1516 * Note: when this is set to true the path must not be NULL. 1517 */ 1518 bool replace_extent; 1519 /* 1520 * Used if 'replace_extent' is true. Size of the file extent item to 1521 * insert after dropping all existing extents in the range 1522 */ 1523 u32 extent_item_size; 1524 1525 /* Output parameters */ 1526 1527 /* 1528 * Set to the minimum between the input parameter 'end' and the end 1529 * (exclusive, last byte + 1) of the last dropped extent. This is always 1530 * set even if btrfs_drop_extents() returns an error. 1531 */ 1532 u64 drop_end; 1533 /* 1534 * The number of allocated bytes found in the range. This can be smaller 1535 * than the range's length when there are holes in the range. 1536 */ 1537 u64 bytes_found; 1538 /* 1539 * Only set if 'replace_extent' is true. Set to true if we were able 1540 * to insert a replacement extent after dropping all extents in the 1541 * range, otherwise set to false by btrfs_drop_extents(). 1542 * Also, if btrfs_drop_extents() has set this to true it means it 1543 * returned with the path locked, otherwise if it has set this to 1544 * false it has returned with the path released. 1545 */ 1546 bool extent_inserted; 1547 }; 1548 1549 struct btrfs_file_private { 1550 void *filldir_buf; 1551 }; 1552 1553 1554 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1555 { 1556 1557 return info->nodesize - sizeof(struct btrfs_header); 1558 } 1559 1560 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1561 1562 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1563 { 1564 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1565 } 1566 1567 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1568 { 1569 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1570 } 1571 1572 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1573 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1574 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1575 { 1576 return BTRFS_MAX_ITEM_SIZE(info) - 1577 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1578 } 1579 1580 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1581 { 1582 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1583 } 1584 1585 /* 1586 * Flags for mount options. 1587 * 1588 * Note: don't forget to add new options to btrfs_show_options() 1589 */ 1590 enum { 1591 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1592 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1593 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1594 BTRFS_MOUNT_SSD = (1UL << 3), 1595 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1596 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1597 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1598 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1599 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1600 BTRFS_MOUNT_NOSSD = (1UL << 9), 1601 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1602 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1603 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1604 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1605 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1606 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1607 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1608 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1609 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1610 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1611 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1612 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1613 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1614 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1615 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1616 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1617 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1618 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1619 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1620 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1621 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1622 }; 1623 1624 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1625 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1626 1627 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1628 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1629 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1630 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1631 BTRFS_MOUNT_##opt) 1632 1633 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1634 do { \ 1635 if (!btrfs_test_opt(fs_info, opt)) \ 1636 btrfs_info(fs_info, fmt, ##args); \ 1637 btrfs_set_opt(fs_info->mount_opt, opt); \ 1638 } while (0) 1639 1640 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1641 do { \ 1642 if (btrfs_test_opt(fs_info, opt)) \ 1643 btrfs_info(fs_info, fmt, ##args); \ 1644 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1645 } while (0) 1646 1647 /* 1648 * Requests for changes that need to be done during transaction commit. 1649 * 1650 * Internal mount options that are used for special handling of the real 1651 * mount options (eg. cannot be set during remount and have to be set during 1652 * transaction commit) 1653 */ 1654 1655 #define BTRFS_PENDING_COMMIT (0) 1656 1657 #define btrfs_test_pending(info, opt) \ 1658 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1659 #define btrfs_set_pending(info, opt) \ 1660 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1661 #define btrfs_clear_pending(info, opt) \ 1662 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1663 1664 /* 1665 * Helpers for setting pending mount option changes. 1666 * 1667 * Expects corresponding macros 1668 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1669 */ 1670 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1671 do { \ 1672 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1673 btrfs_info((info), fmt, ##args); \ 1674 btrfs_set_pending((info), SET_##opt); \ 1675 btrfs_clear_pending((info), CLEAR_##opt); \ 1676 } \ 1677 } while(0) 1678 1679 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1680 do { \ 1681 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1682 btrfs_info((info), fmt, ##args); \ 1683 btrfs_set_pending((info), CLEAR_##opt); \ 1684 btrfs_clear_pending((info), SET_##opt); \ 1685 } \ 1686 } while(0) 1687 1688 /* 1689 * Inode flags 1690 */ 1691 #define BTRFS_INODE_NODATASUM (1U << 0) 1692 #define BTRFS_INODE_NODATACOW (1U << 1) 1693 #define BTRFS_INODE_READONLY (1U << 2) 1694 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1695 #define BTRFS_INODE_PREALLOC (1U << 4) 1696 #define BTRFS_INODE_SYNC (1U << 5) 1697 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1698 #define BTRFS_INODE_APPEND (1U << 7) 1699 #define BTRFS_INODE_NODUMP (1U << 8) 1700 #define BTRFS_INODE_NOATIME (1U << 9) 1701 #define BTRFS_INODE_DIRSYNC (1U << 10) 1702 #define BTRFS_INODE_COMPRESS (1U << 11) 1703 1704 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1705 1706 #define BTRFS_INODE_FLAG_MASK \ 1707 (BTRFS_INODE_NODATASUM | \ 1708 BTRFS_INODE_NODATACOW | \ 1709 BTRFS_INODE_READONLY | \ 1710 BTRFS_INODE_NOCOMPRESS | \ 1711 BTRFS_INODE_PREALLOC | \ 1712 BTRFS_INODE_SYNC | \ 1713 BTRFS_INODE_IMMUTABLE | \ 1714 BTRFS_INODE_APPEND | \ 1715 BTRFS_INODE_NODUMP | \ 1716 BTRFS_INODE_NOATIME | \ 1717 BTRFS_INODE_DIRSYNC | \ 1718 BTRFS_INODE_COMPRESS | \ 1719 BTRFS_INODE_ROOT_ITEM_INIT) 1720 1721 #define BTRFS_INODE_RO_VERITY (1U << 0) 1722 1723 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1724 1725 struct btrfs_map_token { 1726 struct extent_buffer *eb; 1727 char *kaddr; 1728 unsigned long offset; 1729 }; 1730 1731 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1732 ((bytes) >> (fs_info)->sectorsize_bits) 1733 1734 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1735 struct extent_buffer *eb) 1736 { 1737 token->eb = eb; 1738 token->kaddr = page_address(eb->pages[0]); 1739 token->offset = 0; 1740 } 1741 1742 /* some macros to generate set/get functions for the struct fields. This 1743 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1744 * one for u8: 1745 */ 1746 #define le8_to_cpu(v) (v) 1747 #define cpu_to_le8(v) (v) 1748 #define __le8 u8 1749 1750 static inline u8 get_unaligned_le8(const void *p) 1751 { 1752 return *(u8 *)p; 1753 } 1754 1755 static inline void put_unaligned_le8(u8 val, void *p) 1756 { 1757 *(u8 *)p = val; 1758 } 1759 1760 #define read_eb_member(eb, ptr, type, member, result) (\ 1761 read_extent_buffer(eb, (char *)(result), \ 1762 ((unsigned long)(ptr)) + \ 1763 offsetof(type, member), \ 1764 sizeof(((type *)0)->member))) 1765 1766 #define write_eb_member(eb, ptr, type, member, result) (\ 1767 write_extent_buffer(eb, (char *)(result), \ 1768 ((unsigned long)(ptr)) + \ 1769 offsetof(type, member), \ 1770 sizeof(((type *)0)->member))) 1771 1772 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1773 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1774 const void *ptr, unsigned long off); \ 1775 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1776 const void *ptr, unsigned long off, \ 1777 u##bits val); \ 1778 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1779 const void *ptr, unsigned long off); \ 1780 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1781 unsigned long off, u##bits val); 1782 1783 DECLARE_BTRFS_SETGET_BITS(8) 1784 DECLARE_BTRFS_SETGET_BITS(16) 1785 DECLARE_BTRFS_SETGET_BITS(32) 1786 DECLARE_BTRFS_SETGET_BITS(64) 1787 1788 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1789 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1790 const type *s) \ 1791 { \ 1792 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1793 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1794 } \ 1795 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1796 u##bits val) \ 1797 { \ 1798 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1799 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1800 } \ 1801 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1802 const type *s) \ 1803 { \ 1804 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1805 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1806 } \ 1807 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1808 type *s, u##bits val) \ 1809 { \ 1810 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1811 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1812 } 1813 1814 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1815 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1816 { \ 1817 const type *p = page_address(eb->pages[0]) + \ 1818 offset_in_page(eb->start); \ 1819 return get_unaligned_le##bits(&p->member); \ 1820 } \ 1821 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1822 u##bits val) \ 1823 { \ 1824 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1825 put_unaligned_le##bits(val, &p->member); \ 1826 } 1827 1828 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1829 static inline u##bits btrfs_##name(const type *s) \ 1830 { \ 1831 return get_unaligned_le##bits(&s->member); \ 1832 } \ 1833 static inline void btrfs_set_##name(type *s, u##bits val) \ 1834 { \ 1835 put_unaligned_le##bits(val, &s->member); \ 1836 } 1837 1838 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1839 struct btrfs_dev_item *s) 1840 { 1841 static_assert(sizeof(u64) == 1842 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1843 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1844 total_bytes)); 1845 } 1846 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1847 struct btrfs_dev_item *s, 1848 u64 val) 1849 { 1850 static_assert(sizeof(u64) == 1851 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1852 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1853 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1854 } 1855 1856 1857 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1858 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1859 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1860 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1861 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1862 start_offset, 64); 1863 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1864 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1865 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1866 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1867 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1868 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1869 1870 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1871 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1872 total_bytes, 64); 1873 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1874 bytes_used, 64); 1875 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1876 io_align, 32); 1877 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1878 io_width, 32); 1879 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1880 sector_size, 32); 1881 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1882 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1883 dev_group, 32); 1884 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1885 seek_speed, 8); 1886 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1887 bandwidth, 8); 1888 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1889 generation, 64); 1890 1891 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1892 { 1893 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1894 } 1895 1896 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1897 { 1898 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1899 } 1900 1901 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1902 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1903 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1904 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1905 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1906 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1907 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1908 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1909 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1910 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1911 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1912 1913 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1914 { 1915 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1916 } 1917 1918 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1919 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1920 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1921 stripe_len, 64); 1922 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1923 io_align, 32); 1924 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1925 io_width, 32); 1926 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1927 sector_size, 32); 1928 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1929 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1930 num_stripes, 16); 1931 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1932 sub_stripes, 16); 1933 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1934 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1935 1936 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1937 int nr) 1938 { 1939 unsigned long offset = (unsigned long)c; 1940 offset += offsetof(struct btrfs_chunk, stripe); 1941 offset += nr * sizeof(struct btrfs_stripe); 1942 return (struct btrfs_stripe *)offset; 1943 } 1944 1945 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1946 { 1947 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1948 } 1949 1950 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1951 struct btrfs_chunk *c, int nr) 1952 { 1953 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1954 } 1955 1956 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1957 struct btrfs_chunk *c, int nr) 1958 { 1959 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1960 } 1961 1962 /* struct btrfs_block_group_item */ 1963 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1964 used, 64); 1965 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1966 used, 64); 1967 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1968 struct btrfs_block_group_item, chunk_objectid, 64); 1969 1970 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1971 struct btrfs_block_group_item, chunk_objectid, 64); 1972 BTRFS_SETGET_FUNCS(block_group_flags, 1973 struct btrfs_block_group_item, flags, 64); 1974 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1975 struct btrfs_block_group_item, flags, 64); 1976 1977 /* struct btrfs_free_space_info */ 1978 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1979 extent_count, 32); 1980 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1981 1982 /* struct btrfs_inode_ref */ 1983 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1984 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1985 1986 /* struct btrfs_inode_extref */ 1987 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1988 parent_objectid, 64); 1989 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1990 name_len, 16); 1991 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1992 1993 /* struct btrfs_inode_item */ 1994 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1995 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1996 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1997 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1998 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1999 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 2000 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 2001 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 2002 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 2003 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 2004 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 2005 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 2006 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 2007 generation, 64); 2008 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 2009 sequence, 64); 2010 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 2011 transid, 64); 2012 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 2013 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 2014 nbytes, 64); 2015 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 2016 block_group, 64); 2017 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 2018 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 2019 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 2020 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 2021 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 2022 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 2023 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 2024 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 2025 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 2026 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 2027 2028 /* struct btrfs_dev_extent */ 2029 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 2030 chunk_tree, 64); 2031 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 2032 chunk_objectid, 64); 2033 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 2034 chunk_offset, 64); 2035 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 2036 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 2037 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 2038 generation, 64); 2039 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 2040 2041 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 2042 2043 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 2044 struct btrfs_tree_block_info *item, 2045 struct btrfs_disk_key *key) 2046 { 2047 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2048 } 2049 2050 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 2051 struct btrfs_tree_block_info *item, 2052 struct btrfs_disk_key *key) 2053 { 2054 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2055 } 2056 2057 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 2058 root, 64); 2059 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 2060 objectid, 64); 2061 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 2062 offset, 64); 2063 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 2064 count, 32); 2065 2066 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 2067 count, 32); 2068 2069 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 2070 type, 8); 2071 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 2072 offset, 64); 2073 2074 static inline u32 btrfs_extent_inline_ref_size(int type) 2075 { 2076 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2077 type == BTRFS_SHARED_BLOCK_REF_KEY) 2078 return sizeof(struct btrfs_extent_inline_ref); 2079 if (type == BTRFS_SHARED_DATA_REF_KEY) 2080 return sizeof(struct btrfs_shared_data_ref) + 2081 sizeof(struct btrfs_extent_inline_ref); 2082 if (type == BTRFS_EXTENT_DATA_REF_KEY) 2083 return sizeof(struct btrfs_extent_data_ref) + 2084 offsetof(struct btrfs_extent_inline_ref, offset); 2085 return 0; 2086 } 2087 2088 /* struct btrfs_node */ 2089 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 2090 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 2091 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 2092 blockptr, 64); 2093 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 2094 generation, 64); 2095 2096 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 2097 { 2098 unsigned long ptr; 2099 ptr = offsetof(struct btrfs_node, ptrs) + 2100 sizeof(struct btrfs_key_ptr) * nr; 2101 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 2102 } 2103 2104 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 2105 int nr, u64 val) 2106 { 2107 unsigned long ptr; 2108 ptr = offsetof(struct btrfs_node, ptrs) + 2109 sizeof(struct btrfs_key_ptr) * nr; 2110 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 2111 } 2112 2113 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 2114 { 2115 unsigned long ptr; 2116 ptr = offsetof(struct btrfs_node, ptrs) + 2117 sizeof(struct btrfs_key_ptr) * nr; 2118 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2119 } 2120 2121 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 2122 int nr, u64 val) 2123 { 2124 unsigned long ptr; 2125 ptr = offsetof(struct btrfs_node, ptrs) + 2126 sizeof(struct btrfs_key_ptr) * nr; 2127 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2128 } 2129 2130 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2131 { 2132 return offsetof(struct btrfs_node, ptrs) + 2133 sizeof(struct btrfs_key_ptr) * nr; 2134 } 2135 2136 void btrfs_node_key(const struct extent_buffer *eb, 2137 struct btrfs_disk_key *disk_key, int nr); 2138 2139 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 2140 struct btrfs_disk_key *disk_key, int nr) 2141 { 2142 unsigned long ptr; 2143 ptr = btrfs_node_key_ptr_offset(nr); 2144 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2145 struct btrfs_key_ptr, key, disk_key); 2146 } 2147 2148 /* struct btrfs_item */ 2149 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2150 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2151 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2152 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2153 2154 static inline unsigned long btrfs_item_nr_offset(int nr) 2155 { 2156 return offsetof(struct btrfs_leaf, items) + 2157 sizeof(struct btrfs_item) * nr; 2158 } 2159 2160 static inline struct btrfs_item *btrfs_item_nr(int nr) 2161 { 2162 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2163 } 2164 2165 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2166 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2167 int slot) \ 2168 { \ 2169 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2170 } \ 2171 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2172 int slot, u32 val) \ 2173 { \ 2174 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2175 } \ 2176 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2177 int slot) \ 2178 { \ 2179 struct btrfs_item *item = btrfs_item_nr(slot); \ 2180 return btrfs_token_raw_item_##member(token, item); \ 2181 } \ 2182 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2183 int slot, u32 val) \ 2184 { \ 2185 struct btrfs_item *item = btrfs_item_nr(slot); \ 2186 btrfs_set_token_raw_item_##member(token, item, val); \ 2187 } 2188 2189 BTRFS_ITEM_SETGET_FUNCS(offset) 2190 BTRFS_ITEM_SETGET_FUNCS(size); 2191 2192 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2193 { 2194 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2195 } 2196 2197 static inline void btrfs_item_key(const struct extent_buffer *eb, 2198 struct btrfs_disk_key *disk_key, int nr) 2199 { 2200 struct btrfs_item *item = btrfs_item_nr(nr); 2201 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2202 } 2203 2204 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2205 struct btrfs_disk_key *disk_key, int nr) 2206 { 2207 struct btrfs_item *item = btrfs_item_nr(nr); 2208 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2209 } 2210 2211 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2212 2213 /* 2214 * struct btrfs_root_ref 2215 */ 2216 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2217 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2218 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2219 2220 /* struct btrfs_dir_item */ 2221 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2222 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2223 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2224 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2225 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2226 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2227 data_len, 16); 2228 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2229 name_len, 16); 2230 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2231 transid, 64); 2232 2233 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2234 const struct btrfs_dir_item *item, 2235 struct btrfs_disk_key *key) 2236 { 2237 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2238 } 2239 2240 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2241 struct btrfs_dir_item *item, 2242 const struct btrfs_disk_key *key) 2243 { 2244 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2245 } 2246 2247 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2248 num_entries, 64); 2249 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2250 num_bitmaps, 64); 2251 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2252 generation, 64); 2253 2254 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2255 const struct btrfs_free_space_header *h, 2256 struct btrfs_disk_key *key) 2257 { 2258 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2259 } 2260 2261 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2262 struct btrfs_free_space_header *h, 2263 const struct btrfs_disk_key *key) 2264 { 2265 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2266 } 2267 2268 /* struct btrfs_disk_key */ 2269 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2270 objectid, 64); 2271 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2272 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2273 2274 #ifdef __LITTLE_ENDIAN 2275 2276 /* 2277 * Optimized helpers for little-endian architectures where CPU and on-disk 2278 * structures have the same endianness and we can skip conversions. 2279 */ 2280 2281 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2282 const struct btrfs_disk_key *disk_key) 2283 { 2284 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2285 } 2286 2287 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2288 const struct btrfs_key *cpu_key) 2289 { 2290 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2291 } 2292 2293 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2294 struct btrfs_key *cpu_key, int nr) 2295 { 2296 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2297 2298 btrfs_node_key(eb, disk_key, nr); 2299 } 2300 2301 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2302 struct btrfs_key *cpu_key, int nr) 2303 { 2304 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2305 2306 btrfs_item_key(eb, disk_key, nr); 2307 } 2308 2309 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2310 const struct btrfs_dir_item *item, 2311 struct btrfs_key *cpu_key) 2312 { 2313 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2314 2315 btrfs_dir_item_key(eb, item, disk_key); 2316 } 2317 2318 #else 2319 2320 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2321 const struct btrfs_disk_key *disk) 2322 { 2323 cpu->offset = le64_to_cpu(disk->offset); 2324 cpu->type = disk->type; 2325 cpu->objectid = le64_to_cpu(disk->objectid); 2326 } 2327 2328 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2329 const struct btrfs_key *cpu) 2330 { 2331 disk->offset = cpu_to_le64(cpu->offset); 2332 disk->type = cpu->type; 2333 disk->objectid = cpu_to_le64(cpu->objectid); 2334 } 2335 2336 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2337 struct btrfs_key *key, int nr) 2338 { 2339 struct btrfs_disk_key disk_key; 2340 btrfs_node_key(eb, &disk_key, nr); 2341 btrfs_disk_key_to_cpu(key, &disk_key); 2342 } 2343 2344 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2345 struct btrfs_key *key, int nr) 2346 { 2347 struct btrfs_disk_key disk_key; 2348 btrfs_item_key(eb, &disk_key, nr); 2349 btrfs_disk_key_to_cpu(key, &disk_key); 2350 } 2351 2352 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2353 const struct btrfs_dir_item *item, 2354 struct btrfs_key *key) 2355 { 2356 struct btrfs_disk_key disk_key; 2357 btrfs_dir_item_key(eb, item, &disk_key); 2358 btrfs_disk_key_to_cpu(key, &disk_key); 2359 } 2360 2361 #endif 2362 2363 /* struct btrfs_header */ 2364 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2365 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2366 generation, 64); 2367 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2368 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2369 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2370 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2371 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2372 generation, 64); 2373 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2374 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2375 nritems, 32); 2376 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2377 2378 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2379 { 2380 return (btrfs_header_flags(eb) & flag) == flag; 2381 } 2382 2383 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2384 { 2385 u64 flags = btrfs_header_flags(eb); 2386 btrfs_set_header_flags(eb, flags | flag); 2387 } 2388 2389 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2390 { 2391 u64 flags = btrfs_header_flags(eb); 2392 btrfs_set_header_flags(eb, flags & ~flag); 2393 } 2394 2395 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2396 { 2397 u64 flags = btrfs_header_flags(eb); 2398 return flags >> BTRFS_BACKREF_REV_SHIFT; 2399 } 2400 2401 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2402 int rev) 2403 { 2404 u64 flags = btrfs_header_flags(eb); 2405 flags &= ~BTRFS_BACKREF_REV_MASK; 2406 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2407 btrfs_set_header_flags(eb, flags); 2408 } 2409 2410 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2411 { 2412 return btrfs_header_level(eb) == 0; 2413 } 2414 2415 /* struct btrfs_root_item */ 2416 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2417 generation, 64); 2418 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2419 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2420 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2421 2422 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2423 generation, 64); 2424 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2425 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2426 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2427 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2428 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2429 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2430 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2431 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2432 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2433 last_snapshot, 64); 2434 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2435 generation_v2, 64); 2436 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2437 ctransid, 64); 2438 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2439 otransid, 64); 2440 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2441 stransid, 64); 2442 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2443 rtransid, 64); 2444 2445 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2446 { 2447 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2448 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2449 } 2450 2451 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2452 { 2453 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2454 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2455 } 2456 2457 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2458 { 2459 return root->root_key.objectid; 2460 } 2461 2462 /* struct btrfs_root_backup */ 2463 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2464 tree_root, 64); 2465 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2466 tree_root_gen, 64); 2467 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2468 tree_root_level, 8); 2469 2470 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2471 chunk_root, 64); 2472 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2473 chunk_root_gen, 64); 2474 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2475 chunk_root_level, 8); 2476 2477 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2478 extent_root, 64); 2479 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2480 extent_root_gen, 64); 2481 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2482 extent_root_level, 8); 2483 2484 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2485 fs_root, 64); 2486 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2487 fs_root_gen, 64); 2488 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2489 fs_root_level, 8); 2490 2491 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2492 dev_root, 64); 2493 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2494 dev_root_gen, 64); 2495 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2496 dev_root_level, 8); 2497 2498 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2499 csum_root, 64); 2500 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2501 csum_root_gen, 64); 2502 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2503 csum_root_level, 8); 2504 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2505 total_bytes, 64); 2506 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2507 bytes_used, 64); 2508 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2509 num_devices, 64); 2510 2511 /* struct btrfs_balance_item */ 2512 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2513 2514 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2515 const struct btrfs_balance_item *bi, 2516 struct btrfs_disk_balance_args *ba) 2517 { 2518 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2519 } 2520 2521 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2522 struct btrfs_balance_item *bi, 2523 const struct btrfs_disk_balance_args *ba) 2524 { 2525 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2526 } 2527 2528 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2529 const struct btrfs_balance_item *bi, 2530 struct btrfs_disk_balance_args *ba) 2531 { 2532 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2533 } 2534 2535 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2536 struct btrfs_balance_item *bi, 2537 const struct btrfs_disk_balance_args *ba) 2538 { 2539 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2540 } 2541 2542 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2543 const struct btrfs_balance_item *bi, 2544 struct btrfs_disk_balance_args *ba) 2545 { 2546 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2547 } 2548 2549 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2550 struct btrfs_balance_item *bi, 2551 const struct btrfs_disk_balance_args *ba) 2552 { 2553 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2554 } 2555 2556 static inline void 2557 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2558 const struct btrfs_disk_balance_args *disk) 2559 { 2560 memset(cpu, 0, sizeof(*cpu)); 2561 2562 cpu->profiles = le64_to_cpu(disk->profiles); 2563 cpu->usage = le64_to_cpu(disk->usage); 2564 cpu->devid = le64_to_cpu(disk->devid); 2565 cpu->pstart = le64_to_cpu(disk->pstart); 2566 cpu->pend = le64_to_cpu(disk->pend); 2567 cpu->vstart = le64_to_cpu(disk->vstart); 2568 cpu->vend = le64_to_cpu(disk->vend); 2569 cpu->target = le64_to_cpu(disk->target); 2570 cpu->flags = le64_to_cpu(disk->flags); 2571 cpu->limit = le64_to_cpu(disk->limit); 2572 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2573 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2574 } 2575 2576 static inline void 2577 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2578 const struct btrfs_balance_args *cpu) 2579 { 2580 memset(disk, 0, sizeof(*disk)); 2581 2582 disk->profiles = cpu_to_le64(cpu->profiles); 2583 disk->usage = cpu_to_le64(cpu->usage); 2584 disk->devid = cpu_to_le64(cpu->devid); 2585 disk->pstart = cpu_to_le64(cpu->pstart); 2586 disk->pend = cpu_to_le64(cpu->pend); 2587 disk->vstart = cpu_to_le64(cpu->vstart); 2588 disk->vend = cpu_to_le64(cpu->vend); 2589 disk->target = cpu_to_le64(cpu->target); 2590 disk->flags = cpu_to_le64(cpu->flags); 2591 disk->limit = cpu_to_le64(cpu->limit); 2592 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2593 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2594 } 2595 2596 /* struct btrfs_super_block */ 2597 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2598 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2599 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2600 generation, 64); 2601 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2602 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2603 struct btrfs_super_block, sys_chunk_array_size, 32); 2604 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2605 struct btrfs_super_block, chunk_root_generation, 64); 2606 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2607 root_level, 8); 2608 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2609 chunk_root, 64); 2610 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2611 chunk_root_level, 8); 2612 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2613 log_root, 64); 2614 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2615 log_root_level, 8); 2616 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2617 total_bytes, 64); 2618 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2619 bytes_used, 64); 2620 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2621 sectorsize, 32); 2622 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2623 nodesize, 32); 2624 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2625 stripesize, 32); 2626 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2627 root_dir_objectid, 64); 2628 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2629 num_devices, 64); 2630 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2631 compat_flags, 64); 2632 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2633 compat_ro_flags, 64); 2634 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2635 incompat_flags, 64); 2636 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2637 csum_type, 16); 2638 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2639 cache_generation, 64); 2640 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2641 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2642 uuid_tree_generation, 64); 2643 2644 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2645 const char *btrfs_super_csum_name(u16 csum_type); 2646 const char *btrfs_super_csum_driver(u16 csum_type); 2647 size_t __attribute_const__ btrfs_get_num_csums(void); 2648 2649 2650 /* 2651 * The leaf data grows from end-to-front in the node. 2652 * this returns the address of the start of the last item, 2653 * which is the stop of the leaf data stack 2654 */ 2655 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2656 { 2657 u32 nr = btrfs_header_nritems(leaf); 2658 2659 if (nr == 0) 2660 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2661 return btrfs_item_offset(leaf, nr - 1); 2662 } 2663 2664 /* struct btrfs_file_extent_item */ 2665 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2666 type, 8); 2667 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2668 struct btrfs_file_extent_item, disk_bytenr, 64); 2669 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2670 struct btrfs_file_extent_item, offset, 64); 2671 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2672 struct btrfs_file_extent_item, generation, 64); 2673 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2674 struct btrfs_file_extent_item, num_bytes, 64); 2675 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2676 struct btrfs_file_extent_item, ram_bytes, 64); 2677 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2678 struct btrfs_file_extent_item, disk_num_bytes, 64); 2679 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2680 struct btrfs_file_extent_item, compression, 8); 2681 2682 static inline unsigned long 2683 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2684 { 2685 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2686 } 2687 2688 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2689 { 2690 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2691 } 2692 2693 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2694 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2695 disk_bytenr, 64); 2696 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2697 generation, 64); 2698 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2699 disk_num_bytes, 64); 2700 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2701 offset, 64); 2702 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2703 num_bytes, 64); 2704 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2705 ram_bytes, 64); 2706 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2707 compression, 8); 2708 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2709 encryption, 8); 2710 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2711 other_encoding, 16); 2712 2713 /* 2714 * this returns the number of bytes used by the item on disk, minus the 2715 * size of any extent headers. If a file is compressed on disk, this is 2716 * the compressed size 2717 */ 2718 static inline u32 btrfs_file_extent_inline_item_len( 2719 const struct extent_buffer *eb, 2720 int nr) 2721 { 2722 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2723 } 2724 2725 /* btrfs_qgroup_status_item */ 2726 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2727 generation, 64); 2728 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2729 version, 64); 2730 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2731 flags, 64); 2732 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2733 rescan, 64); 2734 2735 /* btrfs_qgroup_info_item */ 2736 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2737 generation, 64); 2738 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2739 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2740 rfer_cmpr, 64); 2741 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2742 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2743 excl_cmpr, 64); 2744 2745 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2746 struct btrfs_qgroup_info_item, generation, 64); 2747 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2748 rfer, 64); 2749 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2750 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2751 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2752 excl, 64); 2753 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2754 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2755 2756 /* btrfs_qgroup_limit_item */ 2757 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2758 flags, 64); 2759 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2760 max_rfer, 64); 2761 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2762 max_excl, 64); 2763 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2764 rsv_rfer, 64); 2765 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2766 rsv_excl, 64); 2767 2768 /* btrfs_dev_replace_item */ 2769 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2770 struct btrfs_dev_replace_item, src_devid, 64); 2771 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2772 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2773 64); 2774 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2775 replace_state, 64); 2776 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2777 time_started, 64); 2778 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2779 time_stopped, 64); 2780 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2781 num_write_errors, 64); 2782 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2783 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2784 64); 2785 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2786 cursor_left, 64); 2787 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2788 cursor_right, 64); 2789 2790 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2791 struct btrfs_dev_replace_item, src_devid, 64); 2792 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2793 struct btrfs_dev_replace_item, 2794 cont_reading_from_srcdev_mode, 64); 2795 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2796 struct btrfs_dev_replace_item, replace_state, 64); 2797 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2798 struct btrfs_dev_replace_item, time_started, 64); 2799 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2800 struct btrfs_dev_replace_item, time_stopped, 64); 2801 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2802 struct btrfs_dev_replace_item, num_write_errors, 64); 2803 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2804 struct btrfs_dev_replace_item, 2805 num_uncorrectable_read_errors, 64); 2806 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2807 struct btrfs_dev_replace_item, cursor_left, 64); 2808 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2809 struct btrfs_dev_replace_item, cursor_right, 64); 2810 2811 /* helper function to cast into the data area of the leaf. */ 2812 #define btrfs_item_ptr(leaf, slot, type) \ 2813 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2814 btrfs_item_offset(leaf, slot))) 2815 2816 #define btrfs_item_ptr_offset(leaf, slot) \ 2817 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2818 btrfs_item_offset(leaf, slot))) 2819 2820 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2821 { 2822 return crc32c(crc, address, length); 2823 } 2824 2825 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2826 { 2827 put_unaligned_le32(~crc, result); 2828 } 2829 2830 static inline u64 btrfs_name_hash(const char *name, int len) 2831 { 2832 return crc32c((u32)~1, name, len); 2833 } 2834 2835 /* 2836 * Figure the key offset of an extended inode ref 2837 */ 2838 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2839 int len) 2840 { 2841 return (u64) crc32c(parent_objectid, name, len); 2842 } 2843 2844 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2845 { 2846 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2847 } 2848 2849 /* extent-tree.c */ 2850 2851 enum btrfs_inline_ref_type { 2852 BTRFS_REF_TYPE_INVALID, 2853 BTRFS_REF_TYPE_BLOCK, 2854 BTRFS_REF_TYPE_DATA, 2855 BTRFS_REF_TYPE_ANY, 2856 }; 2857 2858 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2859 struct btrfs_extent_inline_ref *iref, 2860 enum btrfs_inline_ref_type is_data); 2861 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2862 2863 2864 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2865 u64 start, u64 num_bytes); 2866 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2867 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2868 unsigned long count); 2869 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2870 struct btrfs_delayed_ref_root *delayed_refs, 2871 struct btrfs_delayed_ref_head *head); 2872 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2873 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2874 struct btrfs_fs_info *fs_info, u64 bytenr, 2875 u64 offset, int metadata, u64 *refs, u64 *flags); 2876 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2877 int reserved); 2878 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2879 u64 bytenr, u64 num_bytes); 2880 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2881 int btrfs_cross_ref_exist(struct btrfs_root *root, 2882 u64 objectid, u64 offset, u64 bytenr, bool strict, 2883 struct btrfs_path *path); 2884 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 u64 parent, u64 root_objectid, 2887 const struct btrfs_disk_key *key, 2888 int level, u64 hint, 2889 u64 empty_size, 2890 enum btrfs_lock_nesting nest); 2891 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2892 u64 root_id, 2893 struct extent_buffer *buf, 2894 u64 parent, int last_ref); 2895 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2896 struct btrfs_root *root, u64 owner, 2897 u64 offset, u64 ram_bytes, 2898 struct btrfs_key *ins); 2899 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2900 u64 root_objectid, u64 owner, u64 offset, 2901 struct btrfs_key *ins); 2902 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2903 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2904 struct btrfs_key *ins, int is_data, int delalloc); 2905 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2906 struct extent_buffer *buf, int full_backref); 2907 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2908 struct extent_buffer *buf, int full_backref); 2909 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2910 struct extent_buffer *eb, u64 flags, int level); 2911 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2912 2913 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2914 u64 start, u64 len, int delalloc); 2915 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2916 u64 len); 2917 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2918 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2919 struct btrfs_ref *generic_ref); 2920 2921 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2922 2923 /* 2924 * Different levels for to flush space when doing space reservations. 2925 * 2926 * The higher the level, the more methods we try to reclaim space. 2927 */ 2928 enum btrfs_reserve_flush_enum { 2929 /* If we are in the transaction, we can't flush anything.*/ 2930 BTRFS_RESERVE_NO_FLUSH, 2931 2932 /* 2933 * Flush space by: 2934 * - Running delayed inode items 2935 * - Allocating a new chunk 2936 */ 2937 BTRFS_RESERVE_FLUSH_LIMIT, 2938 2939 /* 2940 * Flush space by: 2941 * - Running delayed inode items 2942 * - Running delayed refs 2943 * - Running delalloc and waiting for ordered extents 2944 * - Allocating a new chunk 2945 */ 2946 BTRFS_RESERVE_FLUSH_EVICT, 2947 2948 /* 2949 * Flush space by above mentioned methods and by: 2950 * - Running delayed iputs 2951 * - Committing transaction 2952 * 2953 * Can be interrupted by a fatal signal. 2954 */ 2955 BTRFS_RESERVE_FLUSH_DATA, 2956 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2957 BTRFS_RESERVE_FLUSH_ALL, 2958 2959 /* 2960 * Pretty much the same as FLUSH_ALL, but can also steal space from 2961 * global rsv. 2962 * 2963 * Can be interrupted by a fatal signal. 2964 */ 2965 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2966 }; 2967 2968 enum btrfs_flush_state { 2969 FLUSH_DELAYED_ITEMS_NR = 1, 2970 FLUSH_DELAYED_ITEMS = 2, 2971 FLUSH_DELAYED_REFS_NR = 3, 2972 FLUSH_DELAYED_REFS = 4, 2973 FLUSH_DELALLOC = 5, 2974 FLUSH_DELALLOC_WAIT = 6, 2975 FLUSH_DELALLOC_FULL = 7, 2976 ALLOC_CHUNK = 8, 2977 ALLOC_CHUNK_FORCE = 9, 2978 RUN_DELAYED_IPUTS = 10, 2979 COMMIT_TRANS = 11, 2980 }; 2981 2982 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2983 struct btrfs_block_rsv *rsv, 2984 int nitems, bool use_global_rsv); 2985 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2986 struct btrfs_block_rsv *rsv); 2987 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2988 2989 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2990 u64 disk_num_bytes, bool noflush); 2991 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2992 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2993 u64 start, u64 end); 2994 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2995 u64 num_bytes, u64 *actual_bytes); 2996 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2997 2998 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2999 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 3000 struct btrfs_fs_info *fs_info); 3001 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 3002 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 3003 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 3004 3005 /* ctree.c */ 3006 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 3007 int *slot); 3008 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 3009 int btrfs_previous_item(struct btrfs_root *root, 3010 struct btrfs_path *path, u64 min_objectid, 3011 int type); 3012 int btrfs_previous_extent_item(struct btrfs_root *root, 3013 struct btrfs_path *path, u64 min_objectid); 3014 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3015 struct btrfs_path *path, 3016 const struct btrfs_key *new_key); 3017 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 3018 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3019 struct btrfs_key *key, int lowest_level, 3020 u64 min_trans); 3021 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3022 struct btrfs_path *path, 3023 u64 min_trans); 3024 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 3025 int slot); 3026 3027 int btrfs_cow_block(struct btrfs_trans_handle *trans, 3028 struct btrfs_root *root, struct extent_buffer *buf, 3029 struct extent_buffer *parent, int parent_slot, 3030 struct extent_buffer **cow_ret, 3031 enum btrfs_lock_nesting nest); 3032 int btrfs_copy_root(struct btrfs_trans_handle *trans, 3033 struct btrfs_root *root, 3034 struct extent_buffer *buf, 3035 struct extent_buffer **cow_ret, u64 new_root_objectid); 3036 int btrfs_block_can_be_shared(struct btrfs_root *root, 3037 struct extent_buffer *buf); 3038 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 3039 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 3040 int btrfs_split_item(struct btrfs_trans_handle *trans, 3041 struct btrfs_root *root, 3042 struct btrfs_path *path, 3043 const struct btrfs_key *new_key, 3044 unsigned long split_offset); 3045 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3046 struct btrfs_root *root, 3047 struct btrfs_path *path, 3048 const struct btrfs_key *new_key); 3049 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 3050 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 3051 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3052 const struct btrfs_key *key, struct btrfs_path *p, 3053 int ins_len, int cow); 3054 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 3055 struct btrfs_path *p, u64 time_seq); 3056 int btrfs_search_slot_for_read(struct btrfs_root *root, 3057 const struct btrfs_key *key, 3058 struct btrfs_path *p, int find_higher, 3059 int return_any); 3060 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root, struct extent_buffer *parent, 3062 int start_slot, u64 *last_ret, 3063 struct btrfs_key *progress); 3064 void btrfs_release_path(struct btrfs_path *p); 3065 struct btrfs_path *btrfs_alloc_path(void); 3066 void btrfs_free_path(struct btrfs_path *p); 3067 3068 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3069 struct btrfs_path *path, int slot, int nr); 3070 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3071 struct btrfs_root *root, 3072 struct btrfs_path *path) 3073 { 3074 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3075 } 3076 3077 /* 3078 * Describes a batch of items to insert in a btree. This is used by 3079 * btrfs_insert_empty_items(). 3080 */ 3081 struct btrfs_item_batch { 3082 /* 3083 * Pointer to an array containing the keys of the items to insert (in 3084 * sorted order). 3085 */ 3086 const struct btrfs_key *keys; 3087 /* Pointer to an array containing the data size for each item to insert. */ 3088 const u32 *data_sizes; 3089 /* 3090 * The sum of data sizes for all items. The caller can compute this while 3091 * setting up the data_sizes array, so it ends up being more efficient 3092 * than having btrfs_insert_empty_items() or setup_item_for_insert() 3093 * doing it, as it would avoid an extra loop over a potentially large 3094 * array, and in the case of setup_item_for_insert(), we would be doing 3095 * it while holding a write lock on a leaf and often on upper level nodes 3096 * too, unnecessarily increasing the size of a critical section. 3097 */ 3098 u32 total_data_size; 3099 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3100 int nr; 3101 }; 3102 3103 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3104 struct btrfs_path *path, 3105 const struct btrfs_key *key, 3106 u32 data_size); 3107 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3108 const struct btrfs_key *key, void *data, u32 data_size); 3109 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3110 struct btrfs_root *root, 3111 struct btrfs_path *path, 3112 const struct btrfs_item_batch *batch); 3113 3114 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3115 struct btrfs_root *root, 3116 struct btrfs_path *path, 3117 const struct btrfs_key *key, 3118 u32 data_size) 3119 { 3120 struct btrfs_item_batch batch; 3121 3122 batch.keys = key; 3123 batch.data_sizes = &data_size; 3124 batch.total_data_size = data_size; 3125 batch.nr = 1; 3126 3127 return btrfs_insert_empty_items(trans, root, path, &batch); 3128 } 3129 3130 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3131 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3132 u64 time_seq); 3133 3134 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3135 struct btrfs_path *path); 3136 3137 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3138 struct btrfs_path *path); 3139 3140 /* 3141 * Search in @root for a given @key, and store the slot found in @found_key. 3142 * 3143 * @root: The root node of the tree. 3144 * @key: The key we are looking for. 3145 * @found_key: Will hold the found item. 3146 * @path: Holds the current slot/leaf. 3147 * @iter_ret: Contains the value returned from btrfs_search_slot or 3148 * btrfs_get_next_valid_item, whichever was executed last. 3149 * 3150 * The @iter_ret is an output variable that will contain the return value of 3151 * btrfs_search_slot, if it encountered an error, or the value returned from 3152 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3153 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3154 * 3155 * It's recommended to use a separate variable for iter_ret and then use it to 3156 * set the function return value so there's no confusion of the 0/1/errno 3157 * values stemming from btrfs_search_slot. 3158 */ 3159 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3160 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3161 (iter_ret) >= 0 && \ 3162 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3163 (path)->slots[0]++ \ 3164 ) 3165 3166 static inline int btrfs_next_old_item(struct btrfs_root *root, 3167 struct btrfs_path *p, u64 time_seq) 3168 { 3169 ++p->slots[0]; 3170 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3171 return btrfs_next_old_leaf(root, p, time_seq); 3172 return 0; 3173 } 3174 3175 /* 3176 * Search the tree again to find a leaf with greater keys. 3177 * 3178 * Returns 0 if it found something or 1 if there are no greater leaves. 3179 * Returns < 0 on error. 3180 */ 3181 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3182 { 3183 return btrfs_next_old_leaf(root, path, 0); 3184 } 3185 3186 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3187 { 3188 return btrfs_next_old_item(root, p, 0); 3189 } 3190 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3191 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3192 int for_reloc); 3193 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3194 struct btrfs_root *root, 3195 struct extent_buffer *node, 3196 struct extent_buffer *parent); 3197 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3198 { 3199 /* 3200 * Do it this way so we only ever do one test_bit in the normal case. 3201 */ 3202 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3203 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3204 return 2; 3205 return 1; 3206 } 3207 return 0; 3208 } 3209 3210 /* 3211 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3212 * anything except sleeping. This function is used to check the status of 3213 * the fs. 3214 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3215 * since setting and checking for SB_RDONLY in the superblock's flags is not 3216 * atomic. 3217 */ 3218 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3219 { 3220 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3221 btrfs_fs_closing(fs_info); 3222 } 3223 3224 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3225 { 3226 sb->s_flags |= SB_RDONLY; 3227 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3228 } 3229 3230 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3231 { 3232 sb->s_flags &= ~SB_RDONLY; 3233 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3234 } 3235 3236 /* root-item.c */ 3237 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3238 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3239 int name_len); 3240 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3241 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3242 int name_len); 3243 int btrfs_del_root(struct btrfs_trans_handle *trans, 3244 const struct btrfs_key *key); 3245 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3246 const struct btrfs_key *key, 3247 struct btrfs_root_item *item); 3248 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3249 struct btrfs_root *root, 3250 struct btrfs_key *key, 3251 struct btrfs_root_item *item); 3252 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3253 struct btrfs_path *path, struct btrfs_root_item *root_item, 3254 struct btrfs_key *root_key); 3255 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3256 void btrfs_set_root_node(struct btrfs_root_item *item, 3257 struct extent_buffer *node); 3258 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3259 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3260 struct btrfs_root *root); 3261 3262 /* uuid-tree.c */ 3263 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3264 u64 subid); 3265 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3266 u64 subid); 3267 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3268 3269 /* dir-item.c */ 3270 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3271 const char *name, int name_len); 3272 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3273 int name_len, struct btrfs_inode *dir, 3274 struct btrfs_key *location, u8 type, u64 index); 3275 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3276 struct btrfs_root *root, 3277 struct btrfs_path *path, u64 dir, 3278 const char *name, int name_len, 3279 int mod); 3280 struct btrfs_dir_item * 3281 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3282 struct btrfs_root *root, 3283 struct btrfs_path *path, u64 dir, 3284 u64 index, const char *name, int name_len, 3285 int mod); 3286 struct btrfs_dir_item * 3287 btrfs_search_dir_index_item(struct btrfs_root *root, 3288 struct btrfs_path *path, u64 dirid, 3289 const char *name, int name_len); 3290 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3291 struct btrfs_root *root, 3292 struct btrfs_path *path, 3293 struct btrfs_dir_item *di); 3294 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3295 struct btrfs_root *root, 3296 struct btrfs_path *path, u64 objectid, 3297 const char *name, u16 name_len, 3298 const void *data, u16 data_len); 3299 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3300 struct btrfs_root *root, 3301 struct btrfs_path *path, u64 dir, 3302 const char *name, u16 name_len, 3303 int mod); 3304 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3305 struct btrfs_path *path, 3306 const char *name, 3307 int name_len); 3308 3309 /* orphan.c */ 3310 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3311 struct btrfs_root *root, u64 offset); 3312 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3313 struct btrfs_root *root, u64 offset); 3314 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3315 3316 /* file-item.c */ 3317 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3318 struct btrfs_root *root, u64 bytenr, u64 len); 3319 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3320 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans, 3321 struct btrfs_root *root, u64 objectid, u64 pos, 3322 u64 num_bytes); 3323 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3324 struct btrfs_root *root, 3325 struct btrfs_path *path, u64 objectid, 3326 u64 bytenr, int mod); 3327 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3328 struct btrfs_root *root, 3329 struct btrfs_ordered_sum *sums); 3330 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3331 u64 offset, bool one_ordered); 3332 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3333 struct list_head *list, int search_commit, 3334 bool nowait); 3335 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3336 const struct btrfs_path *path, 3337 struct btrfs_file_extent_item *fi, 3338 const bool new_inline, 3339 struct extent_map *em); 3340 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3341 u64 len); 3342 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3343 u64 len); 3344 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3345 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3346 3347 /* inode.c */ 3348 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num); 3349 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 3350 int mirror_num, enum btrfs_compression_type compress_type); 3351 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3352 u32 pgoff, u8 *csum, const u8 * const csum_expected); 3353 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3354 u32 bio_offset, struct page *page, u32 pgoff); 3355 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3356 u32 bio_offset, struct page *page, 3357 u64 start, u64 end); 3358 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3359 u32 bio_offset, struct page *page, u32 pgoff); 3360 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3361 u64 *orig_start, u64 *orig_block_len, 3362 u64 *ram_bytes, bool nowait, bool strict); 3363 3364 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3365 struct btrfs_inode *inode); 3366 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3367 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3368 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3369 struct btrfs_inode *dir, struct btrfs_inode *inode, 3370 const char *name, int name_len); 3371 int btrfs_add_link(struct btrfs_trans_handle *trans, 3372 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3373 const char *name, int name_len, int add_backref, u64 index); 3374 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3375 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3376 int front); 3377 3378 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3379 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3380 bool in_reclaim_context); 3381 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3382 unsigned int extra_bits, 3383 struct extent_state **cached_state); 3384 struct btrfs_new_inode_args { 3385 /* Input */ 3386 struct inode *dir; 3387 struct dentry *dentry; 3388 struct inode *inode; 3389 bool orphan; 3390 bool subvol; 3391 3392 /* 3393 * Output from btrfs_new_inode_prepare(), input to 3394 * btrfs_create_new_inode(). 3395 */ 3396 struct posix_acl *default_acl; 3397 struct posix_acl *acl; 3398 }; 3399 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3400 unsigned int *trans_num_items); 3401 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3402 struct btrfs_new_inode_args *args); 3403 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3404 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3405 struct inode *dir); 3406 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3407 u32 bits); 3408 void btrfs_clear_delalloc_extent(struct inode *inode, 3409 struct extent_state *state, u32 bits); 3410 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3411 struct extent_state *other); 3412 void btrfs_split_delalloc_extent(struct inode *inode, 3413 struct extent_state *orig, u64 split); 3414 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3415 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3416 void btrfs_evict_inode(struct inode *inode); 3417 struct inode *btrfs_alloc_inode(struct super_block *sb); 3418 void btrfs_destroy_inode(struct inode *inode); 3419 void btrfs_free_inode(struct inode *inode); 3420 int btrfs_drop_inode(struct inode *inode); 3421 int __init btrfs_init_cachep(void); 3422 void __cold btrfs_destroy_cachep(void); 3423 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3424 struct btrfs_root *root, struct btrfs_path *path); 3425 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3426 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3427 struct page *page, size_t pg_offset, 3428 u64 start, u64 end); 3429 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3430 struct btrfs_root *root, struct btrfs_inode *inode); 3431 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3432 struct btrfs_root *root, struct btrfs_inode *inode); 3433 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3434 struct btrfs_inode *inode); 3435 int btrfs_orphan_cleanup(struct btrfs_root *root); 3436 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3437 void btrfs_add_delayed_iput(struct inode *inode); 3438 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3439 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3440 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3441 u64 start, u64 num_bytes, u64 min_size, 3442 loff_t actual_len, u64 *alloc_hint); 3443 int btrfs_prealloc_file_range_trans(struct inode *inode, 3444 struct btrfs_trans_handle *trans, int mode, 3445 u64 start, u64 num_bytes, u64 min_size, 3446 loff_t actual_len, u64 *alloc_hint); 3447 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3448 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3449 struct writeback_control *wbc); 3450 int btrfs_writepage_cow_fixup(struct page *page); 3451 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3452 struct page *page, u64 start, 3453 u64 end, bool uptodate); 3454 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 3455 int compress_type); 3456 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 3457 u64 file_offset, u64 disk_bytenr, 3458 u64 disk_io_size, 3459 struct page **pages); 3460 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3461 struct btrfs_ioctl_encoded_io_args *encoded); 3462 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3463 const struct btrfs_ioctl_encoded_io_args *encoded); 3464 3465 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter, 3466 size_t done_before); 3467 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter, 3468 size_t done_before); 3469 3470 extern const struct dentry_operations btrfs_dentry_operations; 3471 3472 /* Inode locking type flags, by default the exclusive lock is taken */ 3473 #define BTRFS_ILOCK_SHARED (1U << 0) 3474 #define BTRFS_ILOCK_TRY (1U << 1) 3475 #define BTRFS_ILOCK_MMAP (1U << 2) 3476 3477 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3478 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3479 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3480 const u64 add_bytes, 3481 const u64 del_bytes); 3482 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3483 3484 /* ioctl.c */ 3485 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3486 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3487 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3488 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3489 struct dentry *dentry, struct fileattr *fa); 3490 int btrfs_ioctl_get_supported_features(void __user *arg); 3491 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3492 int __pure btrfs_is_empty_uuid(u8 *uuid); 3493 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3494 struct btrfs_ioctl_defrag_range_args *range, 3495 u64 newer_than, unsigned long max_to_defrag); 3496 void btrfs_get_block_group_info(struct list_head *groups_list, 3497 struct btrfs_ioctl_space_info *space); 3498 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3499 struct btrfs_ioctl_balance_args *bargs); 3500 3501 /* file.c */ 3502 int __init btrfs_auto_defrag_init(void); 3503 void __cold btrfs_auto_defrag_exit(void); 3504 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3505 struct btrfs_inode *inode, u32 extent_thresh); 3506 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3507 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3508 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3509 extern const struct file_operations btrfs_file_operations; 3510 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3511 struct btrfs_root *root, struct btrfs_inode *inode, 3512 struct btrfs_drop_extents_args *args); 3513 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3514 struct btrfs_path *path, const u64 start, 3515 const u64 end, 3516 struct btrfs_replace_extent_info *extent_info, 3517 struct btrfs_trans_handle **trans_out); 3518 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3519 struct btrfs_inode *inode, u64 start, u64 end); 3520 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3521 const struct btrfs_ioctl_encoded_io_args *encoded); 3522 int btrfs_release_file(struct inode *inode, struct file *file); 3523 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3524 size_t num_pages, loff_t pos, size_t write_bytes, 3525 struct extent_state **cached, bool noreserve); 3526 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3527 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3528 size_t *write_bytes, bool nowait); 3529 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3530 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end, 3531 u64 *delalloc_start_ret, u64 *delalloc_end_ret); 3532 3533 /* tree-defrag.c */ 3534 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3535 struct btrfs_root *root); 3536 3537 /* super.c */ 3538 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3539 unsigned long new_flags); 3540 int btrfs_sync_fs(struct super_block *sb, int wait); 3541 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3542 u64 subvol_objectid); 3543 3544 static inline __printf(2, 3) __cold 3545 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3546 { 3547 } 3548 3549 #ifdef CONFIG_PRINTK_INDEX 3550 3551 #define btrfs_printk(fs_info, fmt, args...) \ 3552 do { \ 3553 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3554 _btrfs_printk(fs_info, fmt, ##args); \ 3555 } while (0) 3556 3557 __printf(2, 3) 3558 __cold 3559 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3560 3561 #elif defined(CONFIG_PRINTK) 3562 3563 #define btrfs_printk(fs_info, fmt, args...) \ 3564 _btrfs_printk(fs_info, fmt, ##args) 3565 3566 __printf(2, 3) 3567 __cold 3568 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3569 3570 #else 3571 3572 #define btrfs_printk(fs_info, fmt, args...) \ 3573 btrfs_no_printk(fs_info, fmt, ##args) 3574 #endif 3575 3576 #define btrfs_emerg(fs_info, fmt, args...) \ 3577 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3578 #define btrfs_alert(fs_info, fmt, args...) \ 3579 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3580 #define btrfs_crit(fs_info, fmt, args...) \ 3581 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3582 #define btrfs_err(fs_info, fmt, args...) \ 3583 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3584 #define btrfs_warn(fs_info, fmt, args...) \ 3585 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3586 #define btrfs_notice(fs_info, fmt, args...) \ 3587 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3588 #define btrfs_info(fs_info, fmt, args...) \ 3589 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3590 3591 /* 3592 * Wrappers that use printk_in_rcu 3593 */ 3594 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3595 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3596 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3597 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3598 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3599 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3600 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3601 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3602 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3603 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3604 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3605 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3606 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3607 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3608 3609 /* 3610 * Wrappers that use a ratelimited printk_in_rcu 3611 */ 3612 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3613 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3614 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3615 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3616 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3617 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3618 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3619 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3620 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3621 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3622 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3623 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3624 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3625 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3626 3627 /* 3628 * Wrappers that use a ratelimited printk 3629 */ 3630 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3631 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3632 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3633 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3634 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3635 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3636 #define btrfs_err_rl(fs_info, fmt, args...) \ 3637 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3638 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3639 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3640 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3641 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3642 #define btrfs_info_rl(fs_info, fmt, args...) \ 3643 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3644 3645 #if defined(CONFIG_DYNAMIC_DEBUG) 3646 #define btrfs_debug(fs_info, fmt, args...) \ 3647 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3648 fs_info, KERN_DEBUG fmt, ##args) 3649 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3650 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3651 fs_info, KERN_DEBUG fmt, ##args) 3652 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3653 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3654 fs_info, KERN_DEBUG fmt, ##args) 3655 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3656 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3657 fs_info, KERN_DEBUG fmt, ##args) 3658 #elif defined(DEBUG) 3659 #define btrfs_debug(fs_info, fmt, args...) \ 3660 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3661 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3662 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3663 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3664 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3665 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3666 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3667 #else 3668 #define btrfs_debug(fs_info, fmt, args...) \ 3669 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3670 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3671 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3672 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3673 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3674 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3675 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3676 #endif 3677 3678 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3679 do { \ 3680 rcu_read_lock(); \ 3681 btrfs_printk(fs_info, fmt, ##args); \ 3682 rcu_read_unlock(); \ 3683 } while (0) 3684 3685 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3686 do { \ 3687 rcu_read_lock(); \ 3688 btrfs_no_printk(fs_info, fmt, ##args); \ 3689 rcu_read_unlock(); \ 3690 } while (0) 3691 3692 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3693 do { \ 3694 static DEFINE_RATELIMIT_STATE(_rs, \ 3695 DEFAULT_RATELIMIT_INTERVAL, \ 3696 DEFAULT_RATELIMIT_BURST); \ 3697 if (__ratelimit(&_rs)) \ 3698 btrfs_printk(fs_info, fmt, ##args); \ 3699 } while (0) 3700 3701 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3702 do { \ 3703 rcu_read_lock(); \ 3704 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3705 rcu_read_unlock(); \ 3706 } while (0) 3707 3708 #ifdef CONFIG_BTRFS_ASSERT 3709 __cold __noreturn 3710 static inline void assertfail(const char *expr, const char *file, int line) 3711 { 3712 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3713 BUG(); 3714 } 3715 3716 #define ASSERT(expr) \ 3717 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3718 3719 #else 3720 static inline void assertfail(const char *expr, const char* file, int line) { } 3721 #define ASSERT(expr) (void)(expr) 3722 #endif 3723 3724 #if BITS_PER_LONG == 32 3725 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3726 /* 3727 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3728 * addresses of extents. 3729 * 3730 * For 4K page size it's about 10T, for 64K it's 160T. 3731 */ 3732 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3733 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3734 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3735 #endif 3736 3737 /* 3738 * Get the correct offset inside the page of extent buffer. 3739 * 3740 * @eb: target extent buffer 3741 * @start: offset inside the extent buffer 3742 * 3743 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3744 */ 3745 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3746 unsigned long offset) 3747 { 3748 /* 3749 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3750 * to PAGE_SIZE, thus adding it won't cause any difference. 3751 * 3752 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3753 * to the eb, thus we have to take the eb->start into consideration. 3754 */ 3755 return offset_in_page(offset + eb->start); 3756 } 3757 3758 static inline unsigned long get_eb_page_index(unsigned long offset) 3759 { 3760 /* 3761 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3762 * 3763 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3764 * and have ensured that all tree blocks are contained in one page, 3765 * thus we always get index == 0. 3766 */ 3767 return offset >> PAGE_SHIFT; 3768 } 3769 3770 /* 3771 * Use that for functions that are conditionally exported for sanity tests but 3772 * otherwise static 3773 */ 3774 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3775 #define EXPORT_FOR_TESTS static 3776 #else 3777 #define EXPORT_FOR_TESTS 3778 #endif 3779 3780 __cold 3781 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3782 { 3783 btrfs_err(fs_info, 3784 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3785 } 3786 3787 __printf(5, 6) 3788 __cold 3789 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3790 unsigned int line, int errno, const char *fmt, ...); 3791 3792 const char * __attribute_const__ btrfs_decode_error(int errno); 3793 3794 __cold 3795 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3796 const char *function, 3797 unsigned int line, int errno, bool first_hit); 3798 3799 bool __cold abort_should_print_stack(int errno); 3800 3801 /* 3802 * Call btrfs_abort_transaction as early as possible when an error condition is 3803 * detected, that way the exact stack trace is reported for some errors. 3804 */ 3805 #define btrfs_abort_transaction(trans, errno) \ 3806 do { \ 3807 bool first = false; \ 3808 /* Report first abort since mount */ \ 3809 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3810 &((trans)->fs_info->fs_state))) { \ 3811 first = true; \ 3812 if (WARN(abort_should_print_stack(errno), \ 3813 KERN_DEBUG \ 3814 "BTRFS: Transaction aborted (error %d)\n", \ 3815 (errno))) { \ 3816 /* Stack trace printed. */ \ 3817 } else { \ 3818 btrfs_debug((trans)->fs_info, \ 3819 "Transaction aborted (error %d)", \ 3820 (errno)); \ 3821 } \ 3822 } \ 3823 __btrfs_abort_transaction((trans), __func__, \ 3824 __LINE__, (errno), first); \ 3825 } while (0) 3826 3827 #ifdef CONFIG_PRINTK_INDEX 3828 3829 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3830 do { \ 3831 printk_index_subsys_emit( \ 3832 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3833 KERN_CRIT, fmt); \ 3834 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3835 (errno), fmt, ##args); \ 3836 } while (0) 3837 3838 #else 3839 3840 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3841 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3842 (errno), fmt, ##args) 3843 3844 #endif 3845 3846 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3847 &(fs_info)->fs_state))) 3848 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3849 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3850 &(fs_info)->fs_state))) 3851 3852 __printf(5, 6) 3853 __cold 3854 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3855 unsigned int line, int errno, const char *fmt, ...); 3856 /* 3857 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3858 * will panic(). Otherwise we BUG() here. 3859 */ 3860 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3861 do { \ 3862 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3863 BUG(); \ 3864 } while (0) 3865 3866 3867 /* compatibility and incompatibility defines */ 3868 3869 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3870 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3871 #opt) 3872 3873 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3874 u64 flag, const char* name) 3875 { 3876 struct btrfs_super_block *disk_super; 3877 u64 features; 3878 3879 disk_super = fs_info->super_copy; 3880 features = btrfs_super_incompat_flags(disk_super); 3881 if (!(features & flag)) { 3882 spin_lock(&fs_info->super_lock); 3883 features = btrfs_super_incompat_flags(disk_super); 3884 if (!(features & flag)) { 3885 features |= flag; 3886 btrfs_set_super_incompat_flags(disk_super, features); 3887 btrfs_info(fs_info, 3888 "setting incompat feature flag for %s (0x%llx)", 3889 name, flag); 3890 } 3891 spin_unlock(&fs_info->super_lock); 3892 } 3893 } 3894 3895 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3896 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3897 #opt) 3898 3899 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3900 u64 flag, const char* name) 3901 { 3902 struct btrfs_super_block *disk_super; 3903 u64 features; 3904 3905 disk_super = fs_info->super_copy; 3906 features = btrfs_super_incompat_flags(disk_super); 3907 if (features & flag) { 3908 spin_lock(&fs_info->super_lock); 3909 features = btrfs_super_incompat_flags(disk_super); 3910 if (features & flag) { 3911 features &= ~flag; 3912 btrfs_set_super_incompat_flags(disk_super, features); 3913 btrfs_info(fs_info, 3914 "clearing incompat feature flag for %s (0x%llx)", 3915 name, flag); 3916 } 3917 spin_unlock(&fs_info->super_lock); 3918 } 3919 } 3920 3921 #define btrfs_fs_incompat(fs_info, opt) \ 3922 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3923 3924 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3925 { 3926 struct btrfs_super_block *disk_super; 3927 disk_super = fs_info->super_copy; 3928 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3929 } 3930 3931 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3932 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3933 #opt) 3934 3935 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3936 u64 flag, const char *name) 3937 { 3938 struct btrfs_super_block *disk_super; 3939 u64 features; 3940 3941 disk_super = fs_info->super_copy; 3942 features = btrfs_super_compat_ro_flags(disk_super); 3943 if (!(features & flag)) { 3944 spin_lock(&fs_info->super_lock); 3945 features = btrfs_super_compat_ro_flags(disk_super); 3946 if (!(features & flag)) { 3947 features |= flag; 3948 btrfs_set_super_compat_ro_flags(disk_super, features); 3949 btrfs_info(fs_info, 3950 "setting compat-ro feature flag for %s (0x%llx)", 3951 name, flag); 3952 } 3953 spin_unlock(&fs_info->super_lock); 3954 } 3955 } 3956 3957 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3958 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3959 #opt) 3960 3961 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3962 u64 flag, const char *name) 3963 { 3964 struct btrfs_super_block *disk_super; 3965 u64 features; 3966 3967 disk_super = fs_info->super_copy; 3968 features = btrfs_super_compat_ro_flags(disk_super); 3969 if (features & flag) { 3970 spin_lock(&fs_info->super_lock); 3971 features = btrfs_super_compat_ro_flags(disk_super); 3972 if (features & flag) { 3973 features &= ~flag; 3974 btrfs_set_super_compat_ro_flags(disk_super, features); 3975 btrfs_info(fs_info, 3976 "clearing compat-ro feature flag for %s (0x%llx)", 3977 name, flag); 3978 } 3979 spin_unlock(&fs_info->super_lock); 3980 } 3981 } 3982 3983 #define btrfs_fs_compat_ro(fs_info, opt) \ 3984 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3985 3986 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3987 { 3988 struct btrfs_super_block *disk_super; 3989 disk_super = fs_info->super_copy; 3990 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3991 } 3992 3993 /* acl.c */ 3994 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3995 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3996 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3997 struct posix_acl *acl, int type); 3998 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3999 struct posix_acl *acl, int type); 4000 #else 4001 #define btrfs_get_acl NULL 4002 #define btrfs_set_acl NULL 4003 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 4004 struct inode *inode, struct posix_acl *acl, 4005 int type) 4006 { 4007 return -EOPNOTSUPP; 4008 } 4009 #endif 4010 4011 /* relocation.c */ 4012 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 4013 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 4014 struct btrfs_root *root); 4015 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 4016 struct btrfs_root *root); 4017 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 4018 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 4019 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4020 struct btrfs_root *root, struct extent_buffer *buf, 4021 struct extent_buffer *cow); 4022 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4023 u64 *bytes_to_reserve); 4024 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4025 struct btrfs_pending_snapshot *pending); 4026 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 4027 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 4028 u64 bytenr); 4029 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 4030 4031 /* scrub.c */ 4032 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4033 u64 end, struct btrfs_scrub_progress *progress, 4034 int readonly, int is_dev_replace); 4035 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 4036 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 4037 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 4038 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 4039 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4040 struct btrfs_scrub_progress *progress); 4041 4042 /* dev-replace.c */ 4043 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 4044 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 4045 4046 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 4047 { 4048 btrfs_bio_counter_sub(fs_info, 1); 4049 } 4050 4051 static inline int is_fstree(u64 rootid) 4052 { 4053 if (rootid == BTRFS_FS_TREE_OBJECTID || 4054 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 4055 !btrfs_qgroup_level(rootid))) 4056 return 1; 4057 return 0; 4058 } 4059 4060 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4061 { 4062 return signal_pending(current); 4063 } 4064 4065 /* verity.c */ 4066 #ifdef CONFIG_FS_VERITY 4067 4068 extern const struct fsverity_operations btrfs_verityops; 4069 int btrfs_drop_verity_items(struct btrfs_inode *inode); 4070 int btrfs_get_verity_descriptor(struct inode *inode, void *buf, size_t buf_size); 4071 4072 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 4073 encryption, 8); 4074 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 4075 size, 64); 4076 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 4077 struct btrfs_verity_descriptor_item, encryption, 8); 4078 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 4079 struct btrfs_verity_descriptor_item, size, 64); 4080 4081 #else 4082 4083 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 4084 { 4085 return 0; 4086 } 4087 4088 static inline int btrfs_get_verity_descriptor(struct inode *inode, void *buf, 4089 size_t buf_size) 4090 { 4091 return -EPERM; 4092 } 4093 4094 #endif 4095 4096 /* Sanity test specific functions */ 4097 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4098 void btrfs_test_destroy_inode(struct inode *inode); 4099 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4100 { 4101 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4102 } 4103 #else 4104 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4105 { 4106 return 0; 4107 } 4108 #endif 4109 4110 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4111 { 4112 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4113 } 4114 4115 /* 4116 * We use page status Private2 to indicate there is an ordered extent with 4117 * unfinished IO. 4118 * 4119 * Rename the Private2 accessors to Ordered, to improve readability. 4120 */ 4121 #define PageOrdered(page) PagePrivate2(page) 4122 #define SetPageOrdered(page) SetPagePrivate2(page) 4123 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4124 #define folio_test_ordered(folio) folio_test_private_2(folio) 4125 #define folio_set_ordered(folio) folio_set_private_2(folio) 4126 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4127 4128 #endif 4129