xref: /openbmc/linux/fs/btrfs/ctree.h (revision 83869019)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 
53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
54 
55 /*
56  * Maximum number of mirrors that can be available for all profiles counting
57  * the target device of dev-replace as one. During an active device replace
58  * procedure, the target device of the copy operation is a mirror for the
59  * filesystem data as well that can be used to read data in order to repair
60  * read errors on other disks.
61  *
62  * Current value is derived from RAID1C4 with 4 copies.
63  */
64 #define BTRFS_MAX_MIRRORS (4 + 1)
65 
66 #define BTRFS_MAX_LEVEL 8
67 
68 #define BTRFS_OLDEST_GENERATION	0ULL
69 
70 /*
71  * we can actually store much bigger names, but lets not confuse the rest
72  * of linux
73  */
74 #define BTRFS_NAME_LEN 255
75 
76 /*
77  * Theoretical limit is larger, but we keep this down to a sane
78  * value. That should limit greatly the possibility of collisions on
79  * inode ref items.
80  */
81 #define BTRFS_LINK_MAX 65535U
82 
83 #define BTRFS_EMPTY_DIR_SIZE 0
84 
85 /* ioprio of readahead is set to idle */
86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
87 
88 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
89 
90 /*
91  * Use large batch size to reduce overhead of metadata updates.  On the reader
92  * side, we only read it when we are close to ENOSPC and the read overhead is
93  * mostly related to the number of CPUs, so it is OK to use arbitrary large
94  * value here.
95  */
96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
97 
98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
99 
100 /*
101  * Deltas are an effective way to populate global statistics.  Give macro names
102  * to make it clear what we're doing.  An example is discard_extents in
103  * btrfs_free_space_ctl.
104  */
105 #define BTRFS_STAT_NR_ENTRIES	2
106 #define BTRFS_STAT_CURR		0
107 #define BTRFS_STAT_PREV		1
108 
109 /*
110  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
111  */
112 static inline u32 count_max_extents(u64 size)
113 {
114 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
115 }
116 
117 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
118 {
119 	BUG_ON(num_stripes == 0);
120 	return sizeof(struct btrfs_chunk) +
121 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
122 }
123 
124 /*
125  * Runtime (in-memory) states of filesystem
126  */
127 enum {
128 	/* Global indicator of serious filesystem errors */
129 	BTRFS_FS_STATE_ERROR,
130 	/*
131 	 * Filesystem is being remounted, allow to skip some operations, like
132 	 * defrag
133 	 */
134 	BTRFS_FS_STATE_REMOUNTING,
135 	/* Filesystem in RO mode */
136 	BTRFS_FS_STATE_RO,
137 	/* Track if a transaction abort has been reported on this filesystem */
138 	BTRFS_FS_STATE_TRANS_ABORTED,
139 	/*
140 	 * Bio operations should be blocked on this filesystem because a source
141 	 * or target device is being destroyed as part of a device replace
142 	 */
143 	BTRFS_FS_STATE_DEV_REPLACING,
144 	/* The btrfs_fs_info created for self-tests */
145 	BTRFS_FS_STATE_DUMMY_FS_INFO,
146 };
147 
148 #define BTRFS_BACKREF_REV_MAX		256
149 #define BTRFS_BACKREF_REV_SHIFT		56
150 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 					 BTRFS_BACKREF_REV_SHIFT)
152 
153 #define BTRFS_OLD_BACKREF_REV		0
154 #define BTRFS_MIXED_BACKREF_REV		1
155 
156 /*
157  * every tree block (leaf or node) starts with this header.
158  */
159 struct btrfs_header {
160 	/* these first four must match the super block */
161 	u8 csum[BTRFS_CSUM_SIZE];
162 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 	__le64 bytenr; /* which block this node is supposed to live in */
164 	__le64 flags;
165 
166 	/* allowed to be different from the super from here on down */
167 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 	__le64 generation;
169 	__le64 owner;
170 	__le32 nritems;
171 	u8 level;
172 } __attribute__ ((__packed__));
173 
174 /*
175  * this is a very generous portion of the super block, giving us
176  * room to translate 14 chunks with 3 stripes each.
177  */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179 
180 /*
181  * just in case we somehow lose the roots and are not able to mount,
182  * we store an array of the roots from previous transactions
183  * in the super.
184  */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 	__le64 tree_root;
188 	__le64 tree_root_gen;
189 
190 	__le64 chunk_root;
191 	__le64 chunk_root_gen;
192 
193 	__le64 extent_root;
194 	__le64 extent_root_gen;
195 
196 	__le64 fs_root;
197 	__le64 fs_root_gen;
198 
199 	__le64 dev_root;
200 	__le64 dev_root_gen;
201 
202 	__le64 csum_root;
203 	__le64 csum_root_gen;
204 
205 	__le64 total_bytes;
206 	__le64 bytes_used;
207 	__le64 num_devices;
208 	/* future */
209 	__le64 unused_64[4];
210 
211 	u8 tree_root_level;
212 	u8 chunk_root_level;
213 	u8 extent_root_level;
214 	u8 fs_root_level;
215 	u8 dev_root_level;
216 	u8 csum_root_level;
217 	/* future and to align */
218 	u8 unused_8[10];
219 } __attribute__ ((__packed__));
220 
221 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE			4096
223 
224 /*
225  * the super block basically lists the main trees of the FS
226  * it currently lacks any block count etc etc
227  */
228 struct btrfs_super_block {
229 	/* the first 4 fields must match struct btrfs_header */
230 	u8 csum[BTRFS_CSUM_SIZE];
231 	/* FS specific UUID, visible to user */
232 	u8 fsid[BTRFS_FSID_SIZE];
233 	__le64 bytenr; /* this block number */
234 	__le64 flags;
235 
236 	/* allowed to be different from the btrfs_header from here own down */
237 	__le64 magic;
238 	__le64 generation;
239 	__le64 root;
240 	__le64 chunk_root;
241 	__le64 log_root;
242 
243 	/* this will help find the new super based on the log root */
244 	__le64 log_root_transid;
245 	__le64 total_bytes;
246 	__le64 bytes_used;
247 	__le64 root_dir_objectid;
248 	__le64 num_devices;
249 	__le32 sectorsize;
250 	__le32 nodesize;
251 	__le32 __unused_leafsize;
252 	__le32 stripesize;
253 	__le32 sys_chunk_array_size;
254 	__le64 chunk_root_generation;
255 	__le64 compat_flags;
256 	__le64 compat_ro_flags;
257 	__le64 incompat_flags;
258 	__le16 csum_type;
259 	u8 root_level;
260 	u8 chunk_root_level;
261 	u8 log_root_level;
262 	struct btrfs_dev_item dev_item;
263 
264 	char label[BTRFS_LABEL_SIZE];
265 
266 	__le64 cache_generation;
267 	__le64 uuid_tree_generation;
268 
269 	/* the UUID written into btree blocks */
270 	u8 metadata_uuid[BTRFS_FSID_SIZE];
271 
272 	/* future expansion */
273 	__le64 reserved[28];
274 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
275 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
276 
277 	/* Padded to 4096 bytes */
278 	u8 padding[565];
279 } __attribute__ ((__packed__));
280 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
281 
282 /*
283  * Compat flags that we support.  If any incompat flags are set other than the
284  * ones specified below then we will fail to mount
285  */
286 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
287 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
288 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
289 
290 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
291 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
292 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
293 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
294 
295 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
296 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
297 
298 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
299 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
300 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
301 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
302 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
303 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
304 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
305 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
306 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
307 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
308 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
309 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
310 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
311 	 BTRFS_FEATURE_INCOMPAT_ZONED)
312 
313 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
314 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
315 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
316 
317 /*
318  * A leaf is full of items. offset and size tell us where to find
319  * the item in the leaf (relative to the start of the data area)
320  */
321 struct btrfs_item {
322 	struct btrfs_disk_key key;
323 	__le32 offset;
324 	__le32 size;
325 } __attribute__ ((__packed__));
326 
327 /*
328  * leaves have an item area and a data area:
329  * [item0, item1....itemN] [free space] [dataN...data1, data0]
330  *
331  * The data is separate from the items to get the keys closer together
332  * during searches.
333  */
334 struct btrfs_leaf {
335 	struct btrfs_header header;
336 	struct btrfs_item items[];
337 } __attribute__ ((__packed__));
338 
339 /*
340  * all non-leaf blocks are nodes, they hold only keys and pointers to
341  * other blocks
342  */
343 struct btrfs_key_ptr {
344 	struct btrfs_disk_key key;
345 	__le64 blockptr;
346 	__le64 generation;
347 } __attribute__ ((__packed__));
348 
349 struct btrfs_node {
350 	struct btrfs_header header;
351 	struct btrfs_key_ptr ptrs[];
352 } __attribute__ ((__packed__));
353 
354 /* Read ahead values for struct btrfs_path.reada */
355 enum {
356 	READA_NONE,
357 	READA_BACK,
358 	READA_FORWARD,
359 	/*
360 	 * Similar to READA_FORWARD but unlike it:
361 	 *
362 	 * 1) It will trigger readahead even for leaves that are not close to
363 	 *    each other on disk;
364 	 * 2) It also triggers readahead for nodes;
365 	 * 3) During a search, even when a node or leaf is already in memory, it
366 	 *    will still trigger readahead for other nodes and leaves that follow
367 	 *    it.
368 	 *
369 	 * This is meant to be used only when we know we are iterating over the
370 	 * entire tree or a very large part of it.
371 	 */
372 	READA_FORWARD_ALWAYS,
373 };
374 
375 /*
376  * btrfs_paths remember the path taken from the root down to the leaf.
377  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
378  * to any other levels that are present.
379  *
380  * The slots array records the index of the item or block pointer
381  * used while walking the tree.
382  */
383 struct btrfs_path {
384 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
385 	int slots[BTRFS_MAX_LEVEL];
386 	/* if there is real range locking, this locks field will change */
387 	u8 locks[BTRFS_MAX_LEVEL];
388 	u8 reada;
389 	/* keep some upper locks as we walk down */
390 	u8 lowest_level;
391 
392 	/*
393 	 * set by btrfs_split_item, tells search_slot to keep all locks
394 	 * and to force calls to keep space in the nodes
395 	 */
396 	unsigned int search_for_split:1;
397 	unsigned int keep_locks:1;
398 	unsigned int skip_locking:1;
399 	unsigned int search_commit_root:1;
400 	unsigned int need_commit_sem:1;
401 	unsigned int skip_release_on_error:1;
402 	/*
403 	 * Indicate that new item (btrfs_search_slot) is extending already
404 	 * existing item and ins_len contains only the data size and not item
405 	 * header (ie. sizeof(struct btrfs_item) is not included).
406 	 */
407 	unsigned int search_for_extension:1;
408 };
409 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
410 					sizeof(struct btrfs_item))
411 struct btrfs_dev_replace {
412 	u64 replace_state;	/* see #define above */
413 	time64_t time_started;	/* seconds since 1-Jan-1970 */
414 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
415 	atomic64_t num_write_errors;
416 	atomic64_t num_uncorrectable_read_errors;
417 
418 	u64 cursor_left;
419 	u64 committed_cursor_left;
420 	u64 cursor_left_last_write_of_item;
421 	u64 cursor_right;
422 
423 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
424 
425 	int is_valid;
426 	int item_needs_writeback;
427 	struct btrfs_device *srcdev;
428 	struct btrfs_device *tgtdev;
429 
430 	struct mutex lock_finishing_cancel_unmount;
431 	struct rw_semaphore rwsem;
432 
433 	struct btrfs_scrub_progress scrub_progress;
434 
435 	struct percpu_counter bio_counter;
436 	wait_queue_head_t replace_wait;
437 };
438 
439 /*
440  * free clusters are used to claim free space in relatively large chunks,
441  * allowing us to do less seeky writes. They are used for all metadata
442  * allocations. In ssd_spread mode they are also used for data allocations.
443  */
444 struct btrfs_free_cluster {
445 	spinlock_t lock;
446 	spinlock_t refill_lock;
447 	struct rb_root root;
448 
449 	/* largest extent in this cluster */
450 	u64 max_size;
451 
452 	/* first extent starting offset */
453 	u64 window_start;
454 
455 	/* We did a full search and couldn't create a cluster */
456 	bool fragmented;
457 
458 	struct btrfs_block_group *block_group;
459 	/*
460 	 * when a cluster is allocated from a block group, we put the
461 	 * cluster onto a list in the block group so that it can
462 	 * be freed before the block group is freed.
463 	 */
464 	struct list_head block_group_list;
465 };
466 
467 enum btrfs_caching_type {
468 	BTRFS_CACHE_NO,
469 	BTRFS_CACHE_STARTED,
470 	BTRFS_CACHE_FAST,
471 	BTRFS_CACHE_FINISHED,
472 	BTRFS_CACHE_ERROR,
473 };
474 
475 /*
476  * Tree to record all locked full stripes of a RAID5/6 block group
477  */
478 struct btrfs_full_stripe_locks_tree {
479 	struct rb_root root;
480 	struct mutex lock;
481 };
482 
483 /* Discard control. */
484 /*
485  * Async discard uses multiple lists to differentiate the discard filter
486  * parameters.  Index 0 is for completely free block groups where we need to
487  * ensure the entire block group is trimmed without being lossy.  Indices
488  * afterwards represent monotonically decreasing discard filter sizes to
489  * prioritize what should be discarded next.
490  */
491 #define BTRFS_NR_DISCARD_LISTS		3
492 #define BTRFS_DISCARD_INDEX_UNUSED	0
493 #define BTRFS_DISCARD_INDEX_START	1
494 
495 struct btrfs_discard_ctl {
496 	struct workqueue_struct *discard_workers;
497 	struct delayed_work work;
498 	spinlock_t lock;
499 	struct btrfs_block_group *block_group;
500 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
501 	u64 prev_discard;
502 	u64 prev_discard_time;
503 	atomic_t discardable_extents;
504 	atomic64_t discardable_bytes;
505 	u64 max_discard_size;
506 	u64 delay_ms;
507 	u32 iops_limit;
508 	u32 kbps_limit;
509 	u64 discard_extent_bytes;
510 	u64 discard_bitmap_bytes;
511 	atomic64_t discard_bytes_saved;
512 };
513 
514 enum btrfs_orphan_cleanup_state {
515 	ORPHAN_CLEANUP_STARTED	= 1,
516 	ORPHAN_CLEANUP_DONE	= 2,
517 };
518 
519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
520 
521 /* fs_info */
522 struct reloc_control;
523 struct btrfs_device;
524 struct btrfs_fs_devices;
525 struct btrfs_balance_control;
526 struct btrfs_delayed_root;
527 
528 /*
529  * Block group or device which contains an active swapfile. Used for preventing
530  * unsafe operations while a swapfile is active.
531  *
532  * These are sorted on (ptr, inode) (note that a block group or device can
533  * contain more than one swapfile). We compare the pointer values because we
534  * don't actually care what the object is, we just need a quick check whether
535  * the object exists in the rbtree.
536  */
537 struct btrfs_swapfile_pin {
538 	struct rb_node node;
539 	void *ptr;
540 	struct inode *inode;
541 	/*
542 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
543 	 * points to a struct btrfs_device.
544 	 */
545 	bool is_block_group;
546 	/*
547 	 * Only used when 'is_block_group' is true and it is the number of
548 	 * extents used by a swapfile for this block group ('ptr' field).
549 	 */
550 	int bg_extent_count;
551 };
552 
553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
554 
555 enum {
556 	BTRFS_FS_BARRIER,
557 	BTRFS_FS_CLOSING_START,
558 	BTRFS_FS_CLOSING_DONE,
559 	BTRFS_FS_LOG_RECOVERING,
560 	BTRFS_FS_OPEN,
561 	BTRFS_FS_QUOTA_ENABLED,
562 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
563 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
564 	BTRFS_FS_BTREE_ERR,
565 	BTRFS_FS_LOG1_ERR,
566 	BTRFS_FS_LOG2_ERR,
567 	BTRFS_FS_QUOTA_OVERRIDE,
568 	/* Used to record internally whether fs has been frozen */
569 	BTRFS_FS_FROZEN,
570 	/*
571 	 * Indicate that balance has been set up from the ioctl and is in the
572 	 * main phase. The fs_info::balance_ctl is initialized.
573 	 */
574 	BTRFS_FS_BALANCE_RUNNING,
575 
576 	/*
577 	 * Indicate that relocation of a chunk has started, it's set per chunk
578 	 * and is toggled between chunks.
579 	 * Set, tested and cleared while holding fs_info::send_reloc_lock.
580 	 */
581 	BTRFS_FS_RELOC_RUNNING,
582 
583 	/* Indicate that the cleaner thread is awake and doing something. */
584 	BTRFS_FS_CLEANER_RUNNING,
585 
586 	/*
587 	 * The checksumming has an optimized version and is considered fast,
588 	 * so we don't need to offload checksums to workqueues.
589 	 */
590 	BTRFS_FS_CSUM_IMPL_FAST,
591 
592 	/* Indicate that the discard workqueue can service discards. */
593 	BTRFS_FS_DISCARD_RUNNING,
594 
595 	/* Indicate that we need to cleanup space cache v1 */
596 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
597 
598 	/* Indicate that we can't trust the free space tree for caching yet */
599 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
600 
601 	/* Indicate whether there are any tree modification log users */
602 	BTRFS_FS_TREE_MOD_LOG_USERS,
603 
604 #if BITS_PER_LONG == 32
605 	/* Indicate if we have error/warn message printed on 32bit systems */
606 	BTRFS_FS_32BIT_ERROR,
607 	BTRFS_FS_32BIT_WARN,
608 #endif
609 };
610 
611 /*
612  * Exclusive operations (device replace, resize, device add/remove, balance)
613  */
614 enum btrfs_exclusive_operation {
615 	BTRFS_EXCLOP_NONE,
616 	BTRFS_EXCLOP_BALANCE,
617 	BTRFS_EXCLOP_DEV_ADD,
618 	BTRFS_EXCLOP_DEV_REMOVE,
619 	BTRFS_EXCLOP_DEV_REPLACE,
620 	BTRFS_EXCLOP_RESIZE,
621 	BTRFS_EXCLOP_SWAP_ACTIVATE,
622 };
623 
624 struct btrfs_fs_info {
625 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
626 	unsigned long flags;
627 	struct btrfs_root *extent_root;
628 	struct btrfs_root *tree_root;
629 	struct btrfs_root *chunk_root;
630 	struct btrfs_root *dev_root;
631 	struct btrfs_root *fs_root;
632 	struct btrfs_root *csum_root;
633 	struct btrfs_root *quota_root;
634 	struct btrfs_root *uuid_root;
635 	struct btrfs_root *free_space_root;
636 	struct btrfs_root *data_reloc_root;
637 
638 	/* the log root tree is a directory of all the other log roots */
639 	struct btrfs_root *log_root_tree;
640 
641 	spinlock_t fs_roots_radix_lock;
642 	struct radix_tree_root fs_roots_radix;
643 
644 	/* block group cache stuff */
645 	spinlock_t block_group_cache_lock;
646 	u64 first_logical_byte;
647 	struct rb_root block_group_cache_tree;
648 
649 	/* keep track of unallocated space */
650 	atomic64_t free_chunk_space;
651 
652 	/* Track ranges which are used by log trees blocks/logged data extents */
653 	struct extent_io_tree excluded_extents;
654 
655 	/* logical->physical extent mapping */
656 	struct extent_map_tree mapping_tree;
657 
658 	/*
659 	 * block reservation for extent, checksum, root tree and
660 	 * delayed dir index item
661 	 */
662 	struct btrfs_block_rsv global_block_rsv;
663 	/* block reservation for metadata operations */
664 	struct btrfs_block_rsv trans_block_rsv;
665 	/* block reservation for chunk tree */
666 	struct btrfs_block_rsv chunk_block_rsv;
667 	/* block reservation for delayed operations */
668 	struct btrfs_block_rsv delayed_block_rsv;
669 	/* block reservation for delayed refs */
670 	struct btrfs_block_rsv delayed_refs_rsv;
671 
672 	struct btrfs_block_rsv empty_block_rsv;
673 
674 	u64 generation;
675 	u64 last_trans_committed;
676 	u64 avg_delayed_ref_runtime;
677 
678 	/*
679 	 * this is updated to the current trans every time a full commit
680 	 * is required instead of the faster short fsync log commits
681 	 */
682 	u64 last_trans_log_full_commit;
683 	unsigned long mount_opt;
684 	/*
685 	 * Track requests for actions that need to be done during transaction
686 	 * commit (like for some mount options).
687 	 */
688 	unsigned long pending_changes;
689 	unsigned long compress_type:4;
690 	unsigned int compress_level;
691 	u32 commit_interval;
692 	/*
693 	 * It is a suggestive number, the read side is safe even it gets a
694 	 * wrong number because we will write out the data into a regular
695 	 * extent. The write side(mount/remount) is under ->s_umount lock,
696 	 * so it is also safe.
697 	 */
698 	u64 max_inline;
699 
700 	struct btrfs_transaction *running_transaction;
701 	wait_queue_head_t transaction_throttle;
702 	wait_queue_head_t transaction_wait;
703 	wait_queue_head_t transaction_blocked_wait;
704 	wait_queue_head_t async_submit_wait;
705 
706 	/*
707 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
708 	 * when they are updated.
709 	 *
710 	 * Because we do not clear the flags for ever, so we needn't use
711 	 * the lock on the read side.
712 	 *
713 	 * We also needn't use the lock when we mount the fs, because
714 	 * there is no other task which will update the flag.
715 	 */
716 	spinlock_t super_lock;
717 	struct btrfs_super_block *super_copy;
718 	struct btrfs_super_block *super_for_commit;
719 	struct super_block *sb;
720 	struct inode *btree_inode;
721 	struct mutex tree_log_mutex;
722 	struct mutex transaction_kthread_mutex;
723 	struct mutex cleaner_mutex;
724 	struct mutex chunk_mutex;
725 
726 	/*
727 	 * this is taken to make sure we don't set block groups ro after
728 	 * the free space cache has been allocated on them
729 	 */
730 	struct mutex ro_block_group_mutex;
731 
732 	/* this is used during read/modify/write to make sure
733 	 * no two ios are trying to mod the same stripe at the same
734 	 * time
735 	 */
736 	struct btrfs_stripe_hash_table *stripe_hash_table;
737 
738 	/*
739 	 * this protects the ordered operations list only while we are
740 	 * processing all of the entries on it.  This way we make
741 	 * sure the commit code doesn't find the list temporarily empty
742 	 * because another function happens to be doing non-waiting preflush
743 	 * before jumping into the main commit.
744 	 */
745 	struct mutex ordered_operations_mutex;
746 
747 	struct rw_semaphore commit_root_sem;
748 
749 	struct rw_semaphore cleanup_work_sem;
750 
751 	struct rw_semaphore subvol_sem;
752 
753 	spinlock_t trans_lock;
754 	/*
755 	 * the reloc mutex goes with the trans lock, it is taken
756 	 * during commit to protect us from the relocation code
757 	 */
758 	struct mutex reloc_mutex;
759 
760 	struct list_head trans_list;
761 	struct list_head dead_roots;
762 	struct list_head caching_block_groups;
763 
764 	spinlock_t delayed_iput_lock;
765 	struct list_head delayed_iputs;
766 	atomic_t nr_delayed_iputs;
767 	wait_queue_head_t delayed_iputs_wait;
768 
769 	atomic64_t tree_mod_seq;
770 
771 	/* this protects tree_mod_log and tree_mod_seq_list */
772 	rwlock_t tree_mod_log_lock;
773 	struct rb_root tree_mod_log;
774 	struct list_head tree_mod_seq_list;
775 
776 	atomic_t async_delalloc_pages;
777 
778 	/*
779 	 * this is used to protect the following list -- ordered_roots.
780 	 */
781 	spinlock_t ordered_root_lock;
782 
783 	/*
784 	 * all fs/file tree roots in which there are data=ordered extents
785 	 * pending writeback are added into this list.
786 	 *
787 	 * these can span multiple transactions and basically include
788 	 * every dirty data page that isn't from nodatacow
789 	 */
790 	struct list_head ordered_roots;
791 
792 	struct mutex delalloc_root_mutex;
793 	spinlock_t delalloc_root_lock;
794 	/* all fs/file tree roots that have delalloc inodes. */
795 	struct list_head delalloc_roots;
796 
797 	/*
798 	 * there is a pool of worker threads for checksumming during writes
799 	 * and a pool for checksumming after reads.  This is because readers
800 	 * can run with FS locks held, and the writers may be waiting for
801 	 * those locks.  We don't want ordering in the pending list to cause
802 	 * deadlocks, and so the two are serviced separately.
803 	 *
804 	 * A third pool does submit_bio to avoid deadlocking with the other
805 	 * two
806 	 */
807 	struct btrfs_workqueue *workers;
808 	struct btrfs_workqueue *delalloc_workers;
809 	struct btrfs_workqueue *flush_workers;
810 	struct btrfs_workqueue *endio_workers;
811 	struct btrfs_workqueue *endio_meta_workers;
812 	struct btrfs_workqueue *endio_raid56_workers;
813 	struct btrfs_workqueue *rmw_workers;
814 	struct btrfs_workqueue *endio_meta_write_workers;
815 	struct btrfs_workqueue *endio_write_workers;
816 	struct btrfs_workqueue *endio_freespace_worker;
817 	struct btrfs_workqueue *caching_workers;
818 	struct btrfs_workqueue *readahead_workers;
819 
820 	/*
821 	 * fixup workers take dirty pages that didn't properly go through
822 	 * the cow mechanism and make them safe to write.  It happens
823 	 * for the sys_munmap function call path
824 	 */
825 	struct btrfs_workqueue *fixup_workers;
826 	struct btrfs_workqueue *delayed_workers;
827 
828 	struct task_struct *transaction_kthread;
829 	struct task_struct *cleaner_kthread;
830 	u32 thread_pool_size;
831 
832 	struct kobject *space_info_kobj;
833 	struct kobject *qgroups_kobj;
834 
835 	/* used to keep from writing metadata until there is a nice batch */
836 	struct percpu_counter dirty_metadata_bytes;
837 	struct percpu_counter delalloc_bytes;
838 	struct percpu_counter ordered_bytes;
839 	s32 dirty_metadata_batch;
840 	s32 delalloc_batch;
841 
842 	struct list_head dirty_cowonly_roots;
843 
844 	struct btrfs_fs_devices *fs_devices;
845 
846 	/*
847 	 * The space_info list is effectively read only after initial
848 	 * setup.  It is populated at mount time and cleaned up after
849 	 * all block groups are removed.  RCU is used to protect it.
850 	 */
851 	struct list_head space_info;
852 
853 	struct btrfs_space_info *data_sinfo;
854 
855 	struct reloc_control *reloc_ctl;
856 
857 	/* data_alloc_cluster is only used in ssd_spread mode */
858 	struct btrfs_free_cluster data_alloc_cluster;
859 
860 	/* all metadata allocations go through this cluster */
861 	struct btrfs_free_cluster meta_alloc_cluster;
862 
863 	/* auto defrag inodes go here */
864 	spinlock_t defrag_inodes_lock;
865 	struct rb_root defrag_inodes;
866 	atomic_t defrag_running;
867 
868 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
869 	seqlock_t profiles_lock;
870 	/*
871 	 * these three are in extended format (availability of single
872 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
873 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
874 	 */
875 	u64 avail_data_alloc_bits;
876 	u64 avail_metadata_alloc_bits;
877 	u64 avail_system_alloc_bits;
878 
879 	/* restriper state */
880 	spinlock_t balance_lock;
881 	struct mutex balance_mutex;
882 	atomic_t balance_pause_req;
883 	atomic_t balance_cancel_req;
884 	struct btrfs_balance_control *balance_ctl;
885 	wait_queue_head_t balance_wait_q;
886 
887 	/* Cancellation requests for chunk relocation */
888 	atomic_t reloc_cancel_req;
889 
890 	u32 data_chunk_allocations;
891 	u32 metadata_ratio;
892 
893 	void *bdev_holder;
894 
895 	/* private scrub information */
896 	struct mutex scrub_lock;
897 	atomic_t scrubs_running;
898 	atomic_t scrub_pause_req;
899 	atomic_t scrubs_paused;
900 	atomic_t scrub_cancel_req;
901 	wait_queue_head_t scrub_pause_wait;
902 	/*
903 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
904 	 * running.
905 	 */
906 	refcount_t scrub_workers_refcnt;
907 	struct btrfs_workqueue *scrub_workers;
908 	struct btrfs_workqueue *scrub_wr_completion_workers;
909 	struct btrfs_workqueue *scrub_parity_workers;
910 	struct btrfs_subpage_info *subpage_info;
911 
912 	struct btrfs_discard_ctl discard_ctl;
913 
914 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
915 	u32 check_integrity_print_mask;
916 #endif
917 	/* is qgroup tracking in a consistent state? */
918 	u64 qgroup_flags;
919 
920 	/* holds configuration and tracking. Protected by qgroup_lock */
921 	struct rb_root qgroup_tree;
922 	spinlock_t qgroup_lock;
923 
924 	/*
925 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
926 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
927 	 */
928 	struct ulist *qgroup_ulist;
929 
930 	/*
931 	 * Protect user change for quota operations. If a transaction is needed,
932 	 * it must be started before locking this lock.
933 	 */
934 	struct mutex qgroup_ioctl_lock;
935 
936 	/* list of dirty qgroups to be written at next commit */
937 	struct list_head dirty_qgroups;
938 
939 	/* used by qgroup for an efficient tree traversal */
940 	u64 qgroup_seq;
941 
942 	/* qgroup rescan items */
943 	struct mutex qgroup_rescan_lock; /* protects the progress item */
944 	struct btrfs_key qgroup_rescan_progress;
945 	struct btrfs_workqueue *qgroup_rescan_workers;
946 	struct completion qgroup_rescan_completion;
947 	struct btrfs_work qgroup_rescan_work;
948 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
949 
950 	/* filesystem state */
951 	unsigned long fs_state;
952 
953 	struct btrfs_delayed_root *delayed_root;
954 
955 	/* readahead tree */
956 	spinlock_t reada_lock;
957 	struct radix_tree_root reada_tree;
958 
959 	/* readahead works cnt */
960 	atomic_t reada_works_cnt;
961 
962 	/* Extent buffer radix tree */
963 	spinlock_t buffer_lock;
964 	/* Entries are eb->start / sectorsize */
965 	struct radix_tree_root buffer_radix;
966 
967 	/* next backup root to be overwritten */
968 	int backup_root_index;
969 
970 	/* device replace state */
971 	struct btrfs_dev_replace dev_replace;
972 
973 	struct semaphore uuid_tree_rescan_sem;
974 
975 	/* Used to reclaim the metadata space in the background. */
976 	struct work_struct async_reclaim_work;
977 	struct work_struct async_data_reclaim_work;
978 	struct work_struct preempt_reclaim_work;
979 
980 	/* Reclaim partially filled block groups in the background */
981 	struct work_struct reclaim_bgs_work;
982 	struct list_head reclaim_bgs;
983 	int bg_reclaim_threshold;
984 
985 	spinlock_t unused_bgs_lock;
986 	struct list_head unused_bgs;
987 	struct mutex unused_bg_unpin_mutex;
988 	/* Protect block groups that are going to be deleted */
989 	struct mutex reclaim_bgs_lock;
990 
991 	/* Cached block sizes */
992 	u32 nodesize;
993 	u32 sectorsize;
994 	/* ilog2 of sectorsize, use to avoid 64bit division */
995 	u32 sectorsize_bits;
996 	u32 csum_size;
997 	u32 csums_per_leaf;
998 	u32 stripesize;
999 
1000 	/* Block groups and devices containing active swapfiles. */
1001 	spinlock_t swapfile_pins_lock;
1002 	struct rb_root swapfile_pins;
1003 
1004 	struct crypto_shash *csum_shash;
1005 
1006 	spinlock_t send_reloc_lock;
1007 	/*
1008 	 * Number of send operations in progress.
1009 	 * Updated while holding fs_info::send_reloc_lock.
1010 	 */
1011 	int send_in_progress;
1012 
1013 	/* Type of exclusive operation running, protected by super_lock */
1014 	enum btrfs_exclusive_operation exclusive_operation;
1015 
1016 	/*
1017 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1018 	 * if the mode is enabled
1019 	 */
1020 	union {
1021 		u64 zone_size;
1022 		u64 zoned;
1023 	};
1024 
1025 	struct mutex zoned_meta_io_lock;
1026 	spinlock_t treelog_bg_lock;
1027 	u64 treelog_bg;
1028 
1029 	/*
1030 	 * Start of the dedicated data relocation block group, protected by
1031 	 * relocation_bg_lock.
1032 	 */
1033 	spinlock_t relocation_bg_lock;
1034 	u64 data_reloc_bg;
1035 
1036 	spinlock_t zone_active_bgs_lock;
1037 	struct list_head zone_active_bgs;
1038 
1039 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1040 	spinlock_t ref_verify_lock;
1041 	struct rb_root block_tree;
1042 #endif
1043 
1044 #ifdef CONFIG_BTRFS_DEBUG
1045 	struct kobject *debug_kobj;
1046 	struct kobject *discard_debug_kobj;
1047 	struct list_head allocated_roots;
1048 
1049 	spinlock_t eb_leak_lock;
1050 	struct list_head allocated_ebs;
1051 #endif
1052 };
1053 
1054 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1055 {
1056 	return sb->s_fs_info;
1057 }
1058 
1059 /*
1060  * The state of btrfs root
1061  */
1062 enum {
1063 	/*
1064 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1065 	 * with the balancing code.   But the race is very small, and only the
1066 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1067 	 * is used to tell us when more checks are required
1068 	 */
1069 	BTRFS_ROOT_IN_TRANS_SETUP,
1070 
1071 	/*
1072 	 * Set if tree blocks of this root can be shared by other roots.
1073 	 * Only subvolume trees and their reloc trees have this bit set.
1074 	 * Conflicts with TRACK_DIRTY bit.
1075 	 *
1076 	 * This affects two things:
1077 	 *
1078 	 * - How balance works
1079 	 *   For shareable roots, we need to use reloc tree and do path
1080 	 *   replacement for balance, and need various pre/post hooks for
1081 	 *   snapshot creation to handle them.
1082 	 *
1083 	 *   While for non-shareable trees, we just simply do a tree search
1084 	 *   with COW.
1085 	 *
1086 	 * - How dirty roots are tracked
1087 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1088 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1089 	 *   don't need to set this manually.
1090 	 */
1091 	BTRFS_ROOT_SHAREABLE,
1092 	BTRFS_ROOT_TRACK_DIRTY,
1093 	BTRFS_ROOT_IN_RADIX,
1094 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1095 	BTRFS_ROOT_DEFRAG_RUNNING,
1096 	BTRFS_ROOT_FORCE_COW,
1097 	BTRFS_ROOT_MULTI_LOG_TASKS,
1098 	BTRFS_ROOT_DIRTY,
1099 	BTRFS_ROOT_DELETING,
1100 
1101 	/*
1102 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1103 	 *
1104 	 * Set for the subvolume tree owning the reloc tree.
1105 	 */
1106 	BTRFS_ROOT_DEAD_RELOC_TREE,
1107 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1108 	BTRFS_ROOT_DEAD_TREE,
1109 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1110 	BTRFS_ROOT_HAS_LOG_TREE,
1111 	/* Qgroup flushing is in progress */
1112 	BTRFS_ROOT_QGROUP_FLUSHING,
1113 };
1114 
1115 /*
1116  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1117  * code. For detail check comment in fs/btrfs/qgroup.c.
1118  */
1119 struct btrfs_qgroup_swapped_blocks {
1120 	spinlock_t lock;
1121 	/* RM_EMPTY_ROOT() of above blocks[] */
1122 	bool swapped;
1123 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1124 };
1125 
1126 /*
1127  * in ram representation of the tree.  extent_root is used for all allocations
1128  * and for the extent tree extent_root root.
1129  */
1130 struct btrfs_root {
1131 	struct extent_buffer *node;
1132 
1133 	struct extent_buffer *commit_root;
1134 	struct btrfs_root *log_root;
1135 	struct btrfs_root *reloc_root;
1136 
1137 	unsigned long state;
1138 	struct btrfs_root_item root_item;
1139 	struct btrfs_key root_key;
1140 	struct btrfs_fs_info *fs_info;
1141 	struct extent_io_tree dirty_log_pages;
1142 
1143 	struct mutex objectid_mutex;
1144 
1145 	spinlock_t accounting_lock;
1146 	struct btrfs_block_rsv *block_rsv;
1147 
1148 	struct mutex log_mutex;
1149 	wait_queue_head_t log_writer_wait;
1150 	wait_queue_head_t log_commit_wait[2];
1151 	struct list_head log_ctxs[2];
1152 	/* Used only for log trees of subvolumes, not for the log root tree */
1153 	atomic_t log_writers;
1154 	atomic_t log_commit[2];
1155 	/* Used only for log trees of subvolumes, not for the log root tree */
1156 	atomic_t log_batch;
1157 	int log_transid;
1158 	/* No matter the commit succeeds or not*/
1159 	int log_transid_committed;
1160 	/* Just be updated when the commit succeeds. */
1161 	int last_log_commit;
1162 	pid_t log_start_pid;
1163 
1164 	u64 last_trans;
1165 
1166 	u32 type;
1167 
1168 	u64 free_objectid;
1169 
1170 	struct btrfs_key defrag_progress;
1171 	struct btrfs_key defrag_max;
1172 
1173 	/* The dirty list is only used by non-shareable roots */
1174 	struct list_head dirty_list;
1175 
1176 	struct list_head root_list;
1177 
1178 	spinlock_t log_extents_lock[2];
1179 	struct list_head logged_list[2];
1180 
1181 	int orphan_cleanup_state;
1182 
1183 	spinlock_t inode_lock;
1184 	/* red-black tree that keeps track of in-memory inodes */
1185 	struct rb_root inode_tree;
1186 
1187 	/*
1188 	 * radix tree that keeps track of delayed nodes of every inode,
1189 	 * protected by inode_lock
1190 	 */
1191 	struct radix_tree_root delayed_nodes_tree;
1192 	/*
1193 	 * right now this just gets used so that a root has its own devid
1194 	 * for stat.  It may be used for more later
1195 	 */
1196 	dev_t anon_dev;
1197 
1198 	spinlock_t root_item_lock;
1199 	refcount_t refs;
1200 
1201 	struct mutex delalloc_mutex;
1202 	spinlock_t delalloc_lock;
1203 	/*
1204 	 * all of the inodes that have delalloc bytes.  It is possible for
1205 	 * this list to be empty even when there is still dirty data=ordered
1206 	 * extents waiting to finish IO.
1207 	 */
1208 	struct list_head delalloc_inodes;
1209 	struct list_head delalloc_root;
1210 	u64 nr_delalloc_inodes;
1211 
1212 	struct mutex ordered_extent_mutex;
1213 	/*
1214 	 * this is used by the balancing code to wait for all the pending
1215 	 * ordered extents
1216 	 */
1217 	spinlock_t ordered_extent_lock;
1218 
1219 	/*
1220 	 * all of the data=ordered extents pending writeback
1221 	 * these can span multiple transactions and basically include
1222 	 * every dirty data page that isn't from nodatacow
1223 	 */
1224 	struct list_head ordered_extents;
1225 	struct list_head ordered_root;
1226 	u64 nr_ordered_extents;
1227 
1228 	/*
1229 	 * Not empty if this subvolume root has gone through tree block swap
1230 	 * (relocation)
1231 	 *
1232 	 * Will be used by reloc_control::dirty_subvol_roots.
1233 	 */
1234 	struct list_head reloc_dirty_list;
1235 
1236 	/*
1237 	 * Number of currently running SEND ioctls to prevent
1238 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1239 	 */
1240 	int send_in_progress;
1241 	/*
1242 	 * Number of currently running deduplication operations that have a
1243 	 * destination inode belonging to this root. Protected by the lock
1244 	 * root_item_lock.
1245 	 */
1246 	int dedupe_in_progress;
1247 	/* For exclusion of snapshot creation and nocow writes */
1248 	struct btrfs_drew_lock snapshot_lock;
1249 
1250 	atomic_t snapshot_force_cow;
1251 
1252 	/* For qgroup metadata reserved space */
1253 	spinlock_t qgroup_meta_rsv_lock;
1254 	u64 qgroup_meta_rsv_pertrans;
1255 	u64 qgroup_meta_rsv_prealloc;
1256 	wait_queue_head_t qgroup_flush_wait;
1257 
1258 	/* Number of active swapfiles */
1259 	atomic_t nr_swapfiles;
1260 
1261 	/* Record pairs of swapped blocks for qgroup */
1262 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1263 
1264 	/* Used only by log trees, when logging csum items */
1265 	struct extent_io_tree log_csum_range;
1266 
1267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1268 	u64 alloc_bytenr;
1269 #endif
1270 
1271 #ifdef CONFIG_BTRFS_DEBUG
1272 	struct list_head leak_list;
1273 #endif
1274 };
1275 
1276 /*
1277  * Structure that conveys information about an extent that is going to replace
1278  * all the extents in a file range.
1279  */
1280 struct btrfs_replace_extent_info {
1281 	u64 disk_offset;
1282 	u64 disk_len;
1283 	u64 data_offset;
1284 	u64 data_len;
1285 	u64 file_offset;
1286 	/* Pointer to a file extent item of type regular or prealloc. */
1287 	char *extent_buf;
1288 	/*
1289 	 * Set to true when attempting to replace a file range with a new extent
1290 	 * described by this structure, set to false when attempting to clone an
1291 	 * existing extent into a file range.
1292 	 */
1293 	bool is_new_extent;
1294 	/* Meaningful only if is_new_extent is true. */
1295 	int qgroup_reserved;
1296 	/*
1297 	 * Meaningful only if is_new_extent is true.
1298 	 * Used to track how many extent items we have already inserted in a
1299 	 * subvolume tree that refer to the extent described by this structure,
1300 	 * so that we know when to create a new delayed ref or update an existing
1301 	 * one.
1302 	 */
1303 	int insertions;
1304 };
1305 
1306 /* Arguments for btrfs_drop_extents() */
1307 struct btrfs_drop_extents_args {
1308 	/* Input parameters */
1309 
1310 	/*
1311 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1312 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1313 	 * is always released except if 'replace_extent' is true and
1314 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1315 	 * the path is kept locked.
1316 	 */
1317 	struct btrfs_path *path;
1318 	/* Start offset of the range to drop extents from */
1319 	u64 start;
1320 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1321 	u64 end;
1322 	/* If true drop all the extent maps in the range */
1323 	bool drop_cache;
1324 	/*
1325 	 * If true it means we want to insert a new extent after dropping all
1326 	 * the extents in the range. If this is true, the 'extent_item_size'
1327 	 * parameter must be set as well and the 'extent_inserted' field will
1328 	 * be set to true by btrfs_drop_extents() if it could insert the new
1329 	 * extent.
1330 	 * Note: when this is set to true the path must not be NULL.
1331 	 */
1332 	bool replace_extent;
1333 	/*
1334 	 * Used if 'replace_extent' is true. Size of the file extent item to
1335 	 * insert after dropping all existing extents in the range
1336 	 */
1337 	u32 extent_item_size;
1338 
1339 	/* Output parameters */
1340 
1341 	/*
1342 	 * Set to the minimum between the input parameter 'end' and the end
1343 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1344 	 * set even if btrfs_drop_extents() returns an error.
1345 	 */
1346 	u64 drop_end;
1347 	/*
1348 	 * The number of allocated bytes found in the range. This can be smaller
1349 	 * than the range's length when there are holes in the range.
1350 	 */
1351 	u64 bytes_found;
1352 	/*
1353 	 * Only set if 'replace_extent' is true. Set to true if we were able
1354 	 * to insert a replacement extent after dropping all extents in the
1355 	 * range, otherwise set to false by btrfs_drop_extents().
1356 	 * Also, if btrfs_drop_extents() has set this to true it means it
1357 	 * returned with the path locked, otherwise if it has set this to
1358 	 * false it has returned with the path released.
1359 	 */
1360 	bool extent_inserted;
1361 };
1362 
1363 struct btrfs_file_private {
1364 	void *filldir_buf;
1365 };
1366 
1367 
1368 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1369 {
1370 
1371 	return info->nodesize - sizeof(struct btrfs_header);
1372 }
1373 
1374 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1375 
1376 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1377 {
1378 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1379 }
1380 
1381 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1382 {
1383 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1384 }
1385 
1386 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1387 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1388 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1389 {
1390 	return BTRFS_MAX_ITEM_SIZE(info) -
1391 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1392 }
1393 
1394 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1395 {
1396 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1397 }
1398 
1399 /*
1400  * Flags for mount options.
1401  *
1402  * Note: don't forget to add new options to btrfs_show_options()
1403  */
1404 enum {
1405 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1406 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1407 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1408 	BTRFS_MOUNT_SSD				= (1UL << 3),
1409 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1410 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1411 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1412 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1413 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1414 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1415 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1416 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1417 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1418 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1419 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1420 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1421 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1422 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1423 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1424 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1425 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1426 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1427 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1428 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1429 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1430 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1431 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1432 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1433 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1434 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1435 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1436 };
1437 
1438 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1439 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1440 
1441 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1442 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1443 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1444 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1445 					 BTRFS_MOUNT_##opt)
1446 
1447 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1448 do {									\
1449 	if (!btrfs_test_opt(fs_info, opt))				\
1450 		btrfs_info(fs_info, fmt, ##args);			\
1451 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1452 } while (0)
1453 
1454 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1455 do {									\
1456 	if (btrfs_test_opt(fs_info, opt))				\
1457 		btrfs_info(fs_info, fmt, ##args);			\
1458 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1459 } while (0)
1460 
1461 /*
1462  * Requests for changes that need to be done during transaction commit.
1463  *
1464  * Internal mount options that are used for special handling of the real
1465  * mount options (eg. cannot be set during remount and have to be set during
1466  * transaction commit)
1467  */
1468 
1469 #define BTRFS_PENDING_COMMIT			(0)
1470 
1471 #define btrfs_test_pending(info, opt)	\
1472 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1473 #define btrfs_set_pending(info, opt)	\
1474 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1475 #define btrfs_clear_pending(info, opt)	\
1476 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1477 
1478 /*
1479  * Helpers for setting pending mount option changes.
1480  *
1481  * Expects corresponding macros
1482  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1483  */
1484 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1485 do {                                                                   \
1486        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1487                btrfs_info((info), fmt, ##args);                        \
1488                btrfs_set_pending((info), SET_##opt);                   \
1489                btrfs_clear_pending((info), CLEAR_##opt);               \
1490        }                                                               \
1491 } while(0)
1492 
1493 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1494 do {                                                                   \
1495        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1496                btrfs_info((info), fmt, ##args);                        \
1497                btrfs_set_pending((info), CLEAR_##opt);                 \
1498                btrfs_clear_pending((info), SET_##opt);                 \
1499        }                                                               \
1500 } while(0)
1501 
1502 /*
1503  * Inode flags
1504  */
1505 #define BTRFS_INODE_NODATASUM		(1U << 0)
1506 #define BTRFS_INODE_NODATACOW		(1U << 1)
1507 #define BTRFS_INODE_READONLY		(1U << 2)
1508 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1509 #define BTRFS_INODE_PREALLOC		(1U << 4)
1510 #define BTRFS_INODE_SYNC		(1U << 5)
1511 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1512 #define BTRFS_INODE_APPEND		(1U << 7)
1513 #define BTRFS_INODE_NODUMP		(1U << 8)
1514 #define BTRFS_INODE_NOATIME		(1U << 9)
1515 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1516 #define BTRFS_INODE_COMPRESS		(1U << 11)
1517 
1518 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1519 
1520 #define BTRFS_INODE_FLAG_MASK						\
1521 	(BTRFS_INODE_NODATASUM |					\
1522 	 BTRFS_INODE_NODATACOW |					\
1523 	 BTRFS_INODE_READONLY |						\
1524 	 BTRFS_INODE_NOCOMPRESS |					\
1525 	 BTRFS_INODE_PREALLOC |						\
1526 	 BTRFS_INODE_SYNC |						\
1527 	 BTRFS_INODE_IMMUTABLE |					\
1528 	 BTRFS_INODE_APPEND |						\
1529 	 BTRFS_INODE_NODUMP |						\
1530 	 BTRFS_INODE_NOATIME |						\
1531 	 BTRFS_INODE_DIRSYNC |						\
1532 	 BTRFS_INODE_COMPRESS |						\
1533 	 BTRFS_INODE_ROOT_ITEM_INIT)
1534 
1535 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1536 
1537 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1538 
1539 struct btrfs_map_token {
1540 	struct extent_buffer *eb;
1541 	char *kaddr;
1542 	unsigned long offset;
1543 };
1544 
1545 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1546 				((bytes) >> (fs_info)->sectorsize_bits)
1547 
1548 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1549 					struct extent_buffer *eb)
1550 {
1551 	token->eb = eb;
1552 	token->kaddr = page_address(eb->pages[0]);
1553 	token->offset = 0;
1554 }
1555 
1556 /* some macros to generate set/get functions for the struct fields.  This
1557  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1558  * one for u8:
1559  */
1560 #define le8_to_cpu(v) (v)
1561 #define cpu_to_le8(v) (v)
1562 #define __le8 u8
1563 
1564 static inline u8 get_unaligned_le8(const void *p)
1565 {
1566        return *(u8 *)p;
1567 }
1568 
1569 static inline void put_unaligned_le8(u8 val, void *p)
1570 {
1571        *(u8 *)p = val;
1572 }
1573 
1574 #define read_eb_member(eb, ptr, type, member, result) (\
1575 	read_extent_buffer(eb, (char *)(result),			\
1576 			   ((unsigned long)(ptr)) +			\
1577 			    offsetof(type, member),			\
1578 			   sizeof(((type *)0)->member)))
1579 
1580 #define write_eb_member(eb, ptr, type, member, result) (\
1581 	write_extent_buffer(eb, (char *)(result),			\
1582 			   ((unsigned long)(ptr)) +			\
1583 			    offsetof(type, member),			\
1584 			   sizeof(((type *)0)->member)))
1585 
1586 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1587 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1588 			       const void *ptr, unsigned long off);	\
1589 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1590 			    const void *ptr, unsigned long off,		\
1591 			    u##bits val);				\
1592 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1593 			 const void *ptr, unsigned long off);		\
1594 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1595 		      unsigned long off, u##bits val);
1596 
1597 DECLARE_BTRFS_SETGET_BITS(8)
1598 DECLARE_BTRFS_SETGET_BITS(16)
1599 DECLARE_BTRFS_SETGET_BITS(32)
1600 DECLARE_BTRFS_SETGET_BITS(64)
1601 
1602 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1603 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1604 				   const type *s)			\
1605 {									\
1606 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1607 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1608 }									\
1609 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1610 				    u##bits val)			\
1611 {									\
1612 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1613 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1614 }									\
1615 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1616 					 const type *s)			\
1617 {									\
1618 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1619 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1620 }									\
1621 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1622 					  type *s, u##bits val)		\
1623 {									\
1624 	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1625 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1626 }
1627 
1628 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1629 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1630 {									\
1631 	const type *p = page_address(eb->pages[0]) +			\
1632 			offset_in_page(eb->start);			\
1633 	return get_unaligned_le##bits(&p->member);			\
1634 }									\
1635 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1636 				    u##bits val)			\
1637 {									\
1638 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1639 	put_unaligned_le##bits(val, &p->member);			\
1640 }
1641 
1642 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1643 static inline u##bits btrfs_##name(const type *s)			\
1644 {									\
1645 	return get_unaligned_le##bits(&s->member);			\
1646 }									\
1647 static inline void btrfs_set_##name(type *s, u##bits val)		\
1648 {									\
1649 	put_unaligned_le##bits(val, &s->member);			\
1650 }
1651 
1652 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1653 					   struct btrfs_dev_item *s)
1654 {
1655 	BUILD_BUG_ON(sizeof(u64) !=
1656 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1657 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1658 					    total_bytes));
1659 }
1660 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1661 						struct btrfs_dev_item *s,
1662 						u64 val)
1663 {
1664 	BUILD_BUG_ON(sizeof(u64) !=
1665 		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1666 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1667 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1668 }
1669 
1670 
1671 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1672 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1673 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1674 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1675 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1676 		   start_offset, 64);
1677 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1678 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1679 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1680 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1681 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1682 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1683 
1684 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1685 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1686 			 total_bytes, 64);
1687 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1688 			 bytes_used, 64);
1689 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1690 			 io_align, 32);
1691 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1692 			 io_width, 32);
1693 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1694 			 sector_size, 32);
1695 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1696 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1697 			 dev_group, 32);
1698 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1699 			 seek_speed, 8);
1700 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1701 			 bandwidth, 8);
1702 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1703 			 generation, 64);
1704 
1705 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1706 {
1707 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1708 }
1709 
1710 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1711 {
1712 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1713 }
1714 
1715 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1716 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1717 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1718 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1719 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1720 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1721 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1722 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1723 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1724 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1725 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1726 
1727 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1728 {
1729 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1730 }
1731 
1732 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1734 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1735 			 stripe_len, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1737 			 io_align, 32);
1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1739 			 io_width, 32);
1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1741 			 sector_size, 32);
1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1743 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1744 			 num_stripes, 16);
1745 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1746 			 sub_stripes, 16);
1747 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1748 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1749 
1750 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1751 						   int nr)
1752 {
1753 	unsigned long offset = (unsigned long)c;
1754 	offset += offsetof(struct btrfs_chunk, stripe);
1755 	offset += nr * sizeof(struct btrfs_stripe);
1756 	return (struct btrfs_stripe *)offset;
1757 }
1758 
1759 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1760 {
1761 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1762 }
1763 
1764 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1765 					 struct btrfs_chunk *c, int nr)
1766 {
1767 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1768 }
1769 
1770 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1771 					 struct btrfs_chunk *c, int nr)
1772 {
1773 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1774 }
1775 
1776 /* struct btrfs_block_group_item */
1777 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1778 			 used, 64);
1779 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1780 			 used, 64);
1781 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1782 			struct btrfs_block_group_item, chunk_objectid, 64);
1783 
1784 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1785 		   struct btrfs_block_group_item, chunk_objectid, 64);
1786 BTRFS_SETGET_FUNCS(block_group_flags,
1787 		   struct btrfs_block_group_item, flags, 64);
1788 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1789 			struct btrfs_block_group_item, flags, 64);
1790 
1791 /* struct btrfs_free_space_info */
1792 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1793 		   extent_count, 32);
1794 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1795 
1796 /* struct btrfs_inode_ref */
1797 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1798 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1799 
1800 /* struct btrfs_inode_extref */
1801 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1802 		   parent_objectid, 64);
1803 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1804 		   name_len, 16);
1805 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1806 
1807 /* struct btrfs_inode_item */
1808 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1809 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1810 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1811 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1812 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1813 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1814 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1815 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1816 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1817 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1818 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1819 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1821 			 generation, 64);
1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1823 			 sequence, 64);
1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1825 			 transid, 64);
1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1828 			 nbytes, 64);
1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1830 			 block_group, 64);
1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1834 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1835 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1836 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1837 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1838 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1839 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1840 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1841 
1842 /* struct btrfs_dev_extent */
1843 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1844 		   chunk_tree, 64);
1845 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1846 		   chunk_objectid, 64);
1847 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1848 		   chunk_offset, 64);
1849 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1850 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1851 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1852 		   generation, 64);
1853 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1854 
1855 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1856 
1857 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1858 					struct btrfs_tree_block_info *item,
1859 					struct btrfs_disk_key *key)
1860 {
1861 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1862 }
1863 
1864 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1865 					    struct btrfs_tree_block_info *item,
1866 					    struct btrfs_disk_key *key)
1867 {
1868 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1869 }
1870 
1871 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1872 		   root, 64);
1873 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1874 		   objectid, 64);
1875 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1876 		   offset, 64);
1877 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1878 		   count, 32);
1879 
1880 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1881 		   count, 32);
1882 
1883 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1884 		   type, 8);
1885 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1886 		   offset, 64);
1887 
1888 static inline u32 btrfs_extent_inline_ref_size(int type)
1889 {
1890 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1891 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1892 		return sizeof(struct btrfs_extent_inline_ref);
1893 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1894 		return sizeof(struct btrfs_shared_data_ref) +
1895 		       sizeof(struct btrfs_extent_inline_ref);
1896 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1897 		return sizeof(struct btrfs_extent_data_ref) +
1898 		       offsetof(struct btrfs_extent_inline_ref, offset);
1899 	return 0;
1900 }
1901 
1902 /* struct btrfs_node */
1903 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1904 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1905 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1906 			 blockptr, 64);
1907 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1908 			 generation, 64);
1909 
1910 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1911 {
1912 	unsigned long ptr;
1913 	ptr = offsetof(struct btrfs_node, ptrs) +
1914 		sizeof(struct btrfs_key_ptr) * nr;
1915 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1916 }
1917 
1918 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1919 					   int nr, u64 val)
1920 {
1921 	unsigned long ptr;
1922 	ptr = offsetof(struct btrfs_node, ptrs) +
1923 		sizeof(struct btrfs_key_ptr) * nr;
1924 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1925 }
1926 
1927 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1928 {
1929 	unsigned long ptr;
1930 	ptr = offsetof(struct btrfs_node, ptrs) +
1931 		sizeof(struct btrfs_key_ptr) * nr;
1932 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1933 }
1934 
1935 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1936 						 int nr, u64 val)
1937 {
1938 	unsigned long ptr;
1939 	ptr = offsetof(struct btrfs_node, ptrs) +
1940 		sizeof(struct btrfs_key_ptr) * nr;
1941 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1942 }
1943 
1944 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1945 {
1946 	return offsetof(struct btrfs_node, ptrs) +
1947 		sizeof(struct btrfs_key_ptr) * nr;
1948 }
1949 
1950 void btrfs_node_key(const struct extent_buffer *eb,
1951 		    struct btrfs_disk_key *disk_key, int nr);
1952 
1953 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1954 				      struct btrfs_disk_key *disk_key, int nr)
1955 {
1956 	unsigned long ptr;
1957 	ptr = btrfs_node_key_ptr_offset(nr);
1958 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1959 		       struct btrfs_key_ptr, key, disk_key);
1960 }
1961 
1962 /* struct btrfs_item */
1963 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1964 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1965 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1966 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1967 
1968 static inline unsigned long btrfs_item_nr_offset(int nr)
1969 {
1970 	return offsetof(struct btrfs_leaf, items) +
1971 		sizeof(struct btrfs_item) * nr;
1972 }
1973 
1974 static inline struct btrfs_item *btrfs_item_nr(int nr)
1975 {
1976 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1977 }
1978 
1979 static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1980 				 struct btrfs_item *item)
1981 {
1982 	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1983 }
1984 
1985 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1986 {
1987 	return btrfs_item_end(eb, btrfs_item_nr(nr));
1988 }
1989 
1990 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1991 {
1992 	return btrfs_item_offset(eb, btrfs_item_nr(nr));
1993 }
1994 
1995 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1996 {
1997 	return btrfs_item_size(eb, btrfs_item_nr(nr));
1998 }
1999 
2000 static inline void btrfs_item_key(const struct extent_buffer *eb,
2001 			   struct btrfs_disk_key *disk_key, int nr)
2002 {
2003 	struct btrfs_item *item = btrfs_item_nr(nr);
2004 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2005 }
2006 
2007 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2008 			       struct btrfs_disk_key *disk_key, int nr)
2009 {
2010 	struct btrfs_item *item = btrfs_item_nr(nr);
2011 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2012 }
2013 
2014 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2015 
2016 /*
2017  * struct btrfs_root_ref
2018  */
2019 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2020 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2021 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2022 
2023 /* struct btrfs_dir_item */
2024 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2025 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2026 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2027 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2028 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2029 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2030 			 data_len, 16);
2031 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2032 			 name_len, 16);
2033 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2034 			 transid, 64);
2035 
2036 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2037 				      const struct btrfs_dir_item *item,
2038 				      struct btrfs_disk_key *key)
2039 {
2040 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2041 }
2042 
2043 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2044 					  struct btrfs_dir_item *item,
2045 					  const struct btrfs_disk_key *key)
2046 {
2047 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2048 }
2049 
2050 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2051 		   num_entries, 64);
2052 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2053 		   num_bitmaps, 64);
2054 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2055 		   generation, 64);
2056 
2057 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2058 					const struct btrfs_free_space_header *h,
2059 					struct btrfs_disk_key *key)
2060 {
2061 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2062 }
2063 
2064 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2065 					    struct btrfs_free_space_header *h,
2066 					    const struct btrfs_disk_key *key)
2067 {
2068 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2069 }
2070 
2071 /* struct btrfs_disk_key */
2072 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2073 			 objectid, 64);
2074 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2075 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2076 
2077 #ifdef __LITTLE_ENDIAN
2078 
2079 /*
2080  * Optimized helpers for little-endian architectures where CPU and on-disk
2081  * structures have the same endianness and we can skip conversions.
2082  */
2083 
2084 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2085 					 const struct btrfs_disk_key *disk_key)
2086 {
2087 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2088 }
2089 
2090 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2091 					 const struct btrfs_key *cpu_key)
2092 {
2093 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2094 }
2095 
2096 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2097 					 struct btrfs_key *cpu_key, int nr)
2098 {
2099 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2100 
2101 	btrfs_node_key(eb, disk_key, nr);
2102 }
2103 
2104 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2105 					 struct btrfs_key *cpu_key, int nr)
2106 {
2107 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2108 
2109 	btrfs_item_key(eb, disk_key, nr);
2110 }
2111 
2112 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2113 					     const struct btrfs_dir_item *item,
2114 					     struct btrfs_key *cpu_key)
2115 {
2116 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2117 
2118 	btrfs_dir_item_key(eb, item, disk_key);
2119 }
2120 
2121 #else
2122 
2123 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2124 					 const struct btrfs_disk_key *disk)
2125 {
2126 	cpu->offset = le64_to_cpu(disk->offset);
2127 	cpu->type = disk->type;
2128 	cpu->objectid = le64_to_cpu(disk->objectid);
2129 }
2130 
2131 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2132 					 const struct btrfs_key *cpu)
2133 {
2134 	disk->offset = cpu_to_le64(cpu->offset);
2135 	disk->type = cpu->type;
2136 	disk->objectid = cpu_to_le64(cpu->objectid);
2137 }
2138 
2139 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2140 					 struct btrfs_key *key, int nr)
2141 {
2142 	struct btrfs_disk_key disk_key;
2143 	btrfs_node_key(eb, &disk_key, nr);
2144 	btrfs_disk_key_to_cpu(key, &disk_key);
2145 }
2146 
2147 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2148 					 struct btrfs_key *key, int nr)
2149 {
2150 	struct btrfs_disk_key disk_key;
2151 	btrfs_item_key(eb, &disk_key, nr);
2152 	btrfs_disk_key_to_cpu(key, &disk_key);
2153 }
2154 
2155 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2156 					     const struct btrfs_dir_item *item,
2157 					     struct btrfs_key *key)
2158 {
2159 	struct btrfs_disk_key disk_key;
2160 	btrfs_dir_item_key(eb, item, &disk_key);
2161 	btrfs_disk_key_to_cpu(key, &disk_key);
2162 }
2163 
2164 #endif
2165 
2166 /* struct btrfs_header */
2167 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2168 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2169 			  generation, 64);
2170 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2171 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2172 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2173 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2174 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2175 			 generation, 64);
2176 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2177 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2178 			 nritems, 32);
2179 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2180 
2181 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2182 {
2183 	return (btrfs_header_flags(eb) & flag) == flag;
2184 }
2185 
2186 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2187 {
2188 	u64 flags = btrfs_header_flags(eb);
2189 	btrfs_set_header_flags(eb, flags | flag);
2190 }
2191 
2192 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2193 {
2194 	u64 flags = btrfs_header_flags(eb);
2195 	btrfs_set_header_flags(eb, flags & ~flag);
2196 }
2197 
2198 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2199 {
2200 	u64 flags = btrfs_header_flags(eb);
2201 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2202 }
2203 
2204 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2205 						int rev)
2206 {
2207 	u64 flags = btrfs_header_flags(eb);
2208 	flags &= ~BTRFS_BACKREF_REV_MASK;
2209 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2210 	btrfs_set_header_flags(eb, flags);
2211 }
2212 
2213 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2214 {
2215 	return btrfs_header_level(eb) == 0;
2216 }
2217 
2218 /* struct btrfs_root_item */
2219 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2220 		   generation, 64);
2221 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2222 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2223 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2224 
2225 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2226 			 generation, 64);
2227 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2228 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2229 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2230 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2231 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2232 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2233 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2234 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2235 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2236 			 last_snapshot, 64);
2237 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2238 			 generation_v2, 64);
2239 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2240 			 ctransid, 64);
2241 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2242 			 otransid, 64);
2243 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2244 			 stransid, 64);
2245 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2246 			 rtransid, 64);
2247 
2248 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2249 {
2250 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2251 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2252 }
2253 
2254 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2255 {
2256 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2257 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2258 }
2259 
2260 /* struct btrfs_root_backup */
2261 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2262 		   tree_root, 64);
2263 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2264 		   tree_root_gen, 64);
2265 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2266 		   tree_root_level, 8);
2267 
2268 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2269 		   chunk_root, 64);
2270 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2271 		   chunk_root_gen, 64);
2272 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2273 		   chunk_root_level, 8);
2274 
2275 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2276 		   extent_root, 64);
2277 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2278 		   extent_root_gen, 64);
2279 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2280 		   extent_root_level, 8);
2281 
2282 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2283 		   fs_root, 64);
2284 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2285 		   fs_root_gen, 64);
2286 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2287 		   fs_root_level, 8);
2288 
2289 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2290 		   dev_root, 64);
2291 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2292 		   dev_root_gen, 64);
2293 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2294 		   dev_root_level, 8);
2295 
2296 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2297 		   csum_root, 64);
2298 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2299 		   csum_root_gen, 64);
2300 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2301 		   csum_root_level, 8);
2302 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2303 		   total_bytes, 64);
2304 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2305 		   bytes_used, 64);
2306 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2307 		   num_devices, 64);
2308 
2309 /* struct btrfs_balance_item */
2310 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2311 
2312 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2313 				      const struct btrfs_balance_item *bi,
2314 				      struct btrfs_disk_balance_args *ba)
2315 {
2316 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2317 }
2318 
2319 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2320 				  struct btrfs_balance_item *bi,
2321 				  const struct btrfs_disk_balance_args *ba)
2322 {
2323 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2324 }
2325 
2326 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2327 				      const struct btrfs_balance_item *bi,
2328 				      struct btrfs_disk_balance_args *ba)
2329 {
2330 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2331 }
2332 
2333 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2334 				  struct btrfs_balance_item *bi,
2335 				  const struct btrfs_disk_balance_args *ba)
2336 {
2337 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2338 }
2339 
2340 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2341 				     const struct btrfs_balance_item *bi,
2342 				     struct btrfs_disk_balance_args *ba)
2343 {
2344 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2345 }
2346 
2347 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2348 				 struct btrfs_balance_item *bi,
2349 				 const struct btrfs_disk_balance_args *ba)
2350 {
2351 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2352 }
2353 
2354 static inline void
2355 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2356 			       const struct btrfs_disk_balance_args *disk)
2357 {
2358 	memset(cpu, 0, sizeof(*cpu));
2359 
2360 	cpu->profiles = le64_to_cpu(disk->profiles);
2361 	cpu->usage = le64_to_cpu(disk->usage);
2362 	cpu->devid = le64_to_cpu(disk->devid);
2363 	cpu->pstart = le64_to_cpu(disk->pstart);
2364 	cpu->pend = le64_to_cpu(disk->pend);
2365 	cpu->vstart = le64_to_cpu(disk->vstart);
2366 	cpu->vend = le64_to_cpu(disk->vend);
2367 	cpu->target = le64_to_cpu(disk->target);
2368 	cpu->flags = le64_to_cpu(disk->flags);
2369 	cpu->limit = le64_to_cpu(disk->limit);
2370 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2371 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2372 }
2373 
2374 static inline void
2375 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2376 			       const struct btrfs_balance_args *cpu)
2377 {
2378 	memset(disk, 0, sizeof(*disk));
2379 
2380 	disk->profiles = cpu_to_le64(cpu->profiles);
2381 	disk->usage = cpu_to_le64(cpu->usage);
2382 	disk->devid = cpu_to_le64(cpu->devid);
2383 	disk->pstart = cpu_to_le64(cpu->pstart);
2384 	disk->pend = cpu_to_le64(cpu->pend);
2385 	disk->vstart = cpu_to_le64(cpu->vstart);
2386 	disk->vend = cpu_to_le64(cpu->vend);
2387 	disk->target = cpu_to_le64(cpu->target);
2388 	disk->flags = cpu_to_le64(cpu->flags);
2389 	disk->limit = cpu_to_le64(cpu->limit);
2390 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2391 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2392 }
2393 
2394 /* struct btrfs_super_block */
2395 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2396 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2397 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2398 			 generation, 64);
2399 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2400 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2401 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2402 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2403 			 struct btrfs_super_block, chunk_root_generation, 64);
2404 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2405 			 root_level, 8);
2406 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2407 			 chunk_root, 64);
2408 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2409 			 chunk_root_level, 8);
2410 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2411 			 log_root, 64);
2412 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2413 			 log_root_transid, 64);
2414 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2415 			 log_root_level, 8);
2416 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2417 			 total_bytes, 64);
2418 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2419 			 bytes_used, 64);
2420 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2421 			 sectorsize, 32);
2422 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2423 			 nodesize, 32);
2424 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2425 			 stripesize, 32);
2426 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2427 			 root_dir_objectid, 64);
2428 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2429 			 num_devices, 64);
2430 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2431 			 compat_flags, 64);
2432 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2433 			 compat_ro_flags, 64);
2434 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2435 			 incompat_flags, 64);
2436 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2437 			 csum_type, 16);
2438 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2439 			 cache_generation, 64);
2440 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2441 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2442 			 uuid_tree_generation, 64);
2443 
2444 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2445 const char *btrfs_super_csum_name(u16 csum_type);
2446 const char *btrfs_super_csum_driver(u16 csum_type);
2447 size_t __attribute_const__ btrfs_get_num_csums(void);
2448 
2449 
2450 /*
2451  * The leaf data grows from end-to-front in the node.
2452  * this returns the address of the start of the last item,
2453  * which is the stop of the leaf data stack
2454  */
2455 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2456 {
2457 	u32 nr = btrfs_header_nritems(leaf);
2458 
2459 	if (nr == 0)
2460 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2461 	return btrfs_item_offset_nr(leaf, nr - 1);
2462 }
2463 
2464 /* struct btrfs_file_extent_item */
2465 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2466 			 type, 8);
2467 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2468 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2469 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2470 			 struct btrfs_file_extent_item, offset, 64);
2471 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2472 			 struct btrfs_file_extent_item, generation, 64);
2473 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2474 			 struct btrfs_file_extent_item, num_bytes, 64);
2475 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2476 			 struct btrfs_file_extent_item, ram_bytes, 64);
2477 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2478 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2479 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2480 			 struct btrfs_file_extent_item, compression, 8);
2481 
2482 static inline unsigned long
2483 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2484 {
2485 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2486 }
2487 
2488 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2489 {
2490 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2491 }
2492 
2493 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2494 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2495 		   disk_bytenr, 64);
2496 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2497 		   generation, 64);
2498 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2499 		   disk_num_bytes, 64);
2500 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2501 		  offset, 64);
2502 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2503 		   num_bytes, 64);
2504 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2505 		   ram_bytes, 64);
2506 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2507 		   compression, 8);
2508 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2509 		   encryption, 8);
2510 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2511 		   other_encoding, 16);
2512 
2513 /*
2514  * this returns the number of bytes used by the item on disk, minus the
2515  * size of any extent headers.  If a file is compressed on disk, this is
2516  * the compressed size
2517  */
2518 static inline u32 btrfs_file_extent_inline_item_len(
2519 						const struct extent_buffer *eb,
2520 						struct btrfs_item *e)
2521 {
2522 	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2523 }
2524 
2525 /* btrfs_qgroup_status_item */
2526 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2527 		   generation, 64);
2528 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2529 		   version, 64);
2530 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2531 		   flags, 64);
2532 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2533 		   rescan, 64);
2534 
2535 /* btrfs_qgroup_info_item */
2536 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2537 		   generation, 64);
2538 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2539 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2540 		   rfer_cmpr, 64);
2541 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2542 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2543 		   excl_cmpr, 64);
2544 
2545 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2546 			 struct btrfs_qgroup_info_item, generation, 64);
2547 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2548 			 rfer, 64);
2549 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2550 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2551 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2552 			 excl, 64);
2553 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2554 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2555 
2556 /* btrfs_qgroup_limit_item */
2557 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2558 		   flags, 64);
2559 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2560 		   max_rfer, 64);
2561 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2562 		   max_excl, 64);
2563 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2564 		   rsv_rfer, 64);
2565 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2566 		   rsv_excl, 64);
2567 
2568 /* btrfs_dev_replace_item */
2569 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2570 		   struct btrfs_dev_replace_item, src_devid, 64);
2571 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2572 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2573 		   64);
2574 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2575 		   replace_state, 64);
2576 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2577 		   time_started, 64);
2578 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2579 		   time_stopped, 64);
2580 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2581 		   num_write_errors, 64);
2582 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2583 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2584 		   64);
2585 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2586 		   cursor_left, 64);
2587 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2588 		   cursor_right, 64);
2589 
2590 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2591 			 struct btrfs_dev_replace_item, src_devid, 64);
2592 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2593 			 struct btrfs_dev_replace_item,
2594 			 cont_reading_from_srcdev_mode, 64);
2595 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2596 			 struct btrfs_dev_replace_item, replace_state, 64);
2597 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2598 			 struct btrfs_dev_replace_item, time_started, 64);
2599 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2600 			 struct btrfs_dev_replace_item, time_stopped, 64);
2601 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2602 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2603 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2604 			 struct btrfs_dev_replace_item,
2605 			 num_uncorrectable_read_errors, 64);
2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2607 			 struct btrfs_dev_replace_item, cursor_left, 64);
2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2609 			 struct btrfs_dev_replace_item, cursor_right, 64);
2610 
2611 /* helper function to cast into the data area of the leaf. */
2612 #define btrfs_item_ptr(leaf, slot, type) \
2613 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2614 	btrfs_item_offset_nr(leaf, slot)))
2615 
2616 #define btrfs_item_ptr_offset(leaf, slot) \
2617 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2618 	btrfs_item_offset_nr(leaf, slot)))
2619 
2620 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2621 {
2622 	return crc32c(crc, address, length);
2623 }
2624 
2625 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2626 {
2627 	put_unaligned_le32(~crc, result);
2628 }
2629 
2630 static inline u64 btrfs_name_hash(const char *name, int len)
2631 {
2632        return crc32c((u32)~1, name, len);
2633 }
2634 
2635 /*
2636  * Figure the key offset of an extended inode ref
2637  */
2638 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2639                                    int len)
2640 {
2641        return (u64) crc32c(parent_objectid, name, len);
2642 }
2643 
2644 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2645 {
2646 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2647 }
2648 
2649 /* extent-tree.c */
2650 
2651 enum btrfs_inline_ref_type {
2652 	BTRFS_REF_TYPE_INVALID,
2653 	BTRFS_REF_TYPE_BLOCK,
2654 	BTRFS_REF_TYPE_DATA,
2655 	BTRFS_REF_TYPE_ANY,
2656 };
2657 
2658 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2659 				     struct btrfs_extent_inline_ref *iref,
2660 				     enum btrfs_inline_ref_type is_data);
2661 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2662 
2663 /*
2664  * Take the number of bytes to be checksummmed and figure out how many leaves
2665  * it would require to store the csums for that many bytes.
2666  */
2667 static inline u64 btrfs_csum_bytes_to_leaves(
2668 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2669 {
2670 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2671 
2672 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2673 }
2674 
2675 /*
2676  * Use this if we would be adding new items, as we could split nodes as we cow
2677  * down the tree.
2678  */
2679 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2680 						  unsigned num_items)
2681 {
2682 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2683 }
2684 
2685 /*
2686  * Doing a truncate or a modification won't result in new nodes or leaves, just
2687  * what we need for COW.
2688  */
2689 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2690 						 unsigned num_items)
2691 {
2692 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2693 }
2694 
2695 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2696 			      u64 start, u64 num_bytes);
2697 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2698 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2699 			   unsigned long count);
2700 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2701 				  struct btrfs_delayed_ref_root *delayed_refs,
2702 				  struct btrfs_delayed_ref_head *head);
2703 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2704 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2705 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2706 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2707 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2708 		     int reserved);
2709 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2710 				    u64 bytenr, u64 num_bytes);
2711 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2712 int btrfs_cross_ref_exist(struct btrfs_root *root,
2713 			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2714 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2715 					     struct btrfs_root *root,
2716 					     u64 parent, u64 root_objectid,
2717 					     const struct btrfs_disk_key *key,
2718 					     int level, u64 hint,
2719 					     u64 empty_size,
2720 					     enum btrfs_lock_nesting nest);
2721 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2722 			   struct btrfs_root *root,
2723 			   struct extent_buffer *buf,
2724 			   u64 parent, int last_ref);
2725 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2726 				     struct btrfs_root *root, u64 owner,
2727 				     u64 offset, u64 ram_bytes,
2728 				     struct btrfs_key *ins);
2729 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2730 				   u64 root_objectid, u64 owner, u64 offset,
2731 				   struct btrfs_key *ins);
2732 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2733 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2734 			 struct btrfs_key *ins, int is_data, int delalloc);
2735 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2736 		  struct extent_buffer *buf, int full_backref);
2737 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2738 		  struct extent_buffer *buf, int full_backref);
2739 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2740 				struct extent_buffer *eb, u64 flags,
2741 				int level, int is_data);
2742 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2743 
2744 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2745 			       u64 start, u64 len, int delalloc);
2746 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2747 			      u64 len);
2748 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2749 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2750 			 struct btrfs_ref *generic_ref);
2751 
2752 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2753 
2754 /*
2755  * Different levels for to flush space when doing space reservations.
2756  *
2757  * The higher the level, the more methods we try to reclaim space.
2758  */
2759 enum btrfs_reserve_flush_enum {
2760 	/* If we are in the transaction, we can't flush anything.*/
2761 	BTRFS_RESERVE_NO_FLUSH,
2762 
2763 	/*
2764 	 * Flush space by:
2765 	 * - Running delayed inode items
2766 	 * - Allocating a new chunk
2767 	 */
2768 	BTRFS_RESERVE_FLUSH_LIMIT,
2769 
2770 	/*
2771 	 * Flush space by:
2772 	 * - Running delayed inode items
2773 	 * - Running delayed refs
2774 	 * - Running delalloc and waiting for ordered extents
2775 	 * - Allocating a new chunk
2776 	 */
2777 	BTRFS_RESERVE_FLUSH_EVICT,
2778 
2779 	/*
2780 	 * Flush space by above mentioned methods and by:
2781 	 * - Running delayed iputs
2782 	 * - Committing transaction
2783 	 *
2784 	 * Can be interrupted by a fatal signal.
2785 	 */
2786 	BTRFS_RESERVE_FLUSH_DATA,
2787 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2788 	BTRFS_RESERVE_FLUSH_ALL,
2789 
2790 	/*
2791 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2792 	 * global rsv.
2793 	 *
2794 	 * Can be interrupted by a fatal signal.
2795 	 */
2796 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2797 };
2798 
2799 enum btrfs_flush_state {
2800 	FLUSH_DELAYED_ITEMS_NR	=	1,
2801 	FLUSH_DELAYED_ITEMS	=	2,
2802 	FLUSH_DELAYED_REFS_NR	=	3,
2803 	FLUSH_DELAYED_REFS	=	4,
2804 	FLUSH_DELALLOC		=	5,
2805 	FLUSH_DELALLOC_WAIT	=	6,
2806 	FLUSH_DELALLOC_FULL	=	7,
2807 	ALLOC_CHUNK		=	8,
2808 	ALLOC_CHUNK_FORCE	=	9,
2809 	RUN_DELAYED_IPUTS	=	10,
2810 	COMMIT_TRANS		=	11,
2811 };
2812 
2813 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2814 				     struct btrfs_block_rsv *rsv,
2815 				     int nitems, bool use_global_rsv);
2816 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2817 				      struct btrfs_block_rsv *rsv);
2818 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2819 
2820 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2821 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2822 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2823 				   u64 start, u64 end);
2824 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2825 			 u64 num_bytes, u64 *actual_bytes);
2826 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2827 
2828 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2829 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2830 					 struct btrfs_fs_info *fs_info);
2831 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2832 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2833 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2834 
2835 /* ctree.c */
2836 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2837 		     int *slot);
2838 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2839 int btrfs_previous_item(struct btrfs_root *root,
2840 			struct btrfs_path *path, u64 min_objectid,
2841 			int type);
2842 int btrfs_previous_extent_item(struct btrfs_root *root,
2843 			struct btrfs_path *path, u64 min_objectid);
2844 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2845 			     struct btrfs_path *path,
2846 			     const struct btrfs_key *new_key);
2847 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2848 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2849 			struct btrfs_key *key, int lowest_level,
2850 			u64 min_trans);
2851 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2852 			 struct btrfs_path *path,
2853 			 u64 min_trans);
2854 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2855 					   int slot);
2856 
2857 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2858 		    struct btrfs_root *root, struct extent_buffer *buf,
2859 		    struct extent_buffer *parent, int parent_slot,
2860 		    struct extent_buffer **cow_ret,
2861 		    enum btrfs_lock_nesting nest);
2862 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2863 		      struct btrfs_root *root,
2864 		      struct extent_buffer *buf,
2865 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2866 int btrfs_block_can_be_shared(struct btrfs_root *root,
2867 			      struct extent_buffer *buf);
2868 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2869 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2870 int btrfs_split_item(struct btrfs_trans_handle *trans,
2871 		     struct btrfs_root *root,
2872 		     struct btrfs_path *path,
2873 		     const struct btrfs_key *new_key,
2874 		     unsigned long split_offset);
2875 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2876 			 struct btrfs_root *root,
2877 			 struct btrfs_path *path,
2878 			 const struct btrfs_key *new_key);
2879 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2880 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2881 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2882 		      const struct btrfs_key *key, struct btrfs_path *p,
2883 		      int ins_len, int cow);
2884 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2885 			  struct btrfs_path *p, u64 time_seq);
2886 int btrfs_search_slot_for_read(struct btrfs_root *root,
2887 			       const struct btrfs_key *key,
2888 			       struct btrfs_path *p, int find_higher,
2889 			       int return_any);
2890 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2891 		       struct btrfs_root *root, struct extent_buffer *parent,
2892 		       int start_slot, u64 *last_ret,
2893 		       struct btrfs_key *progress);
2894 void btrfs_release_path(struct btrfs_path *p);
2895 struct btrfs_path *btrfs_alloc_path(void);
2896 void btrfs_free_path(struct btrfs_path *p);
2897 
2898 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2899 		   struct btrfs_path *path, int slot, int nr);
2900 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2901 				 struct btrfs_root *root,
2902 				 struct btrfs_path *path)
2903 {
2904 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2905 }
2906 
2907 /*
2908  * Describes a batch of items to insert in a btree. This is used by
2909  * btrfs_insert_empty_items().
2910  */
2911 struct btrfs_item_batch {
2912 	/*
2913 	 * Pointer to an array containing the keys of the items to insert (in
2914 	 * sorted order).
2915 	 */
2916 	const struct btrfs_key *keys;
2917 	/* Pointer to an array containing the data size for each item to insert. */
2918 	const u32 *data_sizes;
2919 	/*
2920 	 * The sum of data sizes for all items. The caller can compute this while
2921 	 * setting up the data_sizes array, so it ends up being more efficient
2922 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2923 	 * doing it, as it would avoid an extra loop over a potentially large
2924 	 * array, and in the case of setup_item_for_insert(), we would be doing
2925 	 * it while holding a write lock on a leaf and often on upper level nodes
2926 	 * too, unnecessarily increasing the size of a critical section.
2927 	 */
2928 	u32 total_data_size;
2929 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
2930 	int nr;
2931 };
2932 
2933 void btrfs_setup_item_for_insert(struct btrfs_root *root,
2934 				 struct btrfs_path *path,
2935 				 const struct btrfs_key *key,
2936 				 u32 data_size);
2937 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2938 		      const struct btrfs_key *key, void *data, u32 data_size);
2939 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2940 			     struct btrfs_root *root,
2941 			     struct btrfs_path *path,
2942 			     const struct btrfs_item_batch *batch);
2943 
2944 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2945 					  struct btrfs_root *root,
2946 					  struct btrfs_path *path,
2947 					  const struct btrfs_key *key,
2948 					  u32 data_size)
2949 {
2950 	struct btrfs_item_batch batch;
2951 
2952 	batch.keys = key;
2953 	batch.data_sizes = &data_size;
2954 	batch.total_data_size = data_size;
2955 	batch.nr = 1;
2956 
2957 	return btrfs_insert_empty_items(trans, root, path, &batch);
2958 }
2959 
2960 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2961 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2962 			u64 time_seq);
2963 
2964 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2965 			   struct btrfs_path *path);
2966 
2967 static inline int btrfs_next_old_item(struct btrfs_root *root,
2968 				      struct btrfs_path *p, u64 time_seq)
2969 {
2970 	++p->slots[0];
2971 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2972 		return btrfs_next_old_leaf(root, p, time_seq);
2973 	return 0;
2974 }
2975 
2976 /*
2977  * Search the tree again to find a leaf with greater keys.
2978  *
2979  * Returns 0 if it found something or 1 if there are no greater leaves.
2980  * Returns < 0 on error.
2981  */
2982 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
2983 {
2984 	return btrfs_next_old_leaf(root, path, 0);
2985 }
2986 
2987 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2988 {
2989 	return btrfs_next_old_item(root, p, 0);
2990 }
2991 int btrfs_leaf_free_space(struct extent_buffer *leaf);
2992 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2993 				     int for_reloc);
2994 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2995 			struct btrfs_root *root,
2996 			struct extent_buffer *node,
2997 			struct extent_buffer *parent);
2998 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2999 {
3000 	/*
3001 	 * Do it this way so we only ever do one test_bit in the normal case.
3002 	 */
3003 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3004 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3005 			return 2;
3006 		return 1;
3007 	}
3008 	return 0;
3009 }
3010 
3011 /*
3012  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3013  * anything except sleeping. This function is used to check the status of
3014  * the fs.
3015  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3016  * since setting and checking for SB_RDONLY in the superblock's flags is not
3017  * atomic.
3018  */
3019 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3020 {
3021 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3022 		btrfs_fs_closing(fs_info);
3023 }
3024 
3025 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3026 {
3027 	sb->s_flags |= SB_RDONLY;
3028 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3029 }
3030 
3031 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3032 {
3033 	sb->s_flags &= ~SB_RDONLY;
3034 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3035 }
3036 
3037 /* root-item.c */
3038 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3039 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3040 		       int name_len);
3041 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3042 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3043 		       int name_len);
3044 int btrfs_del_root(struct btrfs_trans_handle *trans,
3045 		   const struct btrfs_key *key);
3046 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3047 		      const struct btrfs_key *key,
3048 		      struct btrfs_root_item *item);
3049 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3050 				   struct btrfs_root *root,
3051 				   struct btrfs_key *key,
3052 				   struct btrfs_root_item *item);
3053 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3054 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3055 		    struct btrfs_key *root_key);
3056 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3057 void btrfs_set_root_node(struct btrfs_root_item *item,
3058 			 struct extent_buffer *node);
3059 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3060 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3061 			     struct btrfs_root *root);
3062 
3063 /* uuid-tree.c */
3064 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3065 			u64 subid);
3066 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3067 			u64 subid);
3068 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3069 
3070 /* dir-item.c */
3071 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3072 			  const char *name, int name_len);
3073 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3074 			  int name_len, struct btrfs_inode *dir,
3075 			  struct btrfs_key *location, u8 type, u64 index);
3076 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3077 					     struct btrfs_root *root,
3078 					     struct btrfs_path *path, u64 dir,
3079 					     const char *name, int name_len,
3080 					     int mod);
3081 struct btrfs_dir_item *
3082 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3083 			    struct btrfs_root *root,
3084 			    struct btrfs_path *path, u64 dir,
3085 			    u64 index, const char *name, int name_len,
3086 			    int mod);
3087 struct btrfs_dir_item *
3088 btrfs_search_dir_index_item(struct btrfs_root *root,
3089 			    struct btrfs_path *path, u64 dirid,
3090 			    const char *name, int name_len);
3091 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3092 			      struct btrfs_root *root,
3093 			      struct btrfs_path *path,
3094 			      struct btrfs_dir_item *di);
3095 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3096 			    struct btrfs_root *root,
3097 			    struct btrfs_path *path, u64 objectid,
3098 			    const char *name, u16 name_len,
3099 			    const void *data, u16 data_len);
3100 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3101 					  struct btrfs_root *root,
3102 					  struct btrfs_path *path, u64 dir,
3103 					  const char *name, u16 name_len,
3104 					  int mod);
3105 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3106 						 struct btrfs_path *path,
3107 						 const char *name,
3108 						 int name_len);
3109 
3110 /* orphan.c */
3111 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3112 			     struct btrfs_root *root, u64 offset);
3113 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3114 			  struct btrfs_root *root, u64 offset);
3115 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3116 
3117 /* inode-item.c */
3118 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3119 			   struct btrfs_root *root,
3120 			   const char *name, int name_len,
3121 			   u64 inode_objectid, u64 ref_objectid, u64 index);
3122 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3123 			   struct btrfs_root *root,
3124 			   const char *name, int name_len,
3125 			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3126 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3127 			     struct btrfs_root *root,
3128 			     struct btrfs_path *path, u64 objectid);
3129 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3130 		       *root, struct btrfs_path *path,
3131 		       struct btrfs_key *location, int mod);
3132 
3133 struct btrfs_inode_extref *
3134 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3135 			  struct btrfs_root *root,
3136 			  struct btrfs_path *path,
3137 			  const char *name, int name_len,
3138 			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3139 			  int cow);
3140 
3141 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
3142 						   int slot, const char *name,
3143 						   int name_len);
3144 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
3145 		struct extent_buffer *leaf, int slot, u64 ref_objectid,
3146 		const char *name, int name_len);
3147 /* file-item.c */
3148 struct btrfs_dio_private;
3149 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3150 		    struct btrfs_root *root, u64 bytenr, u64 len);
3151 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3152 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3153 			     struct btrfs_root *root,
3154 			     u64 objectid, u64 pos,
3155 			     u64 disk_offset, u64 disk_num_bytes,
3156 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3157 			     u8 compression, u8 encryption, u16 other_encoding);
3158 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3159 			     struct btrfs_root *root,
3160 			     struct btrfs_path *path, u64 objectid,
3161 			     u64 bytenr, int mod);
3162 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3163 			   struct btrfs_root *root,
3164 			   struct btrfs_ordered_sum *sums);
3165 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3166 				u64 file_start, int contig);
3167 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3168 			     struct list_head *list, int search_commit);
3169 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3170 				     const struct btrfs_path *path,
3171 				     struct btrfs_file_extent_item *fi,
3172 				     const bool new_inline,
3173 				     struct extent_map *em);
3174 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3175 					u64 len);
3176 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3177 				      u64 len);
3178 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3179 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3180 
3181 /* inode.c */
3182 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3183 				   int mirror_num, unsigned long bio_flags);
3184 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3185 				    u32 bio_offset, struct page *page,
3186 				    u64 start, u64 end);
3187 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3188 					   u64 start, u64 len);
3189 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3190 			      u64 *orig_start, u64 *orig_block_len,
3191 			      u64 *ram_bytes, bool strict);
3192 
3193 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3194 				struct btrfs_inode *inode);
3195 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3196 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3197 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3198 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3199 		       const char *name, int name_len);
3200 int btrfs_add_link(struct btrfs_trans_handle *trans,
3201 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3202 		   const char *name, int name_len, int add_backref, u64 index);
3203 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3204 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3205 			 int front);
3206 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3207 			       struct btrfs_root *root,
3208 			       struct btrfs_inode *inode, u64 new_size,
3209 			       u32 min_type, u64 *extents_found);
3210 
3211 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3212 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3213 			       bool in_reclaim_context);
3214 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3215 			      unsigned int extra_bits,
3216 			      struct extent_state **cached_state);
3217 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3218 			     struct btrfs_root *new_root,
3219 			     struct btrfs_root *parent_root,
3220 			     struct user_namespace *mnt_userns);
3221  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3222 			       unsigned *bits);
3223 void btrfs_clear_delalloc_extent(struct inode *inode,
3224 				 struct extent_state *state, unsigned *bits);
3225 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3226 				 struct extent_state *other);
3227 void btrfs_split_delalloc_extent(struct inode *inode,
3228 				 struct extent_state *orig, u64 split);
3229 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3230 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3231 int btrfs_readpage(struct file *file, struct page *page);
3232 void btrfs_evict_inode(struct inode *inode);
3233 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3234 struct inode *btrfs_alloc_inode(struct super_block *sb);
3235 void btrfs_destroy_inode(struct inode *inode);
3236 void btrfs_free_inode(struct inode *inode);
3237 int btrfs_drop_inode(struct inode *inode);
3238 int __init btrfs_init_cachep(void);
3239 void __cold btrfs_destroy_cachep(void);
3240 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3241 			      struct btrfs_root *root, struct btrfs_path *path);
3242 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3243 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3244 				    struct page *page, size_t pg_offset,
3245 				    u64 start, u64 end);
3246 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3247 		       struct btrfs_root *root, struct btrfs_inode *inode);
3248 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3249 				struct btrfs_root *root, struct btrfs_inode *inode);
3250 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3251 		struct btrfs_inode *inode);
3252 int btrfs_orphan_cleanup(struct btrfs_root *root);
3253 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3254 void btrfs_add_delayed_iput(struct inode *inode);
3255 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3256 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3257 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3258 			      u64 start, u64 num_bytes, u64 min_size,
3259 			      loff_t actual_len, u64 *alloc_hint);
3260 int btrfs_prealloc_file_range_trans(struct inode *inode,
3261 				    struct btrfs_trans_handle *trans, int mode,
3262 				    u64 start, u64 num_bytes, u64 min_size,
3263 				    loff_t actual_len, u64 *alloc_hint);
3264 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3265 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3266 		struct writeback_control *wbc);
3267 int btrfs_writepage_cow_fixup(struct page *page);
3268 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3269 					  struct page *page, u64 start,
3270 					  u64 end, bool uptodate);
3271 extern const struct dentry_operations btrfs_dentry_operations;
3272 extern const struct iomap_ops btrfs_dio_iomap_ops;
3273 extern const struct iomap_dio_ops btrfs_dio_ops;
3274 
3275 /* Inode locking type flags, by default the exclusive lock is taken */
3276 #define BTRFS_ILOCK_SHARED	(1U << 0)
3277 #define BTRFS_ILOCK_TRY 	(1U << 1)
3278 #define BTRFS_ILOCK_MMAP	(1U << 2)
3279 
3280 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3281 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3282 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3283 			      const u64 add_bytes,
3284 			      const u64 del_bytes);
3285 
3286 /* ioctl.c */
3287 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3288 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3289 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3290 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3291 		       struct dentry *dentry, struct fileattr *fa);
3292 int btrfs_ioctl_get_supported_features(void __user *arg);
3293 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3294 int __pure btrfs_is_empty_uuid(u8 *uuid);
3295 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3296 		      struct btrfs_ioctl_defrag_range_args *range,
3297 		      u64 newer_than, unsigned long max_to_defrag);
3298 void btrfs_get_block_group_info(struct list_head *groups_list,
3299 				struct btrfs_ioctl_space_info *space);
3300 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3301 			       struct btrfs_ioctl_balance_args *bargs);
3302 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3303 			enum btrfs_exclusive_operation type);
3304 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3305 				 enum btrfs_exclusive_operation type);
3306 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3307 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3308 
3309 /* file.c */
3310 int __init btrfs_auto_defrag_init(void);
3311 void __cold btrfs_auto_defrag_exit(void);
3312 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3313 			   struct btrfs_inode *inode);
3314 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3315 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3316 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3317 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3318 			     int skip_pinned);
3319 extern const struct file_operations btrfs_file_operations;
3320 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3321 		       struct btrfs_root *root, struct btrfs_inode *inode,
3322 		       struct btrfs_drop_extents_args *args);
3323 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3324 			   struct btrfs_path *path, const u64 start,
3325 			   const u64 end,
3326 			   struct btrfs_replace_extent_info *extent_info,
3327 			   struct btrfs_trans_handle **trans_out);
3328 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3329 			      struct btrfs_inode *inode, u64 start, u64 end);
3330 int btrfs_release_file(struct inode *inode, struct file *file);
3331 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3332 		      size_t num_pages, loff_t pos, size_t write_bytes,
3333 		      struct extent_state **cached, bool noreserve);
3334 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3335 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3336 			   size_t *write_bytes);
3337 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3338 
3339 /* tree-defrag.c */
3340 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3341 			struct btrfs_root *root);
3342 
3343 /* super.c */
3344 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3345 			unsigned long new_flags);
3346 int btrfs_sync_fs(struct super_block *sb, int wait);
3347 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3348 					  u64 subvol_objectid);
3349 
3350 static inline __printf(2, 3) __cold
3351 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3352 {
3353 }
3354 
3355 #ifdef CONFIG_PRINTK
3356 __printf(2, 3)
3357 __cold
3358 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3359 #else
3360 #define btrfs_printk(fs_info, fmt, args...) \
3361 	btrfs_no_printk(fs_info, fmt, ##args)
3362 #endif
3363 
3364 #define btrfs_emerg(fs_info, fmt, args...) \
3365 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3366 #define btrfs_alert(fs_info, fmt, args...) \
3367 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3368 #define btrfs_crit(fs_info, fmt, args...) \
3369 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3370 #define btrfs_err(fs_info, fmt, args...) \
3371 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3372 #define btrfs_warn(fs_info, fmt, args...) \
3373 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3374 #define btrfs_notice(fs_info, fmt, args...) \
3375 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3376 #define btrfs_info(fs_info, fmt, args...) \
3377 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3378 
3379 /*
3380  * Wrappers that use printk_in_rcu
3381  */
3382 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3383 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3384 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3385 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3386 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3387 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3388 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3389 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3390 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3391 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3392 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3393 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3394 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3395 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3396 
3397 /*
3398  * Wrappers that use a ratelimited printk_in_rcu
3399  */
3400 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3401 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3402 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3403 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3404 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3405 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3406 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3407 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3408 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3409 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3410 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3411 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3412 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3413 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3414 
3415 /*
3416  * Wrappers that use a ratelimited printk
3417  */
3418 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3419 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3420 #define btrfs_alert_rl(fs_info, fmt, args...) \
3421 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3422 #define btrfs_crit_rl(fs_info, fmt, args...) \
3423 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3424 #define btrfs_err_rl(fs_info, fmt, args...) \
3425 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3426 #define btrfs_warn_rl(fs_info, fmt, args...) \
3427 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3428 #define btrfs_notice_rl(fs_info, fmt, args...) \
3429 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3430 #define btrfs_info_rl(fs_info, fmt, args...) \
3431 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3432 
3433 #if defined(CONFIG_DYNAMIC_DEBUG)
3434 #define btrfs_debug(fs_info, fmt, args...)				\
3435 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3436 				   fs_info, KERN_DEBUG fmt, ##args)
3437 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3438 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3439 				   fs_info, KERN_DEBUG fmt, ##args)
3440 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3441 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3442 				   fs_info, KERN_DEBUG fmt, ##args)
3443 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3444 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3445 				   fs_info, KERN_DEBUG fmt, ##args)
3446 #elif defined(DEBUG)
3447 #define btrfs_debug(fs_info, fmt, args...) \
3448 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3449 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3450 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3451 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3452 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3453 #define btrfs_debug_rl(fs_info, fmt, args...) \
3454 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3455 #else
3456 #define btrfs_debug(fs_info, fmt, args...) \
3457 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3458 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3459 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3460 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3461 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3462 #define btrfs_debug_rl(fs_info, fmt, args...) \
3463 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3464 #endif
3465 
3466 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3467 do {							\
3468 	rcu_read_lock();				\
3469 	btrfs_printk(fs_info, fmt, ##args);		\
3470 	rcu_read_unlock();				\
3471 } while (0)
3472 
3473 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3474 do {							\
3475 	rcu_read_lock();				\
3476 	btrfs_no_printk(fs_info, fmt, ##args);		\
3477 	rcu_read_unlock();				\
3478 } while (0)
3479 
3480 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3481 do {								\
3482 	static DEFINE_RATELIMIT_STATE(_rs,			\
3483 		DEFAULT_RATELIMIT_INTERVAL,			\
3484 		DEFAULT_RATELIMIT_BURST);       		\
3485 	if (__ratelimit(&_rs))					\
3486 		btrfs_printk(fs_info, fmt, ##args);		\
3487 } while (0)
3488 
3489 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3490 do {								\
3491 	rcu_read_lock();					\
3492 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3493 	rcu_read_unlock();					\
3494 } while (0)
3495 
3496 #ifdef CONFIG_BTRFS_ASSERT
3497 __cold __noreturn
3498 static inline void assertfail(const char *expr, const char *file, int line)
3499 {
3500 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3501 	BUG();
3502 }
3503 
3504 #define ASSERT(expr)						\
3505 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3506 
3507 #else
3508 static inline void assertfail(const char *expr, const char* file, int line) { }
3509 #define ASSERT(expr)	(void)(expr)
3510 #endif
3511 
3512 #if BITS_PER_LONG == 32
3513 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3514 /*
3515  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3516  * addresses of extents.
3517  *
3518  * For 4K page size it's about 10T, for 64K it's 160T.
3519  */
3520 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3521 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3522 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3523 #endif
3524 
3525 /*
3526  * Get the correct offset inside the page of extent buffer.
3527  *
3528  * @eb:		target extent buffer
3529  * @start:	offset inside the extent buffer
3530  *
3531  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3532  */
3533 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3534 					   unsigned long offset)
3535 {
3536 	/*
3537 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3538 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3539 	 *
3540 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3541 	 * to the eb, thus we have to take the eb->start into consideration.
3542 	 */
3543 	return offset_in_page(offset + eb->start);
3544 }
3545 
3546 static inline unsigned long get_eb_page_index(unsigned long offset)
3547 {
3548 	/*
3549 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3550 	 *
3551 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3552 	 * and have ensured that all tree blocks are contained in one page,
3553 	 * thus we always get index == 0.
3554 	 */
3555 	return offset >> PAGE_SHIFT;
3556 }
3557 
3558 /*
3559  * Use that for functions that are conditionally exported for sanity tests but
3560  * otherwise static
3561  */
3562 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3563 #define EXPORT_FOR_TESTS static
3564 #else
3565 #define EXPORT_FOR_TESTS
3566 #endif
3567 
3568 __cold
3569 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3570 {
3571 	btrfs_err(fs_info,
3572 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3573 }
3574 
3575 __printf(5, 6)
3576 __cold
3577 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3578 		     unsigned int line, int errno, const char *fmt, ...);
3579 
3580 const char * __attribute_const__ btrfs_decode_error(int errno);
3581 
3582 __cold
3583 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3584 			       const char *function,
3585 			       unsigned int line, int errno);
3586 
3587 /*
3588  * Call btrfs_abort_transaction as early as possible when an error condition is
3589  * detected, that way the exact line number is reported.
3590  */
3591 #define btrfs_abort_transaction(trans, errno)		\
3592 do {								\
3593 	/* Report first abort since mount */			\
3594 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3595 			&((trans)->fs_info->fs_state))) {	\
3596 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3597 			WARN(1, KERN_DEBUG				\
3598 			"BTRFS: Transaction aborted (error %d)\n",	\
3599 			(errno));					\
3600 		} else {						\
3601 			btrfs_debug((trans)->fs_info,			\
3602 				    "Transaction aborted (error %d)", \
3603 				  (errno));			\
3604 		}						\
3605 	}							\
3606 	__btrfs_abort_transaction((trans), __func__,		\
3607 				  __LINE__, (errno));		\
3608 } while (0)
3609 
3610 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3611 do {								\
3612 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3613 			  (errno), fmt, ##args);		\
3614 } while (0)
3615 
3616 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3617 						   &(fs_info)->fs_state)))
3618 
3619 __printf(5, 6)
3620 __cold
3621 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3622 		   unsigned int line, int errno, const char *fmt, ...);
3623 /*
3624  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3625  * will panic().  Otherwise we BUG() here.
3626  */
3627 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3628 do {									\
3629 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3630 	BUG();								\
3631 } while (0)
3632 
3633 
3634 /* compatibility and incompatibility defines */
3635 
3636 #define btrfs_set_fs_incompat(__fs_info, opt) \
3637 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3638 				#opt)
3639 
3640 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3641 					   u64 flag, const char* name)
3642 {
3643 	struct btrfs_super_block *disk_super;
3644 	u64 features;
3645 
3646 	disk_super = fs_info->super_copy;
3647 	features = btrfs_super_incompat_flags(disk_super);
3648 	if (!(features & flag)) {
3649 		spin_lock(&fs_info->super_lock);
3650 		features = btrfs_super_incompat_flags(disk_super);
3651 		if (!(features & flag)) {
3652 			features |= flag;
3653 			btrfs_set_super_incompat_flags(disk_super, features);
3654 			btrfs_info(fs_info,
3655 				"setting incompat feature flag for %s (0x%llx)",
3656 				name, flag);
3657 		}
3658 		spin_unlock(&fs_info->super_lock);
3659 	}
3660 }
3661 
3662 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3663 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3664 				  #opt)
3665 
3666 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3667 					     u64 flag, const char* name)
3668 {
3669 	struct btrfs_super_block *disk_super;
3670 	u64 features;
3671 
3672 	disk_super = fs_info->super_copy;
3673 	features = btrfs_super_incompat_flags(disk_super);
3674 	if (features & flag) {
3675 		spin_lock(&fs_info->super_lock);
3676 		features = btrfs_super_incompat_flags(disk_super);
3677 		if (features & flag) {
3678 			features &= ~flag;
3679 			btrfs_set_super_incompat_flags(disk_super, features);
3680 			btrfs_info(fs_info,
3681 				"clearing incompat feature flag for %s (0x%llx)",
3682 				name, flag);
3683 		}
3684 		spin_unlock(&fs_info->super_lock);
3685 	}
3686 }
3687 
3688 #define btrfs_fs_incompat(fs_info, opt) \
3689 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3690 
3691 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3692 {
3693 	struct btrfs_super_block *disk_super;
3694 	disk_super = fs_info->super_copy;
3695 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3696 }
3697 
3698 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3699 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3700 				 #opt)
3701 
3702 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3703 					    u64 flag, const char *name)
3704 {
3705 	struct btrfs_super_block *disk_super;
3706 	u64 features;
3707 
3708 	disk_super = fs_info->super_copy;
3709 	features = btrfs_super_compat_ro_flags(disk_super);
3710 	if (!(features & flag)) {
3711 		spin_lock(&fs_info->super_lock);
3712 		features = btrfs_super_compat_ro_flags(disk_super);
3713 		if (!(features & flag)) {
3714 			features |= flag;
3715 			btrfs_set_super_compat_ro_flags(disk_super, features);
3716 			btrfs_info(fs_info,
3717 				"setting compat-ro feature flag for %s (0x%llx)",
3718 				name, flag);
3719 		}
3720 		spin_unlock(&fs_info->super_lock);
3721 	}
3722 }
3723 
3724 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3725 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3726 				   #opt)
3727 
3728 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3729 					      u64 flag, const char *name)
3730 {
3731 	struct btrfs_super_block *disk_super;
3732 	u64 features;
3733 
3734 	disk_super = fs_info->super_copy;
3735 	features = btrfs_super_compat_ro_flags(disk_super);
3736 	if (features & flag) {
3737 		spin_lock(&fs_info->super_lock);
3738 		features = btrfs_super_compat_ro_flags(disk_super);
3739 		if (features & flag) {
3740 			features &= ~flag;
3741 			btrfs_set_super_compat_ro_flags(disk_super, features);
3742 			btrfs_info(fs_info,
3743 				"clearing compat-ro feature flag for %s (0x%llx)",
3744 				name, flag);
3745 		}
3746 		spin_unlock(&fs_info->super_lock);
3747 	}
3748 }
3749 
3750 #define btrfs_fs_compat_ro(fs_info, opt) \
3751 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3752 
3753 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3754 {
3755 	struct btrfs_super_block *disk_super;
3756 	disk_super = fs_info->super_copy;
3757 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3758 }
3759 
3760 /* acl.c */
3761 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3762 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3763 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3764 		  struct posix_acl *acl, int type);
3765 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3766 		   struct inode *inode, struct inode *dir);
3767 #else
3768 #define btrfs_get_acl NULL
3769 #define btrfs_set_acl NULL
3770 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3771 				 struct inode *inode, struct inode *dir)
3772 {
3773 	return 0;
3774 }
3775 #endif
3776 
3777 /* relocation.c */
3778 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3779 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3780 			  struct btrfs_root *root);
3781 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3782 			    struct btrfs_root *root);
3783 int btrfs_recover_relocation(struct btrfs_root *root);
3784 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3785 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3786 			  struct btrfs_root *root, struct extent_buffer *buf,
3787 			  struct extent_buffer *cow);
3788 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3789 			      u64 *bytes_to_reserve);
3790 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3791 			      struct btrfs_pending_snapshot *pending);
3792 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3793 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3794 				   u64 bytenr);
3795 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3796 
3797 /* scrub.c */
3798 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3799 		    u64 end, struct btrfs_scrub_progress *progress,
3800 		    int readonly, int is_dev_replace);
3801 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3802 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3803 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3804 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3805 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3806 			 struct btrfs_scrub_progress *progress);
3807 static inline void btrfs_init_full_stripe_locks_tree(
3808 			struct btrfs_full_stripe_locks_tree *locks_root)
3809 {
3810 	locks_root->root = RB_ROOT;
3811 	mutex_init(&locks_root->lock);
3812 }
3813 
3814 /* dev-replace.c */
3815 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3816 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3817 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3818 
3819 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3820 {
3821 	btrfs_bio_counter_sub(fs_info, 1);
3822 }
3823 
3824 /* reada.c */
3825 struct reada_control {
3826 	struct btrfs_fs_info	*fs_info;		/* tree to prefetch */
3827 	struct btrfs_key	key_start;
3828 	struct btrfs_key	key_end;	/* exclusive */
3829 	atomic_t		elems;
3830 	struct kref		refcnt;
3831 	wait_queue_head_t	wait;
3832 };
3833 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3834 			      struct btrfs_key *start, struct btrfs_key *end);
3835 int btrfs_reada_wait(void *handle);
3836 void btrfs_reada_detach(void *handle);
3837 int btree_readahead_hook(struct extent_buffer *eb, int err);
3838 void btrfs_reada_remove_dev(struct btrfs_device *dev);
3839 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev);
3840 
3841 static inline int is_fstree(u64 rootid)
3842 {
3843 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3844 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3845 	      !btrfs_qgroup_level(rootid)))
3846 		return 1;
3847 	return 0;
3848 }
3849 
3850 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3851 {
3852 	return signal_pending(current);
3853 }
3854 
3855 /* verity.c */
3856 #ifdef CONFIG_FS_VERITY
3857 
3858 extern const struct fsverity_operations btrfs_verityops;
3859 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3860 
3861 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3862 		   encryption, 8);
3863 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3864 		   size, 64);
3865 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3866 			 struct btrfs_verity_descriptor_item, encryption, 8);
3867 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3868 			 struct btrfs_verity_descriptor_item, size, 64);
3869 
3870 #else
3871 
3872 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3873 {
3874 	return 0;
3875 }
3876 
3877 #endif
3878 
3879 /* Sanity test specific functions */
3880 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3881 void btrfs_test_destroy_inode(struct inode *inode);
3882 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3883 {
3884 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3885 }
3886 #else
3887 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3888 {
3889 	return 0;
3890 }
3891 #endif
3892 
3893 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3894 {
3895 	return fs_info->zoned != 0;
3896 }
3897 
3898 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3899 {
3900 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3901 }
3902 
3903 /*
3904  * We use page status Private2 to indicate there is an ordered extent with
3905  * unfinished IO.
3906  *
3907  * Rename the Private2 accessors to Ordered, to improve readability.
3908  */
3909 #define PageOrdered(page)		PagePrivate2(page)
3910 #define SetPageOrdered(page)		SetPagePrivate2(page)
3911 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
3912 
3913 #endif
3914