1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 54 55 /* 56 * Maximum number of mirrors that can be available for all profiles counting 57 * the target device of dev-replace as one. During an active device replace 58 * procedure, the target device of the copy operation is a mirror for the 59 * filesystem data as well that can be used to read data in order to repair 60 * read errors on other disks. 61 * 62 * Current value is derived from RAID1C4 with 4 copies. 63 */ 64 #define BTRFS_MAX_MIRRORS (4 + 1) 65 66 #define BTRFS_MAX_LEVEL 8 67 68 #define BTRFS_OLDEST_GENERATION 0ULL 69 70 /* 71 * we can actually store much bigger names, but lets not confuse the rest 72 * of linux 73 */ 74 #define BTRFS_NAME_LEN 255 75 76 /* 77 * Theoretical limit is larger, but we keep this down to a sane 78 * value. That should limit greatly the possibility of collisions on 79 * inode ref items. 80 */ 81 #define BTRFS_LINK_MAX 65535U 82 83 #define BTRFS_EMPTY_DIR_SIZE 0 84 85 /* ioprio of readahead is set to idle */ 86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 87 88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 89 90 /* 91 * Use large batch size to reduce overhead of metadata updates. On the reader 92 * side, we only read it when we are close to ENOSPC and the read overhead is 93 * mostly related to the number of CPUs, so it is OK to use arbitrary large 94 * value here. 95 */ 96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 97 98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 99 100 /* 101 * Deltas are an effective way to populate global statistics. Give macro names 102 * to make it clear what we're doing. An example is discard_extents in 103 * btrfs_free_space_ctl. 104 */ 105 #define BTRFS_STAT_NR_ENTRIES 2 106 #define BTRFS_STAT_CURR 0 107 #define BTRFS_STAT_PREV 1 108 109 /* 110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 111 */ 112 static inline u32 count_max_extents(u64 size) 113 { 114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 115 } 116 117 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 118 { 119 BUG_ON(num_stripes == 0); 120 return sizeof(struct btrfs_chunk) + 121 sizeof(struct btrfs_stripe) * (num_stripes - 1); 122 } 123 124 /* 125 * Runtime (in-memory) states of filesystem 126 */ 127 enum { 128 /* Global indicator of serious filesystem errors */ 129 BTRFS_FS_STATE_ERROR, 130 /* 131 * Filesystem is being remounted, allow to skip some operations, like 132 * defrag 133 */ 134 BTRFS_FS_STATE_REMOUNTING, 135 /* Filesystem in RO mode */ 136 BTRFS_FS_STATE_RO, 137 /* Track if a transaction abort has been reported on this filesystem */ 138 BTRFS_FS_STATE_TRANS_ABORTED, 139 /* 140 * Bio operations should be blocked on this filesystem because a source 141 * or target device is being destroyed as part of a device replace 142 */ 143 BTRFS_FS_STATE_DEV_REPLACING, 144 /* The btrfs_fs_info created for self-tests */ 145 BTRFS_FS_STATE_DUMMY_FS_INFO, 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * the super block basically lists the main trees of the FS 226 * it currently lacks any block count etc etc 227 */ 228 struct btrfs_super_block { 229 /* the first 4 fields must match struct btrfs_header */ 230 u8 csum[BTRFS_CSUM_SIZE]; 231 /* FS specific UUID, visible to user */ 232 u8 fsid[BTRFS_FSID_SIZE]; 233 __le64 bytenr; /* this block number */ 234 __le64 flags; 235 236 /* allowed to be different from the btrfs_header from here own down */ 237 __le64 magic; 238 __le64 generation; 239 __le64 root; 240 __le64 chunk_root; 241 __le64 log_root; 242 243 /* this will help find the new super based on the log root */ 244 __le64 log_root_transid; 245 __le64 total_bytes; 246 __le64 bytes_used; 247 __le64 root_dir_objectid; 248 __le64 num_devices; 249 __le32 sectorsize; 250 __le32 nodesize; 251 __le32 __unused_leafsize; 252 __le32 stripesize; 253 __le32 sys_chunk_array_size; 254 __le64 chunk_root_generation; 255 __le64 compat_flags; 256 __le64 compat_ro_flags; 257 __le64 incompat_flags; 258 __le16 csum_type; 259 u8 root_level; 260 u8 chunk_root_level; 261 u8 log_root_level; 262 struct btrfs_dev_item dev_item; 263 264 char label[BTRFS_LABEL_SIZE]; 265 266 __le64 cache_generation; 267 __le64 uuid_tree_generation; 268 269 /* the UUID written into btree blocks */ 270 u8 metadata_uuid[BTRFS_FSID_SIZE]; 271 272 /* future expansion */ 273 __le64 reserved[28]; 274 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 275 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 276 277 /* Padded to 4096 bytes */ 278 u8 padding[565]; 279 } __attribute__ ((__packed__)); 280 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 281 282 /* 283 * Compat flags that we support. If any incompat flags are set other than the 284 * ones specified below then we will fail to mount 285 */ 286 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 287 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 288 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 289 290 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 291 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 292 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 293 BTRFS_FEATURE_COMPAT_RO_VERITY) 294 295 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 296 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 297 298 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 299 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 300 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 301 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 302 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 303 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 304 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 305 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 306 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 307 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 308 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 309 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 310 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 311 BTRFS_FEATURE_INCOMPAT_ZONED) 312 313 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 314 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 315 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 316 317 /* 318 * A leaf is full of items. offset and size tell us where to find 319 * the item in the leaf (relative to the start of the data area) 320 */ 321 struct btrfs_item { 322 struct btrfs_disk_key key; 323 __le32 offset; 324 __le32 size; 325 } __attribute__ ((__packed__)); 326 327 /* 328 * leaves have an item area and a data area: 329 * [item0, item1....itemN] [free space] [dataN...data1, data0] 330 * 331 * The data is separate from the items to get the keys closer together 332 * during searches. 333 */ 334 struct btrfs_leaf { 335 struct btrfs_header header; 336 struct btrfs_item items[]; 337 } __attribute__ ((__packed__)); 338 339 /* 340 * all non-leaf blocks are nodes, they hold only keys and pointers to 341 * other blocks 342 */ 343 struct btrfs_key_ptr { 344 struct btrfs_disk_key key; 345 __le64 blockptr; 346 __le64 generation; 347 } __attribute__ ((__packed__)); 348 349 struct btrfs_node { 350 struct btrfs_header header; 351 struct btrfs_key_ptr ptrs[]; 352 } __attribute__ ((__packed__)); 353 354 /* Read ahead values for struct btrfs_path.reada */ 355 enum { 356 READA_NONE, 357 READA_BACK, 358 READA_FORWARD, 359 /* 360 * Similar to READA_FORWARD but unlike it: 361 * 362 * 1) It will trigger readahead even for leaves that are not close to 363 * each other on disk; 364 * 2) It also triggers readahead for nodes; 365 * 3) During a search, even when a node or leaf is already in memory, it 366 * will still trigger readahead for other nodes and leaves that follow 367 * it. 368 * 369 * This is meant to be used only when we know we are iterating over the 370 * entire tree or a very large part of it. 371 */ 372 READA_FORWARD_ALWAYS, 373 }; 374 375 /* 376 * btrfs_paths remember the path taken from the root down to the leaf. 377 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 378 * to any other levels that are present. 379 * 380 * The slots array records the index of the item or block pointer 381 * used while walking the tree. 382 */ 383 struct btrfs_path { 384 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 385 int slots[BTRFS_MAX_LEVEL]; 386 /* if there is real range locking, this locks field will change */ 387 u8 locks[BTRFS_MAX_LEVEL]; 388 u8 reada; 389 /* keep some upper locks as we walk down */ 390 u8 lowest_level; 391 392 /* 393 * set by btrfs_split_item, tells search_slot to keep all locks 394 * and to force calls to keep space in the nodes 395 */ 396 unsigned int search_for_split:1; 397 unsigned int keep_locks:1; 398 unsigned int skip_locking:1; 399 unsigned int search_commit_root:1; 400 unsigned int need_commit_sem:1; 401 unsigned int skip_release_on_error:1; 402 /* 403 * Indicate that new item (btrfs_search_slot) is extending already 404 * existing item and ins_len contains only the data size and not item 405 * header (ie. sizeof(struct btrfs_item) is not included). 406 */ 407 unsigned int search_for_extension:1; 408 }; 409 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 410 sizeof(struct btrfs_item)) 411 struct btrfs_dev_replace { 412 u64 replace_state; /* see #define above */ 413 time64_t time_started; /* seconds since 1-Jan-1970 */ 414 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 415 atomic64_t num_write_errors; 416 atomic64_t num_uncorrectable_read_errors; 417 418 u64 cursor_left; 419 u64 committed_cursor_left; 420 u64 cursor_left_last_write_of_item; 421 u64 cursor_right; 422 423 u64 cont_reading_from_srcdev_mode; /* see #define above */ 424 425 int is_valid; 426 int item_needs_writeback; 427 struct btrfs_device *srcdev; 428 struct btrfs_device *tgtdev; 429 430 struct mutex lock_finishing_cancel_unmount; 431 struct rw_semaphore rwsem; 432 433 struct btrfs_scrub_progress scrub_progress; 434 435 struct percpu_counter bio_counter; 436 wait_queue_head_t replace_wait; 437 }; 438 439 /* 440 * free clusters are used to claim free space in relatively large chunks, 441 * allowing us to do less seeky writes. They are used for all metadata 442 * allocations. In ssd_spread mode they are also used for data allocations. 443 */ 444 struct btrfs_free_cluster { 445 spinlock_t lock; 446 spinlock_t refill_lock; 447 struct rb_root root; 448 449 /* largest extent in this cluster */ 450 u64 max_size; 451 452 /* first extent starting offset */ 453 u64 window_start; 454 455 /* We did a full search and couldn't create a cluster */ 456 bool fragmented; 457 458 struct btrfs_block_group *block_group; 459 /* 460 * when a cluster is allocated from a block group, we put the 461 * cluster onto a list in the block group so that it can 462 * be freed before the block group is freed. 463 */ 464 struct list_head block_group_list; 465 }; 466 467 enum btrfs_caching_type { 468 BTRFS_CACHE_NO, 469 BTRFS_CACHE_STARTED, 470 BTRFS_CACHE_FAST, 471 BTRFS_CACHE_FINISHED, 472 BTRFS_CACHE_ERROR, 473 }; 474 475 /* 476 * Tree to record all locked full stripes of a RAID5/6 block group 477 */ 478 struct btrfs_full_stripe_locks_tree { 479 struct rb_root root; 480 struct mutex lock; 481 }; 482 483 /* Discard control. */ 484 /* 485 * Async discard uses multiple lists to differentiate the discard filter 486 * parameters. Index 0 is for completely free block groups where we need to 487 * ensure the entire block group is trimmed without being lossy. Indices 488 * afterwards represent monotonically decreasing discard filter sizes to 489 * prioritize what should be discarded next. 490 */ 491 #define BTRFS_NR_DISCARD_LISTS 3 492 #define BTRFS_DISCARD_INDEX_UNUSED 0 493 #define BTRFS_DISCARD_INDEX_START 1 494 495 struct btrfs_discard_ctl { 496 struct workqueue_struct *discard_workers; 497 struct delayed_work work; 498 spinlock_t lock; 499 struct btrfs_block_group *block_group; 500 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 501 u64 prev_discard; 502 u64 prev_discard_time; 503 atomic_t discardable_extents; 504 atomic64_t discardable_bytes; 505 u64 max_discard_size; 506 u64 delay_ms; 507 u32 iops_limit; 508 u32 kbps_limit; 509 u64 discard_extent_bytes; 510 u64 discard_bitmap_bytes; 511 atomic64_t discard_bytes_saved; 512 }; 513 514 enum btrfs_orphan_cleanup_state { 515 ORPHAN_CLEANUP_STARTED = 1, 516 ORPHAN_CLEANUP_DONE = 2, 517 }; 518 519 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 520 521 /* fs_info */ 522 struct reloc_control; 523 struct btrfs_device; 524 struct btrfs_fs_devices; 525 struct btrfs_balance_control; 526 struct btrfs_delayed_root; 527 528 /* 529 * Block group or device which contains an active swapfile. Used for preventing 530 * unsafe operations while a swapfile is active. 531 * 532 * These are sorted on (ptr, inode) (note that a block group or device can 533 * contain more than one swapfile). We compare the pointer values because we 534 * don't actually care what the object is, we just need a quick check whether 535 * the object exists in the rbtree. 536 */ 537 struct btrfs_swapfile_pin { 538 struct rb_node node; 539 void *ptr; 540 struct inode *inode; 541 /* 542 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 543 * points to a struct btrfs_device. 544 */ 545 bool is_block_group; 546 /* 547 * Only used when 'is_block_group' is true and it is the number of 548 * extents used by a swapfile for this block group ('ptr' field). 549 */ 550 int bg_extent_count; 551 }; 552 553 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 554 555 enum { 556 BTRFS_FS_BARRIER, 557 BTRFS_FS_CLOSING_START, 558 BTRFS_FS_CLOSING_DONE, 559 BTRFS_FS_LOG_RECOVERING, 560 BTRFS_FS_OPEN, 561 BTRFS_FS_QUOTA_ENABLED, 562 BTRFS_FS_UPDATE_UUID_TREE_GEN, 563 BTRFS_FS_CREATING_FREE_SPACE_TREE, 564 BTRFS_FS_BTREE_ERR, 565 BTRFS_FS_LOG1_ERR, 566 BTRFS_FS_LOG2_ERR, 567 BTRFS_FS_QUOTA_OVERRIDE, 568 /* Used to record internally whether fs has been frozen */ 569 BTRFS_FS_FROZEN, 570 /* 571 * Indicate that balance has been set up from the ioctl and is in the 572 * main phase. The fs_info::balance_ctl is initialized. 573 */ 574 BTRFS_FS_BALANCE_RUNNING, 575 576 /* 577 * Indicate that relocation of a chunk has started, it's set per chunk 578 * and is toggled between chunks. 579 * Set, tested and cleared while holding fs_info::send_reloc_lock. 580 */ 581 BTRFS_FS_RELOC_RUNNING, 582 583 /* Indicate that the cleaner thread is awake and doing something. */ 584 BTRFS_FS_CLEANER_RUNNING, 585 586 /* 587 * The checksumming has an optimized version and is considered fast, 588 * so we don't need to offload checksums to workqueues. 589 */ 590 BTRFS_FS_CSUM_IMPL_FAST, 591 592 /* Indicate that the discard workqueue can service discards. */ 593 BTRFS_FS_DISCARD_RUNNING, 594 595 /* Indicate that we need to cleanup space cache v1 */ 596 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 597 598 /* Indicate that we can't trust the free space tree for caching yet */ 599 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 600 601 /* Indicate whether there are any tree modification log users */ 602 BTRFS_FS_TREE_MOD_LOG_USERS, 603 604 #if BITS_PER_LONG == 32 605 /* Indicate if we have error/warn message printed on 32bit systems */ 606 BTRFS_FS_32BIT_ERROR, 607 BTRFS_FS_32BIT_WARN, 608 #endif 609 }; 610 611 /* 612 * Exclusive operations (device replace, resize, device add/remove, balance) 613 */ 614 enum btrfs_exclusive_operation { 615 BTRFS_EXCLOP_NONE, 616 BTRFS_EXCLOP_BALANCE, 617 BTRFS_EXCLOP_DEV_ADD, 618 BTRFS_EXCLOP_DEV_REMOVE, 619 BTRFS_EXCLOP_DEV_REPLACE, 620 BTRFS_EXCLOP_RESIZE, 621 BTRFS_EXCLOP_SWAP_ACTIVATE, 622 }; 623 624 struct btrfs_fs_info { 625 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 626 unsigned long flags; 627 struct btrfs_root *extent_root; 628 struct btrfs_root *tree_root; 629 struct btrfs_root *chunk_root; 630 struct btrfs_root *dev_root; 631 struct btrfs_root *fs_root; 632 struct btrfs_root *csum_root; 633 struct btrfs_root *quota_root; 634 struct btrfs_root *uuid_root; 635 struct btrfs_root *free_space_root; 636 struct btrfs_root *data_reloc_root; 637 638 /* the log root tree is a directory of all the other log roots */ 639 struct btrfs_root *log_root_tree; 640 641 spinlock_t fs_roots_radix_lock; 642 struct radix_tree_root fs_roots_radix; 643 644 /* block group cache stuff */ 645 spinlock_t block_group_cache_lock; 646 u64 first_logical_byte; 647 struct rb_root block_group_cache_tree; 648 649 /* keep track of unallocated space */ 650 atomic64_t free_chunk_space; 651 652 /* Track ranges which are used by log trees blocks/logged data extents */ 653 struct extent_io_tree excluded_extents; 654 655 /* logical->physical extent mapping */ 656 struct extent_map_tree mapping_tree; 657 658 /* 659 * block reservation for extent, checksum, root tree and 660 * delayed dir index item 661 */ 662 struct btrfs_block_rsv global_block_rsv; 663 /* block reservation for metadata operations */ 664 struct btrfs_block_rsv trans_block_rsv; 665 /* block reservation for chunk tree */ 666 struct btrfs_block_rsv chunk_block_rsv; 667 /* block reservation for delayed operations */ 668 struct btrfs_block_rsv delayed_block_rsv; 669 /* block reservation for delayed refs */ 670 struct btrfs_block_rsv delayed_refs_rsv; 671 672 struct btrfs_block_rsv empty_block_rsv; 673 674 u64 generation; 675 u64 last_trans_committed; 676 u64 avg_delayed_ref_runtime; 677 678 /* 679 * this is updated to the current trans every time a full commit 680 * is required instead of the faster short fsync log commits 681 */ 682 u64 last_trans_log_full_commit; 683 unsigned long mount_opt; 684 /* 685 * Track requests for actions that need to be done during transaction 686 * commit (like for some mount options). 687 */ 688 unsigned long pending_changes; 689 unsigned long compress_type:4; 690 unsigned int compress_level; 691 u32 commit_interval; 692 /* 693 * It is a suggestive number, the read side is safe even it gets a 694 * wrong number because we will write out the data into a regular 695 * extent. The write side(mount/remount) is under ->s_umount lock, 696 * so it is also safe. 697 */ 698 u64 max_inline; 699 700 struct btrfs_transaction *running_transaction; 701 wait_queue_head_t transaction_throttle; 702 wait_queue_head_t transaction_wait; 703 wait_queue_head_t transaction_blocked_wait; 704 wait_queue_head_t async_submit_wait; 705 706 /* 707 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 708 * when they are updated. 709 * 710 * Because we do not clear the flags for ever, so we needn't use 711 * the lock on the read side. 712 * 713 * We also needn't use the lock when we mount the fs, because 714 * there is no other task which will update the flag. 715 */ 716 spinlock_t super_lock; 717 struct btrfs_super_block *super_copy; 718 struct btrfs_super_block *super_for_commit; 719 struct super_block *sb; 720 struct inode *btree_inode; 721 struct mutex tree_log_mutex; 722 struct mutex transaction_kthread_mutex; 723 struct mutex cleaner_mutex; 724 struct mutex chunk_mutex; 725 726 /* 727 * this is taken to make sure we don't set block groups ro after 728 * the free space cache has been allocated on them 729 */ 730 struct mutex ro_block_group_mutex; 731 732 /* this is used during read/modify/write to make sure 733 * no two ios are trying to mod the same stripe at the same 734 * time 735 */ 736 struct btrfs_stripe_hash_table *stripe_hash_table; 737 738 /* 739 * this protects the ordered operations list only while we are 740 * processing all of the entries on it. This way we make 741 * sure the commit code doesn't find the list temporarily empty 742 * because another function happens to be doing non-waiting preflush 743 * before jumping into the main commit. 744 */ 745 struct mutex ordered_operations_mutex; 746 747 struct rw_semaphore commit_root_sem; 748 749 struct rw_semaphore cleanup_work_sem; 750 751 struct rw_semaphore subvol_sem; 752 753 spinlock_t trans_lock; 754 /* 755 * the reloc mutex goes with the trans lock, it is taken 756 * during commit to protect us from the relocation code 757 */ 758 struct mutex reloc_mutex; 759 760 struct list_head trans_list; 761 struct list_head dead_roots; 762 struct list_head caching_block_groups; 763 764 spinlock_t delayed_iput_lock; 765 struct list_head delayed_iputs; 766 atomic_t nr_delayed_iputs; 767 wait_queue_head_t delayed_iputs_wait; 768 769 atomic64_t tree_mod_seq; 770 771 /* this protects tree_mod_log and tree_mod_seq_list */ 772 rwlock_t tree_mod_log_lock; 773 struct rb_root tree_mod_log; 774 struct list_head tree_mod_seq_list; 775 776 atomic_t async_delalloc_pages; 777 778 /* 779 * this is used to protect the following list -- ordered_roots. 780 */ 781 spinlock_t ordered_root_lock; 782 783 /* 784 * all fs/file tree roots in which there are data=ordered extents 785 * pending writeback are added into this list. 786 * 787 * these can span multiple transactions and basically include 788 * every dirty data page that isn't from nodatacow 789 */ 790 struct list_head ordered_roots; 791 792 struct mutex delalloc_root_mutex; 793 spinlock_t delalloc_root_lock; 794 /* all fs/file tree roots that have delalloc inodes. */ 795 struct list_head delalloc_roots; 796 797 /* 798 * there is a pool of worker threads for checksumming during writes 799 * and a pool for checksumming after reads. This is because readers 800 * can run with FS locks held, and the writers may be waiting for 801 * those locks. We don't want ordering in the pending list to cause 802 * deadlocks, and so the two are serviced separately. 803 * 804 * A third pool does submit_bio to avoid deadlocking with the other 805 * two 806 */ 807 struct btrfs_workqueue *workers; 808 struct btrfs_workqueue *delalloc_workers; 809 struct btrfs_workqueue *flush_workers; 810 struct btrfs_workqueue *endio_workers; 811 struct btrfs_workqueue *endio_meta_workers; 812 struct btrfs_workqueue *endio_raid56_workers; 813 struct btrfs_workqueue *rmw_workers; 814 struct btrfs_workqueue *endio_meta_write_workers; 815 struct btrfs_workqueue *endio_write_workers; 816 struct btrfs_workqueue *endio_freespace_worker; 817 struct btrfs_workqueue *caching_workers; 818 struct btrfs_workqueue *readahead_workers; 819 820 /* 821 * fixup workers take dirty pages that didn't properly go through 822 * the cow mechanism and make them safe to write. It happens 823 * for the sys_munmap function call path 824 */ 825 struct btrfs_workqueue *fixup_workers; 826 struct btrfs_workqueue *delayed_workers; 827 828 struct task_struct *transaction_kthread; 829 struct task_struct *cleaner_kthread; 830 u32 thread_pool_size; 831 832 struct kobject *space_info_kobj; 833 struct kobject *qgroups_kobj; 834 835 /* used to keep from writing metadata until there is a nice batch */ 836 struct percpu_counter dirty_metadata_bytes; 837 struct percpu_counter delalloc_bytes; 838 struct percpu_counter ordered_bytes; 839 s32 dirty_metadata_batch; 840 s32 delalloc_batch; 841 842 struct list_head dirty_cowonly_roots; 843 844 struct btrfs_fs_devices *fs_devices; 845 846 /* 847 * The space_info list is effectively read only after initial 848 * setup. It is populated at mount time and cleaned up after 849 * all block groups are removed. RCU is used to protect it. 850 */ 851 struct list_head space_info; 852 853 struct btrfs_space_info *data_sinfo; 854 855 struct reloc_control *reloc_ctl; 856 857 /* data_alloc_cluster is only used in ssd_spread mode */ 858 struct btrfs_free_cluster data_alloc_cluster; 859 860 /* all metadata allocations go through this cluster */ 861 struct btrfs_free_cluster meta_alloc_cluster; 862 863 /* auto defrag inodes go here */ 864 spinlock_t defrag_inodes_lock; 865 struct rb_root defrag_inodes; 866 atomic_t defrag_running; 867 868 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 869 seqlock_t profiles_lock; 870 /* 871 * these three are in extended format (availability of single 872 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 873 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 874 */ 875 u64 avail_data_alloc_bits; 876 u64 avail_metadata_alloc_bits; 877 u64 avail_system_alloc_bits; 878 879 /* restriper state */ 880 spinlock_t balance_lock; 881 struct mutex balance_mutex; 882 atomic_t balance_pause_req; 883 atomic_t balance_cancel_req; 884 struct btrfs_balance_control *balance_ctl; 885 wait_queue_head_t balance_wait_q; 886 887 /* Cancellation requests for chunk relocation */ 888 atomic_t reloc_cancel_req; 889 890 u32 data_chunk_allocations; 891 u32 metadata_ratio; 892 893 void *bdev_holder; 894 895 /* private scrub information */ 896 struct mutex scrub_lock; 897 atomic_t scrubs_running; 898 atomic_t scrub_pause_req; 899 atomic_t scrubs_paused; 900 atomic_t scrub_cancel_req; 901 wait_queue_head_t scrub_pause_wait; 902 /* 903 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 904 * running. 905 */ 906 refcount_t scrub_workers_refcnt; 907 struct btrfs_workqueue *scrub_workers; 908 struct btrfs_workqueue *scrub_wr_completion_workers; 909 struct btrfs_workqueue *scrub_parity_workers; 910 struct btrfs_subpage_info *subpage_info; 911 912 struct btrfs_discard_ctl discard_ctl; 913 914 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 915 u32 check_integrity_print_mask; 916 #endif 917 /* is qgroup tracking in a consistent state? */ 918 u64 qgroup_flags; 919 920 /* holds configuration and tracking. Protected by qgroup_lock */ 921 struct rb_root qgroup_tree; 922 spinlock_t qgroup_lock; 923 924 /* 925 * used to avoid frequently calling ulist_alloc()/ulist_free() 926 * when doing qgroup accounting, it must be protected by qgroup_lock. 927 */ 928 struct ulist *qgroup_ulist; 929 930 /* 931 * Protect user change for quota operations. If a transaction is needed, 932 * it must be started before locking this lock. 933 */ 934 struct mutex qgroup_ioctl_lock; 935 936 /* list of dirty qgroups to be written at next commit */ 937 struct list_head dirty_qgroups; 938 939 /* used by qgroup for an efficient tree traversal */ 940 u64 qgroup_seq; 941 942 /* qgroup rescan items */ 943 struct mutex qgroup_rescan_lock; /* protects the progress item */ 944 struct btrfs_key qgroup_rescan_progress; 945 struct btrfs_workqueue *qgroup_rescan_workers; 946 struct completion qgroup_rescan_completion; 947 struct btrfs_work qgroup_rescan_work; 948 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 949 950 /* filesystem state */ 951 unsigned long fs_state; 952 953 struct btrfs_delayed_root *delayed_root; 954 955 /* readahead tree */ 956 spinlock_t reada_lock; 957 struct radix_tree_root reada_tree; 958 959 /* readahead works cnt */ 960 atomic_t reada_works_cnt; 961 962 /* Extent buffer radix tree */ 963 spinlock_t buffer_lock; 964 /* Entries are eb->start / sectorsize */ 965 struct radix_tree_root buffer_radix; 966 967 /* next backup root to be overwritten */ 968 int backup_root_index; 969 970 /* device replace state */ 971 struct btrfs_dev_replace dev_replace; 972 973 struct semaphore uuid_tree_rescan_sem; 974 975 /* Used to reclaim the metadata space in the background. */ 976 struct work_struct async_reclaim_work; 977 struct work_struct async_data_reclaim_work; 978 struct work_struct preempt_reclaim_work; 979 980 /* Reclaim partially filled block groups in the background */ 981 struct work_struct reclaim_bgs_work; 982 struct list_head reclaim_bgs; 983 int bg_reclaim_threshold; 984 985 spinlock_t unused_bgs_lock; 986 struct list_head unused_bgs; 987 struct mutex unused_bg_unpin_mutex; 988 /* Protect block groups that are going to be deleted */ 989 struct mutex reclaim_bgs_lock; 990 991 /* Cached block sizes */ 992 u32 nodesize; 993 u32 sectorsize; 994 /* ilog2 of sectorsize, use to avoid 64bit division */ 995 u32 sectorsize_bits; 996 u32 csum_size; 997 u32 csums_per_leaf; 998 u32 stripesize; 999 1000 /* Block groups and devices containing active swapfiles. */ 1001 spinlock_t swapfile_pins_lock; 1002 struct rb_root swapfile_pins; 1003 1004 struct crypto_shash *csum_shash; 1005 1006 spinlock_t send_reloc_lock; 1007 /* 1008 * Number of send operations in progress. 1009 * Updated while holding fs_info::send_reloc_lock. 1010 */ 1011 int send_in_progress; 1012 1013 /* Type of exclusive operation running, protected by super_lock */ 1014 enum btrfs_exclusive_operation exclusive_operation; 1015 1016 /* 1017 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1018 * if the mode is enabled 1019 */ 1020 union { 1021 u64 zone_size; 1022 u64 zoned; 1023 }; 1024 1025 struct mutex zoned_meta_io_lock; 1026 spinlock_t treelog_bg_lock; 1027 u64 treelog_bg; 1028 1029 /* 1030 * Start of the dedicated data relocation block group, protected by 1031 * relocation_bg_lock. 1032 */ 1033 spinlock_t relocation_bg_lock; 1034 u64 data_reloc_bg; 1035 1036 spinlock_t zone_active_bgs_lock; 1037 struct list_head zone_active_bgs; 1038 1039 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1040 spinlock_t ref_verify_lock; 1041 struct rb_root block_tree; 1042 #endif 1043 1044 #ifdef CONFIG_BTRFS_DEBUG 1045 struct kobject *debug_kobj; 1046 struct kobject *discard_debug_kobj; 1047 struct list_head allocated_roots; 1048 1049 spinlock_t eb_leak_lock; 1050 struct list_head allocated_ebs; 1051 #endif 1052 }; 1053 1054 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1055 { 1056 return sb->s_fs_info; 1057 } 1058 1059 /* 1060 * The state of btrfs root 1061 */ 1062 enum { 1063 /* 1064 * btrfs_record_root_in_trans is a multi-step process, and it can race 1065 * with the balancing code. But the race is very small, and only the 1066 * first time the root is added to each transaction. So IN_TRANS_SETUP 1067 * is used to tell us when more checks are required 1068 */ 1069 BTRFS_ROOT_IN_TRANS_SETUP, 1070 1071 /* 1072 * Set if tree blocks of this root can be shared by other roots. 1073 * Only subvolume trees and their reloc trees have this bit set. 1074 * Conflicts with TRACK_DIRTY bit. 1075 * 1076 * This affects two things: 1077 * 1078 * - How balance works 1079 * For shareable roots, we need to use reloc tree and do path 1080 * replacement for balance, and need various pre/post hooks for 1081 * snapshot creation to handle them. 1082 * 1083 * While for non-shareable trees, we just simply do a tree search 1084 * with COW. 1085 * 1086 * - How dirty roots are tracked 1087 * For shareable roots, btrfs_record_root_in_trans() is needed to 1088 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1089 * don't need to set this manually. 1090 */ 1091 BTRFS_ROOT_SHAREABLE, 1092 BTRFS_ROOT_TRACK_DIRTY, 1093 BTRFS_ROOT_IN_RADIX, 1094 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1095 BTRFS_ROOT_DEFRAG_RUNNING, 1096 BTRFS_ROOT_FORCE_COW, 1097 BTRFS_ROOT_MULTI_LOG_TASKS, 1098 BTRFS_ROOT_DIRTY, 1099 BTRFS_ROOT_DELETING, 1100 1101 /* 1102 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1103 * 1104 * Set for the subvolume tree owning the reloc tree. 1105 */ 1106 BTRFS_ROOT_DEAD_RELOC_TREE, 1107 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1108 BTRFS_ROOT_DEAD_TREE, 1109 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1110 BTRFS_ROOT_HAS_LOG_TREE, 1111 /* Qgroup flushing is in progress */ 1112 BTRFS_ROOT_QGROUP_FLUSHING, 1113 }; 1114 1115 /* 1116 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1117 * code. For detail check comment in fs/btrfs/qgroup.c. 1118 */ 1119 struct btrfs_qgroup_swapped_blocks { 1120 spinlock_t lock; 1121 /* RM_EMPTY_ROOT() of above blocks[] */ 1122 bool swapped; 1123 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1124 }; 1125 1126 /* 1127 * in ram representation of the tree. extent_root is used for all allocations 1128 * and for the extent tree extent_root root. 1129 */ 1130 struct btrfs_root { 1131 struct extent_buffer *node; 1132 1133 struct extent_buffer *commit_root; 1134 struct btrfs_root *log_root; 1135 struct btrfs_root *reloc_root; 1136 1137 unsigned long state; 1138 struct btrfs_root_item root_item; 1139 struct btrfs_key root_key; 1140 struct btrfs_fs_info *fs_info; 1141 struct extent_io_tree dirty_log_pages; 1142 1143 struct mutex objectid_mutex; 1144 1145 spinlock_t accounting_lock; 1146 struct btrfs_block_rsv *block_rsv; 1147 1148 struct mutex log_mutex; 1149 wait_queue_head_t log_writer_wait; 1150 wait_queue_head_t log_commit_wait[2]; 1151 struct list_head log_ctxs[2]; 1152 /* Used only for log trees of subvolumes, not for the log root tree */ 1153 atomic_t log_writers; 1154 atomic_t log_commit[2]; 1155 /* Used only for log trees of subvolumes, not for the log root tree */ 1156 atomic_t log_batch; 1157 int log_transid; 1158 /* No matter the commit succeeds or not*/ 1159 int log_transid_committed; 1160 /* Just be updated when the commit succeeds. */ 1161 int last_log_commit; 1162 pid_t log_start_pid; 1163 1164 u64 last_trans; 1165 1166 u32 type; 1167 1168 u64 free_objectid; 1169 1170 struct btrfs_key defrag_progress; 1171 struct btrfs_key defrag_max; 1172 1173 /* The dirty list is only used by non-shareable roots */ 1174 struct list_head dirty_list; 1175 1176 struct list_head root_list; 1177 1178 spinlock_t log_extents_lock[2]; 1179 struct list_head logged_list[2]; 1180 1181 int orphan_cleanup_state; 1182 1183 spinlock_t inode_lock; 1184 /* red-black tree that keeps track of in-memory inodes */ 1185 struct rb_root inode_tree; 1186 1187 /* 1188 * radix tree that keeps track of delayed nodes of every inode, 1189 * protected by inode_lock 1190 */ 1191 struct radix_tree_root delayed_nodes_tree; 1192 /* 1193 * right now this just gets used so that a root has its own devid 1194 * for stat. It may be used for more later 1195 */ 1196 dev_t anon_dev; 1197 1198 spinlock_t root_item_lock; 1199 refcount_t refs; 1200 1201 struct mutex delalloc_mutex; 1202 spinlock_t delalloc_lock; 1203 /* 1204 * all of the inodes that have delalloc bytes. It is possible for 1205 * this list to be empty even when there is still dirty data=ordered 1206 * extents waiting to finish IO. 1207 */ 1208 struct list_head delalloc_inodes; 1209 struct list_head delalloc_root; 1210 u64 nr_delalloc_inodes; 1211 1212 struct mutex ordered_extent_mutex; 1213 /* 1214 * this is used by the balancing code to wait for all the pending 1215 * ordered extents 1216 */ 1217 spinlock_t ordered_extent_lock; 1218 1219 /* 1220 * all of the data=ordered extents pending writeback 1221 * these can span multiple transactions and basically include 1222 * every dirty data page that isn't from nodatacow 1223 */ 1224 struct list_head ordered_extents; 1225 struct list_head ordered_root; 1226 u64 nr_ordered_extents; 1227 1228 /* 1229 * Not empty if this subvolume root has gone through tree block swap 1230 * (relocation) 1231 * 1232 * Will be used by reloc_control::dirty_subvol_roots. 1233 */ 1234 struct list_head reloc_dirty_list; 1235 1236 /* 1237 * Number of currently running SEND ioctls to prevent 1238 * manipulation with the read-only status via SUBVOL_SETFLAGS 1239 */ 1240 int send_in_progress; 1241 /* 1242 * Number of currently running deduplication operations that have a 1243 * destination inode belonging to this root. Protected by the lock 1244 * root_item_lock. 1245 */ 1246 int dedupe_in_progress; 1247 /* For exclusion of snapshot creation and nocow writes */ 1248 struct btrfs_drew_lock snapshot_lock; 1249 1250 atomic_t snapshot_force_cow; 1251 1252 /* For qgroup metadata reserved space */ 1253 spinlock_t qgroup_meta_rsv_lock; 1254 u64 qgroup_meta_rsv_pertrans; 1255 u64 qgroup_meta_rsv_prealloc; 1256 wait_queue_head_t qgroup_flush_wait; 1257 1258 /* Number of active swapfiles */ 1259 atomic_t nr_swapfiles; 1260 1261 /* Record pairs of swapped blocks for qgroup */ 1262 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1263 1264 /* Used only by log trees, when logging csum items */ 1265 struct extent_io_tree log_csum_range; 1266 1267 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1268 u64 alloc_bytenr; 1269 #endif 1270 1271 #ifdef CONFIG_BTRFS_DEBUG 1272 struct list_head leak_list; 1273 #endif 1274 }; 1275 1276 /* 1277 * Structure that conveys information about an extent that is going to replace 1278 * all the extents in a file range. 1279 */ 1280 struct btrfs_replace_extent_info { 1281 u64 disk_offset; 1282 u64 disk_len; 1283 u64 data_offset; 1284 u64 data_len; 1285 u64 file_offset; 1286 /* Pointer to a file extent item of type regular or prealloc. */ 1287 char *extent_buf; 1288 /* 1289 * Set to true when attempting to replace a file range with a new extent 1290 * described by this structure, set to false when attempting to clone an 1291 * existing extent into a file range. 1292 */ 1293 bool is_new_extent; 1294 /* Meaningful only if is_new_extent is true. */ 1295 int qgroup_reserved; 1296 /* 1297 * Meaningful only if is_new_extent is true. 1298 * Used to track how many extent items we have already inserted in a 1299 * subvolume tree that refer to the extent described by this structure, 1300 * so that we know when to create a new delayed ref or update an existing 1301 * one. 1302 */ 1303 int insertions; 1304 }; 1305 1306 /* Arguments for btrfs_drop_extents() */ 1307 struct btrfs_drop_extents_args { 1308 /* Input parameters */ 1309 1310 /* 1311 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1312 * If 'replace_extent' is true, this must not be NULL. Also the path 1313 * is always released except if 'replace_extent' is true and 1314 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1315 * the path is kept locked. 1316 */ 1317 struct btrfs_path *path; 1318 /* Start offset of the range to drop extents from */ 1319 u64 start; 1320 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1321 u64 end; 1322 /* If true drop all the extent maps in the range */ 1323 bool drop_cache; 1324 /* 1325 * If true it means we want to insert a new extent after dropping all 1326 * the extents in the range. If this is true, the 'extent_item_size' 1327 * parameter must be set as well and the 'extent_inserted' field will 1328 * be set to true by btrfs_drop_extents() if it could insert the new 1329 * extent. 1330 * Note: when this is set to true the path must not be NULL. 1331 */ 1332 bool replace_extent; 1333 /* 1334 * Used if 'replace_extent' is true. Size of the file extent item to 1335 * insert after dropping all existing extents in the range 1336 */ 1337 u32 extent_item_size; 1338 1339 /* Output parameters */ 1340 1341 /* 1342 * Set to the minimum between the input parameter 'end' and the end 1343 * (exclusive, last byte + 1) of the last dropped extent. This is always 1344 * set even if btrfs_drop_extents() returns an error. 1345 */ 1346 u64 drop_end; 1347 /* 1348 * The number of allocated bytes found in the range. This can be smaller 1349 * than the range's length when there are holes in the range. 1350 */ 1351 u64 bytes_found; 1352 /* 1353 * Only set if 'replace_extent' is true. Set to true if we were able 1354 * to insert a replacement extent after dropping all extents in the 1355 * range, otherwise set to false by btrfs_drop_extents(). 1356 * Also, if btrfs_drop_extents() has set this to true it means it 1357 * returned with the path locked, otherwise if it has set this to 1358 * false it has returned with the path released. 1359 */ 1360 bool extent_inserted; 1361 }; 1362 1363 struct btrfs_file_private { 1364 void *filldir_buf; 1365 }; 1366 1367 1368 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1369 { 1370 1371 return info->nodesize - sizeof(struct btrfs_header); 1372 } 1373 1374 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1375 1376 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1377 { 1378 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1379 } 1380 1381 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1382 { 1383 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1384 } 1385 1386 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1387 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1388 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1389 { 1390 return BTRFS_MAX_ITEM_SIZE(info) - 1391 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1392 } 1393 1394 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1395 { 1396 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1397 } 1398 1399 /* 1400 * Flags for mount options. 1401 * 1402 * Note: don't forget to add new options to btrfs_show_options() 1403 */ 1404 enum { 1405 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1406 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1407 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1408 BTRFS_MOUNT_SSD = (1UL << 3), 1409 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1410 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1411 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1412 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1413 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1414 BTRFS_MOUNT_NOSSD = (1UL << 9), 1415 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1416 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1417 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1418 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1419 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1420 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1421 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1422 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1423 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1424 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1425 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1426 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1427 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1428 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1429 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1430 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1431 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1432 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1433 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1434 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1435 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1436 }; 1437 1438 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1439 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1440 1441 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1442 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1443 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1444 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1445 BTRFS_MOUNT_##opt) 1446 1447 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1448 do { \ 1449 if (!btrfs_test_opt(fs_info, opt)) \ 1450 btrfs_info(fs_info, fmt, ##args); \ 1451 btrfs_set_opt(fs_info->mount_opt, opt); \ 1452 } while (0) 1453 1454 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1455 do { \ 1456 if (btrfs_test_opt(fs_info, opt)) \ 1457 btrfs_info(fs_info, fmt, ##args); \ 1458 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1459 } while (0) 1460 1461 /* 1462 * Requests for changes that need to be done during transaction commit. 1463 * 1464 * Internal mount options that are used for special handling of the real 1465 * mount options (eg. cannot be set during remount and have to be set during 1466 * transaction commit) 1467 */ 1468 1469 #define BTRFS_PENDING_COMMIT (0) 1470 1471 #define btrfs_test_pending(info, opt) \ 1472 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1473 #define btrfs_set_pending(info, opt) \ 1474 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1475 #define btrfs_clear_pending(info, opt) \ 1476 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1477 1478 /* 1479 * Helpers for setting pending mount option changes. 1480 * 1481 * Expects corresponding macros 1482 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1483 */ 1484 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1485 do { \ 1486 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1487 btrfs_info((info), fmt, ##args); \ 1488 btrfs_set_pending((info), SET_##opt); \ 1489 btrfs_clear_pending((info), CLEAR_##opt); \ 1490 } \ 1491 } while(0) 1492 1493 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1494 do { \ 1495 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1496 btrfs_info((info), fmt, ##args); \ 1497 btrfs_set_pending((info), CLEAR_##opt); \ 1498 btrfs_clear_pending((info), SET_##opt); \ 1499 } \ 1500 } while(0) 1501 1502 /* 1503 * Inode flags 1504 */ 1505 #define BTRFS_INODE_NODATASUM (1U << 0) 1506 #define BTRFS_INODE_NODATACOW (1U << 1) 1507 #define BTRFS_INODE_READONLY (1U << 2) 1508 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1509 #define BTRFS_INODE_PREALLOC (1U << 4) 1510 #define BTRFS_INODE_SYNC (1U << 5) 1511 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1512 #define BTRFS_INODE_APPEND (1U << 7) 1513 #define BTRFS_INODE_NODUMP (1U << 8) 1514 #define BTRFS_INODE_NOATIME (1U << 9) 1515 #define BTRFS_INODE_DIRSYNC (1U << 10) 1516 #define BTRFS_INODE_COMPRESS (1U << 11) 1517 1518 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1519 1520 #define BTRFS_INODE_FLAG_MASK \ 1521 (BTRFS_INODE_NODATASUM | \ 1522 BTRFS_INODE_NODATACOW | \ 1523 BTRFS_INODE_READONLY | \ 1524 BTRFS_INODE_NOCOMPRESS | \ 1525 BTRFS_INODE_PREALLOC | \ 1526 BTRFS_INODE_SYNC | \ 1527 BTRFS_INODE_IMMUTABLE | \ 1528 BTRFS_INODE_APPEND | \ 1529 BTRFS_INODE_NODUMP | \ 1530 BTRFS_INODE_NOATIME | \ 1531 BTRFS_INODE_DIRSYNC | \ 1532 BTRFS_INODE_COMPRESS | \ 1533 BTRFS_INODE_ROOT_ITEM_INIT) 1534 1535 #define BTRFS_INODE_RO_VERITY (1U << 0) 1536 1537 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1538 1539 struct btrfs_map_token { 1540 struct extent_buffer *eb; 1541 char *kaddr; 1542 unsigned long offset; 1543 }; 1544 1545 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1546 ((bytes) >> (fs_info)->sectorsize_bits) 1547 1548 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1549 struct extent_buffer *eb) 1550 { 1551 token->eb = eb; 1552 token->kaddr = page_address(eb->pages[0]); 1553 token->offset = 0; 1554 } 1555 1556 /* some macros to generate set/get functions for the struct fields. This 1557 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1558 * one for u8: 1559 */ 1560 #define le8_to_cpu(v) (v) 1561 #define cpu_to_le8(v) (v) 1562 #define __le8 u8 1563 1564 static inline u8 get_unaligned_le8(const void *p) 1565 { 1566 return *(u8 *)p; 1567 } 1568 1569 static inline void put_unaligned_le8(u8 val, void *p) 1570 { 1571 *(u8 *)p = val; 1572 } 1573 1574 #define read_eb_member(eb, ptr, type, member, result) (\ 1575 read_extent_buffer(eb, (char *)(result), \ 1576 ((unsigned long)(ptr)) + \ 1577 offsetof(type, member), \ 1578 sizeof(((type *)0)->member))) 1579 1580 #define write_eb_member(eb, ptr, type, member, result) (\ 1581 write_extent_buffer(eb, (char *)(result), \ 1582 ((unsigned long)(ptr)) + \ 1583 offsetof(type, member), \ 1584 sizeof(((type *)0)->member))) 1585 1586 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1587 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1588 const void *ptr, unsigned long off); \ 1589 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1590 const void *ptr, unsigned long off, \ 1591 u##bits val); \ 1592 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1593 const void *ptr, unsigned long off); \ 1594 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1595 unsigned long off, u##bits val); 1596 1597 DECLARE_BTRFS_SETGET_BITS(8) 1598 DECLARE_BTRFS_SETGET_BITS(16) 1599 DECLARE_BTRFS_SETGET_BITS(32) 1600 DECLARE_BTRFS_SETGET_BITS(64) 1601 1602 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1603 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1604 const type *s) \ 1605 { \ 1606 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1607 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1608 } \ 1609 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1610 u##bits val) \ 1611 { \ 1612 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1613 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1614 } \ 1615 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1616 const type *s) \ 1617 { \ 1618 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1619 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1620 } \ 1621 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1622 type *s, u##bits val) \ 1623 { \ 1624 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1625 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1626 } 1627 1628 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1629 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1630 { \ 1631 const type *p = page_address(eb->pages[0]) + \ 1632 offset_in_page(eb->start); \ 1633 return get_unaligned_le##bits(&p->member); \ 1634 } \ 1635 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1636 u##bits val) \ 1637 { \ 1638 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1639 put_unaligned_le##bits(val, &p->member); \ 1640 } 1641 1642 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1643 static inline u##bits btrfs_##name(const type *s) \ 1644 { \ 1645 return get_unaligned_le##bits(&s->member); \ 1646 } \ 1647 static inline void btrfs_set_##name(type *s, u##bits val) \ 1648 { \ 1649 put_unaligned_le##bits(val, &s->member); \ 1650 } 1651 1652 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1653 struct btrfs_dev_item *s) 1654 { 1655 BUILD_BUG_ON(sizeof(u64) != 1656 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1657 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1658 total_bytes)); 1659 } 1660 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1661 struct btrfs_dev_item *s, 1662 u64 val) 1663 { 1664 BUILD_BUG_ON(sizeof(u64) != 1665 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1666 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1667 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1668 } 1669 1670 1671 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1672 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1673 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1674 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1675 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1676 start_offset, 64); 1677 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1678 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1679 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1680 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1681 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1682 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1683 1684 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1685 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1686 total_bytes, 64); 1687 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1688 bytes_used, 64); 1689 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1690 io_align, 32); 1691 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1692 io_width, 32); 1693 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1694 sector_size, 32); 1695 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1696 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1697 dev_group, 32); 1698 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1699 seek_speed, 8); 1700 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1701 bandwidth, 8); 1702 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1703 generation, 64); 1704 1705 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1706 { 1707 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1708 } 1709 1710 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1711 { 1712 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1713 } 1714 1715 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1716 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1717 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1718 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1719 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1720 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1721 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1722 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1723 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1724 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1725 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1726 1727 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1728 { 1729 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1730 } 1731 1732 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1734 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1735 stripe_len, 64); 1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1737 io_align, 32); 1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1739 io_width, 32); 1740 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1741 sector_size, 32); 1742 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1743 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1744 num_stripes, 16); 1745 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1746 sub_stripes, 16); 1747 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1748 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1749 1750 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1751 int nr) 1752 { 1753 unsigned long offset = (unsigned long)c; 1754 offset += offsetof(struct btrfs_chunk, stripe); 1755 offset += nr * sizeof(struct btrfs_stripe); 1756 return (struct btrfs_stripe *)offset; 1757 } 1758 1759 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1760 { 1761 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1762 } 1763 1764 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1765 struct btrfs_chunk *c, int nr) 1766 { 1767 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1768 } 1769 1770 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1771 struct btrfs_chunk *c, int nr) 1772 { 1773 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1774 } 1775 1776 /* struct btrfs_block_group_item */ 1777 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1778 used, 64); 1779 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1780 used, 64); 1781 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1782 struct btrfs_block_group_item, chunk_objectid, 64); 1783 1784 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1785 struct btrfs_block_group_item, chunk_objectid, 64); 1786 BTRFS_SETGET_FUNCS(block_group_flags, 1787 struct btrfs_block_group_item, flags, 64); 1788 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1789 struct btrfs_block_group_item, flags, 64); 1790 1791 /* struct btrfs_free_space_info */ 1792 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1793 extent_count, 32); 1794 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1795 1796 /* struct btrfs_inode_ref */ 1797 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1798 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1799 1800 /* struct btrfs_inode_extref */ 1801 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1802 parent_objectid, 64); 1803 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1804 name_len, 16); 1805 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1806 1807 /* struct btrfs_inode_item */ 1808 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1809 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1810 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1811 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1812 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1813 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1814 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1815 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1816 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1817 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1818 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1819 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1821 generation, 64); 1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1823 sequence, 64); 1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1825 transid, 64); 1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1828 nbytes, 64); 1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1830 block_group, 64); 1831 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1832 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1833 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1834 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1835 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1836 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1837 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1838 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1839 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1840 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1841 1842 /* struct btrfs_dev_extent */ 1843 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1844 chunk_tree, 64); 1845 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1846 chunk_objectid, 64); 1847 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1848 chunk_offset, 64); 1849 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1850 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1851 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1852 generation, 64); 1853 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1854 1855 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1856 1857 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1858 struct btrfs_tree_block_info *item, 1859 struct btrfs_disk_key *key) 1860 { 1861 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1862 } 1863 1864 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1865 struct btrfs_tree_block_info *item, 1866 struct btrfs_disk_key *key) 1867 { 1868 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1869 } 1870 1871 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1872 root, 64); 1873 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1874 objectid, 64); 1875 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1876 offset, 64); 1877 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1878 count, 32); 1879 1880 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1881 count, 32); 1882 1883 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1884 type, 8); 1885 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1886 offset, 64); 1887 1888 static inline u32 btrfs_extent_inline_ref_size(int type) 1889 { 1890 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1891 type == BTRFS_SHARED_BLOCK_REF_KEY) 1892 return sizeof(struct btrfs_extent_inline_ref); 1893 if (type == BTRFS_SHARED_DATA_REF_KEY) 1894 return sizeof(struct btrfs_shared_data_ref) + 1895 sizeof(struct btrfs_extent_inline_ref); 1896 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1897 return sizeof(struct btrfs_extent_data_ref) + 1898 offsetof(struct btrfs_extent_inline_ref, offset); 1899 return 0; 1900 } 1901 1902 /* struct btrfs_node */ 1903 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1904 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1905 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1906 blockptr, 64); 1907 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1908 generation, 64); 1909 1910 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1911 { 1912 unsigned long ptr; 1913 ptr = offsetof(struct btrfs_node, ptrs) + 1914 sizeof(struct btrfs_key_ptr) * nr; 1915 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1916 } 1917 1918 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1919 int nr, u64 val) 1920 { 1921 unsigned long ptr; 1922 ptr = offsetof(struct btrfs_node, ptrs) + 1923 sizeof(struct btrfs_key_ptr) * nr; 1924 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1925 } 1926 1927 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1928 { 1929 unsigned long ptr; 1930 ptr = offsetof(struct btrfs_node, ptrs) + 1931 sizeof(struct btrfs_key_ptr) * nr; 1932 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1933 } 1934 1935 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1936 int nr, u64 val) 1937 { 1938 unsigned long ptr; 1939 ptr = offsetof(struct btrfs_node, ptrs) + 1940 sizeof(struct btrfs_key_ptr) * nr; 1941 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1942 } 1943 1944 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1945 { 1946 return offsetof(struct btrfs_node, ptrs) + 1947 sizeof(struct btrfs_key_ptr) * nr; 1948 } 1949 1950 void btrfs_node_key(const struct extent_buffer *eb, 1951 struct btrfs_disk_key *disk_key, int nr); 1952 1953 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1954 struct btrfs_disk_key *disk_key, int nr) 1955 { 1956 unsigned long ptr; 1957 ptr = btrfs_node_key_ptr_offset(nr); 1958 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1959 struct btrfs_key_ptr, key, disk_key); 1960 } 1961 1962 /* struct btrfs_item */ 1963 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 1964 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 1965 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1966 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1967 1968 static inline unsigned long btrfs_item_nr_offset(int nr) 1969 { 1970 return offsetof(struct btrfs_leaf, items) + 1971 sizeof(struct btrfs_item) * nr; 1972 } 1973 1974 static inline struct btrfs_item *btrfs_item_nr(int nr) 1975 { 1976 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1977 } 1978 1979 static inline u32 btrfs_item_end(const struct extent_buffer *eb, 1980 struct btrfs_item *item) 1981 { 1982 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 1983 } 1984 1985 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr) 1986 { 1987 return btrfs_item_end(eb, btrfs_item_nr(nr)); 1988 } 1989 1990 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr) 1991 { 1992 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 1993 } 1994 1995 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr) 1996 { 1997 return btrfs_item_size(eb, btrfs_item_nr(nr)); 1998 } 1999 2000 static inline void btrfs_item_key(const struct extent_buffer *eb, 2001 struct btrfs_disk_key *disk_key, int nr) 2002 { 2003 struct btrfs_item *item = btrfs_item_nr(nr); 2004 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2005 } 2006 2007 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2008 struct btrfs_disk_key *disk_key, int nr) 2009 { 2010 struct btrfs_item *item = btrfs_item_nr(nr); 2011 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2012 } 2013 2014 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2015 2016 /* 2017 * struct btrfs_root_ref 2018 */ 2019 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2020 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2021 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2022 2023 /* struct btrfs_dir_item */ 2024 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2025 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2026 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2027 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2028 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2029 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2030 data_len, 16); 2031 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2032 name_len, 16); 2033 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2034 transid, 64); 2035 2036 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2037 const struct btrfs_dir_item *item, 2038 struct btrfs_disk_key *key) 2039 { 2040 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2041 } 2042 2043 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2044 struct btrfs_dir_item *item, 2045 const struct btrfs_disk_key *key) 2046 { 2047 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2048 } 2049 2050 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2051 num_entries, 64); 2052 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2053 num_bitmaps, 64); 2054 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2055 generation, 64); 2056 2057 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2058 const struct btrfs_free_space_header *h, 2059 struct btrfs_disk_key *key) 2060 { 2061 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2062 } 2063 2064 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2065 struct btrfs_free_space_header *h, 2066 const struct btrfs_disk_key *key) 2067 { 2068 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2069 } 2070 2071 /* struct btrfs_disk_key */ 2072 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2073 objectid, 64); 2074 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2075 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2076 2077 #ifdef __LITTLE_ENDIAN 2078 2079 /* 2080 * Optimized helpers for little-endian architectures where CPU and on-disk 2081 * structures have the same endianness and we can skip conversions. 2082 */ 2083 2084 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2085 const struct btrfs_disk_key *disk_key) 2086 { 2087 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2088 } 2089 2090 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2091 const struct btrfs_key *cpu_key) 2092 { 2093 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2094 } 2095 2096 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2097 struct btrfs_key *cpu_key, int nr) 2098 { 2099 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2100 2101 btrfs_node_key(eb, disk_key, nr); 2102 } 2103 2104 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2105 struct btrfs_key *cpu_key, int nr) 2106 { 2107 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2108 2109 btrfs_item_key(eb, disk_key, nr); 2110 } 2111 2112 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2113 const struct btrfs_dir_item *item, 2114 struct btrfs_key *cpu_key) 2115 { 2116 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2117 2118 btrfs_dir_item_key(eb, item, disk_key); 2119 } 2120 2121 #else 2122 2123 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2124 const struct btrfs_disk_key *disk) 2125 { 2126 cpu->offset = le64_to_cpu(disk->offset); 2127 cpu->type = disk->type; 2128 cpu->objectid = le64_to_cpu(disk->objectid); 2129 } 2130 2131 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2132 const struct btrfs_key *cpu) 2133 { 2134 disk->offset = cpu_to_le64(cpu->offset); 2135 disk->type = cpu->type; 2136 disk->objectid = cpu_to_le64(cpu->objectid); 2137 } 2138 2139 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2140 struct btrfs_key *key, int nr) 2141 { 2142 struct btrfs_disk_key disk_key; 2143 btrfs_node_key(eb, &disk_key, nr); 2144 btrfs_disk_key_to_cpu(key, &disk_key); 2145 } 2146 2147 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2148 struct btrfs_key *key, int nr) 2149 { 2150 struct btrfs_disk_key disk_key; 2151 btrfs_item_key(eb, &disk_key, nr); 2152 btrfs_disk_key_to_cpu(key, &disk_key); 2153 } 2154 2155 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2156 const struct btrfs_dir_item *item, 2157 struct btrfs_key *key) 2158 { 2159 struct btrfs_disk_key disk_key; 2160 btrfs_dir_item_key(eb, item, &disk_key); 2161 btrfs_disk_key_to_cpu(key, &disk_key); 2162 } 2163 2164 #endif 2165 2166 /* struct btrfs_header */ 2167 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2168 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2169 generation, 64); 2170 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2171 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2172 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2173 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2174 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2175 generation, 64); 2176 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2177 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2178 nritems, 32); 2179 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2180 2181 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2182 { 2183 return (btrfs_header_flags(eb) & flag) == flag; 2184 } 2185 2186 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2187 { 2188 u64 flags = btrfs_header_flags(eb); 2189 btrfs_set_header_flags(eb, flags | flag); 2190 } 2191 2192 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2193 { 2194 u64 flags = btrfs_header_flags(eb); 2195 btrfs_set_header_flags(eb, flags & ~flag); 2196 } 2197 2198 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2199 { 2200 u64 flags = btrfs_header_flags(eb); 2201 return flags >> BTRFS_BACKREF_REV_SHIFT; 2202 } 2203 2204 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2205 int rev) 2206 { 2207 u64 flags = btrfs_header_flags(eb); 2208 flags &= ~BTRFS_BACKREF_REV_MASK; 2209 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2210 btrfs_set_header_flags(eb, flags); 2211 } 2212 2213 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2214 { 2215 return btrfs_header_level(eb) == 0; 2216 } 2217 2218 /* struct btrfs_root_item */ 2219 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2220 generation, 64); 2221 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2222 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2223 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2224 2225 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2226 generation, 64); 2227 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2228 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2229 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2230 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2231 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2232 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2233 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2234 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2235 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2236 last_snapshot, 64); 2237 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2238 generation_v2, 64); 2239 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2240 ctransid, 64); 2241 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2242 otransid, 64); 2243 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2244 stransid, 64); 2245 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2246 rtransid, 64); 2247 2248 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2249 { 2250 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2251 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2252 } 2253 2254 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2255 { 2256 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2257 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2258 } 2259 2260 /* struct btrfs_root_backup */ 2261 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2262 tree_root, 64); 2263 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2264 tree_root_gen, 64); 2265 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2266 tree_root_level, 8); 2267 2268 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2269 chunk_root, 64); 2270 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2271 chunk_root_gen, 64); 2272 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2273 chunk_root_level, 8); 2274 2275 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2276 extent_root, 64); 2277 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2278 extent_root_gen, 64); 2279 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2280 extent_root_level, 8); 2281 2282 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2283 fs_root, 64); 2284 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2285 fs_root_gen, 64); 2286 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2287 fs_root_level, 8); 2288 2289 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2290 dev_root, 64); 2291 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2292 dev_root_gen, 64); 2293 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2294 dev_root_level, 8); 2295 2296 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2297 csum_root, 64); 2298 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2299 csum_root_gen, 64); 2300 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2301 csum_root_level, 8); 2302 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2303 total_bytes, 64); 2304 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2305 bytes_used, 64); 2306 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2307 num_devices, 64); 2308 2309 /* struct btrfs_balance_item */ 2310 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2311 2312 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2313 const struct btrfs_balance_item *bi, 2314 struct btrfs_disk_balance_args *ba) 2315 { 2316 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2317 } 2318 2319 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2320 struct btrfs_balance_item *bi, 2321 const struct btrfs_disk_balance_args *ba) 2322 { 2323 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2324 } 2325 2326 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2327 const struct btrfs_balance_item *bi, 2328 struct btrfs_disk_balance_args *ba) 2329 { 2330 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2331 } 2332 2333 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2334 struct btrfs_balance_item *bi, 2335 const struct btrfs_disk_balance_args *ba) 2336 { 2337 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2338 } 2339 2340 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2341 const struct btrfs_balance_item *bi, 2342 struct btrfs_disk_balance_args *ba) 2343 { 2344 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2345 } 2346 2347 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2348 struct btrfs_balance_item *bi, 2349 const struct btrfs_disk_balance_args *ba) 2350 { 2351 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2352 } 2353 2354 static inline void 2355 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2356 const struct btrfs_disk_balance_args *disk) 2357 { 2358 memset(cpu, 0, sizeof(*cpu)); 2359 2360 cpu->profiles = le64_to_cpu(disk->profiles); 2361 cpu->usage = le64_to_cpu(disk->usage); 2362 cpu->devid = le64_to_cpu(disk->devid); 2363 cpu->pstart = le64_to_cpu(disk->pstart); 2364 cpu->pend = le64_to_cpu(disk->pend); 2365 cpu->vstart = le64_to_cpu(disk->vstart); 2366 cpu->vend = le64_to_cpu(disk->vend); 2367 cpu->target = le64_to_cpu(disk->target); 2368 cpu->flags = le64_to_cpu(disk->flags); 2369 cpu->limit = le64_to_cpu(disk->limit); 2370 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2371 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2372 } 2373 2374 static inline void 2375 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2376 const struct btrfs_balance_args *cpu) 2377 { 2378 memset(disk, 0, sizeof(*disk)); 2379 2380 disk->profiles = cpu_to_le64(cpu->profiles); 2381 disk->usage = cpu_to_le64(cpu->usage); 2382 disk->devid = cpu_to_le64(cpu->devid); 2383 disk->pstart = cpu_to_le64(cpu->pstart); 2384 disk->pend = cpu_to_le64(cpu->pend); 2385 disk->vstart = cpu_to_le64(cpu->vstart); 2386 disk->vend = cpu_to_le64(cpu->vend); 2387 disk->target = cpu_to_le64(cpu->target); 2388 disk->flags = cpu_to_le64(cpu->flags); 2389 disk->limit = cpu_to_le64(cpu->limit); 2390 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2391 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2392 } 2393 2394 /* struct btrfs_super_block */ 2395 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2396 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2397 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2398 generation, 64); 2399 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2400 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2401 struct btrfs_super_block, sys_chunk_array_size, 32); 2402 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2403 struct btrfs_super_block, chunk_root_generation, 64); 2404 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2405 root_level, 8); 2406 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2407 chunk_root, 64); 2408 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2409 chunk_root_level, 8); 2410 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2411 log_root, 64); 2412 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2413 log_root_transid, 64); 2414 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2415 log_root_level, 8); 2416 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2417 total_bytes, 64); 2418 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2419 bytes_used, 64); 2420 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2421 sectorsize, 32); 2422 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2423 nodesize, 32); 2424 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2425 stripesize, 32); 2426 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2427 root_dir_objectid, 64); 2428 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2429 num_devices, 64); 2430 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2431 compat_flags, 64); 2432 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2433 compat_ro_flags, 64); 2434 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2435 incompat_flags, 64); 2436 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2437 csum_type, 16); 2438 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2439 cache_generation, 64); 2440 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2441 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2442 uuid_tree_generation, 64); 2443 2444 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2445 const char *btrfs_super_csum_name(u16 csum_type); 2446 const char *btrfs_super_csum_driver(u16 csum_type); 2447 size_t __attribute_const__ btrfs_get_num_csums(void); 2448 2449 2450 /* 2451 * The leaf data grows from end-to-front in the node. 2452 * this returns the address of the start of the last item, 2453 * which is the stop of the leaf data stack 2454 */ 2455 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2456 { 2457 u32 nr = btrfs_header_nritems(leaf); 2458 2459 if (nr == 0) 2460 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2461 return btrfs_item_offset_nr(leaf, nr - 1); 2462 } 2463 2464 /* struct btrfs_file_extent_item */ 2465 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2466 type, 8); 2467 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2468 struct btrfs_file_extent_item, disk_bytenr, 64); 2469 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2470 struct btrfs_file_extent_item, offset, 64); 2471 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2472 struct btrfs_file_extent_item, generation, 64); 2473 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2474 struct btrfs_file_extent_item, num_bytes, 64); 2475 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2476 struct btrfs_file_extent_item, ram_bytes, 64); 2477 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2478 struct btrfs_file_extent_item, disk_num_bytes, 64); 2479 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2480 struct btrfs_file_extent_item, compression, 8); 2481 2482 static inline unsigned long 2483 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2484 { 2485 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2486 } 2487 2488 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2489 { 2490 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2491 } 2492 2493 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2494 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2495 disk_bytenr, 64); 2496 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2497 generation, 64); 2498 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2499 disk_num_bytes, 64); 2500 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2501 offset, 64); 2502 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2503 num_bytes, 64); 2504 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2505 ram_bytes, 64); 2506 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2507 compression, 8); 2508 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2509 encryption, 8); 2510 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2511 other_encoding, 16); 2512 2513 /* 2514 * this returns the number of bytes used by the item on disk, minus the 2515 * size of any extent headers. If a file is compressed on disk, this is 2516 * the compressed size 2517 */ 2518 static inline u32 btrfs_file_extent_inline_item_len( 2519 const struct extent_buffer *eb, 2520 struct btrfs_item *e) 2521 { 2522 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2523 } 2524 2525 /* btrfs_qgroup_status_item */ 2526 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2527 generation, 64); 2528 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2529 version, 64); 2530 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2531 flags, 64); 2532 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2533 rescan, 64); 2534 2535 /* btrfs_qgroup_info_item */ 2536 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2537 generation, 64); 2538 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2539 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2540 rfer_cmpr, 64); 2541 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2542 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2543 excl_cmpr, 64); 2544 2545 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2546 struct btrfs_qgroup_info_item, generation, 64); 2547 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2548 rfer, 64); 2549 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2550 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2551 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2552 excl, 64); 2553 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2554 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2555 2556 /* btrfs_qgroup_limit_item */ 2557 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2558 flags, 64); 2559 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2560 max_rfer, 64); 2561 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2562 max_excl, 64); 2563 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2564 rsv_rfer, 64); 2565 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2566 rsv_excl, 64); 2567 2568 /* btrfs_dev_replace_item */ 2569 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2570 struct btrfs_dev_replace_item, src_devid, 64); 2571 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2572 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2573 64); 2574 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2575 replace_state, 64); 2576 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2577 time_started, 64); 2578 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2579 time_stopped, 64); 2580 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2581 num_write_errors, 64); 2582 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2583 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2584 64); 2585 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2586 cursor_left, 64); 2587 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2588 cursor_right, 64); 2589 2590 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2591 struct btrfs_dev_replace_item, src_devid, 64); 2592 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2593 struct btrfs_dev_replace_item, 2594 cont_reading_from_srcdev_mode, 64); 2595 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2596 struct btrfs_dev_replace_item, replace_state, 64); 2597 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2598 struct btrfs_dev_replace_item, time_started, 64); 2599 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2600 struct btrfs_dev_replace_item, time_stopped, 64); 2601 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2602 struct btrfs_dev_replace_item, num_write_errors, 64); 2603 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2604 struct btrfs_dev_replace_item, 2605 num_uncorrectable_read_errors, 64); 2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2607 struct btrfs_dev_replace_item, cursor_left, 64); 2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2609 struct btrfs_dev_replace_item, cursor_right, 64); 2610 2611 /* helper function to cast into the data area of the leaf. */ 2612 #define btrfs_item_ptr(leaf, slot, type) \ 2613 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2614 btrfs_item_offset_nr(leaf, slot))) 2615 2616 #define btrfs_item_ptr_offset(leaf, slot) \ 2617 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2618 btrfs_item_offset_nr(leaf, slot))) 2619 2620 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2621 { 2622 return crc32c(crc, address, length); 2623 } 2624 2625 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2626 { 2627 put_unaligned_le32(~crc, result); 2628 } 2629 2630 static inline u64 btrfs_name_hash(const char *name, int len) 2631 { 2632 return crc32c((u32)~1, name, len); 2633 } 2634 2635 /* 2636 * Figure the key offset of an extended inode ref 2637 */ 2638 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2639 int len) 2640 { 2641 return (u64) crc32c(parent_objectid, name, len); 2642 } 2643 2644 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2645 { 2646 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2647 } 2648 2649 /* extent-tree.c */ 2650 2651 enum btrfs_inline_ref_type { 2652 BTRFS_REF_TYPE_INVALID, 2653 BTRFS_REF_TYPE_BLOCK, 2654 BTRFS_REF_TYPE_DATA, 2655 BTRFS_REF_TYPE_ANY, 2656 }; 2657 2658 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2659 struct btrfs_extent_inline_ref *iref, 2660 enum btrfs_inline_ref_type is_data); 2661 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2662 2663 /* 2664 * Take the number of bytes to be checksummmed and figure out how many leaves 2665 * it would require to store the csums for that many bytes. 2666 */ 2667 static inline u64 btrfs_csum_bytes_to_leaves( 2668 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2669 { 2670 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2671 2672 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2673 } 2674 2675 /* 2676 * Use this if we would be adding new items, as we could split nodes as we cow 2677 * down the tree. 2678 */ 2679 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2680 unsigned num_items) 2681 { 2682 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2683 } 2684 2685 /* 2686 * Doing a truncate or a modification won't result in new nodes or leaves, just 2687 * what we need for COW. 2688 */ 2689 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2690 unsigned num_items) 2691 { 2692 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2693 } 2694 2695 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2696 u64 start, u64 num_bytes); 2697 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2698 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2699 unsigned long count); 2700 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2701 struct btrfs_delayed_ref_root *delayed_refs, 2702 struct btrfs_delayed_ref_head *head); 2703 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2704 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2705 struct btrfs_fs_info *fs_info, u64 bytenr, 2706 u64 offset, int metadata, u64 *refs, u64 *flags); 2707 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2708 int reserved); 2709 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2710 u64 bytenr, u64 num_bytes); 2711 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2712 int btrfs_cross_ref_exist(struct btrfs_root *root, 2713 u64 objectid, u64 offset, u64 bytenr, bool strict); 2714 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2715 struct btrfs_root *root, 2716 u64 parent, u64 root_objectid, 2717 const struct btrfs_disk_key *key, 2718 int level, u64 hint, 2719 u64 empty_size, 2720 enum btrfs_lock_nesting nest); 2721 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2722 struct btrfs_root *root, 2723 struct extent_buffer *buf, 2724 u64 parent, int last_ref); 2725 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2726 struct btrfs_root *root, u64 owner, 2727 u64 offset, u64 ram_bytes, 2728 struct btrfs_key *ins); 2729 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2730 u64 root_objectid, u64 owner, u64 offset, 2731 struct btrfs_key *ins); 2732 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2733 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2734 struct btrfs_key *ins, int is_data, int delalloc); 2735 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2736 struct extent_buffer *buf, int full_backref); 2737 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2738 struct extent_buffer *buf, int full_backref); 2739 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2740 struct extent_buffer *eb, u64 flags, 2741 int level, int is_data); 2742 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2743 2744 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2745 u64 start, u64 len, int delalloc); 2746 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2747 u64 len); 2748 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2749 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2750 struct btrfs_ref *generic_ref); 2751 2752 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2753 2754 /* 2755 * Different levels for to flush space when doing space reservations. 2756 * 2757 * The higher the level, the more methods we try to reclaim space. 2758 */ 2759 enum btrfs_reserve_flush_enum { 2760 /* If we are in the transaction, we can't flush anything.*/ 2761 BTRFS_RESERVE_NO_FLUSH, 2762 2763 /* 2764 * Flush space by: 2765 * - Running delayed inode items 2766 * - Allocating a new chunk 2767 */ 2768 BTRFS_RESERVE_FLUSH_LIMIT, 2769 2770 /* 2771 * Flush space by: 2772 * - Running delayed inode items 2773 * - Running delayed refs 2774 * - Running delalloc and waiting for ordered extents 2775 * - Allocating a new chunk 2776 */ 2777 BTRFS_RESERVE_FLUSH_EVICT, 2778 2779 /* 2780 * Flush space by above mentioned methods and by: 2781 * - Running delayed iputs 2782 * - Committing transaction 2783 * 2784 * Can be interrupted by a fatal signal. 2785 */ 2786 BTRFS_RESERVE_FLUSH_DATA, 2787 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2788 BTRFS_RESERVE_FLUSH_ALL, 2789 2790 /* 2791 * Pretty much the same as FLUSH_ALL, but can also steal space from 2792 * global rsv. 2793 * 2794 * Can be interrupted by a fatal signal. 2795 */ 2796 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2797 }; 2798 2799 enum btrfs_flush_state { 2800 FLUSH_DELAYED_ITEMS_NR = 1, 2801 FLUSH_DELAYED_ITEMS = 2, 2802 FLUSH_DELAYED_REFS_NR = 3, 2803 FLUSH_DELAYED_REFS = 4, 2804 FLUSH_DELALLOC = 5, 2805 FLUSH_DELALLOC_WAIT = 6, 2806 FLUSH_DELALLOC_FULL = 7, 2807 ALLOC_CHUNK = 8, 2808 ALLOC_CHUNK_FORCE = 9, 2809 RUN_DELAYED_IPUTS = 10, 2810 COMMIT_TRANS = 11, 2811 }; 2812 2813 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2814 struct btrfs_block_rsv *rsv, 2815 int nitems, bool use_global_rsv); 2816 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2817 struct btrfs_block_rsv *rsv); 2818 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2819 2820 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2821 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2822 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2823 u64 start, u64 end); 2824 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2825 u64 num_bytes, u64 *actual_bytes); 2826 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2827 2828 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2829 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2830 struct btrfs_fs_info *fs_info); 2831 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2832 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2833 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2834 2835 /* ctree.c */ 2836 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2837 int *slot); 2838 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2839 int btrfs_previous_item(struct btrfs_root *root, 2840 struct btrfs_path *path, u64 min_objectid, 2841 int type); 2842 int btrfs_previous_extent_item(struct btrfs_root *root, 2843 struct btrfs_path *path, u64 min_objectid); 2844 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2845 struct btrfs_path *path, 2846 const struct btrfs_key *new_key); 2847 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2848 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2849 struct btrfs_key *key, int lowest_level, 2850 u64 min_trans); 2851 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2852 struct btrfs_path *path, 2853 u64 min_trans); 2854 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2855 int slot); 2856 2857 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2858 struct btrfs_root *root, struct extent_buffer *buf, 2859 struct extent_buffer *parent, int parent_slot, 2860 struct extent_buffer **cow_ret, 2861 enum btrfs_lock_nesting nest); 2862 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2863 struct btrfs_root *root, 2864 struct extent_buffer *buf, 2865 struct extent_buffer **cow_ret, u64 new_root_objectid); 2866 int btrfs_block_can_be_shared(struct btrfs_root *root, 2867 struct extent_buffer *buf); 2868 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2869 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2870 int btrfs_split_item(struct btrfs_trans_handle *trans, 2871 struct btrfs_root *root, 2872 struct btrfs_path *path, 2873 const struct btrfs_key *new_key, 2874 unsigned long split_offset); 2875 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2876 struct btrfs_root *root, 2877 struct btrfs_path *path, 2878 const struct btrfs_key *new_key); 2879 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2880 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2881 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2882 const struct btrfs_key *key, struct btrfs_path *p, 2883 int ins_len, int cow); 2884 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2885 struct btrfs_path *p, u64 time_seq); 2886 int btrfs_search_slot_for_read(struct btrfs_root *root, 2887 const struct btrfs_key *key, 2888 struct btrfs_path *p, int find_higher, 2889 int return_any); 2890 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2891 struct btrfs_root *root, struct extent_buffer *parent, 2892 int start_slot, u64 *last_ret, 2893 struct btrfs_key *progress); 2894 void btrfs_release_path(struct btrfs_path *p); 2895 struct btrfs_path *btrfs_alloc_path(void); 2896 void btrfs_free_path(struct btrfs_path *p); 2897 2898 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2899 struct btrfs_path *path, int slot, int nr); 2900 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2901 struct btrfs_root *root, 2902 struct btrfs_path *path) 2903 { 2904 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2905 } 2906 2907 /* 2908 * Describes a batch of items to insert in a btree. This is used by 2909 * btrfs_insert_empty_items(). 2910 */ 2911 struct btrfs_item_batch { 2912 /* 2913 * Pointer to an array containing the keys of the items to insert (in 2914 * sorted order). 2915 */ 2916 const struct btrfs_key *keys; 2917 /* Pointer to an array containing the data size for each item to insert. */ 2918 const u32 *data_sizes; 2919 /* 2920 * The sum of data sizes for all items. The caller can compute this while 2921 * setting up the data_sizes array, so it ends up being more efficient 2922 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2923 * doing it, as it would avoid an extra loop over a potentially large 2924 * array, and in the case of setup_item_for_insert(), we would be doing 2925 * it while holding a write lock on a leaf and often on upper level nodes 2926 * too, unnecessarily increasing the size of a critical section. 2927 */ 2928 u32 total_data_size; 2929 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 2930 int nr; 2931 }; 2932 2933 void btrfs_setup_item_for_insert(struct btrfs_root *root, 2934 struct btrfs_path *path, 2935 const struct btrfs_key *key, 2936 u32 data_size); 2937 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2938 const struct btrfs_key *key, void *data, u32 data_size); 2939 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2940 struct btrfs_root *root, 2941 struct btrfs_path *path, 2942 const struct btrfs_item_batch *batch); 2943 2944 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2945 struct btrfs_root *root, 2946 struct btrfs_path *path, 2947 const struct btrfs_key *key, 2948 u32 data_size) 2949 { 2950 struct btrfs_item_batch batch; 2951 2952 batch.keys = key; 2953 batch.data_sizes = &data_size; 2954 batch.total_data_size = data_size; 2955 batch.nr = 1; 2956 2957 return btrfs_insert_empty_items(trans, root, path, &batch); 2958 } 2959 2960 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2961 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2962 u64 time_seq); 2963 2964 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2965 struct btrfs_path *path); 2966 2967 static inline int btrfs_next_old_item(struct btrfs_root *root, 2968 struct btrfs_path *p, u64 time_seq) 2969 { 2970 ++p->slots[0]; 2971 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2972 return btrfs_next_old_leaf(root, p, time_seq); 2973 return 0; 2974 } 2975 2976 /* 2977 * Search the tree again to find a leaf with greater keys. 2978 * 2979 * Returns 0 if it found something or 1 if there are no greater leaves. 2980 * Returns < 0 on error. 2981 */ 2982 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 2983 { 2984 return btrfs_next_old_leaf(root, path, 0); 2985 } 2986 2987 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2988 { 2989 return btrfs_next_old_item(root, p, 0); 2990 } 2991 int btrfs_leaf_free_space(struct extent_buffer *leaf); 2992 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 2993 int for_reloc); 2994 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 2995 struct btrfs_root *root, 2996 struct extent_buffer *node, 2997 struct extent_buffer *parent); 2998 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 2999 { 3000 /* 3001 * Do it this way so we only ever do one test_bit in the normal case. 3002 */ 3003 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3004 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3005 return 2; 3006 return 1; 3007 } 3008 return 0; 3009 } 3010 3011 /* 3012 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3013 * anything except sleeping. This function is used to check the status of 3014 * the fs. 3015 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3016 * since setting and checking for SB_RDONLY in the superblock's flags is not 3017 * atomic. 3018 */ 3019 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3020 { 3021 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3022 btrfs_fs_closing(fs_info); 3023 } 3024 3025 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3026 { 3027 sb->s_flags |= SB_RDONLY; 3028 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3029 } 3030 3031 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3032 { 3033 sb->s_flags &= ~SB_RDONLY; 3034 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3035 } 3036 3037 /* root-item.c */ 3038 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3039 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3040 int name_len); 3041 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3042 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3043 int name_len); 3044 int btrfs_del_root(struct btrfs_trans_handle *trans, 3045 const struct btrfs_key *key); 3046 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3047 const struct btrfs_key *key, 3048 struct btrfs_root_item *item); 3049 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 struct btrfs_key *key, 3052 struct btrfs_root_item *item); 3053 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3054 struct btrfs_path *path, struct btrfs_root_item *root_item, 3055 struct btrfs_key *root_key); 3056 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3057 void btrfs_set_root_node(struct btrfs_root_item *item, 3058 struct extent_buffer *node); 3059 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3060 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3061 struct btrfs_root *root); 3062 3063 /* uuid-tree.c */ 3064 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3065 u64 subid); 3066 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3067 u64 subid); 3068 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3069 3070 /* dir-item.c */ 3071 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3072 const char *name, int name_len); 3073 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3074 int name_len, struct btrfs_inode *dir, 3075 struct btrfs_key *location, u8 type, u64 index); 3076 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3077 struct btrfs_root *root, 3078 struct btrfs_path *path, u64 dir, 3079 const char *name, int name_len, 3080 int mod); 3081 struct btrfs_dir_item * 3082 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3083 struct btrfs_root *root, 3084 struct btrfs_path *path, u64 dir, 3085 u64 index, const char *name, int name_len, 3086 int mod); 3087 struct btrfs_dir_item * 3088 btrfs_search_dir_index_item(struct btrfs_root *root, 3089 struct btrfs_path *path, u64 dirid, 3090 const char *name, int name_len); 3091 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3092 struct btrfs_root *root, 3093 struct btrfs_path *path, 3094 struct btrfs_dir_item *di); 3095 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3096 struct btrfs_root *root, 3097 struct btrfs_path *path, u64 objectid, 3098 const char *name, u16 name_len, 3099 const void *data, u16 data_len); 3100 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3101 struct btrfs_root *root, 3102 struct btrfs_path *path, u64 dir, 3103 const char *name, u16 name_len, 3104 int mod); 3105 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3106 struct btrfs_path *path, 3107 const char *name, 3108 int name_len); 3109 3110 /* orphan.c */ 3111 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3112 struct btrfs_root *root, u64 offset); 3113 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3114 struct btrfs_root *root, u64 offset); 3115 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3116 3117 /* inode-item.c */ 3118 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3119 struct btrfs_root *root, 3120 const char *name, int name_len, 3121 u64 inode_objectid, u64 ref_objectid, u64 index); 3122 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3123 struct btrfs_root *root, 3124 const char *name, int name_len, 3125 u64 inode_objectid, u64 ref_objectid, u64 *index); 3126 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3127 struct btrfs_root *root, 3128 struct btrfs_path *path, u64 objectid); 3129 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3130 *root, struct btrfs_path *path, 3131 struct btrfs_key *location, int mod); 3132 3133 struct btrfs_inode_extref * 3134 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3135 struct btrfs_root *root, 3136 struct btrfs_path *path, 3137 const char *name, int name_len, 3138 u64 inode_objectid, u64 ref_objectid, int ins_len, 3139 int cow); 3140 3141 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3142 int slot, const char *name, 3143 int name_len); 3144 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3145 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3146 const char *name, int name_len); 3147 /* file-item.c */ 3148 struct btrfs_dio_private; 3149 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3150 struct btrfs_root *root, u64 bytenr, u64 len); 3151 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3152 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3153 struct btrfs_root *root, 3154 u64 objectid, u64 pos, 3155 u64 disk_offset, u64 disk_num_bytes, 3156 u64 num_bytes, u64 offset, u64 ram_bytes, 3157 u8 compression, u8 encryption, u16 other_encoding); 3158 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3159 struct btrfs_root *root, 3160 struct btrfs_path *path, u64 objectid, 3161 u64 bytenr, int mod); 3162 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3163 struct btrfs_root *root, 3164 struct btrfs_ordered_sum *sums); 3165 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3166 u64 file_start, int contig); 3167 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3168 struct list_head *list, int search_commit); 3169 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3170 const struct btrfs_path *path, 3171 struct btrfs_file_extent_item *fi, 3172 const bool new_inline, 3173 struct extent_map *em); 3174 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3175 u64 len); 3176 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3177 u64 len); 3178 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3179 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3180 3181 /* inode.c */ 3182 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3183 int mirror_num, unsigned long bio_flags); 3184 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3185 u32 bio_offset, struct page *page, 3186 u64 start, u64 end); 3187 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3188 u64 start, u64 len); 3189 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3190 u64 *orig_start, u64 *orig_block_len, 3191 u64 *ram_bytes, bool strict); 3192 3193 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3194 struct btrfs_inode *inode); 3195 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3196 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3197 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3198 struct btrfs_inode *dir, struct btrfs_inode *inode, 3199 const char *name, int name_len); 3200 int btrfs_add_link(struct btrfs_trans_handle *trans, 3201 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3202 const char *name, int name_len, int add_backref, u64 index); 3203 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3204 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3205 int front); 3206 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3207 struct btrfs_root *root, 3208 struct btrfs_inode *inode, u64 new_size, 3209 u32 min_type, u64 *extents_found); 3210 3211 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3212 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3213 bool in_reclaim_context); 3214 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3215 unsigned int extra_bits, 3216 struct extent_state **cached_state); 3217 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3218 struct btrfs_root *new_root, 3219 struct btrfs_root *parent_root, 3220 struct user_namespace *mnt_userns); 3221 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3222 unsigned *bits); 3223 void btrfs_clear_delalloc_extent(struct inode *inode, 3224 struct extent_state *state, unsigned *bits); 3225 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3226 struct extent_state *other); 3227 void btrfs_split_delalloc_extent(struct inode *inode, 3228 struct extent_state *orig, u64 split); 3229 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3230 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3231 int btrfs_readpage(struct file *file, struct page *page); 3232 void btrfs_evict_inode(struct inode *inode); 3233 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3234 struct inode *btrfs_alloc_inode(struct super_block *sb); 3235 void btrfs_destroy_inode(struct inode *inode); 3236 void btrfs_free_inode(struct inode *inode); 3237 int btrfs_drop_inode(struct inode *inode); 3238 int __init btrfs_init_cachep(void); 3239 void __cold btrfs_destroy_cachep(void); 3240 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3241 struct btrfs_root *root, struct btrfs_path *path); 3242 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3243 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3244 struct page *page, size_t pg_offset, 3245 u64 start, u64 end); 3246 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3247 struct btrfs_root *root, struct btrfs_inode *inode); 3248 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3249 struct btrfs_root *root, struct btrfs_inode *inode); 3250 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3251 struct btrfs_inode *inode); 3252 int btrfs_orphan_cleanup(struct btrfs_root *root); 3253 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3254 void btrfs_add_delayed_iput(struct inode *inode); 3255 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3256 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3257 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3258 u64 start, u64 num_bytes, u64 min_size, 3259 loff_t actual_len, u64 *alloc_hint); 3260 int btrfs_prealloc_file_range_trans(struct inode *inode, 3261 struct btrfs_trans_handle *trans, int mode, 3262 u64 start, u64 num_bytes, u64 min_size, 3263 loff_t actual_len, u64 *alloc_hint); 3264 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3265 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3266 struct writeback_control *wbc); 3267 int btrfs_writepage_cow_fixup(struct page *page); 3268 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3269 struct page *page, u64 start, 3270 u64 end, bool uptodate); 3271 extern const struct dentry_operations btrfs_dentry_operations; 3272 extern const struct iomap_ops btrfs_dio_iomap_ops; 3273 extern const struct iomap_dio_ops btrfs_dio_ops; 3274 3275 /* Inode locking type flags, by default the exclusive lock is taken */ 3276 #define BTRFS_ILOCK_SHARED (1U << 0) 3277 #define BTRFS_ILOCK_TRY (1U << 1) 3278 #define BTRFS_ILOCK_MMAP (1U << 2) 3279 3280 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3281 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3282 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3283 const u64 add_bytes, 3284 const u64 del_bytes); 3285 3286 /* ioctl.c */ 3287 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3288 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3289 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3290 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3291 struct dentry *dentry, struct fileattr *fa); 3292 int btrfs_ioctl_get_supported_features(void __user *arg); 3293 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3294 int __pure btrfs_is_empty_uuid(u8 *uuid); 3295 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3296 struct btrfs_ioctl_defrag_range_args *range, 3297 u64 newer_than, unsigned long max_to_defrag); 3298 void btrfs_get_block_group_info(struct list_head *groups_list, 3299 struct btrfs_ioctl_space_info *space); 3300 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3301 struct btrfs_ioctl_balance_args *bargs); 3302 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3303 enum btrfs_exclusive_operation type); 3304 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3305 enum btrfs_exclusive_operation type); 3306 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3307 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3308 3309 /* file.c */ 3310 int __init btrfs_auto_defrag_init(void); 3311 void __cold btrfs_auto_defrag_exit(void); 3312 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3313 struct btrfs_inode *inode); 3314 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3315 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3316 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3317 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3318 int skip_pinned); 3319 extern const struct file_operations btrfs_file_operations; 3320 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3321 struct btrfs_root *root, struct btrfs_inode *inode, 3322 struct btrfs_drop_extents_args *args); 3323 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3324 struct btrfs_path *path, const u64 start, 3325 const u64 end, 3326 struct btrfs_replace_extent_info *extent_info, 3327 struct btrfs_trans_handle **trans_out); 3328 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3329 struct btrfs_inode *inode, u64 start, u64 end); 3330 int btrfs_release_file(struct inode *inode, struct file *file); 3331 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3332 size_t num_pages, loff_t pos, size_t write_bytes, 3333 struct extent_state **cached, bool noreserve); 3334 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3335 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3336 size_t *write_bytes); 3337 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3338 3339 /* tree-defrag.c */ 3340 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3341 struct btrfs_root *root); 3342 3343 /* super.c */ 3344 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3345 unsigned long new_flags); 3346 int btrfs_sync_fs(struct super_block *sb, int wait); 3347 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3348 u64 subvol_objectid); 3349 3350 static inline __printf(2, 3) __cold 3351 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3352 { 3353 } 3354 3355 #ifdef CONFIG_PRINTK 3356 __printf(2, 3) 3357 __cold 3358 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3359 #else 3360 #define btrfs_printk(fs_info, fmt, args...) \ 3361 btrfs_no_printk(fs_info, fmt, ##args) 3362 #endif 3363 3364 #define btrfs_emerg(fs_info, fmt, args...) \ 3365 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3366 #define btrfs_alert(fs_info, fmt, args...) \ 3367 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3368 #define btrfs_crit(fs_info, fmt, args...) \ 3369 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3370 #define btrfs_err(fs_info, fmt, args...) \ 3371 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3372 #define btrfs_warn(fs_info, fmt, args...) \ 3373 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3374 #define btrfs_notice(fs_info, fmt, args...) \ 3375 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3376 #define btrfs_info(fs_info, fmt, args...) \ 3377 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3378 3379 /* 3380 * Wrappers that use printk_in_rcu 3381 */ 3382 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3383 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3384 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3385 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3386 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3387 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3388 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3389 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3390 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3391 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3392 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3393 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3394 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3395 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3396 3397 /* 3398 * Wrappers that use a ratelimited printk_in_rcu 3399 */ 3400 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3401 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3402 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3403 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3404 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3405 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3406 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3407 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3408 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3409 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3410 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3411 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3412 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3413 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3414 3415 /* 3416 * Wrappers that use a ratelimited printk 3417 */ 3418 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3419 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3420 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3421 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3422 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3423 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3424 #define btrfs_err_rl(fs_info, fmt, args...) \ 3425 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3426 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3427 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3428 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3429 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3430 #define btrfs_info_rl(fs_info, fmt, args...) \ 3431 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3432 3433 #if defined(CONFIG_DYNAMIC_DEBUG) 3434 #define btrfs_debug(fs_info, fmt, args...) \ 3435 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3436 fs_info, KERN_DEBUG fmt, ##args) 3437 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3438 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3439 fs_info, KERN_DEBUG fmt, ##args) 3440 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3441 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3442 fs_info, KERN_DEBUG fmt, ##args) 3443 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3444 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3445 fs_info, KERN_DEBUG fmt, ##args) 3446 #elif defined(DEBUG) 3447 #define btrfs_debug(fs_info, fmt, args...) \ 3448 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3449 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3450 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3451 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3452 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3453 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3454 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3455 #else 3456 #define btrfs_debug(fs_info, fmt, args...) \ 3457 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3458 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3459 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3460 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3461 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3462 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3463 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3464 #endif 3465 3466 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3467 do { \ 3468 rcu_read_lock(); \ 3469 btrfs_printk(fs_info, fmt, ##args); \ 3470 rcu_read_unlock(); \ 3471 } while (0) 3472 3473 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3474 do { \ 3475 rcu_read_lock(); \ 3476 btrfs_no_printk(fs_info, fmt, ##args); \ 3477 rcu_read_unlock(); \ 3478 } while (0) 3479 3480 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3481 do { \ 3482 static DEFINE_RATELIMIT_STATE(_rs, \ 3483 DEFAULT_RATELIMIT_INTERVAL, \ 3484 DEFAULT_RATELIMIT_BURST); \ 3485 if (__ratelimit(&_rs)) \ 3486 btrfs_printk(fs_info, fmt, ##args); \ 3487 } while (0) 3488 3489 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3490 do { \ 3491 rcu_read_lock(); \ 3492 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3493 rcu_read_unlock(); \ 3494 } while (0) 3495 3496 #ifdef CONFIG_BTRFS_ASSERT 3497 __cold __noreturn 3498 static inline void assertfail(const char *expr, const char *file, int line) 3499 { 3500 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3501 BUG(); 3502 } 3503 3504 #define ASSERT(expr) \ 3505 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3506 3507 #else 3508 static inline void assertfail(const char *expr, const char* file, int line) { } 3509 #define ASSERT(expr) (void)(expr) 3510 #endif 3511 3512 #if BITS_PER_LONG == 32 3513 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3514 /* 3515 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3516 * addresses of extents. 3517 * 3518 * For 4K page size it's about 10T, for 64K it's 160T. 3519 */ 3520 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3521 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3522 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3523 #endif 3524 3525 /* 3526 * Get the correct offset inside the page of extent buffer. 3527 * 3528 * @eb: target extent buffer 3529 * @start: offset inside the extent buffer 3530 * 3531 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3532 */ 3533 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3534 unsigned long offset) 3535 { 3536 /* 3537 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3538 * to PAGE_SIZE, thus adding it won't cause any difference. 3539 * 3540 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3541 * to the eb, thus we have to take the eb->start into consideration. 3542 */ 3543 return offset_in_page(offset + eb->start); 3544 } 3545 3546 static inline unsigned long get_eb_page_index(unsigned long offset) 3547 { 3548 /* 3549 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3550 * 3551 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3552 * and have ensured that all tree blocks are contained in one page, 3553 * thus we always get index == 0. 3554 */ 3555 return offset >> PAGE_SHIFT; 3556 } 3557 3558 /* 3559 * Use that for functions that are conditionally exported for sanity tests but 3560 * otherwise static 3561 */ 3562 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3563 #define EXPORT_FOR_TESTS static 3564 #else 3565 #define EXPORT_FOR_TESTS 3566 #endif 3567 3568 __cold 3569 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3570 { 3571 btrfs_err(fs_info, 3572 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3573 } 3574 3575 __printf(5, 6) 3576 __cold 3577 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3578 unsigned int line, int errno, const char *fmt, ...); 3579 3580 const char * __attribute_const__ btrfs_decode_error(int errno); 3581 3582 __cold 3583 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3584 const char *function, 3585 unsigned int line, int errno); 3586 3587 /* 3588 * Call btrfs_abort_transaction as early as possible when an error condition is 3589 * detected, that way the exact line number is reported. 3590 */ 3591 #define btrfs_abort_transaction(trans, errno) \ 3592 do { \ 3593 /* Report first abort since mount */ \ 3594 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3595 &((trans)->fs_info->fs_state))) { \ 3596 if ((errno) != -EIO && (errno) != -EROFS) { \ 3597 WARN(1, KERN_DEBUG \ 3598 "BTRFS: Transaction aborted (error %d)\n", \ 3599 (errno)); \ 3600 } else { \ 3601 btrfs_debug((trans)->fs_info, \ 3602 "Transaction aborted (error %d)", \ 3603 (errno)); \ 3604 } \ 3605 } \ 3606 __btrfs_abort_transaction((trans), __func__, \ 3607 __LINE__, (errno)); \ 3608 } while (0) 3609 3610 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3611 do { \ 3612 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3613 (errno), fmt, ##args); \ 3614 } while (0) 3615 3616 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3617 &(fs_info)->fs_state))) 3618 3619 __printf(5, 6) 3620 __cold 3621 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3622 unsigned int line, int errno, const char *fmt, ...); 3623 /* 3624 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3625 * will panic(). Otherwise we BUG() here. 3626 */ 3627 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3628 do { \ 3629 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3630 BUG(); \ 3631 } while (0) 3632 3633 3634 /* compatibility and incompatibility defines */ 3635 3636 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3637 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3638 #opt) 3639 3640 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3641 u64 flag, const char* name) 3642 { 3643 struct btrfs_super_block *disk_super; 3644 u64 features; 3645 3646 disk_super = fs_info->super_copy; 3647 features = btrfs_super_incompat_flags(disk_super); 3648 if (!(features & flag)) { 3649 spin_lock(&fs_info->super_lock); 3650 features = btrfs_super_incompat_flags(disk_super); 3651 if (!(features & flag)) { 3652 features |= flag; 3653 btrfs_set_super_incompat_flags(disk_super, features); 3654 btrfs_info(fs_info, 3655 "setting incompat feature flag for %s (0x%llx)", 3656 name, flag); 3657 } 3658 spin_unlock(&fs_info->super_lock); 3659 } 3660 } 3661 3662 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3663 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3664 #opt) 3665 3666 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3667 u64 flag, const char* name) 3668 { 3669 struct btrfs_super_block *disk_super; 3670 u64 features; 3671 3672 disk_super = fs_info->super_copy; 3673 features = btrfs_super_incompat_flags(disk_super); 3674 if (features & flag) { 3675 spin_lock(&fs_info->super_lock); 3676 features = btrfs_super_incompat_flags(disk_super); 3677 if (features & flag) { 3678 features &= ~flag; 3679 btrfs_set_super_incompat_flags(disk_super, features); 3680 btrfs_info(fs_info, 3681 "clearing incompat feature flag for %s (0x%llx)", 3682 name, flag); 3683 } 3684 spin_unlock(&fs_info->super_lock); 3685 } 3686 } 3687 3688 #define btrfs_fs_incompat(fs_info, opt) \ 3689 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3690 3691 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3692 { 3693 struct btrfs_super_block *disk_super; 3694 disk_super = fs_info->super_copy; 3695 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3696 } 3697 3698 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3699 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3700 #opt) 3701 3702 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3703 u64 flag, const char *name) 3704 { 3705 struct btrfs_super_block *disk_super; 3706 u64 features; 3707 3708 disk_super = fs_info->super_copy; 3709 features = btrfs_super_compat_ro_flags(disk_super); 3710 if (!(features & flag)) { 3711 spin_lock(&fs_info->super_lock); 3712 features = btrfs_super_compat_ro_flags(disk_super); 3713 if (!(features & flag)) { 3714 features |= flag; 3715 btrfs_set_super_compat_ro_flags(disk_super, features); 3716 btrfs_info(fs_info, 3717 "setting compat-ro feature flag for %s (0x%llx)", 3718 name, flag); 3719 } 3720 spin_unlock(&fs_info->super_lock); 3721 } 3722 } 3723 3724 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3725 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3726 #opt) 3727 3728 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3729 u64 flag, const char *name) 3730 { 3731 struct btrfs_super_block *disk_super; 3732 u64 features; 3733 3734 disk_super = fs_info->super_copy; 3735 features = btrfs_super_compat_ro_flags(disk_super); 3736 if (features & flag) { 3737 spin_lock(&fs_info->super_lock); 3738 features = btrfs_super_compat_ro_flags(disk_super); 3739 if (features & flag) { 3740 features &= ~flag; 3741 btrfs_set_super_compat_ro_flags(disk_super, features); 3742 btrfs_info(fs_info, 3743 "clearing compat-ro feature flag for %s (0x%llx)", 3744 name, flag); 3745 } 3746 spin_unlock(&fs_info->super_lock); 3747 } 3748 } 3749 3750 #define btrfs_fs_compat_ro(fs_info, opt) \ 3751 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3752 3753 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3754 { 3755 struct btrfs_super_block *disk_super; 3756 disk_super = fs_info->super_copy; 3757 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3758 } 3759 3760 /* acl.c */ 3761 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3762 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3763 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3764 struct posix_acl *acl, int type); 3765 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3766 struct inode *inode, struct inode *dir); 3767 #else 3768 #define btrfs_get_acl NULL 3769 #define btrfs_set_acl NULL 3770 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3771 struct inode *inode, struct inode *dir) 3772 { 3773 return 0; 3774 } 3775 #endif 3776 3777 /* relocation.c */ 3778 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3779 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3780 struct btrfs_root *root); 3781 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3782 struct btrfs_root *root); 3783 int btrfs_recover_relocation(struct btrfs_root *root); 3784 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3785 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3786 struct btrfs_root *root, struct extent_buffer *buf, 3787 struct extent_buffer *cow); 3788 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3789 u64 *bytes_to_reserve); 3790 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3791 struct btrfs_pending_snapshot *pending); 3792 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3793 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3794 u64 bytenr); 3795 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3796 3797 /* scrub.c */ 3798 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3799 u64 end, struct btrfs_scrub_progress *progress, 3800 int readonly, int is_dev_replace); 3801 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3802 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3803 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3804 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3805 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3806 struct btrfs_scrub_progress *progress); 3807 static inline void btrfs_init_full_stripe_locks_tree( 3808 struct btrfs_full_stripe_locks_tree *locks_root) 3809 { 3810 locks_root->root = RB_ROOT; 3811 mutex_init(&locks_root->lock); 3812 } 3813 3814 /* dev-replace.c */ 3815 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3816 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3817 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3818 3819 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3820 { 3821 btrfs_bio_counter_sub(fs_info, 1); 3822 } 3823 3824 /* reada.c */ 3825 struct reada_control { 3826 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3827 struct btrfs_key key_start; 3828 struct btrfs_key key_end; /* exclusive */ 3829 atomic_t elems; 3830 struct kref refcnt; 3831 wait_queue_head_t wait; 3832 }; 3833 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3834 struct btrfs_key *start, struct btrfs_key *end); 3835 int btrfs_reada_wait(void *handle); 3836 void btrfs_reada_detach(void *handle); 3837 int btree_readahead_hook(struct extent_buffer *eb, int err); 3838 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3839 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3840 3841 static inline int is_fstree(u64 rootid) 3842 { 3843 if (rootid == BTRFS_FS_TREE_OBJECTID || 3844 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3845 !btrfs_qgroup_level(rootid))) 3846 return 1; 3847 return 0; 3848 } 3849 3850 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3851 { 3852 return signal_pending(current); 3853 } 3854 3855 /* verity.c */ 3856 #ifdef CONFIG_FS_VERITY 3857 3858 extern const struct fsverity_operations btrfs_verityops; 3859 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3860 3861 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3862 encryption, 8); 3863 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3864 size, 64); 3865 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3866 struct btrfs_verity_descriptor_item, encryption, 8); 3867 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3868 struct btrfs_verity_descriptor_item, size, 64); 3869 3870 #else 3871 3872 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3873 { 3874 return 0; 3875 } 3876 3877 #endif 3878 3879 /* Sanity test specific functions */ 3880 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3881 void btrfs_test_destroy_inode(struct inode *inode); 3882 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3883 { 3884 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3885 } 3886 #else 3887 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3888 { 3889 return 0; 3890 } 3891 #endif 3892 3893 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3894 { 3895 return fs_info->zoned != 0; 3896 } 3897 3898 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3899 { 3900 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3901 } 3902 3903 /* 3904 * We use page status Private2 to indicate there is an ordered extent with 3905 * unfinished IO. 3906 * 3907 * Rename the Private2 accessors to Ordered, to improve readability. 3908 */ 3909 #define PageOrdered(page) PagePrivate2(page) 3910 #define SetPageOrdered(page) SetPagePrivate2(page) 3911 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3912 3913 #endif 3914