1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #ifndef __BTRFS_CTREE__ 20 #define __BTRFS_CTREE__ 21 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/fs.h> 25 #include <linux/rwsem.h> 26 #include <linux/semaphore.h> 27 #include <linux/completion.h> 28 #include <linux/backing-dev.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/kobject.h> 32 #include <trace/events/btrfs.h> 33 #include <asm/kmap_types.h> 34 #include <linux/pagemap.h> 35 #include <linux/btrfs.h> 36 #include <linux/workqueue.h> 37 #include <linux/security.h> 38 #include "extent_io.h" 39 #include "extent_map.h" 40 #include "async-thread.h" 41 42 struct btrfs_trans_handle; 43 struct btrfs_transaction; 44 struct btrfs_pending_snapshot; 45 extern struct kmem_cache *btrfs_trans_handle_cachep; 46 extern struct kmem_cache *btrfs_transaction_cachep; 47 extern struct kmem_cache *btrfs_bit_radix_cachep; 48 extern struct kmem_cache *btrfs_path_cachep; 49 extern struct kmem_cache *btrfs_free_space_cachep; 50 struct btrfs_ordered_sum; 51 52 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 53 #define STATIC noinline 54 #else 55 #define STATIC static noinline 56 #endif 57 58 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 59 60 #define BTRFS_MAX_MIRRORS 3 61 62 #define BTRFS_MAX_LEVEL 8 63 64 #define BTRFS_COMPAT_EXTENT_TREE_V0 65 66 /* holds pointers to all of the tree roots */ 67 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 68 69 /* stores information about which extents are in use, and reference counts */ 70 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 71 72 /* 73 * chunk tree stores translations from logical -> physical block numbering 74 * the super block points to the chunk tree 75 */ 76 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 77 78 /* 79 * stores information about which areas of a given device are in use. 80 * one per device. The tree of tree roots points to the device tree 81 */ 82 #define BTRFS_DEV_TREE_OBJECTID 4ULL 83 84 /* one per subvolume, storing files and directories */ 85 #define BTRFS_FS_TREE_OBJECTID 5ULL 86 87 /* directory objectid inside the root tree */ 88 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 89 90 /* holds checksums of all the data extents */ 91 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 92 93 /* holds quota configuration and tracking */ 94 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 95 96 /* for storing items that use the BTRFS_UUID_KEY* types */ 97 #define BTRFS_UUID_TREE_OBJECTID 9ULL 98 99 /* for storing balance parameters in the root tree */ 100 #define BTRFS_BALANCE_OBJECTID -4ULL 101 102 /* orhpan objectid for tracking unlinked/truncated files */ 103 #define BTRFS_ORPHAN_OBJECTID -5ULL 104 105 /* does write ahead logging to speed up fsyncs */ 106 #define BTRFS_TREE_LOG_OBJECTID -6ULL 107 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 108 109 /* for space balancing */ 110 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 111 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 112 113 /* 114 * extent checksums all have this objectid 115 * this allows them to share the logging tree 116 * for fsyncs 117 */ 118 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 119 120 /* For storing free space cache */ 121 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 122 123 /* 124 * The inode number assigned to the special inode for storing 125 * free ino cache 126 */ 127 #define BTRFS_FREE_INO_OBJECTID -12ULL 128 129 /* dummy objectid represents multiple objectids */ 130 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 131 132 /* 133 * All files have objectids in this range. 134 */ 135 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 136 #define BTRFS_LAST_FREE_OBJECTID -256ULL 137 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 138 139 140 /* 141 * the device items go into the chunk tree. The key is in the form 142 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 143 */ 144 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 145 146 #define BTRFS_BTREE_INODE_OBJECTID 1 147 148 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 149 150 #define BTRFS_DEV_REPLACE_DEVID 0ULL 151 152 /* 153 * the max metadata block size. This limit is somewhat artificial, 154 * but the memmove costs go through the roof for larger blocks. 155 */ 156 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 157 158 /* 159 * we can actually store much bigger names, but lets not confuse the rest 160 * of linux 161 */ 162 #define BTRFS_NAME_LEN 255 163 164 /* 165 * Theoretical limit is larger, but we keep this down to a sane 166 * value. That should limit greatly the possibility of collisions on 167 * inode ref items. 168 */ 169 #define BTRFS_LINK_MAX 65535U 170 171 /* 32 bytes in various csum fields */ 172 #define BTRFS_CSUM_SIZE 32 173 174 /* csum types */ 175 #define BTRFS_CSUM_TYPE_CRC32 0 176 177 static int btrfs_csum_sizes[] = { 4, 0 }; 178 179 /* four bytes for CRC32 */ 180 #define BTRFS_EMPTY_DIR_SIZE 0 181 182 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */ 183 #define REQ_GET_READ_MIRRORS (1 << 30) 184 185 #define BTRFS_FT_UNKNOWN 0 186 #define BTRFS_FT_REG_FILE 1 187 #define BTRFS_FT_DIR 2 188 #define BTRFS_FT_CHRDEV 3 189 #define BTRFS_FT_BLKDEV 4 190 #define BTRFS_FT_FIFO 5 191 #define BTRFS_FT_SOCK 6 192 #define BTRFS_FT_SYMLINK 7 193 #define BTRFS_FT_XATTR 8 194 #define BTRFS_FT_MAX 9 195 196 /* ioprio of readahead is set to idle */ 197 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 198 199 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024) 200 201 /* 202 * The key defines the order in the tree, and so it also defines (optimal) 203 * block layout. 204 * 205 * objectid corresponds to the inode number. 206 * 207 * type tells us things about the object, and is a kind of stream selector. 208 * so for a given inode, keys with type of 1 might refer to the inode data, 209 * type of 2 may point to file data in the btree and type == 3 may point to 210 * extents. 211 * 212 * offset is the starting byte offset for this key in the stream. 213 * 214 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 215 * in cpu native order. Otherwise they are identical and their sizes 216 * should be the same (ie both packed) 217 */ 218 struct btrfs_disk_key { 219 __le64 objectid; 220 u8 type; 221 __le64 offset; 222 } __attribute__ ((__packed__)); 223 224 struct btrfs_key { 225 u64 objectid; 226 u8 type; 227 u64 offset; 228 } __attribute__ ((__packed__)); 229 230 struct btrfs_mapping_tree { 231 struct extent_map_tree map_tree; 232 }; 233 234 struct btrfs_dev_item { 235 /* the internal btrfs device id */ 236 __le64 devid; 237 238 /* size of the device */ 239 __le64 total_bytes; 240 241 /* bytes used */ 242 __le64 bytes_used; 243 244 /* optimal io alignment for this device */ 245 __le32 io_align; 246 247 /* optimal io width for this device */ 248 __le32 io_width; 249 250 /* minimal io size for this device */ 251 __le32 sector_size; 252 253 /* type and info about this device */ 254 __le64 type; 255 256 /* expected generation for this device */ 257 __le64 generation; 258 259 /* 260 * starting byte of this partition on the device, 261 * to allow for stripe alignment in the future 262 */ 263 __le64 start_offset; 264 265 /* grouping information for allocation decisions */ 266 __le32 dev_group; 267 268 /* seek speed 0-100 where 100 is fastest */ 269 u8 seek_speed; 270 271 /* bandwidth 0-100 where 100 is fastest */ 272 u8 bandwidth; 273 274 /* btrfs generated uuid for this device */ 275 u8 uuid[BTRFS_UUID_SIZE]; 276 277 /* uuid of FS who owns this device */ 278 u8 fsid[BTRFS_UUID_SIZE]; 279 } __attribute__ ((__packed__)); 280 281 struct btrfs_stripe { 282 __le64 devid; 283 __le64 offset; 284 u8 dev_uuid[BTRFS_UUID_SIZE]; 285 } __attribute__ ((__packed__)); 286 287 struct btrfs_chunk { 288 /* size of this chunk in bytes */ 289 __le64 length; 290 291 /* objectid of the root referencing this chunk */ 292 __le64 owner; 293 294 __le64 stripe_len; 295 __le64 type; 296 297 /* optimal io alignment for this chunk */ 298 __le32 io_align; 299 300 /* optimal io width for this chunk */ 301 __le32 io_width; 302 303 /* minimal io size for this chunk */ 304 __le32 sector_size; 305 306 /* 2^16 stripes is quite a lot, a second limit is the size of a single 307 * item in the btree 308 */ 309 __le16 num_stripes; 310 311 /* sub stripes only matter for raid10 */ 312 __le16 sub_stripes; 313 struct btrfs_stripe stripe; 314 /* additional stripes go here */ 315 } __attribute__ ((__packed__)); 316 317 #define BTRFS_FREE_SPACE_EXTENT 1 318 #define BTRFS_FREE_SPACE_BITMAP 2 319 320 struct btrfs_free_space_entry { 321 __le64 offset; 322 __le64 bytes; 323 u8 type; 324 } __attribute__ ((__packed__)); 325 326 struct btrfs_free_space_header { 327 struct btrfs_disk_key location; 328 __le64 generation; 329 __le64 num_entries; 330 __le64 num_bitmaps; 331 } __attribute__ ((__packed__)); 332 333 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 334 { 335 BUG_ON(num_stripes == 0); 336 return sizeof(struct btrfs_chunk) + 337 sizeof(struct btrfs_stripe) * (num_stripes - 1); 338 } 339 340 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 341 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 342 343 /* 344 * File system states 345 */ 346 #define BTRFS_FS_STATE_ERROR 0 347 #define BTRFS_FS_STATE_REMOUNTING 1 348 #define BTRFS_FS_STATE_TRANS_ABORTED 2 349 #define BTRFS_FS_STATE_DEV_REPLACING 3 350 351 /* Super block flags */ 352 /* Errors detected */ 353 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 354 355 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 356 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 357 358 #define BTRFS_BACKREF_REV_MAX 256 359 #define BTRFS_BACKREF_REV_SHIFT 56 360 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 361 BTRFS_BACKREF_REV_SHIFT) 362 363 #define BTRFS_OLD_BACKREF_REV 0 364 #define BTRFS_MIXED_BACKREF_REV 1 365 366 /* 367 * every tree block (leaf or node) starts with this header. 368 */ 369 struct btrfs_header { 370 /* these first four must match the super block */ 371 u8 csum[BTRFS_CSUM_SIZE]; 372 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 373 __le64 bytenr; /* which block this node is supposed to live in */ 374 __le64 flags; 375 376 /* allowed to be different from the super from here on down */ 377 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 378 __le64 generation; 379 __le64 owner; 380 __le32 nritems; 381 u8 level; 382 } __attribute__ ((__packed__)); 383 384 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ 385 sizeof(struct btrfs_header)) / \ 386 sizeof(struct btrfs_key_ptr)) 387 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) 388 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->nodesize)) 389 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 390 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 391 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 392 sizeof(struct btrfs_item) - \ 393 BTRFS_FILE_EXTENT_INLINE_DATA_START) 394 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 395 sizeof(struct btrfs_item) -\ 396 sizeof(struct btrfs_dir_item)) 397 398 399 /* 400 * this is a very generous portion of the super block, giving us 401 * room to translate 14 chunks with 3 stripes each. 402 */ 403 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 404 #define BTRFS_LABEL_SIZE 256 405 406 /* 407 * just in case we somehow lose the roots and are not able to mount, 408 * we store an array of the roots from previous transactions 409 * in the super. 410 */ 411 #define BTRFS_NUM_BACKUP_ROOTS 4 412 struct btrfs_root_backup { 413 __le64 tree_root; 414 __le64 tree_root_gen; 415 416 __le64 chunk_root; 417 __le64 chunk_root_gen; 418 419 __le64 extent_root; 420 __le64 extent_root_gen; 421 422 __le64 fs_root; 423 __le64 fs_root_gen; 424 425 __le64 dev_root; 426 __le64 dev_root_gen; 427 428 __le64 csum_root; 429 __le64 csum_root_gen; 430 431 __le64 total_bytes; 432 __le64 bytes_used; 433 __le64 num_devices; 434 /* future */ 435 __le64 unused_64[4]; 436 437 u8 tree_root_level; 438 u8 chunk_root_level; 439 u8 extent_root_level; 440 u8 fs_root_level; 441 u8 dev_root_level; 442 u8 csum_root_level; 443 /* future and to align */ 444 u8 unused_8[10]; 445 } __attribute__ ((__packed__)); 446 447 /* 448 * the super block basically lists the main trees of the FS 449 * it currently lacks any block count etc etc 450 */ 451 struct btrfs_super_block { 452 u8 csum[BTRFS_CSUM_SIZE]; 453 /* the first 4 fields must match struct btrfs_header */ 454 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 455 __le64 bytenr; /* this block number */ 456 __le64 flags; 457 458 /* allowed to be different from the btrfs_header from here own down */ 459 __le64 magic; 460 __le64 generation; 461 __le64 root; 462 __le64 chunk_root; 463 __le64 log_root; 464 465 /* this will help find the new super based on the log root */ 466 __le64 log_root_transid; 467 __le64 total_bytes; 468 __le64 bytes_used; 469 __le64 root_dir_objectid; 470 __le64 num_devices; 471 __le32 sectorsize; 472 __le32 nodesize; 473 __le32 __unused_leafsize; 474 __le32 stripesize; 475 __le32 sys_chunk_array_size; 476 __le64 chunk_root_generation; 477 __le64 compat_flags; 478 __le64 compat_ro_flags; 479 __le64 incompat_flags; 480 __le16 csum_type; 481 u8 root_level; 482 u8 chunk_root_level; 483 u8 log_root_level; 484 struct btrfs_dev_item dev_item; 485 486 char label[BTRFS_LABEL_SIZE]; 487 488 __le64 cache_generation; 489 __le64 uuid_tree_generation; 490 491 /* future expansion */ 492 __le64 reserved[30]; 493 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 494 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 495 } __attribute__ ((__packed__)); 496 497 /* 498 * Compat flags that we support. If any incompat flags are set other than the 499 * ones specified below then we will fail to mount 500 */ 501 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) 502 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1) 503 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2) 504 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3) 505 /* 506 * some patches floated around with a second compression method 507 * lets save that incompat here for when they do get in 508 * Note we don't actually support it, we're just reserving the 509 * number 510 */ 511 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4) 512 513 /* 514 * older kernels tried to do bigger metadata blocks, but the 515 * code was pretty buggy. Lets not let them try anymore. 516 */ 517 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5) 518 519 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6) 520 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7) 521 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8) 522 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9) 523 524 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 525 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 526 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 527 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL 528 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 529 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 530 531 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 532 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 533 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 534 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 535 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 536 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 537 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 538 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 539 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 540 BTRFS_FEATURE_INCOMPAT_NO_HOLES) 541 542 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 543 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 544 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 545 546 /* 547 * A leaf is full of items. offset and size tell us where to find 548 * the item in the leaf (relative to the start of the data area) 549 */ 550 struct btrfs_item { 551 struct btrfs_disk_key key; 552 __le32 offset; 553 __le32 size; 554 } __attribute__ ((__packed__)); 555 556 /* 557 * leaves have an item area and a data area: 558 * [item0, item1....itemN] [free space] [dataN...data1, data0] 559 * 560 * The data is separate from the items to get the keys closer together 561 * during searches. 562 */ 563 struct btrfs_leaf { 564 struct btrfs_header header; 565 struct btrfs_item items[]; 566 } __attribute__ ((__packed__)); 567 568 /* 569 * all non-leaf blocks are nodes, they hold only keys and pointers to 570 * other blocks 571 */ 572 struct btrfs_key_ptr { 573 struct btrfs_disk_key key; 574 __le64 blockptr; 575 __le64 generation; 576 } __attribute__ ((__packed__)); 577 578 struct btrfs_node { 579 struct btrfs_header header; 580 struct btrfs_key_ptr ptrs[]; 581 } __attribute__ ((__packed__)); 582 583 /* 584 * btrfs_paths remember the path taken from the root down to the leaf. 585 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 586 * to any other levels that are present. 587 * 588 * The slots array records the index of the item or block pointer 589 * used while walking the tree. 590 */ 591 struct btrfs_path { 592 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 593 int slots[BTRFS_MAX_LEVEL]; 594 /* if there is real range locking, this locks field will change */ 595 int locks[BTRFS_MAX_LEVEL]; 596 int reada; 597 /* keep some upper locks as we walk down */ 598 int lowest_level; 599 600 /* 601 * set by btrfs_split_item, tells search_slot to keep all locks 602 * and to force calls to keep space in the nodes 603 */ 604 unsigned int search_for_split:1; 605 unsigned int keep_locks:1; 606 unsigned int skip_locking:1; 607 unsigned int leave_spinning:1; 608 unsigned int search_commit_root:1; 609 unsigned int need_commit_sem:1; 610 }; 611 612 /* 613 * items in the extent btree are used to record the objectid of the 614 * owner of the block and the number of references 615 */ 616 617 struct btrfs_extent_item { 618 __le64 refs; 619 __le64 generation; 620 __le64 flags; 621 } __attribute__ ((__packed__)); 622 623 struct btrfs_extent_item_v0 { 624 __le32 refs; 625 } __attribute__ ((__packed__)); 626 627 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \ 628 sizeof(struct btrfs_item)) 629 630 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 631 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 632 633 /* following flags only apply to tree blocks */ 634 635 /* use full backrefs for extent pointers in the block */ 636 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 637 638 /* 639 * this flag is only used internally by scrub and may be changed at any time 640 * it is only declared here to avoid collisions 641 */ 642 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 643 644 struct btrfs_tree_block_info { 645 struct btrfs_disk_key key; 646 u8 level; 647 } __attribute__ ((__packed__)); 648 649 struct btrfs_extent_data_ref { 650 __le64 root; 651 __le64 objectid; 652 __le64 offset; 653 __le32 count; 654 } __attribute__ ((__packed__)); 655 656 struct btrfs_shared_data_ref { 657 __le32 count; 658 } __attribute__ ((__packed__)); 659 660 struct btrfs_extent_inline_ref { 661 u8 type; 662 __le64 offset; 663 } __attribute__ ((__packed__)); 664 665 /* old style backrefs item */ 666 struct btrfs_extent_ref_v0 { 667 __le64 root; 668 __le64 generation; 669 __le64 objectid; 670 __le32 count; 671 } __attribute__ ((__packed__)); 672 673 674 /* dev extents record free space on individual devices. The owner 675 * field points back to the chunk allocation mapping tree that allocated 676 * the extent. The chunk tree uuid field is a way to double check the owner 677 */ 678 struct btrfs_dev_extent { 679 __le64 chunk_tree; 680 __le64 chunk_objectid; 681 __le64 chunk_offset; 682 __le64 length; 683 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 684 } __attribute__ ((__packed__)); 685 686 struct btrfs_inode_ref { 687 __le64 index; 688 __le16 name_len; 689 /* name goes here */ 690 } __attribute__ ((__packed__)); 691 692 struct btrfs_inode_extref { 693 __le64 parent_objectid; 694 __le64 index; 695 __le16 name_len; 696 __u8 name[0]; 697 /* name goes here */ 698 } __attribute__ ((__packed__)); 699 700 struct btrfs_timespec { 701 __le64 sec; 702 __le32 nsec; 703 } __attribute__ ((__packed__)); 704 705 enum btrfs_compression_type { 706 BTRFS_COMPRESS_NONE = 0, 707 BTRFS_COMPRESS_ZLIB = 1, 708 BTRFS_COMPRESS_LZO = 2, 709 BTRFS_COMPRESS_TYPES = 2, 710 BTRFS_COMPRESS_LAST = 3, 711 }; 712 713 struct btrfs_inode_item { 714 /* nfs style generation number */ 715 __le64 generation; 716 /* transid that last touched this inode */ 717 __le64 transid; 718 __le64 size; 719 __le64 nbytes; 720 __le64 block_group; 721 __le32 nlink; 722 __le32 uid; 723 __le32 gid; 724 __le32 mode; 725 __le64 rdev; 726 __le64 flags; 727 728 /* modification sequence number for NFS */ 729 __le64 sequence; 730 731 /* 732 * a little future expansion, for more than this we can 733 * just grow the inode item and version it 734 */ 735 __le64 reserved[4]; 736 struct btrfs_timespec atime; 737 struct btrfs_timespec ctime; 738 struct btrfs_timespec mtime; 739 struct btrfs_timespec otime; 740 } __attribute__ ((__packed__)); 741 742 struct btrfs_dir_log_item { 743 __le64 end; 744 } __attribute__ ((__packed__)); 745 746 struct btrfs_dir_item { 747 struct btrfs_disk_key location; 748 __le64 transid; 749 __le16 data_len; 750 __le16 name_len; 751 u8 type; 752 } __attribute__ ((__packed__)); 753 754 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 755 756 /* 757 * Internal in-memory flag that a subvolume has been marked for deletion but 758 * still visible as a directory 759 */ 760 #define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 761 762 struct btrfs_root_item { 763 struct btrfs_inode_item inode; 764 __le64 generation; 765 __le64 root_dirid; 766 __le64 bytenr; 767 __le64 byte_limit; 768 __le64 bytes_used; 769 __le64 last_snapshot; 770 __le64 flags; 771 __le32 refs; 772 struct btrfs_disk_key drop_progress; 773 u8 drop_level; 774 u8 level; 775 776 /* 777 * The following fields appear after subvol_uuids+subvol_times 778 * were introduced. 779 */ 780 781 /* 782 * This generation number is used to test if the new fields are valid 783 * and up to date while reading the root item. Everytime the root item 784 * is written out, the "generation" field is copied into this field. If 785 * anyone ever mounted the fs with an older kernel, we will have 786 * mismatching generation values here and thus must invalidate the 787 * new fields. See btrfs_update_root and btrfs_find_last_root for 788 * details. 789 * the offset of generation_v2 is also used as the start for the memset 790 * when invalidating the fields. 791 */ 792 __le64 generation_v2; 793 u8 uuid[BTRFS_UUID_SIZE]; 794 u8 parent_uuid[BTRFS_UUID_SIZE]; 795 u8 received_uuid[BTRFS_UUID_SIZE]; 796 __le64 ctransid; /* updated when an inode changes */ 797 __le64 otransid; /* trans when created */ 798 __le64 stransid; /* trans when sent. non-zero for received subvol */ 799 __le64 rtransid; /* trans when received. non-zero for received subvol */ 800 struct btrfs_timespec ctime; 801 struct btrfs_timespec otime; 802 struct btrfs_timespec stime; 803 struct btrfs_timespec rtime; 804 __le64 reserved[8]; /* for future */ 805 } __attribute__ ((__packed__)); 806 807 /* 808 * this is used for both forward and backward root refs 809 */ 810 struct btrfs_root_ref { 811 __le64 dirid; 812 __le64 sequence; 813 __le16 name_len; 814 } __attribute__ ((__packed__)); 815 816 struct btrfs_disk_balance_args { 817 /* 818 * profiles to operate on, single is denoted by 819 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 820 */ 821 __le64 profiles; 822 823 /* usage filter */ 824 __le64 usage; 825 826 /* devid filter */ 827 __le64 devid; 828 829 /* devid subset filter [pstart..pend) */ 830 __le64 pstart; 831 __le64 pend; 832 833 /* btrfs virtual address space subset filter [vstart..vend) */ 834 __le64 vstart; 835 __le64 vend; 836 837 /* 838 * profile to convert to, single is denoted by 839 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 840 */ 841 __le64 target; 842 843 /* BTRFS_BALANCE_ARGS_* */ 844 __le64 flags; 845 846 /* BTRFS_BALANCE_ARGS_LIMIT value */ 847 __le64 limit; 848 849 __le64 unused[7]; 850 } __attribute__ ((__packed__)); 851 852 /* 853 * store balance parameters to disk so that balance can be properly 854 * resumed after crash or unmount 855 */ 856 struct btrfs_balance_item { 857 /* BTRFS_BALANCE_* */ 858 __le64 flags; 859 860 struct btrfs_disk_balance_args data; 861 struct btrfs_disk_balance_args meta; 862 struct btrfs_disk_balance_args sys; 863 864 __le64 unused[4]; 865 } __attribute__ ((__packed__)); 866 867 #define BTRFS_FILE_EXTENT_INLINE 0 868 #define BTRFS_FILE_EXTENT_REG 1 869 #define BTRFS_FILE_EXTENT_PREALLOC 2 870 871 struct btrfs_file_extent_item { 872 /* 873 * transaction id that created this extent 874 */ 875 __le64 generation; 876 /* 877 * max number of bytes to hold this extent in ram 878 * when we split a compressed extent we can't know how big 879 * each of the resulting pieces will be. So, this is 880 * an upper limit on the size of the extent in ram instead of 881 * an exact limit. 882 */ 883 __le64 ram_bytes; 884 885 /* 886 * 32 bits for the various ways we might encode the data, 887 * including compression and encryption. If any of these 888 * are set to something a given disk format doesn't understand 889 * it is treated like an incompat flag for reading and writing, 890 * but not for stat. 891 */ 892 u8 compression; 893 u8 encryption; 894 __le16 other_encoding; /* spare for later use */ 895 896 /* are we inline data or a real extent? */ 897 u8 type; 898 899 /* 900 * disk space consumed by the extent, checksum blocks are included 901 * in these numbers 902 * 903 * At this offset in the structure, the inline extent data start. 904 */ 905 __le64 disk_bytenr; 906 __le64 disk_num_bytes; 907 /* 908 * the logical offset in file blocks (no csums) 909 * this extent record is for. This allows a file extent to point 910 * into the middle of an existing extent on disk, sharing it 911 * between two snapshots (useful if some bytes in the middle of the 912 * extent have changed 913 */ 914 __le64 offset; 915 /* 916 * the logical number of file blocks (no csums included). This 917 * always reflects the size uncompressed and without encoding. 918 */ 919 __le64 num_bytes; 920 921 } __attribute__ ((__packed__)); 922 923 struct btrfs_csum_item { 924 u8 csum; 925 } __attribute__ ((__packed__)); 926 927 struct btrfs_dev_stats_item { 928 /* 929 * grow this item struct at the end for future enhancements and keep 930 * the existing values unchanged 931 */ 932 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 933 } __attribute__ ((__packed__)); 934 935 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 936 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 937 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 938 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 939 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 940 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 941 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 942 943 struct btrfs_dev_replace { 944 u64 replace_state; /* see #define above */ 945 u64 time_started; /* seconds since 1-Jan-1970 */ 946 u64 time_stopped; /* seconds since 1-Jan-1970 */ 947 atomic64_t num_write_errors; 948 atomic64_t num_uncorrectable_read_errors; 949 950 u64 cursor_left; 951 u64 committed_cursor_left; 952 u64 cursor_left_last_write_of_item; 953 u64 cursor_right; 954 955 u64 cont_reading_from_srcdev_mode; /* see #define above */ 956 957 int is_valid; 958 int item_needs_writeback; 959 struct btrfs_device *srcdev; 960 struct btrfs_device *tgtdev; 961 962 pid_t lock_owner; 963 atomic_t nesting_level; 964 struct mutex lock_finishing_cancel_unmount; 965 struct mutex lock_management_lock; 966 struct mutex lock; 967 968 struct btrfs_scrub_progress scrub_progress; 969 }; 970 971 struct btrfs_dev_replace_item { 972 /* 973 * grow this item struct at the end for future enhancements and keep 974 * the existing values unchanged 975 */ 976 __le64 src_devid; 977 __le64 cursor_left; 978 __le64 cursor_right; 979 __le64 cont_reading_from_srcdev_mode; 980 981 __le64 replace_state; 982 __le64 time_started; 983 __le64 time_stopped; 984 __le64 num_write_errors; 985 __le64 num_uncorrectable_read_errors; 986 } __attribute__ ((__packed__)); 987 988 /* different types of block groups (and chunks) */ 989 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 990 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 991 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 992 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 993 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 994 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 995 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 996 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 997 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 998 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 999 BTRFS_SPACE_INFO_GLOBAL_RSV) 1000 1001 enum btrfs_raid_types { 1002 BTRFS_RAID_RAID10, 1003 BTRFS_RAID_RAID1, 1004 BTRFS_RAID_DUP, 1005 BTRFS_RAID_RAID0, 1006 BTRFS_RAID_SINGLE, 1007 BTRFS_RAID_RAID5, 1008 BTRFS_RAID_RAID6, 1009 BTRFS_NR_RAID_TYPES 1010 }; 1011 1012 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 1013 BTRFS_BLOCK_GROUP_SYSTEM | \ 1014 BTRFS_BLOCK_GROUP_METADATA) 1015 1016 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 1017 BTRFS_BLOCK_GROUP_RAID1 | \ 1018 BTRFS_BLOCK_GROUP_RAID5 | \ 1019 BTRFS_BLOCK_GROUP_RAID6 | \ 1020 BTRFS_BLOCK_GROUP_DUP | \ 1021 BTRFS_BLOCK_GROUP_RAID10) 1022 /* 1023 * We need a bit for restriper to be able to tell when chunks of type 1024 * SINGLE are available. This "extended" profile format is used in 1025 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 1026 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 1027 * to avoid remappings between two formats in future. 1028 */ 1029 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 1030 1031 /* 1032 * A fake block group type that is used to communicate global block reserve 1033 * size to userspace via the SPACE_INFO ioctl. 1034 */ 1035 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 1036 1037 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 1038 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 1039 1040 static inline u64 chunk_to_extended(u64 flags) 1041 { 1042 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 1043 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1044 1045 return flags; 1046 } 1047 static inline u64 extended_to_chunk(u64 flags) 1048 { 1049 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1050 } 1051 1052 struct btrfs_block_group_item { 1053 __le64 used; 1054 __le64 chunk_objectid; 1055 __le64 flags; 1056 } __attribute__ ((__packed__)); 1057 1058 /* 1059 * is subvolume quota turned on? 1060 */ 1061 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 1062 /* 1063 * RESCAN is set during the initialization phase 1064 */ 1065 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 1066 /* 1067 * Some qgroup entries are known to be out of date, 1068 * either because the configuration has changed in a way that 1069 * makes a rescan necessary, or because the fs has been mounted 1070 * with a non-qgroup-aware version. 1071 * Turning qouta off and on again makes it inconsistent, too. 1072 */ 1073 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 1074 1075 #define BTRFS_QGROUP_STATUS_VERSION 1 1076 1077 struct btrfs_qgroup_status_item { 1078 __le64 version; 1079 /* 1080 * the generation is updated during every commit. As older 1081 * versions of btrfs are not aware of qgroups, it will be 1082 * possible to detect inconsistencies by checking the 1083 * generation on mount time 1084 */ 1085 __le64 generation; 1086 1087 /* flag definitions see above */ 1088 __le64 flags; 1089 1090 /* 1091 * only used during scanning to record the progress 1092 * of the scan. It contains a logical address 1093 */ 1094 __le64 rescan; 1095 } __attribute__ ((__packed__)); 1096 1097 struct btrfs_qgroup_info_item { 1098 __le64 generation; 1099 __le64 rfer; 1100 __le64 rfer_cmpr; 1101 __le64 excl; 1102 __le64 excl_cmpr; 1103 } __attribute__ ((__packed__)); 1104 1105 /* flags definition for qgroup limits */ 1106 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0) 1107 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1) 1108 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2) 1109 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3) 1110 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4) 1111 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5) 1112 1113 struct btrfs_qgroup_limit_item { 1114 /* 1115 * only updated when any of the other values change 1116 */ 1117 __le64 flags; 1118 __le64 max_rfer; 1119 __le64 max_excl; 1120 __le64 rsv_rfer; 1121 __le64 rsv_excl; 1122 } __attribute__ ((__packed__)); 1123 1124 /* For raid type sysfs entries */ 1125 struct raid_kobject { 1126 int raid_type; 1127 struct kobject kobj; 1128 }; 1129 1130 struct btrfs_space_info { 1131 spinlock_t lock; 1132 1133 u64 total_bytes; /* total bytes in the space, 1134 this doesn't take mirrors into account */ 1135 u64 bytes_used; /* total bytes used, 1136 this doesn't take mirrors into account */ 1137 u64 bytes_pinned; /* total bytes pinned, will be freed when the 1138 transaction finishes */ 1139 u64 bytes_reserved; /* total bytes the allocator has reserved for 1140 current allocations */ 1141 u64 bytes_may_use; /* number of bytes that may be used for 1142 delalloc/allocations */ 1143 u64 bytes_readonly; /* total bytes that are read only */ 1144 1145 unsigned int full:1; /* indicates that we cannot allocate any more 1146 chunks for this space */ 1147 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */ 1148 1149 unsigned int flush:1; /* set if we are trying to make space */ 1150 1151 unsigned int force_alloc; /* set if we need to force a chunk 1152 alloc for this space */ 1153 1154 u64 disk_used; /* total bytes used on disk */ 1155 u64 disk_total; /* total bytes on disk, takes mirrors into 1156 account */ 1157 1158 u64 flags; 1159 1160 /* 1161 * bytes_pinned is kept in line with what is actually pinned, as in 1162 * we've called update_block_group and dropped the bytes_used counter 1163 * and increased the bytes_pinned counter. However this means that 1164 * bytes_pinned does not reflect the bytes that will be pinned once the 1165 * delayed refs are flushed, so this counter is inc'ed everytime we call 1166 * btrfs_free_extent so it is a realtime count of what will be freed 1167 * once the transaction is committed. It will be zero'ed everytime the 1168 * transaction commits. 1169 */ 1170 struct percpu_counter total_bytes_pinned; 1171 1172 struct list_head list; 1173 1174 struct rw_semaphore groups_sem; 1175 /* for block groups in our same type */ 1176 struct list_head block_groups[BTRFS_NR_RAID_TYPES]; 1177 wait_queue_head_t wait; 1178 1179 struct kobject kobj; 1180 struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES]; 1181 }; 1182 1183 #define BTRFS_BLOCK_RSV_GLOBAL 1 1184 #define BTRFS_BLOCK_RSV_DELALLOC 2 1185 #define BTRFS_BLOCK_RSV_TRANS 3 1186 #define BTRFS_BLOCK_RSV_CHUNK 4 1187 #define BTRFS_BLOCK_RSV_DELOPS 5 1188 #define BTRFS_BLOCK_RSV_EMPTY 6 1189 #define BTRFS_BLOCK_RSV_TEMP 7 1190 1191 struct btrfs_block_rsv { 1192 u64 size; 1193 u64 reserved; 1194 struct btrfs_space_info *space_info; 1195 spinlock_t lock; 1196 unsigned short full; 1197 unsigned short type; 1198 unsigned short failfast; 1199 }; 1200 1201 /* 1202 * free clusters are used to claim free space in relatively large chunks, 1203 * allowing us to do less seeky writes. They are used for all metadata 1204 * allocations and data allocations in ssd mode. 1205 */ 1206 struct btrfs_free_cluster { 1207 spinlock_t lock; 1208 spinlock_t refill_lock; 1209 struct rb_root root; 1210 1211 /* largest extent in this cluster */ 1212 u64 max_size; 1213 1214 /* first extent starting offset */ 1215 u64 window_start; 1216 1217 struct btrfs_block_group_cache *block_group; 1218 /* 1219 * when a cluster is allocated from a block group, we put the 1220 * cluster onto a list in the block group so that it can 1221 * be freed before the block group is freed. 1222 */ 1223 struct list_head block_group_list; 1224 }; 1225 1226 enum btrfs_caching_type { 1227 BTRFS_CACHE_NO = 0, 1228 BTRFS_CACHE_STARTED = 1, 1229 BTRFS_CACHE_FAST = 2, 1230 BTRFS_CACHE_FINISHED = 3, 1231 BTRFS_CACHE_ERROR = 4, 1232 }; 1233 1234 enum btrfs_disk_cache_state { 1235 BTRFS_DC_WRITTEN = 0, 1236 BTRFS_DC_ERROR = 1, 1237 BTRFS_DC_CLEAR = 2, 1238 BTRFS_DC_SETUP = 3, 1239 BTRFS_DC_NEED_WRITE = 4, 1240 }; 1241 1242 struct btrfs_caching_control { 1243 struct list_head list; 1244 struct mutex mutex; 1245 wait_queue_head_t wait; 1246 struct btrfs_work work; 1247 struct btrfs_block_group_cache *block_group; 1248 u64 progress; 1249 atomic_t count; 1250 }; 1251 1252 struct btrfs_block_group_cache { 1253 struct btrfs_key key; 1254 struct btrfs_block_group_item item; 1255 struct btrfs_fs_info *fs_info; 1256 struct inode *inode; 1257 spinlock_t lock; 1258 u64 pinned; 1259 u64 reserved; 1260 u64 delalloc_bytes; 1261 u64 bytes_super; 1262 u64 flags; 1263 u64 sectorsize; 1264 u64 cache_generation; 1265 1266 /* 1267 * It is just used for the delayed data space allocation because 1268 * only the data space allocation and the relative metadata update 1269 * can be done cross the transaction. 1270 */ 1271 struct rw_semaphore data_rwsem; 1272 1273 /* for raid56, this is a full stripe, without parity */ 1274 unsigned long full_stripe_len; 1275 1276 unsigned int ro:1; 1277 unsigned int dirty:1; 1278 unsigned int iref:1; 1279 1280 int disk_cache_state; 1281 1282 /* cache tracking stuff */ 1283 int cached; 1284 struct btrfs_caching_control *caching_ctl; 1285 u64 last_byte_to_unpin; 1286 1287 struct btrfs_space_info *space_info; 1288 1289 /* free space cache stuff */ 1290 struct btrfs_free_space_ctl *free_space_ctl; 1291 1292 /* block group cache stuff */ 1293 struct rb_node cache_node; 1294 1295 /* for block groups in the same raid type */ 1296 struct list_head list; 1297 1298 /* usage count */ 1299 atomic_t count; 1300 1301 /* List of struct btrfs_free_clusters for this block group. 1302 * Today it will only have one thing on it, but that may change 1303 */ 1304 struct list_head cluster_list; 1305 1306 /* For delayed block group creation or deletion of empty block groups */ 1307 struct list_head bg_list; 1308 }; 1309 1310 /* delayed seq elem */ 1311 struct seq_list { 1312 struct list_head list; 1313 u64 seq; 1314 }; 1315 1316 enum btrfs_orphan_cleanup_state { 1317 ORPHAN_CLEANUP_STARTED = 1, 1318 ORPHAN_CLEANUP_DONE = 2, 1319 }; 1320 1321 /* used by the raid56 code to lock stripes for read/modify/write */ 1322 struct btrfs_stripe_hash { 1323 struct list_head hash_list; 1324 wait_queue_head_t wait; 1325 spinlock_t lock; 1326 }; 1327 1328 /* used by the raid56 code to lock stripes for read/modify/write */ 1329 struct btrfs_stripe_hash_table { 1330 struct list_head stripe_cache; 1331 spinlock_t cache_lock; 1332 int cache_size; 1333 struct btrfs_stripe_hash table[]; 1334 }; 1335 1336 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 1337 1338 void btrfs_init_async_reclaim_work(struct work_struct *work); 1339 1340 /* fs_info */ 1341 struct reloc_control; 1342 struct btrfs_device; 1343 struct btrfs_fs_devices; 1344 struct btrfs_balance_control; 1345 struct btrfs_delayed_root; 1346 struct btrfs_fs_info { 1347 u8 fsid[BTRFS_FSID_SIZE]; 1348 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 1349 struct btrfs_root *extent_root; 1350 struct btrfs_root *tree_root; 1351 struct btrfs_root *chunk_root; 1352 struct btrfs_root *dev_root; 1353 struct btrfs_root *fs_root; 1354 struct btrfs_root *csum_root; 1355 struct btrfs_root *quota_root; 1356 struct btrfs_root *uuid_root; 1357 1358 /* the log root tree is a directory of all the other log roots */ 1359 struct btrfs_root *log_root_tree; 1360 1361 spinlock_t fs_roots_radix_lock; 1362 struct radix_tree_root fs_roots_radix; 1363 1364 /* block group cache stuff */ 1365 spinlock_t block_group_cache_lock; 1366 u64 first_logical_byte; 1367 struct rb_root block_group_cache_tree; 1368 1369 /* keep track of unallocated space */ 1370 spinlock_t free_chunk_lock; 1371 u64 free_chunk_space; 1372 1373 struct extent_io_tree freed_extents[2]; 1374 struct extent_io_tree *pinned_extents; 1375 1376 /* logical->physical extent mapping */ 1377 struct btrfs_mapping_tree mapping_tree; 1378 1379 /* 1380 * block reservation for extent, checksum, root tree and 1381 * delayed dir index item 1382 */ 1383 struct btrfs_block_rsv global_block_rsv; 1384 /* block reservation for delay allocation */ 1385 struct btrfs_block_rsv delalloc_block_rsv; 1386 /* block reservation for metadata operations */ 1387 struct btrfs_block_rsv trans_block_rsv; 1388 /* block reservation for chunk tree */ 1389 struct btrfs_block_rsv chunk_block_rsv; 1390 /* block reservation for delayed operations */ 1391 struct btrfs_block_rsv delayed_block_rsv; 1392 1393 struct btrfs_block_rsv empty_block_rsv; 1394 1395 u64 generation; 1396 u64 last_trans_committed; 1397 u64 avg_delayed_ref_runtime; 1398 1399 /* 1400 * this is updated to the current trans every time a full commit 1401 * is required instead of the faster short fsync log commits 1402 */ 1403 u64 last_trans_log_full_commit; 1404 unsigned long mount_opt; 1405 unsigned long compress_type:4; 1406 int commit_interval; 1407 /* 1408 * It is a suggestive number, the read side is safe even it gets a 1409 * wrong number because we will write out the data into a regular 1410 * extent. The write side(mount/remount) is under ->s_umount lock, 1411 * so it is also safe. 1412 */ 1413 u64 max_inline; 1414 /* 1415 * Protected by ->chunk_mutex and sb->s_umount. 1416 * 1417 * The reason that we use two lock to protect it is because only 1418 * remount and mount operations can change it and these two operations 1419 * are under sb->s_umount, but the read side (chunk allocation) can not 1420 * acquire sb->s_umount or the deadlock would happen. So we use two 1421 * locks to protect it. On the write side, we must acquire two locks, 1422 * and on the read side, we just need acquire one of them. 1423 */ 1424 u64 alloc_start; 1425 struct btrfs_transaction *running_transaction; 1426 wait_queue_head_t transaction_throttle; 1427 wait_queue_head_t transaction_wait; 1428 wait_queue_head_t transaction_blocked_wait; 1429 wait_queue_head_t async_submit_wait; 1430 1431 /* 1432 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 1433 * when they are updated. 1434 * 1435 * Because we do not clear the flags for ever, so we needn't use 1436 * the lock on the read side. 1437 * 1438 * We also needn't use the lock when we mount the fs, because 1439 * there is no other task which will update the flag. 1440 */ 1441 spinlock_t super_lock; 1442 struct btrfs_super_block *super_copy; 1443 struct btrfs_super_block *super_for_commit; 1444 struct block_device *__bdev; 1445 struct super_block *sb; 1446 struct inode *btree_inode; 1447 struct backing_dev_info bdi; 1448 struct mutex tree_log_mutex; 1449 struct mutex transaction_kthread_mutex; 1450 struct mutex cleaner_mutex; 1451 struct mutex chunk_mutex; 1452 struct mutex volume_mutex; 1453 1454 /* this is used during read/modify/write to make sure 1455 * no two ios are trying to mod the same stripe at the same 1456 * time 1457 */ 1458 struct btrfs_stripe_hash_table *stripe_hash_table; 1459 1460 /* 1461 * this protects the ordered operations list only while we are 1462 * processing all of the entries on it. This way we make 1463 * sure the commit code doesn't find the list temporarily empty 1464 * because another function happens to be doing non-waiting preflush 1465 * before jumping into the main commit. 1466 */ 1467 struct mutex ordered_operations_mutex; 1468 1469 /* 1470 * Same as ordered_operations_mutex except this is for ordered extents 1471 * and not the operations. 1472 */ 1473 struct mutex ordered_extent_flush_mutex; 1474 1475 struct rw_semaphore commit_root_sem; 1476 1477 struct rw_semaphore cleanup_work_sem; 1478 1479 struct rw_semaphore subvol_sem; 1480 struct srcu_struct subvol_srcu; 1481 1482 spinlock_t trans_lock; 1483 /* 1484 * the reloc mutex goes with the trans lock, it is taken 1485 * during commit to protect us from the relocation code 1486 */ 1487 struct mutex reloc_mutex; 1488 1489 struct list_head trans_list; 1490 struct list_head dead_roots; 1491 struct list_head caching_block_groups; 1492 1493 spinlock_t delayed_iput_lock; 1494 struct list_head delayed_iputs; 1495 1496 /* this protects tree_mod_seq_list */ 1497 spinlock_t tree_mod_seq_lock; 1498 atomic64_t tree_mod_seq; 1499 struct list_head tree_mod_seq_list; 1500 1501 /* this protects tree_mod_log */ 1502 rwlock_t tree_mod_log_lock; 1503 struct rb_root tree_mod_log; 1504 1505 atomic_t nr_async_submits; 1506 atomic_t async_submit_draining; 1507 atomic_t nr_async_bios; 1508 atomic_t async_delalloc_pages; 1509 atomic_t open_ioctl_trans; 1510 1511 /* 1512 * this is used to protect the following list -- ordered_roots. 1513 */ 1514 spinlock_t ordered_root_lock; 1515 1516 /* 1517 * all fs/file tree roots in which there are data=ordered extents 1518 * pending writeback are added into this list. 1519 * 1520 * these can span multiple transactions and basically include 1521 * every dirty data page that isn't from nodatacow 1522 */ 1523 struct list_head ordered_roots; 1524 1525 struct mutex delalloc_root_mutex; 1526 spinlock_t delalloc_root_lock; 1527 /* all fs/file tree roots that have delalloc inodes. */ 1528 struct list_head delalloc_roots; 1529 1530 /* 1531 * there is a pool of worker threads for checksumming during writes 1532 * and a pool for checksumming after reads. This is because readers 1533 * can run with FS locks held, and the writers may be waiting for 1534 * those locks. We don't want ordering in the pending list to cause 1535 * deadlocks, and so the two are serviced separately. 1536 * 1537 * A third pool does submit_bio to avoid deadlocking with the other 1538 * two 1539 */ 1540 struct btrfs_workqueue *workers; 1541 struct btrfs_workqueue *delalloc_workers; 1542 struct btrfs_workqueue *flush_workers; 1543 struct btrfs_workqueue *endio_workers; 1544 struct btrfs_workqueue *endio_meta_workers; 1545 struct btrfs_workqueue *endio_raid56_workers; 1546 struct btrfs_workqueue *endio_repair_workers; 1547 struct btrfs_workqueue *rmw_workers; 1548 struct btrfs_workqueue *endio_meta_write_workers; 1549 struct btrfs_workqueue *endio_write_workers; 1550 struct btrfs_workqueue *endio_freespace_worker; 1551 struct btrfs_workqueue *submit_workers; 1552 struct btrfs_workqueue *caching_workers; 1553 struct btrfs_workqueue *readahead_workers; 1554 1555 /* 1556 * fixup workers take dirty pages that didn't properly go through 1557 * the cow mechanism and make them safe to write. It happens 1558 * for the sys_munmap function call path 1559 */ 1560 struct btrfs_workqueue *fixup_workers; 1561 struct btrfs_workqueue *delayed_workers; 1562 1563 /* the extent workers do delayed refs on the extent allocation tree */ 1564 struct btrfs_workqueue *extent_workers; 1565 struct task_struct *transaction_kthread; 1566 struct task_struct *cleaner_kthread; 1567 int thread_pool_size; 1568 1569 struct kobject super_kobj; 1570 struct kobject *space_info_kobj; 1571 struct kobject *device_dir_kobj; 1572 struct completion kobj_unregister; 1573 int do_barriers; 1574 int closing; 1575 int log_root_recovering; 1576 int open; 1577 1578 u64 total_pinned; 1579 1580 /* used to keep from writing metadata until there is a nice batch */ 1581 struct percpu_counter dirty_metadata_bytes; 1582 struct percpu_counter delalloc_bytes; 1583 s32 dirty_metadata_batch; 1584 s32 delalloc_batch; 1585 1586 struct list_head dirty_cowonly_roots; 1587 1588 struct btrfs_fs_devices *fs_devices; 1589 1590 /* 1591 * the space_info list is almost entirely read only. It only changes 1592 * when we add a new raid type to the FS, and that happens 1593 * very rarely. RCU is used to protect it. 1594 */ 1595 struct list_head space_info; 1596 1597 struct btrfs_space_info *data_sinfo; 1598 1599 struct reloc_control *reloc_ctl; 1600 1601 /* data_alloc_cluster is only used in ssd mode */ 1602 struct btrfs_free_cluster data_alloc_cluster; 1603 1604 /* all metadata allocations go through this cluster */ 1605 struct btrfs_free_cluster meta_alloc_cluster; 1606 1607 /* auto defrag inodes go here */ 1608 spinlock_t defrag_inodes_lock; 1609 struct rb_root defrag_inodes; 1610 atomic_t defrag_running; 1611 1612 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 1613 seqlock_t profiles_lock; 1614 /* 1615 * these three are in extended format (availability of single 1616 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 1617 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 1618 */ 1619 u64 avail_data_alloc_bits; 1620 u64 avail_metadata_alloc_bits; 1621 u64 avail_system_alloc_bits; 1622 1623 /* restriper state */ 1624 spinlock_t balance_lock; 1625 struct mutex balance_mutex; 1626 atomic_t balance_running; 1627 atomic_t balance_pause_req; 1628 atomic_t balance_cancel_req; 1629 struct btrfs_balance_control *balance_ctl; 1630 wait_queue_head_t balance_wait_q; 1631 1632 unsigned data_chunk_allocations; 1633 unsigned metadata_ratio; 1634 1635 void *bdev_holder; 1636 1637 /* private scrub information */ 1638 struct mutex scrub_lock; 1639 atomic_t scrubs_running; 1640 atomic_t scrub_pause_req; 1641 atomic_t scrubs_paused; 1642 atomic_t scrub_cancel_req; 1643 wait_queue_head_t scrub_pause_wait; 1644 int scrub_workers_refcnt; 1645 struct btrfs_workqueue *scrub_workers; 1646 struct btrfs_workqueue *scrub_wr_completion_workers; 1647 struct btrfs_workqueue *scrub_nocow_workers; 1648 1649 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1650 u32 check_integrity_print_mask; 1651 #endif 1652 /* 1653 * quota information 1654 */ 1655 unsigned int quota_enabled:1; 1656 1657 /* 1658 * quota_enabled only changes state after a commit. This holds the 1659 * next state. 1660 */ 1661 unsigned int pending_quota_state:1; 1662 1663 /* is qgroup tracking in a consistent state? */ 1664 u64 qgroup_flags; 1665 1666 /* holds configuration and tracking. Protected by qgroup_lock */ 1667 struct rb_root qgroup_tree; 1668 struct rb_root qgroup_op_tree; 1669 spinlock_t qgroup_lock; 1670 spinlock_t qgroup_op_lock; 1671 atomic_t qgroup_op_seq; 1672 1673 /* 1674 * used to avoid frequently calling ulist_alloc()/ulist_free() 1675 * when doing qgroup accounting, it must be protected by qgroup_lock. 1676 */ 1677 struct ulist *qgroup_ulist; 1678 1679 /* protect user change for quota operations */ 1680 struct mutex qgroup_ioctl_lock; 1681 1682 /* list of dirty qgroups to be written at next commit */ 1683 struct list_head dirty_qgroups; 1684 1685 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */ 1686 u64 qgroup_seq; 1687 1688 /* qgroup rescan items */ 1689 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1690 struct btrfs_key qgroup_rescan_progress; 1691 struct btrfs_workqueue *qgroup_rescan_workers; 1692 struct completion qgroup_rescan_completion; 1693 struct btrfs_work qgroup_rescan_work; 1694 1695 /* filesystem state */ 1696 unsigned long fs_state; 1697 1698 struct btrfs_delayed_root *delayed_root; 1699 1700 /* readahead tree */ 1701 spinlock_t reada_lock; 1702 struct radix_tree_root reada_tree; 1703 1704 /* Extent buffer radix tree */ 1705 spinlock_t buffer_lock; 1706 struct radix_tree_root buffer_radix; 1707 1708 /* next backup root to be overwritten */ 1709 int backup_root_index; 1710 1711 int num_tolerated_disk_barrier_failures; 1712 1713 /* device replace state */ 1714 struct btrfs_dev_replace dev_replace; 1715 1716 atomic_t mutually_exclusive_operation_running; 1717 1718 struct percpu_counter bio_counter; 1719 wait_queue_head_t replace_wait; 1720 1721 struct semaphore uuid_tree_rescan_sem; 1722 unsigned int update_uuid_tree_gen:1; 1723 1724 /* Used to reclaim the metadata space in the background. */ 1725 struct work_struct async_reclaim_work; 1726 1727 spinlock_t unused_bgs_lock; 1728 struct list_head unused_bgs; 1729 1730 /* For btrfs to record security options */ 1731 struct security_mnt_opts security_opts; 1732 }; 1733 1734 struct btrfs_subvolume_writers { 1735 struct percpu_counter counter; 1736 wait_queue_head_t wait; 1737 }; 1738 1739 /* 1740 * The state of btrfs root 1741 */ 1742 /* 1743 * btrfs_record_root_in_trans is a multi-step process, 1744 * and it can race with the balancing code. But the 1745 * race is very small, and only the first time the root 1746 * is added to each transaction. So IN_TRANS_SETUP 1747 * is used to tell us when more checks are required 1748 */ 1749 #define BTRFS_ROOT_IN_TRANS_SETUP 0 1750 #define BTRFS_ROOT_REF_COWS 1 1751 #define BTRFS_ROOT_TRACK_DIRTY 2 1752 #define BTRFS_ROOT_IN_RADIX 3 1753 #define BTRFS_ROOT_DUMMY_ROOT 4 1754 #define BTRFS_ROOT_ORPHAN_ITEM_INSERTED 5 1755 #define BTRFS_ROOT_DEFRAG_RUNNING 6 1756 #define BTRFS_ROOT_FORCE_COW 7 1757 #define BTRFS_ROOT_MULTI_LOG_TASKS 8 1758 1759 /* 1760 * in ram representation of the tree. extent_root is used for all allocations 1761 * and for the extent tree extent_root root. 1762 */ 1763 struct btrfs_root { 1764 struct extent_buffer *node; 1765 1766 struct extent_buffer *commit_root; 1767 struct btrfs_root *log_root; 1768 struct btrfs_root *reloc_root; 1769 1770 unsigned long state; 1771 struct btrfs_root_item root_item; 1772 struct btrfs_key root_key; 1773 struct btrfs_fs_info *fs_info; 1774 struct extent_io_tree dirty_log_pages; 1775 1776 struct kobject root_kobj; 1777 struct completion kobj_unregister; 1778 struct mutex objectid_mutex; 1779 1780 spinlock_t accounting_lock; 1781 struct btrfs_block_rsv *block_rsv; 1782 1783 /* free ino cache stuff */ 1784 struct btrfs_free_space_ctl *free_ino_ctl; 1785 enum btrfs_caching_type ino_cache_state; 1786 spinlock_t ino_cache_lock; 1787 wait_queue_head_t ino_cache_wait; 1788 struct btrfs_free_space_ctl *free_ino_pinned; 1789 u64 ino_cache_progress; 1790 struct inode *ino_cache_inode; 1791 1792 struct mutex log_mutex; 1793 wait_queue_head_t log_writer_wait; 1794 wait_queue_head_t log_commit_wait[2]; 1795 struct list_head log_ctxs[2]; 1796 atomic_t log_writers; 1797 atomic_t log_commit[2]; 1798 atomic_t log_batch; 1799 int log_transid; 1800 /* No matter the commit succeeds or not*/ 1801 int log_transid_committed; 1802 /* Just be updated when the commit succeeds. */ 1803 int last_log_commit; 1804 pid_t log_start_pid; 1805 1806 u64 objectid; 1807 u64 last_trans; 1808 1809 /* data allocations are done in sectorsize units */ 1810 u32 sectorsize; 1811 1812 /* node allocations are done in nodesize units */ 1813 u32 nodesize; 1814 1815 u32 stripesize; 1816 1817 u32 type; 1818 1819 u64 highest_objectid; 1820 1821 /* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */ 1822 u64 alloc_bytenr; 1823 1824 u64 defrag_trans_start; 1825 struct btrfs_key defrag_progress; 1826 struct btrfs_key defrag_max; 1827 char *name; 1828 1829 /* the dirty list is only used by non-reference counted roots */ 1830 struct list_head dirty_list; 1831 1832 struct list_head root_list; 1833 1834 spinlock_t log_extents_lock[2]; 1835 struct list_head logged_list[2]; 1836 1837 spinlock_t orphan_lock; 1838 atomic_t orphan_inodes; 1839 struct btrfs_block_rsv *orphan_block_rsv; 1840 int orphan_cleanup_state; 1841 1842 spinlock_t inode_lock; 1843 /* red-black tree that keeps track of in-memory inodes */ 1844 struct rb_root inode_tree; 1845 1846 /* 1847 * radix tree that keeps track of delayed nodes of every inode, 1848 * protected by inode_lock 1849 */ 1850 struct radix_tree_root delayed_nodes_tree; 1851 /* 1852 * right now this just gets used so that a root has its own devid 1853 * for stat. It may be used for more later 1854 */ 1855 dev_t anon_dev; 1856 1857 spinlock_t root_item_lock; 1858 atomic_t refs; 1859 1860 struct mutex delalloc_mutex; 1861 spinlock_t delalloc_lock; 1862 /* 1863 * all of the inodes that have delalloc bytes. It is possible for 1864 * this list to be empty even when there is still dirty data=ordered 1865 * extents waiting to finish IO. 1866 */ 1867 struct list_head delalloc_inodes; 1868 struct list_head delalloc_root; 1869 u64 nr_delalloc_inodes; 1870 1871 struct mutex ordered_extent_mutex; 1872 /* 1873 * this is used by the balancing code to wait for all the pending 1874 * ordered extents 1875 */ 1876 spinlock_t ordered_extent_lock; 1877 1878 /* 1879 * all of the data=ordered extents pending writeback 1880 * these can span multiple transactions and basically include 1881 * every dirty data page that isn't from nodatacow 1882 */ 1883 struct list_head ordered_extents; 1884 struct list_head ordered_root; 1885 u64 nr_ordered_extents; 1886 1887 /* 1888 * Number of currently running SEND ioctls to prevent 1889 * manipulation with the read-only status via SUBVOL_SETFLAGS 1890 */ 1891 int send_in_progress; 1892 struct btrfs_subvolume_writers *subv_writers; 1893 atomic_t will_be_snapshoted; 1894 }; 1895 1896 struct btrfs_ioctl_defrag_range_args { 1897 /* start of the defrag operation */ 1898 __u64 start; 1899 1900 /* number of bytes to defrag, use (u64)-1 to say all */ 1901 __u64 len; 1902 1903 /* 1904 * flags for the operation, which can include turning 1905 * on compression for this one defrag 1906 */ 1907 __u64 flags; 1908 1909 /* 1910 * any extent bigger than this will be considered 1911 * already defragged. Use 0 to take the kernel default 1912 * Use 1 to say every single extent must be rewritten 1913 */ 1914 __u32 extent_thresh; 1915 1916 /* 1917 * which compression method to use if turning on compression 1918 * for this defrag operation. If unspecified, zlib will 1919 * be used 1920 */ 1921 __u32 compress_type; 1922 1923 /* spare for later */ 1924 __u32 unused[4]; 1925 }; 1926 1927 1928 /* 1929 * inode items have the data typically returned from stat and store other 1930 * info about object characteristics. There is one for every file and dir in 1931 * the FS 1932 */ 1933 #define BTRFS_INODE_ITEM_KEY 1 1934 #define BTRFS_INODE_REF_KEY 12 1935 #define BTRFS_INODE_EXTREF_KEY 13 1936 #define BTRFS_XATTR_ITEM_KEY 24 1937 #define BTRFS_ORPHAN_ITEM_KEY 48 1938 /* reserve 2-15 close to the inode for later flexibility */ 1939 1940 /* 1941 * dir items are the name -> inode pointers in a directory. There is one 1942 * for every name in a directory. 1943 */ 1944 #define BTRFS_DIR_LOG_ITEM_KEY 60 1945 #define BTRFS_DIR_LOG_INDEX_KEY 72 1946 #define BTRFS_DIR_ITEM_KEY 84 1947 #define BTRFS_DIR_INDEX_KEY 96 1948 /* 1949 * extent data is for file data 1950 */ 1951 #define BTRFS_EXTENT_DATA_KEY 108 1952 1953 /* 1954 * extent csums are stored in a separate tree and hold csums for 1955 * an entire extent on disk. 1956 */ 1957 #define BTRFS_EXTENT_CSUM_KEY 128 1958 1959 /* 1960 * root items point to tree roots. They are typically in the root 1961 * tree used by the super block to find all the other trees 1962 */ 1963 #define BTRFS_ROOT_ITEM_KEY 132 1964 1965 /* 1966 * root backrefs tie subvols and snapshots to the directory entries that 1967 * reference them 1968 */ 1969 #define BTRFS_ROOT_BACKREF_KEY 144 1970 1971 /* 1972 * root refs make a fast index for listing all of the snapshots and 1973 * subvolumes referenced by a given root. They point directly to the 1974 * directory item in the root that references the subvol 1975 */ 1976 #define BTRFS_ROOT_REF_KEY 156 1977 1978 /* 1979 * extent items are in the extent map tree. These record which blocks 1980 * are used, and how many references there are to each block 1981 */ 1982 #define BTRFS_EXTENT_ITEM_KEY 168 1983 1984 /* 1985 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 1986 * the length, so we save the level in key->offset instead of the length. 1987 */ 1988 #define BTRFS_METADATA_ITEM_KEY 169 1989 1990 #define BTRFS_TREE_BLOCK_REF_KEY 176 1991 1992 #define BTRFS_EXTENT_DATA_REF_KEY 178 1993 1994 #define BTRFS_EXTENT_REF_V0_KEY 180 1995 1996 #define BTRFS_SHARED_BLOCK_REF_KEY 182 1997 1998 #define BTRFS_SHARED_DATA_REF_KEY 184 1999 2000 /* 2001 * block groups give us hints into the extent allocation trees. Which 2002 * blocks are free etc etc 2003 */ 2004 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 2005 2006 #define BTRFS_DEV_EXTENT_KEY 204 2007 #define BTRFS_DEV_ITEM_KEY 216 2008 #define BTRFS_CHUNK_ITEM_KEY 228 2009 2010 /* 2011 * Records the overall state of the qgroups. 2012 * There's only one instance of this key present, 2013 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 2014 */ 2015 #define BTRFS_QGROUP_STATUS_KEY 240 2016 /* 2017 * Records the currently used space of the qgroup. 2018 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 2019 */ 2020 #define BTRFS_QGROUP_INFO_KEY 242 2021 /* 2022 * Contains the user configured limits for the qgroup. 2023 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 2024 */ 2025 #define BTRFS_QGROUP_LIMIT_KEY 244 2026 /* 2027 * Records the child-parent relationship of qgroups. For 2028 * each relation, 2 keys are present: 2029 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 2030 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 2031 */ 2032 #define BTRFS_QGROUP_RELATION_KEY 246 2033 2034 #define BTRFS_BALANCE_ITEM_KEY 248 2035 2036 /* 2037 * Persistantly stores the io stats in the device tree. 2038 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid). 2039 */ 2040 #define BTRFS_DEV_STATS_KEY 249 2041 2042 /* 2043 * Persistantly stores the device replace state in the device tree. 2044 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 2045 */ 2046 #define BTRFS_DEV_REPLACE_KEY 250 2047 2048 /* 2049 * Stores items that allow to quickly map UUIDs to something else. 2050 * These items are part of the filesystem UUID tree. 2051 * The key is built like this: 2052 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 2053 */ 2054 #if BTRFS_UUID_SIZE != 16 2055 #error "UUID items require BTRFS_UUID_SIZE == 16!" 2056 #endif 2057 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 2058 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 2059 * received subvols */ 2060 2061 /* 2062 * string items are for debugging. They just store a short string of 2063 * data in the FS 2064 */ 2065 #define BTRFS_STRING_ITEM_KEY 253 2066 2067 /* 2068 * Flags for mount options. 2069 * 2070 * Note: don't forget to add new options to btrfs_show_options() 2071 */ 2072 #define BTRFS_MOUNT_NODATASUM (1 << 0) 2073 #define BTRFS_MOUNT_NODATACOW (1 << 1) 2074 #define BTRFS_MOUNT_NOBARRIER (1 << 2) 2075 #define BTRFS_MOUNT_SSD (1 << 3) 2076 #define BTRFS_MOUNT_DEGRADED (1 << 4) 2077 #define BTRFS_MOUNT_COMPRESS (1 << 5) 2078 #define BTRFS_MOUNT_NOTREELOG (1 << 6) 2079 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) 2080 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) 2081 #define BTRFS_MOUNT_NOSSD (1 << 9) 2082 #define BTRFS_MOUNT_DISCARD (1 << 10) 2083 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) 2084 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) 2085 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) 2086 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) 2087 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) 2088 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) 2089 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17) 2090 #define BTRFS_MOUNT_RECOVERY (1 << 18) 2091 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) 2092 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) 2093 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) 2094 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) 2095 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) 2096 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24) 2097 2098 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 2099 #define BTRFS_DEFAULT_MAX_INLINE (8192) 2100 2101 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 2102 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 2103 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 2104 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ 2105 BTRFS_MOUNT_##opt) 2106 #define btrfs_set_and_info(root, opt, fmt, args...) \ 2107 { \ 2108 if (!btrfs_test_opt(root, opt)) \ 2109 btrfs_info(root->fs_info, fmt, ##args); \ 2110 btrfs_set_opt(root->fs_info->mount_opt, opt); \ 2111 } 2112 2113 #define btrfs_clear_and_info(root, opt, fmt, args...) \ 2114 { \ 2115 if (btrfs_test_opt(root, opt)) \ 2116 btrfs_info(root->fs_info, fmt, ##args); \ 2117 btrfs_clear_opt(root->fs_info->mount_opt, opt); \ 2118 } 2119 2120 /* 2121 * Inode flags 2122 */ 2123 #define BTRFS_INODE_NODATASUM (1 << 0) 2124 #define BTRFS_INODE_NODATACOW (1 << 1) 2125 #define BTRFS_INODE_READONLY (1 << 2) 2126 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 2127 #define BTRFS_INODE_PREALLOC (1 << 4) 2128 #define BTRFS_INODE_SYNC (1 << 5) 2129 #define BTRFS_INODE_IMMUTABLE (1 << 6) 2130 #define BTRFS_INODE_APPEND (1 << 7) 2131 #define BTRFS_INODE_NODUMP (1 << 8) 2132 #define BTRFS_INODE_NOATIME (1 << 9) 2133 #define BTRFS_INODE_DIRSYNC (1 << 10) 2134 #define BTRFS_INODE_COMPRESS (1 << 11) 2135 2136 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 2137 2138 struct btrfs_map_token { 2139 struct extent_buffer *eb; 2140 char *kaddr; 2141 unsigned long offset; 2142 }; 2143 2144 static inline void btrfs_init_map_token (struct btrfs_map_token *token) 2145 { 2146 token->kaddr = NULL; 2147 } 2148 2149 /* some macros to generate set/get funcs for the struct fields. This 2150 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 2151 * one for u8: 2152 */ 2153 #define le8_to_cpu(v) (v) 2154 #define cpu_to_le8(v) (v) 2155 #define __le8 u8 2156 2157 #define read_eb_member(eb, ptr, type, member, result) ( \ 2158 read_extent_buffer(eb, (char *)(result), \ 2159 ((unsigned long)(ptr)) + \ 2160 offsetof(type, member), \ 2161 sizeof(((type *)0)->member))) 2162 2163 #define write_eb_member(eb, ptr, type, member, result) ( \ 2164 write_extent_buffer(eb, (char *)(result), \ 2165 ((unsigned long)(ptr)) + \ 2166 offsetof(type, member), \ 2167 sizeof(((type *)0)->member))) 2168 2169 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 2170 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \ 2171 unsigned long off, \ 2172 struct btrfs_map_token *token); \ 2173 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \ 2174 unsigned long off, u##bits val, \ 2175 struct btrfs_map_token *token); \ 2176 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \ 2177 unsigned long off) \ 2178 { \ 2179 return btrfs_get_token_##bits(eb, ptr, off, NULL); \ 2180 } \ 2181 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \ 2182 unsigned long off, u##bits val) \ 2183 { \ 2184 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \ 2185 } 2186 2187 DECLARE_BTRFS_SETGET_BITS(8) 2188 DECLARE_BTRFS_SETGET_BITS(16) 2189 DECLARE_BTRFS_SETGET_BITS(32) 2190 DECLARE_BTRFS_SETGET_BITS(64) 2191 2192 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 2193 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \ 2194 { \ 2195 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2196 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 2197 } \ 2198 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \ 2199 u##bits val) \ 2200 { \ 2201 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2202 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 2203 } \ 2204 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \ 2205 struct btrfs_map_token *token) \ 2206 { \ 2207 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2208 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \ 2209 } \ 2210 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \ 2211 type *s, u##bits val, \ 2212 struct btrfs_map_token *token) \ 2213 { \ 2214 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2215 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \ 2216 } 2217 2218 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 2219 static inline u##bits btrfs_##name(struct extent_buffer *eb) \ 2220 { \ 2221 type *p = page_address(eb->pages[0]); \ 2222 u##bits res = le##bits##_to_cpu(p->member); \ 2223 return res; \ 2224 } \ 2225 static inline void btrfs_set_##name(struct extent_buffer *eb, \ 2226 u##bits val) \ 2227 { \ 2228 type *p = page_address(eb->pages[0]); \ 2229 p->member = cpu_to_le##bits(val); \ 2230 } 2231 2232 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 2233 static inline u##bits btrfs_##name(type *s) \ 2234 { \ 2235 return le##bits##_to_cpu(s->member); \ 2236 } \ 2237 static inline void btrfs_set_##name(type *s, u##bits val) \ 2238 { \ 2239 s->member = cpu_to_le##bits(val); \ 2240 } 2241 2242 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 2243 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); 2244 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 2245 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 2246 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 2247 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 2248 start_offset, 64); 2249 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 2250 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 2251 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 2252 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 2253 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 2254 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 2255 2256 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 2257 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 2258 total_bytes, 64); 2259 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 2260 bytes_used, 64); 2261 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 2262 io_align, 32); 2263 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 2264 io_width, 32); 2265 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 2266 sector_size, 32); 2267 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 2268 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 2269 dev_group, 32); 2270 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 2271 seek_speed, 8); 2272 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 2273 bandwidth, 8); 2274 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 2275 generation, 64); 2276 2277 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 2278 { 2279 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 2280 } 2281 2282 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 2283 { 2284 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 2285 } 2286 2287 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 2288 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 2289 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 2290 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 2291 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 2292 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 2293 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 2294 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 2295 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 2296 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 2297 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 2298 2299 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 2300 { 2301 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 2302 } 2303 2304 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 2305 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 2306 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 2307 stripe_len, 64); 2308 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 2309 io_align, 32); 2310 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 2311 io_width, 32); 2312 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 2313 sector_size, 32); 2314 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 2315 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 2316 num_stripes, 16); 2317 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 2318 sub_stripes, 16); 2319 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 2320 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 2321 2322 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 2323 int nr) 2324 { 2325 unsigned long offset = (unsigned long)c; 2326 offset += offsetof(struct btrfs_chunk, stripe); 2327 offset += nr * sizeof(struct btrfs_stripe); 2328 return (struct btrfs_stripe *)offset; 2329 } 2330 2331 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 2332 { 2333 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 2334 } 2335 2336 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, 2337 struct btrfs_chunk *c, int nr) 2338 { 2339 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 2340 } 2341 2342 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, 2343 struct btrfs_chunk *c, int nr) 2344 { 2345 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 2346 } 2347 2348 /* struct btrfs_block_group_item */ 2349 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, 2350 used, 64); 2351 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, 2352 used, 64); 2353 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, 2354 struct btrfs_block_group_item, chunk_objectid, 64); 2355 2356 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, 2357 struct btrfs_block_group_item, chunk_objectid, 64); 2358 BTRFS_SETGET_FUNCS(disk_block_group_flags, 2359 struct btrfs_block_group_item, flags, 64); 2360 BTRFS_SETGET_STACK_FUNCS(block_group_flags, 2361 struct btrfs_block_group_item, flags, 64); 2362 2363 /* struct btrfs_inode_ref */ 2364 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 2365 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 2366 2367 /* struct btrfs_inode_extref */ 2368 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 2369 parent_objectid, 64); 2370 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 2371 name_len, 16); 2372 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 2373 2374 /* struct btrfs_inode_item */ 2375 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 2376 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 2377 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 2378 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 2379 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 2380 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 2381 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 2382 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 2383 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 2384 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 2385 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 2386 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 2387 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 2388 generation, 64); 2389 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 2390 sequence, 64); 2391 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 2392 transid, 64); 2393 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 2394 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 2395 nbytes, 64); 2396 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 2397 block_group, 64); 2398 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 2399 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 2400 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 2401 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 2402 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 2403 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 2404 2405 static inline struct btrfs_timespec * 2406 btrfs_inode_atime(struct btrfs_inode_item *inode_item) 2407 { 2408 unsigned long ptr = (unsigned long)inode_item; 2409 ptr += offsetof(struct btrfs_inode_item, atime); 2410 return (struct btrfs_timespec *)ptr; 2411 } 2412 2413 static inline struct btrfs_timespec * 2414 btrfs_inode_mtime(struct btrfs_inode_item *inode_item) 2415 { 2416 unsigned long ptr = (unsigned long)inode_item; 2417 ptr += offsetof(struct btrfs_inode_item, mtime); 2418 return (struct btrfs_timespec *)ptr; 2419 } 2420 2421 static inline struct btrfs_timespec * 2422 btrfs_inode_ctime(struct btrfs_inode_item *inode_item) 2423 { 2424 unsigned long ptr = (unsigned long)inode_item; 2425 ptr += offsetof(struct btrfs_inode_item, ctime); 2426 return (struct btrfs_timespec *)ptr; 2427 } 2428 2429 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 2430 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 2431 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 2432 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 2433 2434 /* struct btrfs_dev_extent */ 2435 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 2436 chunk_tree, 64); 2437 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 2438 chunk_objectid, 64); 2439 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 2440 chunk_offset, 64); 2441 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 2442 2443 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) 2444 { 2445 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); 2446 return (unsigned long)dev + ptr; 2447 } 2448 2449 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 2450 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 2451 generation, 64); 2452 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 2453 2454 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32); 2455 2456 2457 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 2458 2459 static inline void btrfs_tree_block_key(struct extent_buffer *eb, 2460 struct btrfs_tree_block_info *item, 2461 struct btrfs_disk_key *key) 2462 { 2463 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2464 } 2465 2466 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb, 2467 struct btrfs_tree_block_info *item, 2468 struct btrfs_disk_key *key) 2469 { 2470 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2471 } 2472 2473 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 2474 root, 64); 2475 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 2476 objectid, 64); 2477 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 2478 offset, 64); 2479 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 2480 count, 32); 2481 2482 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 2483 count, 32); 2484 2485 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 2486 type, 8); 2487 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 2488 offset, 64); 2489 2490 static inline u32 btrfs_extent_inline_ref_size(int type) 2491 { 2492 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2493 type == BTRFS_SHARED_BLOCK_REF_KEY) 2494 return sizeof(struct btrfs_extent_inline_ref); 2495 if (type == BTRFS_SHARED_DATA_REF_KEY) 2496 return sizeof(struct btrfs_shared_data_ref) + 2497 sizeof(struct btrfs_extent_inline_ref); 2498 if (type == BTRFS_EXTENT_DATA_REF_KEY) 2499 return sizeof(struct btrfs_extent_data_ref) + 2500 offsetof(struct btrfs_extent_inline_ref, offset); 2501 BUG(); 2502 return 0; 2503 } 2504 2505 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); 2506 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, 2507 generation, 64); 2508 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); 2509 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); 2510 2511 /* struct btrfs_node */ 2512 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 2513 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 2514 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 2515 blockptr, 64); 2516 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 2517 generation, 64); 2518 2519 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) 2520 { 2521 unsigned long ptr; 2522 ptr = offsetof(struct btrfs_node, ptrs) + 2523 sizeof(struct btrfs_key_ptr) * nr; 2524 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 2525 } 2526 2527 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, 2528 int nr, u64 val) 2529 { 2530 unsigned long ptr; 2531 ptr = offsetof(struct btrfs_node, ptrs) + 2532 sizeof(struct btrfs_key_ptr) * nr; 2533 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 2534 } 2535 2536 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) 2537 { 2538 unsigned long ptr; 2539 ptr = offsetof(struct btrfs_node, ptrs) + 2540 sizeof(struct btrfs_key_ptr) * nr; 2541 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2542 } 2543 2544 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, 2545 int nr, u64 val) 2546 { 2547 unsigned long ptr; 2548 ptr = offsetof(struct btrfs_node, ptrs) + 2549 sizeof(struct btrfs_key_ptr) * nr; 2550 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2551 } 2552 2553 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2554 { 2555 return offsetof(struct btrfs_node, ptrs) + 2556 sizeof(struct btrfs_key_ptr) * nr; 2557 } 2558 2559 void btrfs_node_key(struct extent_buffer *eb, 2560 struct btrfs_disk_key *disk_key, int nr); 2561 2562 static inline void btrfs_set_node_key(struct extent_buffer *eb, 2563 struct btrfs_disk_key *disk_key, int nr) 2564 { 2565 unsigned long ptr; 2566 ptr = btrfs_node_key_ptr_offset(nr); 2567 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2568 struct btrfs_key_ptr, key, disk_key); 2569 } 2570 2571 /* struct btrfs_item */ 2572 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 2573 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 2574 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2575 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2576 2577 static inline unsigned long btrfs_item_nr_offset(int nr) 2578 { 2579 return offsetof(struct btrfs_leaf, items) + 2580 sizeof(struct btrfs_item) * nr; 2581 } 2582 2583 static inline struct btrfs_item *btrfs_item_nr(int nr) 2584 { 2585 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2586 } 2587 2588 static inline u32 btrfs_item_end(struct extent_buffer *eb, 2589 struct btrfs_item *item) 2590 { 2591 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 2592 } 2593 2594 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) 2595 { 2596 return btrfs_item_end(eb, btrfs_item_nr(nr)); 2597 } 2598 2599 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) 2600 { 2601 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 2602 } 2603 2604 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) 2605 { 2606 return btrfs_item_size(eb, btrfs_item_nr(nr)); 2607 } 2608 2609 static inline void btrfs_item_key(struct extent_buffer *eb, 2610 struct btrfs_disk_key *disk_key, int nr) 2611 { 2612 struct btrfs_item *item = btrfs_item_nr(nr); 2613 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2614 } 2615 2616 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2617 struct btrfs_disk_key *disk_key, int nr) 2618 { 2619 struct btrfs_item *item = btrfs_item_nr(nr); 2620 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2621 } 2622 2623 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2624 2625 /* 2626 * struct btrfs_root_ref 2627 */ 2628 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2629 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2630 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2631 2632 /* struct btrfs_dir_item */ 2633 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2634 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2635 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2636 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2637 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2638 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2639 data_len, 16); 2640 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2641 name_len, 16); 2642 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2643 transid, 64); 2644 2645 static inline void btrfs_dir_item_key(struct extent_buffer *eb, 2646 struct btrfs_dir_item *item, 2647 struct btrfs_disk_key *key) 2648 { 2649 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2650 } 2651 2652 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2653 struct btrfs_dir_item *item, 2654 struct btrfs_disk_key *key) 2655 { 2656 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2657 } 2658 2659 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2660 num_entries, 64); 2661 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2662 num_bitmaps, 64); 2663 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2664 generation, 64); 2665 2666 static inline void btrfs_free_space_key(struct extent_buffer *eb, 2667 struct btrfs_free_space_header *h, 2668 struct btrfs_disk_key *key) 2669 { 2670 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2671 } 2672 2673 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2674 struct btrfs_free_space_header *h, 2675 struct btrfs_disk_key *key) 2676 { 2677 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2678 } 2679 2680 /* struct btrfs_disk_key */ 2681 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2682 objectid, 64); 2683 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2684 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2685 2686 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2687 struct btrfs_disk_key *disk) 2688 { 2689 cpu->offset = le64_to_cpu(disk->offset); 2690 cpu->type = disk->type; 2691 cpu->objectid = le64_to_cpu(disk->objectid); 2692 } 2693 2694 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2695 struct btrfs_key *cpu) 2696 { 2697 disk->offset = cpu_to_le64(cpu->offset); 2698 disk->type = cpu->type; 2699 disk->objectid = cpu_to_le64(cpu->objectid); 2700 } 2701 2702 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, 2703 struct btrfs_key *key, int nr) 2704 { 2705 struct btrfs_disk_key disk_key; 2706 btrfs_node_key(eb, &disk_key, nr); 2707 btrfs_disk_key_to_cpu(key, &disk_key); 2708 } 2709 2710 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, 2711 struct btrfs_key *key, int nr) 2712 { 2713 struct btrfs_disk_key disk_key; 2714 btrfs_item_key(eb, &disk_key, nr); 2715 btrfs_disk_key_to_cpu(key, &disk_key); 2716 } 2717 2718 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, 2719 struct btrfs_dir_item *item, 2720 struct btrfs_key *key) 2721 { 2722 struct btrfs_disk_key disk_key; 2723 btrfs_dir_item_key(eb, item, &disk_key); 2724 btrfs_disk_key_to_cpu(key, &disk_key); 2725 } 2726 2727 2728 static inline u8 btrfs_key_type(struct btrfs_key *key) 2729 { 2730 return key->type; 2731 } 2732 2733 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) 2734 { 2735 key->type = val; 2736 } 2737 2738 /* struct btrfs_header */ 2739 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2740 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2741 generation, 64); 2742 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2743 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2744 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2745 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2746 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2747 generation, 64); 2748 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2749 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2750 nritems, 32); 2751 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2752 2753 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) 2754 { 2755 return (btrfs_header_flags(eb) & flag) == flag; 2756 } 2757 2758 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2759 { 2760 u64 flags = btrfs_header_flags(eb); 2761 btrfs_set_header_flags(eb, flags | flag); 2762 return (flags & flag) == flag; 2763 } 2764 2765 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2766 { 2767 u64 flags = btrfs_header_flags(eb); 2768 btrfs_set_header_flags(eb, flags & ~flag); 2769 return (flags & flag) == flag; 2770 } 2771 2772 static inline int btrfs_header_backref_rev(struct extent_buffer *eb) 2773 { 2774 u64 flags = btrfs_header_flags(eb); 2775 return flags >> BTRFS_BACKREF_REV_SHIFT; 2776 } 2777 2778 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2779 int rev) 2780 { 2781 u64 flags = btrfs_header_flags(eb); 2782 flags &= ~BTRFS_BACKREF_REV_MASK; 2783 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2784 btrfs_set_header_flags(eb, flags); 2785 } 2786 2787 static inline unsigned long btrfs_header_fsid(void) 2788 { 2789 return offsetof(struct btrfs_header, fsid); 2790 } 2791 2792 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) 2793 { 2794 return offsetof(struct btrfs_header, chunk_tree_uuid); 2795 } 2796 2797 static inline int btrfs_is_leaf(struct extent_buffer *eb) 2798 { 2799 return btrfs_header_level(eb) == 0; 2800 } 2801 2802 /* struct btrfs_root_item */ 2803 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2804 generation, 64); 2805 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2806 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2807 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2808 2809 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2810 generation, 64); 2811 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2812 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2813 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2814 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2815 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2816 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2817 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2818 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2819 last_snapshot, 64); 2820 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2821 generation_v2, 64); 2822 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2823 ctransid, 64); 2824 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2825 otransid, 64); 2826 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2827 stransid, 64); 2828 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2829 rtransid, 64); 2830 2831 static inline bool btrfs_root_readonly(struct btrfs_root *root) 2832 { 2833 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2834 } 2835 2836 static inline bool btrfs_root_dead(struct btrfs_root *root) 2837 { 2838 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2839 } 2840 2841 /* struct btrfs_root_backup */ 2842 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2843 tree_root, 64); 2844 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2845 tree_root_gen, 64); 2846 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2847 tree_root_level, 8); 2848 2849 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2850 chunk_root, 64); 2851 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2852 chunk_root_gen, 64); 2853 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2854 chunk_root_level, 8); 2855 2856 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2857 extent_root, 64); 2858 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2859 extent_root_gen, 64); 2860 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2861 extent_root_level, 8); 2862 2863 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2864 fs_root, 64); 2865 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2866 fs_root_gen, 64); 2867 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2868 fs_root_level, 8); 2869 2870 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2871 dev_root, 64); 2872 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2873 dev_root_gen, 64); 2874 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2875 dev_root_level, 8); 2876 2877 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2878 csum_root, 64); 2879 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2880 csum_root_gen, 64); 2881 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2882 csum_root_level, 8); 2883 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2884 total_bytes, 64); 2885 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2886 bytes_used, 64); 2887 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2888 num_devices, 64); 2889 2890 /* struct btrfs_balance_item */ 2891 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2892 2893 static inline void btrfs_balance_data(struct extent_buffer *eb, 2894 struct btrfs_balance_item *bi, 2895 struct btrfs_disk_balance_args *ba) 2896 { 2897 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2898 } 2899 2900 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2901 struct btrfs_balance_item *bi, 2902 struct btrfs_disk_balance_args *ba) 2903 { 2904 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2905 } 2906 2907 static inline void btrfs_balance_meta(struct extent_buffer *eb, 2908 struct btrfs_balance_item *bi, 2909 struct btrfs_disk_balance_args *ba) 2910 { 2911 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2912 } 2913 2914 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2915 struct btrfs_balance_item *bi, 2916 struct btrfs_disk_balance_args *ba) 2917 { 2918 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2919 } 2920 2921 static inline void btrfs_balance_sys(struct extent_buffer *eb, 2922 struct btrfs_balance_item *bi, 2923 struct btrfs_disk_balance_args *ba) 2924 { 2925 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2926 } 2927 2928 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2929 struct btrfs_balance_item *bi, 2930 struct btrfs_disk_balance_args *ba) 2931 { 2932 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2933 } 2934 2935 static inline void 2936 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2937 struct btrfs_disk_balance_args *disk) 2938 { 2939 memset(cpu, 0, sizeof(*cpu)); 2940 2941 cpu->profiles = le64_to_cpu(disk->profiles); 2942 cpu->usage = le64_to_cpu(disk->usage); 2943 cpu->devid = le64_to_cpu(disk->devid); 2944 cpu->pstart = le64_to_cpu(disk->pstart); 2945 cpu->pend = le64_to_cpu(disk->pend); 2946 cpu->vstart = le64_to_cpu(disk->vstart); 2947 cpu->vend = le64_to_cpu(disk->vend); 2948 cpu->target = le64_to_cpu(disk->target); 2949 cpu->flags = le64_to_cpu(disk->flags); 2950 cpu->limit = le64_to_cpu(disk->limit); 2951 } 2952 2953 static inline void 2954 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2955 struct btrfs_balance_args *cpu) 2956 { 2957 memset(disk, 0, sizeof(*disk)); 2958 2959 disk->profiles = cpu_to_le64(cpu->profiles); 2960 disk->usage = cpu_to_le64(cpu->usage); 2961 disk->devid = cpu_to_le64(cpu->devid); 2962 disk->pstart = cpu_to_le64(cpu->pstart); 2963 disk->pend = cpu_to_le64(cpu->pend); 2964 disk->vstart = cpu_to_le64(cpu->vstart); 2965 disk->vend = cpu_to_le64(cpu->vend); 2966 disk->target = cpu_to_le64(cpu->target); 2967 disk->flags = cpu_to_le64(cpu->flags); 2968 disk->limit = cpu_to_le64(cpu->limit); 2969 } 2970 2971 /* struct btrfs_super_block */ 2972 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2973 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2974 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2975 generation, 64); 2976 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2977 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2978 struct btrfs_super_block, sys_chunk_array_size, 32); 2979 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2980 struct btrfs_super_block, chunk_root_generation, 64); 2981 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2982 root_level, 8); 2983 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2984 chunk_root, 64); 2985 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2986 chunk_root_level, 8); 2987 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2988 log_root, 64); 2989 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2990 log_root_transid, 64); 2991 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2992 log_root_level, 8); 2993 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2994 total_bytes, 64); 2995 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2996 bytes_used, 64); 2997 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2998 sectorsize, 32); 2999 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 3000 nodesize, 32); 3001 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 3002 stripesize, 32); 3003 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 3004 root_dir_objectid, 64); 3005 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 3006 num_devices, 64); 3007 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 3008 compat_flags, 64); 3009 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 3010 compat_ro_flags, 64); 3011 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 3012 incompat_flags, 64); 3013 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 3014 csum_type, 16); 3015 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 3016 cache_generation, 64); 3017 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 3018 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 3019 uuid_tree_generation, 64); 3020 3021 static inline int btrfs_super_csum_size(struct btrfs_super_block *s) 3022 { 3023 u16 t = btrfs_super_csum_type(s); 3024 /* 3025 * csum type is validated at mount time 3026 */ 3027 return btrfs_csum_sizes[t]; 3028 } 3029 3030 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) 3031 { 3032 return offsetof(struct btrfs_leaf, items); 3033 } 3034 3035 /* struct btrfs_file_extent_item */ 3036 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 3037 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 3038 struct btrfs_file_extent_item, disk_bytenr, 64); 3039 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 3040 struct btrfs_file_extent_item, offset, 64); 3041 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 3042 struct btrfs_file_extent_item, generation, 64); 3043 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 3044 struct btrfs_file_extent_item, num_bytes, 64); 3045 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 3046 struct btrfs_file_extent_item, disk_num_bytes, 64); 3047 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 3048 struct btrfs_file_extent_item, compression, 8); 3049 3050 static inline unsigned long 3051 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) 3052 { 3053 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 3054 } 3055 3056 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 3057 { 3058 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 3059 } 3060 3061 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 3062 disk_bytenr, 64); 3063 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 3064 generation, 64); 3065 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 3066 disk_num_bytes, 64); 3067 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 3068 offset, 64); 3069 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 3070 num_bytes, 64); 3071 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 3072 ram_bytes, 64); 3073 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 3074 compression, 8); 3075 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 3076 encryption, 8); 3077 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 3078 other_encoding, 16); 3079 3080 /* 3081 * this returns the number of bytes used by the item on disk, minus the 3082 * size of any extent headers. If a file is compressed on disk, this is 3083 * the compressed size 3084 */ 3085 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, 3086 struct btrfs_item *e) 3087 { 3088 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 3089 } 3090 3091 /* this returns the number of file bytes represented by the inline item. 3092 * If an item is compressed, this is the uncompressed size 3093 */ 3094 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, 3095 int slot, 3096 struct btrfs_file_extent_item *fi) 3097 { 3098 struct btrfs_map_token token; 3099 3100 btrfs_init_map_token(&token); 3101 /* 3102 * return the space used on disk if this item isn't 3103 * compressed or encoded 3104 */ 3105 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 && 3106 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 && 3107 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) { 3108 return btrfs_file_extent_inline_item_len(eb, 3109 btrfs_item_nr(slot)); 3110 } 3111 3112 /* otherwise use the ram bytes field */ 3113 return btrfs_token_file_extent_ram_bytes(eb, fi, &token); 3114 } 3115 3116 3117 /* btrfs_dev_stats_item */ 3118 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb, 3119 struct btrfs_dev_stats_item *ptr, 3120 int index) 3121 { 3122 u64 val; 3123 3124 read_extent_buffer(eb, &val, 3125 offsetof(struct btrfs_dev_stats_item, values) + 3126 ((unsigned long)ptr) + (index * sizeof(u64)), 3127 sizeof(val)); 3128 return val; 3129 } 3130 3131 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb, 3132 struct btrfs_dev_stats_item *ptr, 3133 int index, u64 val) 3134 { 3135 write_extent_buffer(eb, &val, 3136 offsetof(struct btrfs_dev_stats_item, values) + 3137 ((unsigned long)ptr) + (index * sizeof(u64)), 3138 sizeof(val)); 3139 } 3140 3141 /* btrfs_qgroup_status_item */ 3142 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 3143 generation, 64); 3144 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 3145 version, 64); 3146 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 3147 flags, 64); 3148 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 3149 rescan, 64); 3150 3151 /* btrfs_qgroup_info_item */ 3152 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 3153 generation, 64); 3154 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 3155 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 3156 rfer_cmpr, 64); 3157 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 3158 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 3159 excl_cmpr, 64); 3160 3161 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 3162 struct btrfs_qgroup_info_item, generation, 64); 3163 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 3164 rfer, 64); 3165 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 3166 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 3167 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 3168 excl, 64); 3169 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 3170 struct btrfs_qgroup_info_item, excl_cmpr, 64); 3171 3172 /* btrfs_qgroup_limit_item */ 3173 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 3174 flags, 64); 3175 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 3176 max_rfer, 64); 3177 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 3178 max_excl, 64); 3179 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 3180 rsv_rfer, 64); 3181 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 3182 rsv_excl, 64); 3183 3184 /* btrfs_dev_replace_item */ 3185 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 3186 struct btrfs_dev_replace_item, src_devid, 64); 3187 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 3188 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 3189 64); 3190 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 3191 replace_state, 64); 3192 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 3193 time_started, 64); 3194 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 3195 time_stopped, 64); 3196 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 3197 num_write_errors, 64); 3198 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 3199 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 3200 64); 3201 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 3202 cursor_left, 64); 3203 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 3204 cursor_right, 64); 3205 3206 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 3207 struct btrfs_dev_replace_item, src_devid, 64); 3208 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 3209 struct btrfs_dev_replace_item, 3210 cont_reading_from_srcdev_mode, 64); 3211 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 3212 struct btrfs_dev_replace_item, replace_state, 64); 3213 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 3214 struct btrfs_dev_replace_item, time_started, 64); 3215 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 3216 struct btrfs_dev_replace_item, time_stopped, 64); 3217 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 3218 struct btrfs_dev_replace_item, num_write_errors, 64); 3219 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 3220 struct btrfs_dev_replace_item, 3221 num_uncorrectable_read_errors, 64); 3222 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 3223 struct btrfs_dev_replace_item, cursor_left, 64); 3224 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 3225 struct btrfs_dev_replace_item, cursor_right, 64); 3226 3227 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 3228 { 3229 return sb->s_fs_info; 3230 } 3231 3232 /* helper function to cast into the data area of the leaf. */ 3233 #define btrfs_item_ptr(leaf, slot, type) \ 3234 ((type *)(btrfs_leaf_data(leaf) + \ 3235 btrfs_item_offset_nr(leaf, slot))) 3236 3237 #define btrfs_item_ptr_offset(leaf, slot) \ 3238 ((unsigned long)(btrfs_leaf_data(leaf) + \ 3239 btrfs_item_offset_nr(leaf, slot))) 3240 3241 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) 3242 { 3243 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) && 3244 (space_info->flags & BTRFS_BLOCK_GROUP_DATA)); 3245 } 3246 3247 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 3248 { 3249 return mapping_gfp_mask(mapping) & ~__GFP_FS; 3250 } 3251 3252 /* extent-tree.c */ 3253 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root, 3254 unsigned num_items) 3255 { 3256 return (root->nodesize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3257 2 * num_items; 3258 } 3259 3260 /* 3261 * Doing a truncate won't result in new nodes or leaves, just what we need for 3262 * COW. 3263 */ 3264 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root, 3265 unsigned num_items) 3266 { 3267 return root->nodesize * BTRFS_MAX_LEVEL * num_items; 3268 } 3269 3270 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *root); 3272 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 3273 struct btrfs_root *root); 3274 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3275 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3276 struct btrfs_root *root, unsigned long count); 3277 int btrfs_async_run_delayed_refs(struct btrfs_root *root, 3278 unsigned long count, int wait); 3279 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len); 3280 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 3281 struct btrfs_root *root, u64 bytenr, 3282 u64 offset, int metadata, u64 *refs, u64 *flags); 3283 int btrfs_pin_extent(struct btrfs_root *root, 3284 u64 bytenr, u64 num, int reserved); 3285 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 3286 u64 bytenr, u64 num_bytes); 3287 int btrfs_exclude_logged_extents(struct btrfs_root *root, 3288 struct extent_buffer *eb); 3289 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3290 struct btrfs_root *root, 3291 u64 objectid, u64 offset, u64 bytenr); 3292 struct btrfs_block_group_cache *btrfs_lookup_block_group( 3293 struct btrfs_fs_info *info, 3294 u64 bytenr); 3295 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3296 int get_block_group_index(struct btrfs_block_group_cache *cache); 3297 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 3298 struct btrfs_root *root, u64 parent, 3299 u64 root_objectid, 3300 struct btrfs_disk_key *key, int level, 3301 u64 hint, u64 empty_size); 3302 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3303 struct btrfs_root *root, 3304 struct extent_buffer *buf, 3305 u64 parent, int last_ref); 3306 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 3307 struct btrfs_root *root, 3308 u64 root_objectid, u64 owner, 3309 u64 offset, struct btrfs_key *ins); 3310 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 3311 struct btrfs_root *root, 3312 u64 root_objectid, u64 owner, u64 offset, 3313 struct btrfs_key *ins); 3314 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes, 3315 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 3316 struct btrfs_key *ins, int is_data, int delalloc); 3317 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3318 struct extent_buffer *buf, int full_backref); 3319 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3320 struct extent_buffer *buf, int full_backref); 3321 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3322 struct btrfs_root *root, 3323 u64 bytenr, u64 num_bytes, u64 flags, 3324 int level, int is_data); 3325 int btrfs_free_extent(struct btrfs_trans_handle *trans, 3326 struct btrfs_root *root, 3327 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 3328 u64 owner, u64 offset, int no_quota); 3329 3330 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len, 3331 int delalloc); 3332 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 3333 u64 start, u64 len); 3334 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 3335 struct btrfs_root *root); 3336 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 3337 struct btrfs_root *root); 3338 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 3339 struct btrfs_root *root, 3340 u64 bytenr, u64 num_bytes, u64 parent, 3341 u64 root_objectid, u64 owner, u64 offset, int no_quota); 3342 3343 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3344 struct btrfs_root *root); 3345 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); 3346 int btrfs_free_block_groups(struct btrfs_fs_info *info); 3347 int btrfs_read_block_groups(struct btrfs_root *root); 3348 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr); 3349 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 3350 struct btrfs_root *root, u64 bytes_used, 3351 u64 type, u64 chunk_objectid, u64 chunk_offset, 3352 u64 size); 3353 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 3354 struct btrfs_root *root, u64 group_start); 3355 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info); 3356 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root); 3358 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data); 3359 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 3360 3361 enum btrfs_reserve_flush_enum { 3362 /* If we are in the transaction, we can't flush anything.*/ 3363 BTRFS_RESERVE_NO_FLUSH, 3364 /* 3365 * Flushing delalloc may cause deadlock somewhere, in this 3366 * case, use FLUSH LIMIT 3367 */ 3368 BTRFS_RESERVE_FLUSH_LIMIT, 3369 BTRFS_RESERVE_FLUSH_ALL, 3370 }; 3371 3372 int btrfs_check_data_free_space(struct inode *inode, u64 bytes); 3373 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes); 3374 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3375 struct btrfs_root *root); 3376 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3377 struct inode *inode); 3378 void btrfs_orphan_release_metadata(struct inode *inode); 3379 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 3380 struct btrfs_block_rsv *rsv, 3381 int nitems, 3382 u64 *qgroup_reserved, bool use_global_rsv); 3383 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 3384 struct btrfs_block_rsv *rsv, 3385 u64 qgroup_reserved); 3386 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes); 3387 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes); 3388 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes); 3389 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes); 3390 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type); 3391 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 3392 unsigned short type); 3393 void btrfs_free_block_rsv(struct btrfs_root *root, 3394 struct btrfs_block_rsv *rsv); 3395 int btrfs_block_rsv_add(struct btrfs_root *root, 3396 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 3397 enum btrfs_reserve_flush_enum flush); 3398 int btrfs_block_rsv_check(struct btrfs_root *root, 3399 struct btrfs_block_rsv *block_rsv, int min_factor); 3400 int btrfs_block_rsv_refill(struct btrfs_root *root, 3401 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 3402 enum btrfs_reserve_flush_enum flush); 3403 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3404 struct btrfs_block_rsv *dst_rsv, 3405 u64 num_bytes); 3406 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 3407 struct btrfs_block_rsv *dest, u64 num_bytes, 3408 int min_factor); 3409 void btrfs_block_rsv_release(struct btrfs_root *root, 3410 struct btrfs_block_rsv *block_rsv, 3411 u64 num_bytes); 3412 int btrfs_set_block_group_ro(struct btrfs_root *root, 3413 struct btrfs_block_group_cache *cache); 3414 void btrfs_set_block_group_rw(struct btrfs_root *root, 3415 struct btrfs_block_group_cache *cache); 3416 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 3417 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 3418 int btrfs_error_unpin_extent_range(struct btrfs_root *root, 3419 u64 start, u64 end); 3420 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 3421 u64 num_bytes, u64 *actual_bytes); 3422 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 3423 struct btrfs_root *root, u64 type); 3424 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range); 3425 3426 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 3427 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 3428 struct btrfs_fs_info *fs_info); 3429 int __get_raid_index(u64 flags); 3430 int btrfs_start_nocow_write(struct btrfs_root *root); 3431 void btrfs_end_nocow_write(struct btrfs_root *root); 3432 /* ctree.c */ 3433 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 3434 int level, int *slot); 3435 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2); 3436 int btrfs_previous_item(struct btrfs_root *root, 3437 struct btrfs_path *path, u64 min_objectid, 3438 int type); 3439 int btrfs_previous_extent_item(struct btrfs_root *root, 3440 struct btrfs_path *path, u64 min_objectid); 3441 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3442 struct btrfs_key *new_key); 3443 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 3444 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); 3445 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3446 struct btrfs_key *key, int lowest_level, 3447 u64 min_trans); 3448 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3449 struct btrfs_path *path, 3450 u64 min_trans); 3451 enum btrfs_compare_tree_result { 3452 BTRFS_COMPARE_TREE_NEW, 3453 BTRFS_COMPARE_TREE_DELETED, 3454 BTRFS_COMPARE_TREE_CHANGED, 3455 BTRFS_COMPARE_TREE_SAME, 3456 }; 3457 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root, 3458 struct btrfs_root *right_root, 3459 struct btrfs_path *left_path, 3460 struct btrfs_path *right_path, 3461 struct btrfs_key *key, 3462 enum btrfs_compare_tree_result result, 3463 void *ctx); 3464 int btrfs_compare_trees(struct btrfs_root *left_root, 3465 struct btrfs_root *right_root, 3466 btrfs_changed_cb_t cb, void *ctx); 3467 int btrfs_cow_block(struct btrfs_trans_handle *trans, 3468 struct btrfs_root *root, struct extent_buffer *buf, 3469 struct extent_buffer *parent, int parent_slot, 3470 struct extent_buffer **cow_ret); 3471 int btrfs_copy_root(struct btrfs_trans_handle *trans, 3472 struct btrfs_root *root, 3473 struct extent_buffer *buf, 3474 struct extent_buffer **cow_ret, u64 new_root_objectid); 3475 int btrfs_block_can_be_shared(struct btrfs_root *root, 3476 struct extent_buffer *buf); 3477 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 3478 u32 data_size); 3479 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 3480 u32 new_size, int from_end); 3481 int btrfs_split_item(struct btrfs_trans_handle *trans, 3482 struct btrfs_root *root, 3483 struct btrfs_path *path, 3484 struct btrfs_key *new_key, 3485 unsigned long split_offset); 3486 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3487 struct btrfs_root *root, 3488 struct btrfs_path *path, 3489 struct btrfs_key *new_key); 3490 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 3491 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 3492 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 3493 *root, struct btrfs_key *key, struct btrfs_path *p, int 3494 ins_len, int cow); 3495 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 3496 struct btrfs_path *p, u64 time_seq); 3497 int btrfs_search_slot_for_read(struct btrfs_root *root, 3498 struct btrfs_key *key, struct btrfs_path *p, 3499 int find_higher, int return_any); 3500 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3501 struct btrfs_root *root, struct extent_buffer *parent, 3502 int start_slot, u64 *last_ret, 3503 struct btrfs_key *progress); 3504 void btrfs_release_path(struct btrfs_path *p); 3505 struct btrfs_path *btrfs_alloc_path(void); 3506 void btrfs_free_path(struct btrfs_path *p); 3507 void btrfs_set_path_blocking(struct btrfs_path *p); 3508 void btrfs_clear_path_blocking(struct btrfs_path *p, 3509 struct extent_buffer *held, int held_rw); 3510 void btrfs_unlock_up_safe(struct btrfs_path *p, int level); 3511 3512 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3513 struct btrfs_path *path, int slot, int nr); 3514 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3515 struct btrfs_root *root, 3516 struct btrfs_path *path) 3517 { 3518 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3519 } 3520 3521 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3522 struct btrfs_key *cpu_key, u32 *data_size, 3523 u32 total_data, u32 total_size, int nr); 3524 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3525 *root, struct btrfs_key *key, void *data, u32 data_size); 3526 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3527 struct btrfs_root *root, 3528 struct btrfs_path *path, 3529 struct btrfs_key *cpu_key, u32 *data_size, int nr); 3530 3531 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3532 struct btrfs_root *root, 3533 struct btrfs_path *path, 3534 struct btrfs_key *key, 3535 u32 data_size) 3536 { 3537 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 3538 } 3539 3540 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 3541 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3542 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3543 u64 time_seq); 3544 static inline int btrfs_next_old_item(struct btrfs_root *root, 3545 struct btrfs_path *p, u64 time_seq) 3546 { 3547 ++p->slots[0]; 3548 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3549 return btrfs_next_old_leaf(root, p, time_seq); 3550 return 0; 3551 } 3552 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3553 { 3554 return btrfs_next_old_item(root, p, 0); 3555 } 3556 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); 3557 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, 3558 struct btrfs_block_rsv *block_rsv, 3559 int update_ref, int for_reloc); 3560 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3561 struct btrfs_root *root, 3562 struct extent_buffer *node, 3563 struct extent_buffer *parent); 3564 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3565 { 3566 /* 3567 * Get synced with close_ctree() 3568 */ 3569 smp_mb(); 3570 return fs_info->closing; 3571 } 3572 3573 /* 3574 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3575 * anything except sleeping. This function is used to check the status of 3576 * the fs. 3577 */ 3578 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root) 3579 { 3580 return (root->fs_info->sb->s_flags & MS_RDONLY || 3581 btrfs_fs_closing(root->fs_info)); 3582 } 3583 3584 static inline void free_fs_info(struct btrfs_fs_info *fs_info) 3585 { 3586 kfree(fs_info->balance_ctl); 3587 kfree(fs_info->delayed_root); 3588 kfree(fs_info->extent_root); 3589 kfree(fs_info->tree_root); 3590 kfree(fs_info->chunk_root); 3591 kfree(fs_info->dev_root); 3592 kfree(fs_info->csum_root); 3593 kfree(fs_info->quota_root); 3594 kfree(fs_info->uuid_root); 3595 kfree(fs_info->super_copy); 3596 kfree(fs_info->super_for_commit); 3597 security_free_mnt_opts(&fs_info->security_opts); 3598 kfree(fs_info); 3599 } 3600 3601 /* tree mod log functions from ctree.c */ 3602 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 3603 struct seq_list *elem); 3604 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 3605 struct seq_list *elem); 3606 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); 3607 3608 /* root-item.c */ 3609 int btrfs_find_root_ref(struct btrfs_root *tree_root, 3610 struct btrfs_path *path, 3611 u64 root_id, u64 ref_id); 3612 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 3613 struct btrfs_root *tree_root, 3614 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 3615 const char *name, int name_len); 3616 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 3617 struct btrfs_root *tree_root, 3618 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 3619 const char *name, int name_len); 3620 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3621 struct btrfs_key *key); 3622 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root 3623 *root, struct btrfs_key *key, struct btrfs_root_item 3624 *item); 3625 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3626 struct btrfs_root *root, 3627 struct btrfs_key *key, 3628 struct btrfs_root_item *item); 3629 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 3630 struct btrfs_path *path, struct btrfs_root_item *root_item, 3631 struct btrfs_key *root_key); 3632 int btrfs_find_orphan_roots(struct btrfs_root *tree_root); 3633 void btrfs_set_root_node(struct btrfs_root_item *item, 3634 struct extent_buffer *node); 3635 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3636 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3637 struct btrfs_root *root); 3638 3639 /* uuid-tree.c */ 3640 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, 3641 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3642 u64 subid); 3643 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans, 3644 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3645 u64 subid); 3646 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info, 3647 int (*check_func)(struct btrfs_fs_info *, u8 *, u8, 3648 u64)); 3649 3650 /* dir-item.c */ 3651 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3652 const char *name, int name_len); 3653 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, 3654 struct btrfs_root *root, const char *name, 3655 int name_len, struct inode *dir, 3656 struct btrfs_key *location, u8 type, u64 index); 3657 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3658 struct btrfs_root *root, 3659 struct btrfs_path *path, u64 dir, 3660 const char *name, int name_len, 3661 int mod); 3662 struct btrfs_dir_item * 3663 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3664 struct btrfs_root *root, 3665 struct btrfs_path *path, u64 dir, 3666 u64 objectid, const char *name, int name_len, 3667 int mod); 3668 struct btrfs_dir_item * 3669 btrfs_search_dir_index_item(struct btrfs_root *root, 3670 struct btrfs_path *path, u64 dirid, 3671 const char *name, int name_len); 3672 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3673 struct btrfs_root *root, 3674 struct btrfs_path *path, 3675 struct btrfs_dir_item *di); 3676 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3677 struct btrfs_root *root, 3678 struct btrfs_path *path, u64 objectid, 3679 const char *name, u16 name_len, 3680 const void *data, u16 data_len); 3681 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3682 struct btrfs_root *root, 3683 struct btrfs_path *path, u64 dir, 3684 const char *name, u16 name_len, 3685 int mod); 3686 int verify_dir_item(struct btrfs_root *root, 3687 struct extent_buffer *leaf, 3688 struct btrfs_dir_item *dir_item); 3689 3690 /* orphan.c */ 3691 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3692 struct btrfs_root *root, u64 offset); 3693 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3694 struct btrfs_root *root, u64 offset); 3695 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3696 3697 /* inode-item.c */ 3698 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3699 struct btrfs_root *root, 3700 const char *name, int name_len, 3701 u64 inode_objectid, u64 ref_objectid, u64 index); 3702 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3703 struct btrfs_root *root, 3704 const char *name, int name_len, 3705 u64 inode_objectid, u64 ref_objectid, u64 *index); 3706 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3707 struct btrfs_root *root, 3708 struct btrfs_path *path, u64 objectid); 3709 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3710 *root, struct btrfs_path *path, 3711 struct btrfs_key *location, int mod); 3712 3713 struct btrfs_inode_extref * 3714 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3715 struct btrfs_root *root, 3716 struct btrfs_path *path, 3717 const char *name, int name_len, 3718 u64 inode_objectid, u64 ref_objectid, int ins_len, 3719 int cow); 3720 3721 int btrfs_find_name_in_ext_backref(struct btrfs_path *path, 3722 u64 ref_objectid, const char *name, 3723 int name_len, 3724 struct btrfs_inode_extref **extref_ret); 3725 3726 /* file-item.c */ 3727 struct btrfs_dio_private; 3728 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3729 struct btrfs_root *root, u64 bytenr, u64 len); 3730 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, 3731 struct bio *bio, u32 *dst); 3732 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode, 3733 struct bio *bio, u64 logical_offset); 3734 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3735 struct btrfs_root *root, 3736 u64 objectid, u64 pos, 3737 u64 disk_offset, u64 disk_num_bytes, 3738 u64 num_bytes, u64 offset, u64 ram_bytes, 3739 u8 compression, u8 encryption, u16 other_encoding); 3740 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3741 struct btrfs_root *root, 3742 struct btrfs_path *path, u64 objectid, 3743 u64 bytenr, int mod); 3744 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3745 struct btrfs_root *root, 3746 struct btrfs_ordered_sum *sums); 3747 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, 3748 struct bio *bio, u64 file_start, int contig); 3749 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3750 struct list_head *list, int search_commit); 3751 void btrfs_extent_item_to_extent_map(struct inode *inode, 3752 const struct btrfs_path *path, 3753 struct btrfs_file_extent_item *fi, 3754 const bool new_inline, 3755 struct extent_map *em); 3756 3757 /* inode.c */ 3758 struct btrfs_delalloc_work { 3759 struct inode *inode; 3760 int wait; 3761 int delay_iput; 3762 struct completion completion; 3763 struct list_head list; 3764 struct btrfs_work work; 3765 }; 3766 3767 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 3768 int wait, int delay_iput); 3769 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work); 3770 3771 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 3772 size_t pg_offset, u64 start, u64 len, 3773 int create); 3774 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3775 u64 *orig_start, u64 *orig_block_len, 3776 u64 *ram_bytes); 3777 3778 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ 3779 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) 3780 #define ClearPageChecked ClearPageFsMisc 3781 #define SetPageChecked SetPageFsMisc 3782 #define PageChecked PageFsMisc 3783 #endif 3784 3785 /* This forces readahead on a given range of bytes in an inode */ 3786 static inline void btrfs_force_ra(struct address_space *mapping, 3787 struct file_ra_state *ra, struct file *file, 3788 pgoff_t offset, unsigned long req_size) 3789 { 3790 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 3791 } 3792 3793 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3794 int btrfs_set_inode_index(struct inode *dir, u64 *index); 3795 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3796 struct btrfs_root *root, 3797 struct inode *dir, struct inode *inode, 3798 const char *name, int name_len); 3799 int btrfs_add_link(struct btrfs_trans_handle *trans, 3800 struct inode *parent_inode, struct inode *inode, 3801 const char *name, int name_len, int add_backref, u64 index); 3802 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3803 struct btrfs_root *root, 3804 struct inode *dir, u64 objectid, 3805 const char *name, int name_len); 3806 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3807 int front); 3808 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3809 struct btrfs_root *root, 3810 struct inode *inode, u64 new_size, 3811 u32 min_type); 3812 3813 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput); 3814 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 3815 int nr); 3816 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 3817 struct extent_state **cached_state); 3818 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *new_root, 3820 struct btrfs_root *parent_root, 3821 u64 new_dirid); 3822 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 3823 size_t size, struct bio *bio, 3824 unsigned long bio_flags); 3825 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 3826 int btrfs_readpage(struct file *file, struct page *page); 3827 void btrfs_evict_inode(struct inode *inode); 3828 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3829 struct inode *btrfs_alloc_inode(struct super_block *sb); 3830 void btrfs_destroy_inode(struct inode *inode); 3831 int btrfs_drop_inode(struct inode *inode); 3832 int btrfs_init_cachep(void); 3833 void btrfs_destroy_cachep(void); 3834 long btrfs_ioctl_trans_end(struct file *file); 3835 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3836 struct btrfs_root *root, int *was_new); 3837 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3838 size_t pg_offset, u64 start, u64 end, 3839 int create); 3840 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3841 struct btrfs_root *root, 3842 struct inode *inode); 3843 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3844 struct btrfs_root *root, struct inode *inode); 3845 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); 3846 int btrfs_orphan_cleanup(struct btrfs_root *root); 3847 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3848 struct btrfs_root *root); 3849 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size); 3850 void btrfs_invalidate_inodes(struct btrfs_root *root); 3851 void btrfs_add_delayed_iput(struct inode *inode); 3852 void btrfs_run_delayed_iputs(struct btrfs_root *root); 3853 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3854 u64 start, u64 num_bytes, u64 min_size, 3855 loff_t actual_len, u64 *alloc_hint); 3856 int btrfs_prealloc_file_range_trans(struct inode *inode, 3857 struct btrfs_trans_handle *trans, int mode, 3858 u64 start, u64 num_bytes, u64 min_size, 3859 loff_t actual_len, u64 *alloc_hint); 3860 extern const struct dentry_operations btrfs_dentry_operations; 3861 3862 /* ioctl.c */ 3863 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3864 void btrfs_update_iflags(struct inode *inode); 3865 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir); 3866 int btrfs_is_empty_uuid(u8 *uuid); 3867 int btrfs_defrag_file(struct inode *inode, struct file *file, 3868 struct btrfs_ioctl_defrag_range_args *range, 3869 u64 newer_than, unsigned long max_pages); 3870 void btrfs_get_block_group_info(struct list_head *groups_list, 3871 struct btrfs_ioctl_space_info *space); 3872 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3873 struct btrfs_ioctl_balance_args *bargs); 3874 3875 3876 /* file.c */ 3877 int btrfs_auto_defrag_init(void); 3878 void btrfs_auto_defrag_exit(void); 3879 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3880 struct inode *inode); 3881 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3882 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3883 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3884 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 3885 int skip_pinned); 3886 extern const struct file_operations btrfs_file_operations; 3887 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 3888 struct btrfs_root *root, struct inode *inode, 3889 struct btrfs_path *path, u64 start, u64 end, 3890 u64 *drop_end, int drop_cache, 3891 int replace_extent, 3892 u32 extent_item_size, 3893 int *key_inserted); 3894 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3895 struct btrfs_root *root, struct inode *inode, u64 start, 3896 u64 end, int drop_cache); 3897 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3898 struct inode *inode, u64 start, u64 end); 3899 int btrfs_release_file(struct inode *inode, struct file *file); 3900 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 3901 struct page **pages, size_t num_pages, 3902 loff_t pos, size_t write_bytes, 3903 struct extent_state **cached); 3904 3905 /* tree-defrag.c */ 3906 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3907 struct btrfs_root *root); 3908 3909 /* sysfs.c */ 3910 int btrfs_init_sysfs(void); 3911 void btrfs_exit_sysfs(void); 3912 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info); 3913 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info); 3914 3915 /* xattr.c */ 3916 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); 3917 3918 /* super.c */ 3919 int btrfs_parse_options(struct btrfs_root *root, char *options); 3920 int btrfs_sync_fs(struct super_block *sb, int wait); 3921 3922 #ifdef CONFIG_PRINTK 3923 __printf(2, 3) 3924 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3925 #else 3926 static inline __printf(2, 3) 3927 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3928 { 3929 } 3930 #endif 3931 3932 #define btrfs_emerg(fs_info, fmt, args...) \ 3933 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3934 #define btrfs_alert(fs_info, fmt, args...) \ 3935 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3936 #define btrfs_crit(fs_info, fmt, args...) \ 3937 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3938 #define btrfs_err(fs_info, fmt, args...) \ 3939 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3940 #define btrfs_warn(fs_info, fmt, args...) \ 3941 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3942 #define btrfs_notice(fs_info, fmt, args...) \ 3943 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3944 #define btrfs_info(fs_info, fmt, args...) \ 3945 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3946 3947 #ifdef DEBUG 3948 #define btrfs_debug(fs_info, fmt, args...) \ 3949 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3950 #else 3951 #define btrfs_debug(fs_info, fmt, args...) \ 3952 no_printk(KERN_DEBUG fmt, ##args) 3953 #endif 3954 3955 #ifdef CONFIG_BTRFS_ASSERT 3956 3957 static inline void assfail(char *expr, char *file, int line) 3958 { 3959 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d", 3960 expr, file, line); 3961 BUG(); 3962 } 3963 3964 #define ASSERT(expr) \ 3965 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__)) 3966 #else 3967 #define ASSERT(expr) ((void)0) 3968 #endif 3969 3970 #define btrfs_assert() 3971 __printf(5, 6) 3972 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 3973 unsigned int line, int errno, const char *fmt, ...); 3974 3975 3976 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3977 struct btrfs_root *root, const char *function, 3978 unsigned int line, int errno); 3979 3980 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3981 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3982 3983 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3984 u64 flag) 3985 { 3986 struct btrfs_super_block *disk_super; 3987 u64 features; 3988 3989 disk_super = fs_info->super_copy; 3990 features = btrfs_super_incompat_flags(disk_super); 3991 if (!(features & flag)) { 3992 spin_lock(&fs_info->super_lock); 3993 features = btrfs_super_incompat_flags(disk_super); 3994 if (!(features & flag)) { 3995 features |= flag; 3996 btrfs_set_super_incompat_flags(disk_super, features); 3997 btrfs_info(fs_info, "setting %llu feature flag", 3998 flag); 3999 } 4000 spin_unlock(&fs_info->super_lock); 4001 } 4002 } 4003 4004 #define btrfs_fs_incompat(fs_info, opt) \ 4005 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 4006 4007 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 4008 { 4009 struct btrfs_super_block *disk_super; 4010 disk_super = fs_info->super_copy; 4011 return !!(btrfs_super_incompat_flags(disk_super) & flag); 4012 } 4013 4014 /* 4015 * Call btrfs_abort_transaction as early as possible when an error condition is 4016 * detected, that way the exact line number is reported. 4017 */ 4018 4019 #define btrfs_abort_transaction(trans, root, errno) \ 4020 do { \ 4021 __btrfs_abort_transaction(trans, root, __func__, \ 4022 __LINE__, errno); \ 4023 } while (0) 4024 4025 #define btrfs_std_error(fs_info, errno) \ 4026 do { \ 4027 if ((errno)) \ 4028 __btrfs_std_error((fs_info), __func__, \ 4029 __LINE__, (errno), NULL); \ 4030 } while (0) 4031 4032 #define btrfs_error(fs_info, errno, fmt, args...) \ 4033 do { \ 4034 __btrfs_std_error((fs_info), __func__, __LINE__, \ 4035 (errno), fmt, ##args); \ 4036 } while (0) 4037 4038 __printf(5, 6) 4039 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 4040 unsigned int line, int errno, const char *fmt, ...); 4041 4042 /* 4043 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 4044 * will panic(). Otherwise we BUG() here. 4045 */ 4046 #define btrfs_panic(fs_info, errno, fmt, args...) \ 4047 do { \ 4048 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 4049 BUG(); \ 4050 } while (0) 4051 4052 /* acl.c */ 4053 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 4054 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 4055 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type); 4056 int btrfs_init_acl(struct btrfs_trans_handle *trans, 4057 struct inode *inode, struct inode *dir); 4058 #else 4059 #define btrfs_get_acl NULL 4060 #define btrfs_set_acl NULL 4061 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 4062 struct inode *inode, struct inode *dir) 4063 { 4064 return 0; 4065 } 4066 #endif 4067 4068 /* relocation.c */ 4069 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); 4070 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 4071 struct btrfs_root *root); 4072 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 4073 struct btrfs_root *root); 4074 int btrfs_recover_relocation(struct btrfs_root *root); 4075 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); 4076 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4077 struct btrfs_root *root, struct extent_buffer *buf, 4078 struct extent_buffer *cow); 4079 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4080 struct btrfs_pending_snapshot *pending, 4081 u64 *bytes_to_reserve); 4082 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4083 struct btrfs_pending_snapshot *pending); 4084 4085 /* scrub.c */ 4086 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4087 u64 end, struct btrfs_scrub_progress *progress, 4088 int readonly, int is_dev_replace); 4089 void btrfs_scrub_pause(struct btrfs_root *root); 4090 void btrfs_scrub_continue(struct btrfs_root *root); 4091 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 4092 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info, 4093 struct btrfs_device *dev); 4094 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4095 struct btrfs_scrub_progress *progress); 4096 4097 /* dev-replace.c */ 4098 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 4099 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 4100 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info); 4101 4102 /* reada.c */ 4103 struct reada_control { 4104 struct btrfs_root *root; /* tree to prefetch */ 4105 struct btrfs_key key_start; 4106 struct btrfs_key key_end; /* exclusive */ 4107 atomic_t elems; 4108 struct kref refcnt; 4109 wait_queue_head_t wait; 4110 }; 4111 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 4112 struct btrfs_key *start, struct btrfs_key *end); 4113 int btrfs_reada_wait(void *handle); 4114 void btrfs_reada_detach(void *handle); 4115 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, 4116 u64 start, int err); 4117 4118 static inline int is_fstree(u64 rootid) 4119 { 4120 if (rootid == BTRFS_FS_TREE_OBJECTID || 4121 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID) 4122 return 1; 4123 return 0; 4124 } 4125 4126 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4127 { 4128 return signal_pending(current); 4129 } 4130 4131 /* Sanity test specific functions */ 4132 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4133 void btrfs_test_destroy_inode(struct inode *inode); 4134 #endif 4135 4136 static inline int btrfs_test_is_dummy_root(struct btrfs_root *root) 4137 { 4138 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4139 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) 4140 return 1; 4141 #endif 4142 return 0; 4143 } 4144 4145 #endif 4146