1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 /* 111 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 112 */ 113 static inline u32 count_max_extents(u64 size) 114 { 115 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 116 } 117 118 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 119 { 120 BUG_ON(num_stripes == 0); 121 return sizeof(struct btrfs_chunk) + 122 sizeof(struct btrfs_stripe) * (num_stripes - 1); 123 } 124 125 /* 126 * Runtime (in-memory) states of filesystem 127 */ 128 enum { 129 /* Global indicator of serious filesystem errors */ 130 BTRFS_FS_STATE_ERROR, 131 /* 132 * Filesystem is being remounted, allow to skip some operations, like 133 * defrag 134 */ 135 BTRFS_FS_STATE_REMOUNTING, 136 /* Filesystem in RO mode */ 137 BTRFS_FS_STATE_RO, 138 /* Track if a transaction abort has been reported on this filesystem */ 139 BTRFS_FS_STATE_TRANS_ABORTED, 140 /* 141 * Bio operations should be blocked on this filesystem because a source 142 * or target device is being destroyed as part of a device replace 143 */ 144 BTRFS_FS_STATE_DEV_REPLACING, 145 /* The btrfs_fs_info created for self-tests */ 146 BTRFS_FS_STATE_DUMMY_FS_INFO, 147 148 BTRFS_FS_STATE_NO_CSUMS, 149 150 /* Indicates there was an error cleaning up a log tree. */ 151 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 152 153 BTRFS_FS_STATE_COUNT 154 }; 155 156 #define BTRFS_BACKREF_REV_MAX 256 157 #define BTRFS_BACKREF_REV_SHIFT 56 158 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 159 BTRFS_BACKREF_REV_SHIFT) 160 161 #define BTRFS_OLD_BACKREF_REV 0 162 #define BTRFS_MIXED_BACKREF_REV 1 163 164 /* 165 * every tree block (leaf or node) starts with this header. 166 */ 167 struct btrfs_header { 168 /* these first four must match the super block */ 169 u8 csum[BTRFS_CSUM_SIZE]; 170 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 171 __le64 bytenr; /* which block this node is supposed to live in */ 172 __le64 flags; 173 174 /* allowed to be different from the super from here on down */ 175 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 176 __le64 generation; 177 __le64 owner; 178 __le32 nritems; 179 u8 level; 180 } __attribute__ ((__packed__)); 181 182 /* 183 * this is a very generous portion of the super block, giving us 184 * room to translate 14 chunks with 3 stripes each. 185 */ 186 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 187 188 /* 189 * just in case we somehow lose the roots and are not able to mount, 190 * we store an array of the roots from previous transactions 191 * in the super. 192 */ 193 #define BTRFS_NUM_BACKUP_ROOTS 4 194 struct btrfs_root_backup { 195 __le64 tree_root; 196 __le64 tree_root_gen; 197 198 __le64 chunk_root; 199 __le64 chunk_root_gen; 200 201 __le64 extent_root; 202 __le64 extent_root_gen; 203 204 __le64 fs_root; 205 __le64 fs_root_gen; 206 207 __le64 dev_root; 208 __le64 dev_root_gen; 209 210 __le64 csum_root; 211 __le64 csum_root_gen; 212 213 __le64 total_bytes; 214 __le64 bytes_used; 215 __le64 num_devices; 216 /* future */ 217 __le64 unused_64[4]; 218 219 u8 tree_root_level; 220 u8 chunk_root_level; 221 u8 extent_root_level; 222 u8 fs_root_level; 223 u8 dev_root_level; 224 u8 csum_root_level; 225 /* future and to align */ 226 u8 unused_8[10]; 227 } __attribute__ ((__packed__)); 228 229 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 230 #define BTRFS_SUPER_INFO_SIZE 4096 231 232 /* 233 * the super block basically lists the main trees of the FS 234 * it currently lacks any block count etc etc 235 */ 236 struct btrfs_super_block { 237 /* the first 4 fields must match struct btrfs_header */ 238 u8 csum[BTRFS_CSUM_SIZE]; 239 /* FS specific UUID, visible to user */ 240 u8 fsid[BTRFS_FSID_SIZE]; 241 __le64 bytenr; /* this block number */ 242 __le64 flags; 243 244 /* allowed to be different from the btrfs_header from here own down */ 245 __le64 magic; 246 __le64 generation; 247 __le64 root; 248 __le64 chunk_root; 249 __le64 log_root; 250 251 /* this will help find the new super based on the log root */ 252 __le64 log_root_transid; 253 __le64 total_bytes; 254 __le64 bytes_used; 255 __le64 root_dir_objectid; 256 __le64 num_devices; 257 __le32 sectorsize; 258 __le32 nodesize; 259 __le32 __unused_leafsize; 260 __le32 stripesize; 261 __le32 sys_chunk_array_size; 262 __le64 chunk_root_generation; 263 __le64 compat_flags; 264 __le64 compat_ro_flags; 265 __le64 incompat_flags; 266 __le16 csum_type; 267 u8 root_level; 268 u8 chunk_root_level; 269 u8 log_root_level; 270 struct btrfs_dev_item dev_item; 271 272 char label[BTRFS_LABEL_SIZE]; 273 274 __le64 cache_generation; 275 __le64 uuid_tree_generation; 276 277 /* the UUID written into btree blocks */ 278 u8 metadata_uuid[BTRFS_FSID_SIZE]; 279 280 /* Extent tree v2 */ 281 __le64 block_group_root; 282 __le64 block_group_root_generation; 283 u8 block_group_root_level; 284 285 /* future expansion */ 286 u8 reserved8[7]; 287 __le64 reserved[25]; 288 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 289 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 290 291 /* Padded to 4096 bytes */ 292 u8 padding[565]; 293 } __attribute__ ((__packed__)); 294 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 295 296 /* 297 * Compat flags that we support. If any incompat flags are set other than the 298 * ones specified below then we will fail to mount 299 */ 300 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 301 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 302 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 303 304 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 305 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 306 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 307 BTRFS_FEATURE_COMPAT_RO_VERITY) 308 309 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 310 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 311 312 #ifdef CONFIG_BTRFS_DEBUG 313 /* 314 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 315 */ 316 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 317 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 318 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 319 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 320 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 321 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 322 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 323 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 324 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 325 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 326 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 327 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 328 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 329 BTRFS_FEATURE_INCOMPAT_ZONED | \ 330 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 331 #else 332 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 333 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 334 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 335 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 336 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 337 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 338 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 339 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 340 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 341 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 342 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 343 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 344 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 345 BTRFS_FEATURE_INCOMPAT_ZONED) 346 #endif 347 348 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 349 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 350 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 351 352 /* 353 * A leaf is full of items. offset and size tell us where to find 354 * the item in the leaf (relative to the start of the data area) 355 */ 356 struct btrfs_item { 357 struct btrfs_disk_key key; 358 __le32 offset; 359 __le32 size; 360 } __attribute__ ((__packed__)); 361 362 /* 363 * leaves have an item area and a data area: 364 * [item0, item1....itemN] [free space] [dataN...data1, data0] 365 * 366 * The data is separate from the items to get the keys closer together 367 * during searches. 368 */ 369 struct btrfs_leaf { 370 struct btrfs_header header; 371 struct btrfs_item items[]; 372 } __attribute__ ((__packed__)); 373 374 /* 375 * all non-leaf blocks are nodes, they hold only keys and pointers to 376 * other blocks 377 */ 378 struct btrfs_key_ptr { 379 struct btrfs_disk_key key; 380 __le64 blockptr; 381 __le64 generation; 382 } __attribute__ ((__packed__)); 383 384 struct btrfs_node { 385 struct btrfs_header header; 386 struct btrfs_key_ptr ptrs[]; 387 } __attribute__ ((__packed__)); 388 389 /* Read ahead values for struct btrfs_path.reada */ 390 enum { 391 READA_NONE, 392 READA_BACK, 393 READA_FORWARD, 394 /* 395 * Similar to READA_FORWARD but unlike it: 396 * 397 * 1) It will trigger readahead even for leaves that are not close to 398 * each other on disk; 399 * 2) It also triggers readahead for nodes; 400 * 3) During a search, even when a node or leaf is already in memory, it 401 * will still trigger readahead for other nodes and leaves that follow 402 * it. 403 * 404 * This is meant to be used only when we know we are iterating over the 405 * entire tree or a very large part of it. 406 */ 407 READA_FORWARD_ALWAYS, 408 }; 409 410 /* 411 * btrfs_paths remember the path taken from the root down to the leaf. 412 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 413 * to any other levels that are present. 414 * 415 * The slots array records the index of the item or block pointer 416 * used while walking the tree. 417 */ 418 struct btrfs_path { 419 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 420 int slots[BTRFS_MAX_LEVEL]; 421 /* if there is real range locking, this locks field will change */ 422 u8 locks[BTRFS_MAX_LEVEL]; 423 u8 reada; 424 /* keep some upper locks as we walk down */ 425 u8 lowest_level; 426 427 /* 428 * set by btrfs_split_item, tells search_slot to keep all locks 429 * and to force calls to keep space in the nodes 430 */ 431 unsigned int search_for_split:1; 432 unsigned int keep_locks:1; 433 unsigned int skip_locking:1; 434 unsigned int search_commit_root:1; 435 unsigned int need_commit_sem:1; 436 unsigned int skip_release_on_error:1; 437 /* 438 * Indicate that new item (btrfs_search_slot) is extending already 439 * existing item and ins_len contains only the data size and not item 440 * header (ie. sizeof(struct btrfs_item) is not included). 441 */ 442 unsigned int search_for_extension:1; 443 }; 444 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 445 sizeof(struct btrfs_item)) 446 struct btrfs_dev_replace { 447 u64 replace_state; /* see #define above */ 448 time64_t time_started; /* seconds since 1-Jan-1970 */ 449 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 450 atomic64_t num_write_errors; 451 atomic64_t num_uncorrectable_read_errors; 452 453 u64 cursor_left; 454 u64 committed_cursor_left; 455 u64 cursor_left_last_write_of_item; 456 u64 cursor_right; 457 458 u64 cont_reading_from_srcdev_mode; /* see #define above */ 459 460 int is_valid; 461 int item_needs_writeback; 462 struct btrfs_device *srcdev; 463 struct btrfs_device *tgtdev; 464 465 struct mutex lock_finishing_cancel_unmount; 466 struct rw_semaphore rwsem; 467 468 struct btrfs_scrub_progress scrub_progress; 469 470 struct percpu_counter bio_counter; 471 wait_queue_head_t replace_wait; 472 }; 473 474 /* 475 * free clusters are used to claim free space in relatively large chunks, 476 * allowing us to do less seeky writes. They are used for all metadata 477 * allocations. In ssd_spread mode they are also used for data allocations. 478 */ 479 struct btrfs_free_cluster { 480 spinlock_t lock; 481 spinlock_t refill_lock; 482 struct rb_root root; 483 484 /* largest extent in this cluster */ 485 u64 max_size; 486 487 /* first extent starting offset */ 488 u64 window_start; 489 490 /* We did a full search and couldn't create a cluster */ 491 bool fragmented; 492 493 struct btrfs_block_group *block_group; 494 /* 495 * when a cluster is allocated from a block group, we put the 496 * cluster onto a list in the block group so that it can 497 * be freed before the block group is freed. 498 */ 499 struct list_head block_group_list; 500 }; 501 502 enum btrfs_caching_type { 503 BTRFS_CACHE_NO, 504 BTRFS_CACHE_STARTED, 505 BTRFS_CACHE_FAST, 506 BTRFS_CACHE_FINISHED, 507 BTRFS_CACHE_ERROR, 508 }; 509 510 /* 511 * Tree to record all locked full stripes of a RAID5/6 block group 512 */ 513 struct btrfs_full_stripe_locks_tree { 514 struct rb_root root; 515 struct mutex lock; 516 }; 517 518 /* Discard control. */ 519 /* 520 * Async discard uses multiple lists to differentiate the discard filter 521 * parameters. Index 0 is for completely free block groups where we need to 522 * ensure the entire block group is trimmed without being lossy. Indices 523 * afterwards represent monotonically decreasing discard filter sizes to 524 * prioritize what should be discarded next. 525 */ 526 #define BTRFS_NR_DISCARD_LISTS 3 527 #define BTRFS_DISCARD_INDEX_UNUSED 0 528 #define BTRFS_DISCARD_INDEX_START 1 529 530 struct btrfs_discard_ctl { 531 struct workqueue_struct *discard_workers; 532 struct delayed_work work; 533 spinlock_t lock; 534 struct btrfs_block_group *block_group; 535 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 536 u64 prev_discard; 537 u64 prev_discard_time; 538 atomic_t discardable_extents; 539 atomic64_t discardable_bytes; 540 u64 max_discard_size; 541 u64 delay_ms; 542 u32 iops_limit; 543 u32 kbps_limit; 544 u64 discard_extent_bytes; 545 u64 discard_bitmap_bytes; 546 atomic64_t discard_bytes_saved; 547 }; 548 549 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 550 551 /* fs_info */ 552 struct reloc_control; 553 struct btrfs_device; 554 struct btrfs_fs_devices; 555 struct btrfs_balance_control; 556 struct btrfs_delayed_root; 557 558 /* 559 * Block group or device which contains an active swapfile. Used for preventing 560 * unsafe operations while a swapfile is active. 561 * 562 * These are sorted on (ptr, inode) (note that a block group or device can 563 * contain more than one swapfile). We compare the pointer values because we 564 * don't actually care what the object is, we just need a quick check whether 565 * the object exists in the rbtree. 566 */ 567 struct btrfs_swapfile_pin { 568 struct rb_node node; 569 void *ptr; 570 struct inode *inode; 571 /* 572 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 573 * points to a struct btrfs_device. 574 */ 575 bool is_block_group; 576 /* 577 * Only used when 'is_block_group' is true and it is the number of 578 * extents used by a swapfile for this block group ('ptr' field). 579 */ 580 int bg_extent_count; 581 }; 582 583 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 584 585 enum { 586 BTRFS_FS_CLOSING_START, 587 BTRFS_FS_CLOSING_DONE, 588 BTRFS_FS_LOG_RECOVERING, 589 BTRFS_FS_OPEN, 590 BTRFS_FS_QUOTA_ENABLED, 591 BTRFS_FS_UPDATE_UUID_TREE_GEN, 592 BTRFS_FS_CREATING_FREE_SPACE_TREE, 593 BTRFS_FS_BTREE_ERR, 594 BTRFS_FS_LOG1_ERR, 595 BTRFS_FS_LOG2_ERR, 596 BTRFS_FS_QUOTA_OVERRIDE, 597 /* Used to record internally whether fs has been frozen */ 598 BTRFS_FS_FROZEN, 599 /* 600 * Indicate that balance has been set up from the ioctl and is in the 601 * main phase. The fs_info::balance_ctl is initialized. 602 */ 603 BTRFS_FS_BALANCE_RUNNING, 604 605 /* 606 * Indicate that relocation of a chunk has started, it's set per chunk 607 * and is toggled between chunks. 608 */ 609 BTRFS_FS_RELOC_RUNNING, 610 611 /* Indicate that the cleaner thread is awake and doing something. */ 612 BTRFS_FS_CLEANER_RUNNING, 613 614 /* 615 * The checksumming has an optimized version and is considered fast, 616 * so we don't need to offload checksums to workqueues. 617 */ 618 BTRFS_FS_CSUM_IMPL_FAST, 619 620 /* Indicate that the discard workqueue can service discards. */ 621 BTRFS_FS_DISCARD_RUNNING, 622 623 /* Indicate that we need to cleanup space cache v1 */ 624 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 625 626 /* Indicate that we can't trust the free space tree for caching yet */ 627 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 628 629 /* Indicate whether there are any tree modification log users */ 630 BTRFS_FS_TREE_MOD_LOG_USERS, 631 632 /* Indicate that we want the transaction kthread to commit right now. */ 633 BTRFS_FS_COMMIT_TRANS, 634 635 /* Indicate we have half completed snapshot deletions pending. */ 636 BTRFS_FS_UNFINISHED_DROPS, 637 638 #if BITS_PER_LONG == 32 639 /* Indicate if we have error/warn message printed on 32bit systems */ 640 BTRFS_FS_32BIT_ERROR, 641 BTRFS_FS_32BIT_WARN, 642 #endif 643 }; 644 645 /* 646 * Exclusive operations (device replace, resize, device add/remove, balance) 647 */ 648 enum btrfs_exclusive_operation { 649 BTRFS_EXCLOP_NONE, 650 BTRFS_EXCLOP_BALANCE_PAUSED, 651 BTRFS_EXCLOP_BALANCE, 652 BTRFS_EXCLOP_DEV_ADD, 653 BTRFS_EXCLOP_DEV_REMOVE, 654 BTRFS_EXCLOP_DEV_REPLACE, 655 BTRFS_EXCLOP_RESIZE, 656 BTRFS_EXCLOP_SWAP_ACTIVATE, 657 }; 658 659 struct btrfs_fs_info { 660 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 661 unsigned long flags; 662 struct btrfs_root *tree_root; 663 struct btrfs_root *chunk_root; 664 struct btrfs_root *dev_root; 665 struct btrfs_root *fs_root; 666 struct btrfs_root *quota_root; 667 struct btrfs_root *uuid_root; 668 struct btrfs_root *data_reloc_root; 669 struct btrfs_root *block_group_root; 670 671 /* the log root tree is a directory of all the other log roots */ 672 struct btrfs_root *log_root_tree; 673 674 /* The tree that holds the global roots (csum, extent, etc) */ 675 rwlock_t global_root_lock; 676 struct rb_root global_root_tree; 677 678 spinlock_t fs_roots_radix_lock; 679 struct radix_tree_root fs_roots_radix; 680 681 /* block group cache stuff */ 682 spinlock_t block_group_cache_lock; 683 u64 first_logical_byte; 684 struct rb_root block_group_cache_tree; 685 686 /* keep track of unallocated space */ 687 atomic64_t free_chunk_space; 688 689 /* Track ranges which are used by log trees blocks/logged data extents */ 690 struct extent_io_tree excluded_extents; 691 692 /* logical->physical extent mapping */ 693 struct extent_map_tree mapping_tree; 694 695 /* 696 * block reservation for extent, checksum, root tree and 697 * delayed dir index item 698 */ 699 struct btrfs_block_rsv global_block_rsv; 700 /* block reservation for metadata operations */ 701 struct btrfs_block_rsv trans_block_rsv; 702 /* block reservation for chunk tree */ 703 struct btrfs_block_rsv chunk_block_rsv; 704 /* block reservation for delayed operations */ 705 struct btrfs_block_rsv delayed_block_rsv; 706 /* block reservation for delayed refs */ 707 struct btrfs_block_rsv delayed_refs_rsv; 708 709 struct btrfs_block_rsv empty_block_rsv; 710 711 u64 generation; 712 u64 last_trans_committed; 713 /* 714 * Generation of the last transaction used for block group relocation 715 * since the filesystem was last mounted (or 0 if none happened yet). 716 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 717 */ 718 u64 last_reloc_trans; 719 u64 avg_delayed_ref_runtime; 720 721 /* 722 * this is updated to the current trans every time a full commit 723 * is required instead of the faster short fsync log commits 724 */ 725 u64 last_trans_log_full_commit; 726 unsigned long mount_opt; 727 /* 728 * Track requests for actions that need to be done during transaction 729 * commit (like for some mount options). 730 */ 731 unsigned long pending_changes; 732 unsigned long compress_type:4; 733 unsigned int compress_level; 734 u32 commit_interval; 735 /* 736 * It is a suggestive number, the read side is safe even it gets a 737 * wrong number because we will write out the data into a regular 738 * extent. The write side(mount/remount) is under ->s_umount lock, 739 * so it is also safe. 740 */ 741 u64 max_inline; 742 743 struct btrfs_transaction *running_transaction; 744 wait_queue_head_t transaction_throttle; 745 wait_queue_head_t transaction_wait; 746 wait_queue_head_t transaction_blocked_wait; 747 wait_queue_head_t async_submit_wait; 748 749 /* 750 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 751 * when they are updated. 752 * 753 * Because we do not clear the flags for ever, so we needn't use 754 * the lock on the read side. 755 * 756 * We also needn't use the lock when we mount the fs, because 757 * there is no other task which will update the flag. 758 */ 759 spinlock_t super_lock; 760 struct btrfs_super_block *super_copy; 761 struct btrfs_super_block *super_for_commit; 762 struct super_block *sb; 763 struct inode *btree_inode; 764 struct mutex tree_log_mutex; 765 struct mutex transaction_kthread_mutex; 766 struct mutex cleaner_mutex; 767 struct mutex chunk_mutex; 768 769 /* 770 * this is taken to make sure we don't set block groups ro after 771 * the free space cache has been allocated on them 772 */ 773 struct mutex ro_block_group_mutex; 774 775 /* this is used during read/modify/write to make sure 776 * no two ios are trying to mod the same stripe at the same 777 * time 778 */ 779 struct btrfs_stripe_hash_table *stripe_hash_table; 780 781 /* 782 * this protects the ordered operations list only while we are 783 * processing all of the entries on it. This way we make 784 * sure the commit code doesn't find the list temporarily empty 785 * because another function happens to be doing non-waiting preflush 786 * before jumping into the main commit. 787 */ 788 struct mutex ordered_operations_mutex; 789 790 struct rw_semaphore commit_root_sem; 791 792 struct rw_semaphore cleanup_work_sem; 793 794 struct rw_semaphore subvol_sem; 795 796 spinlock_t trans_lock; 797 /* 798 * the reloc mutex goes with the trans lock, it is taken 799 * during commit to protect us from the relocation code 800 */ 801 struct mutex reloc_mutex; 802 803 struct list_head trans_list; 804 struct list_head dead_roots; 805 struct list_head caching_block_groups; 806 807 spinlock_t delayed_iput_lock; 808 struct list_head delayed_iputs; 809 atomic_t nr_delayed_iputs; 810 wait_queue_head_t delayed_iputs_wait; 811 812 atomic64_t tree_mod_seq; 813 814 /* this protects tree_mod_log and tree_mod_seq_list */ 815 rwlock_t tree_mod_log_lock; 816 struct rb_root tree_mod_log; 817 struct list_head tree_mod_seq_list; 818 819 atomic_t async_delalloc_pages; 820 821 /* 822 * this is used to protect the following list -- ordered_roots. 823 */ 824 spinlock_t ordered_root_lock; 825 826 /* 827 * all fs/file tree roots in which there are data=ordered extents 828 * pending writeback are added into this list. 829 * 830 * these can span multiple transactions and basically include 831 * every dirty data page that isn't from nodatacow 832 */ 833 struct list_head ordered_roots; 834 835 struct mutex delalloc_root_mutex; 836 spinlock_t delalloc_root_lock; 837 /* all fs/file tree roots that have delalloc inodes. */ 838 struct list_head delalloc_roots; 839 840 /* 841 * there is a pool of worker threads for checksumming during writes 842 * and a pool for checksumming after reads. This is because readers 843 * can run with FS locks held, and the writers may be waiting for 844 * those locks. We don't want ordering in the pending list to cause 845 * deadlocks, and so the two are serviced separately. 846 * 847 * A third pool does submit_bio to avoid deadlocking with the other 848 * two 849 */ 850 struct btrfs_workqueue *workers; 851 struct btrfs_workqueue *delalloc_workers; 852 struct btrfs_workqueue *flush_workers; 853 struct btrfs_workqueue *endio_workers; 854 struct btrfs_workqueue *endio_meta_workers; 855 struct btrfs_workqueue *endio_raid56_workers; 856 struct btrfs_workqueue *rmw_workers; 857 struct btrfs_workqueue *endio_meta_write_workers; 858 struct btrfs_workqueue *endio_write_workers; 859 struct btrfs_workqueue *endio_freespace_worker; 860 struct btrfs_workqueue *caching_workers; 861 862 /* 863 * fixup workers take dirty pages that didn't properly go through 864 * the cow mechanism and make them safe to write. It happens 865 * for the sys_munmap function call path 866 */ 867 struct btrfs_workqueue *fixup_workers; 868 struct btrfs_workqueue *delayed_workers; 869 870 struct task_struct *transaction_kthread; 871 struct task_struct *cleaner_kthread; 872 u32 thread_pool_size; 873 874 struct kobject *space_info_kobj; 875 struct kobject *qgroups_kobj; 876 877 /* used to keep from writing metadata until there is a nice batch */ 878 struct percpu_counter dirty_metadata_bytes; 879 struct percpu_counter delalloc_bytes; 880 struct percpu_counter ordered_bytes; 881 s32 dirty_metadata_batch; 882 s32 delalloc_batch; 883 884 struct list_head dirty_cowonly_roots; 885 886 struct btrfs_fs_devices *fs_devices; 887 888 /* 889 * The space_info list is effectively read only after initial 890 * setup. It is populated at mount time and cleaned up after 891 * all block groups are removed. RCU is used to protect it. 892 */ 893 struct list_head space_info; 894 895 struct btrfs_space_info *data_sinfo; 896 897 struct reloc_control *reloc_ctl; 898 899 /* data_alloc_cluster is only used in ssd_spread mode */ 900 struct btrfs_free_cluster data_alloc_cluster; 901 902 /* all metadata allocations go through this cluster */ 903 struct btrfs_free_cluster meta_alloc_cluster; 904 905 /* auto defrag inodes go here */ 906 spinlock_t defrag_inodes_lock; 907 struct rb_root defrag_inodes; 908 atomic_t defrag_running; 909 910 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 911 seqlock_t profiles_lock; 912 /* 913 * these three are in extended format (availability of single 914 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 915 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 916 */ 917 u64 avail_data_alloc_bits; 918 u64 avail_metadata_alloc_bits; 919 u64 avail_system_alloc_bits; 920 921 /* restriper state */ 922 spinlock_t balance_lock; 923 struct mutex balance_mutex; 924 atomic_t balance_pause_req; 925 atomic_t balance_cancel_req; 926 struct btrfs_balance_control *balance_ctl; 927 wait_queue_head_t balance_wait_q; 928 929 /* Cancellation requests for chunk relocation */ 930 atomic_t reloc_cancel_req; 931 932 u32 data_chunk_allocations; 933 u32 metadata_ratio; 934 935 void *bdev_holder; 936 937 /* private scrub information */ 938 struct mutex scrub_lock; 939 atomic_t scrubs_running; 940 atomic_t scrub_pause_req; 941 atomic_t scrubs_paused; 942 atomic_t scrub_cancel_req; 943 wait_queue_head_t scrub_pause_wait; 944 /* 945 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 946 * running. 947 */ 948 refcount_t scrub_workers_refcnt; 949 struct btrfs_workqueue *scrub_workers; 950 struct btrfs_workqueue *scrub_wr_completion_workers; 951 struct btrfs_workqueue *scrub_parity_workers; 952 struct btrfs_subpage_info *subpage_info; 953 954 struct btrfs_discard_ctl discard_ctl; 955 956 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 957 u32 check_integrity_print_mask; 958 #endif 959 /* is qgroup tracking in a consistent state? */ 960 u64 qgroup_flags; 961 962 /* holds configuration and tracking. Protected by qgroup_lock */ 963 struct rb_root qgroup_tree; 964 spinlock_t qgroup_lock; 965 966 /* 967 * used to avoid frequently calling ulist_alloc()/ulist_free() 968 * when doing qgroup accounting, it must be protected by qgroup_lock. 969 */ 970 struct ulist *qgroup_ulist; 971 972 /* 973 * Protect user change for quota operations. If a transaction is needed, 974 * it must be started before locking this lock. 975 */ 976 struct mutex qgroup_ioctl_lock; 977 978 /* list of dirty qgroups to be written at next commit */ 979 struct list_head dirty_qgroups; 980 981 /* used by qgroup for an efficient tree traversal */ 982 u64 qgroup_seq; 983 984 /* qgroup rescan items */ 985 struct mutex qgroup_rescan_lock; /* protects the progress item */ 986 struct btrfs_key qgroup_rescan_progress; 987 struct btrfs_workqueue *qgroup_rescan_workers; 988 struct completion qgroup_rescan_completion; 989 struct btrfs_work qgroup_rescan_work; 990 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 991 992 /* filesystem state */ 993 unsigned long fs_state; 994 995 struct btrfs_delayed_root *delayed_root; 996 997 /* Extent buffer radix tree */ 998 spinlock_t buffer_lock; 999 /* Entries are eb->start / sectorsize */ 1000 struct radix_tree_root buffer_radix; 1001 1002 /* next backup root to be overwritten */ 1003 int backup_root_index; 1004 1005 /* device replace state */ 1006 struct btrfs_dev_replace dev_replace; 1007 1008 struct semaphore uuid_tree_rescan_sem; 1009 1010 /* Used to reclaim the metadata space in the background. */ 1011 struct work_struct async_reclaim_work; 1012 struct work_struct async_data_reclaim_work; 1013 struct work_struct preempt_reclaim_work; 1014 1015 /* Reclaim partially filled block groups in the background */ 1016 struct work_struct reclaim_bgs_work; 1017 struct list_head reclaim_bgs; 1018 int bg_reclaim_threshold; 1019 1020 spinlock_t unused_bgs_lock; 1021 struct list_head unused_bgs; 1022 struct mutex unused_bg_unpin_mutex; 1023 /* Protect block groups that are going to be deleted */ 1024 struct mutex reclaim_bgs_lock; 1025 1026 /* Cached block sizes */ 1027 u32 nodesize; 1028 u32 sectorsize; 1029 /* ilog2 of sectorsize, use to avoid 64bit division */ 1030 u32 sectorsize_bits; 1031 u32 csum_size; 1032 u32 csums_per_leaf; 1033 u32 stripesize; 1034 1035 /* Block groups and devices containing active swapfiles. */ 1036 spinlock_t swapfile_pins_lock; 1037 struct rb_root swapfile_pins; 1038 1039 struct crypto_shash *csum_shash; 1040 1041 /* Type of exclusive operation running, protected by super_lock */ 1042 enum btrfs_exclusive_operation exclusive_operation; 1043 1044 /* 1045 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1046 * if the mode is enabled 1047 */ 1048 union { 1049 u64 zone_size; 1050 u64 zoned; 1051 }; 1052 1053 struct mutex zoned_meta_io_lock; 1054 spinlock_t treelog_bg_lock; 1055 u64 treelog_bg; 1056 1057 /* 1058 * Start of the dedicated data relocation block group, protected by 1059 * relocation_bg_lock. 1060 */ 1061 spinlock_t relocation_bg_lock; 1062 u64 data_reloc_bg; 1063 struct mutex zoned_data_reloc_io_lock; 1064 1065 u64 nr_global_roots; 1066 1067 spinlock_t zone_active_bgs_lock; 1068 struct list_head zone_active_bgs; 1069 1070 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1071 spinlock_t ref_verify_lock; 1072 struct rb_root block_tree; 1073 #endif 1074 1075 #ifdef CONFIG_BTRFS_DEBUG 1076 struct kobject *debug_kobj; 1077 struct kobject *discard_debug_kobj; 1078 struct list_head allocated_roots; 1079 1080 spinlock_t eb_leak_lock; 1081 struct list_head allocated_ebs; 1082 #endif 1083 }; 1084 1085 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1086 { 1087 return sb->s_fs_info; 1088 } 1089 1090 /* 1091 * The state of btrfs root 1092 */ 1093 enum { 1094 /* 1095 * btrfs_record_root_in_trans is a multi-step process, and it can race 1096 * with the balancing code. But the race is very small, and only the 1097 * first time the root is added to each transaction. So IN_TRANS_SETUP 1098 * is used to tell us when more checks are required 1099 */ 1100 BTRFS_ROOT_IN_TRANS_SETUP, 1101 1102 /* 1103 * Set if tree blocks of this root can be shared by other roots. 1104 * Only subvolume trees and their reloc trees have this bit set. 1105 * Conflicts with TRACK_DIRTY bit. 1106 * 1107 * This affects two things: 1108 * 1109 * - How balance works 1110 * For shareable roots, we need to use reloc tree and do path 1111 * replacement for balance, and need various pre/post hooks for 1112 * snapshot creation to handle them. 1113 * 1114 * While for non-shareable trees, we just simply do a tree search 1115 * with COW. 1116 * 1117 * - How dirty roots are tracked 1118 * For shareable roots, btrfs_record_root_in_trans() is needed to 1119 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1120 * don't need to set this manually. 1121 */ 1122 BTRFS_ROOT_SHAREABLE, 1123 BTRFS_ROOT_TRACK_DIRTY, 1124 BTRFS_ROOT_IN_RADIX, 1125 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1126 BTRFS_ROOT_DEFRAG_RUNNING, 1127 BTRFS_ROOT_FORCE_COW, 1128 BTRFS_ROOT_MULTI_LOG_TASKS, 1129 BTRFS_ROOT_DIRTY, 1130 BTRFS_ROOT_DELETING, 1131 1132 /* 1133 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1134 * 1135 * Set for the subvolume tree owning the reloc tree. 1136 */ 1137 BTRFS_ROOT_DEAD_RELOC_TREE, 1138 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1139 BTRFS_ROOT_DEAD_TREE, 1140 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1141 BTRFS_ROOT_HAS_LOG_TREE, 1142 /* Qgroup flushing is in progress */ 1143 BTRFS_ROOT_QGROUP_FLUSHING, 1144 /* We started the orphan cleanup for this root. */ 1145 BTRFS_ROOT_ORPHAN_CLEANUP, 1146 /* This root has a drop operation that was started previously. */ 1147 BTRFS_ROOT_UNFINISHED_DROP, 1148 }; 1149 1150 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1151 { 1152 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1153 } 1154 1155 /* 1156 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1157 * code. For detail check comment in fs/btrfs/qgroup.c. 1158 */ 1159 struct btrfs_qgroup_swapped_blocks { 1160 spinlock_t lock; 1161 /* RM_EMPTY_ROOT() of above blocks[] */ 1162 bool swapped; 1163 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1164 }; 1165 1166 /* 1167 * in ram representation of the tree. extent_root is used for all allocations 1168 * and for the extent tree extent_root root. 1169 */ 1170 struct btrfs_root { 1171 struct rb_node rb_node; 1172 1173 struct extent_buffer *node; 1174 1175 struct extent_buffer *commit_root; 1176 struct btrfs_root *log_root; 1177 struct btrfs_root *reloc_root; 1178 1179 unsigned long state; 1180 struct btrfs_root_item root_item; 1181 struct btrfs_key root_key; 1182 struct btrfs_fs_info *fs_info; 1183 struct extent_io_tree dirty_log_pages; 1184 1185 struct mutex objectid_mutex; 1186 1187 spinlock_t accounting_lock; 1188 struct btrfs_block_rsv *block_rsv; 1189 1190 struct mutex log_mutex; 1191 wait_queue_head_t log_writer_wait; 1192 wait_queue_head_t log_commit_wait[2]; 1193 struct list_head log_ctxs[2]; 1194 /* Used only for log trees of subvolumes, not for the log root tree */ 1195 atomic_t log_writers; 1196 atomic_t log_commit[2]; 1197 /* Used only for log trees of subvolumes, not for the log root tree */ 1198 atomic_t log_batch; 1199 int log_transid; 1200 /* No matter the commit succeeds or not*/ 1201 int log_transid_committed; 1202 /* Just be updated when the commit succeeds. */ 1203 int last_log_commit; 1204 pid_t log_start_pid; 1205 1206 u64 last_trans; 1207 1208 u32 type; 1209 1210 u64 free_objectid; 1211 1212 struct btrfs_key defrag_progress; 1213 struct btrfs_key defrag_max; 1214 1215 /* The dirty list is only used by non-shareable roots */ 1216 struct list_head dirty_list; 1217 1218 struct list_head root_list; 1219 1220 spinlock_t log_extents_lock[2]; 1221 struct list_head logged_list[2]; 1222 1223 spinlock_t inode_lock; 1224 /* red-black tree that keeps track of in-memory inodes */ 1225 struct rb_root inode_tree; 1226 1227 /* 1228 * radix tree that keeps track of delayed nodes of every inode, 1229 * protected by inode_lock 1230 */ 1231 struct radix_tree_root delayed_nodes_tree; 1232 /* 1233 * right now this just gets used so that a root has its own devid 1234 * for stat. It may be used for more later 1235 */ 1236 dev_t anon_dev; 1237 1238 spinlock_t root_item_lock; 1239 refcount_t refs; 1240 1241 struct mutex delalloc_mutex; 1242 spinlock_t delalloc_lock; 1243 /* 1244 * all of the inodes that have delalloc bytes. It is possible for 1245 * this list to be empty even when there is still dirty data=ordered 1246 * extents waiting to finish IO. 1247 */ 1248 struct list_head delalloc_inodes; 1249 struct list_head delalloc_root; 1250 u64 nr_delalloc_inodes; 1251 1252 struct mutex ordered_extent_mutex; 1253 /* 1254 * this is used by the balancing code to wait for all the pending 1255 * ordered extents 1256 */ 1257 spinlock_t ordered_extent_lock; 1258 1259 /* 1260 * all of the data=ordered extents pending writeback 1261 * these can span multiple transactions and basically include 1262 * every dirty data page that isn't from nodatacow 1263 */ 1264 struct list_head ordered_extents; 1265 struct list_head ordered_root; 1266 u64 nr_ordered_extents; 1267 1268 /* 1269 * Not empty if this subvolume root has gone through tree block swap 1270 * (relocation) 1271 * 1272 * Will be used by reloc_control::dirty_subvol_roots. 1273 */ 1274 struct list_head reloc_dirty_list; 1275 1276 /* 1277 * Number of currently running SEND ioctls to prevent 1278 * manipulation with the read-only status via SUBVOL_SETFLAGS 1279 */ 1280 int send_in_progress; 1281 /* 1282 * Number of currently running deduplication operations that have a 1283 * destination inode belonging to this root. Protected by the lock 1284 * root_item_lock. 1285 */ 1286 int dedupe_in_progress; 1287 /* For exclusion of snapshot creation and nocow writes */ 1288 struct btrfs_drew_lock snapshot_lock; 1289 1290 atomic_t snapshot_force_cow; 1291 1292 /* For qgroup metadata reserved space */ 1293 spinlock_t qgroup_meta_rsv_lock; 1294 u64 qgroup_meta_rsv_pertrans; 1295 u64 qgroup_meta_rsv_prealloc; 1296 wait_queue_head_t qgroup_flush_wait; 1297 1298 /* Number of active swapfiles */ 1299 atomic_t nr_swapfiles; 1300 1301 /* Record pairs of swapped blocks for qgroup */ 1302 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1303 1304 /* Used only by log trees, when logging csum items */ 1305 struct extent_io_tree log_csum_range; 1306 1307 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1308 u64 alloc_bytenr; 1309 #endif 1310 1311 #ifdef CONFIG_BTRFS_DEBUG 1312 struct list_head leak_list; 1313 #endif 1314 }; 1315 1316 /* 1317 * Structure that conveys information about an extent that is going to replace 1318 * all the extents in a file range. 1319 */ 1320 struct btrfs_replace_extent_info { 1321 u64 disk_offset; 1322 u64 disk_len; 1323 u64 data_offset; 1324 u64 data_len; 1325 u64 file_offset; 1326 /* Pointer to a file extent item of type regular or prealloc. */ 1327 char *extent_buf; 1328 /* 1329 * Set to true when attempting to replace a file range with a new extent 1330 * described by this structure, set to false when attempting to clone an 1331 * existing extent into a file range. 1332 */ 1333 bool is_new_extent; 1334 /* Meaningful only if is_new_extent is true. */ 1335 int qgroup_reserved; 1336 /* 1337 * Meaningful only if is_new_extent is true. 1338 * Used to track how many extent items we have already inserted in a 1339 * subvolume tree that refer to the extent described by this structure, 1340 * so that we know when to create a new delayed ref or update an existing 1341 * one. 1342 */ 1343 int insertions; 1344 }; 1345 1346 /* Arguments for btrfs_drop_extents() */ 1347 struct btrfs_drop_extents_args { 1348 /* Input parameters */ 1349 1350 /* 1351 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1352 * If 'replace_extent' is true, this must not be NULL. Also the path 1353 * is always released except if 'replace_extent' is true and 1354 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1355 * the path is kept locked. 1356 */ 1357 struct btrfs_path *path; 1358 /* Start offset of the range to drop extents from */ 1359 u64 start; 1360 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1361 u64 end; 1362 /* If true drop all the extent maps in the range */ 1363 bool drop_cache; 1364 /* 1365 * If true it means we want to insert a new extent after dropping all 1366 * the extents in the range. If this is true, the 'extent_item_size' 1367 * parameter must be set as well and the 'extent_inserted' field will 1368 * be set to true by btrfs_drop_extents() if it could insert the new 1369 * extent. 1370 * Note: when this is set to true the path must not be NULL. 1371 */ 1372 bool replace_extent; 1373 /* 1374 * Used if 'replace_extent' is true. Size of the file extent item to 1375 * insert after dropping all existing extents in the range 1376 */ 1377 u32 extent_item_size; 1378 1379 /* Output parameters */ 1380 1381 /* 1382 * Set to the minimum between the input parameter 'end' and the end 1383 * (exclusive, last byte + 1) of the last dropped extent. This is always 1384 * set even if btrfs_drop_extents() returns an error. 1385 */ 1386 u64 drop_end; 1387 /* 1388 * The number of allocated bytes found in the range. This can be smaller 1389 * than the range's length when there are holes in the range. 1390 */ 1391 u64 bytes_found; 1392 /* 1393 * Only set if 'replace_extent' is true. Set to true if we were able 1394 * to insert a replacement extent after dropping all extents in the 1395 * range, otherwise set to false by btrfs_drop_extents(). 1396 * Also, if btrfs_drop_extents() has set this to true it means it 1397 * returned with the path locked, otherwise if it has set this to 1398 * false it has returned with the path released. 1399 */ 1400 bool extent_inserted; 1401 }; 1402 1403 struct btrfs_file_private { 1404 void *filldir_buf; 1405 }; 1406 1407 1408 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1409 { 1410 1411 return info->nodesize - sizeof(struct btrfs_header); 1412 } 1413 1414 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1415 1416 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1417 { 1418 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1419 } 1420 1421 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1422 { 1423 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1424 } 1425 1426 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1427 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1428 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1429 { 1430 return BTRFS_MAX_ITEM_SIZE(info) - 1431 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1432 } 1433 1434 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1435 { 1436 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1437 } 1438 1439 /* 1440 * Flags for mount options. 1441 * 1442 * Note: don't forget to add new options to btrfs_show_options() 1443 */ 1444 enum { 1445 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1446 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1447 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1448 BTRFS_MOUNT_SSD = (1UL << 3), 1449 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1450 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1451 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1452 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1453 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1454 BTRFS_MOUNT_NOSSD = (1UL << 9), 1455 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1456 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1457 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1458 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1459 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1460 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1461 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1462 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1463 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1464 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1465 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1466 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1467 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1468 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1469 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1470 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1471 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1472 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1473 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1474 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1475 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1476 }; 1477 1478 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1479 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1480 1481 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1482 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1483 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1484 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1485 BTRFS_MOUNT_##opt) 1486 1487 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1488 do { \ 1489 if (!btrfs_test_opt(fs_info, opt)) \ 1490 btrfs_info(fs_info, fmt, ##args); \ 1491 btrfs_set_opt(fs_info->mount_opt, opt); \ 1492 } while (0) 1493 1494 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1495 do { \ 1496 if (btrfs_test_opt(fs_info, opt)) \ 1497 btrfs_info(fs_info, fmt, ##args); \ 1498 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1499 } while (0) 1500 1501 /* 1502 * Requests for changes that need to be done during transaction commit. 1503 * 1504 * Internal mount options that are used for special handling of the real 1505 * mount options (eg. cannot be set during remount and have to be set during 1506 * transaction commit) 1507 */ 1508 1509 #define BTRFS_PENDING_COMMIT (0) 1510 1511 #define btrfs_test_pending(info, opt) \ 1512 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1513 #define btrfs_set_pending(info, opt) \ 1514 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1515 #define btrfs_clear_pending(info, opt) \ 1516 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1517 1518 /* 1519 * Helpers for setting pending mount option changes. 1520 * 1521 * Expects corresponding macros 1522 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1523 */ 1524 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1525 do { \ 1526 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1527 btrfs_info((info), fmt, ##args); \ 1528 btrfs_set_pending((info), SET_##opt); \ 1529 btrfs_clear_pending((info), CLEAR_##opt); \ 1530 } \ 1531 } while(0) 1532 1533 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1534 do { \ 1535 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1536 btrfs_info((info), fmt, ##args); \ 1537 btrfs_set_pending((info), CLEAR_##opt); \ 1538 btrfs_clear_pending((info), SET_##opt); \ 1539 } \ 1540 } while(0) 1541 1542 /* 1543 * Inode flags 1544 */ 1545 #define BTRFS_INODE_NODATASUM (1U << 0) 1546 #define BTRFS_INODE_NODATACOW (1U << 1) 1547 #define BTRFS_INODE_READONLY (1U << 2) 1548 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1549 #define BTRFS_INODE_PREALLOC (1U << 4) 1550 #define BTRFS_INODE_SYNC (1U << 5) 1551 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1552 #define BTRFS_INODE_APPEND (1U << 7) 1553 #define BTRFS_INODE_NODUMP (1U << 8) 1554 #define BTRFS_INODE_NOATIME (1U << 9) 1555 #define BTRFS_INODE_DIRSYNC (1U << 10) 1556 #define BTRFS_INODE_COMPRESS (1U << 11) 1557 1558 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1559 1560 #define BTRFS_INODE_FLAG_MASK \ 1561 (BTRFS_INODE_NODATASUM | \ 1562 BTRFS_INODE_NODATACOW | \ 1563 BTRFS_INODE_READONLY | \ 1564 BTRFS_INODE_NOCOMPRESS | \ 1565 BTRFS_INODE_PREALLOC | \ 1566 BTRFS_INODE_SYNC | \ 1567 BTRFS_INODE_IMMUTABLE | \ 1568 BTRFS_INODE_APPEND | \ 1569 BTRFS_INODE_NODUMP | \ 1570 BTRFS_INODE_NOATIME | \ 1571 BTRFS_INODE_DIRSYNC | \ 1572 BTRFS_INODE_COMPRESS | \ 1573 BTRFS_INODE_ROOT_ITEM_INIT) 1574 1575 #define BTRFS_INODE_RO_VERITY (1U << 0) 1576 1577 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1578 1579 struct btrfs_map_token { 1580 struct extent_buffer *eb; 1581 char *kaddr; 1582 unsigned long offset; 1583 }; 1584 1585 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1586 ((bytes) >> (fs_info)->sectorsize_bits) 1587 1588 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1589 struct extent_buffer *eb) 1590 { 1591 token->eb = eb; 1592 token->kaddr = page_address(eb->pages[0]); 1593 token->offset = 0; 1594 } 1595 1596 /* some macros to generate set/get functions for the struct fields. This 1597 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1598 * one for u8: 1599 */ 1600 #define le8_to_cpu(v) (v) 1601 #define cpu_to_le8(v) (v) 1602 #define __le8 u8 1603 1604 static inline u8 get_unaligned_le8(const void *p) 1605 { 1606 return *(u8 *)p; 1607 } 1608 1609 static inline void put_unaligned_le8(u8 val, void *p) 1610 { 1611 *(u8 *)p = val; 1612 } 1613 1614 #define read_eb_member(eb, ptr, type, member, result) (\ 1615 read_extent_buffer(eb, (char *)(result), \ 1616 ((unsigned long)(ptr)) + \ 1617 offsetof(type, member), \ 1618 sizeof(((type *)0)->member))) 1619 1620 #define write_eb_member(eb, ptr, type, member, result) (\ 1621 write_extent_buffer(eb, (char *)(result), \ 1622 ((unsigned long)(ptr)) + \ 1623 offsetof(type, member), \ 1624 sizeof(((type *)0)->member))) 1625 1626 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1627 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1628 const void *ptr, unsigned long off); \ 1629 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1630 const void *ptr, unsigned long off, \ 1631 u##bits val); \ 1632 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1633 const void *ptr, unsigned long off); \ 1634 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1635 unsigned long off, u##bits val); 1636 1637 DECLARE_BTRFS_SETGET_BITS(8) 1638 DECLARE_BTRFS_SETGET_BITS(16) 1639 DECLARE_BTRFS_SETGET_BITS(32) 1640 DECLARE_BTRFS_SETGET_BITS(64) 1641 1642 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1643 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1644 const type *s) \ 1645 { \ 1646 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1647 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1648 } \ 1649 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1650 u##bits val) \ 1651 { \ 1652 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1653 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1654 } \ 1655 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1656 const type *s) \ 1657 { \ 1658 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1659 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1660 } \ 1661 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1662 type *s, u##bits val) \ 1663 { \ 1664 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1665 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1666 } 1667 1668 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1669 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1670 { \ 1671 const type *p = page_address(eb->pages[0]) + \ 1672 offset_in_page(eb->start); \ 1673 return get_unaligned_le##bits(&p->member); \ 1674 } \ 1675 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1676 u##bits val) \ 1677 { \ 1678 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1679 put_unaligned_le##bits(val, &p->member); \ 1680 } 1681 1682 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1683 static inline u##bits btrfs_##name(const type *s) \ 1684 { \ 1685 return get_unaligned_le##bits(&s->member); \ 1686 } \ 1687 static inline void btrfs_set_##name(type *s, u##bits val) \ 1688 { \ 1689 put_unaligned_le##bits(val, &s->member); \ 1690 } 1691 1692 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1693 struct btrfs_dev_item *s) 1694 { 1695 static_assert(sizeof(u64) == 1696 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1697 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1698 total_bytes)); 1699 } 1700 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1701 struct btrfs_dev_item *s, 1702 u64 val) 1703 { 1704 static_assert(sizeof(u64) == 1705 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1706 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1707 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1708 } 1709 1710 1711 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1712 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1713 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1714 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1715 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1716 start_offset, 64); 1717 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1718 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1719 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1720 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1721 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1722 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1723 1724 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1725 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1726 total_bytes, 64); 1727 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1728 bytes_used, 64); 1729 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1730 io_align, 32); 1731 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1732 io_width, 32); 1733 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1734 sector_size, 32); 1735 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1736 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1737 dev_group, 32); 1738 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1739 seek_speed, 8); 1740 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1741 bandwidth, 8); 1742 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1743 generation, 64); 1744 1745 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1746 { 1747 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1748 } 1749 1750 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1751 { 1752 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1753 } 1754 1755 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1756 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1757 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1758 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1759 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1760 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1761 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1762 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1763 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1764 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1765 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1766 1767 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1768 { 1769 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1770 } 1771 1772 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1773 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1774 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1775 stripe_len, 64); 1776 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1777 io_align, 32); 1778 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1779 io_width, 32); 1780 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1781 sector_size, 32); 1782 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1783 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1784 num_stripes, 16); 1785 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1786 sub_stripes, 16); 1787 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1788 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1789 1790 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1791 int nr) 1792 { 1793 unsigned long offset = (unsigned long)c; 1794 offset += offsetof(struct btrfs_chunk, stripe); 1795 offset += nr * sizeof(struct btrfs_stripe); 1796 return (struct btrfs_stripe *)offset; 1797 } 1798 1799 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1800 { 1801 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1802 } 1803 1804 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1805 struct btrfs_chunk *c, int nr) 1806 { 1807 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1808 } 1809 1810 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1811 struct btrfs_chunk *c, int nr) 1812 { 1813 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1814 } 1815 1816 /* struct btrfs_block_group_item */ 1817 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1818 used, 64); 1819 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1820 used, 64); 1821 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1822 struct btrfs_block_group_item, chunk_objectid, 64); 1823 1824 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1825 struct btrfs_block_group_item, chunk_objectid, 64); 1826 BTRFS_SETGET_FUNCS(block_group_flags, 1827 struct btrfs_block_group_item, flags, 64); 1828 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1829 struct btrfs_block_group_item, flags, 64); 1830 1831 /* struct btrfs_free_space_info */ 1832 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1833 extent_count, 32); 1834 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1835 1836 /* struct btrfs_inode_ref */ 1837 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1838 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1839 1840 /* struct btrfs_inode_extref */ 1841 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1842 parent_objectid, 64); 1843 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1844 name_len, 16); 1845 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1846 1847 /* struct btrfs_inode_item */ 1848 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1849 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1850 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1851 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1852 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1853 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1854 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1855 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1856 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1857 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1858 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1859 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1860 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1861 generation, 64); 1862 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1863 sequence, 64); 1864 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1865 transid, 64); 1866 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1867 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1868 nbytes, 64); 1869 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1870 block_group, 64); 1871 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1873 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1876 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1877 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1878 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1879 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1880 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1881 1882 /* struct btrfs_dev_extent */ 1883 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1884 chunk_tree, 64); 1885 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1886 chunk_objectid, 64); 1887 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1888 chunk_offset, 64); 1889 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1890 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1891 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1892 generation, 64); 1893 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1894 1895 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1896 1897 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1898 struct btrfs_tree_block_info *item, 1899 struct btrfs_disk_key *key) 1900 { 1901 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1902 } 1903 1904 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1905 struct btrfs_tree_block_info *item, 1906 struct btrfs_disk_key *key) 1907 { 1908 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1909 } 1910 1911 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1912 root, 64); 1913 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1914 objectid, 64); 1915 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1916 offset, 64); 1917 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1918 count, 32); 1919 1920 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1921 count, 32); 1922 1923 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1924 type, 8); 1925 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1926 offset, 64); 1927 1928 static inline u32 btrfs_extent_inline_ref_size(int type) 1929 { 1930 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1931 type == BTRFS_SHARED_BLOCK_REF_KEY) 1932 return sizeof(struct btrfs_extent_inline_ref); 1933 if (type == BTRFS_SHARED_DATA_REF_KEY) 1934 return sizeof(struct btrfs_shared_data_ref) + 1935 sizeof(struct btrfs_extent_inline_ref); 1936 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1937 return sizeof(struct btrfs_extent_data_ref) + 1938 offsetof(struct btrfs_extent_inline_ref, offset); 1939 return 0; 1940 } 1941 1942 /* struct btrfs_node */ 1943 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1944 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1945 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1946 blockptr, 64); 1947 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1948 generation, 64); 1949 1950 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1951 { 1952 unsigned long ptr; 1953 ptr = offsetof(struct btrfs_node, ptrs) + 1954 sizeof(struct btrfs_key_ptr) * nr; 1955 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1956 } 1957 1958 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1959 int nr, u64 val) 1960 { 1961 unsigned long ptr; 1962 ptr = offsetof(struct btrfs_node, ptrs) + 1963 sizeof(struct btrfs_key_ptr) * nr; 1964 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1965 } 1966 1967 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1968 { 1969 unsigned long ptr; 1970 ptr = offsetof(struct btrfs_node, ptrs) + 1971 sizeof(struct btrfs_key_ptr) * nr; 1972 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1973 } 1974 1975 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1976 int nr, u64 val) 1977 { 1978 unsigned long ptr; 1979 ptr = offsetof(struct btrfs_node, ptrs) + 1980 sizeof(struct btrfs_key_ptr) * nr; 1981 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1982 } 1983 1984 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1985 { 1986 return offsetof(struct btrfs_node, ptrs) + 1987 sizeof(struct btrfs_key_ptr) * nr; 1988 } 1989 1990 void btrfs_node_key(const struct extent_buffer *eb, 1991 struct btrfs_disk_key *disk_key, int nr); 1992 1993 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1994 struct btrfs_disk_key *disk_key, int nr) 1995 { 1996 unsigned long ptr; 1997 ptr = btrfs_node_key_ptr_offset(nr); 1998 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1999 struct btrfs_key_ptr, key, disk_key); 2000 } 2001 2002 /* struct btrfs_item */ 2003 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2004 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2005 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2006 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2007 2008 static inline unsigned long btrfs_item_nr_offset(int nr) 2009 { 2010 return offsetof(struct btrfs_leaf, items) + 2011 sizeof(struct btrfs_item) * nr; 2012 } 2013 2014 static inline struct btrfs_item *btrfs_item_nr(int nr) 2015 { 2016 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2017 } 2018 2019 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2020 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2021 int slot) \ 2022 { \ 2023 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2024 } \ 2025 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2026 int slot, u32 val) \ 2027 { \ 2028 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2029 } \ 2030 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2031 int slot) \ 2032 { \ 2033 struct btrfs_item *item = btrfs_item_nr(slot); \ 2034 return btrfs_token_raw_item_##member(token, item); \ 2035 } \ 2036 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2037 int slot, u32 val) \ 2038 { \ 2039 struct btrfs_item *item = btrfs_item_nr(slot); \ 2040 btrfs_set_token_raw_item_##member(token, item, val); \ 2041 } 2042 2043 BTRFS_ITEM_SETGET_FUNCS(offset) 2044 BTRFS_ITEM_SETGET_FUNCS(size); 2045 2046 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2047 { 2048 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2049 } 2050 2051 static inline void btrfs_item_key(const struct extent_buffer *eb, 2052 struct btrfs_disk_key *disk_key, int nr) 2053 { 2054 struct btrfs_item *item = btrfs_item_nr(nr); 2055 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2056 } 2057 2058 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2059 struct btrfs_disk_key *disk_key, int nr) 2060 { 2061 struct btrfs_item *item = btrfs_item_nr(nr); 2062 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2063 } 2064 2065 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2066 2067 /* 2068 * struct btrfs_root_ref 2069 */ 2070 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2071 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2072 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2073 2074 /* struct btrfs_dir_item */ 2075 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2076 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2077 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2078 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2079 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2080 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2081 data_len, 16); 2082 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2083 name_len, 16); 2084 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2085 transid, 64); 2086 2087 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2088 const struct btrfs_dir_item *item, 2089 struct btrfs_disk_key *key) 2090 { 2091 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2092 } 2093 2094 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2095 struct btrfs_dir_item *item, 2096 const struct btrfs_disk_key *key) 2097 { 2098 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2099 } 2100 2101 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2102 num_entries, 64); 2103 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2104 num_bitmaps, 64); 2105 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2106 generation, 64); 2107 2108 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2109 const struct btrfs_free_space_header *h, 2110 struct btrfs_disk_key *key) 2111 { 2112 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2113 } 2114 2115 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2116 struct btrfs_free_space_header *h, 2117 const struct btrfs_disk_key *key) 2118 { 2119 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2120 } 2121 2122 /* struct btrfs_disk_key */ 2123 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2124 objectid, 64); 2125 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2126 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2127 2128 #ifdef __LITTLE_ENDIAN 2129 2130 /* 2131 * Optimized helpers for little-endian architectures where CPU and on-disk 2132 * structures have the same endianness and we can skip conversions. 2133 */ 2134 2135 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2136 const struct btrfs_disk_key *disk_key) 2137 { 2138 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2139 } 2140 2141 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2142 const struct btrfs_key *cpu_key) 2143 { 2144 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2145 } 2146 2147 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2148 struct btrfs_key *cpu_key, int nr) 2149 { 2150 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2151 2152 btrfs_node_key(eb, disk_key, nr); 2153 } 2154 2155 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2156 struct btrfs_key *cpu_key, int nr) 2157 { 2158 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2159 2160 btrfs_item_key(eb, disk_key, nr); 2161 } 2162 2163 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2164 const struct btrfs_dir_item *item, 2165 struct btrfs_key *cpu_key) 2166 { 2167 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2168 2169 btrfs_dir_item_key(eb, item, disk_key); 2170 } 2171 2172 #else 2173 2174 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2175 const struct btrfs_disk_key *disk) 2176 { 2177 cpu->offset = le64_to_cpu(disk->offset); 2178 cpu->type = disk->type; 2179 cpu->objectid = le64_to_cpu(disk->objectid); 2180 } 2181 2182 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2183 const struct btrfs_key *cpu) 2184 { 2185 disk->offset = cpu_to_le64(cpu->offset); 2186 disk->type = cpu->type; 2187 disk->objectid = cpu_to_le64(cpu->objectid); 2188 } 2189 2190 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2191 struct btrfs_key *key, int nr) 2192 { 2193 struct btrfs_disk_key disk_key; 2194 btrfs_node_key(eb, &disk_key, nr); 2195 btrfs_disk_key_to_cpu(key, &disk_key); 2196 } 2197 2198 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2199 struct btrfs_key *key, int nr) 2200 { 2201 struct btrfs_disk_key disk_key; 2202 btrfs_item_key(eb, &disk_key, nr); 2203 btrfs_disk_key_to_cpu(key, &disk_key); 2204 } 2205 2206 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2207 const struct btrfs_dir_item *item, 2208 struct btrfs_key *key) 2209 { 2210 struct btrfs_disk_key disk_key; 2211 btrfs_dir_item_key(eb, item, &disk_key); 2212 btrfs_disk_key_to_cpu(key, &disk_key); 2213 } 2214 2215 #endif 2216 2217 /* struct btrfs_header */ 2218 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2219 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2220 generation, 64); 2221 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2222 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2223 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2224 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2225 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2226 generation, 64); 2227 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2228 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2229 nritems, 32); 2230 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2231 2232 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2233 { 2234 return (btrfs_header_flags(eb) & flag) == flag; 2235 } 2236 2237 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2238 { 2239 u64 flags = btrfs_header_flags(eb); 2240 btrfs_set_header_flags(eb, flags | flag); 2241 } 2242 2243 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2244 { 2245 u64 flags = btrfs_header_flags(eb); 2246 btrfs_set_header_flags(eb, flags & ~flag); 2247 } 2248 2249 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2250 { 2251 u64 flags = btrfs_header_flags(eb); 2252 return flags >> BTRFS_BACKREF_REV_SHIFT; 2253 } 2254 2255 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2256 int rev) 2257 { 2258 u64 flags = btrfs_header_flags(eb); 2259 flags &= ~BTRFS_BACKREF_REV_MASK; 2260 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2261 btrfs_set_header_flags(eb, flags); 2262 } 2263 2264 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2265 { 2266 return btrfs_header_level(eb) == 0; 2267 } 2268 2269 /* struct btrfs_root_item */ 2270 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2271 generation, 64); 2272 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2273 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2274 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2275 2276 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2277 generation, 64); 2278 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2279 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2280 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2281 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2282 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2283 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2284 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2285 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2286 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2287 last_snapshot, 64); 2288 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2289 generation_v2, 64); 2290 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2291 ctransid, 64); 2292 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2293 otransid, 64); 2294 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2295 stransid, 64); 2296 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2297 rtransid, 64); 2298 2299 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2300 { 2301 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2302 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2303 } 2304 2305 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2306 { 2307 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2308 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2309 } 2310 2311 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2312 { 2313 return root->root_key.objectid; 2314 } 2315 2316 /* struct btrfs_root_backup */ 2317 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2318 tree_root, 64); 2319 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2320 tree_root_gen, 64); 2321 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2322 tree_root_level, 8); 2323 2324 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2325 chunk_root, 64); 2326 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2327 chunk_root_gen, 64); 2328 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2329 chunk_root_level, 8); 2330 2331 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2332 extent_root, 64); 2333 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2334 extent_root_gen, 64); 2335 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2336 extent_root_level, 8); 2337 2338 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2339 fs_root, 64); 2340 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2341 fs_root_gen, 64); 2342 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2343 fs_root_level, 8); 2344 2345 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2346 dev_root, 64); 2347 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2348 dev_root_gen, 64); 2349 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2350 dev_root_level, 8); 2351 2352 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2353 csum_root, 64); 2354 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2355 csum_root_gen, 64); 2356 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2357 csum_root_level, 8); 2358 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2359 total_bytes, 64); 2360 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2361 bytes_used, 64); 2362 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2363 num_devices, 64); 2364 2365 /* 2366 * For extent tree v2 we overload the extent root with the block group root, as 2367 * we will have multiple extent roots. 2368 */ 2369 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2370 extent_root, 64); 2371 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2372 extent_root_gen, 64); 2373 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2374 struct btrfs_root_backup, extent_root_level, 8); 2375 2376 /* struct btrfs_balance_item */ 2377 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2378 2379 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2380 const struct btrfs_balance_item *bi, 2381 struct btrfs_disk_balance_args *ba) 2382 { 2383 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2384 } 2385 2386 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2387 struct btrfs_balance_item *bi, 2388 const struct btrfs_disk_balance_args *ba) 2389 { 2390 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2391 } 2392 2393 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2394 const struct btrfs_balance_item *bi, 2395 struct btrfs_disk_balance_args *ba) 2396 { 2397 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2398 } 2399 2400 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2401 struct btrfs_balance_item *bi, 2402 const struct btrfs_disk_balance_args *ba) 2403 { 2404 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2405 } 2406 2407 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2408 const struct btrfs_balance_item *bi, 2409 struct btrfs_disk_balance_args *ba) 2410 { 2411 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2412 } 2413 2414 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2415 struct btrfs_balance_item *bi, 2416 const struct btrfs_disk_balance_args *ba) 2417 { 2418 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2419 } 2420 2421 static inline void 2422 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2423 const struct btrfs_disk_balance_args *disk) 2424 { 2425 memset(cpu, 0, sizeof(*cpu)); 2426 2427 cpu->profiles = le64_to_cpu(disk->profiles); 2428 cpu->usage = le64_to_cpu(disk->usage); 2429 cpu->devid = le64_to_cpu(disk->devid); 2430 cpu->pstart = le64_to_cpu(disk->pstart); 2431 cpu->pend = le64_to_cpu(disk->pend); 2432 cpu->vstart = le64_to_cpu(disk->vstart); 2433 cpu->vend = le64_to_cpu(disk->vend); 2434 cpu->target = le64_to_cpu(disk->target); 2435 cpu->flags = le64_to_cpu(disk->flags); 2436 cpu->limit = le64_to_cpu(disk->limit); 2437 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2438 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2439 } 2440 2441 static inline void 2442 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2443 const struct btrfs_balance_args *cpu) 2444 { 2445 memset(disk, 0, sizeof(*disk)); 2446 2447 disk->profiles = cpu_to_le64(cpu->profiles); 2448 disk->usage = cpu_to_le64(cpu->usage); 2449 disk->devid = cpu_to_le64(cpu->devid); 2450 disk->pstart = cpu_to_le64(cpu->pstart); 2451 disk->pend = cpu_to_le64(cpu->pend); 2452 disk->vstart = cpu_to_le64(cpu->vstart); 2453 disk->vend = cpu_to_le64(cpu->vend); 2454 disk->target = cpu_to_le64(cpu->target); 2455 disk->flags = cpu_to_le64(cpu->flags); 2456 disk->limit = cpu_to_le64(cpu->limit); 2457 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2458 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2459 } 2460 2461 /* struct btrfs_super_block */ 2462 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2463 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2464 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2465 generation, 64); 2466 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2467 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2468 struct btrfs_super_block, sys_chunk_array_size, 32); 2469 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2470 struct btrfs_super_block, chunk_root_generation, 64); 2471 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2472 root_level, 8); 2473 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2474 chunk_root, 64); 2475 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2476 chunk_root_level, 8); 2477 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2478 log_root, 64); 2479 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2480 log_root_transid, 64); 2481 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2482 log_root_level, 8); 2483 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2484 total_bytes, 64); 2485 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2486 bytes_used, 64); 2487 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2488 sectorsize, 32); 2489 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2490 nodesize, 32); 2491 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2492 stripesize, 32); 2493 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2494 root_dir_objectid, 64); 2495 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2496 num_devices, 64); 2497 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2498 compat_flags, 64); 2499 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2500 compat_ro_flags, 64); 2501 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2502 incompat_flags, 64); 2503 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2504 csum_type, 16); 2505 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2506 cache_generation, 64); 2507 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2508 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2509 uuid_tree_generation, 64); 2510 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2511 block_group_root, 64); 2512 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2513 struct btrfs_super_block, 2514 block_group_root_generation, 64); 2515 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2516 block_group_root_level, 8); 2517 2518 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2519 const char *btrfs_super_csum_name(u16 csum_type); 2520 const char *btrfs_super_csum_driver(u16 csum_type); 2521 size_t __attribute_const__ btrfs_get_num_csums(void); 2522 2523 2524 /* 2525 * The leaf data grows from end-to-front in the node. 2526 * this returns the address of the start of the last item, 2527 * which is the stop of the leaf data stack 2528 */ 2529 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2530 { 2531 u32 nr = btrfs_header_nritems(leaf); 2532 2533 if (nr == 0) 2534 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2535 return btrfs_item_offset(leaf, nr - 1); 2536 } 2537 2538 /* struct btrfs_file_extent_item */ 2539 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2540 type, 8); 2541 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2542 struct btrfs_file_extent_item, disk_bytenr, 64); 2543 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2544 struct btrfs_file_extent_item, offset, 64); 2545 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2546 struct btrfs_file_extent_item, generation, 64); 2547 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2548 struct btrfs_file_extent_item, num_bytes, 64); 2549 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2550 struct btrfs_file_extent_item, ram_bytes, 64); 2551 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2552 struct btrfs_file_extent_item, disk_num_bytes, 64); 2553 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2554 struct btrfs_file_extent_item, compression, 8); 2555 2556 static inline unsigned long 2557 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2558 { 2559 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2560 } 2561 2562 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2563 { 2564 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2565 } 2566 2567 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2568 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2569 disk_bytenr, 64); 2570 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2571 generation, 64); 2572 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2573 disk_num_bytes, 64); 2574 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2575 offset, 64); 2576 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2577 num_bytes, 64); 2578 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2579 ram_bytes, 64); 2580 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2581 compression, 8); 2582 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2583 encryption, 8); 2584 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2585 other_encoding, 16); 2586 2587 /* 2588 * this returns the number of bytes used by the item on disk, minus the 2589 * size of any extent headers. If a file is compressed on disk, this is 2590 * the compressed size 2591 */ 2592 static inline u32 btrfs_file_extent_inline_item_len( 2593 const struct extent_buffer *eb, 2594 int nr) 2595 { 2596 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2597 } 2598 2599 /* btrfs_qgroup_status_item */ 2600 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2601 generation, 64); 2602 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2603 version, 64); 2604 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2605 flags, 64); 2606 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2607 rescan, 64); 2608 2609 /* btrfs_qgroup_info_item */ 2610 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2611 generation, 64); 2612 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2613 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2614 rfer_cmpr, 64); 2615 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2616 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2617 excl_cmpr, 64); 2618 2619 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2620 struct btrfs_qgroup_info_item, generation, 64); 2621 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2622 rfer, 64); 2623 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2624 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2625 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2626 excl, 64); 2627 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2628 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2629 2630 /* btrfs_qgroup_limit_item */ 2631 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2632 flags, 64); 2633 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2634 max_rfer, 64); 2635 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2636 max_excl, 64); 2637 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2638 rsv_rfer, 64); 2639 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2640 rsv_excl, 64); 2641 2642 /* btrfs_dev_replace_item */ 2643 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2644 struct btrfs_dev_replace_item, src_devid, 64); 2645 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2646 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2647 64); 2648 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2649 replace_state, 64); 2650 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2651 time_started, 64); 2652 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2653 time_stopped, 64); 2654 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2655 num_write_errors, 64); 2656 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2657 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2658 64); 2659 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2660 cursor_left, 64); 2661 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2662 cursor_right, 64); 2663 2664 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2665 struct btrfs_dev_replace_item, src_devid, 64); 2666 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2667 struct btrfs_dev_replace_item, 2668 cont_reading_from_srcdev_mode, 64); 2669 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2670 struct btrfs_dev_replace_item, replace_state, 64); 2671 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2672 struct btrfs_dev_replace_item, time_started, 64); 2673 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2674 struct btrfs_dev_replace_item, time_stopped, 64); 2675 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2676 struct btrfs_dev_replace_item, num_write_errors, 64); 2677 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2678 struct btrfs_dev_replace_item, 2679 num_uncorrectable_read_errors, 64); 2680 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2681 struct btrfs_dev_replace_item, cursor_left, 64); 2682 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2683 struct btrfs_dev_replace_item, cursor_right, 64); 2684 2685 /* helper function to cast into the data area of the leaf. */ 2686 #define btrfs_item_ptr(leaf, slot, type) \ 2687 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2688 btrfs_item_offset(leaf, slot))) 2689 2690 #define btrfs_item_ptr_offset(leaf, slot) \ 2691 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2692 btrfs_item_offset(leaf, slot))) 2693 2694 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2695 { 2696 return crc32c(crc, address, length); 2697 } 2698 2699 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2700 { 2701 put_unaligned_le32(~crc, result); 2702 } 2703 2704 static inline u64 btrfs_name_hash(const char *name, int len) 2705 { 2706 return crc32c((u32)~1, name, len); 2707 } 2708 2709 /* 2710 * Figure the key offset of an extended inode ref 2711 */ 2712 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2713 int len) 2714 { 2715 return (u64) crc32c(parent_objectid, name, len); 2716 } 2717 2718 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2719 { 2720 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2721 } 2722 2723 /* extent-tree.c */ 2724 2725 enum btrfs_inline_ref_type { 2726 BTRFS_REF_TYPE_INVALID, 2727 BTRFS_REF_TYPE_BLOCK, 2728 BTRFS_REF_TYPE_DATA, 2729 BTRFS_REF_TYPE_ANY, 2730 }; 2731 2732 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2733 struct btrfs_extent_inline_ref *iref, 2734 enum btrfs_inline_ref_type is_data); 2735 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2736 2737 /* 2738 * Take the number of bytes to be checksummmed and figure out how many leaves 2739 * it would require to store the csums for that many bytes. 2740 */ 2741 static inline u64 btrfs_csum_bytes_to_leaves( 2742 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2743 { 2744 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2745 2746 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2747 } 2748 2749 /* 2750 * Use this if we would be adding new items, as we could split nodes as we cow 2751 * down the tree. 2752 */ 2753 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2754 unsigned num_items) 2755 { 2756 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2757 } 2758 2759 /* 2760 * Doing a truncate or a modification won't result in new nodes or leaves, just 2761 * what we need for COW. 2762 */ 2763 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2764 unsigned num_items) 2765 { 2766 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2767 } 2768 2769 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2770 u64 start, u64 num_bytes); 2771 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2772 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2773 unsigned long count); 2774 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2775 struct btrfs_delayed_ref_root *delayed_refs, 2776 struct btrfs_delayed_ref_head *head); 2777 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2778 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2779 struct btrfs_fs_info *fs_info, u64 bytenr, 2780 u64 offset, int metadata, u64 *refs, u64 *flags); 2781 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2782 int reserved); 2783 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2784 u64 bytenr, u64 num_bytes); 2785 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2786 int btrfs_cross_ref_exist(struct btrfs_root *root, 2787 u64 objectid, u64 offset, u64 bytenr, bool strict); 2788 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2789 struct btrfs_root *root, 2790 u64 parent, u64 root_objectid, 2791 const struct btrfs_disk_key *key, 2792 int level, u64 hint, 2793 u64 empty_size, 2794 enum btrfs_lock_nesting nest); 2795 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2796 u64 root_id, 2797 struct extent_buffer *buf, 2798 u64 parent, int last_ref); 2799 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2800 struct btrfs_root *root, u64 owner, 2801 u64 offset, u64 ram_bytes, 2802 struct btrfs_key *ins); 2803 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2804 u64 root_objectid, u64 owner, u64 offset, 2805 struct btrfs_key *ins); 2806 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2807 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2808 struct btrfs_key *ins, int is_data, int delalloc); 2809 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2810 struct extent_buffer *buf, int full_backref); 2811 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2812 struct extent_buffer *buf, int full_backref); 2813 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2814 struct extent_buffer *eb, u64 flags, 2815 int level, int is_data); 2816 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2817 2818 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2819 u64 start, u64 len, int delalloc); 2820 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2821 u64 len); 2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2823 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2824 struct btrfs_ref *generic_ref); 2825 2826 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2827 2828 /* 2829 * Different levels for to flush space when doing space reservations. 2830 * 2831 * The higher the level, the more methods we try to reclaim space. 2832 */ 2833 enum btrfs_reserve_flush_enum { 2834 /* If we are in the transaction, we can't flush anything.*/ 2835 BTRFS_RESERVE_NO_FLUSH, 2836 2837 /* 2838 * Flush space by: 2839 * - Running delayed inode items 2840 * - Allocating a new chunk 2841 */ 2842 BTRFS_RESERVE_FLUSH_LIMIT, 2843 2844 /* 2845 * Flush space by: 2846 * - Running delayed inode items 2847 * - Running delayed refs 2848 * - Running delalloc and waiting for ordered extents 2849 * - Allocating a new chunk 2850 */ 2851 BTRFS_RESERVE_FLUSH_EVICT, 2852 2853 /* 2854 * Flush space by above mentioned methods and by: 2855 * - Running delayed iputs 2856 * - Committing transaction 2857 * 2858 * Can be interrupted by a fatal signal. 2859 */ 2860 BTRFS_RESERVE_FLUSH_DATA, 2861 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2862 BTRFS_RESERVE_FLUSH_ALL, 2863 2864 /* 2865 * Pretty much the same as FLUSH_ALL, but can also steal space from 2866 * global rsv. 2867 * 2868 * Can be interrupted by a fatal signal. 2869 */ 2870 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2871 }; 2872 2873 enum btrfs_flush_state { 2874 FLUSH_DELAYED_ITEMS_NR = 1, 2875 FLUSH_DELAYED_ITEMS = 2, 2876 FLUSH_DELAYED_REFS_NR = 3, 2877 FLUSH_DELAYED_REFS = 4, 2878 FLUSH_DELALLOC = 5, 2879 FLUSH_DELALLOC_WAIT = 6, 2880 FLUSH_DELALLOC_FULL = 7, 2881 ALLOC_CHUNK = 8, 2882 ALLOC_CHUNK_FORCE = 9, 2883 RUN_DELAYED_IPUTS = 10, 2884 COMMIT_TRANS = 11, 2885 }; 2886 2887 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2888 struct btrfs_block_rsv *rsv, 2889 int nitems, bool use_global_rsv); 2890 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2891 struct btrfs_block_rsv *rsv); 2892 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2893 2894 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2895 u64 disk_num_bytes); 2896 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2897 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2898 u64 start, u64 end); 2899 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2900 u64 num_bytes, u64 *actual_bytes); 2901 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2902 2903 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2904 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2905 struct btrfs_fs_info *fs_info); 2906 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2907 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2908 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2909 2910 /* ctree.c */ 2911 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2912 int *slot); 2913 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2914 int btrfs_previous_item(struct btrfs_root *root, 2915 struct btrfs_path *path, u64 min_objectid, 2916 int type); 2917 int btrfs_previous_extent_item(struct btrfs_root *root, 2918 struct btrfs_path *path, u64 min_objectid); 2919 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2920 struct btrfs_path *path, 2921 const struct btrfs_key *new_key); 2922 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2923 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2924 struct btrfs_key *key, int lowest_level, 2925 u64 min_trans); 2926 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2927 struct btrfs_path *path, 2928 u64 min_trans); 2929 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2930 int slot); 2931 2932 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2933 struct btrfs_root *root, struct extent_buffer *buf, 2934 struct extent_buffer *parent, int parent_slot, 2935 struct extent_buffer **cow_ret, 2936 enum btrfs_lock_nesting nest); 2937 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2938 struct btrfs_root *root, 2939 struct extent_buffer *buf, 2940 struct extent_buffer **cow_ret, u64 new_root_objectid); 2941 int btrfs_block_can_be_shared(struct btrfs_root *root, 2942 struct extent_buffer *buf); 2943 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2944 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2945 int btrfs_split_item(struct btrfs_trans_handle *trans, 2946 struct btrfs_root *root, 2947 struct btrfs_path *path, 2948 const struct btrfs_key *new_key, 2949 unsigned long split_offset); 2950 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2951 struct btrfs_root *root, 2952 struct btrfs_path *path, 2953 const struct btrfs_key *new_key); 2954 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2955 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2956 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2957 const struct btrfs_key *key, struct btrfs_path *p, 2958 int ins_len, int cow); 2959 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2960 struct btrfs_path *p, u64 time_seq); 2961 int btrfs_search_slot_for_read(struct btrfs_root *root, 2962 const struct btrfs_key *key, 2963 struct btrfs_path *p, int find_higher, 2964 int return_any); 2965 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2966 struct btrfs_root *root, struct extent_buffer *parent, 2967 int start_slot, u64 *last_ret, 2968 struct btrfs_key *progress); 2969 void btrfs_release_path(struct btrfs_path *p); 2970 struct btrfs_path *btrfs_alloc_path(void); 2971 void btrfs_free_path(struct btrfs_path *p); 2972 2973 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2974 struct btrfs_path *path, int slot, int nr); 2975 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2976 struct btrfs_root *root, 2977 struct btrfs_path *path) 2978 { 2979 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2980 } 2981 2982 /* 2983 * Describes a batch of items to insert in a btree. This is used by 2984 * btrfs_insert_empty_items(). 2985 */ 2986 struct btrfs_item_batch { 2987 /* 2988 * Pointer to an array containing the keys of the items to insert (in 2989 * sorted order). 2990 */ 2991 const struct btrfs_key *keys; 2992 /* Pointer to an array containing the data size for each item to insert. */ 2993 const u32 *data_sizes; 2994 /* 2995 * The sum of data sizes for all items. The caller can compute this while 2996 * setting up the data_sizes array, so it ends up being more efficient 2997 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2998 * doing it, as it would avoid an extra loop over a potentially large 2999 * array, and in the case of setup_item_for_insert(), we would be doing 3000 * it while holding a write lock on a leaf and often on upper level nodes 3001 * too, unnecessarily increasing the size of a critical section. 3002 */ 3003 u32 total_data_size; 3004 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3005 int nr; 3006 }; 3007 3008 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3009 struct btrfs_path *path, 3010 const struct btrfs_key *key, 3011 u32 data_size); 3012 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3013 const struct btrfs_key *key, void *data, u32 data_size); 3014 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3015 struct btrfs_root *root, 3016 struct btrfs_path *path, 3017 const struct btrfs_item_batch *batch); 3018 3019 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3020 struct btrfs_root *root, 3021 struct btrfs_path *path, 3022 const struct btrfs_key *key, 3023 u32 data_size) 3024 { 3025 struct btrfs_item_batch batch; 3026 3027 batch.keys = key; 3028 batch.data_sizes = &data_size; 3029 batch.total_data_size = data_size; 3030 batch.nr = 1; 3031 3032 return btrfs_insert_empty_items(trans, root, path, &batch); 3033 } 3034 3035 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3036 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3037 u64 time_seq); 3038 3039 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3040 struct btrfs_path *path); 3041 3042 static inline int btrfs_next_old_item(struct btrfs_root *root, 3043 struct btrfs_path *p, u64 time_seq) 3044 { 3045 ++p->slots[0]; 3046 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3047 return btrfs_next_old_leaf(root, p, time_seq); 3048 return 0; 3049 } 3050 3051 /* 3052 * Search the tree again to find a leaf with greater keys. 3053 * 3054 * Returns 0 if it found something or 1 if there are no greater leaves. 3055 * Returns < 0 on error. 3056 */ 3057 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3058 { 3059 return btrfs_next_old_leaf(root, path, 0); 3060 } 3061 3062 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3063 { 3064 return btrfs_next_old_item(root, p, 0); 3065 } 3066 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3067 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3068 int for_reloc); 3069 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3070 struct btrfs_root *root, 3071 struct extent_buffer *node, 3072 struct extent_buffer *parent); 3073 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3074 { 3075 /* 3076 * Do it this way so we only ever do one test_bit in the normal case. 3077 */ 3078 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3079 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3080 return 2; 3081 return 1; 3082 } 3083 return 0; 3084 } 3085 3086 /* 3087 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3088 * anything except sleeping. This function is used to check the status of 3089 * the fs. 3090 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3091 * since setting and checking for SB_RDONLY in the superblock's flags is not 3092 * atomic. 3093 */ 3094 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3095 { 3096 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3097 btrfs_fs_closing(fs_info); 3098 } 3099 3100 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3101 { 3102 sb->s_flags |= SB_RDONLY; 3103 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3104 } 3105 3106 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3107 { 3108 sb->s_flags &= ~SB_RDONLY; 3109 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3110 } 3111 3112 /* root-item.c */ 3113 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3114 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3115 int name_len); 3116 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3117 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3118 int name_len); 3119 int btrfs_del_root(struct btrfs_trans_handle *trans, 3120 const struct btrfs_key *key); 3121 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3122 const struct btrfs_key *key, 3123 struct btrfs_root_item *item); 3124 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3125 struct btrfs_root *root, 3126 struct btrfs_key *key, 3127 struct btrfs_root_item *item); 3128 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3129 struct btrfs_path *path, struct btrfs_root_item *root_item, 3130 struct btrfs_key *root_key); 3131 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3132 void btrfs_set_root_node(struct btrfs_root_item *item, 3133 struct extent_buffer *node); 3134 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3135 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root); 3137 3138 /* uuid-tree.c */ 3139 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3140 u64 subid); 3141 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3142 u64 subid); 3143 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3144 3145 /* dir-item.c */ 3146 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3147 const char *name, int name_len); 3148 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3149 int name_len, struct btrfs_inode *dir, 3150 struct btrfs_key *location, u8 type, u64 index); 3151 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3152 struct btrfs_root *root, 3153 struct btrfs_path *path, u64 dir, 3154 const char *name, int name_len, 3155 int mod); 3156 struct btrfs_dir_item * 3157 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3158 struct btrfs_root *root, 3159 struct btrfs_path *path, u64 dir, 3160 u64 index, const char *name, int name_len, 3161 int mod); 3162 struct btrfs_dir_item * 3163 btrfs_search_dir_index_item(struct btrfs_root *root, 3164 struct btrfs_path *path, u64 dirid, 3165 const char *name, int name_len); 3166 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3167 struct btrfs_root *root, 3168 struct btrfs_path *path, 3169 struct btrfs_dir_item *di); 3170 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3171 struct btrfs_root *root, 3172 struct btrfs_path *path, u64 objectid, 3173 const char *name, u16 name_len, 3174 const void *data, u16 data_len); 3175 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3176 struct btrfs_root *root, 3177 struct btrfs_path *path, u64 dir, 3178 const char *name, u16 name_len, 3179 int mod); 3180 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3181 struct btrfs_path *path, 3182 const char *name, 3183 int name_len); 3184 3185 /* orphan.c */ 3186 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3187 struct btrfs_root *root, u64 offset); 3188 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3189 struct btrfs_root *root, u64 offset); 3190 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3191 3192 /* file-item.c */ 3193 struct btrfs_dio_private; 3194 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3195 struct btrfs_root *root, u64 bytenr, u64 len); 3196 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3197 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3198 struct btrfs_root *root, 3199 u64 objectid, u64 pos, 3200 u64 disk_offset, u64 disk_num_bytes, 3201 u64 num_bytes, u64 offset, u64 ram_bytes, 3202 u8 compression, u8 encryption, u16 other_encoding); 3203 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3204 struct btrfs_root *root, 3205 struct btrfs_path *path, u64 objectid, 3206 u64 bytenr, int mod); 3207 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3208 struct btrfs_root *root, 3209 struct btrfs_ordered_sum *sums); 3210 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3211 u64 offset, bool one_ordered); 3212 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3213 struct list_head *list, int search_commit); 3214 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3215 const struct btrfs_path *path, 3216 struct btrfs_file_extent_item *fi, 3217 const bool new_inline, 3218 struct extent_map *em); 3219 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3220 u64 len); 3221 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3222 u64 len); 3223 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3224 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3225 3226 /* inode.c */ 3227 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3228 int mirror_num, unsigned long bio_flags); 3229 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3230 u32 bio_offset, struct page *page, 3231 u64 start, u64 end); 3232 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3233 u64 start, u64 len); 3234 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3235 u64 *orig_start, u64 *orig_block_len, 3236 u64 *ram_bytes, bool strict); 3237 3238 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3239 struct btrfs_inode *inode); 3240 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3241 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3242 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3243 struct btrfs_inode *dir, struct btrfs_inode *inode, 3244 const char *name, int name_len); 3245 int btrfs_add_link(struct btrfs_trans_handle *trans, 3246 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3247 const char *name, int name_len, int add_backref, u64 index); 3248 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3249 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3250 int front); 3251 3252 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3253 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3254 bool in_reclaim_context); 3255 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3256 unsigned int extra_bits, 3257 struct extent_state **cached_state); 3258 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3259 struct btrfs_root *new_root, 3260 struct btrfs_root *parent_root, 3261 struct user_namespace *mnt_userns); 3262 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3263 unsigned *bits); 3264 void btrfs_clear_delalloc_extent(struct inode *inode, 3265 struct extent_state *state, unsigned *bits); 3266 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3267 struct extent_state *other); 3268 void btrfs_split_delalloc_extent(struct inode *inode, 3269 struct extent_state *orig, u64 split); 3270 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3271 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3272 int btrfs_readpage(struct file *file, struct page *page); 3273 void btrfs_evict_inode(struct inode *inode); 3274 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3275 struct inode *btrfs_alloc_inode(struct super_block *sb); 3276 void btrfs_destroy_inode(struct inode *inode); 3277 void btrfs_free_inode(struct inode *inode); 3278 int btrfs_drop_inode(struct inode *inode); 3279 int __init btrfs_init_cachep(void); 3280 void __cold btrfs_destroy_cachep(void); 3281 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3282 struct btrfs_root *root, struct btrfs_path *path); 3283 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3284 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3285 struct page *page, size_t pg_offset, 3286 u64 start, u64 end); 3287 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3288 struct btrfs_root *root, struct btrfs_inode *inode); 3289 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3290 struct btrfs_root *root, struct btrfs_inode *inode); 3291 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3292 struct btrfs_inode *inode); 3293 int btrfs_orphan_cleanup(struct btrfs_root *root); 3294 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3295 void btrfs_add_delayed_iput(struct inode *inode); 3296 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3297 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3298 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3299 u64 start, u64 num_bytes, u64 min_size, 3300 loff_t actual_len, u64 *alloc_hint); 3301 int btrfs_prealloc_file_range_trans(struct inode *inode, 3302 struct btrfs_trans_handle *trans, int mode, 3303 u64 start, u64 num_bytes, u64 min_size, 3304 loff_t actual_len, u64 *alloc_hint); 3305 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3306 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3307 struct writeback_control *wbc); 3308 int btrfs_writepage_cow_fixup(struct page *page); 3309 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3310 struct page *page, u64 start, 3311 u64 end, bool uptodate); 3312 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3313 struct btrfs_ioctl_encoded_io_args *encoded); 3314 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3315 const struct btrfs_ioctl_encoded_io_args *encoded); 3316 3317 extern const struct dentry_operations btrfs_dentry_operations; 3318 extern const struct iomap_ops btrfs_dio_iomap_ops; 3319 extern const struct iomap_dio_ops btrfs_dio_ops; 3320 3321 /* Inode locking type flags, by default the exclusive lock is taken */ 3322 #define BTRFS_ILOCK_SHARED (1U << 0) 3323 #define BTRFS_ILOCK_TRY (1U << 1) 3324 #define BTRFS_ILOCK_MMAP (1U << 2) 3325 3326 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3327 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3328 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3329 const u64 add_bytes, 3330 const u64 del_bytes); 3331 3332 /* ioctl.c */ 3333 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3334 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3335 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3336 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3337 struct dentry *dentry, struct fileattr *fa); 3338 int btrfs_ioctl_get_supported_features(void __user *arg); 3339 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3340 int __pure btrfs_is_empty_uuid(u8 *uuid); 3341 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3342 struct btrfs_ioctl_defrag_range_args *range, 3343 u64 newer_than, unsigned long max_to_defrag); 3344 void btrfs_get_block_group_info(struct list_head *groups_list, 3345 struct btrfs_ioctl_space_info *space); 3346 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3347 struct btrfs_ioctl_balance_args *bargs); 3348 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3349 enum btrfs_exclusive_operation type); 3350 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3351 enum btrfs_exclusive_operation type); 3352 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3353 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3354 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3355 enum btrfs_exclusive_operation op); 3356 3357 3358 /* file.c */ 3359 int __init btrfs_auto_defrag_init(void); 3360 void __cold btrfs_auto_defrag_exit(void); 3361 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3362 struct btrfs_inode *inode, u32 extent_thresh); 3363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3364 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3365 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3366 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3367 int skip_pinned); 3368 extern const struct file_operations btrfs_file_operations; 3369 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3370 struct btrfs_root *root, struct btrfs_inode *inode, 3371 struct btrfs_drop_extents_args *args); 3372 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3373 struct btrfs_path *path, const u64 start, 3374 const u64 end, 3375 struct btrfs_replace_extent_info *extent_info, 3376 struct btrfs_trans_handle **trans_out); 3377 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3378 struct btrfs_inode *inode, u64 start, u64 end); 3379 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3380 const struct btrfs_ioctl_encoded_io_args *encoded); 3381 int btrfs_release_file(struct inode *inode, struct file *file); 3382 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3383 size_t num_pages, loff_t pos, size_t write_bytes, 3384 struct extent_state **cached, bool noreserve); 3385 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3386 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3387 size_t *write_bytes); 3388 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3389 3390 /* tree-defrag.c */ 3391 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3392 struct btrfs_root *root); 3393 3394 /* super.c */ 3395 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3396 unsigned long new_flags); 3397 int btrfs_sync_fs(struct super_block *sb, int wait); 3398 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3399 u64 subvol_objectid); 3400 3401 static inline __printf(2, 3) __cold 3402 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3403 { 3404 } 3405 3406 #ifdef CONFIG_PRINTK 3407 __printf(2, 3) 3408 __cold 3409 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3410 #else 3411 #define btrfs_printk(fs_info, fmt, args...) \ 3412 btrfs_no_printk(fs_info, fmt, ##args) 3413 #endif 3414 3415 #define btrfs_emerg(fs_info, fmt, args...) \ 3416 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3417 #define btrfs_alert(fs_info, fmt, args...) \ 3418 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3419 #define btrfs_crit(fs_info, fmt, args...) \ 3420 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3421 #define btrfs_err(fs_info, fmt, args...) \ 3422 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3423 #define btrfs_warn(fs_info, fmt, args...) \ 3424 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3425 #define btrfs_notice(fs_info, fmt, args...) \ 3426 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3427 #define btrfs_info(fs_info, fmt, args...) \ 3428 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3429 3430 /* 3431 * Wrappers that use printk_in_rcu 3432 */ 3433 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3434 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3435 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3436 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3437 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3438 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3439 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3440 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3441 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3442 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3443 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3444 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3445 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3446 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3447 3448 /* 3449 * Wrappers that use a ratelimited printk_in_rcu 3450 */ 3451 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3452 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3453 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3454 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3455 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3456 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3457 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3458 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3459 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3460 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3461 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3462 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3463 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3464 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3465 3466 /* 3467 * Wrappers that use a ratelimited printk 3468 */ 3469 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3470 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3471 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3472 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3473 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3474 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3475 #define btrfs_err_rl(fs_info, fmt, args...) \ 3476 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3477 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3478 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3479 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3480 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3481 #define btrfs_info_rl(fs_info, fmt, args...) \ 3482 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3483 3484 #if defined(CONFIG_DYNAMIC_DEBUG) 3485 #define btrfs_debug(fs_info, fmt, args...) \ 3486 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3487 fs_info, KERN_DEBUG fmt, ##args) 3488 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3489 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3490 fs_info, KERN_DEBUG fmt, ##args) 3491 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3492 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3493 fs_info, KERN_DEBUG fmt, ##args) 3494 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3495 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3496 fs_info, KERN_DEBUG fmt, ##args) 3497 #elif defined(DEBUG) 3498 #define btrfs_debug(fs_info, fmt, args...) \ 3499 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3500 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3501 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3502 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3503 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3504 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3505 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3506 #else 3507 #define btrfs_debug(fs_info, fmt, args...) \ 3508 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3509 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3510 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3511 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3512 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3513 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3514 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3515 #endif 3516 3517 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3518 do { \ 3519 rcu_read_lock(); \ 3520 btrfs_printk(fs_info, fmt, ##args); \ 3521 rcu_read_unlock(); \ 3522 } while (0) 3523 3524 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3525 do { \ 3526 rcu_read_lock(); \ 3527 btrfs_no_printk(fs_info, fmt, ##args); \ 3528 rcu_read_unlock(); \ 3529 } while (0) 3530 3531 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3532 do { \ 3533 static DEFINE_RATELIMIT_STATE(_rs, \ 3534 DEFAULT_RATELIMIT_INTERVAL, \ 3535 DEFAULT_RATELIMIT_BURST); \ 3536 if (__ratelimit(&_rs)) \ 3537 btrfs_printk(fs_info, fmt, ##args); \ 3538 } while (0) 3539 3540 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3541 do { \ 3542 rcu_read_lock(); \ 3543 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3544 rcu_read_unlock(); \ 3545 } while (0) 3546 3547 #ifdef CONFIG_BTRFS_ASSERT 3548 __cold __noreturn 3549 static inline void assertfail(const char *expr, const char *file, int line) 3550 { 3551 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3552 BUG(); 3553 } 3554 3555 #define ASSERT(expr) \ 3556 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3557 3558 #else 3559 static inline void assertfail(const char *expr, const char* file, int line) { } 3560 #define ASSERT(expr) (void)(expr) 3561 #endif 3562 3563 #if BITS_PER_LONG == 32 3564 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3565 /* 3566 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3567 * addresses of extents. 3568 * 3569 * For 4K page size it's about 10T, for 64K it's 160T. 3570 */ 3571 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3572 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3573 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3574 #endif 3575 3576 /* 3577 * Get the correct offset inside the page of extent buffer. 3578 * 3579 * @eb: target extent buffer 3580 * @start: offset inside the extent buffer 3581 * 3582 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3583 */ 3584 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3585 unsigned long offset) 3586 { 3587 /* 3588 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3589 * to PAGE_SIZE, thus adding it won't cause any difference. 3590 * 3591 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3592 * to the eb, thus we have to take the eb->start into consideration. 3593 */ 3594 return offset_in_page(offset + eb->start); 3595 } 3596 3597 static inline unsigned long get_eb_page_index(unsigned long offset) 3598 { 3599 /* 3600 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3601 * 3602 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3603 * and have ensured that all tree blocks are contained in one page, 3604 * thus we always get index == 0. 3605 */ 3606 return offset >> PAGE_SHIFT; 3607 } 3608 3609 /* 3610 * Use that for functions that are conditionally exported for sanity tests but 3611 * otherwise static 3612 */ 3613 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3614 #define EXPORT_FOR_TESTS static 3615 #else 3616 #define EXPORT_FOR_TESTS 3617 #endif 3618 3619 __cold 3620 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3621 { 3622 btrfs_err(fs_info, 3623 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3624 } 3625 3626 __printf(5, 6) 3627 __cold 3628 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3629 unsigned int line, int errno, const char *fmt, ...); 3630 3631 const char * __attribute_const__ btrfs_decode_error(int errno); 3632 3633 __cold 3634 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3635 const char *function, 3636 unsigned int line, int errno); 3637 3638 /* 3639 * Call btrfs_abort_transaction as early as possible when an error condition is 3640 * detected, that way the exact line number is reported. 3641 */ 3642 #define btrfs_abort_transaction(trans, errno) \ 3643 do { \ 3644 /* Report first abort since mount */ \ 3645 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3646 &((trans)->fs_info->fs_state))) { \ 3647 if ((errno) != -EIO && (errno) != -EROFS) { \ 3648 WARN(1, KERN_DEBUG \ 3649 "BTRFS: Transaction aborted (error %d)\n", \ 3650 (errno)); \ 3651 } else { \ 3652 btrfs_debug((trans)->fs_info, \ 3653 "Transaction aborted (error %d)", \ 3654 (errno)); \ 3655 } \ 3656 } \ 3657 __btrfs_abort_transaction((trans), __func__, \ 3658 __LINE__, (errno)); \ 3659 } while (0) 3660 3661 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3662 do { \ 3663 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3664 (errno), fmt, ##args); \ 3665 } while (0) 3666 3667 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3668 &(fs_info)->fs_state))) 3669 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3670 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3671 &(fs_info)->fs_state))) 3672 3673 __printf(5, 6) 3674 __cold 3675 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3676 unsigned int line, int errno, const char *fmt, ...); 3677 /* 3678 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3679 * will panic(). Otherwise we BUG() here. 3680 */ 3681 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3682 do { \ 3683 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3684 BUG(); \ 3685 } while (0) 3686 3687 3688 /* compatibility and incompatibility defines */ 3689 3690 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3691 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3692 #opt) 3693 3694 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3695 u64 flag, const char* name) 3696 { 3697 struct btrfs_super_block *disk_super; 3698 u64 features; 3699 3700 disk_super = fs_info->super_copy; 3701 features = btrfs_super_incompat_flags(disk_super); 3702 if (!(features & flag)) { 3703 spin_lock(&fs_info->super_lock); 3704 features = btrfs_super_incompat_flags(disk_super); 3705 if (!(features & flag)) { 3706 features |= flag; 3707 btrfs_set_super_incompat_flags(disk_super, features); 3708 btrfs_info(fs_info, 3709 "setting incompat feature flag for %s (0x%llx)", 3710 name, flag); 3711 } 3712 spin_unlock(&fs_info->super_lock); 3713 } 3714 } 3715 3716 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3717 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3718 #opt) 3719 3720 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3721 u64 flag, const char* name) 3722 { 3723 struct btrfs_super_block *disk_super; 3724 u64 features; 3725 3726 disk_super = fs_info->super_copy; 3727 features = btrfs_super_incompat_flags(disk_super); 3728 if (features & flag) { 3729 spin_lock(&fs_info->super_lock); 3730 features = btrfs_super_incompat_flags(disk_super); 3731 if (features & flag) { 3732 features &= ~flag; 3733 btrfs_set_super_incompat_flags(disk_super, features); 3734 btrfs_info(fs_info, 3735 "clearing incompat feature flag for %s (0x%llx)", 3736 name, flag); 3737 } 3738 spin_unlock(&fs_info->super_lock); 3739 } 3740 } 3741 3742 #define btrfs_fs_incompat(fs_info, opt) \ 3743 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3744 3745 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3746 { 3747 struct btrfs_super_block *disk_super; 3748 disk_super = fs_info->super_copy; 3749 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3750 } 3751 3752 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3753 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3754 #opt) 3755 3756 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3757 u64 flag, const char *name) 3758 { 3759 struct btrfs_super_block *disk_super; 3760 u64 features; 3761 3762 disk_super = fs_info->super_copy; 3763 features = btrfs_super_compat_ro_flags(disk_super); 3764 if (!(features & flag)) { 3765 spin_lock(&fs_info->super_lock); 3766 features = btrfs_super_compat_ro_flags(disk_super); 3767 if (!(features & flag)) { 3768 features |= flag; 3769 btrfs_set_super_compat_ro_flags(disk_super, features); 3770 btrfs_info(fs_info, 3771 "setting compat-ro feature flag for %s (0x%llx)", 3772 name, flag); 3773 } 3774 spin_unlock(&fs_info->super_lock); 3775 } 3776 } 3777 3778 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3779 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3780 #opt) 3781 3782 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3783 u64 flag, const char *name) 3784 { 3785 struct btrfs_super_block *disk_super; 3786 u64 features; 3787 3788 disk_super = fs_info->super_copy; 3789 features = btrfs_super_compat_ro_flags(disk_super); 3790 if (features & flag) { 3791 spin_lock(&fs_info->super_lock); 3792 features = btrfs_super_compat_ro_flags(disk_super); 3793 if (features & flag) { 3794 features &= ~flag; 3795 btrfs_set_super_compat_ro_flags(disk_super, features); 3796 btrfs_info(fs_info, 3797 "clearing compat-ro feature flag for %s (0x%llx)", 3798 name, flag); 3799 } 3800 spin_unlock(&fs_info->super_lock); 3801 } 3802 } 3803 3804 #define btrfs_fs_compat_ro(fs_info, opt) \ 3805 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3806 3807 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3808 { 3809 struct btrfs_super_block *disk_super; 3810 disk_super = fs_info->super_copy; 3811 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3812 } 3813 3814 /* acl.c */ 3815 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3816 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3817 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3818 struct posix_acl *acl, int type); 3819 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3820 struct inode *inode, struct inode *dir); 3821 #else 3822 #define btrfs_get_acl NULL 3823 #define btrfs_set_acl NULL 3824 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3825 struct inode *inode, struct inode *dir) 3826 { 3827 return 0; 3828 } 3829 #endif 3830 3831 /* relocation.c */ 3832 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3834 struct btrfs_root *root); 3835 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3836 struct btrfs_root *root); 3837 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3838 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3839 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3840 struct btrfs_root *root, struct extent_buffer *buf, 3841 struct extent_buffer *cow); 3842 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3843 u64 *bytes_to_reserve); 3844 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3845 struct btrfs_pending_snapshot *pending); 3846 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3847 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3848 u64 bytenr); 3849 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3850 3851 /* scrub.c */ 3852 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3853 u64 end, struct btrfs_scrub_progress *progress, 3854 int readonly, int is_dev_replace); 3855 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3856 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3857 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3858 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3859 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3860 struct btrfs_scrub_progress *progress); 3861 static inline void btrfs_init_full_stripe_locks_tree( 3862 struct btrfs_full_stripe_locks_tree *locks_root) 3863 { 3864 locks_root->root = RB_ROOT; 3865 mutex_init(&locks_root->lock); 3866 } 3867 3868 /* dev-replace.c */ 3869 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3870 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3871 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3872 3873 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3874 { 3875 btrfs_bio_counter_sub(fs_info, 1); 3876 } 3877 3878 static inline int is_fstree(u64 rootid) 3879 { 3880 if (rootid == BTRFS_FS_TREE_OBJECTID || 3881 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3882 !btrfs_qgroup_level(rootid))) 3883 return 1; 3884 return 0; 3885 } 3886 3887 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3888 { 3889 return signal_pending(current); 3890 } 3891 3892 /* verity.c */ 3893 #ifdef CONFIG_FS_VERITY 3894 3895 extern const struct fsverity_operations btrfs_verityops; 3896 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3897 3898 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3899 encryption, 8); 3900 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3901 size, 64); 3902 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3903 struct btrfs_verity_descriptor_item, encryption, 8); 3904 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3905 struct btrfs_verity_descriptor_item, size, 64); 3906 3907 #else 3908 3909 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3910 { 3911 return 0; 3912 } 3913 3914 #endif 3915 3916 /* Sanity test specific functions */ 3917 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3918 void btrfs_test_destroy_inode(struct inode *inode); 3919 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3920 { 3921 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3922 } 3923 #else 3924 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3925 { 3926 return 0; 3927 } 3928 #endif 3929 3930 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3931 { 3932 return fs_info->zoned != 0; 3933 } 3934 3935 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3936 { 3937 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3938 } 3939 3940 /* 3941 * We use page status Private2 to indicate there is an ordered extent with 3942 * unfinished IO. 3943 * 3944 * Rename the Private2 accessors to Ordered, to improve readability. 3945 */ 3946 #define PageOrdered(page) PagePrivate2(page) 3947 #define SetPageOrdered(page) SetPagePrivate2(page) 3948 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3949 #define folio_test_ordered(folio) folio_test_private_2(folio) 3950 #define folio_set_ordered(folio) folio_set_private_2(folio) 3951 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 3952 3953 #endif 3954