xref: /openbmc/linux/fs/btrfs/ctree.h (revision 47010c04)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 /*
111  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
112  */
113 static inline u32 count_max_extents(u64 size)
114 {
115 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
116 }
117 
118 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
119 {
120 	BUG_ON(num_stripes == 0);
121 	return sizeof(struct btrfs_chunk) +
122 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
123 }
124 
125 /*
126  * Runtime (in-memory) states of filesystem
127  */
128 enum {
129 	/* Global indicator of serious filesystem errors */
130 	BTRFS_FS_STATE_ERROR,
131 	/*
132 	 * Filesystem is being remounted, allow to skip some operations, like
133 	 * defrag
134 	 */
135 	BTRFS_FS_STATE_REMOUNTING,
136 	/* Filesystem in RO mode */
137 	BTRFS_FS_STATE_RO,
138 	/* Track if a transaction abort has been reported on this filesystem */
139 	BTRFS_FS_STATE_TRANS_ABORTED,
140 	/*
141 	 * Bio operations should be blocked on this filesystem because a source
142 	 * or target device is being destroyed as part of a device replace
143 	 */
144 	BTRFS_FS_STATE_DEV_REPLACING,
145 	/* The btrfs_fs_info created for self-tests */
146 	BTRFS_FS_STATE_DUMMY_FS_INFO,
147 
148 	BTRFS_FS_STATE_NO_CSUMS,
149 
150 	/* Indicates there was an error cleaning up a log tree. */
151 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
152 
153 	BTRFS_FS_STATE_COUNT
154 };
155 
156 #define BTRFS_BACKREF_REV_MAX		256
157 #define BTRFS_BACKREF_REV_SHIFT		56
158 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
159 					 BTRFS_BACKREF_REV_SHIFT)
160 
161 #define BTRFS_OLD_BACKREF_REV		0
162 #define BTRFS_MIXED_BACKREF_REV		1
163 
164 /*
165  * every tree block (leaf or node) starts with this header.
166  */
167 struct btrfs_header {
168 	/* these first four must match the super block */
169 	u8 csum[BTRFS_CSUM_SIZE];
170 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
171 	__le64 bytenr; /* which block this node is supposed to live in */
172 	__le64 flags;
173 
174 	/* allowed to be different from the super from here on down */
175 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
176 	__le64 generation;
177 	__le64 owner;
178 	__le32 nritems;
179 	u8 level;
180 } __attribute__ ((__packed__));
181 
182 /*
183  * this is a very generous portion of the super block, giving us
184  * room to translate 14 chunks with 3 stripes each.
185  */
186 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
187 
188 /*
189  * just in case we somehow lose the roots and are not able to mount,
190  * we store an array of the roots from previous transactions
191  * in the super.
192  */
193 #define BTRFS_NUM_BACKUP_ROOTS 4
194 struct btrfs_root_backup {
195 	__le64 tree_root;
196 	__le64 tree_root_gen;
197 
198 	__le64 chunk_root;
199 	__le64 chunk_root_gen;
200 
201 	__le64 extent_root;
202 	__le64 extent_root_gen;
203 
204 	__le64 fs_root;
205 	__le64 fs_root_gen;
206 
207 	__le64 dev_root;
208 	__le64 dev_root_gen;
209 
210 	__le64 csum_root;
211 	__le64 csum_root_gen;
212 
213 	__le64 total_bytes;
214 	__le64 bytes_used;
215 	__le64 num_devices;
216 	/* future */
217 	__le64 unused_64[4];
218 
219 	u8 tree_root_level;
220 	u8 chunk_root_level;
221 	u8 extent_root_level;
222 	u8 fs_root_level;
223 	u8 dev_root_level;
224 	u8 csum_root_level;
225 	/* future and to align */
226 	u8 unused_8[10];
227 } __attribute__ ((__packed__));
228 
229 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
230 #define BTRFS_SUPER_INFO_SIZE			4096
231 
232 /*
233  * the super block basically lists the main trees of the FS
234  * it currently lacks any block count etc etc
235  */
236 struct btrfs_super_block {
237 	/* the first 4 fields must match struct btrfs_header */
238 	u8 csum[BTRFS_CSUM_SIZE];
239 	/* FS specific UUID, visible to user */
240 	u8 fsid[BTRFS_FSID_SIZE];
241 	__le64 bytenr; /* this block number */
242 	__le64 flags;
243 
244 	/* allowed to be different from the btrfs_header from here own down */
245 	__le64 magic;
246 	__le64 generation;
247 	__le64 root;
248 	__le64 chunk_root;
249 	__le64 log_root;
250 
251 	/* this will help find the new super based on the log root */
252 	__le64 log_root_transid;
253 	__le64 total_bytes;
254 	__le64 bytes_used;
255 	__le64 root_dir_objectid;
256 	__le64 num_devices;
257 	__le32 sectorsize;
258 	__le32 nodesize;
259 	__le32 __unused_leafsize;
260 	__le32 stripesize;
261 	__le32 sys_chunk_array_size;
262 	__le64 chunk_root_generation;
263 	__le64 compat_flags;
264 	__le64 compat_ro_flags;
265 	__le64 incompat_flags;
266 	__le16 csum_type;
267 	u8 root_level;
268 	u8 chunk_root_level;
269 	u8 log_root_level;
270 	struct btrfs_dev_item dev_item;
271 
272 	char label[BTRFS_LABEL_SIZE];
273 
274 	__le64 cache_generation;
275 	__le64 uuid_tree_generation;
276 
277 	/* the UUID written into btree blocks */
278 	u8 metadata_uuid[BTRFS_FSID_SIZE];
279 
280 	/* Extent tree v2 */
281 	__le64 block_group_root;
282 	__le64 block_group_root_generation;
283 	u8 block_group_root_level;
284 
285 	/* future expansion */
286 	u8 reserved8[7];
287 	__le64 reserved[25];
288 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
289 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
290 
291 	/* Padded to 4096 bytes */
292 	u8 padding[565];
293 } __attribute__ ((__packed__));
294 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
295 
296 /*
297  * Compat flags that we support.  If any incompat flags are set other than the
298  * ones specified below then we will fail to mount
299  */
300 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
301 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
302 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
303 
304 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
305 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
306 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
307 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
308 
309 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
310 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
311 
312 #ifdef CONFIG_BTRFS_DEBUG
313 /*
314  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
315  */
316 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
317 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
318 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
319 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
320 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
321 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
322 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
323 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
324 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
325 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
326 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
327 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
328 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
329 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
330 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
331 #else
332 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
333 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
334 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
335 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
336 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
337 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
338 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
339 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
340 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
341 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
342 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
343 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
344 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
345 	 BTRFS_FEATURE_INCOMPAT_ZONED)
346 #endif
347 
348 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
349 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
350 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
351 
352 /*
353  * A leaf is full of items. offset and size tell us where to find
354  * the item in the leaf (relative to the start of the data area)
355  */
356 struct btrfs_item {
357 	struct btrfs_disk_key key;
358 	__le32 offset;
359 	__le32 size;
360 } __attribute__ ((__packed__));
361 
362 /*
363  * leaves have an item area and a data area:
364  * [item0, item1....itemN] [free space] [dataN...data1, data0]
365  *
366  * The data is separate from the items to get the keys closer together
367  * during searches.
368  */
369 struct btrfs_leaf {
370 	struct btrfs_header header;
371 	struct btrfs_item items[];
372 } __attribute__ ((__packed__));
373 
374 /*
375  * all non-leaf blocks are nodes, they hold only keys and pointers to
376  * other blocks
377  */
378 struct btrfs_key_ptr {
379 	struct btrfs_disk_key key;
380 	__le64 blockptr;
381 	__le64 generation;
382 } __attribute__ ((__packed__));
383 
384 struct btrfs_node {
385 	struct btrfs_header header;
386 	struct btrfs_key_ptr ptrs[];
387 } __attribute__ ((__packed__));
388 
389 /* Read ahead values for struct btrfs_path.reada */
390 enum {
391 	READA_NONE,
392 	READA_BACK,
393 	READA_FORWARD,
394 	/*
395 	 * Similar to READA_FORWARD but unlike it:
396 	 *
397 	 * 1) It will trigger readahead even for leaves that are not close to
398 	 *    each other on disk;
399 	 * 2) It also triggers readahead for nodes;
400 	 * 3) During a search, even when a node or leaf is already in memory, it
401 	 *    will still trigger readahead for other nodes and leaves that follow
402 	 *    it.
403 	 *
404 	 * This is meant to be used only when we know we are iterating over the
405 	 * entire tree or a very large part of it.
406 	 */
407 	READA_FORWARD_ALWAYS,
408 };
409 
410 /*
411  * btrfs_paths remember the path taken from the root down to the leaf.
412  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
413  * to any other levels that are present.
414  *
415  * The slots array records the index of the item or block pointer
416  * used while walking the tree.
417  */
418 struct btrfs_path {
419 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
420 	int slots[BTRFS_MAX_LEVEL];
421 	/* if there is real range locking, this locks field will change */
422 	u8 locks[BTRFS_MAX_LEVEL];
423 	u8 reada;
424 	/* keep some upper locks as we walk down */
425 	u8 lowest_level;
426 
427 	/*
428 	 * set by btrfs_split_item, tells search_slot to keep all locks
429 	 * and to force calls to keep space in the nodes
430 	 */
431 	unsigned int search_for_split:1;
432 	unsigned int keep_locks:1;
433 	unsigned int skip_locking:1;
434 	unsigned int search_commit_root:1;
435 	unsigned int need_commit_sem:1;
436 	unsigned int skip_release_on_error:1;
437 	/*
438 	 * Indicate that new item (btrfs_search_slot) is extending already
439 	 * existing item and ins_len contains only the data size and not item
440 	 * header (ie. sizeof(struct btrfs_item) is not included).
441 	 */
442 	unsigned int search_for_extension:1;
443 };
444 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
445 					sizeof(struct btrfs_item))
446 struct btrfs_dev_replace {
447 	u64 replace_state;	/* see #define above */
448 	time64_t time_started;	/* seconds since 1-Jan-1970 */
449 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
450 	atomic64_t num_write_errors;
451 	atomic64_t num_uncorrectable_read_errors;
452 
453 	u64 cursor_left;
454 	u64 committed_cursor_left;
455 	u64 cursor_left_last_write_of_item;
456 	u64 cursor_right;
457 
458 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
459 
460 	int is_valid;
461 	int item_needs_writeback;
462 	struct btrfs_device *srcdev;
463 	struct btrfs_device *tgtdev;
464 
465 	struct mutex lock_finishing_cancel_unmount;
466 	struct rw_semaphore rwsem;
467 
468 	struct btrfs_scrub_progress scrub_progress;
469 
470 	struct percpu_counter bio_counter;
471 	wait_queue_head_t replace_wait;
472 };
473 
474 /*
475  * free clusters are used to claim free space in relatively large chunks,
476  * allowing us to do less seeky writes. They are used for all metadata
477  * allocations. In ssd_spread mode they are also used for data allocations.
478  */
479 struct btrfs_free_cluster {
480 	spinlock_t lock;
481 	spinlock_t refill_lock;
482 	struct rb_root root;
483 
484 	/* largest extent in this cluster */
485 	u64 max_size;
486 
487 	/* first extent starting offset */
488 	u64 window_start;
489 
490 	/* We did a full search and couldn't create a cluster */
491 	bool fragmented;
492 
493 	struct btrfs_block_group *block_group;
494 	/*
495 	 * when a cluster is allocated from a block group, we put the
496 	 * cluster onto a list in the block group so that it can
497 	 * be freed before the block group is freed.
498 	 */
499 	struct list_head block_group_list;
500 };
501 
502 enum btrfs_caching_type {
503 	BTRFS_CACHE_NO,
504 	BTRFS_CACHE_STARTED,
505 	BTRFS_CACHE_FAST,
506 	BTRFS_CACHE_FINISHED,
507 	BTRFS_CACHE_ERROR,
508 };
509 
510 /*
511  * Tree to record all locked full stripes of a RAID5/6 block group
512  */
513 struct btrfs_full_stripe_locks_tree {
514 	struct rb_root root;
515 	struct mutex lock;
516 };
517 
518 /* Discard control. */
519 /*
520  * Async discard uses multiple lists to differentiate the discard filter
521  * parameters.  Index 0 is for completely free block groups where we need to
522  * ensure the entire block group is trimmed without being lossy.  Indices
523  * afterwards represent monotonically decreasing discard filter sizes to
524  * prioritize what should be discarded next.
525  */
526 #define BTRFS_NR_DISCARD_LISTS		3
527 #define BTRFS_DISCARD_INDEX_UNUSED	0
528 #define BTRFS_DISCARD_INDEX_START	1
529 
530 struct btrfs_discard_ctl {
531 	struct workqueue_struct *discard_workers;
532 	struct delayed_work work;
533 	spinlock_t lock;
534 	struct btrfs_block_group *block_group;
535 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
536 	u64 prev_discard;
537 	u64 prev_discard_time;
538 	atomic_t discardable_extents;
539 	atomic64_t discardable_bytes;
540 	u64 max_discard_size;
541 	u64 delay_ms;
542 	u32 iops_limit;
543 	u32 kbps_limit;
544 	u64 discard_extent_bytes;
545 	u64 discard_bitmap_bytes;
546 	atomic64_t discard_bytes_saved;
547 };
548 
549 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
550 
551 /* fs_info */
552 struct reloc_control;
553 struct btrfs_device;
554 struct btrfs_fs_devices;
555 struct btrfs_balance_control;
556 struct btrfs_delayed_root;
557 
558 /*
559  * Block group or device which contains an active swapfile. Used for preventing
560  * unsafe operations while a swapfile is active.
561  *
562  * These are sorted on (ptr, inode) (note that a block group or device can
563  * contain more than one swapfile). We compare the pointer values because we
564  * don't actually care what the object is, we just need a quick check whether
565  * the object exists in the rbtree.
566  */
567 struct btrfs_swapfile_pin {
568 	struct rb_node node;
569 	void *ptr;
570 	struct inode *inode;
571 	/*
572 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
573 	 * points to a struct btrfs_device.
574 	 */
575 	bool is_block_group;
576 	/*
577 	 * Only used when 'is_block_group' is true and it is the number of
578 	 * extents used by a swapfile for this block group ('ptr' field).
579 	 */
580 	int bg_extent_count;
581 };
582 
583 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
584 
585 enum {
586 	BTRFS_FS_CLOSING_START,
587 	BTRFS_FS_CLOSING_DONE,
588 	BTRFS_FS_LOG_RECOVERING,
589 	BTRFS_FS_OPEN,
590 	BTRFS_FS_QUOTA_ENABLED,
591 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
592 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
593 	BTRFS_FS_BTREE_ERR,
594 	BTRFS_FS_LOG1_ERR,
595 	BTRFS_FS_LOG2_ERR,
596 	BTRFS_FS_QUOTA_OVERRIDE,
597 	/* Used to record internally whether fs has been frozen */
598 	BTRFS_FS_FROZEN,
599 	/*
600 	 * Indicate that balance has been set up from the ioctl and is in the
601 	 * main phase. The fs_info::balance_ctl is initialized.
602 	 */
603 	BTRFS_FS_BALANCE_RUNNING,
604 
605 	/*
606 	 * Indicate that relocation of a chunk has started, it's set per chunk
607 	 * and is toggled between chunks.
608 	 */
609 	BTRFS_FS_RELOC_RUNNING,
610 
611 	/* Indicate that the cleaner thread is awake and doing something. */
612 	BTRFS_FS_CLEANER_RUNNING,
613 
614 	/*
615 	 * The checksumming has an optimized version and is considered fast,
616 	 * so we don't need to offload checksums to workqueues.
617 	 */
618 	BTRFS_FS_CSUM_IMPL_FAST,
619 
620 	/* Indicate that the discard workqueue can service discards. */
621 	BTRFS_FS_DISCARD_RUNNING,
622 
623 	/* Indicate that we need to cleanup space cache v1 */
624 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
625 
626 	/* Indicate that we can't trust the free space tree for caching yet */
627 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
628 
629 	/* Indicate whether there are any tree modification log users */
630 	BTRFS_FS_TREE_MOD_LOG_USERS,
631 
632 	/* Indicate that we want the transaction kthread to commit right now. */
633 	BTRFS_FS_COMMIT_TRANS,
634 
635 	/* Indicate we have half completed snapshot deletions pending. */
636 	BTRFS_FS_UNFINISHED_DROPS,
637 
638 #if BITS_PER_LONG == 32
639 	/* Indicate if we have error/warn message printed on 32bit systems */
640 	BTRFS_FS_32BIT_ERROR,
641 	BTRFS_FS_32BIT_WARN,
642 #endif
643 };
644 
645 /*
646  * Exclusive operations (device replace, resize, device add/remove, balance)
647  */
648 enum btrfs_exclusive_operation {
649 	BTRFS_EXCLOP_NONE,
650 	BTRFS_EXCLOP_BALANCE_PAUSED,
651 	BTRFS_EXCLOP_BALANCE,
652 	BTRFS_EXCLOP_DEV_ADD,
653 	BTRFS_EXCLOP_DEV_REMOVE,
654 	BTRFS_EXCLOP_DEV_REPLACE,
655 	BTRFS_EXCLOP_RESIZE,
656 	BTRFS_EXCLOP_SWAP_ACTIVATE,
657 };
658 
659 struct btrfs_fs_info {
660 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
661 	unsigned long flags;
662 	struct btrfs_root *tree_root;
663 	struct btrfs_root *chunk_root;
664 	struct btrfs_root *dev_root;
665 	struct btrfs_root *fs_root;
666 	struct btrfs_root *quota_root;
667 	struct btrfs_root *uuid_root;
668 	struct btrfs_root *data_reloc_root;
669 	struct btrfs_root *block_group_root;
670 
671 	/* the log root tree is a directory of all the other log roots */
672 	struct btrfs_root *log_root_tree;
673 
674 	/* The tree that holds the global roots (csum, extent, etc) */
675 	rwlock_t global_root_lock;
676 	struct rb_root global_root_tree;
677 
678 	spinlock_t fs_roots_radix_lock;
679 	struct radix_tree_root fs_roots_radix;
680 
681 	/* block group cache stuff */
682 	spinlock_t block_group_cache_lock;
683 	u64 first_logical_byte;
684 	struct rb_root block_group_cache_tree;
685 
686 	/* keep track of unallocated space */
687 	atomic64_t free_chunk_space;
688 
689 	/* Track ranges which are used by log trees blocks/logged data extents */
690 	struct extent_io_tree excluded_extents;
691 
692 	/* logical->physical extent mapping */
693 	struct extent_map_tree mapping_tree;
694 
695 	/*
696 	 * block reservation for extent, checksum, root tree and
697 	 * delayed dir index item
698 	 */
699 	struct btrfs_block_rsv global_block_rsv;
700 	/* block reservation for metadata operations */
701 	struct btrfs_block_rsv trans_block_rsv;
702 	/* block reservation for chunk tree */
703 	struct btrfs_block_rsv chunk_block_rsv;
704 	/* block reservation for delayed operations */
705 	struct btrfs_block_rsv delayed_block_rsv;
706 	/* block reservation for delayed refs */
707 	struct btrfs_block_rsv delayed_refs_rsv;
708 
709 	struct btrfs_block_rsv empty_block_rsv;
710 
711 	u64 generation;
712 	u64 last_trans_committed;
713 	/*
714 	 * Generation of the last transaction used for block group relocation
715 	 * since the filesystem was last mounted (or 0 if none happened yet).
716 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
717 	 */
718 	u64 last_reloc_trans;
719 	u64 avg_delayed_ref_runtime;
720 
721 	/*
722 	 * this is updated to the current trans every time a full commit
723 	 * is required instead of the faster short fsync log commits
724 	 */
725 	u64 last_trans_log_full_commit;
726 	unsigned long mount_opt;
727 	/*
728 	 * Track requests for actions that need to be done during transaction
729 	 * commit (like for some mount options).
730 	 */
731 	unsigned long pending_changes;
732 	unsigned long compress_type:4;
733 	unsigned int compress_level;
734 	u32 commit_interval;
735 	/*
736 	 * It is a suggestive number, the read side is safe even it gets a
737 	 * wrong number because we will write out the data into a regular
738 	 * extent. The write side(mount/remount) is under ->s_umount lock,
739 	 * so it is also safe.
740 	 */
741 	u64 max_inline;
742 
743 	struct btrfs_transaction *running_transaction;
744 	wait_queue_head_t transaction_throttle;
745 	wait_queue_head_t transaction_wait;
746 	wait_queue_head_t transaction_blocked_wait;
747 	wait_queue_head_t async_submit_wait;
748 
749 	/*
750 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
751 	 * when they are updated.
752 	 *
753 	 * Because we do not clear the flags for ever, so we needn't use
754 	 * the lock on the read side.
755 	 *
756 	 * We also needn't use the lock when we mount the fs, because
757 	 * there is no other task which will update the flag.
758 	 */
759 	spinlock_t super_lock;
760 	struct btrfs_super_block *super_copy;
761 	struct btrfs_super_block *super_for_commit;
762 	struct super_block *sb;
763 	struct inode *btree_inode;
764 	struct mutex tree_log_mutex;
765 	struct mutex transaction_kthread_mutex;
766 	struct mutex cleaner_mutex;
767 	struct mutex chunk_mutex;
768 
769 	/*
770 	 * this is taken to make sure we don't set block groups ro after
771 	 * the free space cache has been allocated on them
772 	 */
773 	struct mutex ro_block_group_mutex;
774 
775 	/* this is used during read/modify/write to make sure
776 	 * no two ios are trying to mod the same stripe at the same
777 	 * time
778 	 */
779 	struct btrfs_stripe_hash_table *stripe_hash_table;
780 
781 	/*
782 	 * this protects the ordered operations list only while we are
783 	 * processing all of the entries on it.  This way we make
784 	 * sure the commit code doesn't find the list temporarily empty
785 	 * because another function happens to be doing non-waiting preflush
786 	 * before jumping into the main commit.
787 	 */
788 	struct mutex ordered_operations_mutex;
789 
790 	struct rw_semaphore commit_root_sem;
791 
792 	struct rw_semaphore cleanup_work_sem;
793 
794 	struct rw_semaphore subvol_sem;
795 
796 	spinlock_t trans_lock;
797 	/*
798 	 * the reloc mutex goes with the trans lock, it is taken
799 	 * during commit to protect us from the relocation code
800 	 */
801 	struct mutex reloc_mutex;
802 
803 	struct list_head trans_list;
804 	struct list_head dead_roots;
805 	struct list_head caching_block_groups;
806 
807 	spinlock_t delayed_iput_lock;
808 	struct list_head delayed_iputs;
809 	atomic_t nr_delayed_iputs;
810 	wait_queue_head_t delayed_iputs_wait;
811 
812 	atomic64_t tree_mod_seq;
813 
814 	/* this protects tree_mod_log and tree_mod_seq_list */
815 	rwlock_t tree_mod_log_lock;
816 	struct rb_root tree_mod_log;
817 	struct list_head tree_mod_seq_list;
818 
819 	atomic_t async_delalloc_pages;
820 
821 	/*
822 	 * this is used to protect the following list -- ordered_roots.
823 	 */
824 	spinlock_t ordered_root_lock;
825 
826 	/*
827 	 * all fs/file tree roots in which there are data=ordered extents
828 	 * pending writeback are added into this list.
829 	 *
830 	 * these can span multiple transactions and basically include
831 	 * every dirty data page that isn't from nodatacow
832 	 */
833 	struct list_head ordered_roots;
834 
835 	struct mutex delalloc_root_mutex;
836 	spinlock_t delalloc_root_lock;
837 	/* all fs/file tree roots that have delalloc inodes. */
838 	struct list_head delalloc_roots;
839 
840 	/*
841 	 * there is a pool of worker threads for checksumming during writes
842 	 * and a pool for checksumming after reads.  This is because readers
843 	 * can run with FS locks held, and the writers may be waiting for
844 	 * those locks.  We don't want ordering in the pending list to cause
845 	 * deadlocks, and so the two are serviced separately.
846 	 *
847 	 * A third pool does submit_bio to avoid deadlocking with the other
848 	 * two
849 	 */
850 	struct btrfs_workqueue *workers;
851 	struct btrfs_workqueue *delalloc_workers;
852 	struct btrfs_workqueue *flush_workers;
853 	struct btrfs_workqueue *endio_workers;
854 	struct btrfs_workqueue *endio_meta_workers;
855 	struct btrfs_workqueue *endio_raid56_workers;
856 	struct btrfs_workqueue *rmw_workers;
857 	struct btrfs_workqueue *endio_meta_write_workers;
858 	struct btrfs_workqueue *endio_write_workers;
859 	struct btrfs_workqueue *endio_freespace_worker;
860 	struct btrfs_workqueue *caching_workers;
861 
862 	/*
863 	 * fixup workers take dirty pages that didn't properly go through
864 	 * the cow mechanism and make them safe to write.  It happens
865 	 * for the sys_munmap function call path
866 	 */
867 	struct btrfs_workqueue *fixup_workers;
868 	struct btrfs_workqueue *delayed_workers;
869 
870 	struct task_struct *transaction_kthread;
871 	struct task_struct *cleaner_kthread;
872 	u32 thread_pool_size;
873 
874 	struct kobject *space_info_kobj;
875 	struct kobject *qgroups_kobj;
876 
877 	/* used to keep from writing metadata until there is a nice batch */
878 	struct percpu_counter dirty_metadata_bytes;
879 	struct percpu_counter delalloc_bytes;
880 	struct percpu_counter ordered_bytes;
881 	s32 dirty_metadata_batch;
882 	s32 delalloc_batch;
883 
884 	struct list_head dirty_cowonly_roots;
885 
886 	struct btrfs_fs_devices *fs_devices;
887 
888 	/*
889 	 * The space_info list is effectively read only after initial
890 	 * setup.  It is populated at mount time and cleaned up after
891 	 * all block groups are removed.  RCU is used to protect it.
892 	 */
893 	struct list_head space_info;
894 
895 	struct btrfs_space_info *data_sinfo;
896 
897 	struct reloc_control *reloc_ctl;
898 
899 	/* data_alloc_cluster is only used in ssd_spread mode */
900 	struct btrfs_free_cluster data_alloc_cluster;
901 
902 	/* all metadata allocations go through this cluster */
903 	struct btrfs_free_cluster meta_alloc_cluster;
904 
905 	/* auto defrag inodes go here */
906 	spinlock_t defrag_inodes_lock;
907 	struct rb_root defrag_inodes;
908 	atomic_t defrag_running;
909 
910 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
911 	seqlock_t profiles_lock;
912 	/*
913 	 * these three are in extended format (availability of single
914 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
915 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
916 	 */
917 	u64 avail_data_alloc_bits;
918 	u64 avail_metadata_alloc_bits;
919 	u64 avail_system_alloc_bits;
920 
921 	/* restriper state */
922 	spinlock_t balance_lock;
923 	struct mutex balance_mutex;
924 	atomic_t balance_pause_req;
925 	atomic_t balance_cancel_req;
926 	struct btrfs_balance_control *balance_ctl;
927 	wait_queue_head_t balance_wait_q;
928 
929 	/* Cancellation requests for chunk relocation */
930 	atomic_t reloc_cancel_req;
931 
932 	u32 data_chunk_allocations;
933 	u32 metadata_ratio;
934 
935 	void *bdev_holder;
936 
937 	/* private scrub information */
938 	struct mutex scrub_lock;
939 	atomic_t scrubs_running;
940 	atomic_t scrub_pause_req;
941 	atomic_t scrubs_paused;
942 	atomic_t scrub_cancel_req;
943 	wait_queue_head_t scrub_pause_wait;
944 	/*
945 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
946 	 * running.
947 	 */
948 	refcount_t scrub_workers_refcnt;
949 	struct btrfs_workqueue *scrub_workers;
950 	struct btrfs_workqueue *scrub_wr_completion_workers;
951 	struct btrfs_workqueue *scrub_parity_workers;
952 	struct btrfs_subpage_info *subpage_info;
953 
954 	struct btrfs_discard_ctl discard_ctl;
955 
956 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
957 	u32 check_integrity_print_mask;
958 #endif
959 	/* is qgroup tracking in a consistent state? */
960 	u64 qgroup_flags;
961 
962 	/* holds configuration and tracking. Protected by qgroup_lock */
963 	struct rb_root qgroup_tree;
964 	spinlock_t qgroup_lock;
965 
966 	/*
967 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
968 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
969 	 */
970 	struct ulist *qgroup_ulist;
971 
972 	/*
973 	 * Protect user change for quota operations. If a transaction is needed,
974 	 * it must be started before locking this lock.
975 	 */
976 	struct mutex qgroup_ioctl_lock;
977 
978 	/* list of dirty qgroups to be written at next commit */
979 	struct list_head dirty_qgroups;
980 
981 	/* used by qgroup for an efficient tree traversal */
982 	u64 qgroup_seq;
983 
984 	/* qgroup rescan items */
985 	struct mutex qgroup_rescan_lock; /* protects the progress item */
986 	struct btrfs_key qgroup_rescan_progress;
987 	struct btrfs_workqueue *qgroup_rescan_workers;
988 	struct completion qgroup_rescan_completion;
989 	struct btrfs_work qgroup_rescan_work;
990 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
991 
992 	/* filesystem state */
993 	unsigned long fs_state;
994 
995 	struct btrfs_delayed_root *delayed_root;
996 
997 	/* Extent buffer radix tree */
998 	spinlock_t buffer_lock;
999 	/* Entries are eb->start / sectorsize */
1000 	struct radix_tree_root buffer_radix;
1001 
1002 	/* next backup root to be overwritten */
1003 	int backup_root_index;
1004 
1005 	/* device replace state */
1006 	struct btrfs_dev_replace dev_replace;
1007 
1008 	struct semaphore uuid_tree_rescan_sem;
1009 
1010 	/* Used to reclaim the metadata space in the background. */
1011 	struct work_struct async_reclaim_work;
1012 	struct work_struct async_data_reclaim_work;
1013 	struct work_struct preempt_reclaim_work;
1014 
1015 	/* Reclaim partially filled block groups in the background */
1016 	struct work_struct reclaim_bgs_work;
1017 	struct list_head reclaim_bgs;
1018 	int bg_reclaim_threshold;
1019 
1020 	spinlock_t unused_bgs_lock;
1021 	struct list_head unused_bgs;
1022 	struct mutex unused_bg_unpin_mutex;
1023 	/* Protect block groups that are going to be deleted */
1024 	struct mutex reclaim_bgs_lock;
1025 
1026 	/* Cached block sizes */
1027 	u32 nodesize;
1028 	u32 sectorsize;
1029 	/* ilog2 of sectorsize, use to avoid 64bit division */
1030 	u32 sectorsize_bits;
1031 	u32 csum_size;
1032 	u32 csums_per_leaf;
1033 	u32 stripesize;
1034 
1035 	/* Block groups and devices containing active swapfiles. */
1036 	spinlock_t swapfile_pins_lock;
1037 	struct rb_root swapfile_pins;
1038 
1039 	struct crypto_shash *csum_shash;
1040 
1041 	/* Type of exclusive operation running, protected by super_lock */
1042 	enum btrfs_exclusive_operation exclusive_operation;
1043 
1044 	/*
1045 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1046 	 * if the mode is enabled
1047 	 */
1048 	union {
1049 		u64 zone_size;
1050 		u64 zoned;
1051 	};
1052 
1053 	struct mutex zoned_meta_io_lock;
1054 	spinlock_t treelog_bg_lock;
1055 	u64 treelog_bg;
1056 
1057 	/*
1058 	 * Start of the dedicated data relocation block group, protected by
1059 	 * relocation_bg_lock.
1060 	 */
1061 	spinlock_t relocation_bg_lock;
1062 	u64 data_reloc_bg;
1063 	struct mutex zoned_data_reloc_io_lock;
1064 
1065 	u64 nr_global_roots;
1066 
1067 	spinlock_t zone_active_bgs_lock;
1068 	struct list_head zone_active_bgs;
1069 
1070 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1071 	spinlock_t ref_verify_lock;
1072 	struct rb_root block_tree;
1073 #endif
1074 
1075 #ifdef CONFIG_BTRFS_DEBUG
1076 	struct kobject *debug_kobj;
1077 	struct kobject *discard_debug_kobj;
1078 	struct list_head allocated_roots;
1079 
1080 	spinlock_t eb_leak_lock;
1081 	struct list_head allocated_ebs;
1082 #endif
1083 };
1084 
1085 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1086 {
1087 	return sb->s_fs_info;
1088 }
1089 
1090 /*
1091  * The state of btrfs root
1092  */
1093 enum {
1094 	/*
1095 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1096 	 * with the balancing code.   But the race is very small, and only the
1097 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1098 	 * is used to tell us when more checks are required
1099 	 */
1100 	BTRFS_ROOT_IN_TRANS_SETUP,
1101 
1102 	/*
1103 	 * Set if tree blocks of this root can be shared by other roots.
1104 	 * Only subvolume trees and their reloc trees have this bit set.
1105 	 * Conflicts with TRACK_DIRTY bit.
1106 	 *
1107 	 * This affects two things:
1108 	 *
1109 	 * - How balance works
1110 	 *   For shareable roots, we need to use reloc tree and do path
1111 	 *   replacement for balance, and need various pre/post hooks for
1112 	 *   snapshot creation to handle them.
1113 	 *
1114 	 *   While for non-shareable trees, we just simply do a tree search
1115 	 *   with COW.
1116 	 *
1117 	 * - How dirty roots are tracked
1118 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1119 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1120 	 *   don't need to set this manually.
1121 	 */
1122 	BTRFS_ROOT_SHAREABLE,
1123 	BTRFS_ROOT_TRACK_DIRTY,
1124 	BTRFS_ROOT_IN_RADIX,
1125 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1126 	BTRFS_ROOT_DEFRAG_RUNNING,
1127 	BTRFS_ROOT_FORCE_COW,
1128 	BTRFS_ROOT_MULTI_LOG_TASKS,
1129 	BTRFS_ROOT_DIRTY,
1130 	BTRFS_ROOT_DELETING,
1131 
1132 	/*
1133 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1134 	 *
1135 	 * Set for the subvolume tree owning the reloc tree.
1136 	 */
1137 	BTRFS_ROOT_DEAD_RELOC_TREE,
1138 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1139 	BTRFS_ROOT_DEAD_TREE,
1140 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1141 	BTRFS_ROOT_HAS_LOG_TREE,
1142 	/* Qgroup flushing is in progress */
1143 	BTRFS_ROOT_QGROUP_FLUSHING,
1144 	/* We started the orphan cleanup for this root. */
1145 	BTRFS_ROOT_ORPHAN_CLEANUP,
1146 	/* This root has a drop operation that was started previously. */
1147 	BTRFS_ROOT_UNFINISHED_DROP,
1148 };
1149 
1150 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1151 {
1152 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1153 }
1154 
1155 /*
1156  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1157  * code. For detail check comment in fs/btrfs/qgroup.c.
1158  */
1159 struct btrfs_qgroup_swapped_blocks {
1160 	spinlock_t lock;
1161 	/* RM_EMPTY_ROOT() of above blocks[] */
1162 	bool swapped;
1163 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1164 };
1165 
1166 /*
1167  * in ram representation of the tree.  extent_root is used for all allocations
1168  * and for the extent tree extent_root root.
1169  */
1170 struct btrfs_root {
1171 	struct rb_node rb_node;
1172 
1173 	struct extent_buffer *node;
1174 
1175 	struct extent_buffer *commit_root;
1176 	struct btrfs_root *log_root;
1177 	struct btrfs_root *reloc_root;
1178 
1179 	unsigned long state;
1180 	struct btrfs_root_item root_item;
1181 	struct btrfs_key root_key;
1182 	struct btrfs_fs_info *fs_info;
1183 	struct extent_io_tree dirty_log_pages;
1184 
1185 	struct mutex objectid_mutex;
1186 
1187 	spinlock_t accounting_lock;
1188 	struct btrfs_block_rsv *block_rsv;
1189 
1190 	struct mutex log_mutex;
1191 	wait_queue_head_t log_writer_wait;
1192 	wait_queue_head_t log_commit_wait[2];
1193 	struct list_head log_ctxs[2];
1194 	/* Used only for log trees of subvolumes, not for the log root tree */
1195 	atomic_t log_writers;
1196 	atomic_t log_commit[2];
1197 	/* Used only for log trees of subvolumes, not for the log root tree */
1198 	atomic_t log_batch;
1199 	int log_transid;
1200 	/* No matter the commit succeeds or not*/
1201 	int log_transid_committed;
1202 	/* Just be updated when the commit succeeds. */
1203 	int last_log_commit;
1204 	pid_t log_start_pid;
1205 
1206 	u64 last_trans;
1207 
1208 	u32 type;
1209 
1210 	u64 free_objectid;
1211 
1212 	struct btrfs_key defrag_progress;
1213 	struct btrfs_key defrag_max;
1214 
1215 	/* The dirty list is only used by non-shareable roots */
1216 	struct list_head dirty_list;
1217 
1218 	struct list_head root_list;
1219 
1220 	spinlock_t log_extents_lock[2];
1221 	struct list_head logged_list[2];
1222 
1223 	spinlock_t inode_lock;
1224 	/* red-black tree that keeps track of in-memory inodes */
1225 	struct rb_root inode_tree;
1226 
1227 	/*
1228 	 * radix tree that keeps track of delayed nodes of every inode,
1229 	 * protected by inode_lock
1230 	 */
1231 	struct radix_tree_root delayed_nodes_tree;
1232 	/*
1233 	 * right now this just gets used so that a root has its own devid
1234 	 * for stat.  It may be used for more later
1235 	 */
1236 	dev_t anon_dev;
1237 
1238 	spinlock_t root_item_lock;
1239 	refcount_t refs;
1240 
1241 	struct mutex delalloc_mutex;
1242 	spinlock_t delalloc_lock;
1243 	/*
1244 	 * all of the inodes that have delalloc bytes.  It is possible for
1245 	 * this list to be empty even when there is still dirty data=ordered
1246 	 * extents waiting to finish IO.
1247 	 */
1248 	struct list_head delalloc_inodes;
1249 	struct list_head delalloc_root;
1250 	u64 nr_delalloc_inodes;
1251 
1252 	struct mutex ordered_extent_mutex;
1253 	/*
1254 	 * this is used by the balancing code to wait for all the pending
1255 	 * ordered extents
1256 	 */
1257 	spinlock_t ordered_extent_lock;
1258 
1259 	/*
1260 	 * all of the data=ordered extents pending writeback
1261 	 * these can span multiple transactions and basically include
1262 	 * every dirty data page that isn't from nodatacow
1263 	 */
1264 	struct list_head ordered_extents;
1265 	struct list_head ordered_root;
1266 	u64 nr_ordered_extents;
1267 
1268 	/*
1269 	 * Not empty if this subvolume root has gone through tree block swap
1270 	 * (relocation)
1271 	 *
1272 	 * Will be used by reloc_control::dirty_subvol_roots.
1273 	 */
1274 	struct list_head reloc_dirty_list;
1275 
1276 	/*
1277 	 * Number of currently running SEND ioctls to prevent
1278 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1279 	 */
1280 	int send_in_progress;
1281 	/*
1282 	 * Number of currently running deduplication operations that have a
1283 	 * destination inode belonging to this root. Protected by the lock
1284 	 * root_item_lock.
1285 	 */
1286 	int dedupe_in_progress;
1287 	/* For exclusion of snapshot creation and nocow writes */
1288 	struct btrfs_drew_lock snapshot_lock;
1289 
1290 	atomic_t snapshot_force_cow;
1291 
1292 	/* For qgroup metadata reserved space */
1293 	spinlock_t qgroup_meta_rsv_lock;
1294 	u64 qgroup_meta_rsv_pertrans;
1295 	u64 qgroup_meta_rsv_prealloc;
1296 	wait_queue_head_t qgroup_flush_wait;
1297 
1298 	/* Number of active swapfiles */
1299 	atomic_t nr_swapfiles;
1300 
1301 	/* Record pairs of swapped blocks for qgroup */
1302 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1303 
1304 	/* Used only by log trees, when logging csum items */
1305 	struct extent_io_tree log_csum_range;
1306 
1307 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1308 	u64 alloc_bytenr;
1309 #endif
1310 
1311 #ifdef CONFIG_BTRFS_DEBUG
1312 	struct list_head leak_list;
1313 #endif
1314 };
1315 
1316 /*
1317  * Structure that conveys information about an extent that is going to replace
1318  * all the extents in a file range.
1319  */
1320 struct btrfs_replace_extent_info {
1321 	u64 disk_offset;
1322 	u64 disk_len;
1323 	u64 data_offset;
1324 	u64 data_len;
1325 	u64 file_offset;
1326 	/* Pointer to a file extent item of type regular or prealloc. */
1327 	char *extent_buf;
1328 	/*
1329 	 * Set to true when attempting to replace a file range with a new extent
1330 	 * described by this structure, set to false when attempting to clone an
1331 	 * existing extent into a file range.
1332 	 */
1333 	bool is_new_extent;
1334 	/* Meaningful only if is_new_extent is true. */
1335 	int qgroup_reserved;
1336 	/*
1337 	 * Meaningful only if is_new_extent is true.
1338 	 * Used to track how many extent items we have already inserted in a
1339 	 * subvolume tree that refer to the extent described by this structure,
1340 	 * so that we know when to create a new delayed ref or update an existing
1341 	 * one.
1342 	 */
1343 	int insertions;
1344 };
1345 
1346 /* Arguments for btrfs_drop_extents() */
1347 struct btrfs_drop_extents_args {
1348 	/* Input parameters */
1349 
1350 	/*
1351 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1352 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1353 	 * is always released except if 'replace_extent' is true and
1354 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1355 	 * the path is kept locked.
1356 	 */
1357 	struct btrfs_path *path;
1358 	/* Start offset of the range to drop extents from */
1359 	u64 start;
1360 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1361 	u64 end;
1362 	/* If true drop all the extent maps in the range */
1363 	bool drop_cache;
1364 	/*
1365 	 * If true it means we want to insert a new extent after dropping all
1366 	 * the extents in the range. If this is true, the 'extent_item_size'
1367 	 * parameter must be set as well and the 'extent_inserted' field will
1368 	 * be set to true by btrfs_drop_extents() if it could insert the new
1369 	 * extent.
1370 	 * Note: when this is set to true the path must not be NULL.
1371 	 */
1372 	bool replace_extent;
1373 	/*
1374 	 * Used if 'replace_extent' is true. Size of the file extent item to
1375 	 * insert after dropping all existing extents in the range
1376 	 */
1377 	u32 extent_item_size;
1378 
1379 	/* Output parameters */
1380 
1381 	/*
1382 	 * Set to the minimum between the input parameter 'end' and the end
1383 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1384 	 * set even if btrfs_drop_extents() returns an error.
1385 	 */
1386 	u64 drop_end;
1387 	/*
1388 	 * The number of allocated bytes found in the range. This can be smaller
1389 	 * than the range's length when there are holes in the range.
1390 	 */
1391 	u64 bytes_found;
1392 	/*
1393 	 * Only set if 'replace_extent' is true. Set to true if we were able
1394 	 * to insert a replacement extent after dropping all extents in the
1395 	 * range, otherwise set to false by btrfs_drop_extents().
1396 	 * Also, if btrfs_drop_extents() has set this to true it means it
1397 	 * returned with the path locked, otherwise if it has set this to
1398 	 * false it has returned with the path released.
1399 	 */
1400 	bool extent_inserted;
1401 };
1402 
1403 struct btrfs_file_private {
1404 	void *filldir_buf;
1405 };
1406 
1407 
1408 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1409 {
1410 
1411 	return info->nodesize - sizeof(struct btrfs_header);
1412 }
1413 
1414 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1415 
1416 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1417 {
1418 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1419 }
1420 
1421 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1422 {
1423 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1424 }
1425 
1426 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1427 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1428 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1429 {
1430 	return BTRFS_MAX_ITEM_SIZE(info) -
1431 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1432 }
1433 
1434 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1435 {
1436 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1437 }
1438 
1439 /*
1440  * Flags for mount options.
1441  *
1442  * Note: don't forget to add new options to btrfs_show_options()
1443  */
1444 enum {
1445 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1446 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1447 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1448 	BTRFS_MOUNT_SSD				= (1UL << 3),
1449 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1450 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1451 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1452 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1453 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1454 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1455 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1456 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1457 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1458 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1459 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1460 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1461 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1462 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1463 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1464 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1465 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1466 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1467 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1468 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1469 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1470 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1471 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1472 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1473 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1474 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1475 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1476 };
1477 
1478 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1479 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1480 
1481 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1482 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1483 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1484 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1485 					 BTRFS_MOUNT_##opt)
1486 
1487 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1488 do {									\
1489 	if (!btrfs_test_opt(fs_info, opt))				\
1490 		btrfs_info(fs_info, fmt, ##args);			\
1491 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1492 } while (0)
1493 
1494 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1495 do {									\
1496 	if (btrfs_test_opt(fs_info, opt))				\
1497 		btrfs_info(fs_info, fmt, ##args);			\
1498 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1499 } while (0)
1500 
1501 /*
1502  * Requests for changes that need to be done during transaction commit.
1503  *
1504  * Internal mount options that are used for special handling of the real
1505  * mount options (eg. cannot be set during remount and have to be set during
1506  * transaction commit)
1507  */
1508 
1509 #define BTRFS_PENDING_COMMIT			(0)
1510 
1511 #define btrfs_test_pending(info, opt)	\
1512 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1513 #define btrfs_set_pending(info, opt)	\
1514 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1515 #define btrfs_clear_pending(info, opt)	\
1516 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1517 
1518 /*
1519  * Helpers for setting pending mount option changes.
1520  *
1521  * Expects corresponding macros
1522  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1523  */
1524 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1525 do {                                                                   \
1526        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1527                btrfs_info((info), fmt, ##args);                        \
1528                btrfs_set_pending((info), SET_##opt);                   \
1529                btrfs_clear_pending((info), CLEAR_##opt);               \
1530        }                                                               \
1531 } while(0)
1532 
1533 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1534 do {                                                                   \
1535        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1536                btrfs_info((info), fmt, ##args);                        \
1537                btrfs_set_pending((info), CLEAR_##opt);                 \
1538                btrfs_clear_pending((info), SET_##opt);                 \
1539        }                                                               \
1540 } while(0)
1541 
1542 /*
1543  * Inode flags
1544  */
1545 #define BTRFS_INODE_NODATASUM		(1U << 0)
1546 #define BTRFS_INODE_NODATACOW		(1U << 1)
1547 #define BTRFS_INODE_READONLY		(1U << 2)
1548 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1549 #define BTRFS_INODE_PREALLOC		(1U << 4)
1550 #define BTRFS_INODE_SYNC		(1U << 5)
1551 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1552 #define BTRFS_INODE_APPEND		(1U << 7)
1553 #define BTRFS_INODE_NODUMP		(1U << 8)
1554 #define BTRFS_INODE_NOATIME		(1U << 9)
1555 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1556 #define BTRFS_INODE_COMPRESS		(1U << 11)
1557 
1558 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1559 
1560 #define BTRFS_INODE_FLAG_MASK						\
1561 	(BTRFS_INODE_NODATASUM |					\
1562 	 BTRFS_INODE_NODATACOW |					\
1563 	 BTRFS_INODE_READONLY |						\
1564 	 BTRFS_INODE_NOCOMPRESS |					\
1565 	 BTRFS_INODE_PREALLOC |						\
1566 	 BTRFS_INODE_SYNC |						\
1567 	 BTRFS_INODE_IMMUTABLE |					\
1568 	 BTRFS_INODE_APPEND |						\
1569 	 BTRFS_INODE_NODUMP |						\
1570 	 BTRFS_INODE_NOATIME |						\
1571 	 BTRFS_INODE_DIRSYNC |						\
1572 	 BTRFS_INODE_COMPRESS |						\
1573 	 BTRFS_INODE_ROOT_ITEM_INIT)
1574 
1575 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1576 
1577 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1578 
1579 struct btrfs_map_token {
1580 	struct extent_buffer *eb;
1581 	char *kaddr;
1582 	unsigned long offset;
1583 };
1584 
1585 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1586 				((bytes) >> (fs_info)->sectorsize_bits)
1587 
1588 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1589 					struct extent_buffer *eb)
1590 {
1591 	token->eb = eb;
1592 	token->kaddr = page_address(eb->pages[0]);
1593 	token->offset = 0;
1594 }
1595 
1596 /* some macros to generate set/get functions for the struct fields.  This
1597  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1598  * one for u8:
1599  */
1600 #define le8_to_cpu(v) (v)
1601 #define cpu_to_le8(v) (v)
1602 #define __le8 u8
1603 
1604 static inline u8 get_unaligned_le8(const void *p)
1605 {
1606        return *(u8 *)p;
1607 }
1608 
1609 static inline void put_unaligned_le8(u8 val, void *p)
1610 {
1611        *(u8 *)p = val;
1612 }
1613 
1614 #define read_eb_member(eb, ptr, type, member, result) (\
1615 	read_extent_buffer(eb, (char *)(result),			\
1616 			   ((unsigned long)(ptr)) +			\
1617 			    offsetof(type, member),			\
1618 			   sizeof(((type *)0)->member)))
1619 
1620 #define write_eb_member(eb, ptr, type, member, result) (\
1621 	write_extent_buffer(eb, (char *)(result),			\
1622 			   ((unsigned long)(ptr)) +			\
1623 			    offsetof(type, member),			\
1624 			   sizeof(((type *)0)->member)))
1625 
1626 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1627 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1628 			       const void *ptr, unsigned long off);	\
1629 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1630 			    const void *ptr, unsigned long off,		\
1631 			    u##bits val);				\
1632 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1633 			 const void *ptr, unsigned long off);		\
1634 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1635 		      unsigned long off, u##bits val);
1636 
1637 DECLARE_BTRFS_SETGET_BITS(8)
1638 DECLARE_BTRFS_SETGET_BITS(16)
1639 DECLARE_BTRFS_SETGET_BITS(32)
1640 DECLARE_BTRFS_SETGET_BITS(64)
1641 
1642 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1643 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1644 				   const type *s)			\
1645 {									\
1646 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1647 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1648 }									\
1649 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1650 				    u##bits val)			\
1651 {									\
1652 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1653 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1654 }									\
1655 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1656 					 const type *s)			\
1657 {									\
1658 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1659 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1660 }									\
1661 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1662 					  type *s, u##bits val)		\
1663 {									\
1664 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1665 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1666 }
1667 
1668 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1669 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1670 {									\
1671 	const type *p = page_address(eb->pages[0]) +			\
1672 			offset_in_page(eb->start);			\
1673 	return get_unaligned_le##bits(&p->member);			\
1674 }									\
1675 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1676 				    u##bits val)			\
1677 {									\
1678 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1679 	put_unaligned_le##bits(val, &p->member);			\
1680 }
1681 
1682 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1683 static inline u##bits btrfs_##name(const type *s)			\
1684 {									\
1685 	return get_unaligned_le##bits(&s->member);			\
1686 }									\
1687 static inline void btrfs_set_##name(type *s, u##bits val)		\
1688 {									\
1689 	put_unaligned_le##bits(val, &s->member);			\
1690 }
1691 
1692 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1693 					   struct btrfs_dev_item *s)
1694 {
1695 	static_assert(sizeof(u64) ==
1696 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1697 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1698 					    total_bytes));
1699 }
1700 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1701 						struct btrfs_dev_item *s,
1702 						u64 val)
1703 {
1704 	static_assert(sizeof(u64) ==
1705 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1706 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1707 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1708 }
1709 
1710 
1711 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1712 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1713 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1714 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1715 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1716 		   start_offset, 64);
1717 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1718 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1719 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1720 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1721 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1722 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1723 
1724 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1725 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1726 			 total_bytes, 64);
1727 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1728 			 bytes_used, 64);
1729 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1730 			 io_align, 32);
1731 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1732 			 io_width, 32);
1733 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1734 			 sector_size, 32);
1735 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1736 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1737 			 dev_group, 32);
1738 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1739 			 seek_speed, 8);
1740 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1741 			 bandwidth, 8);
1742 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1743 			 generation, 64);
1744 
1745 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1746 {
1747 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1748 }
1749 
1750 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1751 {
1752 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1753 }
1754 
1755 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1756 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1757 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1758 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1759 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1760 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1761 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1762 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1763 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1764 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1765 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1766 
1767 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1768 {
1769 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1770 }
1771 
1772 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1773 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1774 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1775 			 stripe_len, 64);
1776 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1777 			 io_align, 32);
1778 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1779 			 io_width, 32);
1780 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1781 			 sector_size, 32);
1782 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1783 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1784 			 num_stripes, 16);
1785 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1786 			 sub_stripes, 16);
1787 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1788 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1789 
1790 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1791 						   int nr)
1792 {
1793 	unsigned long offset = (unsigned long)c;
1794 	offset += offsetof(struct btrfs_chunk, stripe);
1795 	offset += nr * sizeof(struct btrfs_stripe);
1796 	return (struct btrfs_stripe *)offset;
1797 }
1798 
1799 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1800 {
1801 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1802 }
1803 
1804 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1805 					 struct btrfs_chunk *c, int nr)
1806 {
1807 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1808 }
1809 
1810 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1811 					 struct btrfs_chunk *c, int nr)
1812 {
1813 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1814 }
1815 
1816 /* struct btrfs_block_group_item */
1817 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1818 			 used, 64);
1819 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1820 			 used, 64);
1821 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1822 			struct btrfs_block_group_item, chunk_objectid, 64);
1823 
1824 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1825 		   struct btrfs_block_group_item, chunk_objectid, 64);
1826 BTRFS_SETGET_FUNCS(block_group_flags,
1827 		   struct btrfs_block_group_item, flags, 64);
1828 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1829 			struct btrfs_block_group_item, flags, 64);
1830 
1831 /* struct btrfs_free_space_info */
1832 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1833 		   extent_count, 32);
1834 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1835 
1836 /* struct btrfs_inode_ref */
1837 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1838 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1839 
1840 /* struct btrfs_inode_extref */
1841 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1842 		   parent_objectid, 64);
1843 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1844 		   name_len, 16);
1845 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1846 
1847 /* struct btrfs_inode_item */
1848 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1849 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1850 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1851 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1852 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1853 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1854 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1855 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1856 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1857 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1858 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1859 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1860 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1861 			 generation, 64);
1862 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1863 			 sequence, 64);
1864 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1865 			 transid, 64);
1866 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1867 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1868 			 nbytes, 64);
1869 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1870 			 block_group, 64);
1871 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1873 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1876 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1877 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1878 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1879 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1880 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1881 
1882 /* struct btrfs_dev_extent */
1883 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1884 		   chunk_tree, 64);
1885 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1886 		   chunk_objectid, 64);
1887 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1888 		   chunk_offset, 64);
1889 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1890 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1891 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1892 		   generation, 64);
1893 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1894 
1895 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1896 
1897 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1898 					struct btrfs_tree_block_info *item,
1899 					struct btrfs_disk_key *key)
1900 {
1901 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1902 }
1903 
1904 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1905 					    struct btrfs_tree_block_info *item,
1906 					    struct btrfs_disk_key *key)
1907 {
1908 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1909 }
1910 
1911 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1912 		   root, 64);
1913 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1914 		   objectid, 64);
1915 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1916 		   offset, 64);
1917 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1918 		   count, 32);
1919 
1920 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1921 		   count, 32);
1922 
1923 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1924 		   type, 8);
1925 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1926 		   offset, 64);
1927 
1928 static inline u32 btrfs_extent_inline_ref_size(int type)
1929 {
1930 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1931 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1932 		return sizeof(struct btrfs_extent_inline_ref);
1933 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1934 		return sizeof(struct btrfs_shared_data_ref) +
1935 		       sizeof(struct btrfs_extent_inline_ref);
1936 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1937 		return sizeof(struct btrfs_extent_data_ref) +
1938 		       offsetof(struct btrfs_extent_inline_ref, offset);
1939 	return 0;
1940 }
1941 
1942 /* struct btrfs_node */
1943 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1944 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1945 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1946 			 blockptr, 64);
1947 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1948 			 generation, 64);
1949 
1950 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1951 {
1952 	unsigned long ptr;
1953 	ptr = offsetof(struct btrfs_node, ptrs) +
1954 		sizeof(struct btrfs_key_ptr) * nr;
1955 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1956 }
1957 
1958 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1959 					   int nr, u64 val)
1960 {
1961 	unsigned long ptr;
1962 	ptr = offsetof(struct btrfs_node, ptrs) +
1963 		sizeof(struct btrfs_key_ptr) * nr;
1964 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1965 }
1966 
1967 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1968 {
1969 	unsigned long ptr;
1970 	ptr = offsetof(struct btrfs_node, ptrs) +
1971 		sizeof(struct btrfs_key_ptr) * nr;
1972 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1973 }
1974 
1975 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1976 						 int nr, u64 val)
1977 {
1978 	unsigned long ptr;
1979 	ptr = offsetof(struct btrfs_node, ptrs) +
1980 		sizeof(struct btrfs_key_ptr) * nr;
1981 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1982 }
1983 
1984 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1985 {
1986 	return offsetof(struct btrfs_node, ptrs) +
1987 		sizeof(struct btrfs_key_ptr) * nr;
1988 }
1989 
1990 void btrfs_node_key(const struct extent_buffer *eb,
1991 		    struct btrfs_disk_key *disk_key, int nr);
1992 
1993 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1994 				      struct btrfs_disk_key *disk_key, int nr)
1995 {
1996 	unsigned long ptr;
1997 	ptr = btrfs_node_key_ptr_offset(nr);
1998 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1999 		       struct btrfs_key_ptr, key, disk_key);
2000 }
2001 
2002 /* struct btrfs_item */
2003 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2004 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2005 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2006 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2007 
2008 static inline unsigned long btrfs_item_nr_offset(int nr)
2009 {
2010 	return offsetof(struct btrfs_leaf, items) +
2011 		sizeof(struct btrfs_item) * nr;
2012 }
2013 
2014 static inline struct btrfs_item *btrfs_item_nr(int nr)
2015 {
2016 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2017 }
2018 
2019 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2020 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2021 				      int slot)					\
2022 {										\
2023 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2024 }										\
2025 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2026 					   int slot, u32 val)			\
2027 {										\
2028 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2029 }										\
2030 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2031 					    int slot)				\
2032 {										\
2033 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2034 	return btrfs_token_raw_item_##member(token, item);			\
2035 }										\
2036 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2037 						 int slot, u32 val)		\
2038 {										\
2039 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2040 	btrfs_set_token_raw_item_##member(token, item, val);			\
2041 }
2042 
2043 BTRFS_ITEM_SETGET_FUNCS(offset)
2044 BTRFS_ITEM_SETGET_FUNCS(size);
2045 
2046 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2047 {
2048 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2049 }
2050 
2051 static inline void btrfs_item_key(const struct extent_buffer *eb,
2052 			   struct btrfs_disk_key *disk_key, int nr)
2053 {
2054 	struct btrfs_item *item = btrfs_item_nr(nr);
2055 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2056 }
2057 
2058 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2059 			       struct btrfs_disk_key *disk_key, int nr)
2060 {
2061 	struct btrfs_item *item = btrfs_item_nr(nr);
2062 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2063 }
2064 
2065 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2066 
2067 /*
2068  * struct btrfs_root_ref
2069  */
2070 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2071 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2072 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2073 
2074 /* struct btrfs_dir_item */
2075 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2076 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2077 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2078 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2079 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2080 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2081 			 data_len, 16);
2082 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2083 			 name_len, 16);
2084 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2085 			 transid, 64);
2086 
2087 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2088 				      const struct btrfs_dir_item *item,
2089 				      struct btrfs_disk_key *key)
2090 {
2091 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2092 }
2093 
2094 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2095 					  struct btrfs_dir_item *item,
2096 					  const struct btrfs_disk_key *key)
2097 {
2098 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2099 }
2100 
2101 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2102 		   num_entries, 64);
2103 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2104 		   num_bitmaps, 64);
2105 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2106 		   generation, 64);
2107 
2108 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2109 					const struct btrfs_free_space_header *h,
2110 					struct btrfs_disk_key *key)
2111 {
2112 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2113 }
2114 
2115 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2116 					    struct btrfs_free_space_header *h,
2117 					    const struct btrfs_disk_key *key)
2118 {
2119 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2120 }
2121 
2122 /* struct btrfs_disk_key */
2123 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2124 			 objectid, 64);
2125 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2126 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2127 
2128 #ifdef __LITTLE_ENDIAN
2129 
2130 /*
2131  * Optimized helpers for little-endian architectures where CPU and on-disk
2132  * structures have the same endianness and we can skip conversions.
2133  */
2134 
2135 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2136 					 const struct btrfs_disk_key *disk_key)
2137 {
2138 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2139 }
2140 
2141 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2142 					 const struct btrfs_key *cpu_key)
2143 {
2144 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2145 }
2146 
2147 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2148 					 struct btrfs_key *cpu_key, int nr)
2149 {
2150 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2151 
2152 	btrfs_node_key(eb, disk_key, nr);
2153 }
2154 
2155 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2156 					 struct btrfs_key *cpu_key, int nr)
2157 {
2158 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2159 
2160 	btrfs_item_key(eb, disk_key, nr);
2161 }
2162 
2163 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2164 					     const struct btrfs_dir_item *item,
2165 					     struct btrfs_key *cpu_key)
2166 {
2167 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2168 
2169 	btrfs_dir_item_key(eb, item, disk_key);
2170 }
2171 
2172 #else
2173 
2174 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2175 					 const struct btrfs_disk_key *disk)
2176 {
2177 	cpu->offset = le64_to_cpu(disk->offset);
2178 	cpu->type = disk->type;
2179 	cpu->objectid = le64_to_cpu(disk->objectid);
2180 }
2181 
2182 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2183 					 const struct btrfs_key *cpu)
2184 {
2185 	disk->offset = cpu_to_le64(cpu->offset);
2186 	disk->type = cpu->type;
2187 	disk->objectid = cpu_to_le64(cpu->objectid);
2188 }
2189 
2190 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2191 					 struct btrfs_key *key, int nr)
2192 {
2193 	struct btrfs_disk_key disk_key;
2194 	btrfs_node_key(eb, &disk_key, nr);
2195 	btrfs_disk_key_to_cpu(key, &disk_key);
2196 }
2197 
2198 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2199 					 struct btrfs_key *key, int nr)
2200 {
2201 	struct btrfs_disk_key disk_key;
2202 	btrfs_item_key(eb, &disk_key, nr);
2203 	btrfs_disk_key_to_cpu(key, &disk_key);
2204 }
2205 
2206 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2207 					     const struct btrfs_dir_item *item,
2208 					     struct btrfs_key *key)
2209 {
2210 	struct btrfs_disk_key disk_key;
2211 	btrfs_dir_item_key(eb, item, &disk_key);
2212 	btrfs_disk_key_to_cpu(key, &disk_key);
2213 }
2214 
2215 #endif
2216 
2217 /* struct btrfs_header */
2218 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2219 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2220 			  generation, 64);
2221 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2222 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2223 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2224 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2225 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2226 			 generation, 64);
2227 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2228 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2229 			 nritems, 32);
2230 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2231 
2232 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2233 {
2234 	return (btrfs_header_flags(eb) & flag) == flag;
2235 }
2236 
2237 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2238 {
2239 	u64 flags = btrfs_header_flags(eb);
2240 	btrfs_set_header_flags(eb, flags | flag);
2241 }
2242 
2243 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2244 {
2245 	u64 flags = btrfs_header_flags(eb);
2246 	btrfs_set_header_flags(eb, flags & ~flag);
2247 }
2248 
2249 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2250 {
2251 	u64 flags = btrfs_header_flags(eb);
2252 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2253 }
2254 
2255 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2256 						int rev)
2257 {
2258 	u64 flags = btrfs_header_flags(eb);
2259 	flags &= ~BTRFS_BACKREF_REV_MASK;
2260 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2261 	btrfs_set_header_flags(eb, flags);
2262 }
2263 
2264 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2265 {
2266 	return btrfs_header_level(eb) == 0;
2267 }
2268 
2269 /* struct btrfs_root_item */
2270 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2271 		   generation, 64);
2272 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2273 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2274 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2275 
2276 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2277 			 generation, 64);
2278 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2279 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2280 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2281 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2282 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2283 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2284 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2285 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2286 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2287 			 last_snapshot, 64);
2288 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2289 			 generation_v2, 64);
2290 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2291 			 ctransid, 64);
2292 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2293 			 otransid, 64);
2294 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2295 			 stransid, 64);
2296 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2297 			 rtransid, 64);
2298 
2299 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2300 {
2301 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2302 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2303 }
2304 
2305 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2306 {
2307 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2308 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2309 }
2310 
2311 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2312 {
2313 	return root->root_key.objectid;
2314 }
2315 
2316 /* struct btrfs_root_backup */
2317 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2318 		   tree_root, 64);
2319 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2320 		   tree_root_gen, 64);
2321 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2322 		   tree_root_level, 8);
2323 
2324 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2325 		   chunk_root, 64);
2326 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2327 		   chunk_root_gen, 64);
2328 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2329 		   chunk_root_level, 8);
2330 
2331 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2332 		   extent_root, 64);
2333 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2334 		   extent_root_gen, 64);
2335 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2336 		   extent_root_level, 8);
2337 
2338 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2339 		   fs_root, 64);
2340 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2341 		   fs_root_gen, 64);
2342 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2343 		   fs_root_level, 8);
2344 
2345 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2346 		   dev_root, 64);
2347 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2348 		   dev_root_gen, 64);
2349 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2350 		   dev_root_level, 8);
2351 
2352 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2353 		   csum_root, 64);
2354 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2355 		   csum_root_gen, 64);
2356 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2357 		   csum_root_level, 8);
2358 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2359 		   total_bytes, 64);
2360 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2361 		   bytes_used, 64);
2362 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2363 		   num_devices, 64);
2364 
2365 /*
2366  * For extent tree v2 we overload the extent root with the block group root, as
2367  * we will have multiple extent roots.
2368  */
2369 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2370 			 extent_root, 64);
2371 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2372 			 extent_root_gen, 64);
2373 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2374 			 struct btrfs_root_backup, extent_root_level, 8);
2375 
2376 /* struct btrfs_balance_item */
2377 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2378 
2379 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2380 				      const struct btrfs_balance_item *bi,
2381 				      struct btrfs_disk_balance_args *ba)
2382 {
2383 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2384 }
2385 
2386 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2387 				  struct btrfs_balance_item *bi,
2388 				  const struct btrfs_disk_balance_args *ba)
2389 {
2390 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2391 }
2392 
2393 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2394 				      const struct btrfs_balance_item *bi,
2395 				      struct btrfs_disk_balance_args *ba)
2396 {
2397 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2398 }
2399 
2400 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2401 				  struct btrfs_balance_item *bi,
2402 				  const struct btrfs_disk_balance_args *ba)
2403 {
2404 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2405 }
2406 
2407 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2408 				     const struct btrfs_balance_item *bi,
2409 				     struct btrfs_disk_balance_args *ba)
2410 {
2411 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2412 }
2413 
2414 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2415 				 struct btrfs_balance_item *bi,
2416 				 const struct btrfs_disk_balance_args *ba)
2417 {
2418 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2419 }
2420 
2421 static inline void
2422 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2423 			       const struct btrfs_disk_balance_args *disk)
2424 {
2425 	memset(cpu, 0, sizeof(*cpu));
2426 
2427 	cpu->profiles = le64_to_cpu(disk->profiles);
2428 	cpu->usage = le64_to_cpu(disk->usage);
2429 	cpu->devid = le64_to_cpu(disk->devid);
2430 	cpu->pstart = le64_to_cpu(disk->pstart);
2431 	cpu->pend = le64_to_cpu(disk->pend);
2432 	cpu->vstart = le64_to_cpu(disk->vstart);
2433 	cpu->vend = le64_to_cpu(disk->vend);
2434 	cpu->target = le64_to_cpu(disk->target);
2435 	cpu->flags = le64_to_cpu(disk->flags);
2436 	cpu->limit = le64_to_cpu(disk->limit);
2437 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2438 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2439 }
2440 
2441 static inline void
2442 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2443 			       const struct btrfs_balance_args *cpu)
2444 {
2445 	memset(disk, 0, sizeof(*disk));
2446 
2447 	disk->profiles = cpu_to_le64(cpu->profiles);
2448 	disk->usage = cpu_to_le64(cpu->usage);
2449 	disk->devid = cpu_to_le64(cpu->devid);
2450 	disk->pstart = cpu_to_le64(cpu->pstart);
2451 	disk->pend = cpu_to_le64(cpu->pend);
2452 	disk->vstart = cpu_to_le64(cpu->vstart);
2453 	disk->vend = cpu_to_le64(cpu->vend);
2454 	disk->target = cpu_to_le64(cpu->target);
2455 	disk->flags = cpu_to_le64(cpu->flags);
2456 	disk->limit = cpu_to_le64(cpu->limit);
2457 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2458 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2459 }
2460 
2461 /* struct btrfs_super_block */
2462 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2463 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2464 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2465 			 generation, 64);
2466 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2467 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2468 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2469 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2470 			 struct btrfs_super_block, chunk_root_generation, 64);
2471 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2472 			 root_level, 8);
2473 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2474 			 chunk_root, 64);
2475 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2476 			 chunk_root_level, 8);
2477 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2478 			 log_root, 64);
2479 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2480 			 log_root_transid, 64);
2481 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2482 			 log_root_level, 8);
2483 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2484 			 total_bytes, 64);
2485 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2486 			 bytes_used, 64);
2487 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2488 			 sectorsize, 32);
2489 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2490 			 nodesize, 32);
2491 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2492 			 stripesize, 32);
2493 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2494 			 root_dir_objectid, 64);
2495 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2496 			 num_devices, 64);
2497 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2498 			 compat_flags, 64);
2499 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2500 			 compat_ro_flags, 64);
2501 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2502 			 incompat_flags, 64);
2503 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2504 			 csum_type, 16);
2505 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2506 			 cache_generation, 64);
2507 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2508 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2509 			 uuid_tree_generation, 64);
2510 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2511 			 block_group_root, 64);
2512 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2513 			 struct btrfs_super_block,
2514 			 block_group_root_generation, 64);
2515 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2516 			 block_group_root_level, 8);
2517 
2518 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2519 const char *btrfs_super_csum_name(u16 csum_type);
2520 const char *btrfs_super_csum_driver(u16 csum_type);
2521 size_t __attribute_const__ btrfs_get_num_csums(void);
2522 
2523 
2524 /*
2525  * The leaf data grows from end-to-front in the node.
2526  * this returns the address of the start of the last item,
2527  * which is the stop of the leaf data stack
2528  */
2529 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2530 {
2531 	u32 nr = btrfs_header_nritems(leaf);
2532 
2533 	if (nr == 0)
2534 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2535 	return btrfs_item_offset(leaf, nr - 1);
2536 }
2537 
2538 /* struct btrfs_file_extent_item */
2539 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2540 			 type, 8);
2541 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2542 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2543 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2544 			 struct btrfs_file_extent_item, offset, 64);
2545 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2546 			 struct btrfs_file_extent_item, generation, 64);
2547 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2548 			 struct btrfs_file_extent_item, num_bytes, 64);
2549 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2550 			 struct btrfs_file_extent_item, ram_bytes, 64);
2551 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2552 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2553 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2554 			 struct btrfs_file_extent_item, compression, 8);
2555 
2556 static inline unsigned long
2557 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2558 {
2559 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2560 }
2561 
2562 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2563 {
2564 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2565 }
2566 
2567 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2568 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2569 		   disk_bytenr, 64);
2570 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2571 		   generation, 64);
2572 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2573 		   disk_num_bytes, 64);
2574 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2575 		  offset, 64);
2576 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2577 		   num_bytes, 64);
2578 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2579 		   ram_bytes, 64);
2580 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2581 		   compression, 8);
2582 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2583 		   encryption, 8);
2584 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2585 		   other_encoding, 16);
2586 
2587 /*
2588  * this returns the number of bytes used by the item on disk, minus the
2589  * size of any extent headers.  If a file is compressed on disk, this is
2590  * the compressed size
2591  */
2592 static inline u32 btrfs_file_extent_inline_item_len(
2593 						const struct extent_buffer *eb,
2594 						int nr)
2595 {
2596 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2597 }
2598 
2599 /* btrfs_qgroup_status_item */
2600 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2601 		   generation, 64);
2602 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2603 		   version, 64);
2604 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2605 		   flags, 64);
2606 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2607 		   rescan, 64);
2608 
2609 /* btrfs_qgroup_info_item */
2610 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2611 		   generation, 64);
2612 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2613 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2614 		   rfer_cmpr, 64);
2615 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2616 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2617 		   excl_cmpr, 64);
2618 
2619 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2620 			 struct btrfs_qgroup_info_item, generation, 64);
2621 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2622 			 rfer, 64);
2623 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2624 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2625 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2626 			 excl, 64);
2627 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2628 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2629 
2630 /* btrfs_qgroup_limit_item */
2631 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2632 		   flags, 64);
2633 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2634 		   max_rfer, 64);
2635 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2636 		   max_excl, 64);
2637 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2638 		   rsv_rfer, 64);
2639 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2640 		   rsv_excl, 64);
2641 
2642 /* btrfs_dev_replace_item */
2643 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2644 		   struct btrfs_dev_replace_item, src_devid, 64);
2645 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2646 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2647 		   64);
2648 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2649 		   replace_state, 64);
2650 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2651 		   time_started, 64);
2652 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2653 		   time_stopped, 64);
2654 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2655 		   num_write_errors, 64);
2656 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2657 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2658 		   64);
2659 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2660 		   cursor_left, 64);
2661 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2662 		   cursor_right, 64);
2663 
2664 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2665 			 struct btrfs_dev_replace_item, src_devid, 64);
2666 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2667 			 struct btrfs_dev_replace_item,
2668 			 cont_reading_from_srcdev_mode, 64);
2669 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2670 			 struct btrfs_dev_replace_item, replace_state, 64);
2671 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2672 			 struct btrfs_dev_replace_item, time_started, 64);
2673 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2674 			 struct btrfs_dev_replace_item, time_stopped, 64);
2675 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2676 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2677 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2678 			 struct btrfs_dev_replace_item,
2679 			 num_uncorrectable_read_errors, 64);
2680 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2681 			 struct btrfs_dev_replace_item, cursor_left, 64);
2682 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2683 			 struct btrfs_dev_replace_item, cursor_right, 64);
2684 
2685 /* helper function to cast into the data area of the leaf. */
2686 #define btrfs_item_ptr(leaf, slot, type) \
2687 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2688 	btrfs_item_offset(leaf, slot)))
2689 
2690 #define btrfs_item_ptr_offset(leaf, slot) \
2691 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2692 	btrfs_item_offset(leaf, slot)))
2693 
2694 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2695 {
2696 	return crc32c(crc, address, length);
2697 }
2698 
2699 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2700 {
2701 	put_unaligned_le32(~crc, result);
2702 }
2703 
2704 static inline u64 btrfs_name_hash(const char *name, int len)
2705 {
2706        return crc32c((u32)~1, name, len);
2707 }
2708 
2709 /*
2710  * Figure the key offset of an extended inode ref
2711  */
2712 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2713                                    int len)
2714 {
2715        return (u64) crc32c(parent_objectid, name, len);
2716 }
2717 
2718 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2719 {
2720 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2721 }
2722 
2723 /* extent-tree.c */
2724 
2725 enum btrfs_inline_ref_type {
2726 	BTRFS_REF_TYPE_INVALID,
2727 	BTRFS_REF_TYPE_BLOCK,
2728 	BTRFS_REF_TYPE_DATA,
2729 	BTRFS_REF_TYPE_ANY,
2730 };
2731 
2732 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2733 				     struct btrfs_extent_inline_ref *iref,
2734 				     enum btrfs_inline_ref_type is_data);
2735 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2736 
2737 /*
2738  * Take the number of bytes to be checksummmed and figure out how many leaves
2739  * it would require to store the csums for that many bytes.
2740  */
2741 static inline u64 btrfs_csum_bytes_to_leaves(
2742 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2743 {
2744 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2745 
2746 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2747 }
2748 
2749 /*
2750  * Use this if we would be adding new items, as we could split nodes as we cow
2751  * down the tree.
2752  */
2753 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2754 						  unsigned num_items)
2755 {
2756 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2757 }
2758 
2759 /*
2760  * Doing a truncate or a modification won't result in new nodes or leaves, just
2761  * what we need for COW.
2762  */
2763 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2764 						 unsigned num_items)
2765 {
2766 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2767 }
2768 
2769 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2770 			      u64 start, u64 num_bytes);
2771 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2772 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2773 			   unsigned long count);
2774 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2775 				  struct btrfs_delayed_ref_root *delayed_refs,
2776 				  struct btrfs_delayed_ref_head *head);
2777 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2778 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2779 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2780 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2781 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2782 		     int reserved);
2783 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2784 				    u64 bytenr, u64 num_bytes);
2785 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2786 int btrfs_cross_ref_exist(struct btrfs_root *root,
2787 			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2788 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2789 					     struct btrfs_root *root,
2790 					     u64 parent, u64 root_objectid,
2791 					     const struct btrfs_disk_key *key,
2792 					     int level, u64 hint,
2793 					     u64 empty_size,
2794 					     enum btrfs_lock_nesting nest);
2795 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2796 			   u64 root_id,
2797 			   struct extent_buffer *buf,
2798 			   u64 parent, int last_ref);
2799 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2800 				     struct btrfs_root *root, u64 owner,
2801 				     u64 offset, u64 ram_bytes,
2802 				     struct btrfs_key *ins);
2803 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2804 				   u64 root_objectid, u64 owner, u64 offset,
2805 				   struct btrfs_key *ins);
2806 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2807 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2808 			 struct btrfs_key *ins, int is_data, int delalloc);
2809 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2810 		  struct extent_buffer *buf, int full_backref);
2811 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2812 		  struct extent_buffer *buf, int full_backref);
2813 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2814 				struct extent_buffer *eb, u64 flags,
2815 				int level, int is_data);
2816 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2817 
2818 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2819 			       u64 start, u64 len, int delalloc);
2820 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2821 			      u64 len);
2822 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2823 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2824 			 struct btrfs_ref *generic_ref);
2825 
2826 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2827 
2828 /*
2829  * Different levels for to flush space when doing space reservations.
2830  *
2831  * The higher the level, the more methods we try to reclaim space.
2832  */
2833 enum btrfs_reserve_flush_enum {
2834 	/* If we are in the transaction, we can't flush anything.*/
2835 	BTRFS_RESERVE_NO_FLUSH,
2836 
2837 	/*
2838 	 * Flush space by:
2839 	 * - Running delayed inode items
2840 	 * - Allocating a new chunk
2841 	 */
2842 	BTRFS_RESERVE_FLUSH_LIMIT,
2843 
2844 	/*
2845 	 * Flush space by:
2846 	 * - Running delayed inode items
2847 	 * - Running delayed refs
2848 	 * - Running delalloc and waiting for ordered extents
2849 	 * - Allocating a new chunk
2850 	 */
2851 	BTRFS_RESERVE_FLUSH_EVICT,
2852 
2853 	/*
2854 	 * Flush space by above mentioned methods and by:
2855 	 * - Running delayed iputs
2856 	 * - Committing transaction
2857 	 *
2858 	 * Can be interrupted by a fatal signal.
2859 	 */
2860 	BTRFS_RESERVE_FLUSH_DATA,
2861 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2862 	BTRFS_RESERVE_FLUSH_ALL,
2863 
2864 	/*
2865 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2866 	 * global rsv.
2867 	 *
2868 	 * Can be interrupted by a fatal signal.
2869 	 */
2870 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2871 };
2872 
2873 enum btrfs_flush_state {
2874 	FLUSH_DELAYED_ITEMS_NR	=	1,
2875 	FLUSH_DELAYED_ITEMS	=	2,
2876 	FLUSH_DELAYED_REFS_NR	=	3,
2877 	FLUSH_DELAYED_REFS	=	4,
2878 	FLUSH_DELALLOC		=	5,
2879 	FLUSH_DELALLOC_WAIT	=	6,
2880 	FLUSH_DELALLOC_FULL	=	7,
2881 	ALLOC_CHUNK		=	8,
2882 	ALLOC_CHUNK_FORCE	=	9,
2883 	RUN_DELAYED_IPUTS	=	10,
2884 	COMMIT_TRANS		=	11,
2885 };
2886 
2887 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2888 				     struct btrfs_block_rsv *rsv,
2889 				     int nitems, bool use_global_rsv);
2890 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2891 				      struct btrfs_block_rsv *rsv);
2892 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2893 
2894 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2895 				    u64 disk_num_bytes);
2896 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2897 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2898 				   u64 start, u64 end);
2899 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2900 			 u64 num_bytes, u64 *actual_bytes);
2901 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2902 
2903 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2904 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2905 					 struct btrfs_fs_info *fs_info);
2906 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2907 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2908 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2909 
2910 /* ctree.c */
2911 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2912 		     int *slot);
2913 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2914 int btrfs_previous_item(struct btrfs_root *root,
2915 			struct btrfs_path *path, u64 min_objectid,
2916 			int type);
2917 int btrfs_previous_extent_item(struct btrfs_root *root,
2918 			struct btrfs_path *path, u64 min_objectid);
2919 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2920 			     struct btrfs_path *path,
2921 			     const struct btrfs_key *new_key);
2922 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2923 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2924 			struct btrfs_key *key, int lowest_level,
2925 			u64 min_trans);
2926 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2927 			 struct btrfs_path *path,
2928 			 u64 min_trans);
2929 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2930 					   int slot);
2931 
2932 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2933 		    struct btrfs_root *root, struct extent_buffer *buf,
2934 		    struct extent_buffer *parent, int parent_slot,
2935 		    struct extent_buffer **cow_ret,
2936 		    enum btrfs_lock_nesting nest);
2937 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2938 		      struct btrfs_root *root,
2939 		      struct extent_buffer *buf,
2940 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2941 int btrfs_block_can_be_shared(struct btrfs_root *root,
2942 			      struct extent_buffer *buf);
2943 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2944 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2945 int btrfs_split_item(struct btrfs_trans_handle *trans,
2946 		     struct btrfs_root *root,
2947 		     struct btrfs_path *path,
2948 		     const struct btrfs_key *new_key,
2949 		     unsigned long split_offset);
2950 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2951 			 struct btrfs_root *root,
2952 			 struct btrfs_path *path,
2953 			 const struct btrfs_key *new_key);
2954 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2955 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2956 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2957 		      const struct btrfs_key *key, struct btrfs_path *p,
2958 		      int ins_len, int cow);
2959 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2960 			  struct btrfs_path *p, u64 time_seq);
2961 int btrfs_search_slot_for_read(struct btrfs_root *root,
2962 			       const struct btrfs_key *key,
2963 			       struct btrfs_path *p, int find_higher,
2964 			       int return_any);
2965 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2966 		       struct btrfs_root *root, struct extent_buffer *parent,
2967 		       int start_slot, u64 *last_ret,
2968 		       struct btrfs_key *progress);
2969 void btrfs_release_path(struct btrfs_path *p);
2970 struct btrfs_path *btrfs_alloc_path(void);
2971 void btrfs_free_path(struct btrfs_path *p);
2972 
2973 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2974 		   struct btrfs_path *path, int slot, int nr);
2975 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2976 				 struct btrfs_root *root,
2977 				 struct btrfs_path *path)
2978 {
2979 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2980 }
2981 
2982 /*
2983  * Describes a batch of items to insert in a btree. This is used by
2984  * btrfs_insert_empty_items().
2985  */
2986 struct btrfs_item_batch {
2987 	/*
2988 	 * Pointer to an array containing the keys of the items to insert (in
2989 	 * sorted order).
2990 	 */
2991 	const struct btrfs_key *keys;
2992 	/* Pointer to an array containing the data size for each item to insert. */
2993 	const u32 *data_sizes;
2994 	/*
2995 	 * The sum of data sizes for all items. The caller can compute this while
2996 	 * setting up the data_sizes array, so it ends up being more efficient
2997 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2998 	 * doing it, as it would avoid an extra loop over a potentially large
2999 	 * array, and in the case of setup_item_for_insert(), we would be doing
3000 	 * it while holding a write lock on a leaf and often on upper level nodes
3001 	 * too, unnecessarily increasing the size of a critical section.
3002 	 */
3003 	u32 total_data_size;
3004 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3005 	int nr;
3006 };
3007 
3008 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3009 				 struct btrfs_path *path,
3010 				 const struct btrfs_key *key,
3011 				 u32 data_size);
3012 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3013 		      const struct btrfs_key *key, void *data, u32 data_size);
3014 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3015 			     struct btrfs_root *root,
3016 			     struct btrfs_path *path,
3017 			     const struct btrfs_item_batch *batch);
3018 
3019 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3020 					  struct btrfs_root *root,
3021 					  struct btrfs_path *path,
3022 					  const struct btrfs_key *key,
3023 					  u32 data_size)
3024 {
3025 	struct btrfs_item_batch batch;
3026 
3027 	batch.keys = key;
3028 	batch.data_sizes = &data_size;
3029 	batch.total_data_size = data_size;
3030 	batch.nr = 1;
3031 
3032 	return btrfs_insert_empty_items(trans, root, path, &batch);
3033 }
3034 
3035 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3036 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3037 			u64 time_seq);
3038 
3039 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3040 			   struct btrfs_path *path);
3041 
3042 static inline int btrfs_next_old_item(struct btrfs_root *root,
3043 				      struct btrfs_path *p, u64 time_seq)
3044 {
3045 	++p->slots[0];
3046 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3047 		return btrfs_next_old_leaf(root, p, time_seq);
3048 	return 0;
3049 }
3050 
3051 /*
3052  * Search the tree again to find a leaf with greater keys.
3053  *
3054  * Returns 0 if it found something or 1 if there are no greater leaves.
3055  * Returns < 0 on error.
3056  */
3057 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3058 {
3059 	return btrfs_next_old_leaf(root, path, 0);
3060 }
3061 
3062 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3063 {
3064 	return btrfs_next_old_item(root, p, 0);
3065 }
3066 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3067 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3068 				     int for_reloc);
3069 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3070 			struct btrfs_root *root,
3071 			struct extent_buffer *node,
3072 			struct extent_buffer *parent);
3073 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3074 {
3075 	/*
3076 	 * Do it this way so we only ever do one test_bit in the normal case.
3077 	 */
3078 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3079 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3080 			return 2;
3081 		return 1;
3082 	}
3083 	return 0;
3084 }
3085 
3086 /*
3087  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3088  * anything except sleeping. This function is used to check the status of
3089  * the fs.
3090  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3091  * since setting and checking for SB_RDONLY in the superblock's flags is not
3092  * atomic.
3093  */
3094 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3095 {
3096 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3097 		btrfs_fs_closing(fs_info);
3098 }
3099 
3100 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3101 {
3102 	sb->s_flags |= SB_RDONLY;
3103 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3104 }
3105 
3106 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3107 {
3108 	sb->s_flags &= ~SB_RDONLY;
3109 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3110 }
3111 
3112 /* root-item.c */
3113 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3114 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3115 		       int name_len);
3116 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3117 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3118 		       int name_len);
3119 int btrfs_del_root(struct btrfs_trans_handle *trans,
3120 		   const struct btrfs_key *key);
3121 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3122 		      const struct btrfs_key *key,
3123 		      struct btrfs_root_item *item);
3124 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3125 				   struct btrfs_root *root,
3126 				   struct btrfs_key *key,
3127 				   struct btrfs_root_item *item);
3128 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3129 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3130 		    struct btrfs_key *root_key);
3131 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3132 void btrfs_set_root_node(struct btrfs_root_item *item,
3133 			 struct extent_buffer *node);
3134 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3135 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3136 			     struct btrfs_root *root);
3137 
3138 /* uuid-tree.c */
3139 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3140 			u64 subid);
3141 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3142 			u64 subid);
3143 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3144 
3145 /* dir-item.c */
3146 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3147 			  const char *name, int name_len);
3148 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3149 			  int name_len, struct btrfs_inode *dir,
3150 			  struct btrfs_key *location, u8 type, u64 index);
3151 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3152 					     struct btrfs_root *root,
3153 					     struct btrfs_path *path, u64 dir,
3154 					     const char *name, int name_len,
3155 					     int mod);
3156 struct btrfs_dir_item *
3157 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3158 			    struct btrfs_root *root,
3159 			    struct btrfs_path *path, u64 dir,
3160 			    u64 index, const char *name, int name_len,
3161 			    int mod);
3162 struct btrfs_dir_item *
3163 btrfs_search_dir_index_item(struct btrfs_root *root,
3164 			    struct btrfs_path *path, u64 dirid,
3165 			    const char *name, int name_len);
3166 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3167 			      struct btrfs_root *root,
3168 			      struct btrfs_path *path,
3169 			      struct btrfs_dir_item *di);
3170 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3171 			    struct btrfs_root *root,
3172 			    struct btrfs_path *path, u64 objectid,
3173 			    const char *name, u16 name_len,
3174 			    const void *data, u16 data_len);
3175 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3176 					  struct btrfs_root *root,
3177 					  struct btrfs_path *path, u64 dir,
3178 					  const char *name, u16 name_len,
3179 					  int mod);
3180 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3181 						 struct btrfs_path *path,
3182 						 const char *name,
3183 						 int name_len);
3184 
3185 /* orphan.c */
3186 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3187 			     struct btrfs_root *root, u64 offset);
3188 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3189 			  struct btrfs_root *root, u64 offset);
3190 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3191 
3192 /* file-item.c */
3193 struct btrfs_dio_private;
3194 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3195 		    struct btrfs_root *root, u64 bytenr, u64 len);
3196 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3197 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3198 			     struct btrfs_root *root,
3199 			     u64 objectid, u64 pos,
3200 			     u64 disk_offset, u64 disk_num_bytes,
3201 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3202 			     u8 compression, u8 encryption, u16 other_encoding);
3203 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3204 			     struct btrfs_root *root,
3205 			     struct btrfs_path *path, u64 objectid,
3206 			     u64 bytenr, int mod);
3207 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3208 			   struct btrfs_root *root,
3209 			   struct btrfs_ordered_sum *sums);
3210 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3211 				u64 offset, bool one_ordered);
3212 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3213 			     struct list_head *list, int search_commit);
3214 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3215 				     const struct btrfs_path *path,
3216 				     struct btrfs_file_extent_item *fi,
3217 				     const bool new_inline,
3218 				     struct extent_map *em);
3219 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3220 					u64 len);
3221 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3222 				      u64 len);
3223 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3224 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3225 
3226 /* inode.c */
3227 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3228 				   int mirror_num, unsigned long bio_flags);
3229 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3230 				    u32 bio_offset, struct page *page,
3231 				    u64 start, u64 end);
3232 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3233 					   u64 start, u64 len);
3234 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3235 			      u64 *orig_start, u64 *orig_block_len,
3236 			      u64 *ram_bytes, bool strict);
3237 
3238 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3239 				struct btrfs_inode *inode);
3240 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3241 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3242 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3243 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3244 		       const char *name, int name_len);
3245 int btrfs_add_link(struct btrfs_trans_handle *trans,
3246 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3247 		   const char *name, int name_len, int add_backref, u64 index);
3248 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3249 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3250 			 int front);
3251 
3252 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3253 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3254 			       bool in_reclaim_context);
3255 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3256 			      unsigned int extra_bits,
3257 			      struct extent_state **cached_state);
3258 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3259 			     struct btrfs_root *new_root,
3260 			     struct btrfs_root *parent_root,
3261 			     struct user_namespace *mnt_userns);
3262  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3263 			       unsigned *bits);
3264 void btrfs_clear_delalloc_extent(struct inode *inode,
3265 				 struct extent_state *state, unsigned *bits);
3266 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3267 				 struct extent_state *other);
3268 void btrfs_split_delalloc_extent(struct inode *inode,
3269 				 struct extent_state *orig, u64 split);
3270 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3271 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3272 int btrfs_readpage(struct file *file, struct page *page);
3273 void btrfs_evict_inode(struct inode *inode);
3274 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3275 struct inode *btrfs_alloc_inode(struct super_block *sb);
3276 void btrfs_destroy_inode(struct inode *inode);
3277 void btrfs_free_inode(struct inode *inode);
3278 int btrfs_drop_inode(struct inode *inode);
3279 int __init btrfs_init_cachep(void);
3280 void __cold btrfs_destroy_cachep(void);
3281 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3282 			      struct btrfs_root *root, struct btrfs_path *path);
3283 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3284 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3285 				    struct page *page, size_t pg_offset,
3286 				    u64 start, u64 end);
3287 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3288 		       struct btrfs_root *root, struct btrfs_inode *inode);
3289 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3290 				struct btrfs_root *root, struct btrfs_inode *inode);
3291 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3292 		struct btrfs_inode *inode);
3293 int btrfs_orphan_cleanup(struct btrfs_root *root);
3294 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3295 void btrfs_add_delayed_iput(struct inode *inode);
3296 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3297 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3298 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3299 			      u64 start, u64 num_bytes, u64 min_size,
3300 			      loff_t actual_len, u64 *alloc_hint);
3301 int btrfs_prealloc_file_range_trans(struct inode *inode,
3302 				    struct btrfs_trans_handle *trans, int mode,
3303 				    u64 start, u64 num_bytes, u64 min_size,
3304 				    loff_t actual_len, u64 *alloc_hint);
3305 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3306 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3307 		struct writeback_control *wbc);
3308 int btrfs_writepage_cow_fixup(struct page *page);
3309 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3310 					  struct page *page, u64 start,
3311 					  u64 end, bool uptodate);
3312 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3313 			   struct btrfs_ioctl_encoded_io_args *encoded);
3314 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3315 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3316 
3317 extern const struct dentry_operations btrfs_dentry_operations;
3318 extern const struct iomap_ops btrfs_dio_iomap_ops;
3319 extern const struct iomap_dio_ops btrfs_dio_ops;
3320 
3321 /* Inode locking type flags, by default the exclusive lock is taken */
3322 #define BTRFS_ILOCK_SHARED	(1U << 0)
3323 #define BTRFS_ILOCK_TRY 	(1U << 1)
3324 #define BTRFS_ILOCK_MMAP	(1U << 2)
3325 
3326 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3327 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3328 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3329 			      const u64 add_bytes,
3330 			      const u64 del_bytes);
3331 
3332 /* ioctl.c */
3333 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3334 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3335 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3336 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3337 		       struct dentry *dentry, struct fileattr *fa);
3338 int btrfs_ioctl_get_supported_features(void __user *arg);
3339 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3340 int __pure btrfs_is_empty_uuid(u8 *uuid);
3341 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3342 		      struct btrfs_ioctl_defrag_range_args *range,
3343 		      u64 newer_than, unsigned long max_to_defrag);
3344 void btrfs_get_block_group_info(struct list_head *groups_list,
3345 				struct btrfs_ioctl_space_info *space);
3346 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3347 			       struct btrfs_ioctl_balance_args *bargs);
3348 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3349 			enum btrfs_exclusive_operation type);
3350 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3351 				 enum btrfs_exclusive_operation type);
3352 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3353 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3354 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3355 			  enum btrfs_exclusive_operation op);
3356 
3357 
3358 /* file.c */
3359 int __init btrfs_auto_defrag_init(void);
3360 void __cold btrfs_auto_defrag_exit(void);
3361 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3362 			   struct btrfs_inode *inode, u32 extent_thresh);
3363 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3364 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3365 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3366 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3367 			     int skip_pinned);
3368 extern const struct file_operations btrfs_file_operations;
3369 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3370 		       struct btrfs_root *root, struct btrfs_inode *inode,
3371 		       struct btrfs_drop_extents_args *args);
3372 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3373 			   struct btrfs_path *path, const u64 start,
3374 			   const u64 end,
3375 			   struct btrfs_replace_extent_info *extent_info,
3376 			   struct btrfs_trans_handle **trans_out);
3377 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3378 			      struct btrfs_inode *inode, u64 start, u64 end);
3379 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3380 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3381 int btrfs_release_file(struct inode *inode, struct file *file);
3382 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3383 		      size_t num_pages, loff_t pos, size_t write_bytes,
3384 		      struct extent_state **cached, bool noreserve);
3385 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3386 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3387 			   size_t *write_bytes);
3388 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3389 
3390 /* tree-defrag.c */
3391 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3392 			struct btrfs_root *root);
3393 
3394 /* super.c */
3395 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3396 			unsigned long new_flags);
3397 int btrfs_sync_fs(struct super_block *sb, int wait);
3398 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3399 					  u64 subvol_objectid);
3400 
3401 static inline __printf(2, 3) __cold
3402 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3403 {
3404 }
3405 
3406 #ifdef CONFIG_PRINTK
3407 __printf(2, 3)
3408 __cold
3409 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3410 #else
3411 #define btrfs_printk(fs_info, fmt, args...) \
3412 	btrfs_no_printk(fs_info, fmt, ##args)
3413 #endif
3414 
3415 #define btrfs_emerg(fs_info, fmt, args...) \
3416 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3417 #define btrfs_alert(fs_info, fmt, args...) \
3418 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3419 #define btrfs_crit(fs_info, fmt, args...) \
3420 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3421 #define btrfs_err(fs_info, fmt, args...) \
3422 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3423 #define btrfs_warn(fs_info, fmt, args...) \
3424 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3425 #define btrfs_notice(fs_info, fmt, args...) \
3426 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3427 #define btrfs_info(fs_info, fmt, args...) \
3428 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3429 
3430 /*
3431  * Wrappers that use printk_in_rcu
3432  */
3433 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3434 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3435 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3436 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3437 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3438 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3439 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3440 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3441 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3442 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3443 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3444 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3445 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3446 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3447 
3448 /*
3449  * Wrappers that use a ratelimited printk_in_rcu
3450  */
3451 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3452 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3453 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3454 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3455 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3456 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3457 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3458 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3459 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3460 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3461 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3462 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3463 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3464 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3465 
3466 /*
3467  * Wrappers that use a ratelimited printk
3468  */
3469 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3470 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3471 #define btrfs_alert_rl(fs_info, fmt, args...) \
3472 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3473 #define btrfs_crit_rl(fs_info, fmt, args...) \
3474 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3475 #define btrfs_err_rl(fs_info, fmt, args...) \
3476 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3477 #define btrfs_warn_rl(fs_info, fmt, args...) \
3478 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3479 #define btrfs_notice_rl(fs_info, fmt, args...) \
3480 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3481 #define btrfs_info_rl(fs_info, fmt, args...) \
3482 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3483 
3484 #if defined(CONFIG_DYNAMIC_DEBUG)
3485 #define btrfs_debug(fs_info, fmt, args...)				\
3486 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3487 				   fs_info, KERN_DEBUG fmt, ##args)
3488 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3489 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3490 				   fs_info, KERN_DEBUG fmt, ##args)
3491 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3492 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3493 				   fs_info, KERN_DEBUG fmt, ##args)
3494 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3495 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3496 				   fs_info, KERN_DEBUG fmt, ##args)
3497 #elif defined(DEBUG)
3498 #define btrfs_debug(fs_info, fmt, args...) \
3499 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3500 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3501 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3502 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3503 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3504 #define btrfs_debug_rl(fs_info, fmt, args...) \
3505 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3506 #else
3507 #define btrfs_debug(fs_info, fmt, args...) \
3508 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3509 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3510 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3511 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3512 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3513 #define btrfs_debug_rl(fs_info, fmt, args...) \
3514 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3515 #endif
3516 
3517 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3518 do {							\
3519 	rcu_read_lock();				\
3520 	btrfs_printk(fs_info, fmt, ##args);		\
3521 	rcu_read_unlock();				\
3522 } while (0)
3523 
3524 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3525 do {							\
3526 	rcu_read_lock();				\
3527 	btrfs_no_printk(fs_info, fmt, ##args);		\
3528 	rcu_read_unlock();				\
3529 } while (0)
3530 
3531 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3532 do {								\
3533 	static DEFINE_RATELIMIT_STATE(_rs,			\
3534 		DEFAULT_RATELIMIT_INTERVAL,			\
3535 		DEFAULT_RATELIMIT_BURST);       		\
3536 	if (__ratelimit(&_rs))					\
3537 		btrfs_printk(fs_info, fmt, ##args);		\
3538 } while (0)
3539 
3540 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3541 do {								\
3542 	rcu_read_lock();					\
3543 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3544 	rcu_read_unlock();					\
3545 } while (0)
3546 
3547 #ifdef CONFIG_BTRFS_ASSERT
3548 __cold __noreturn
3549 static inline void assertfail(const char *expr, const char *file, int line)
3550 {
3551 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3552 	BUG();
3553 }
3554 
3555 #define ASSERT(expr)						\
3556 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3557 
3558 #else
3559 static inline void assertfail(const char *expr, const char* file, int line) { }
3560 #define ASSERT(expr)	(void)(expr)
3561 #endif
3562 
3563 #if BITS_PER_LONG == 32
3564 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3565 /*
3566  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3567  * addresses of extents.
3568  *
3569  * For 4K page size it's about 10T, for 64K it's 160T.
3570  */
3571 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3572 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3573 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3574 #endif
3575 
3576 /*
3577  * Get the correct offset inside the page of extent buffer.
3578  *
3579  * @eb:		target extent buffer
3580  * @start:	offset inside the extent buffer
3581  *
3582  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3583  */
3584 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3585 					   unsigned long offset)
3586 {
3587 	/*
3588 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3589 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3590 	 *
3591 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3592 	 * to the eb, thus we have to take the eb->start into consideration.
3593 	 */
3594 	return offset_in_page(offset + eb->start);
3595 }
3596 
3597 static inline unsigned long get_eb_page_index(unsigned long offset)
3598 {
3599 	/*
3600 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3601 	 *
3602 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3603 	 * and have ensured that all tree blocks are contained in one page,
3604 	 * thus we always get index == 0.
3605 	 */
3606 	return offset >> PAGE_SHIFT;
3607 }
3608 
3609 /*
3610  * Use that for functions that are conditionally exported for sanity tests but
3611  * otherwise static
3612  */
3613 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3614 #define EXPORT_FOR_TESTS static
3615 #else
3616 #define EXPORT_FOR_TESTS
3617 #endif
3618 
3619 __cold
3620 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3621 {
3622 	btrfs_err(fs_info,
3623 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3624 }
3625 
3626 __printf(5, 6)
3627 __cold
3628 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3629 		     unsigned int line, int errno, const char *fmt, ...);
3630 
3631 const char * __attribute_const__ btrfs_decode_error(int errno);
3632 
3633 __cold
3634 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3635 			       const char *function,
3636 			       unsigned int line, int errno);
3637 
3638 /*
3639  * Call btrfs_abort_transaction as early as possible when an error condition is
3640  * detected, that way the exact line number is reported.
3641  */
3642 #define btrfs_abort_transaction(trans, errno)		\
3643 do {								\
3644 	/* Report first abort since mount */			\
3645 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3646 			&((trans)->fs_info->fs_state))) {	\
3647 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3648 			WARN(1, KERN_DEBUG				\
3649 			"BTRFS: Transaction aborted (error %d)\n",	\
3650 			(errno));					\
3651 		} else {						\
3652 			btrfs_debug((trans)->fs_info,			\
3653 				    "Transaction aborted (error %d)", \
3654 				  (errno));			\
3655 		}						\
3656 	}							\
3657 	__btrfs_abort_transaction((trans), __func__,		\
3658 				  __LINE__, (errno));		\
3659 } while (0)
3660 
3661 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3662 do {								\
3663 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3664 			  (errno), fmt, ##args);		\
3665 } while (0)
3666 
3667 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3668 						   &(fs_info)->fs_state)))
3669 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3670 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3671 			   &(fs_info)->fs_state)))
3672 
3673 __printf(5, 6)
3674 __cold
3675 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3676 		   unsigned int line, int errno, const char *fmt, ...);
3677 /*
3678  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3679  * will panic().  Otherwise we BUG() here.
3680  */
3681 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3682 do {									\
3683 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3684 	BUG();								\
3685 } while (0)
3686 
3687 
3688 /* compatibility and incompatibility defines */
3689 
3690 #define btrfs_set_fs_incompat(__fs_info, opt) \
3691 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3692 				#opt)
3693 
3694 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3695 					   u64 flag, const char* name)
3696 {
3697 	struct btrfs_super_block *disk_super;
3698 	u64 features;
3699 
3700 	disk_super = fs_info->super_copy;
3701 	features = btrfs_super_incompat_flags(disk_super);
3702 	if (!(features & flag)) {
3703 		spin_lock(&fs_info->super_lock);
3704 		features = btrfs_super_incompat_flags(disk_super);
3705 		if (!(features & flag)) {
3706 			features |= flag;
3707 			btrfs_set_super_incompat_flags(disk_super, features);
3708 			btrfs_info(fs_info,
3709 				"setting incompat feature flag for %s (0x%llx)",
3710 				name, flag);
3711 		}
3712 		spin_unlock(&fs_info->super_lock);
3713 	}
3714 }
3715 
3716 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3717 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3718 				  #opt)
3719 
3720 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3721 					     u64 flag, const char* name)
3722 {
3723 	struct btrfs_super_block *disk_super;
3724 	u64 features;
3725 
3726 	disk_super = fs_info->super_copy;
3727 	features = btrfs_super_incompat_flags(disk_super);
3728 	if (features & flag) {
3729 		spin_lock(&fs_info->super_lock);
3730 		features = btrfs_super_incompat_flags(disk_super);
3731 		if (features & flag) {
3732 			features &= ~flag;
3733 			btrfs_set_super_incompat_flags(disk_super, features);
3734 			btrfs_info(fs_info,
3735 				"clearing incompat feature flag for %s (0x%llx)",
3736 				name, flag);
3737 		}
3738 		spin_unlock(&fs_info->super_lock);
3739 	}
3740 }
3741 
3742 #define btrfs_fs_incompat(fs_info, opt) \
3743 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3744 
3745 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3746 {
3747 	struct btrfs_super_block *disk_super;
3748 	disk_super = fs_info->super_copy;
3749 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3750 }
3751 
3752 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3753 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3754 				 #opt)
3755 
3756 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3757 					    u64 flag, const char *name)
3758 {
3759 	struct btrfs_super_block *disk_super;
3760 	u64 features;
3761 
3762 	disk_super = fs_info->super_copy;
3763 	features = btrfs_super_compat_ro_flags(disk_super);
3764 	if (!(features & flag)) {
3765 		spin_lock(&fs_info->super_lock);
3766 		features = btrfs_super_compat_ro_flags(disk_super);
3767 		if (!(features & flag)) {
3768 			features |= flag;
3769 			btrfs_set_super_compat_ro_flags(disk_super, features);
3770 			btrfs_info(fs_info,
3771 				"setting compat-ro feature flag for %s (0x%llx)",
3772 				name, flag);
3773 		}
3774 		spin_unlock(&fs_info->super_lock);
3775 	}
3776 }
3777 
3778 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3779 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3780 				   #opt)
3781 
3782 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3783 					      u64 flag, const char *name)
3784 {
3785 	struct btrfs_super_block *disk_super;
3786 	u64 features;
3787 
3788 	disk_super = fs_info->super_copy;
3789 	features = btrfs_super_compat_ro_flags(disk_super);
3790 	if (features & flag) {
3791 		spin_lock(&fs_info->super_lock);
3792 		features = btrfs_super_compat_ro_flags(disk_super);
3793 		if (features & flag) {
3794 			features &= ~flag;
3795 			btrfs_set_super_compat_ro_flags(disk_super, features);
3796 			btrfs_info(fs_info,
3797 				"clearing compat-ro feature flag for %s (0x%llx)",
3798 				name, flag);
3799 		}
3800 		spin_unlock(&fs_info->super_lock);
3801 	}
3802 }
3803 
3804 #define btrfs_fs_compat_ro(fs_info, opt) \
3805 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3806 
3807 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3808 {
3809 	struct btrfs_super_block *disk_super;
3810 	disk_super = fs_info->super_copy;
3811 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3812 }
3813 
3814 /* acl.c */
3815 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3816 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3817 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3818 		  struct posix_acl *acl, int type);
3819 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3820 		   struct inode *inode, struct inode *dir);
3821 #else
3822 #define btrfs_get_acl NULL
3823 #define btrfs_set_acl NULL
3824 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3825 				 struct inode *inode, struct inode *dir)
3826 {
3827 	return 0;
3828 }
3829 #endif
3830 
3831 /* relocation.c */
3832 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3834 			  struct btrfs_root *root);
3835 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3836 			    struct btrfs_root *root);
3837 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3838 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3839 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3840 			  struct btrfs_root *root, struct extent_buffer *buf,
3841 			  struct extent_buffer *cow);
3842 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3843 			      u64 *bytes_to_reserve);
3844 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3845 			      struct btrfs_pending_snapshot *pending);
3846 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3847 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3848 				   u64 bytenr);
3849 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3850 
3851 /* scrub.c */
3852 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3853 		    u64 end, struct btrfs_scrub_progress *progress,
3854 		    int readonly, int is_dev_replace);
3855 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3856 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3857 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3858 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3859 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3860 			 struct btrfs_scrub_progress *progress);
3861 static inline void btrfs_init_full_stripe_locks_tree(
3862 			struct btrfs_full_stripe_locks_tree *locks_root)
3863 {
3864 	locks_root->root = RB_ROOT;
3865 	mutex_init(&locks_root->lock);
3866 }
3867 
3868 /* dev-replace.c */
3869 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3870 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3871 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3872 
3873 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3874 {
3875 	btrfs_bio_counter_sub(fs_info, 1);
3876 }
3877 
3878 static inline int is_fstree(u64 rootid)
3879 {
3880 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3881 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3882 	      !btrfs_qgroup_level(rootid)))
3883 		return 1;
3884 	return 0;
3885 }
3886 
3887 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3888 {
3889 	return signal_pending(current);
3890 }
3891 
3892 /* verity.c */
3893 #ifdef CONFIG_FS_VERITY
3894 
3895 extern const struct fsverity_operations btrfs_verityops;
3896 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3897 
3898 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3899 		   encryption, 8);
3900 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3901 		   size, 64);
3902 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3903 			 struct btrfs_verity_descriptor_item, encryption, 8);
3904 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3905 			 struct btrfs_verity_descriptor_item, size, 64);
3906 
3907 #else
3908 
3909 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3910 {
3911 	return 0;
3912 }
3913 
3914 #endif
3915 
3916 /* Sanity test specific functions */
3917 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3918 void btrfs_test_destroy_inode(struct inode *inode);
3919 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3920 {
3921 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3922 }
3923 #else
3924 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3925 {
3926 	return 0;
3927 }
3928 #endif
3929 
3930 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3931 {
3932 	return fs_info->zoned != 0;
3933 }
3934 
3935 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3936 {
3937 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3938 }
3939 
3940 /*
3941  * We use page status Private2 to indicate there is an ordered extent with
3942  * unfinished IO.
3943  *
3944  * Rename the Private2 accessors to Ordered, to improve readability.
3945  */
3946 #define PageOrdered(page)		PagePrivate2(page)
3947 #define SetPageOrdered(page)		SetPagePrivate2(page)
3948 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
3949 #define folio_test_ordered(folio)	folio_test_private_2(folio)
3950 #define folio_set_ordered(folio)	folio_set_private_2(folio)
3951 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
3952 
3953 #endif
3954