1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 53 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 54 55 /* 56 * Maximum number of mirrors that can be available for all profiles counting 57 * the target device of dev-replace as one. During an active device replace 58 * procedure, the target device of the copy operation is a mirror for the 59 * filesystem data as well that can be used to read data in order to repair 60 * read errors on other disks. 61 * 62 * Current value is derived from RAID1C4 with 4 copies. 63 */ 64 #define BTRFS_MAX_MIRRORS (4 + 1) 65 66 #define BTRFS_MAX_LEVEL 8 67 68 #define BTRFS_OLDEST_GENERATION 0ULL 69 70 /* 71 * we can actually store much bigger names, but lets not confuse the rest 72 * of linux 73 */ 74 #define BTRFS_NAME_LEN 255 75 76 /* 77 * Theoretical limit is larger, but we keep this down to a sane 78 * value. That should limit greatly the possibility of collisions on 79 * inode ref items. 80 */ 81 #define BTRFS_LINK_MAX 65535U 82 83 #define BTRFS_EMPTY_DIR_SIZE 0 84 85 /* ioprio of readahead is set to idle */ 86 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 87 88 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 89 90 /* 91 * Use large batch size to reduce overhead of metadata updates. On the reader 92 * side, we only read it when we are close to ENOSPC and the read overhead is 93 * mostly related to the number of CPUs, so it is OK to use arbitrary large 94 * value here. 95 */ 96 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 97 98 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 99 100 /* 101 * Deltas are an effective way to populate global statistics. Give macro names 102 * to make it clear what we're doing. An example is discard_extents in 103 * btrfs_free_space_ctl. 104 */ 105 #define BTRFS_STAT_NR_ENTRIES 2 106 #define BTRFS_STAT_CURR 0 107 #define BTRFS_STAT_PREV 1 108 109 /* 110 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 111 */ 112 static inline u32 count_max_extents(u64 size) 113 { 114 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 115 } 116 117 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 118 { 119 BUG_ON(num_stripes == 0); 120 return sizeof(struct btrfs_chunk) + 121 sizeof(struct btrfs_stripe) * (num_stripes - 1); 122 } 123 124 /* 125 * Runtime (in-memory) states of filesystem 126 */ 127 enum { 128 /* Global indicator of serious filesystem errors */ 129 BTRFS_FS_STATE_ERROR, 130 /* 131 * Filesystem is being remounted, allow to skip some operations, like 132 * defrag 133 */ 134 BTRFS_FS_STATE_REMOUNTING, 135 /* Filesystem in RO mode */ 136 BTRFS_FS_STATE_RO, 137 /* Track if a transaction abort has been reported on this filesystem */ 138 BTRFS_FS_STATE_TRANS_ABORTED, 139 /* 140 * Bio operations should be blocked on this filesystem because a source 141 * or target device is being destroyed as part of a device replace 142 */ 143 BTRFS_FS_STATE_DEV_REPLACING, 144 /* The btrfs_fs_info created for self-tests */ 145 BTRFS_FS_STATE_DUMMY_FS_INFO, 146 147 BTRFS_FS_STATE_NO_CSUMS, 148 }; 149 150 #define BTRFS_BACKREF_REV_MAX 256 151 #define BTRFS_BACKREF_REV_SHIFT 56 152 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 153 BTRFS_BACKREF_REV_SHIFT) 154 155 #define BTRFS_OLD_BACKREF_REV 0 156 #define BTRFS_MIXED_BACKREF_REV 1 157 158 /* 159 * every tree block (leaf or node) starts with this header. 160 */ 161 struct btrfs_header { 162 /* these first four must match the super block */ 163 u8 csum[BTRFS_CSUM_SIZE]; 164 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 165 __le64 bytenr; /* which block this node is supposed to live in */ 166 __le64 flags; 167 168 /* allowed to be different from the super from here on down */ 169 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 170 __le64 generation; 171 __le64 owner; 172 __le32 nritems; 173 u8 level; 174 } __attribute__ ((__packed__)); 175 176 /* 177 * this is a very generous portion of the super block, giving us 178 * room to translate 14 chunks with 3 stripes each. 179 */ 180 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 181 182 /* 183 * just in case we somehow lose the roots and are not able to mount, 184 * we store an array of the roots from previous transactions 185 * in the super. 186 */ 187 #define BTRFS_NUM_BACKUP_ROOTS 4 188 struct btrfs_root_backup { 189 __le64 tree_root; 190 __le64 tree_root_gen; 191 192 __le64 chunk_root; 193 __le64 chunk_root_gen; 194 195 __le64 extent_root; 196 __le64 extent_root_gen; 197 198 __le64 fs_root; 199 __le64 fs_root_gen; 200 201 __le64 dev_root; 202 __le64 dev_root_gen; 203 204 __le64 csum_root; 205 __le64 csum_root_gen; 206 207 __le64 total_bytes; 208 __le64 bytes_used; 209 __le64 num_devices; 210 /* future */ 211 __le64 unused_64[4]; 212 213 u8 tree_root_level; 214 u8 chunk_root_level; 215 u8 extent_root_level; 216 u8 fs_root_level; 217 u8 dev_root_level; 218 u8 csum_root_level; 219 /* future and to align */ 220 u8 unused_8[10]; 221 } __attribute__ ((__packed__)); 222 223 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 224 #define BTRFS_SUPER_INFO_SIZE 4096 225 226 /* 227 * the super block basically lists the main trees of the FS 228 * it currently lacks any block count etc etc 229 */ 230 struct btrfs_super_block { 231 /* the first 4 fields must match struct btrfs_header */ 232 u8 csum[BTRFS_CSUM_SIZE]; 233 /* FS specific UUID, visible to user */ 234 u8 fsid[BTRFS_FSID_SIZE]; 235 __le64 bytenr; /* this block number */ 236 __le64 flags; 237 238 /* allowed to be different from the btrfs_header from here own down */ 239 __le64 magic; 240 __le64 generation; 241 __le64 root; 242 __le64 chunk_root; 243 __le64 log_root; 244 245 /* this will help find the new super based on the log root */ 246 __le64 log_root_transid; 247 __le64 total_bytes; 248 __le64 bytes_used; 249 __le64 root_dir_objectid; 250 __le64 num_devices; 251 __le32 sectorsize; 252 __le32 nodesize; 253 __le32 __unused_leafsize; 254 __le32 stripesize; 255 __le32 sys_chunk_array_size; 256 __le64 chunk_root_generation; 257 __le64 compat_flags; 258 __le64 compat_ro_flags; 259 __le64 incompat_flags; 260 __le16 csum_type; 261 u8 root_level; 262 u8 chunk_root_level; 263 u8 log_root_level; 264 struct btrfs_dev_item dev_item; 265 266 char label[BTRFS_LABEL_SIZE]; 267 268 __le64 cache_generation; 269 __le64 uuid_tree_generation; 270 271 /* the UUID written into btree blocks */ 272 u8 metadata_uuid[BTRFS_FSID_SIZE]; 273 274 /* future expansion */ 275 __le64 reserved[28]; 276 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 277 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 278 279 /* Padded to 4096 bytes */ 280 u8 padding[565]; 281 } __attribute__ ((__packed__)); 282 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 283 284 /* 285 * Compat flags that we support. If any incompat flags are set other than the 286 * ones specified below then we will fail to mount 287 */ 288 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 289 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 290 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 291 292 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 293 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 294 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 295 BTRFS_FEATURE_COMPAT_RO_VERITY) 296 297 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 298 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 299 300 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 301 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 302 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 303 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 304 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 305 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 306 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 307 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 308 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 309 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 310 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 311 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 312 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 313 BTRFS_FEATURE_INCOMPAT_ZONED) 314 315 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 316 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 317 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 318 319 /* 320 * A leaf is full of items. offset and size tell us where to find 321 * the item in the leaf (relative to the start of the data area) 322 */ 323 struct btrfs_item { 324 struct btrfs_disk_key key; 325 __le32 offset; 326 __le32 size; 327 } __attribute__ ((__packed__)); 328 329 /* 330 * leaves have an item area and a data area: 331 * [item0, item1....itemN] [free space] [dataN...data1, data0] 332 * 333 * The data is separate from the items to get the keys closer together 334 * during searches. 335 */ 336 struct btrfs_leaf { 337 struct btrfs_header header; 338 struct btrfs_item items[]; 339 } __attribute__ ((__packed__)); 340 341 /* 342 * all non-leaf blocks are nodes, they hold only keys and pointers to 343 * other blocks 344 */ 345 struct btrfs_key_ptr { 346 struct btrfs_disk_key key; 347 __le64 blockptr; 348 __le64 generation; 349 } __attribute__ ((__packed__)); 350 351 struct btrfs_node { 352 struct btrfs_header header; 353 struct btrfs_key_ptr ptrs[]; 354 } __attribute__ ((__packed__)); 355 356 /* Read ahead values for struct btrfs_path.reada */ 357 enum { 358 READA_NONE, 359 READA_BACK, 360 READA_FORWARD, 361 /* 362 * Similar to READA_FORWARD but unlike it: 363 * 364 * 1) It will trigger readahead even for leaves that are not close to 365 * each other on disk; 366 * 2) It also triggers readahead for nodes; 367 * 3) During a search, even when a node or leaf is already in memory, it 368 * will still trigger readahead for other nodes and leaves that follow 369 * it. 370 * 371 * This is meant to be used only when we know we are iterating over the 372 * entire tree or a very large part of it. 373 */ 374 READA_FORWARD_ALWAYS, 375 }; 376 377 /* 378 * btrfs_paths remember the path taken from the root down to the leaf. 379 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 380 * to any other levels that are present. 381 * 382 * The slots array records the index of the item or block pointer 383 * used while walking the tree. 384 */ 385 struct btrfs_path { 386 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 387 int slots[BTRFS_MAX_LEVEL]; 388 /* if there is real range locking, this locks field will change */ 389 u8 locks[BTRFS_MAX_LEVEL]; 390 u8 reada; 391 /* keep some upper locks as we walk down */ 392 u8 lowest_level; 393 394 /* 395 * set by btrfs_split_item, tells search_slot to keep all locks 396 * and to force calls to keep space in the nodes 397 */ 398 unsigned int search_for_split:1; 399 unsigned int keep_locks:1; 400 unsigned int skip_locking:1; 401 unsigned int search_commit_root:1; 402 unsigned int need_commit_sem:1; 403 unsigned int skip_release_on_error:1; 404 /* 405 * Indicate that new item (btrfs_search_slot) is extending already 406 * existing item and ins_len contains only the data size and not item 407 * header (ie. sizeof(struct btrfs_item) is not included). 408 */ 409 unsigned int search_for_extension:1; 410 }; 411 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 412 sizeof(struct btrfs_item)) 413 struct btrfs_dev_replace { 414 u64 replace_state; /* see #define above */ 415 time64_t time_started; /* seconds since 1-Jan-1970 */ 416 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 417 atomic64_t num_write_errors; 418 atomic64_t num_uncorrectable_read_errors; 419 420 u64 cursor_left; 421 u64 committed_cursor_left; 422 u64 cursor_left_last_write_of_item; 423 u64 cursor_right; 424 425 u64 cont_reading_from_srcdev_mode; /* see #define above */ 426 427 int is_valid; 428 int item_needs_writeback; 429 struct btrfs_device *srcdev; 430 struct btrfs_device *tgtdev; 431 432 struct mutex lock_finishing_cancel_unmount; 433 struct rw_semaphore rwsem; 434 435 struct btrfs_scrub_progress scrub_progress; 436 437 struct percpu_counter bio_counter; 438 wait_queue_head_t replace_wait; 439 }; 440 441 /* 442 * free clusters are used to claim free space in relatively large chunks, 443 * allowing us to do less seeky writes. They are used for all metadata 444 * allocations. In ssd_spread mode they are also used for data allocations. 445 */ 446 struct btrfs_free_cluster { 447 spinlock_t lock; 448 spinlock_t refill_lock; 449 struct rb_root root; 450 451 /* largest extent in this cluster */ 452 u64 max_size; 453 454 /* first extent starting offset */ 455 u64 window_start; 456 457 /* We did a full search and couldn't create a cluster */ 458 bool fragmented; 459 460 struct btrfs_block_group *block_group; 461 /* 462 * when a cluster is allocated from a block group, we put the 463 * cluster onto a list in the block group so that it can 464 * be freed before the block group is freed. 465 */ 466 struct list_head block_group_list; 467 }; 468 469 enum btrfs_caching_type { 470 BTRFS_CACHE_NO, 471 BTRFS_CACHE_STARTED, 472 BTRFS_CACHE_FAST, 473 BTRFS_CACHE_FINISHED, 474 BTRFS_CACHE_ERROR, 475 }; 476 477 /* 478 * Tree to record all locked full stripes of a RAID5/6 block group 479 */ 480 struct btrfs_full_stripe_locks_tree { 481 struct rb_root root; 482 struct mutex lock; 483 }; 484 485 /* Discard control. */ 486 /* 487 * Async discard uses multiple lists to differentiate the discard filter 488 * parameters. Index 0 is for completely free block groups where we need to 489 * ensure the entire block group is trimmed without being lossy. Indices 490 * afterwards represent monotonically decreasing discard filter sizes to 491 * prioritize what should be discarded next. 492 */ 493 #define BTRFS_NR_DISCARD_LISTS 3 494 #define BTRFS_DISCARD_INDEX_UNUSED 0 495 #define BTRFS_DISCARD_INDEX_START 1 496 497 struct btrfs_discard_ctl { 498 struct workqueue_struct *discard_workers; 499 struct delayed_work work; 500 spinlock_t lock; 501 struct btrfs_block_group *block_group; 502 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 503 u64 prev_discard; 504 u64 prev_discard_time; 505 atomic_t discardable_extents; 506 atomic64_t discardable_bytes; 507 u64 max_discard_size; 508 u64 delay_ms; 509 u32 iops_limit; 510 u32 kbps_limit; 511 u64 discard_extent_bytes; 512 u64 discard_bitmap_bytes; 513 atomic64_t discard_bytes_saved; 514 }; 515 516 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 517 518 /* fs_info */ 519 struct reloc_control; 520 struct btrfs_device; 521 struct btrfs_fs_devices; 522 struct btrfs_balance_control; 523 struct btrfs_delayed_root; 524 525 /* 526 * Block group or device which contains an active swapfile. Used for preventing 527 * unsafe operations while a swapfile is active. 528 * 529 * These are sorted on (ptr, inode) (note that a block group or device can 530 * contain more than one swapfile). We compare the pointer values because we 531 * don't actually care what the object is, we just need a quick check whether 532 * the object exists in the rbtree. 533 */ 534 struct btrfs_swapfile_pin { 535 struct rb_node node; 536 void *ptr; 537 struct inode *inode; 538 /* 539 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 540 * points to a struct btrfs_device. 541 */ 542 bool is_block_group; 543 /* 544 * Only used when 'is_block_group' is true and it is the number of 545 * extents used by a swapfile for this block group ('ptr' field). 546 */ 547 int bg_extent_count; 548 }; 549 550 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 551 552 enum { 553 BTRFS_FS_CLOSING_START, 554 BTRFS_FS_CLOSING_DONE, 555 BTRFS_FS_LOG_RECOVERING, 556 BTRFS_FS_OPEN, 557 BTRFS_FS_QUOTA_ENABLED, 558 BTRFS_FS_UPDATE_UUID_TREE_GEN, 559 BTRFS_FS_CREATING_FREE_SPACE_TREE, 560 BTRFS_FS_BTREE_ERR, 561 BTRFS_FS_LOG1_ERR, 562 BTRFS_FS_LOG2_ERR, 563 BTRFS_FS_QUOTA_OVERRIDE, 564 /* Used to record internally whether fs has been frozen */ 565 BTRFS_FS_FROZEN, 566 /* 567 * Indicate that balance has been set up from the ioctl and is in the 568 * main phase. The fs_info::balance_ctl is initialized. 569 */ 570 BTRFS_FS_BALANCE_RUNNING, 571 572 /* 573 * Indicate that relocation of a chunk has started, it's set per chunk 574 * and is toggled between chunks. 575 */ 576 BTRFS_FS_RELOC_RUNNING, 577 578 /* Indicate that the cleaner thread is awake and doing something. */ 579 BTRFS_FS_CLEANER_RUNNING, 580 581 /* 582 * The checksumming has an optimized version and is considered fast, 583 * so we don't need to offload checksums to workqueues. 584 */ 585 BTRFS_FS_CSUM_IMPL_FAST, 586 587 /* Indicate that the discard workqueue can service discards. */ 588 BTRFS_FS_DISCARD_RUNNING, 589 590 /* Indicate that we need to cleanup space cache v1 */ 591 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 592 593 /* Indicate that we can't trust the free space tree for caching yet */ 594 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 595 596 /* Indicate whether there are any tree modification log users */ 597 BTRFS_FS_TREE_MOD_LOG_USERS, 598 599 /* Indicate that we want the transaction kthread to commit right now. */ 600 BTRFS_FS_COMMIT_TRANS, 601 602 #if BITS_PER_LONG == 32 603 /* Indicate if we have error/warn message printed on 32bit systems */ 604 BTRFS_FS_32BIT_ERROR, 605 BTRFS_FS_32BIT_WARN, 606 #endif 607 }; 608 609 /* 610 * Exclusive operations (device replace, resize, device add/remove, balance) 611 */ 612 enum btrfs_exclusive_operation { 613 BTRFS_EXCLOP_NONE, 614 BTRFS_EXCLOP_BALANCE_PAUSED, 615 BTRFS_EXCLOP_BALANCE, 616 BTRFS_EXCLOP_DEV_ADD, 617 BTRFS_EXCLOP_DEV_REMOVE, 618 BTRFS_EXCLOP_DEV_REPLACE, 619 BTRFS_EXCLOP_RESIZE, 620 BTRFS_EXCLOP_SWAP_ACTIVATE, 621 }; 622 623 struct btrfs_fs_info { 624 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 625 unsigned long flags; 626 struct btrfs_root *tree_root; 627 struct btrfs_root *chunk_root; 628 struct btrfs_root *dev_root; 629 struct btrfs_root *fs_root; 630 struct btrfs_root *quota_root; 631 struct btrfs_root *uuid_root; 632 struct btrfs_root *data_reloc_root; 633 634 /* the log root tree is a directory of all the other log roots */ 635 struct btrfs_root *log_root_tree; 636 637 /* The tree that holds the global roots (csum, extent, etc) */ 638 rwlock_t global_root_lock; 639 struct rb_root global_root_tree; 640 641 spinlock_t fs_roots_radix_lock; 642 struct radix_tree_root fs_roots_radix; 643 644 /* block group cache stuff */ 645 spinlock_t block_group_cache_lock; 646 u64 first_logical_byte; 647 struct rb_root block_group_cache_tree; 648 649 /* keep track of unallocated space */ 650 atomic64_t free_chunk_space; 651 652 /* Track ranges which are used by log trees blocks/logged data extents */ 653 struct extent_io_tree excluded_extents; 654 655 /* logical->physical extent mapping */ 656 struct extent_map_tree mapping_tree; 657 658 /* 659 * block reservation for extent, checksum, root tree and 660 * delayed dir index item 661 */ 662 struct btrfs_block_rsv global_block_rsv; 663 /* block reservation for metadata operations */ 664 struct btrfs_block_rsv trans_block_rsv; 665 /* block reservation for chunk tree */ 666 struct btrfs_block_rsv chunk_block_rsv; 667 /* block reservation for delayed operations */ 668 struct btrfs_block_rsv delayed_block_rsv; 669 /* block reservation for delayed refs */ 670 struct btrfs_block_rsv delayed_refs_rsv; 671 672 struct btrfs_block_rsv empty_block_rsv; 673 674 u64 generation; 675 u64 last_trans_committed; 676 /* 677 * Generation of the last transaction used for block group relocation 678 * since the filesystem was last mounted (or 0 if none happened yet). 679 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 680 */ 681 u64 last_reloc_trans; 682 u64 avg_delayed_ref_runtime; 683 684 /* 685 * this is updated to the current trans every time a full commit 686 * is required instead of the faster short fsync log commits 687 */ 688 u64 last_trans_log_full_commit; 689 unsigned long mount_opt; 690 /* 691 * Track requests for actions that need to be done during transaction 692 * commit (like for some mount options). 693 */ 694 unsigned long pending_changes; 695 unsigned long compress_type:4; 696 unsigned int compress_level; 697 u32 commit_interval; 698 /* 699 * It is a suggestive number, the read side is safe even it gets a 700 * wrong number because we will write out the data into a regular 701 * extent. The write side(mount/remount) is under ->s_umount lock, 702 * so it is also safe. 703 */ 704 u64 max_inline; 705 706 struct btrfs_transaction *running_transaction; 707 wait_queue_head_t transaction_throttle; 708 wait_queue_head_t transaction_wait; 709 wait_queue_head_t transaction_blocked_wait; 710 wait_queue_head_t async_submit_wait; 711 712 /* 713 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 714 * when they are updated. 715 * 716 * Because we do not clear the flags for ever, so we needn't use 717 * the lock on the read side. 718 * 719 * We also needn't use the lock when we mount the fs, because 720 * there is no other task which will update the flag. 721 */ 722 spinlock_t super_lock; 723 struct btrfs_super_block *super_copy; 724 struct btrfs_super_block *super_for_commit; 725 struct super_block *sb; 726 struct inode *btree_inode; 727 struct mutex tree_log_mutex; 728 struct mutex transaction_kthread_mutex; 729 struct mutex cleaner_mutex; 730 struct mutex chunk_mutex; 731 732 /* 733 * this is taken to make sure we don't set block groups ro after 734 * the free space cache has been allocated on them 735 */ 736 struct mutex ro_block_group_mutex; 737 738 /* this is used during read/modify/write to make sure 739 * no two ios are trying to mod the same stripe at the same 740 * time 741 */ 742 struct btrfs_stripe_hash_table *stripe_hash_table; 743 744 /* 745 * this protects the ordered operations list only while we are 746 * processing all of the entries on it. This way we make 747 * sure the commit code doesn't find the list temporarily empty 748 * because another function happens to be doing non-waiting preflush 749 * before jumping into the main commit. 750 */ 751 struct mutex ordered_operations_mutex; 752 753 struct rw_semaphore commit_root_sem; 754 755 struct rw_semaphore cleanup_work_sem; 756 757 struct rw_semaphore subvol_sem; 758 759 spinlock_t trans_lock; 760 /* 761 * the reloc mutex goes with the trans lock, it is taken 762 * during commit to protect us from the relocation code 763 */ 764 struct mutex reloc_mutex; 765 766 struct list_head trans_list; 767 struct list_head dead_roots; 768 struct list_head caching_block_groups; 769 770 spinlock_t delayed_iput_lock; 771 struct list_head delayed_iputs; 772 atomic_t nr_delayed_iputs; 773 wait_queue_head_t delayed_iputs_wait; 774 775 atomic64_t tree_mod_seq; 776 777 /* this protects tree_mod_log and tree_mod_seq_list */ 778 rwlock_t tree_mod_log_lock; 779 struct rb_root tree_mod_log; 780 struct list_head tree_mod_seq_list; 781 782 atomic_t async_delalloc_pages; 783 784 /* 785 * this is used to protect the following list -- ordered_roots. 786 */ 787 spinlock_t ordered_root_lock; 788 789 /* 790 * all fs/file tree roots in which there are data=ordered extents 791 * pending writeback are added into this list. 792 * 793 * these can span multiple transactions and basically include 794 * every dirty data page that isn't from nodatacow 795 */ 796 struct list_head ordered_roots; 797 798 struct mutex delalloc_root_mutex; 799 spinlock_t delalloc_root_lock; 800 /* all fs/file tree roots that have delalloc inodes. */ 801 struct list_head delalloc_roots; 802 803 /* 804 * there is a pool of worker threads for checksumming during writes 805 * and a pool for checksumming after reads. This is because readers 806 * can run with FS locks held, and the writers may be waiting for 807 * those locks. We don't want ordering in the pending list to cause 808 * deadlocks, and so the two are serviced separately. 809 * 810 * A third pool does submit_bio to avoid deadlocking with the other 811 * two 812 */ 813 struct btrfs_workqueue *workers; 814 struct btrfs_workqueue *delalloc_workers; 815 struct btrfs_workqueue *flush_workers; 816 struct btrfs_workqueue *endio_workers; 817 struct btrfs_workqueue *endio_meta_workers; 818 struct btrfs_workqueue *endio_raid56_workers; 819 struct btrfs_workqueue *rmw_workers; 820 struct btrfs_workqueue *endio_meta_write_workers; 821 struct btrfs_workqueue *endio_write_workers; 822 struct btrfs_workqueue *endio_freespace_worker; 823 struct btrfs_workqueue *caching_workers; 824 825 /* 826 * fixup workers take dirty pages that didn't properly go through 827 * the cow mechanism and make them safe to write. It happens 828 * for the sys_munmap function call path 829 */ 830 struct btrfs_workqueue *fixup_workers; 831 struct btrfs_workqueue *delayed_workers; 832 833 struct task_struct *transaction_kthread; 834 struct task_struct *cleaner_kthread; 835 u32 thread_pool_size; 836 837 struct kobject *space_info_kobj; 838 struct kobject *qgroups_kobj; 839 840 /* used to keep from writing metadata until there is a nice batch */ 841 struct percpu_counter dirty_metadata_bytes; 842 struct percpu_counter delalloc_bytes; 843 struct percpu_counter ordered_bytes; 844 s32 dirty_metadata_batch; 845 s32 delalloc_batch; 846 847 struct list_head dirty_cowonly_roots; 848 849 struct btrfs_fs_devices *fs_devices; 850 851 /* 852 * The space_info list is effectively read only after initial 853 * setup. It is populated at mount time and cleaned up after 854 * all block groups are removed. RCU is used to protect it. 855 */ 856 struct list_head space_info; 857 858 struct btrfs_space_info *data_sinfo; 859 860 struct reloc_control *reloc_ctl; 861 862 /* data_alloc_cluster is only used in ssd_spread mode */ 863 struct btrfs_free_cluster data_alloc_cluster; 864 865 /* all metadata allocations go through this cluster */ 866 struct btrfs_free_cluster meta_alloc_cluster; 867 868 /* auto defrag inodes go here */ 869 spinlock_t defrag_inodes_lock; 870 struct rb_root defrag_inodes; 871 atomic_t defrag_running; 872 873 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 874 seqlock_t profiles_lock; 875 /* 876 * these three are in extended format (availability of single 877 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 878 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 879 */ 880 u64 avail_data_alloc_bits; 881 u64 avail_metadata_alloc_bits; 882 u64 avail_system_alloc_bits; 883 884 /* restriper state */ 885 spinlock_t balance_lock; 886 struct mutex balance_mutex; 887 atomic_t balance_pause_req; 888 atomic_t balance_cancel_req; 889 struct btrfs_balance_control *balance_ctl; 890 wait_queue_head_t balance_wait_q; 891 892 /* Cancellation requests for chunk relocation */ 893 atomic_t reloc_cancel_req; 894 895 u32 data_chunk_allocations; 896 u32 metadata_ratio; 897 898 void *bdev_holder; 899 900 /* private scrub information */ 901 struct mutex scrub_lock; 902 atomic_t scrubs_running; 903 atomic_t scrub_pause_req; 904 atomic_t scrubs_paused; 905 atomic_t scrub_cancel_req; 906 wait_queue_head_t scrub_pause_wait; 907 /* 908 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 909 * running. 910 */ 911 refcount_t scrub_workers_refcnt; 912 struct btrfs_workqueue *scrub_workers; 913 struct btrfs_workqueue *scrub_wr_completion_workers; 914 struct btrfs_workqueue *scrub_parity_workers; 915 struct btrfs_subpage_info *subpage_info; 916 917 struct btrfs_discard_ctl discard_ctl; 918 919 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 920 u32 check_integrity_print_mask; 921 #endif 922 /* is qgroup tracking in a consistent state? */ 923 u64 qgroup_flags; 924 925 /* holds configuration and tracking. Protected by qgroup_lock */ 926 struct rb_root qgroup_tree; 927 spinlock_t qgroup_lock; 928 929 /* 930 * used to avoid frequently calling ulist_alloc()/ulist_free() 931 * when doing qgroup accounting, it must be protected by qgroup_lock. 932 */ 933 struct ulist *qgroup_ulist; 934 935 /* 936 * Protect user change for quota operations. If a transaction is needed, 937 * it must be started before locking this lock. 938 */ 939 struct mutex qgroup_ioctl_lock; 940 941 /* list of dirty qgroups to be written at next commit */ 942 struct list_head dirty_qgroups; 943 944 /* used by qgroup for an efficient tree traversal */ 945 u64 qgroup_seq; 946 947 /* qgroup rescan items */ 948 struct mutex qgroup_rescan_lock; /* protects the progress item */ 949 struct btrfs_key qgroup_rescan_progress; 950 struct btrfs_workqueue *qgroup_rescan_workers; 951 struct completion qgroup_rescan_completion; 952 struct btrfs_work qgroup_rescan_work; 953 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 954 955 /* filesystem state */ 956 unsigned long fs_state; 957 958 struct btrfs_delayed_root *delayed_root; 959 960 /* Extent buffer radix tree */ 961 spinlock_t buffer_lock; 962 /* Entries are eb->start / sectorsize */ 963 struct radix_tree_root buffer_radix; 964 965 /* next backup root to be overwritten */ 966 int backup_root_index; 967 968 /* device replace state */ 969 struct btrfs_dev_replace dev_replace; 970 971 struct semaphore uuid_tree_rescan_sem; 972 973 /* Used to reclaim the metadata space in the background. */ 974 struct work_struct async_reclaim_work; 975 struct work_struct async_data_reclaim_work; 976 struct work_struct preempt_reclaim_work; 977 978 /* Reclaim partially filled block groups in the background */ 979 struct work_struct reclaim_bgs_work; 980 struct list_head reclaim_bgs; 981 int bg_reclaim_threshold; 982 983 spinlock_t unused_bgs_lock; 984 struct list_head unused_bgs; 985 struct mutex unused_bg_unpin_mutex; 986 /* Protect block groups that are going to be deleted */ 987 struct mutex reclaim_bgs_lock; 988 989 /* Cached block sizes */ 990 u32 nodesize; 991 u32 sectorsize; 992 /* ilog2 of sectorsize, use to avoid 64bit division */ 993 u32 sectorsize_bits; 994 u32 csum_size; 995 u32 csums_per_leaf; 996 u32 stripesize; 997 998 /* Block groups and devices containing active swapfiles. */ 999 spinlock_t swapfile_pins_lock; 1000 struct rb_root swapfile_pins; 1001 1002 struct crypto_shash *csum_shash; 1003 1004 /* Type of exclusive operation running, protected by super_lock */ 1005 enum btrfs_exclusive_operation exclusive_operation; 1006 1007 /* 1008 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1009 * if the mode is enabled 1010 */ 1011 union { 1012 u64 zone_size; 1013 u64 zoned; 1014 }; 1015 1016 struct mutex zoned_meta_io_lock; 1017 spinlock_t treelog_bg_lock; 1018 u64 treelog_bg; 1019 1020 /* 1021 * Start of the dedicated data relocation block group, protected by 1022 * relocation_bg_lock. 1023 */ 1024 spinlock_t relocation_bg_lock; 1025 u64 data_reloc_bg; 1026 1027 spinlock_t zone_active_bgs_lock; 1028 struct list_head zone_active_bgs; 1029 1030 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1031 spinlock_t ref_verify_lock; 1032 struct rb_root block_tree; 1033 #endif 1034 1035 #ifdef CONFIG_BTRFS_DEBUG 1036 struct kobject *debug_kobj; 1037 struct kobject *discard_debug_kobj; 1038 struct list_head allocated_roots; 1039 1040 spinlock_t eb_leak_lock; 1041 struct list_head allocated_ebs; 1042 #endif 1043 }; 1044 1045 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1046 { 1047 return sb->s_fs_info; 1048 } 1049 1050 /* 1051 * The state of btrfs root 1052 */ 1053 enum { 1054 /* 1055 * btrfs_record_root_in_trans is a multi-step process, and it can race 1056 * with the balancing code. But the race is very small, and only the 1057 * first time the root is added to each transaction. So IN_TRANS_SETUP 1058 * is used to tell us when more checks are required 1059 */ 1060 BTRFS_ROOT_IN_TRANS_SETUP, 1061 1062 /* 1063 * Set if tree blocks of this root can be shared by other roots. 1064 * Only subvolume trees and their reloc trees have this bit set. 1065 * Conflicts with TRACK_DIRTY bit. 1066 * 1067 * This affects two things: 1068 * 1069 * - How balance works 1070 * For shareable roots, we need to use reloc tree and do path 1071 * replacement for balance, and need various pre/post hooks for 1072 * snapshot creation to handle them. 1073 * 1074 * While for non-shareable trees, we just simply do a tree search 1075 * with COW. 1076 * 1077 * - How dirty roots are tracked 1078 * For shareable roots, btrfs_record_root_in_trans() is needed to 1079 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1080 * don't need to set this manually. 1081 */ 1082 BTRFS_ROOT_SHAREABLE, 1083 BTRFS_ROOT_TRACK_DIRTY, 1084 BTRFS_ROOT_IN_RADIX, 1085 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1086 BTRFS_ROOT_DEFRAG_RUNNING, 1087 BTRFS_ROOT_FORCE_COW, 1088 BTRFS_ROOT_MULTI_LOG_TASKS, 1089 BTRFS_ROOT_DIRTY, 1090 BTRFS_ROOT_DELETING, 1091 1092 /* 1093 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1094 * 1095 * Set for the subvolume tree owning the reloc tree. 1096 */ 1097 BTRFS_ROOT_DEAD_RELOC_TREE, 1098 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1099 BTRFS_ROOT_DEAD_TREE, 1100 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1101 BTRFS_ROOT_HAS_LOG_TREE, 1102 /* Qgroup flushing is in progress */ 1103 BTRFS_ROOT_QGROUP_FLUSHING, 1104 /* We started the orphan cleanup for this root. */ 1105 BTRFS_ROOT_ORPHAN_CLEANUP, 1106 }; 1107 1108 /* 1109 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1110 * code. For detail check comment in fs/btrfs/qgroup.c. 1111 */ 1112 struct btrfs_qgroup_swapped_blocks { 1113 spinlock_t lock; 1114 /* RM_EMPTY_ROOT() of above blocks[] */ 1115 bool swapped; 1116 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1117 }; 1118 1119 /* 1120 * in ram representation of the tree. extent_root is used for all allocations 1121 * and for the extent tree extent_root root. 1122 */ 1123 struct btrfs_root { 1124 struct rb_node rb_node; 1125 1126 struct extent_buffer *node; 1127 1128 struct extent_buffer *commit_root; 1129 struct btrfs_root *log_root; 1130 struct btrfs_root *reloc_root; 1131 1132 unsigned long state; 1133 struct btrfs_root_item root_item; 1134 struct btrfs_key root_key; 1135 struct btrfs_fs_info *fs_info; 1136 struct extent_io_tree dirty_log_pages; 1137 1138 struct mutex objectid_mutex; 1139 1140 spinlock_t accounting_lock; 1141 struct btrfs_block_rsv *block_rsv; 1142 1143 struct mutex log_mutex; 1144 wait_queue_head_t log_writer_wait; 1145 wait_queue_head_t log_commit_wait[2]; 1146 struct list_head log_ctxs[2]; 1147 /* Used only for log trees of subvolumes, not for the log root tree */ 1148 atomic_t log_writers; 1149 atomic_t log_commit[2]; 1150 /* Used only for log trees of subvolumes, not for the log root tree */ 1151 atomic_t log_batch; 1152 int log_transid; 1153 /* No matter the commit succeeds or not*/ 1154 int log_transid_committed; 1155 /* Just be updated when the commit succeeds. */ 1156 int last_log_commit; 1157 pid_t log_start_pid; 1158 1159 u64 last_trans; 1160 1161 u32 type; 1162 1163 u64 free_objectid; 1164 1165 struct btrfs_key defrag_progress; 1166 struct btrfs_key defrag_max; 1167 1168 /* The dirty list is only used by non-shareable roots */ 1169 struct list_head dirty_list; 1170 1171 struct list_head root_list; 1172 1173 spinlock_t log_extents_lock[2]; 1174 struct list_head logged_list[2]; 1175 1176 spinlock_t inode_lock; 1177 /* red-black tree that keeps track of in-memory inodes */ 1178 struct rb_root inode_tree; 1179 1180 /* 1181 * radix tree that keeps track of delayed nodes of every inode, 1182 * protected by inode_lock 1183 */ 1184 struct radix_tree_root delayed_nodes_tree; 1185 /* 1186 * right now this just gets used so that a root has its own devid 1187 * for stat. It may be used for more later 1188 */ 1189 dev_t anon_dev; 1190 1191 spinlock_t root_item_lock; 1192 refcount_t refs; 1193 1194 struct mutex delalloc_mutex; 1195 spinlock_t delalloc_lock; 1196 /* 1197 * all of the inodes that have delalloc bytes. It is possible for 1198 * this list to be empty even when there is still dirty data=ordered 1199 * extents waiting to finish IO. 1200 */ 1201 struct list_head delalloc_inodes; 1202 struct list_head delalloc_root; 1203 u64 nr_delalloc_inodes; 1204 1205 struct mutex ordered_extent_mutex; 1206 /* 1207 * this is used by the balancing code to wait for all the pending 1208 * ordered extents 1209 */ 1210 spinlock_t ordered_extent_lock; 1211 1212 /* 1213 * all of the data=ordered extents pending writeback 1214 * these can span multiple transactions and basically include 1215 * every dirty data page that isn't from nodatacow 1216 */ 1217 struct list_head ordered_extents; 1218 struct list_head ordered_root; 1219 u64 nr_ordered_extents; 1220 1221 /* 1222 * Not empty if this subvolume root has gone through tree block swap 1223 * (relocation) 1224 * 1225 * Will be used by reloc_control::dirty_subvol_roots. 1226 */ 1227 struct list_head reloc_dirty_list; 1228 1229 /* 1230 * Number of currently running SEND ioctls to prevent 1231 * manipulation with the read-only status via SUBVOL_SETFLAGS 1232 */ 1233 int send_in_progress; 1234 /* 1235 * Number of currently running deduplication operations that have a 1236 * destination inode belonging to this root. Protected by the lock 1237 * root_item_lock. 1238 */ 1239 int dedupe_in_progress; 1240 /* For exclusion of snapshot creation and nocow writes */ 1241 struct btrfs_drew_lock snapshot_lock; 1242 1243 atomic_t snapshot_force_cow; 1244 1245 /* For qgroup metadata reserved space */ 1246 spinlock_t qgroup_meta_rsv_lock; 1247 u64 qgroup_meta_rsv_pertrans; 1248 u64 qgroup_meta_rsv_prealloc; 1249 wait_queue_head_t qgroup_flush_wait; 1250 1251 /* Number of active swapfiles */ 1252 atomic_t nr_swapfiles; 1253 1254 /* Record pairs of swapped blocks for qgroup */ 1255 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1256 1257 /* Used only by log trees, when logging csum items */ 1258 struct extent_io_tree log_csum_range; 1259 1260 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1261 u64 alloc_bytenr; 1262 #endif 1263 1264 #ifdef CONFIG_BTRFS_DEBUG 1265 struct list_head leak_list; 1266 #endif 1267 }; 1268 1269 /* 1270 * Structure that conveys information about an extent that is going to replace 1271 * all the extents in a file range. 1272 */ 1273 struct btrfs_replace_extent_info { 1274 u64 disk_offset; 1275 u64 disk_len; 1276 u64 data_offset; 1277 u64 data_len; 1278 u64 file_offset; 1279 /* Pointer to a file extent item of type regular or prealloc. */ 1280 char *extent_buf; 1281 /* 1282 * Set to true when attempting to replace a file range with a new extent 1283 * described by this structure, set to false when attempting to clone an 1284 * existing extent into a file range. 1285 */ 1286 bool is_new_extent; 1287 /* Meaningful only if is_new_extent is true. */ 1288 int qgroup_reserved; 1289 /* 1290 * Meaningful only if is_new_extent is true. 1291 * Used to track how many extent items we have already inserted in a 1292 * subvolume tree that refer to the extent described by this structure, 1293 * so that we know when to create a new delayed ref or update an existing 1294 * one. 1295 */ 1296 int insertions; 1297 }; 1298 1299 /* Arguments for btrfs_drop_extents() */ 1300 struct btrfs_drop_extents_args { 1301 /* Input parameters */ 1302 1303 /* 1304 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1305 * If 'replace_extent' is true, this must not be NULL. Also the path 1306 * is always released except if 'replace_extent' is true and 1307 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1308 * the path is kept locked. 1309 */ 1310 struct btrfs_path *path; 1311 /* Start offset of the range to drop extents from */ 1312 u64 start; 1313 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1314 u64 end; 1315 /* If true drop all the extent maps in the range */ 1316 bool drop_cache; 1317 /* 1318 * If true it means we want to insert a new extent after dropping all 1319 * the extents in the range. If this is true, the 'extent_item_size' 1320 * parameter must be set as well and the 'extent_inserted' field will 1321 * be set to true by btrfs_drop_extents() if it could insert the new 1322 * extent. 1323 * Note: when this is set to true the path must not be NULL. 1324 */ 1325 bool replace_extent; 1326 /* 1327 * Used if 'replace_extent' is true. Size of the file extent item to 1328 * insert after dropping all existing extents in the range 1329 */ 1330 u32 extent_item_size; 1331 1332 /* Output parameters */ 1333 1334 /* 1335 * Set to the minimum between the input parameter 'end' and the end 1336 * (exclusive, last byte + 1) of the last dropped extent. This is always 1337 * set even if btrfs_drop_extents() returns an error. 1338 */ 1339 u64 drop_end; 1340 /* 1341 * The number of allocated bytes found in the range. This can be smaller 1342 * than the range's length when there are holes in the range. 1343 */ 1344 u64 bytes_found; 1345 /* 1346 * Only set if 'replace_extent' is true. Set to true if we were able 1347 * to insert a replacement extent after dropping all extents in the 1348 * range, otherwise set to false by btrfs_drop_extents(). 1349 * Also, if btrfs_drop_extents() has set this to true it means it 1350 * returned with the path locked, otherwise if it has set this to 1351 * false it has returned with the path released. 1352 */ 1353 bool extent_inserted; 1354 }; 1355 1356 struct btrfs_file_private { 1357 void *filldir_buf; 1358 }; 1359 1360 1361 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1362 { 1363 1364 return info->nodesize - sizeof(struct btrfs_header); 1365 } 1366 1367 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1368 1369 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1370 { 1371 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1372 } 1373 1374 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1375 { 1376 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1377 } 1378 1379 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1380 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1381 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1382 { 1383 return BTRFS_MAX_ITEM_SIZE(info) - 1384 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1385 } 1386 1387 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1388 { 1389 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1390 } 1391 1392 /* 1393 * Flags for mount options. 1394 * 1395 * Note: don't forget to add new options to btrfs_show_options() 1396 */ 1397 enum { 1398 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1399 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1400 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1401 BTRFS_MOUNT_SSD = (1UL << 3), 1402 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1403 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1404 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1405 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1406 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1407 BTRFS_MOUNT_NOSSD = (1UL << 9), 1408 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1409 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1410 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1411 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1412 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1413 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1414 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1415 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1416 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1417 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1418 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1419 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1420 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1421 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1422 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1423 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1424 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1425 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1426 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1427 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1428 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1429 }; 1430 1431 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1432 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1433 1434 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1435 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1436 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1437 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1438 BTRFS_MOUNT_##opt) 1439 1440 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1441 do { \ 1442 if (!btrfs_test_opt(fs_info, opt)) \ 1443 btrfs_info(fs_info, fmt, ##args); \ 1444 btrfs_set_opt(fs_info->mount_opt, opt); \ 1445 } while (0) 1446 1447 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1448 do { \ 1449 if (btrfs_test_opt(fs_info, opt)) \ 1450 btrfs_info(fs_info, fmt, ##args); \ 1451 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1452 } while (0) 1453 1454 /* 1455 * Requests for changes that need to be done during transaction commit. 1456 * 1457 * Internal mount options that are used for special handling of the real 1458 * mount options (eg. cannot be set during remount and have to be set during 1459 * transaction commit) 1460 */ 1461 1462 #define BTRFS_PENDING_COMMIT (0) 1463 1464 #define btrfs_test_pending(info, opt) \ 1465 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1466 #define btrfs_set_pending(info, opt) \ 1467 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1468 #define btrfs_clear_pending(info, opt) \ 1469 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1470 1471 /* 1472 * Helpers for setting pending mount option changes. 1473 * 1474 * Expects corresponding macros 1475 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1476 */ 1477 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1478 do { \ 1479 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1480 btrfs_info((info), fmt, ##args); \ 1481 btrfs_set_pending((info), SET_##opt); \ 1482 btrfs_clear_pending((info), CLEAR_##opt); \ 1483 } \ 1484 } while(0) 1485 1486 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1487 do { \ 1488 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1489 btrfs_info((info), fmt, ##args); \ 1490 btrfs_set_pending((info), CLEAR_##opt); \ 1491 btrfs_clear_pending((info), SET_##opt); \ 1492 } \ 1493 } while(0) 1494 1495 /* 1496 * Inode flags 1497 */ 1498 #define BTRFS_INODE_NODATASUM (1U << 0) 1499 #define BTRFS_INODE_NODATACOW (1U << 1) 1500 #define BTRFS_INODE_READONLY (1U << 2) 1501 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1502 #define BTRFS_INODE_PREALLOC (1U << 4) 1503 #define BTRFS_INODE_SYNC (1U << 5) 1504 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1505 #define BTRFS_INODE_APPEND (1U << 7) 1506 #define BTRFS_INODE_NODUMP (1U << 8) 1507 #define BTRFS_INODE_NOATIME (1U << 9) 1508 #define BTRFS_INODE_DIRSYNC (1U << 10) 1509 #define BTRFS_INODE_COMPRESS (1U << 11) 1510 1511 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1512 1513 #define BTRFS_INODE_FLAG_MASK \ 1514 (BTRFS_INODE_NODATASUM | \ 1515 BTRFS_INODE_NODATACOW | \ 1516 BTRFS_INODE_READONLY | \ 1517 BTRFS_INODE_NOCOMPRESS | \ 1518 BTRFS_INODE_PREALLOC | \ 1519 BTRFS_INODE_SYNC | \ 1520 BTRFS_INODE_IMMUTABLE | \ 1521 BTRFS_INODE_APPEND | \ 1522 BTRFS_INODE_NODUMP | \ 1523 BTRFS_INODE_NOATIME | \ 1524 BTRFS_INODE_DIRSYNC | \ 1525 BTRFS_INODE_COMPRESS | \ 1526 BTRFS_INODE_ROOT_ITEM_INIT) 1527 1528 #define BTRFS_INODE_RO_VERITY (1U << 0) 1529 1530 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1531 1532 struct btrfs_map_token { 1533 struct extent_buffer *eb; 1534 char *kaddr; 1535 unsigned long offset; 1536 }; 1537 1538 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1539 ((bytes) >> (fs_info)->sectorsize_bits) 1540 1541 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1542 struct extent_buffer *eb) 1543 { 1544 token->eb = eb; 1545 token->kaddr = page_address(eb->pages[0]); 1546 token->offset = 0; 1547 } 1548 1549 /* some macros to generate set/get functions for the struct fields. This 1550 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1551 * one for u8: 1552 */ 1553 #define le8_to_cpu(v) (v) 1554 #define cpu_to_le8(v) (v) 1555 #define __le8 u8 1556 1557 static inline u8 get_unaligned_le8(const void *p) 1558 { 1559 return *(u8 *)p; 1560 } 1561 1562 static inline void put_unaligned_le8(u8 val, void *p) 1563 { 1564 *(u8 *)p = val; 1565 } 1566 1567 #define read_eb_member(eb, ptr, type, member, result) (\ 1568 read_extent_buffer(eb, (char *)(result), \ 1569 ((unsigned long)(ptr)) + \ 1570 offsetof(type, member), \ 1571 sizeof(((type *)0)->member))) 1572 1573 #define write_eb_member(eb, ptr, type, member, result) (\ 1574 write_extent_buffer(eb, (char *)(result), \ 1575 ((unsigned long)(ptr)) + \ 1576 offsetof(type, member), \ 1577 sizeof(((type *)0)->member))) 1578 1579 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1580 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1581 const void *ptr, unsigned long off); \ 1582 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1583 const void *ptr, unsigned long off, \ 1584 u##bits val); \ 1585 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1586 const void *ptr, unsigned long off); \ 1587 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1588 unsigned long off, u##bits val); 1589 1590 DECLARE_BTRFS_SETGET_BITS(8) 1591 DECLARE_BTRFS_SETGET_BITS(16) 1592 DECLARE_BTRFS_SETGET_BITS(32) 1593 DECLARE_BTRFS_SETGET_BITS(64) 1594 1595 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1596 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1597 const type *s) \ 1598 { \ 1599 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1600 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1601 } \ 1602 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1603 u##bits val) \ 1604 { \ 1605 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1606 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1607 } \ 1608 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1609 const type *s) \ 1610 { \ 1611 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1612 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1613 } \ 1614 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1615 type *s, u##bits val) \ 1616 { \ 1617 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1618 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1619 } 1620 1621 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1622 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1623 { \ 1624 const type *p = page_address(eb->pages[0]) + \ 1625 offset_in_page(eb->start); \ 1626 return get_unaligned_le##bits(&p->member); \ 1627 } \ 1628 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1629 u##bits val) \ 1630 { \ 1631 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1632 put_unaligned_le##bits(val, &p->member); \ 1633 } 1634 1635 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1636 static inline u##bits btrfs_##name(const type *s) \ 1637 { \ 1638 return get_unaligned_le##bits(&s->member); \ 1639 } \ 1640 static inline void btrfs_set_##name(type *s, u##bits val) \ 1641 { \ 1642 put_unaligned_le##bits(val, &s->member); \ 1643 } 1644 1645 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1646 struct btrfs_dev_item *s) 1647 { 1648 BUILD_BUG_ON(sizeof(u64) != 1649 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1650 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1651 total_bytes)); 1652 } 1653 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1654 struct btrfs_dev_item *s, 1655 u64 val) 1656 { 1657 BUILD_BUG_ON(sizeof(u64) != 1658 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1659 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1660 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1661 } 1662 1663 1664 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1665 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1666 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1667 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1668 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1669 start_offset, 64); 1670 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1671 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1672 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1673 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1674 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1675 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1676 1677 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1678 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1679 total_bytes, 64); 1680 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1681 bytes_used, 64); 1682 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1683 io_align, 32); 1684 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1685 io_width, 32); 1686 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1687 sector_size, 32); 1688 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1689 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1690 dev_group, 32); 1691 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1692 seek_speed, 8); 1693 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1694 bandwidth, 8); 1695 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1696 generation, 64); 1697 1698 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1699 { 1700 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1701 } 1702 1703 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1704 { 1705 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1706 } 1707 1708 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1709 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1710 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1711 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1712 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1713 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1714 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1715 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1716 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1717 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1718 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1719 1720 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1721 { 1722 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1723 } 1724 1725 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1726 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1727 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1728 stripe_len, 64); 1729 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1730 io_align, 32); 1731 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1732 io_width, 32); 1733 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1734 sector_size, 32); 1735 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1736 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1737 num_stripes, 16); 1738 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1739 sub_stripes, 16); 1740 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1741 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1742 1743 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1744 int nr) 1745 { 1746 unsigned long offset = (unsigned long)c; 1747 offset += offsetof(struct btrfs_chunk, stripe); 1748 offset += nr * sizeof(struct btrfs_stripe); 1749 return (struct btrfs_stripe *)offset; 1750 } 1751 1752 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1753 { 1754 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1755 } 1756 1757 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1758 struct btrfs_chunk *c, int nr) 1759 { 1760 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1761 } 1762 1763 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1764 struct btrfs_chunk *c, int nr) 1765 { 1766 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1767 } 1768 1769 /* struct btrfs_block_group_item */ 1770 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1771 used, 64); 1772 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1773 used, 64); 1774 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1775 struct btrfs_block_group_item, chunk_objectid, 64); 1776 1777 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1778 struct btrfs_block_group_item, chunk_objectid, 64); 1779 BTRFS_SETGET_FUNCS(block_group_flags, 1780 struct btrfs_block_group_item, flags, 64); 1781 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1782 struct btrfs_block_group_item, flags, 64); 1783 1784 /* struct btrfs_free_space_info */ 1785 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1786 extent_count, 32); 1787 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1788 1789 /* struct btrfs_inode_ref */ 1790 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1791 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1792 1793 /* struct btrfs_inode_extref */ 1794 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1795 parent_objectid, 64); 1796 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1797 name_len, 16); 1798 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1799 1800 /* struct btrfs_inode_item */ 1801 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1802 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1803 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1804 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1805 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1806 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1807 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1808 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1809 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1810 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1811 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1812 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1813 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1814 generation, 64); 1815 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1816 sequence, 64); 1817 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1818 transid, 64); 1819 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1820 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1821 nbytes, 64); 1822 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1823 block_group, 64); 1824 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1825 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1826 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1827 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1828 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1829 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1830 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1831 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1832 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1833 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1834 1835 /* struct btrfs_dev_extent */ 1836 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1837 chunk_tree, 64); 1838 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1839 chunk_objectid, 64); 1840 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1841 chunk_offset, 64); 1842 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1843 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1844 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1845 generation, 64); 1846 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1847 1848 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1849 1850 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1851 struct btrfs_tree_block_info *item, 1852 struct btrfs_disk_key *key) 1853 { 1854 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1855 } 1856 1857 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1858 struct btrfs_tree_block_info *item, 1859 struct btrfs_disk_key *key) 1860 { 1861 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1862 } 1863 1864 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1865 root, 64); 1866 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1867 objectid, 64); 1868 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1869 offset, 64); 1870 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1871 count, 32); 1872 1873 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1874 count, 32); 1875 1876 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1877 type, 8); 1878 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1879 offset, 64); 1880 1881 static inline u32 btrfs_extent_inline_ref_size(int type) 1882 { 1883 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1884 type == BTRFS_SHARED_BLOCK_REF_KEY) 1885 return sizeof(struct btrfs_extent_inline_ref); 1886 if (type == BTRFS_SHARED_DATA_REF_KEY) 1887 return sizeof(struct btrfs_shared_data_ref) + 1888 sizeof(struct btrfs_extent_inline_ref); 1889 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1890 return sizeof(struct btrfs_extent_data_ref) + 1891 offsetof(struct btrfs_extent_inline_ref, offset); 1892 return 0; 1893 } 1894 1895 /* struct btrfs_node */ 1896 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1897 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1898 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1899 blockptr, 64); 1900 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1901 generation, 64); 1902 1903 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1904 { 1905 unsigned long ptr; 1906 ptr = offsetof(struct btrfs_node, ptrs) + 1907 sizeof(struct btrfs_key_ptr) * nr; 1908 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1909 } 1910 1911 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1912 int nr, u64 val) 1913 { 1914 unsigned long ptr; 1915 ptr = offsetof(struct btrfs_node, ptrs) + 1916 sizeof(struct btrfs_key_ptr) * nr; 1917 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1918 } 1919 1920 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1921 { 1922 unsigned long ptr; 1923 ptr = offsetof(struct btrfs_node, ptrs) + 1924 sizeof(struct btrfs_key_ptr) * nr; 1925 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1926 } 1927 1928 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1929 int nr, u64 val) 1930 { 1931 unsigned long ptr; 1932 ptr = offsetof(struct btrfs_node, ptrs) + 1933 sizeof(struct btrfs_key_ptr) * nr; 1934 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1935 } 1936 1937 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1938 { 1939 return offsetof(struct btrfs_node, ptrs) + 1940 sizeof(struct btrfs_key_ptr) * nr; 1941 } 1942 1943 void btrfs_node_key(const struct extent_buffer *eb, 1944 struct btrfs_disk_key *disk_key, int nr); 1945 1946 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1947 struct btrfs_disk_key *disk_key, int nr) 1948 { 1949 unsigned long ptr; 1950 ptr = btrfs_node_key_ptr_offset(nr); 1951 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1952 struct btrfs_key_ptr, key, disk_key); 1953 } 1954 1955 /* struct btrfs_item */ 1956 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 1957 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 1958 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1959 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1960 1961 static inline unsigned long btrfs_item_nr_offset(int nr) 1962 { 1963 return offsetof(struct btrfs_leaf, items) + 1964 sizeof(struct btrfs_item) * nr; 1965 } 1966 1967 static inline struct btrfs_item *btrfs_item_nr(int nr) 1968 { 1969 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1970 } 1971 1972 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 1973 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 1974 int slot) \ 1975 { \ 1976 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 1977 } \ 1978 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 1979 int slot, u32 val) \ 1980 { \ 1981 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 1982 } \ 1983 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 1984 int slot) \ 1985 { \ 1986 struct btrfs_item *item = btrfs_item_nr(slot); \ 1987 return btrfs_token_raw_item_##member(token, item); \ 1988 } \ 1989 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 1990 int slot, u32 val) \ 1991 { \ 1992 struct btrfs_item *item = btrfs_item_nr(slot); \ 1993 btrfs_set_token_raw_item_##member(token, item, val); \ 1994 } 1995 1996 BTRFS_ITEM_SETGET_FUNCS(offset) 1997 BTRFS_ITEM_SETGET_FUNCS(size); 1998 1999 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2000 { 2001 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2002 } 2003 2004 static inline void btrfs_item_key(const struct extent_buffer *eb, 2005 struct btrfs_disk_key *disk_key, int nr) 2006 { 2007 struct btrfs_item *item = btrfs_item_nr(nr); 2008 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2009 } 2010 2011 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2012 struct btrfs_disk_key *disk_key, int nr) 2013 { 2014 struct btrfs_item *item = btrfs_item_nr(nr); 2015 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2016 } 2017 2018 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2019 2020 /* 2021 * struct btrfs_root_ref 2022 */ 2023 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2024 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2025 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2026 2027 /* struct btrfs_dir_item */ 2028 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2029 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2030 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2031 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2032 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2033 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2034 data_len, 16); 2035 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2036 name_len, 16); 2037 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2038 transid, 64); 2039 2040 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2041 const struct btrfs_dir_item *item, 2042 struct btrfs_disk_key *key) 2043 { 2044 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2045 } 2046 2047 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2048 struct btrfs_dir_item *item, 2049 const struct btrfs_disk_key *key) 2050 { 2051 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2052 } 2053 2054 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2055 num_entries, 64); 2056 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2057 num_bitmaps, 64); 2058 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2059 generation, 64); 2060 2061 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2062 const struct btrfs_free_space_header *h, 2063 struct btrfs_disk_key *key) 2064 { 2065 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2066 } 2067 2068 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2069 struct btrfs_free_space_header *h, 2070 const struct btrfs_disk_key *key) 2071 { 2072 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2073 } 2074 2075 /* struct btrfs_disk_key */ 2076 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2077 objectid, 64); 2078 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2079 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2080 2081 #ifdef __LITTLE_ENDIAN 2082 2083 /* 2084 * Optimized helpers for little-endian architectures where CPU and on-disk 2085 * structures have the same endianness and we can skip conversions. 2086 */ 2087 2088 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2089 const struct btrfs_disk_key *disk_key) 2090 { 2091 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2092 } 2093 2094 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2095 const struct btrfs_key *cpu_key) 2096 { 2097 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2098 } 2099 2100 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2101 struct btrfs_key *cpu_key, int nr) 2102 { 2103 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2104 2105 btrfs_node_key(eb, disk_key, nr); 2106 } 2107 2108 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2109 struct btrfs_key *cpu_key, int nr) 2110 { 2111 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2112 2113 btrfs_item_key(eb, disk_key, nr); 2114 } 2115 2116 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2117 const struct btrfs_dir_item *item, 2118 struct btrfs_key *cpu_key) 2119 { 2120 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2121 2122 btrfs_dir_item_key(eb, item, disk_key); 2123 } 2124 2125 #else 2126 2127 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2128 const struct btrfs_disk_key *disk) 2129 { 2130 cpu->offset = le64_to_cpu(disk->offset); 2131 cpu->type = disk->type; 2132 cpu->objectid = le64_to_cpu(disk->objectid); 2133 } 2134 2135 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2136 const struct btrfs_key *cpu) 2137 { 2138 disk->offset = cpu_to_le64(cpu->offset); 2139 disk->type = cpu->type; 2140 disk->objectid = cpu_to_le64(cpu->objectid); 2141 } 2142 2143 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2144 struct btrfs_key *key, int nr) 2145 { 2146 struct btrfs_disk_key disk_key; 2147 btrfs_node_key(eb, &disk_key, nr); 2148 btrfs_disk_key_to_cpu(key, &disk_key); 2149 } 2150 2151 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2152 struct btrfs_key *key, int nr) 2153 { 2154 struct btrfs_disk_key disk_key; 2155 btrfs_item_key(eb, &disk_key, nr); 2156 btrfs_disk_key_to_cpu(key, &disk_key); 2157 } 2158 2159 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2160 const struct btrfs_dir_item *item, 2161 struct btrfs_key *key) 2162 { 2163 struct btrfs_disk_key disk_key; 2164 btrfs_dir_item_key(eb, item, &disk_key); 2165 btrfs_disk_key_to_cpu(key, &disk_key); 2166 } 2167 2168 #endif 2169 2170 /* struct btrfs_header */ 2171 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2172 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2173 generation, 64); 2174 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2175 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2176 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2177 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2178 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2179 generation, 64); 2180 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2181 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2182 nritems, 32); 2183 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2184 2185 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2186 { 2187 return (btrfs_header_flags(eb) & flag) == flag; 2188 } 2189 2190 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2191 { 2192 u64 flags = btrfs_header_flags(eb); 2193 btrfs_set_header_flags(eb, flags | flag); 2194 } 2195 2196 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2197 { 2198 u64 flags = btrfs_header_flags(eb); 2199 btrfs_set_header_flags(eb, flags & ~flag); 2200 } 2201 2202 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2203 { 2204 u64 flags = btrfs_header_flags(eb); 2205 return flags >> BTRFS_BACKREF_REV_SHIFT; 2206 } 2207 2208 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2209 int rev) 2210 { 2211 u64 flags = btrfs_header_flags(eb); 2212 flags &= ~BTRFS_BACKREF_REV_MASK; 2213 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2214 btrfs_set_header_flags(eb, flags); 2215 } 2216 2217 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2218 { 2219 return btrfs_header_level(eb) == 0; 2220 } 2221 2222 /* struct btrfs_root_item */ 2223 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2224 generation, 64); 2225 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2226 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2227 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2228 2229 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2230 generation, 64); 2231 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2232 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2233 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2234 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2235 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2236 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2237 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2238 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2239 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2240 last_snapshot, 64); 2241 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2242 generation_v2, 64); 2243 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2244 ctransid, 64); 2245 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2246 otransid, 64); 2247 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2248 stransid, 64); 2249 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2250 rtransid, 64); 2251 2252 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2253 { 2254 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2255 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2256 } 2257 2258 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2259 { 2260 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2261 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2262 } 2263 2264 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2265 { 2266 return root->root_key.objectid; 2267 } 2268 2269 /* struct btrfs_root_backup */ 2270 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2271 tree_root, 64); 2272 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2273 tree_root_gen, 64); 2274 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2275 tree_root_level, 8); 2276 2277 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2278 chunk_root, 64); 2279 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2280 chunk_root_gen, 64); 2281 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2282 chunk_root_level, 8); 2283 2284 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2285 extent_root, 64); 2286 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2287 extent_root_gen, 64); 2288 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2289 extent_root_level, 8); 2290 2291 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2292 fs_root, 64); 2293 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2294 fs_root_gen, 64); 2295 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2296 fs_root_level, 8); 2297 2298 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2299 dev_root, 64); 2300 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2301 dev_root_gen, 64); 2302 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2303 dev_root_level, 8); 2304 2305 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2306 csum_root, 64); 2307 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2308 csum_root_gen, 64); 2309 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2310 csum_root_level, 8); 2311 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2312 total_bytes, 64); 2313 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2314 bytes_used, 64); 2315 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2316 num_devices, 64); 2317 2318 /* struct btrfs_balance_item */ 2319 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2320 2321 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2322 const struct btrfs_balance_item *bi, 2323 struct btrfs_disk_balance_args *ba) 2324 { 2325 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2326 } 2327 2328 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2329 struct btrfs_balance_item *bi, 2330 const struct btrfs_disk_balance_args *ba) 2331 { 2332 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2333 } 2334 2335 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2336 const struct btrfs_balance_item *bi, 2337 struct btrfs_disk_balance_args *ba) 2338 { 2339 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2340 } 2341 2342 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2343 struct btrfs_balance_item *bi, 2344 const struct btrfs_disk_balance_args *ba) 2345 { 2346 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2347 } 2348 2349 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2350 const struct btrfs_balance_item *bi, 2351 struct btrfs_disk_balance_args *ba) 2352 { 2353 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2354 } 2355 2356 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2357 struct btrfs_balance_item *bi, 2358 const struct btrfs_disk_balance_args *ba) 2359 { 2360 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2361 } 2362 2363 static inline void 2364 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2365 const struct btrfs_disk_balance_args *disk) 2366 { 2367 memset(cpu, 0, sizeof(*cpu)); 2368 2369 cpu->profiles = le64_to_cpu(disk->profiles); 2370 cpu->usage = le64_to_cpu(disk->usage); 2371 cpu->devid = le64_to_cpu(disk->devid); 2372 cpu->pstart = le64_to_cpu(disk->pstart); 2373 cpu->pend = le64_to_cpu(disk->pend); 2374 cpu->vstart = le64_to_cpu(disk->vstart); 2375 cpu->vend = le64_to_cpu(disk->vend); 2376 cpu->target = le64_to_cpu(disk->target); 2377 cpu->flags = le64_to_cpu(disk->flags); 2378 cpu->limit = le64_to_cpu(disk->limit); 2379 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2380 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2381 } 2382 2383 static inline void 2384 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2385 const struct btrfs_balance_args *cpu) 2386 { 2387 memset(disk, 0, sizeof(*disk)); 2388 2389 disk->profiles = cpu_to_le64(cpu->profiles); 2390 disk->usage = cpu_to_le64(cpu->usage); 2391 disk->devid = cpu_to_le64(cpu->devid); 2392 disk->pstart = cpu_to_le64(cpu->pstart); 2393 disk->pend = cpu_to_le64(cpu->pend); 2394 disk->vstart = cpu_to_le64(cpu->vstart); 2395 disk->vend = cpu_to_le64(cpu->vend); 2396 disk->target = cpu_to_le64(cpu->target); 2397 disk->flags = cpu_to_le64(cpu->flags); 2398 disk->limit = cpu_to_le64(cpu->limit); 2399 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2400 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2401 } 2402 2403 /* struct btrfs_super_block */ 2404 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2405 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2406 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2407 generation, 64); 2408 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2409 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2410 struct btrfs_super_block, sys_chunk_array_size, 32); 2411 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2412 struct btrfs_super_block, chunk_root_generation, 64); 2413 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2414 root_level, 8); 2415 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2416 chunk_root, 64); 2417 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2418 chunk_root_level, 8); 2419 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2420 log_root, 64); 2421 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2422 log_root_transid, 64); 2423 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2424 log_root_level, 8); 2425 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2426 total_bytes, 64); 2427 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2428 bytes_used, 64); 2429 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2430 sectorsize, 32); 2431 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2432 nodesize, 32); 2433 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2434 stripesize, 32); 2435 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2436 root_dir_objectid, 64); 2437 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2438 num_devices, 64); 2439 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2440 compat_flags, 64); 2441 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2442 compat_ro_flags, 64); 2443 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2444 incompat_flags, 64); 2445 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2446 csum_type, 16); 2447 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2448 cache_generation, 64); 2449 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2450 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2451 uuid_tree_generation, 64); 2452 2453 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2454 const char *btrfs_super_csum_name(u16 csum_type); 2455 const char *btrfs_super_csum_driver(u16 csum_type); 2456 size_t __attribute_const__ btrfs_get_num_csums(void); 2457 2458 2459 /* 2460 * The leaf data grows from end-to-front in the node. 2461 * this returns the address of the start of the last item, 2462 * which is the stop of the leaf data stack 2463 */ 2464 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2465 { 2466 u32 nr = btrfs_header_nritems(leaf); 2467 2468 if (nr == 0) 2469 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2470 return btrfs_item_offset(leaf, nr - 1); 2471 } 2472 2473 /* struct btrfs_file_extent_item */ 2474 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2475 type, 8); 2476 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2477 struct btrfs_file_extent_item, disk_bytenr, 64); 2478 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2479 struct btrfs_file_extent_item, offset, 64); 2480 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2481 struct btrfs_file_extent_item, generation, 64); 2482 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2483 struct btrfs_file_extent_item, num_bytes, 64); 2484 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2485 struct btrfs_file_extent_item, ram_bytes, 64); 2486 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2487 struct btrfs_file_extent_item, disk_num_bytes, 64); 2488 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2489 struct btrfs_file_extent_item, compression, 8); 2490 2491 static inline unsigned long 2492 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2493 { 2494 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2495 } 2496 2497 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2498 { 2499 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2500 } 2501 2502 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2503 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2504 disk_bytenr, 64); 2505 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2506 generation, 64); 2507 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2508 disk_num_bytes, 64); 2509 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2510 offset, 64); 2511 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2512 num_bytes, 64); 2513 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2514 ram_bytes, 64); 2515 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2516 compression, 8); 2517 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2518 encryption, 8); 2519 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2520 other_encoding, 16); 2521 2522 /* 2523 * this returns the number of bytes used by the item on disk, minus the 2524 * size of any extent headers. If a file is compressed on disk, this is 2525 * the compressed size 2526 */ 2527 static inline u32 btrfs_file_extent_inline_item_len( 2528 const struct extent_buffer *eb, 2529 int nr) 2530 { 2531 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2532 } 2533 2534 /* btrfs_qgroup_status_item */ 2535 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2536 generation, 64); 2537 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2538 version, 64); 2539 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2540 flags, 64); 2541 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2542 rescan, 64); 2543 2544 /* btrfs_qgroup_info_item */ 2545 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2546 generation, 64); 2547 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2548 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2549 rfer_cmpr, 64); 2550 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2551 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2552 excl_cmpr, 64); 2553 2554 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2555 struct btrfs_qgroup_info_item, generation, 64); 2556 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2557 rfer, 64); 2558 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2559 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2560 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2561 excl, 64); 2562 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2563 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2564 2565 /* btrfs_qgroup_limit_item */ 2566 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2567 flags, 64); 2568 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2569 max_rfer, 64); 2570 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2571 max_excl, 64); 2572 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2573 rsv_rfer, 64); 2574 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2575 rsv_excl, 64); 2576 2577 /* btrfs_dev_replace_item */ 2578 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2579 struct btrfs_dev_replace_item, src_devid, 64); 2580 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2581 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2582 64); 2583 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2584 replace_state, 64); 2585 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2586 time_started, 64); 2587 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2588 time_stopped, 64); 2589 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2590 num_write_errors, 64); 2591 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2592 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2593 64); 2594 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2595 cursor_left, 64); 2596 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2597 cursor_right, 64); 2598 2599 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2600 struct btrfs_dev_replace_item, src_devid, 64); 2601 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2602 struct btrfs_dev_replace_item, 2603 cont_reading_from_srcdev_mode, 64); 2604 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2605 struct btrfs_dev_replace_item, replace_state, 64); 2606 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2607 struct btrfs_dev_replace_item, time_started, 64); 2608 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2609 struct btrfs_dev_replace_item, time_stopped, 64); 2610 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2611 struct btrfs_dev_replace_item, num_write_errors, 64); 2612 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2613 struct btrfs_dev_replace_item, 2614 num_uncorrectable_read_errors, 64); 2615 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2616 struct btrfs_dev_replace_item, cursor_left, 64); 2617 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2618 struct btrfs_dev_replace_item, cursor_right, 64); 2619 2620 /* helper function to cast into the data area of the leaf. */ 2621 #define btrfs_item_ptr(leaf, slot, type) \ 2622 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2623 btrfs_item_offset(leaf, slot))) 2624 2625 #define btrfs_item_ptr_offset(leaf, slot) \ 2626 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2627 btrfs_item_offset(leaf, slot))) 2628 2629 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2630 { 2631 return crc32c(crc, address, length); 2632 } 2633 2634 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2635 { 2636 put_unaligned_le32(~crc, result); 2637 } 2638 2639 static inline u64 btrfs_name_hash(const char *name, int len) 2640 { 2641 return crc32c((u32)~1, name, len); 2642 } 2643 2644 /* 2645 * Figure the key offset of an extended inode ref 2646 */ 2647 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2648 int len) 2649 { 2650 return (u64) crc32c(parent_objectid, name, len); 2651 } 2652 2653 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2654 { 2655 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2656 } 2657 2658 /* extent-tree.c */ 2659 2660 enum btrfs_inline_ref_type { 2661 BTRFS_REF_TYPE_INVALID, 2662 BTRFS_REF_TYPE_BLOCK, 2663 BTRFS_REF_TYPE_DATA, 2664 BTRFS_REF_TYPE_ANY, 2665 }; 2666 2667 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2668 struct btrfs_extent_inline_ref *iref, 2669 enum btrfs_inline_ref_type is_data); 2670 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2671 2672 /* 2673 * Take the number of bytes to be checksummmed and figure out how many leaves 2674 * it would require to store the csums for that many bytes. 2675 */ 2676 static inline u64 btrfs_csum_bytes_to_leaves( 2677 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2678 { 2679 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2680 2681 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2682 } 2683 2684 /* 2685 * Use this if we would be adding new items, as we could split nodes as we cow 2686 * down the tree. 2687 */ 2688 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2689 unsigned num_items) 2690 { 2691 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2692 } 2693 2694 /* 2695 * Doing a truncate or a modification won't result in new nodes or leaves, just 2696 * what we need for COW. 2697 */ 2698 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2699 unsigned num_items) 2700 { 2701 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2702 } 2703 2704 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2705 u64 start, u64 num_bytes); 2706 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2707 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2708 unsigned long count); 2709 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2710 struct btrfs_delayed_ref_root *delayed_refs, 2711 struct btrfs_delayed_ref_head *head); 2712 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2713 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2714 struct btrfs_fs_info *fs_info, u64 bytenr, 2715 u64 offset, int metadata, u64 *refs, u64 *flags); 2716 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2717 int reserved); 2718 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2719 u64 bytenr, u64 num_bytes); 2720 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2721 int btrfs_cross_ref_exist(struct btrfs_root *root, 2722 u64 objectid, u64 offset, u64 bytenr, bool strict); 2723 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2724 struct btrfs_root *root, 2725 u64 parent, u64 root_objectid, 2726 const struct btrfs_disk_key *key, 2727 int level, u64 hint, 2728 u64 empty_size, 2729 enum btrfs_lock_nesting nest); 2730 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2731 u64 root_id, 2732 struct extent_buffer *buf, 2733 u64 parent, int last_ref); 2734 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2735 struct btrfs_root *root, u64 owner, 2736 u64 offset, u64 ram_bytes, 2737 struct btrfs_key *ins); 2738 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2739 u64 root_objectid, u64 owner, u64 offset, 2740 struct btrfs_key *ins); 2741 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2742 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2743 struct btrfs_key *ins, int is_data, int delalloc); 2744 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2745 struct extent_buffer *buf, int full_backref); 2746 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2747 struct extent_buffer *buf, int full_backref); 2748 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2749 struct extent_buffer *eb, u64 flags, 2750 int level, int is_data); 2751 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2752 2753 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2754 u64 start, u64 len, int delalloc); 2755 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2756 u64 len); 2757 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2758 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2759 struct btrfs_ref *generic_ref); 2760 2761 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2762 2763 /* 2764 * Different levels for to flush space when doing space reservations. 2765 * 2766 * The higher the level, the more methods we try to reclaim space. 2767 */ 2768 enum btrfs_reserve_flush_enum { 2769 /* If we are in the transaction, we can't flush anything.*/ 2770 BTRFS_RESERVE_NO_FLUSH, 2771 2772 /* 2773 * Flush space by: 2774 * - Running delayed inode items 2775 * - Allocating a new chunk 2776 */ 2777 BTRFS_RESERVE_FLUSH_LIMIT, 2778 2779 /* 2780 * Flush space by: 2781 * - Running delayed inode items 2782 * - Running delayed refs 2783 * - Running delalloc and waiting for ordered extents 2784 * - Allocating a new chunk 2785 */ 2786 BTRFS_RESERVE_FLUSH_EVICT, 2787 2788 /* 2789 * Flush space by above mentioned methods and by: 2790 * - Running delayed iputs 2791 * - Committing transaction 2792 * 2793 * Can be interrupted by a fatal signal. 2794 */ 2795 BTRFS_RESERVE_FLUSH_DATA, 2796 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2797 BTRFS_RESERVE_FLUSH_ALL, 2798 2799 /* 2800 * Pretty much the same as FLUSH_ALL, but can also steal space from 2801 * global rsv. 2802 * 2803 * Can be interrupted by a fatal signal. 2804 */ 2805 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2806 }; 2807 2808 enum btrfs_flush_state { 2809 FLUSH_DELAYED_ITEMS_NR = 1, 2810 FLUSH_DELAYED_ITEMS = 2, 2811 FLUSH_DELAYED_REFS_NR = 3, 2812 FLUSH_DELAYED_REFS = 4, 2813 FLUSH_DELALLOC = 5, 2814 FLUSH_DELALLOC_WAIT = 6, 2815 FLUSH_DELALLOC_FULL = 7, 2816 ALLOC_CHUNK = 8, 2817 ALLOC_CHUNK_FORCE = 9, 2818 RUN_DELAYED_IPUTS = 10, 2819 COMMIT_TRANS = 11, 2820 }; 2821 2822 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2823 struct btrfs_block_rsv *rsv, 2824 int nitems, bool use_global_rsv); 2825 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2826 struct btrfs_block_rsv *rsv); 2827 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2828 2829 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2830 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2831 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2832 u64 start, u64 end); 2833 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2834 u64 num_bytes, u64 *actual_bytes); 2835 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2836 2837 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2838 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2839 struct btrfs_fs_info *fs_info); 2840 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2841 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2842 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2843 2844 /* ctree.c */ 2845 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2846 int *slot); 2847 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2848 int btrfs_previous_item(struct btrfs_root *root, 2849 struct btrfs_path *path, u64 min_objectid, 2850 int type); 2851 int btrfs_previous_extent_item(struct btrfs_root *root, 2852 struct btrfs_path *path, u64 min_objectid); 2853 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2854 struct btrfs_path *path, 2855 const struct btrfs_key *new_key); 2856 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2857 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2858 struct btrfs_key *key, int lowest_level, 2859 u64 min_trans); 2860 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2861 struct btrfs_path *path, 2862 u64 min_trans); 2863 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2864 int slot); 2865 2866 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2867 struct btrfs_root *root, struct extent_buffer *buf, 2868 struct extent_buffer *parent, int parent_slot, 2869 struct extent_buffer **cow_ret, 2870 enum btrfs_lock_nesting nest); 2871 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2872 struct btrfs_root *root, 2873 struct extent_buffer *buf, 2874 struct extent_buffer **cow_ret, u64 new_root_objectid); 2875 int btrfs_block_can_be_shared(struct btrfs_root *root, 2876 struct extent_buffer *buf); 2877 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2878 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2879 int btrfs_split_item(struct btrfs_trans_handle *trans, 2880 struct btrfs_root *root, 2881 struct btrfs_path *path, 2882 const struct btrfs_key *new_key, 2883 unsigned long split_offset); 2884 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2885 struct btrfs_root *root, 2886 struct btrfs_path *path, 2887 const struct btrfs_key *new_key); 2888 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2889 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2890 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2891 const struct btrfs_key *key, struct btrfs_path *p, 2892 int ins_len, int cow); 2893 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2894 struct btrfs_path *p, u64 time_seq); 2895 int btrfs_search_slot_for_read(struct btrfs_root *root, 2896 const struct btrfs_key *key, 2897 struct btrfs_path *p, int find_higher, 2898 int return_any); 2899 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, struct extent_buffer *parent, 2901 int start_slot, u64 *last_ret, 2902 struct btrfs_key *progress); 2903 void btrfs_release_path(struct btrfs_path *p); 2904 struct btrfs_path *btrfs_alloc_path(void); 2905 void btrfs_free_path(struct btrfs_path *p); 2906 2907 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2908 struct btrfs_path *path, int slot, int nr); 2909 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2910 struct btrfs_root *root, 2911 struct btrfs_path *path) 2912 { 2913 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2914 } 2915 2916 /* 2917 * Describes a batch of items to insert in a btree. This is used by 2918 * btrfs_insert_empty_items(). 2919 */ 2920 struct btrfs_item_batch { 2921 /* 2922 * Pointer to an array containing the keys of the items to insert (in 2923 * sorted order). 2924 */ 2925 const struct btrfs_key *keys; 2926 /* Pointer to an array containing the data size for each item to insert. */ 2927 const u32 *data_sizes; 2928 /* 2929 * The sum of data sizes for all items. The caller can compute this while 2930 * setting up the data_sizes array, so it ends up being more efficient 2931 * than having btrfs_insert_empty_items() or setup_item_for_insert() 2932 * doing it, as it would avoid an extra loop over a potentially large 2933 * array, and in the case of setup_item_for_insert(), we would be doing 2934 * it while holding a write lock on a leaf and often on upper level nodes 2935 * too, unnecessarily increasing the size of a critical section. 2936 */ 2937 u32 total_data_size; 2938 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 2939 int nr; 2940 }; 2941 2942 void btrfs_setup_item_for_insert(struct btrfs_root *root, 2943 struct btrfs_path *path, 2944 const struct btrfs_key *key, 2945 u32 data_size); 2946 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2947 const struct btrfs_key *key, void *data, u32 data_size); 2948 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2949 struct btrfs_root *root, 2950 struct btrfs_path *path, 2951 const struct btrfs_item_batch *batch); 2952 2953 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2954 struct btrfs_root *root, 2955 struct btrfs_path *path, 2956 const struct btrfs_key *key, 2957 u32 data_size) 2958 { 2959 struct btrfs_item_batch batch; 2960 2961 batch.keys = key; 2962 batch.data_sizes = &data_size; 2963 batch.total_data_size = data_size; 2964 batch.nr = 1; 2965 2966 return btrfs_insert_empty_items(trans, root, path, &batch); 2967 } 2968 2969 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2970 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2971 u64 time_seq); 2972 2973 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2974 struct btrfs_path *path); 2975 2976 static inline int btrfs_next_old_item(struct btrfs_root *root, 2977 struct btrfs_path *p, u64 time_seq) 2978 { 2979 ++p->slots[0]; 2980 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2981 return btrfs_next_old_leaf(root, p, time_seq); 2982 return 0; 2983 } 2984 2985 /* 2986 * Search the tree again to find a leaf with greater keys. 2987 * 2988 * Returns 0 if it found something or 1 if there are no greater leaves. 2989 * Returns < 0 on error. 2990 */ 2991 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 2992 { 2993 return btrfs_next_old_leaf(root, path, 0); 2994 } 2995 2996 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2997 { 2998 return btrfs_next_old_item(root, p, 0); 2999 } 3000 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3001 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3002 int for_reloc); 3003 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3004 struct btrfs_root *root, 3005 struct extent_buffer *node, 3006 struct extent_buffer *parent); 3007 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3008 { 3009 /* 3010 * Do it this way so we only ever do one test_bit in the normal case. 3011 */ 3012 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3013 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3014 return 2; 3015 return 1; 3016 } 3017 return 0; 3018 } 3019 3020 /* 3021 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3022 * anything except sleeping. This function is used to check the status of 3023 * the fs. 3024 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3025 * since setting and checking for SB_RDONLY in the superblock's flags is not 3026 * atomic. 3027 */ 3028 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3029 { 3030 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3031 btrfs_fs_closing(fs_info); 3032 } 3033 3034 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3035 { 3036 sb->s_flags |= SB_RDONLY; 3037 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3038 } 3039 3040 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3041 { 3042 sb->s_flags &= ~SB_RDONLY; 3043 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3044 } 3045 3046 /* root-item.c */ 3047 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3048 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3049 int name_len); 3050 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3051 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3052 int name_len); 3053 int btrfs_del_root(struct btrfs_trans_handle *trans, 3054 const struct btrfs_key *key); 3055 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3056 const struct btrfs_key *key, 3057 struct btrfs_root_item *item); 3058 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3059 struct btrfs_root *root, 3060 struct btrfs_key *key, 3061 struct btrfs_root_item *item); 3062 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3063 struct btrfs_path *path, struct btrfs_root_item *root_item, 3064 struct btrfs_key *root_key); 3065 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3066 void btrfs_set_root_node(struct btrfs_root_item *item, 3067 struct extent_buffer *node); 3068 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3069 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3070 struct btrfs_root *root); 3071 3072 /* uuid-tree.c */ 3073 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3074 u64 subid); 3075 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3076 u64 subid); 3077 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3078 3079 /* dir-item.c */ 3080 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3081 const char *name, int name_len); 3082 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3083 int name_len, struct btrfs_inode *dir, 3084 struct btrfs_key *location, u8 type, u64 index); 3085 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3086 struct btrfs_root *root, 3087 struct btrfs_path *path, u64 dir, 3088 const char *name, int name_len, 3089 int mod); 3090 struct btrfs_dir_item * 3091 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3092 struct btrfs_root *root, 3093 struct btrfs_path *path, u64 dir, 3094 u64 index, const char *name, int name_len, 3095 int mod); 3096 struct btrfs_dir_item * 3097 btrfs_search_dir_index_item(struct btrfs_root *root, 3098 struct btrfs_path *path, u64 dirid, 3099 const char *name, int name_len); 3100 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3101 struct btrfs_root *root, 3102 struct btrfs_path *path, 3103 struct btrfs_dir_item *di); 3104 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3105 struct btrfs_root *root, 3106 struct btrfs_path *path, u64 objectid, 3107 const char *name, u16 name_len, 3108 const void *data, u16 data_len); 3109 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3110 struct btrfs_root *root, 3111 struct btrfs_path *path, u64 dir, 3112 const char *name, u16 name_len, 3113 int mod); 3114 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3115 struct btrfs_path *path, 3116 const char *name, 3117 int name_len); 3118 3119 /* orphan.c */ 3120 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3121 struct btrfs_root *root, u64 offset); 3122 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3123 struct btrfs_root *root, u64 offset); 3124 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3125 3126 /* file-item.c */ 3127 struct btrfs_dio_private; 3128 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3129 struct btrfs_root *root, u64 bytenr, u64 len); 3130 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3131 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3132 struct btrfs_root *root, 3133 u64 objectid, u64 pos, 3134 u64 disk_offset, u64 disk_num_bytes, 3135 u64 num_bytes, u64 offset, u64 ram_bytes, 3136 u8 compression, u8 encryption, u16 other_encoding); 3137 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3138 struct btrfs_root *root, 3139 struct btrfs_path *path, u64 objectid, 3140 u64 bytenr, int mod); 3141 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3142 struct btrfs_root *root, 3143 struct btrfs_ordered_sum *sums); 3144 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3145 u64 file_start, int contig); 3146 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3147 struct list_head *list, int search_commit); 3148 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3149 const struct btrfs_path *path, 3150 struct btrfs_file_extent_item *fi, 3151 const bool new_inline, 3152 struct extent_map *em); 3153 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3154 u64 len); 3155 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3156 u64 len); 3157 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3158 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3159 3160 /* inode.c */ 3161 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3162 int mirror_num, unsigned long bio_flags); 3163 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3164 u32 bio_offset, struct page *page, 3165 u64 start, u64 end); 3166 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3167 u64 start, u64 len); 3168 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3169 u64 *orig_start, u64 *orig_block_len, 3170 u64 *ram_bytes, bool strict); 3171 3172 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3173 struct btrfs_inode *inode); 3174 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3175 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3176 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3177 struct btrfs_inode *dir, struct btrfs_inode *inode, 3178 const char *name, int name_len); 3179 int btrfs_add_link(struct btrfs_trans_handle *trans, 3180 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3181 const char *name, int name_len, int add_backref, u64 index); 3182 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3183 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3184 int front); 3185 3186 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3187 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3188 bool in_reclaim_context); 3189 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3190 unsigned int extra_bits, 3191 struct extent_state **cached_state); 3192 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3193 struct btrfs_root *new_root, 3194 struct btrfs_root *parent_root, 3195 struct user_namespace *mnt_userns); 3196 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3197 unsigned *bits); 3198 void btrfs_clear_delalloc_extent(struct inode *inode, 3199 struct extent_state *state, unsigned *bits); 3200 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3201 struct extent_state *other); 3202 void btrfs_split_delalloc_extent(struct inode *inode, 3203 struct extent_state *orig, u64 split); 3204 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3205 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3206 int btrfs_readpage(struct file *file, struct page *page); 3207 void btrfs_evict_inode(struct inode *inode); 3208 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3209 struct inode *btrfs_alloc_inode(struct super_block *sb); 3210 void btrfs_destroy_inode(struct inode *inode); 3211 void btrfs_free_inode(struct inode *inode); 3212 int btrfs_drop_inode(struct inode *inode); 3213 int __init btrfs_init_cachep(void); 3214 void __cold btrfs_destroy_cachep(void); 3215 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3216 struct btrfs_root *root, struct btrfs_path *path); 3217 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3218 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3219 struct page *page, size_t pg_offset, 3220 u64 start, u64 end); 3221 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3222 struct btrfs_root *root, struct btrfs_inode *inode); 3223 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, struct btrfs_inode *inode); 3225 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3226 struct btrfs_inode *inode); 3227 int btrfs_orphan_cleanup(struct btrfs_root *root); 3228 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3229 void btrfs_add_delayed_iput(struct inode *inode); 3230 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3231 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3232 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3233 u64 start, u64 num_bytes, u64 min_size, 3234 loff_t actual_len, u64 *alloc_hint); 3235 int btrfs_prealloc_file_range_trans(struct inode *inode, 3236 struct btrfs_trans_handle *trans, int mode, 3237 u64 start, u64 num_bytes, u64 min_size, 3238 loff_t actual_len, u64 *alloc_hint); 3239 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3240 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3241 struct writeback_control *wbc); 3242 int btrfs_writepage_cow_fixup(struct page *page); 3243 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3244 struct page *page, u64 start, 3245 u64 end, bool uptodate); 3246 extern const struct dentry_operations btrfs_dentry_operations; 3247 extern const struct iomap_ops btrfs_dio_iomap_ops; 3248 extern const struct iomap_dio_ops btrfs_dio_ops; 3249 3250 /* Inode locking type flags, by default the exclusive lock is taken */ 3251 #define BTRFS_ILOCK_SHARED (1U << 0) 3252 #define BTRFS_ILOCK_TRY (1U << 1) 3253 #define BTRFS_ILOCK_MMAP (1U << 2) 3254 3255 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3256 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3257 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3258 const u64 add_bytes, 3259 const u64 del_bytes); 3260 3261 /* ioctl.c */ 3262 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3263 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3264 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3265 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3266 struct dentry *dentry, struct fileattr *fa); 3267 int btrfs_ioctl_get_supported_features(void __user *arg); 3268 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3269 int __pure btrfs_is_empty_uuid(u8 *uuid); 3270 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3271 struct btrfs_ioctl_defrag_range_args *range, 3272 u64 newer_than, unsigned long max_to_defrag); 3273 void btrfs_get_block_group_info(struct list_head *groups_list, 3274 struct btrfs_ioctl_space_info *space); 3275 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3276 struct btrfs_ioctl_balance_args *bargs); 3277 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3278 enum btrfs_exclusive_operation type); 3279 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3280 enum btrfs_exclusive_operation type); 3281 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3282 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3283 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3284 enum btrfs_exclusive_operation op); 3285 3286 3287 /* file.c */ 3288 int __init btrfs_auto_defrag_init(void); 3289 void __cold btrfs_auto_defrag_exit(void); 3290 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3291 struct btrfs_inode *inode); 3292 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3293 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3294 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3295 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3296 int skip_pinned); 3297 extern const struct file_operations btrfs_file_operations; 3298 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3299 struct btrfs_root *root, struct btrfs_inode *inode, 3300 struct btrfs_drop_extents_args *args); 3301 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3302 struct btrfs_path *path, const u64 start, 3303 const u64 end, 3304 struct btrfs_replace_extent_info *extent_info, 3305 struct btrfs_trans_handle **trans_out); 3306 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3307 struct btrfs_inode *inode, u64 start, u64 end); 3308 int btrfs_release_file(struct inode *inode, struct file *file); 3309 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3310 size_t num_pages, loff_t pos, size_t write_bytes, 3311 struct extent_state **cached, bool noreserve); 3312 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3313 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3314 size_t *write_bytes); 3315 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3316 3317 /* tree-defrag.c */ 3318 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3319 struct btrfs_root *root); 3320 3321 /* super.c */ 3322 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3323 unsigned long new_flags); 3324 int btrfs_sync_fs(struct super_block *sb, int wait); 3325 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3326 u64 subvol_objectid); 3327 3328 static inline __printf(2, 3) __cold 3329 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3330 { 3331 } 3332 3333 #ifdef CONFIG_PRINTK 3334 __printf(2, 3) 3335 __cold 3336 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3337 #else 3338 #define btrfs_printk(fs_info, fmt, args...) \ 3339 btrfs_no_printk(fs_info, fmt, ##args) 3340 #endif 3341 3342 #define btrfs_emerg(fs_info, fmt, args...) \ 3343 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3344 #define btrfs_alert(fs_info, fmt, args...) \ 3345 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3346 #define btrfs_crit(fs_info, fmt, args...) \ 3347 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3348 #define btrfs_err(fs_info, fmt, args...) \ 3349 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3350 #define btrfs_warn(fs_info, fmt, args...) \ 3351 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3352 #define btrfs_notice(fs_info, fmt, args...) \ 3353 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3354 #define btrfs_info(fs_info, fmt, args...) \ 3355 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3356 3357 /* 3358 * Wrappers that use printk_in_rcu 3359 */ 3360 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3361 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3362 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3363 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3364 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3365 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3366 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3367 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3368 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3369 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3370 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3371 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3372 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3373 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3374 3375 /* 3376 * Wrappers that use a ratelimited printk_in_rcu 3377 */ 3378 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3379 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3380 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3381 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3382 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3383 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3384 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3385 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3386 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3387 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3388 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3389 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3390 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3391 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3392 3393 /* 3394 * Wrappers that use a ratelimited printk 3395 */ 3396 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3397 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3398 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3399 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3400 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3401 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3402 #define btrfs_err_rl(fs_info, fmt, args...) \ 3403 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3404 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3405 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3406 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3407 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3408 #define btrfs_info_rl(fs_info, fmt, args...) \ 3409 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3410 3411 #if defined(CONFIG_DYNAMIC_DEBUG) 3412 #define btrfs_debug(fs_info, fmt, args...) \ 3413 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3414 fs_info, KERN_DEBUG fmt, ##args) 3415 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3416 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3417 fs_info, KERN_DEBUG fmt, ##args) 3418 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3419 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3420 fs_info, KERN_DEBUG fmt, ##args) 3421 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3422 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3423 fs_info, KERN_DEBUG fmt, ##args) 3424 #elif defined(DEBUG) 3425 #define btrfs_debug(fs_info, fmt, args...) \ 3426 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3427 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3428 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3429 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3430 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3431 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3432 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3433 #else 3434 #define btrfs_debug(fs_info, fmt, args...) \ 3435 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3436 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3437 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3438 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3439 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3440 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3441 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3442 #endif 3443 3444 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3445 do { \ 3446 rcu_read_lock(); \ 3447 btrfs_printk(fs_info, fmt, ##args); \ 3448 rcu_read_unlock(); \ 3449 } while (0) 3450 3451 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3452 do { \ 3453 rcu_read_lock(); \ 3454 btrfs_no_printk(fs_info, fmt, ##args); \ 3455 rcu_read_unlock(); \ 3456 } while (0) 3457 3458 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3459 do { \ 3460 static DEFINE_RATELIMIT_STATE(_rs, \ 3461 DEFAULT_RATELIMIT_INTERVAL, \ 3462 DEFAULT_RATELIMIT_BURST); \ 3463 if (__ratelimit(&_rs)) \ 3464 btrfs_printk(fs_info, fmt, ##args); \ 3465 } while (0) 3466 3467 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3468 do { \ 3469 rcu_read_lock(); \ 3470 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3471 rcu_read_unlock(); \ 3472 } while (0) 3473 3474 #ifdef CONFIG_BTRFS_ASSERT 3475 __cold __noreturn 3476 static inline void assertfail(const char *expr, const char *file, int line) 3477 { 3478 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3479 BUG(); 3480 } 3481 3482 #define ASSERT(expr) \ 3483 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3484 3485 #else 3486 static inline void assertfail(const char *expr, const char* file, int line) { } 3487 #define ASSERT(expr) (void)(expr) 3488 #endif 3489 3490 #if BITS_PER_LONG == 32 3491 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3492 /* 3493 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3494 * addresses of extents. 3495 * 3496 * For 4K page size it's about 10T, for 64K it's 160T. 3497 */ 3498 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3499 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3500 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3501 #endif 3502 3503 /* 3504 * Get the correct offset inside the page of extent buffer. 3505 * 3506 * @eb: target extent buffer 3507 * @start: offset inside the extent buffer 3508 * 3509 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3510 */ 3511 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3512 unsigned long offset) 3513 { 3514 /* 3515 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3516 * to PAGE_SIZE, thus adding it won't cause any difference. 3517 * 3518 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3519 * to the eb, thus we have to take the eb->start into consideration. 3520 */ 3521 return offset_in_page(offset + eb->start); 3522 } 3523 3524 static inline unsigned long get_eb_page_index(unsigned long offset) 3525 { 3526 /* 3527 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3528 * 3529 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3530 * and have ensured that all tree blocks are contained in one page, 3531 * thus we always get index == 0. 3532 */ 3533 return offset >> PAGE_SHIFT; 3534 } 3535 3536 /* 3537 * Use that for functions that are conditionally exported for sanity tests but 3538 * otherwise static 3539 */ 3540 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3541 #define EXPORT_FOR_TESTS static 3542 #else 3543 #define EXPORT_FOR_TESTS 3544 #endif 3545 3546 __cold 3547 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3548 { 3549 btrfs_err(fs_info, 3550 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3551 } 3552 3553 __printf(5, 6) 3554 __cold 3555 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3556 unsigned int line, int errno, const char *fmt, ...); 3557 3558 const char * __attribute_const__ btrfs_decode_error(int errno); 3559 3560 __cold 3561 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3562 const char *function, 3563 unsigned int line, int errno); 3564 3565 /* 3566 * Call btrfs_abort_transaction as early as possible when an error condition is 3567 * detected, that way the exact line number is reported. 3568 */ 3569 #define btrfs_abort_transaction(trans, errno) \ 3570 do { \ 3571 /* Report first abort since mount */ \ 3572 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3573 &((trans)->fs_info->fs_state))) { \ 3574 if ((errno) != -EIO && (errno) != -EROFS) { \ 3575 WARN(1, KERN_DEBUG \ 3576 "BTRFS: Transaction aborted (error %d)\n", \ 3577 (errno)); \ 3578 } else { \ 3579 btrfs_debug((trans)->fs_info, \ 3580 "Transaction aborted (error %d)", \ 3581 (errno)); \ 3582 } \ 3583 } \ 3584 __btrfs_abort_transaction((trans), __func__, \ 3585 __LINE__, (errno)); \ 3586 } while (0) 3587 3588 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3589 do { \ 3590 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3591 (errno), fmt, ##args); \ 3592 } while (0) 3593 3594 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3595 &(fs_info)->fs_state))) 3596 3597 __printf(5, 6) 3598 __cold 3599 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3600 unsigned int line, int errno, const char *fmt, ...); 3601 /* 3602 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3603 * will panic(). Otherwise we BUG() here. 3604 */ 3605 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3606 do { \ 3607 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3608 BUG(); \ 3609 } while (0) 3610 3611 3612 /* compatibility and incompatibility defines */ 3613 3614 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3615 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3616 #opt) 3617 3618 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3619 u64 flag, const char* name) 3620 { 3621 struct btrfs_super_block *disk_super; 3622 u64 features; 3623 3624 disk_super = fs_info->super_copy; 3625 features = btrfs_super_incompat_flags(disk_super); 3626 if (!(features & flag)) { 3627 spin_lock(&fs_info->super_lock); 3628 features = btrfs_super_incompat_flags(disk_super); 3629 if (!(features & flag)) { 3630 features |= flag; 3631 btrfs_set_super_incompat_flags(disk_super, features); 3632 btrfs_info(fs_info, 3633 "setting incompat feature flag for %s (0x%llx)", 3634 name, flag); 3635 } 3636 spin_unlock(&fs_info->super_lock); 3637 } 3638 } 3639 3640 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3641 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3642 #opt) 3643 3644 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3645 u64 flag, const char* name) 3646 { 3647 struct btrfs_super_block *disk_super; 3648 u64 features; 3649 3650 disk_super = fs_info->super_copy; 3651 features = btrfs_super_incompat_flags(disk_super); 3652 if (features & flag) { 3653 spin_lock(&fs_info->super_lock); 3654 features = btrfs_super_incompat_flags(disk_super); 3655 if (features & flag) { 3656 features &= ~flag; 3657 btrfs_set_super_incompat_flags(disk_super, features); 3658 btrfs_info(fs_info, 3659 "clearing incompat feature flag for %s (0x%llx)", 3660 name, flag); 3661 } 3662 spin_unlock(&fs_info->super_lock); 3663 } 3664 } 3665 3666 #define btrfs_fs_incompat(fs_info, opt) \ 3667 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3668 3669 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3670 { 3671 struct btrfs_super_block *disk_super; 3672 disk_super = fs_info->super_copy; 3673 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3674 } 3675 3676 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3677 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3678 #opt) 3679 3680 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3681 u64 flag, const char *name) 3682 { 3683 struct btrfs_super_block *disk_super; 3684 u64 features; 3685 3686 disk_super = fs_info->super_copy; 3687 features = btrfs_super_compat_ro_flags(disk_super); 3688 if (!(features & flag)) { 3689 spin_lock(&fs_info->super_lock); 3690 features = btrfs_super_compat_ro_flags(disk_super); 3691 if (!(features & flag)) { 3692 features |= flag; 3693 btrfs_set_super_compat_ro_flags(disk_super, features); 3694 btrfs_info(fs_info, 3695 "setting compat-ro feature flag for %s (0x%llx)", 3696 name, flag); 3697 } 3698 spin_unlock(&fs_info->super_lock); 3699 } 3700 } 3701 3702 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3703 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3704 #opt) 3705 3706 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3707 u64 flag, const char *name) 3708 { 3709 struct btrfs_super_block *disk_super; 3710 u64 features; 3711 3712 disk_super = fs_info->super_copy; 3713 features = btrfs_super_compat_ro_flags(disk_super); 3714 if (features & flag) { 3715 spin_lock(&fs_info->super_lock); 3716 features = btrfs_super_compat_ro_flags(disk_super); 3717 if (features & flag) { 3718 features &= ~flag; 3719 btrfs_set_super_compat_ro_flags(disk_super, features); 3720 btrfs_info(fs_info, 3721 "clearing compat-ro feature flag for %s (0x%llx)", 3722 name, flag); 3723 } 3724 spin_unlock(&fs_info->super_lock); 3725 } 3726 } 3727 3728 #define btrfs_fs_compat_ro(fs_info, opt) \ 3729 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3730 3731 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3732 { 3733 struct btrfs_super_block *disk_super; 3734 disk_super = fs_info->super_copy; 3735 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3736 } 3737 3738 /* acl.c */ 3739 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3740 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3741 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3742 struct posix_acl *acl, int type); 3743 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3744 struct inode *inode, struct inode *dir); 3745 #else 3746 #define btrfs_get_acl NULL 3747 #define btrfs_set_acl NULL 3748 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3749 struct inode *inode, struct inode *dir) 3750 { 3751 return 0; 3752 } 3753 #endif 3754 3755 /* relocation.c */ 3756 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3757 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3758 struct btrfs_root *root); 3759 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3760 struct btrfs_root *root); 3761 int btrfs_recover_relocation(struct btrfs_root *root); 3762 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3763 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3764 struct btrfs_root *root, struct extent_buffer *buf, 3765 struct extent_buffer *cow); 3766 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3767 u64 *bytes_to_reserve); 3768 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3769 struct btrfs_pending_snapshot *pending); 3770 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3771 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3772 u64 bytenr); 3773 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3774 3775 /* scrub.c */ 3776 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3777 u64 end, struct btrfs_scrub_progress *progress, 3778 int readonly, int is_dev_replace); 3779 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3780 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3781 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3782 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3783 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3784 struct btrfs_scrub_progress *progress); 3785 static inline void btrfs_init_full_stripe_locks_tree( 3786 struct btrfs_full_stripe_locks_tree *locks_root) 3787 { 3788 locks_root->root = RB_ROOT; 3789 mutex_init(&locks_root->lock); 3790 } 3791 3792 /* dev-replace.c */ 3793 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3794 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3795 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3796 3797 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3798 { 3799 btrfs_bio_counter_sub(fs_info, 1); 3800 } 3801 3802 static inline int is_fstree(u64 rootid) 3803 { 3804 if (rootid == BTRFS_FS_TREE_OBJECTID || 3805 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3806 !btrfs_qgroup_level(rootid))) 3807 return 1; 3808 return 0; 3809 } 3810 3811 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3812 { 3813 return signal_pending(current); 3814 } 3815 3816 /* verity.c */ 3817 #ifdef CONFIG_FS_VERITY 3818 3819 extern const struct fsverity_operations btrfs_verityops; 3820 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3821 3822 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3823 encryption, 8); 3824 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3825 size, 64); 3826 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3827 struct btrfs_verity_descriptor_item, encryption, 8); 3828 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3829 struct btrfs_verity_descriptor_item, size, 64); 3830 3831 #else 3832 3833 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3834 { 3835 return 0; 3836 } 3837 3838 #endif 3839 3840 /* Sanity test specific functions */ 3841 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3842 void btrfs_test_destroy_inode(struct inode *inode); 3843 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3844 { 3845 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3846 } 3847 #else 3848 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3849 { 3850 return 0; 3851 } 3852 #endif 3853 3854 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3855 { 3856 return fs_info->zoned != 0; 3857 } 3858 3859 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 3860 { 3861 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 3862 } 3863 3864 /* 3865 * We use page status Private2 to indicate there is an ordered extent with 3866 * unfinished IO. 3867 * 3868 * Rename the Private2 accessors to Ordered, to improve readability. 3869 */ 3870 #define PageOrdered(page) PagePrivate2(page) 3871 #define SetPageOrdered(page) SetPagePrivate2(page) 3872 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3873 3874 #endif 3875