xref: /openbmc/linux/fs/btrfs/ctree.h (revision 2f190ac2)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111 {
112 	BUG_ON(num_stripes == 0);
113 	return sizeof(struct btrfs_chunk) +
114 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
115 }
116 
117 /*
118  * Runtime (in-memory) states of filesystem
119  */
120 enum {
121 	/* Global indicator of serious filesystem errors */
122 	BTRFS_FS_STATE_ERROR,
123 	/*
124 	 * Filesystem is being remounted, allow to skip some operations, like
125 	 * defrag
126 	 */
127 	BTRFS_FS_STATE_REMOUNTING,
128 	/* Filesystem in RO mode */
129 	BTRFS_FS_STATE_RO,
130 	/* Track if a transaction abort has been reported on this filesystem */
131 	BTRFS_FS_STATE_TRANS_ABORTED,
132 	/*
133 	 * Bio operations should be blocked on this filesystem because a source
134 	 * or target device is being destroyed as part of a device replace
135 	 */
136 	BTRFS_FS_STATE_DEV_REPLACING,
137 	/* The btrfs_fs_info created for self-tests */
138 	BTRFS_FS_STATE_DUMMY_FS_INFO,
139 
140 	BTRFS_FS_STATE_NO_CSUMS,
141 
142 	/* Indicates there was an error cleaning up a log tree. */
143 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144 
145 	BTRFS_FS_STATE_COUNT
146 };
147 
148 #define BTRFS_BACKREF_REV_MAX		256
149 #define BTRFS_BACKREF_REV_SHIFT		56
150 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 					 BTRFS_BACKREF_REV_SHIFT)
152 
153 #define BTRFS_OLD_BACKREF_REV		0
154 #define BTRFS_MIXED_BACKREF_REV		1
155 
156 /*
157  * every tree block (leaf or node) starts with this header.
158  */
159 struct btrfs_header {
160 	/* these first four must match the super block */
161 	u8 csum[BTRFS_CSUM_SIZE];
162 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 	__le64 bytenr; /* which block this node is supposed to live in */
164 	__le64 flags;
165 
166 	/* allowed to be different from the super from here on down */
167 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 	__le64 generation;
169 	__le64 owner;
170 	__le32 nritems;
171 	u8 level;
172 } __attribute__ ((__packed__));
173 
174 /*
175  * this is a very generous portion of the super block, giving us
176  * room to translate 14 chunks with 3 stripes each.
177  */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179 
180 /*
181  * just in case we somehow lose the roots and are not able to mount,
182  * we store an array of the roots from previous transactions
183  * in the super.
184  */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 	__le64 tree_root;
188 	__le64 tree_root_gen;
189 
190 	__le64 chunk_root;
191 	__le64 chunk_root_gen;
192 
193 	__le64 extent_root;
194 	__le64 extent_root_gen;
195 
196 	__le64 fs_root;
197 	__le64 fs_root_gen;
198 
199 	__le64 dev_root;
200 	__le64 dev_root_gen;
201 
202 	__le64 csum_root;
203 	__le64 csum_root_gen;
204 
205 	__le64 total_bytes;
206 	__le64 bytes_used;
207 	__le64 num_devices;
208 	/* future */
209 	__le64 unused_64[4];
210 
211 	u8 tree_root_level;
212 	u8 chunk_root_level;
213 	u8 extent_root_level;
214 	u8 fs_root_level;
215 	u8 dev_root_level;
216 	u8 csum_root_level;
217 	/* future and to align */
218 	u8 unused_8[10];
219 } __attribute__ ((__packed__));
220 
221 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE			4096
223 
224 /*
225  * The reserved space at the beginning of each device.
226  * It covers the primary super block and leaves space for potential use by other
227  * tools like bootloaders or to lower potential damage of accidental overwrite.
228  */
229 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
230 
231 /*
232  * the super block basically lists the main trees of the FS
233  * it currently lacks any block count etc etc
234  */
235 struct btrfs_super_block {
236 	/* the first 4 fields must match struct btrfs_header */
237 	u8 csum[BTRFS_CSUM_SIZE];
238 	/* FS specific UUID, visible to user */
239 	u8 fsid[BTRFS_FSID_SIZE];
240 	__le64 bytenr; /* this block number */
241 	__le64 flags;
242 
243 	/* allowed to be different from the btrfs_header from here own down */
244 	__le64 magic;
245 	__le64 generation;
246 	__le64 root;
247 	__le64 chunk_root;
248 	__le64 log_root;
249 
250 	/*
251 	 * This member has never been utilized since the very beginning, thus
252 	 * it's always 0 regardless of kernel version.  We always use
253 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
254 	 */
255 	__le64 __unused_log_root_transid;
256 	__le64 total_bytes;
257 	__le64 bytes_used;
258 	__le64 root_dir_objectid;
259 	__le64 num_devices;
260 	__le32 sectorsize;
261 	__le32 nodesize;
262 	__le32 __unused_leafsize;
263 	__le32 stripesize;
264 	__le32 sys_chunk_array_size;
265 	__le64 chunk_root_generation;
266 	__le64 compat_flags;
267 	__le64 compat_ro_flags;
268 	__le64 incompat_flags;
269 	__le16 csum_type;
270 	u8 root_level;
271 	u8 chunk_root_level;
272 	u8 log_root_level;
273 	struct btrfs_dev_item dev_item;
274 
275 	char label[BTRFS_LABEL_SIZE];
276 
277 	__le64 cache_generation;
278 	__le64 uuid_tree_generation;
279 
280 	/* the UUID written into btree blocks */
281 	u8 metadata_uuid[BTRFS_FSID_SIZE];
282 
283 	/* Extent tree v2 */
284 	__le64 block_group_root;
285 	__le64 block_group_root_generation;
286 	u8 block_group_root_level;
287 
288 	/* future expansion */
289 	u8 reserved8[7];
290 	__le64 reserved[25];
291 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293 
294 	/* Padded to 4096 bytes */
295 	u8 padding[565];
296 } __attribute__ ((__packed__));
297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298 
299 /*
300  * Compat flags that we support.  If any incompat flags are set other than the
301  * ones specified below then we will fail to mount
302  */
303 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
308 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
309 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
311 
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
314 
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318  */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
320 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
321 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
322 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
323 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
324 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
326 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
327 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
328 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
329 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
330 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
331 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
332 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
333 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
336 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
337 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
338 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
339 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
340 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
342 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
343 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
344 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
345 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
346 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
347 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
348 	 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350 
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
352 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
354 
355 /*
356  * A leaf is full of items. offset and size tell us where to find
357  * the item in the leaf (relative to the start of the data area)
358  */
359 struct btrfs_item {
360 	struct btrfs_disk_key key;
361 	__le32 offset;
362 	__le32 size;
363 } __attribute__ ((__packed__));
364 
365 /*
366  * leaves have an item area and a data area:
367  * [item0, item1....itemN] [free space] [dataN...data1, data0]
368  *
369  * The data is separate from the items to get the keys closer together
370  * during searches.
371  */
372 struct btrfs_leaf {
373 	struct btrfs_header header;
374 	struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376 
377 /*
378  * all non-leaf blocks are nodes, they hold only keys and pointers to
379  * other blocks
380  */
381 struct btrfs_key_ptr {
382 	struct btrfs_disk_key key;
383 	__le64 blockptr;
384 	__le64 generation;
385 } __attribute__ ((__packed__));
386 
387 struct btrfs_node {
388 	struct btrfs_header header;
389 	struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391 
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 	READA_NONE,
395 	READA_BACK,
396 	READA_FORWARD,
397 	/*
398 	 * Similar to READA_FORWARD but unlike it:
399 	 *
400 	 * 1) It will trigger readahead even for leaves that are not close to
401 	 *    each other on disk;
402 	 * 2) It also triggers readahead for nodes;
403 	 * 3) During a search, even when a node or leaf is already in memory, it
404 	 *    will still trigger readahead for other nodes and leaves that follow
405 	 *    it.
406 	 *
407 	 * This is meant to be used only when we know we are iterating over the
408 	 * entire tree or a very large part of it.
409 	 */
410 	READA_FORWARD_ALWAYS,
411 };
412 
413 /*
414  * btrfs_paths remember the path taken from the root down to the leaf.
415  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416  * to any other levels that are present.
417  *
418  * The slots array records the index of the item or block pointer
419  * used while walking the tree.
420  */
421 struct btrfs_path {
422 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 	int slots[BTRFS_MAX_LEVEL];
424 	/* if there is real range locking, this locks field will change */
425 	u8 locks[BTRFS_MAX_LEVEL];
426 	u8 reada;
427 	/* keep some upper locks as we walk down */
428 	u8 lowest_level;
429 
430 	/*
431 	 * set by btrfs_split_item, tells search_slot to keep all locks
432 	 * and to force calls to keep space in the nodes
433 	 */
434 	unsigned int search_for_split:1;
435 	unsigned int keep_locks:1;
436 	unsigned int skip_locking:1;
437 	unsigned int search_commit_root:1;
438 	unsigned int need_commit_sem:1;
439 	unsigned int skip_release_on_error:1;
440 	/*
441 	 * Indicate that new item (btrfs_search_slot) is extending already
442 	 * existing item and ins_len contains only the data size and not item
443 	 * header (ie. sizeof(struct btrfs_item) is not included).
444 	 */
445 	unsigned int search_for_extension:1;
446 };
447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
448 					sizeof(struct btrfs_item))
449 struct btrfs_dev_replace {
450 	u64 replace_state;	/* see #define above */
451 	time64_t time_started;	/* seconds since 1-Jan-1970 */
452 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
453 	atomic64_t num_write_errors;
454 	atomic64_t num_uncorrectable_read_errors;
455 
456 	u64 cursor_left;
457 	u64 committed_cursor_left;
458 	u64 cursor_left_last_write_of_item;
459 	u64 cursor_right;
460 
461 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
462 
463 	int is_valid;
464 	int item_needs_writeback;
465 	struct btrfs_device *srcdev;
466 	struct btrfs_device *tgtdev;
467 
468 	struct mutex lock_finishing_cancel_unmount;
469 	struct rw_semaphore rwsem;
470 
471 	struct btrfs_scrub_progress scrub_progress;
472 
473 	struct percpu_counter bio_counter;
474 	wait_queue_head_t replace_wait;
475 };
476 
477 /*
478  * free clusters are used to claim free space in relatively large chunks,
479  * allowing us to do less seeky writes. They are used for all metadata
480  * allocations. In ssd_spread mode they are also used for data allocations.
481  */
482 struct btrfs_free_cluster {
483 	spinlock_t lock;
484 	spinlock_t refill_lock;
485 	struct rb_root root;
486 
487 	/* largest extent in this cluster */
488 	u64 max_size;
489 
490 	/* first extent starting offset */
491 	u64 window_start;
492 
493 	/* We did a full search and couldn't create a cluster */
494 	bool fragmented;
495 
496 	struct btrfs_block_group *block_group;
497 	/*
498 	 * when a cluster is allocated from a block group, we put the
499 	 * cluster onto a list in the block group so that it can
500 	 * be freed before the block group is freed.
501 	 */
502 	struct list_head block_group_list;
503 };
504 
505 enum btrfs_caching_type {
506 	BTRFS_CACHE_NO,
507 	BTRFS_CACHE_STARTED,
508 	BTRFS_CACHE_FAST,
509 	BTRFS_CACHE_FINISHED,
510 	BTRFS_CACHE_ERROR,
511 };
512 
513 /*
514  * Tree to record all locked full stripes of a RAID5/6 block group
515  */
516 struct btrfs_full_stripe_locks_tree {
517 	struct rb_root root;
518 	struct mutex lock;
519 };
520 
521 /* Discard control. */
522 /*
523  * Async discard uses multiple lists to differentiate the discard filter
524  * parameters.  Index 0 is for completely free block groups where we need to
525  * ensure the entire block group is trimmed without being lossy.  Indices
526  * afterwards represent monotonically decreasing discard filter sizes to
527  * prioritize what should be discarded next.
528  */
529 #define BTRFS_NR_DISCARD_LISTS		3
530 #define BTRFS_DISCARD_INDEX_UNUSED	0
531 #define BTRFS_DISCARD_INDEX_START	1
532 
533 struct btrfs_discard_ctl {
534 	struct workqueue_struct *discard_workers;
535 	struct delayed_work work;
536 	spinlock_t lock;
537 	struct btrfs_block_group *block_group;
538 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
539 	u64 prev_discard;
540 	u64 prev_discard_time;
541 	atomic_t discardable_extents;
542 	atomic64_t discardable_bytes;
543 	u64 max_discard_size;
544 	u64 delay_ms;
545 	u32 iops_limit;
546 	u32 kbps_limit;
547 	u64 discard_extent_bytes;
548 	u64 discard_bitmap_bytes;
549 	atomic64_t discard_bytes_saved;
550 };
551 
552 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
553 
554 /* fs_info */
555 struct reloc_control;
556 struct btrfs_device;
557 struct btrfs_fs_devices;
558 struct btrfs_balance_control;
559 struct btrfs_delayed_root;
560 
561 /*
562  * Block group or device which contains an active swapfile. Used for preventing
563  * unsafe operations while a swapfile is active.
564  *
565  * These are sorted on (ptr, inode) (note that a block group or device can
566  * contain more than one swapfile). We compare the pointer values because we
567  * don't actually care what the object is, we just need a quick check whether
568  * the object exists in the rbtree.
569  */
570 struct btrfs_swapfile_pin {
571 	struct rb_node node;
572 	void *ptr;
573 	struct inode *inode;
574 	/*
575 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
576 	 * points to a struct btrfs_device.
577 	 */
578 	bool is_block_group;
579 	/*
580 	 * Only used when 'is_block_group' is true and it is the number of
581 	 * extents used by a swapfile for this block group ('ptr' field).
582 	 */
583 	int bg_extent_count;
584 };
585 
586 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
587 
588 enum {
589 	BTRFS_FS_CLOSING_START,
590 	BTRFS_FS_CLOSING_DONE,
591 	BTRFS_FS_LOG_RECOVERING,
592 	BTRFS_FS_OPEN,
593 	BTRFS_FS_QUOTA_ENABLED,
594 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
595 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
596 	BTRFS_FS_BTREE_ERR,
597 	BTRFS_FS_LOG1_ERR,
598 	BTRFS_FS_LOG2_ERR,
599 	BTRFS_FS_QUOTA_OVERRIDE,
600 	/* Used to record internally whether fs has been frozen */
601 	BTRFS_FS_FROZEN,
602 	/*
603 	 * Indicate that balance has been set up from the ioctl and is in the
604 	 * main phase. The fs_info::balance_ctl is initialized.
605 	 */
606 	BTRFS_FS_BALANCE_RUNNING,
607 
608 	/*
609 	 * Indicate that relocation of a chunk has started, it's set per chunk
610 	 * and is toggled between chunks.
611 	 */
612 	BTRFS_FS_RELOC_RUNNING,
613 
614 	/* Indicate that the cleaner thread is awake and doing something. */
615 	BTRFS_FS_CLEANER_RUNNING,
616 
617 	/*
618 	 * The checksumming has an optimized version and is considered fast,
619 	 * so we don't need to offload checksums to workqueues.
620 	 */
621 	BTRFS_FS_CSUM_IMPL_FAST,
622 
623 	/* Indicate that the discard workqueue can service discards. */
624 	BTRFS_FS_DISCARD_RUNNING,
625 
626 	/* Indicate that we need to cleanup space cache v1 */
627 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
628 
629 	/* Indicate that we can't trust the free space tree for caching yet */
630 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
631 
632 	/* Indicate whether there are any tree modification log users */
633 	BTRFS_FS_TREE_MOD_LOG_USERS,
634 
635 	/* Indicate that we want the transaction kthread to commit right now. */
636 	BTRFS_FS_COMMIT_TRANS,
637 
638 	/* Indicate we have half completed snapshot deletions pending. */
639 	BTRFS_FS_UNFINISHED_DROPS,
640 
641 	/* Indicate we have to finish a zone to do next allocation. */
642 	BTRFS_FS_NEED_ZONE_FINISH,
643 
644 #if BITS_PER_LONG == 32
645 	/* Indicate if we have error/warn message printed on 32bit systems */
646 	BTRFS_FS_32BIT_ERROR,
647 	BTRFS_FS_32BIT_WARN,
648 #endif
649 };
650 
651 /*
652  * Exclusive operations (device replace, resize, device add/remove, balance)
653  */
654 enum btrfs_exclusive_operation {
655 	BTRFS_EXCLOP_NONE,
656 	BTRFS_EXCLOP_BALANCE_PAUSED,
657 	BTRFS_EXCLOP_BALANCE,
658 	BTRFS_EXCLOP_DEV_ADD,
659 	BTRFS_EXCLOP_DEV_REMOVE,
660 	BTRFS_EXCLOP_DEV_REPLACE,
661 	BTRFS_EXCLOP_RESIZE,
662 	BTRFS_EXCLOP_SWAP_ACTIVATE,
663 };
664 
665 /* Store data about transaction commits, exported via sysfs. */
666 struct btrfs_commit_stats {
667 	/* Total number of commits */
668 	u64 commit_count;
669 	/* The maximum commit duration so far in ns */
670 	u64 max_commit_dur;
671 	/* The last commit duration in ns */
672 	u64 last_commit_dur;
673 	/* The total commit duration in ns */
674 	u64 total_commit_dur;
675 };
676 
677 struct btrfs_fs_info {
678 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
679 	unsigned long flags;
680 	struct btrfs_root *tree_root;
681 	struct btrfs_root *chunk_root;
682 	struct btrfs_root *dev_root;
683 	struct btrfs_root *fs_root;
684 	struct btrfs_root *quota_root;
685 	struct btrfs_root *uuid_root;
686 	struct btrfs_root *data_reloc_root;
687 	struct btrfs_root *block_group_root;
688 
689 	/* the log root tree is a directory of all the other log roots */
690 	struct btrfs_root *log_root_tree;
691 
692 	/* The tree that holds the global roots (csum, extent, etc) */
693 	rwlock_t global_root_lock;
694 	struct rb_root global_root_tree;
695 
696 	spinlock_t fs_roots_radix_lock;
697 	struct radix_tree_root fs_roots_radix;
698 
699 	/* block group cache stuff */
700 	rwlock_t block_group_cache_lock;
701 	struct rb_root_cached block_group_cache_tree;
702 
703 	/* keep track of unallocated space */
704 	atomic64_t free_chunk_space;
705 
706 	/* Track ranges which are used by log trees blocks/logged data extents */
707 	struct extent_io_tree excluded_extents;
708 
709 	/* logical->physical extent mapping */
710 	struct extent_map_tree mapping_tree;
711 
712 	/*
713 	 * block reservation for extent, checksum, root tree and
714 	 * delayed dir index item
715 	 */
716 	struct btrfs_block_rsv global_block_rsv;
717 	/* block reservation for metadata operations */
718 	struct btrfs_block_rsv trans_block_rsv;
719 	/* block reservation for chunk tree */
720 	struct btrfs_block_rsv chunk_block_rsv;
721 	/* block reservation for delayed operations */
722 	struct btrfs_block_rsv delayed_block_rsv;
723 	/* block reservation for delayed refs */
724 	struct btrfs_block_rsv delayed_refs_rsv;
725 
726 	struct btrfs_block_rsv empty_block_rsv;
727 
728 	u64 generation;
729 	u64 last_trans_committed;
730 	/*
731 	 * Generation of the last transaction used for block group relocation
732 	 * since the filesystem was last mounted (or 0 if none happened yet).
733 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
734 	 */
735 	u64 last_reloc_trans;
736 	u64 avg_delayed_ref_runtime;
737 
738 	/*
739 	 * this is updated to the current trans every time a full commit
740 	 * is required instead of the faster short fsync log commits
741 	 */
742 	u64 last_trans_log_full_commit;
743 	unsigned long mount_opt;
744 	/*
745 	 * Track requests for actions that need to be done during transaction
746 	 * commit (like for some mount options).
747 	 */
748 	unsigned long pending_changes;
749 	unsigned long compress_type:4;
750 	unsigned int compress_level;
751 	u32 commit_interval;
752 	/*
753 	 * It is a suggestive number, the read side is safe even it gets a
754 	 * wrong number because we will write out the data into a regular
755 	 * extent. The write side(mount/remount) is under ->s_umount lock,
756 	 * so it is also safe.
757 	 */
758 	u64 max_inline;
759 
760 	struct btrfs_transaction *running_transaction;
761 	wait_queue_head_t transaction_throttle;
762 	wait_queue_head_t transaction_wait;
763 	wait_queue_head_t transaction_blocked_wait;
764 	wait_queue_head_t async_submit_wait;
765 
766 	/*
767 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
768 	 * when they are updated.
769 	 *
770 	 * Because we do not clear the flags for ever, so we needn't use
771 	 * the lock on the read side.
772 	 *
773 	 * We also needn't use the lock when we mount the fs, because
774 	 * there is no other task which will update the flag.
775 	 */
776 	spinlock_t super_lock;
777 	struct btrfs_super_block *super_copy;
778 	struct btrfs_super_block *super_for_commit;
779 	struct super_block *sb;
780 	struct inode *btree_inode;
781 	struct mutex tree_log_mutex;
782 	struct mutex transaction_kthread_mutex;
783 	struct mutex cleaner_mutex;
784 	struct mutex chunk_mutex;
785 
786 	/*
787 	 * this is taken to make sure we don't set block groups ro after
788 	 * the free space cache has been allocated on them
789 	 */
790 	struct mutex ro_block_group_mutex;
791 
792 	/* this is used during read/modify/write to make sure
793 	 * no two ios are trying to mod the same stripe at the same
794 	 * time
795 	 */
796 	struct btrfs_stripe_hash_table *stripe_hash_table;
797 
798 	/*
799 	 * this protects the ordered operations list only while we are
800 	 * processing all of the entries on it.  This way we make
801 	 * sure the commit code doesn't find the list temporarily empty
802 	 * because another function happens to be doing non-waiting preflush
803 	 * before jumping into the main commit.
804 	 */
805 	struct mutex ordered_operations_mutex;
806 
807 	struct rw_semaphore commit_root_sem;
808 
809 	struct rw_semaphore cleanup_work_sem;
810 
811 	struct rw_semaphore subvol_sem;
812 
813 	spinlock_t trans_lock;
814 	/*
815 	 * the reloc mutex goes with the trans lock, it is taken
816 	 * during commit to protect us from the relocation code
817 	 */
818 	struct mutex reloc_mutex;
819 
820 	struct list_head trans_list;
821 	struct list_head dead_roots;
822 	struct list_head caching_block_groups;
823 
824 	spinlock_t delayed_iput_lock;
825 	struct list_head delayed_iputs;
826 	atomic_t nr_delayed_iputs;
827 	wait_queue_head_t delayed_iputs_wait;
828 
829 	atomic64_t tree_mod_seq;
830 
831 	/* this protects tree_mod_log and tree_mod_seq_list */
832 	rwlock_t tree_mod_log_lock;
833 	struct rb_root tree_mod_log;
834 	struct list_head tree_mod_seq_list;
835 
836 	atomic_t async_delalloc_pages;
837 
838 	/*
839 	 * this is used to protect the following list -- ordered_roots.
840 	 */
841 	spinlock_t ordered_root_lock;
842 
843 	/*
844 	 * all fs/file tree roots in which there are data=ordered extents
845 	 * pending writeback are added into this list.
846 	 *
847 	 * these can span multiple transactions and basically include
848 	 * every dirty data page that isn't from nodatacow
849 	 */
850 	struct list_head ordered_roots;
851 
852 	struct mutex delalloc_root_mutex;
853 	spinlock_t delalloc_root_lock;
854 	/* all fs/file tree roots that have delalloc inodes. */
855 	struct list_head delalloc_roots;
856 
857 	/*
858 	 * there is a pool of worker threads for checksumming during writes
859 	 * and a pool for checksumming after reads.  This is because readers
860 	 * can run with FS locks held, and the writers may be waiting for
861 	 * those locks.  We don't want ordering in the pending list to cause
862 	 * deadlocks, and so the two are serviced separately.
863 	 *
864 	 * A third pool does submit_bio to avoid deadlocking with the other
865 	 * two
866 	 */
867 	struct btrfs_workqueue *workers;
868 	struct btrfs_workqueue *hipri_workers;
869 	struct btrfs_workqueue *delalloc_workers;
870 	struct btrfs_workqueue *flush_workers;
871 	struct workqueue_struct *endio_workers;
872 	struct workqueue_struct *endio_meta_workers;
873 	struct workqueue_struct *endio_raid56_workers;
874 	struct workqueue_struct *rmw_workers;
875 	struct workqueue_struct *compressed_write_workers;
876 	struct btrfs_workqueue *endio_write_workers;
877 	struct btrfs_workqueue *endio_freespace_worker;
878 	struct btrfs_workqueue *caching_workers;
879 
880 	/*
881 	 * fixup workers take dirty pages that didn't properly go through
882 	 * the cow mechanism and make them safe to write.  It happens
883 	 * for the sys_munmap function call path
884 	 */
885 	struct btrfs_workqueue *fixup_workers;
886 	struct btrfs_workqueue *delayed_workers;
887 
888 	struct task_struct *transaction_kthread;
889 	struct task_struct *cleaner_kthread;
890 	u32 thread_pool_size;
891 
892 	struct kobject *space_info_kobj;
893 	struct kobject *qgroups_kobj;
894 
895 	/* used to keep from writing metadata until there is a nice batch */
896 	struct percpu_counter dirty_metadata_bytes;
897 	struct percpu_counter delalloc_bytes;
898 	struct percpu_counter ordered_bytes;
899 	s32 dirty_metadata_batch;
900 	s32 delalloc_batch;
901 
902 	struct list_head dirty_cowonly_roots;
903 
904 	struct btrfs_fs_devices *fs_devices;
905 
906 	/*
907 	 * The space_info list is effectively read only after initial
908 	 * setup.  It is populated at mount time and cleaned up after
909 	 * all block groups are removed.  RCU is used to protect it.
910 	 */
911 	struct list_head space_info;
912 
913 	struct btrfs_space_info *data_sinfo;
914 
915 	struct reloc_control *reloc_ctl;
916 
917 	/* data_alloc_cluster is only used in ssd_spread mode */
918 	struct btrfs_free_cluster data_alloc_cluster;
919 
920 	/* all metadata allocations go through this cluster */
921 	struct btrfs_free_cluster meta_alloc_cluster;
922 
923 	/* auto defrag inodes go here */
924 	spinlock_t defrag_inodes_lock;
925 	struct rb_root defrag_inodes;
926 	atomic_t defrag_running;
927 
928 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
929 	seqlock_t profiles_lock;
930 	/*
931 	 * these three are in extended format (availability of single
932 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
933 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
934 	 */
935 	u64 avail_data_alloc_bits;
936 	u64 avail_metadata_alloc_bits;
937 	u64 avail_system_alloc_bits;
938 
939 	/* restriper state */
940 	spinlock_t balance_lock;
941 	struct mutex balance_mutex;
942 	atomic_t balance_pause_req;
943 	atomic_t balance_cancel_req;
944 	struct btrfs_balance_control *balance_ctl;
945 	wait_queue_head_t balance_wait_q;
946 
947 	/* Cancellation requests for chunk relocation */
948 	atomic_t reloc_cancel_req;
949 
950 	u32 data_chunk_allocations;
951 	u32 metadata_ratio;
952 
953 	void *bdev_holder;
954 
955 	/* private scrub information */
956 	struct mutex scrub_lock;
957 	atomic_t scrubs_running;
958 	atomic_t scrub_pause_req;
959 	atomic_t scrubs_paused;
960 	atomic_t scrub_cancel_req;
961 	wait_queue_head_t scrub_pause_wait;
962 	/*
963 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
964 	 * running.
965 	 */
966 	refcount_t scrub_workers_refcnt;
967 	struct workqueue_struct *scrub_workers;
968 	struct workqueue_struct *scrub_wr_completion_workers;
969 	struct workqueue_struct *scrub_parity_workers;
970 	struct btrfs_subpage_info *subpage_info;
971 
972 	struct btrfs_discard_ctl discard_ctl;
973 
974 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
975 	u32 check_integrity_print_mask;
976 #endif
977 	/* is qgroup tracking in a consistent state? */
978 	u64 qgroup_flags;
979 
980 	/* holds configuration and tracking. Protected by qgroup_lock */
981 	struct rb_root qgroup_tree;
982 	spinlock_t qgroup_lock;
983 
984 	/*
985 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
986 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
987 	 */
988 	struct ulist *qgroup_ulist;
989 
990 	/*
991 	 * Protect user change for quota operations. If a transaction is needed,
992 	 * it must be started before locking this lock.
993 	 */
994 	struct mutex qgroup_ioctl_lock;
995 
996 	/* list of dirty qgroups to be written at next commit */
997 	struct list_head dirty_qgroups;
998 
999 	/* used by qgroup for an efficient tree traversal */
1000 	u64 qgroup_seq;
1001 
1002 	/* qgroup rescan items */
1003 	struct mutex qgroup_rescan_lock; /* protects the progress item */
1004 	struct btrfs_key qgroup_rescan_progress;
1005 	struct btrfs_workqueue *qgroup_rescan_workers;
1006 	struct completion qgroup_rescan_completion;
1007 	struct btrfs_work qgroup_rescan_work;
1008 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
1009 
1010 	/* filesystem state */
1011 	unsigned long fs_state;
1012 
1013 	struct btrfs_delayed_root *delayed_root;
1014 
1015 	/* Extent buffer radix tree */
1016 	spinlock_t buffer_lock;
1017 	/* Entries are eb->start / sectorsize */
1018 	struct radix_tree_root buffer_radix;
1019 
1020 	/* next backup root to be overwritten */
1021 	int backup_root_index;
1022 
1023 	/* device replace state */
1024 	struct btrfs_dev_replace dev_replace;
1025 
1026 	struct semaphore uuid_tree_rescan_sem;
1027 
1028 	/* Used to reclaim the metadata space in the background. */
1029 	struct work_struct async_reclaim_work;
1030 	struct work_struct async_data_reclaim_work;
1031 	struct work_struct preempt_reclaim_work;
1032 
1033 	/* Reclaim partially filled block groups in the background */
1034 	struct work_struct reclaim_bgs_work;
1035 	struct list_head reclaim_bgs;
1036 	int bg_reclaim_threshold;
1037 
1038 	spinlock_t unused_bgs_lock;
1039 	struct list_head unused_bgs;
1040 	struct mutex unused_bg_unpin_mutex;
1041 	/* Protect block groups that are going to be deleted */
1042 	struct mutex reclaim_bgs_lock;
1043 
1044 	/* Cached block sizes */
1045 	u32 nodesize;
1046 	u32 sectorsize;
1047 	/* ilog2 of sectorsize, use to avoid 64bit division */
1048 	u32 sectorsize_bits;
1049 	u32 csum_size;
1050 	u32 csums_per_leaf;
1051 	u32 stripesize;
1052 
1053 	/*
1054 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1055 	 * filesystem, on zoned it depends on the device constraints.
1056 	 */
1057 	u64 max_extent_size;
1058 
1059 	/* Block groups and devices containing active swapfiles. */
1060 	spinlock_t swapfile_pins_lock;
1061 	struct rb_root swapfile_pins;
1062 
1063 	struct crypto_shash *csum_shash;
1064 
1065 	/* Type of exclusive operation running, protected by super_lock */
1066 	enum btrfs_exclusive_operation exclusive_operation;
1067 
1068 	/*
1069 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1070 	 * if the mode is enabled
1071 	 */
1072 	u64 zone_size;
1073 
1074 	/* Max size to emit ZONE_APPEND write command */
1075 	u64 max_zone_append_size;
1076 	struct mutex zoned_meta_io_lock;
1077 	spinlock_t treelog_bg_lock;
1078 	u64 treelog_bg;
1079 
1080 	/*
1081 	 * Start of the dedicated data relocation block group, protected by
1082 	 * relocation_bg_lock.
1083 	 */
1084 	spinlock_t relocation_bg_lock;
1085 	u64 data_reloc_bg;
1086 	struct mutex zoned_data_reloc_io_lock;
1087 
1088 	u64 nr_global_roots;
1089 
1090 	spinlock_t zone_active_bgs_lock;
1091 	struct list_head zone_active_bgs;
1092 	/* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */
1093 	wait_queue_head_t zone_finish_wait;
1094 
1095 	/* Updates are not protected by any lock */
1096 	struct btrfs_commit_stats commit_stats;
1097 
1098 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1099 	spinlock_t ref_verify_lock;
1100 	struct rb_root block_tree;
1101 #endif
1102 
1103 #ifdef CONFIG_BTRFS_DEBUG
1104 	struct kobject *debug_kobj;
1105 	struct kobject *discard_debug_kobj;
1106 	struct list_head allocated_roots;
1107 
1108 	spinlock_t eb_leak_lock;
1109 	struct list_head allocated_ebs;
1110 #endif
1111 };
1112 
1113 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1114 {
1115 	return sb->s_fs_info;
1116 }
1117 
1118 /*
1119  * The state of btrfs root
1120  */
1121 enum {
1122 	/*
1123 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1124 	 * with the balancing code.   But the race is very small, and only the
1125 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1126 	 * is used to tell us when more checks are required
1127 	 */
1128 	BTRFS_ROOT_IN_TRANS_SETUP,
1129 
1130 	/*
1131 	 * Set if tree blocks of this root can be shared by other roots.
1132 	 * Only subvolume trees and their reloc trees have this bit set.
1133 	 * Conflicts with TRACK_DIRTY bit.
1134 	 *
1135 	 * This affects two things:
1136 	 *
1137 	 * - How balance works
1138 	 *   For shareable roots, we need to use reloc tree and do path
1139 	 *   replacement for balance, and need various pre/post hooks for
1140 	 *   snapshot creation to handle them.
1141 	 *
1142 	 *   While for non-shareable trees, we just simply do a tree search
1143 	 *   with COW.
1144 	 *
1145 	 * - How dirty roots are tracked
1146 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1147 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1148 	 *   don't need to set this manually.
1149 	 */
1150 	BTRFS_ROOT_SHAREABLE,
1151 	BTRFS_ROOT_TRACK_DIRTY,
1152 	BTRFS_ROOT_IN_RADIX,
1153 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1154 	BTRFS_ROOT_DEFRAG_RUNNING,
1155 	BTRFS_ROOT_FORCE_COW,
1156 	BTRFS_ROOT_MULTI_LOG_TASKS,
1157 	BTRFS_ROOT_DIRTY,
1158 	BTRFS_ROOT_DELETING,
1159 
1160 	/*
1161 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1162 	 *
1163 	 * Set for the subvolume tree owning the reloc tree.
1164 	 */
1165 	BTRFS_ROOT_DEAD_RELOC_TREE,
1166 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1167 	BTRFS_ROOT_DEAD_TREE,
1168 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1169 	BTRFS_ROOT_HAS_LOG_TREE,
1170 	/* Qgroup flushing is in progress */
1171 	BTRFS_ROOT_QGROUP_FLUSHING,
1172 	/* We started the orphan cleanup for this root. */
1173 	BTRFS_ROOT_ORPHAN_CLEANUP,
1174 	/* This root has a drop operation that was started previously. */
1175 	BTRFS_ROOT_UNFINISHED_DROP,
1176 	/* This reloc root needs to have its buffers lockdep class reset. */
1177 	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
1178 };
1179 
1180 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1181 {
1182 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1183 }
1184 
1185 /*
1186  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1187  * code. For detail check comment in fs/btrfs/qgroup.c.
1188  */
1189 struct btrfs_qgroup_swapped_blocks {
1190 	spinlock_t lock;
1191 	/* RM_EMPTY_ROOT() of above blocks[] */
1192 	bool swapped;
1193 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1194 };
1195 
1196 /*
1197  * in ram representation of the tree.  extent_root is used for all allocations
1198  * and for the extent tree extent_root root.
1199  */
1200 struct btrfs_root {
1201 	struct rb_node rb_node;
1202 
1203 	struct extent_buffer *node;
1204 
1205 	struct extent_buffer *commit_root;
1206 	struct btrfs_root *log_root;
1207 	struct btrfs_root *reloc_root;
1208 
1209 	unsigned long state;
1210 	struct btrfs_root_item root_item;
1211 	struct btrfs_key root_key;
1212 	struct btrfs_fs_info *fs_info;
1213 	struct extent_io_tree dirty_log_pages;
1214 
1215 	struct mutex objectid_mutex;
1216 
1217 	spinlock_t accounting_lock;
1218 	struct btrfs_block_rsv *block_rsv;
1219 
1220 	struct mutex log_mutex;
1221 	wait_queue_head_t log_writer_wait;
1222 	wait_queue_head_t log_commit_wait[2];
1223 	struct list_head log_ctxs[2];
1224 	/* Used only for log trees of subvolumes, not for the log root tree */
1225 	atomic_t log_writers;
1226 	atomic_t log_commit[2];
1227 	/* Used only for log trees of subvolumes, not for the log root tree */
1228 	atomic_t log_batch;
1229 	int log_transid;
1230 	/* No matter the commit succeeds or not*/
1231 	int log_transid_committed;
1232 	/* Just be updated when the commit succeeds. */
1233 	int last_log_commit;
1234 	pid_t log_start_pid;
1235 
1236 	u64 last_trans;
1237 
1238 	u32 type;
1239 
1240 	u64 free_objectid;
1241 
1242 	struct btrfs_key defrag_progress;
1243 	struct btrfs_key defrag_max;
1244 
1245 	/* The dirty list is only used by non-shareable roots */
1246 	struct list_head dirty_list;
1247 
1248 	struct list_head root_list;
1249 
1250 	spinlock_t log_extents_lock[2];
1251 	struct list_head logged_list[2];
1252 
1253 	spinlock_t inode_lock;
1254 	/* red-black tree that keeps track of in-memory inodes */
1255 	struct rb_root inode_tree;
1256 
1257 	/*
1258 	 * radix tree that keeps track of delayed nodes of every inode,
1259 	 * protected by inode_lock
1260 	 */
1261 	struct radix_tree_root delayed_nodes_tree;
1262 	/*
1263 	 * right now this just gets used so that a root has its own devid
1264 	 * for stat.  It may be used for more later
1265 	 */
1266 	dev_t anon_dev;
1267 
1268 	spinlock_t root_item_lock;
1269 	refcount_t refs;
1270 
1271 	struct mutex delalloc_mutex;
1272 	spinlock_t delalloc_lock;
1273 	/*
1274 	 * all of the inodes that have delalloc bytes.  It is possible for
1275 	 * this list to be empty even when there is still dirty data=ordered
1276 	 * extents waiting to finish IO.
1277 	 */
1278 	struct list_head delalloc_inodes;
1279 	struct list_head delalloc_root;
1280 	u64 nr_delalloc_inodes;
1281 
1282 	struct mutex ordered_extent_mutex;
1283 	/*
1284 	 * this is used by the balancing code to wait for all the pending
1285 	 * ordered extents
1286 	 */
1287 	spinlock_t ordered_extent_lock;
1288 
1289 	/*
1290 	 * all of the data=ordered extents pending writeback
1291 	 * these can span multiple transactions and basically include
1292 	 * every dirty data page that isn't from nodatacow
1293 	 */
1294 	struct list_head ordered_extents;
1295 	struct list_head ordered_root;
1296 	u64 nr_ordered_extents;
1297 
1298 	/*
1299 	 * Not empty if this subvolume root has gone through tree block swap
1300 	 * (relocation)
1301 	 *
1302 	 * Will be used by reloc_control::dirty_subvol_roots.
1303 	 */
1304 	struct list_head reloc_dirty_list;
1305 
1306 	/*
1307 	 * Number of currently running SEND ioctls to prevent
1308 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1309 	 */
1310 	int send_in_progress;
1311 	/*
1312 	 * Number of currently running deduplication operations that have a
1313 	 * destination inode belonging to this root. Protected by the lock
1314 	 * root_item_lock.
1315 	 */
1316 	int dedupe_in_progress;
1317 	/* For exclusion of snapshot creation and nocow writes */
1318 	struct btrfs_drew_lock snapshot_lock;
1319 
1320 	atomic_t snapshot_force_cow;
1321 
1322 	/* For qgroup metadata reserved space */
1323 	spinlock_t qgroup_meta_rsv_lock;
1324 	u64 qgroup_meta_rsv_pertrans;
1325 	u64 qgroup_meta_rsv_prealloc;
1326 	wait_queue_head_t qgroup_flush_wait;
1327 
1328 	/* Number of active swapfiles */
1329 	atomic_t nr_swapfiles;
1330 
1331 	/* Record pairs of swapped blocks for qgroup */
1332 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1333 
1334 	/* Used only by log trees, when logging csum items */
1335 	struct extent_io_tree log_csum_range;
1336 
1337 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1338 	u64 alloc_bytenr;
1339 #endif
1340 
1341 #ifdef CONFIG_BTRFS_DEBUG
1342 	struct list_head leak_list;
1343 #endif
1344 };
1345 
1346 /*
1347  * Structure that conveys information about an extent that is going to replace
1348  * all the extents in a file range.
1349  */
1350 struct btrfs_replace_extent_info {
1351 	u64 disk_offset;
1352 	u64 disk_len;
1353 	u64 data_offset;
1354 	u64 data_len;
1355 	u64 file_offset;
1356 	/* Pointer to a file extent item of type regular or prealloc. */
1357 	char *extent_buf;
1358 	/*
1359 	 * Set to true when attempting to replace a file range with a new extent
1360 	 * described by this structure, set to false when attempting to clone an
1361 	 * existing extent into a file range.
1362 	 */
1363 	bool is_new_extent;
1364 	/* Indicate if we should update the inode's mtime and ctime. */
1365 	bool update_times;
1366 	/* Meaningful only if is_new_extent is true. */
1367 	int qgroup_reserved;
1368 	/*
1369 	 * Meaningful only if is_new_extent is true.
1370 	 * Used to track how many extent items we have already inserted in a
1371 	 * subvolume tree that refer to the extent described by this structure,
1372 	 * so that we know when to create a new delayed ref or update an existing
1373 	 * one.
1374 	 */
1375 	int insertions;
1376 };
1377 
1378 /* Arguments for btrfs_drop_extents() */
1379 struct btrfs_drop_extents_args {
1380 	/* Input parameters */
1381 
1382 	/*
1383 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1384 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1385 	 * is always released except if 'replace_extent' is true and
1386 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1387 	 * the path is kept locked.
1388 	 */
1389 	struct btrfs_path *path;
1390 	/* Start offset of the range to drop extents from */
1391 	u64 start;
1392 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1393 	u64 end;
1394 	/* If true drop all the extent maps in the range */
1395 	bool drop_cache;
1396 	/*
1397 	 * If true it means we want to insert a new extent after dropping all
1398 	 * the extents in the range. If this is true, the 'extent_item_size'
1399 	 * parameter must be set as well and the 'extent_inserted' field will
1400 	 * be set to true by btrfs_drop_extents() if it could insert the new
1401 	 * extent.
1402 	 * Note: when this is set to true the path must not be NULL.
1403 	 */
1404 	bool replace_extent;
1405 	/*
1406 	 * Used if 'replace_extent' is true. Size of the file extent item to
1407 	 * insert after dropping all existing extents in the range
1408 	 */
1409 	u32 extent_item_size;
1410 
1411 	/* Output parameters */
1412 
1413 	/*
1414 	 * Set to the minimum between the input parameter 'end' and the end
1415 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1416 	 * set even if btrfs_drop_extents() returns an error.
1417 	 */
1418 	u64 drop_end;
1419 	/*
1420 	 * The number of allocated bytes found in the range. This can be smaller
1421 	 * than the range's length when there are holes in the range.
1422 	 */
1423 	u64 bytes_found;
1424 	/*
1425 	 * Only set if 'replace_extent' is true. Set to true if we were able
1426 	 * to insert a replacement extent after dropping all extents in the
1427 	 * range, otherwise set to false by btrfs_drop_extents().
1428 	 * Also, if btrfs_drop_extents() has set this to true it means it
1429 	 * returned with the path locked, otherwise if it has set this to
1430 	 * false it has returned with the path released.
1431 	 */
1432 	bool extent_inserted;
1433 };
1434 
1435 struct btrfs_file_private {
1436 	void *filldir_buf;
1437 };
1438 
1439 
1440 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1441 {
1442 
1443 	return info->nodesize - sizeof(struct btrfs_header);
1444 }
1445 
1446 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1447 
1448 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1449 {
1450 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1451 }
1452 
1453 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1454 {
1455 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1456 }
1457 
1458 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1459 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1460 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1461 {
1462 	return BTRFS_MAX_ITEM_SIZE(info) -
1463 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1464 }
1465 
1466 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1467 {
1468 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1469 }
1470 
1471 /*
1472  * Flags for mount options.
1473  *
1474  * Note: don't forget to add new options to btrfs_show_options()
1475  */
1476 enum {
1477 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1478 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1479 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1480 	BTRFS_MOUNT_SSD				= (1UL << 3),
1481 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1482 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1483 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1484 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1485 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1486 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1487 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1488 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1489 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1490 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1491 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1492 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1493 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1494 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1495 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1496 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1497 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1498 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1499 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1500 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1501 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1502 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1503 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1504 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1505 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1506 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1507 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1508 };
1509 
1510 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1511 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1512 
1513 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1514 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1515 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1516 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1517 					 BTRFS_MOUNT_##opt)
1518 
1519 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1520 do {									\
1521 	if (!btrfs_test_opt(fs_info, opt))				\
1522 		btrfs_info(fs_info, fmt, ##args);			\
1523 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1524 } while (0)
1525 
1526 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1527 do {									\
1528 	if (btrfs_test_opt(fs_info, opt))				\
1529 		btrfs_info(fs_info, fmt, ##args);			\
1530 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1531 } while (0)
1532 
1533 /*
1534  * Requests for changes that need to be done during transaction commit.
1535  *
1536  * Internal mount options that are used for special handling of the real
1537  * mount options (eg. cannot be set during remount and have to be set during
1538  * transaction commit)
1539  */
1540 
1541 #define BTRFS_PENDING_COMMIT			(0)
1542 
1543 #define btrfs_test_pending(info, opt)	\
1544 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1545 #define btrfs_set_pending(info, opt)	\
1546 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1547 #define btrfs_clear_pending(info, opt)	\
1548 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1549 
1550 /*
1551  * Helpers for setting pending mount option changes.
1552  *
1553  * Expects corresponding macros
1554  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1555  */
1556 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1557 do {                                                                   \
1558        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1559                btrfs_info((info), fmt, ##args);                        \
1560                btrfs_set_pending((info), SET_##opt);                   \
1561                btrfs_clear_pending((info), CLEAR_##opt);               \
1562        }                                                               \
1563 } while(0)
1564 
1565 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1566 do {                                                                   \
1567        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1568                btrfs_info((info), fmt, ##args);                        \
1569                btrfs_set_pending((info), CLEAR_##opt);                 \
1570                btrfs_clear_pending((info), SET_##opt);                 \
1571        }                                                               \
1572 } while(0)
1573 
1574 /*
1575  * Inode flags
1576  */
1577 #define BTRFS_INODE_NODATASUM		(1U << 0)
1578 #define BTRFS_INODE_NODATACOW		(1U << 1)
1579 #define BTRFS_INODE_READONLY		(1U << 2)
1580 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1581 #define BTRFS_INODE_PREALLOC		(1U << 4)
1582 #define BTRFS_INODE_SYNC		(1U << 5)
1583 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1584 #define BTRFS_INODE_APPEND		(1U << 7)
1585 #define BTRFS_INODE_NODUMP		(1U << 8)
1586 #define BTRFS_INODE_NOATIME		(1U << 9)
1587 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1588 #define BTRFS_INODE_COMPRESS		(1U << 11)
1589 
1590 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1591 
1592 #define BTRFS_INODE_FLAG_MASK						\
1593 	(BTRFS_INODE_NODATASUM |					\
1594 	 BTRFS_INODE_NODATACOW |					\
1595 	 BTRFS_INODE_READONLY |						\
1596 	 BTRFS_INODE_NOCOMPRESS |					\
1597 	 BTRFS_INODE_PREALLOC |						\
1598 	 BTRFS_INODE_SYNC |						\
1599 	 BTRFS_INODE_IMMUTABLE |					\
1600 	 BTRFS_INODE_APPEND |						\
1601 	 BTRFS_INODE_NODUMP |						\
1602 	 BTRFS_INODE_NOATIME |						\
1603 	 BTRFS_INODE_DIRSYNC |						\
1604 	 BTRFS_INODE_COMPRESS |						\
1605 	 BTRFS_INODE_ROOT_ITEM_INIT)
1606 
1607 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1608 
1609 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1610 
1611 struct btrfs_map_token {
1612 	struct extent_buffer *eb;
1613 	char *kaddr;
1614 	unsigned long offset;
1615 };
1616 
1617 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1618 				((bytes) >> (fs_info)->sectorsize_bits)
1619 
1620 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1621 					struct extent_buffer *eb)
1622 {
1623 	token->eb = eb;
1624 	token->kaddr = page_address(eb->pages[0]);
1625 	token->offset = 0;
1626 }
1627 
1628 /* some macros to generate set/get functions for the struct fields.  This
1629  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1630  * one for u8:
1631  */
1632 #define le8_to_cpu(v) (v)
1633 #define cpu_to_le8(v) (v)
1634 #define __le8 u8
1635 
1636 static inline u8 get_unaligned_le8(const void *p)
1637 {
1638        return *(u8 *)p;
1639 }
1640 
1641 static inline void put_unaligned_le8(u8 val, void *p)
1642 {
1643        *(u8 *)p = val;
1644 }
1645 
1646 #define read_eb_member(eb, ptr, type, member, result) (\
1647 	read_extent_buffer(eb, (char *)(result),			\
1648 			   ((unsigned long)(ptr)) +			\
1649 			    offsetof(type, member),			\
1650 			   sizeof(((type *)0)->member)))
1651 
1652 #define write_eb_member(eb, ptr, type, member, result) (\
1653 	write_extent_buffer(eb, (char *)(result),			\
1654 			   ((unsigned long)(ptr)) +			\
1655 			    offsetof(type, member),			\
1656 			   sizeof(((type *)0)->member)))
1657 
1658 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1659 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1660 			       const void *ptr, unsigned long off);	\
1661 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1662 			    const void *ptr, unsigned long off,		\
1663 			    u##bits val);				\
1664 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1665 			 const void *ptr, unsigned long off);		\
1666 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1667 		      unsigned long off, u##bits val);
1668 
1669 DECLARE_BTRFS_SETGET_BITS(8)
1670 DECLARE_BTRFS_SETGET_BITS(16)
1671 DECLARE_BTRFS_SETGET_BITS(32)
1672 DECLARE_BTRFS_SETGET_BITS(64)
1673 
1674 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1675 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1676 				   const type *s)			\
1677 {									\
1678 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1679 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1680 }									\
1681 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1682 				    u##bits val)			\
1683 {									\
1684 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1685 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1686 }									\
1687 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1688 					 const type *s)			\
1689 {									\
1690 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1691 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1692 }									\
1693 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1694 					  type *s, u##bits val)		\
1695 {									\
1696 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1697 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1698 }
1699 
1700 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1701 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1702 {									\
1703 	const type *p = page_address(eb->pages[0]) +			\
1704 			offset_in_page(eb->start);			\
1705 	return get_unaligned_le##bits(&p->member);			\
1706 }									\
1707 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1708 				    u##bits val)			\
1709 {									\
1710 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1711 	put_unaligned_le##bits(val, &p->member);			\
1712 }
1713 
1714 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1715 static inline u##bits btrfs_##name(const type *s)			\
1716 {									\
1717 	return get_unaligned_le##bits(&s->member);			\
1718 }									\
1719 static inline void btrfs_set_##name(type *s, u##bits val)		\
1720 {									\
1721 	put_unaligned_le##bits(val, &s->member);			\
1722 }
1723 
1724 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1725 					   struct btrfs_dev_item *s)
1726 {
1727 	static_assert(sizeof(u64) ==
1728 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1729 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1730 					    total_bytes));
1731 }
1732 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1733 						struct btrfs_dev_item *s,
1734 						u64 val)
1735 {
1736 	static_assert(sizeof(u64) ==
1737 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1738 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1739 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1740 }
1741 
1742 
1743 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1744 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1745 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1746 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1747 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1748 		   start_offset, 64);
1749 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1750 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1751 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1752 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1753 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1754 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1755 
1756 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1757 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1758 			 total_bytes, 64);
1759 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1760 			 bytes_used, 64);
1761 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1762 			 io_align, 32);
1763 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1764 			 io_width, 32);
1765 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1766 			 sector_size, 32);
1767 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1768 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1769 			 dev_group, 32);
1770 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1771 			 seek_speed, 8);
1772 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1773 			 bandwidth, 8);
1774 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1775 			 generation, 64);
1776 
1777 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1778 {
1779 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1780 }
1781 
1782 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1783 {
1784 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1785 }
1786 
1787 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1788 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1789 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1790 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1791 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1792 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1793 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1794 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1795 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1796 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1797 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1798 
1799 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1800 {
1801 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1802 }
1803 
1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1806 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1807 			 stripe_len, 64);
1808 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1809 			 io_align, 32);
1810 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1811 			 io_width, 32);
1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1813 			 sector_size, 32);
1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1815 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1816 			 num_stripes, 16);
1817 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1818 			 sub_stripes, 16);
1819 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1821 
1822 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1823 						   int nr)
1824 {
1825 	unsigned long offset = (unsigned long)c;
1826 	offset += offsetof(struct btrfs_chunk, stripe);
1827 	offset += nr * sizeof(struct btrfs_stripe);
1828 	return (struct btrfs_stripe *)offset;
1829 }
1830 
1831 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1832 {
1833 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1834 }
1835 
1836 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1837 					 struct btrfs_chunk *c, int nr)
1838 {
1839 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1840 }
1841 
1842 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1843 					 struct btrfs_chunk *c, int nr)
1844 {
1845 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1846 }
1847 
1848 /* struct btrfs_block_group_item */
1849 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1850 			 used, 64);
1851 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1852 			 used, 64);
1853 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1854 			struct btrfs_block_group_item, chunk_objectid, 64);
1855 
1856 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1857 		   struct btrfs_block_group_item, chunk_objectid, 64);
1858 BTRFS_SETGET_FUNCS(block_group_flags,
1859 		   struct btrfs_block_group_item, flags, 64);
1860 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1861 			struct btrfs_block_group_item, flags, 64);
1862 
1863 /* struct btrfs_free_space_info */
1864 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1865 		   extent_count, 32);
1866 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1867 
1868 /* struct btrfs_inode_ref */
1869 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1870 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1871 
1872 /* struct btrfs_inode_extref */
1873 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1874 		   parent_objectid, 64);
1875 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1876 		   name_len, 16);
1877 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1878 
1879 /* struct btrfs_inode_item */
1880 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1881 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1882 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1883 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1884 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1885 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1886 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1887 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1888 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1889 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1890 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1891 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1892 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1893 			 generation, 64);
1894 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1895 			 sequence, 64);
1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1897 			 transid, 64);
1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1899 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1900 			 nbytes, 64);
1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1902 			 block_group, 64);
1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1907 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1908 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1909 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1910 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1911 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1912 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1913 
1914 /* struct btrfs_dev_extent */
1915 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1916 		   chunk_tree, 64);
1917 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1918 		   chunk_objectid, 64);
1919 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1920 		   chunk_offset, 64);
1921 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1922 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1923 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1924 		   generation, 64);
1925 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1926 
1927 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1928 
1929 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1930 					struct btrfs_tree_block_info *item,
1931 					struct btrfs_disk_key *key)
1932 {
1933 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1934 }
1935 
1936 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1937 					    struct btrfs_tree_block_info *item,
1938 					    struct btrfs_disk_key *key)
1939 {
1940 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1941 }
1942 
1943 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1944 		   root, 64);
1945 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1946 		   objectid, 64);
1947 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1948 		   offset, 64);
1949 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1950 		   count, 32);
1951 
1952 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1953 		   count, 32);
1954 
1955 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1956 		   type, 8);
1957 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1958 		   offset, 64);
1959 
1960 static inline u32 btrfs_extent_inline_ref_size(int type)
1961 {
1962 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1963 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1964 		return sizeof(struct btrfs_extent_inline_ref);
1965 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1966 		return sizeof(struct btrfs_shared_data_ref) +
1967 		       sizeof(struct btrfs_extent_inline_ref);
1968 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1969 		return sizeof(struct btrfs_extent_data_ref) +
1970 		       offsetof(struct btrfs_extent_inline_ref, offset);
1971 	return 0;
1972 }
1973 
1974 /* struct btrfs_node */
1975 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1976 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1977 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1978 			 blockptr, 64);
1979 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1980 			 generation, 64);
1981 
1982 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1983 {
1984 	unsigned long ptr;
1985 	ptr = offsetof(struct btrfs_node, ptrs) +
1986 		sizeof(struct btrfs_key_ptr) * nr;
1987 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1988 }
1989 
1990 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1991 					   int nr, u64 val)
1992 {
1993 	unsigned long ptr;
1994 	ptr = offsetof(struct btrfs_node, ptrs) +
1995 		sizeof(struct btrfs_key_ptr) * nr;
1996 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1997 }
1998 
1999 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
2000 {
2001 	unsigned long ptr;
2002 	ptr = offsetof(struct btrfs_node, ptrs) +
2003 		sizeof(struct btrfs_key_ptr) * nr;
2004 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2005 }
2006 
2007 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2008 						 int nr, u64 val)
2009 {
2010 	unsigned long ptr;
2011 	ptr = offsetof(struct btrfs_node, ptrs) +
2012 		sizeof(struct btrfs_key_ptr) * nr;
2013 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2014 }
2015 
2016 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2017 {
2018 	return offsetof(struct btrfs_node, ptrs) +
2019 		sizeof(struct btrfs_key_ptr) * nr;
2020 }
2021 
2022 void btrfs_node_key(const struct extent_buffer *eb,
2023 		    struct btrfs_disk_key *disk_key, int nr);
2024 
2025 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2026 				      struct btrfs_disk_key *disk_key, int nr)
2027 {
2028 	unsigned long ptr;
2029 	ptr = btrfs_node_key_ptr_offset(nr);
2030 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2031 		       struct btrfs_key_ptr, key, disk_key);
2032 }
2033 
2034 /* struct btrfs_item */
2035 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2036 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2037 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2038 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2039 
2040 static inline unsigned long btrfs_item_nr_offset(int nr)
2041 {
2042 	return offsetof(struct btrfs_leaf, items) +
2043 		sizeof(struct btrfs_item) * nr;
2044 }
2045 
2046 static inline struct btrfs_item *btrfs_item_nr(int nr)
2047 {
2048 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2049 }
2050 
2051 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2052 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2053 				      int slot)					\
2054 {										\
2055 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2056 }										\
2057 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2058 					   int slot, u32 val)			\
2059 {										\
2060 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2061 }										\
2062 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2063 					    int slot)				\
2064 {										\
2065 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2066 	return btrfs_token_raw_item_##member(token, item);			\
2067 }										\
2068 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2069 						 int slot, u32 val)		\
2070 {										\
2071 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2072 	btrfs_set_token_raw_item_##member(token, item, val);			\
2073 }
2074 
2075 BTRFS_ITEM_SETGET_FUNCS(offset)
2076 BTRFS_ITEM_SETGET_FUNCS(size);
2077 
2078 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2079 {
2080 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2081 }
2082 
2083 static inline void btrfs_item_key(const struct extent_buffer *eb,
2084 			   struct btrfs_disk_key *disk_key, int nr)
2085 {
2086 	struct btrfs_item *item = btrfs_item_nr(nr);
2087 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2088 }
2089 
2090 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2091 			       struct btrfs_disk_key *disk_key, int nr)
2092 {
2093 	struct btrfs_item *item = btrfs_item_nr(nr);
2094 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2095 }
2096 
2097 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2098 
2099 /*
2100  * struct btrfs_root_ref
2101  */
2102 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2103 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2104 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2105 
2106 /* struct btrfs_dir_item */
2107 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2108 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2109 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2110 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2112 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2113 			 data_len, 16);
2114 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2115 			 name_len, 16);
2116 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2117 			 transid, 64);
2118 
2119 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2120 				      const struct btrfs_dir_item *item,
2121 				      struct btrfs_disk_key *key)
2122 {
2123 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2124 }
2125 
2126 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2127 					  struct btrfs_dir_item *item,
2128 					  const struct btrfs_disk_key *key)
2129 {
2130 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2131 }
2132 
2133 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2134 		   num_entries, 64);
2135 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2136 		   num_bitmaps, 64);
2137 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2138 		   generation, 64);
2139 
2140 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2141 					const struct btrfs_free_space_header *h,
2142 					struct btrfs_disk_key *key)
2143 {
2144 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2145 }
2146 
2147 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2148 					    struct btrfs_free_space_header *h,
2149 					    const struct btrfs_disk_key *key)
2150 {
2151 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2152 }
2153 
2154 /* struct btrfs_disk_key */
2155 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2156 			 objectid, 64);
2157 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2158 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2159 
2160 #ifdef __LITTLE_ENDIAN
2161 
2162 /*
2163  * Optimized helpers for little-endian architectures where CPU and on-disk
2164  * structures have the same endianness and we can skip conversions.
2165  */
2166 
2167 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2168 					 const struct btrfs_disk_key *disk_key)
2169 {
2170 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2171 }
2172 
2173 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2174 					 const struct btrfs_key *cpu_key)
2175 {
2176 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2177 }
2178 
2179 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2180 					 struct btrfs_key *cpu_key, int nr)
2181 {
2182 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2183 
2184 	btrfs_node_key(eb, disk_key, nr);
2185 }
2186 
2187 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2188 					 struct btrfs_key *cpu_key, int nr)
2189 {
2190 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2191 
2192 	btrfs_item_key(eb, disk_key, nr);
2193 }
2194 
2195 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2196 					     const struct btrfs_dir_item *item,
2197 					     struct btrfs_key *cpu_key)
2198 {
2199 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2200 
2201 	btrfs_dir_item_key(eb, item, disk_key);
2202 }
2203 
2204 #else
2205 
2206 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2207 					 const struct btrfs_disk_key *disk)
2208 {
2209 	cpu->offset = le64_to_cpu(disk->offset);
2210 	cpu->type = disk->type;
2211 	cpu->objectid = le64_to_cpu(disk->objectid);
2212 }
2213 
2214 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2215 					 const struct btrfs_key *cpu)
2216 {
2217 	disk->offset = cpu_to_le64(cpu->offset);
2218 	disk->type = cpu->type;
2219 	disk->objectid = cpu_to_le64(cpu->objectid);
2220 }
2221 
2222 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2223 					 struct btrfs_key *key, int nr)
2224 {
2225 	struct btrfs_disk_key disk_key;
2226 	btrfs_node_key(eb, &disk_key, nr);
2227 	btrfs_disk_key_to_cpu(key, &disk_key);
2228 }
2229 
2230 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2231 					 struct btrfs_key *key, int nr)
2232 {
2233 	struct btrfs_disk_key disk_key;
2234 	btrfs_item_key(eb, &disk_key, nr);
2235 	btrfs_disk_key_to_cpu(key, &disk_key);
2236 }
2237 
2238 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2239 					     const struct btrfs_dir_item *item,
2240 					     struct btrfs_key *key)
2241 {
2242 	struct btrfs_disk_key disk_key;
2243 	btrfs_dir_item_key(eb, item, &disk_key);
2244 	btrfs_disk_key_to_cpu(key, &disk_key);
2245 }
2246 
2247 #endif
2248 
2249 /* struct btrfs_header */
2250 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2251 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2252 			  generation, 64);
2253 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2254 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2255 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2256 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2257 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2258 			 generation, 64);
2259 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2260 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2261 			 nritems, 32);
2262 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2263 
2264 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2265 {
2266 	return (btrfs_header_flags(eb) & flag) == flag;
2267 }
2268 
2269 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2270 {
2271 	u64 flags = btrfs_header_flags(eb);
2272 	btrfs_set_header_flags(eb, flags | flag);
2273 }
2274 
2275 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2276 {
2277 	u64 flags = btrfs_header_flags(eb);
2278 	btrfs_set_header_flags(eb, flags & ~flag);
2279 }
2280 
2281 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2282 {
2283 	u64 flags = btrfs_header_flags(eb);
2284 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2285 }
2286 
2287 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2288 						int rev)
2289 {
2290 	u64 flags = btrfs_header_flags(eb);
2291 	flags &= ~BTRFS_BACKREF_REV_MASK;
2292 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2293 	btrfs_set_header_flags(eb, flags);
2294 }
2295 
2296 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2297 {
2298 	return btrfs_header_level(eb) == 0;
2299 }
2300 
2301 /* struct btrfs_root_item */
2302 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2303 		   generation, 64);
2304 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2305 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2306 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2307 
2308 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2309 			 generation, 64);
2310 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2311 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2312 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2313 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2314 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2315 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2316 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2317 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2318 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2319 			 last_snapshot, 64);
2320 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2321 			 generation_v2, 64);
2322 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2323 			 ctransid, 64);
2324 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2325 			 otransid, 64);
2326 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2327 			 stransid, 64);
2328 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2329 			 rtransid, 64);
2330 
2331 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2332 {
2333 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2334 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2335 }
2336 
2337 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2338 {
2339 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2340 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2341 }
2342 
2343 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2344 {
2345 	return root->root_key.objectid;
2346 }
2347 
2348 /* struct btrfs_root_backup */
2349 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2350 		   tree_root, 64);
2351 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2352 		   tree_root_gen, 64);
2353 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2354 		   tree_root_level, 8);
2355 
2356 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2357 		   chunk_root, 64);
2358 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2359 		   chunk_root_gen, 64);
2360 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2361 		   chunk_root_level, 8);
2362 
2363 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2364 		   extent_root, 64);
2365 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2366 		   extent_root_gen, 64);
2367 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2368 		   extent_root_level, 8);
2369 
2370 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2371 		   fs_root, 64);
2372 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2373 		   fs_root_gen, 64);
2374 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2375 		   fs_root_level, 8);
2376 
2377 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2378 		   dev_root, 64);
2379 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2380 		   dev_root_gen, 64);
2381 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2382 		   dev_root_level, 8);
2383 
2384 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2385 		   csum_root, 64);
2386 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2387 		   csum_root_gen, 64);
2388 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2389 		   csum_root_level, 8);
2390 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2391 		   total_bytes, 64);
2392 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2393 		   bytes_used, 64);
2394 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2395 		   num_devices, 64);
2396 
2397 /*
2398  * For extent tree v2 we overload the extent root with the block group root, as
2399  * we will have multiple extent roots.
2400  */
2401 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2402 			 extent_root, 64);
2403 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2404 			 extent_root_gen, 64);
2405 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2406 			 struct btrfs_root_backup, extent_root_level, 8);
2407 
2408 /* struct btrfs_balance_item */
2409 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2410 
2411 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2412 				      const struct btrfs_balance_item *bi,
2413 				      struct btrfs_disk_balance_args *ba)
2414 {
2415 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2416 }
2417 
2418 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2419 				  struct btrfs_balance_item *bi,
2420 				  const struct btrfs_disk_balance_args *ba)
2421 {
2422 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2423 }
2424 
2425 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2426 				      const struct btrfs_balance_item *bi,
2427 				      struct btrfs_disk_balance_args *ba)
2428 {
2429 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2430 }
2431 
2432 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2433 				  struct btrfs_balance_item *bi,
2434 				  const struct btrfs_disk_balance_args *ba)
2435 {
2436 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2437 }
2438 
2439 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2440 				     const struct btrfs_balance_item *bi,
2441 				     struct btrfs_disk_balance_args *ba)
2442 {
2443 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2444 }
2445 
2446 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2447 				 struct btrfs_balance_item *bi,
2448 				 const struct btrfs_disk_balance_args *ba)
2449 {
2450 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2451 }
2452 
2453 static inline void
2454 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2455 			       const struct btrfs_disk_balance_args *disk)
2456 {
2457 	memset(cpu, 0, sizeof(*cpu));
2458 
2459 	cpu->profiles = le64_to_cpu(disk->profiles);
2460 	cpu->usage = le64_to_cpu(disk->usage);
2461 	cpu->devid = le64_to_cpu(disk->devid);
2462 	cpu->pstart = le64_to_cpu(disk->pstart);
2463 	cpu->pend = le64_to_cpu(disk->pend);
2464 	cpu->vstart = le64_to_cpu(disk->vstart);
2465 	cpu->vend = le64_to_cpu(disk->vend);
2466 	cpu->target = le64_to_cpu(disk->target);
2467 	cpu->flags = le64_to_cpu(disk->flags);
2468 	cpu->limit = le64_to_cpu(disk->limit);
2469 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2470 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2471 }
2472 
2473 static inline void
2474 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2475 			       const struct btrfs_balance_args *cpu)
2476 {
2477 	memset(disk, 0, sizeof(*disk));
2478 
2479 	disk->profiles = cpu_to_le64(cpu->profiles);
2480 	disk->usage = cpu_to_le64(cpu->usage);
2481 	disk->devid = cpu_to_le64(cpu->devid);
2482 	disk->pstart = cpu_to_le64(cpu->pstart);
2483 	disk->pend = cpu_to_le64(cpu->pend);
2484 	disk->vstart = cpu_to_le64(cpu->vstart);
2485 	disk->vend = cpu_to_le64(cpu->vend);
2486 	disk->target = cpu_to_le64(cpu->target);
2487 	disk->flags = cpu_to_le64(cpu->flags);
2488 	disk->limit = cpu_to_le64(cpu->limit);
2489 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2490 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2491 }
2492 
2493 /* struct btrfs_super_block */
2494 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2495 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2496 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2497 			 generation, 64);
2498 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2499 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2500 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2501 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2502 			 struct btrfs_super_block, chunk_root_generation, 64);
2503 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2504 			 root_level, 8);
2505 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2506 			 chunk_root, 64);
2507 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2508 			 chunk_root_level, 8);
2509 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2510 			 log_root, 64);
2511 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2512 			 log_root_level, 8);
2513 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2514 			 total_bytes, 64);
2515 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2516 			 bytes_used, 64);
2517 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2518 			 sectorsize, 32);
2519 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2520 			 nodesize, 32);
2521 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2522 			 stripesize, 32);
2523 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2524 			 root_dir_objectid, 64);
2525 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2526 			 num_devices, 64);
2527 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2528 			 compat_flags, 64);
2529 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2530 			 compat_ro_flags, 64);
2531 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2532 			 incompat_flags, 64);
2533 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2534 			 csum_type, 16);
2535 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2536 			 cache_generation, 64);
2537 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2538 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2539 			 uuid_tree_generation, 64);
2540 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2541 			 block_group_root, 64);
2542 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2543 			 struct btrfs_super_block,
2544 			 block_group_root_generation, 64);
2545 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2546 			 block_group_root_level, 8);
2547 
2548 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2549 const char *btrfs_super_csum_name(u16 csum_type);
2550 const char *btrfs_super_csum_driver(u16 csum_type);
2551 size_t __attribute_const__ btrfs_get_num_csums(void);
2552 
2553 
2554 /*
2555  * The leaf data grows from end-to-front in the node.
2556  * this returns the address of the start of the last item,
2557  * which is the stop of the leaf data stack
2558  */
2559 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2560 {
2561 	u32 nr = btrfs_header_nritems(leaf);
2562 
2563 	if (nr == 0)
2564 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2565 	return btrfs_item_offset(leaf, nr - 1);
2566 }
2567 
2568 /* struct btrfs_file_extent_item */
2569 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2570 			 type, 8);
2571 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2572 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2573 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2574 			 struct btrfs_file_extent_item, offset, 64);
2575 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2576 			 struct btrfs_file_extent_item, generation, 64);
2577 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2578 			 struct btrfs_file_extent_item, num_bytes, 64);
2579 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2580 			 struct btrfs_file_extent_item, ram_bytes, 64);
2581 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2582 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2583 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2584 			 struct btrfs_file_extent_item, compression, 8);
2585 
2586 static inline unsigned long
2587 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2588 {
2589 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2590 }
2591 
2592 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2593 {
2594 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2595 }
2596 
2597 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2598 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2599 		   disk_bytenr, 64);
2600 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2601 		   generation, 64);
2602 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2603 		   disk_num_bytes, 64);
2604 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2605 		  offset, 64);
2606 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2607 		   num_bytes, 64);
2608 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2609 		   ram_bytes, 64);
2610 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2611 		   compression, 8);
2612 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2613 		   encryption, 8);
2614 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2615 		   other_encoding, 16);
2616 
2617 /*
2618  * this returns the number of bytes used by the item on disk, minus the
2619  * size of any extent headers.  If a file is compressed on disk, this is
2620  * the compressed size
2621  */
2622 static inline u32 btrfs_file_extent_inline_item_len(
2623 						const struct extent_buffer *eb,
2624 						int nr)
2625 {
2626 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2627 }
2628 
2629 /* btrfs_qgroup_status_item */
2630 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2631 		   generation, 64);
2632 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2633 		   version, 64);
2634 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2635 		   flags, 64);
2636 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2637 		   rescan, 64);
2638 
2639 /* btrfs_qgroup_info_item */
2640 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2641 		   generation, 64);
2642 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2643 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2644 		   rfer_cmpr, 64);
2645 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2646 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2647 		   excl_cmpr, 64);
2648 
2649 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2650 			 struct btrfs_qgroup_info_item, generation, 64);
2651 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2652 			 rfer, 64);
2653 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2654 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2655 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2656 			 excl, 64);
2657 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2658 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2659 
2660 /* btrfs_qgroup_limit_item */
2661 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2662 		   flags, 64);
2663 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2664 		   max_rfer, 64);
2665 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2666 		   max_excl, 64);
2667 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2668 		   rsv_rfer, 64);
2669 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2670 		   rsv_excl, 64);
2671 
2672 /* btrfs_dev_replace_item */
2673 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2674 		   struct btrfs_dev_replace_item, src_devid, 64);
2675 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2676 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2677 		   64);
2678 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2679 		   replace_state, 64);
2680 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2681 		   time_started, 64);
2682 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2683 		   time_stopped, 64);
2684 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2685 		   num_write_errors, 64);
2686 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2687 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2688 		   64);
2689 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2690 		   cursor_left, 64);
2691 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2692 		   cursor_right, 64);
2693 
2694 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2695 			 struct btrfs_dev_replace_item, src_devid, 64);
2696 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2697 			 struct btrfs_dev_replace_item,
2698 			 cont_reading_from_srcdev_mode, 64);
2699 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2700 			 struct btrfs_dev_replace_item, replace_state, 64);
2701 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2702 			 struct btrfs_dev_replace_item, time_started, 64);
2703 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2704 			 struct btrfs_dev_replace_item, time_stopped, 64);
2705 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2706 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2707 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2708 			 struct btrfs_dev_replace_item,
2709 			 num_uncorrectable_read_errors, 64);
2710 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2711 			 struct btrfs_dev_replace_item, cursor_left, 64);
2712 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2713 			 struct btrfs_dev_replace_item, cursor_right, 64);
2714 
2715 /* helper function to cast into the data area of the leaf. */
2716 #define btrfs_item_ptr(leaf, slot, type) \
2717 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2718 	btrfs_item_offset(leaf, slot)))
2719 
2720 #define btrfs_item_ptr_offset(leaf, slot) \
2721 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2722 	btrfs_item_offset(leaf, slot)))
2723 
2724 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2725 {
2726 	return crc32c(crc, address, length);
2727 }
2728 
2729 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2730 {
2731 	put_unaligned_le32(~crc, result);
2732 }
2733 
2734 static inline u64 btrfs_name_hash(const char *name, int len)
2735 {
2736        return crc32c((u32)~1, name, len);
2737 }
2738 
2739 /*
2740  * Figure the key offset of an extended inode ref
2741  */
2742 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2743                                    int len)
2744 {
2745        return (u64) crc32c(parent_objectid, name, len);
2746 }
2747 
2748 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2749 {
2750 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2751 }
2752 
2753 /* extent-tree.c */
2754 
2755 enum btrfs_inline_ref_type {
2756 	BTRFS_REF_TYPE_INVALID,
2757 	BTRFS_REF_TYPE_BLOCK,
2758 	BTRFS_REF_TYPE_DATA,
2759 	BTRFS_REF_TYPE_ANY,
2760 };
2761 
2762 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2763 				     struct btrfs_extent_inline_ref *iref,
2764 				     enum btrfs_inline_ref_type is_data);
2765 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2766 
2767 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums,
2768 				 u64 offset)
2769 {
2770 	u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
2771 
2772 	return csums + offset_in_sectors * fs_info->csum_size;
2773 }
2774 
2775 /*
2776  * Take the number of bytes to be checksummed and figure out how many leaves
2777  * it would require to store the csums for that many bytes.
2778  */
2779 static inline u64 btrfs_csum_bytes_to_leaves(
2780 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2781 {
2782 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2783 
2784 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2785 }
2786 
2787 /*
2788  * Use this if we would be adding new items, as we could split nodes as we cow
2789  * down the tree.
2790  */
2791 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2792 						  unsigned num_items)
2793 {
2794 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2795 }
2796 
2797 /*
2798  * Doing a truncate or a modification won't result in new nodes or leaves, just
2799  * what we need for COW.
2800  */
2801 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2802 						 unsigned num_items)
2803 {
2804 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2805 }
2806 
2807 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2808 			      u64 start, u64 num_bytes);
2809 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2810 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2811 			   unsigned long count);
2812 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2813 				  struct btrfs_delayed_ref_root *delayed_refs,
2814 				  struct btrfs_delayed_ref_head *head);
2815 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2816 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2817 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2818 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2819 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2820 		     int reserved);
2821 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2822 				    u64 bytenr, u64 num_bytes);
2823 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2824 int btrfs_cross_ref_exist(struct btrfs_root *root,
2825 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2826 			  struct btrfs_path *path);
2827 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2828 					     struct btrfs_root *root,
2829 					     u64 parent, u64 root_objectid,
2830 					     const struct btrfs_disk_key *key,
2831 					     int level, u64 hint,
2832 					     u64 empty_size,
2833 					     enum btrfs_lock_nesting nest);
2834 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2835 			   u64 root_id,
2836 			   struct extent_buffer *buf,
2837 			   u64 parent, int last_ref);
2838 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2839 				     struct btrfs_root *root, u64 owner,
2840 				     u64 offset, u64 ram_bytes,
2841 				     struct btrfs_key *ins);
2842 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2843 				   u64 root_objectid, u64 owner, u64 offset,
2844 				   struct btrfs_key *ins);
2845 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2846 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2847 			 struct btrfs_key *ins, int is_data, int delalloc);
2848 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2849 		  struct extent_buffer *buf, int full_backref);
2850 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2851 		  struct extent_buffer *buf, int full_backref);
2852 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2853 				struct extent_buffer *eb, u64 flags, int level);
2854 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2855 
2856 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2857 			       u64 start, u64 len, int delalloc);
2858 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2859 			      u64 len);
2860 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2861 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2862 			 struct btrfs_ref *generic_ref);
2863 
2864 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2865 
2866 /*
2867  * Different levels for to flush space when doing space reservations.
2868  *
2869  * The higher the level, the more methods we try to reclaim space.
2870  */
2871 enum btrfs_reserve_flush_enum {
2872 	/* If we are in the transaction, we can't flush anything.*/
2873 	BTRFS_RESERVE_NO_FLUSH,
2874 
2875 	/*
2876 	 * Flush space by:
2877 	 * - Running delayed inode items
2878 	 * - Allocating a new chunk
2879 	 */
2880 	BTRFS_RESERVE_FLUSH_LIMIT,
2881 
2882 	/*
2883 	 * Flush space by:
2884 	 * - Running delayed inode items
2885 	 * - Running delayed refs
2886 	 * - Running delalloc and waiting for ordered extents
2887 	 * - Allocating a new chunk
2888 	 */
2889 	BTRFS_RESERVE_FLUSH_EVICT,
2890 
2891 	/*
2892 	 * Flush space by above mentioned methods and by:
2893 	 * - Running delayed iputs
2894 	 * - Committing transaction
2895 	 *
2896 	 * Can be interrupted by a fatal signal.
2897 	 */
2898 	BTRFS_RESERVE_FLUSH_DATA,
2899 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2900 	BTRFS_RESERVE_FLUSH_ALL,
2901 
2902 	/*
2903 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2904 	 * global rsv.
2905 	 *
2906 	 * Can be interrupted by a fatal signal.
2907 	 */
2908 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2909 };
2910 
2911 enum btrfs_flush_state {
2912 	FLUSH_DELAYED_ITEMS_NR	=	1,
2913 	FLUSH_DELAYED_ITEMS	=	2,
2914 	FLUSH_DELAYED_REFS_NR	=	3,
2915 	FLUSH_DELAYED_REFS	=	4,
2916 	FLUSH_DELALLOC		=	5,
2917 	FLUSH_DELALLOC_WAIT	=	6,
2918 	FLUSH_DELALLOC_FULL	=	7,
2919 	ALLOC_CHUNK		=	8,
2920 	ALLOC_CHUNK_FORCE	=	9,
2921 	RUN_DELAYED_IPUTS	=	10,
2922 	COMMIT_TRANS		=	11,
2923 };
2924 
2925 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2926 				     struct btrfs_block_rsv *rsv,
2927 				     int nitems, bool use_global_rsv);
2928 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2929 				      struct btrfs_block_rsv *rsv);
2930 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2931 
2932 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2933 				    u64 disk_num_bytes, bool noflush);
2934 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2935 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2936 				   u64 start, u64 end);
2937 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2938 			 u64 num_bytes, u64 *actual_bytes);
2939 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2940 
2941 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2942 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2943 					 struct btrfs_fs_info *fs_info);
2944 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2945 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2946 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2947 
2948 /* ctree.c */
2949 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2950 		     int *slot);
2951 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2952 int btrfs_previous_item(struct btrfs_root *root,
2953 			struct btrfs_path *path, u64 min_objectid,
2954 			int type);
2955 int btrfs_previous_extent_item(struct btrfs_root *root,
2956 			struct btrfs_path *path, u64 min_objectid);
2957 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2958 			     struct btrfs_path *path,
2959 			     const struct btrfs_key *new_key);
2960 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2961 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2962 			struct btrfs_key *key, int lowest_level,
2963 			u64 min_trans);
2964 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2965 			 struct btrfs_path *path,
2966 			 u64 min_trans);
2967 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2968 					   int slot);
2969 
2970 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2971 		    struct btrfs_root *root, struct extent_buffer *buf,
2972 		    struct extent_buffer *parent, int parent_slot,
2973 		    struct extent_buffer **cow_ret,
2974 		    enum btrfs_lock_nesting nest);
2975 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2976 		      struct btrfs_root *root,
2977 		      struct extent_buffer *buf,
2978 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2979 int btrfs_block_can_be_shared(struct btrfs_root *root,
2980 			      struct extent_buffer *buf);
2981 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2982 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2983 int btrfs_split_item(struct btrfs_trans_handle *trans,
2984 		     struct btrfs_root *root,
2985 		     struct btrfs_path *path,
2986 		     const struct btrfs_key *new_key,
2987 		     unsigned long split_offset);
2988 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2989 			 struct btrfs_root *root,
2990 			 struct btrfs_path *path,
2991 			 const struct btrfs_key *new_key);
2992 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2993 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2994 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2995 		      const struct btrfs_key *key, struct btrfs_path *p,
2996 		      int ins_len, int cow);
2997 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2998 			  struct btrfs_path *p, u64 time_seq);
2999 int btrfs_search_slot_for_read(struct btrfs_root *root,
3000 			       const struct btrfs_key *key,
3001 			       struct btrfs_path *p, int find_higher,
3002 			       int return_any);
3003 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3004 		       struct btrfs_root *root, struct extent_buffer *parent,
3005 		       int start_slot, u64 *last_ret,
3006 		       struct btrfs_key *progress);
3007 void btrfs_release_path(struct btrfs_path *p);
3008 struct btrfs_path *btrfs_alloc_path(void);
3009 void btrfs_free_path(struct btrfs_path *p);
3010 
3011 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3012 		   struct btrfs_path *path, int slot, int nr);
3013 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3014 				 struct btrfs_root *root,
3015 				 struct btrfs_path *path)
3016 {
3017 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3018 }
3019 
3020 /*
3021  * Describes a batch of items to insert in a btree. This is used by
3022  * btrfs_insert_empty_items().
3023  */
3024 struct btrfs_item_batch {
3025 	/*
3026 	 * Pointer to an array containing the keys of the items to insert (in
3027 	 * sorted order).
3028 	 */
3029 	const struct btrfs_key *keys;
3030 	/* Pointer to an array containing the data size for each item to insert. */
3031 	const u32 *data_sizes;
3032 	/*
3033 	 * The sum of data sizes for all items. The caller can compute this while
3034 	 * setting up the data_sizes array, so it ends up being more efficient
3035 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3036 	 * doing it, as it would avoid an extra loop over a potentially large
3037 	 * array, and in the case of setup_item_for_insert(), we would be doing
3038 	 * it while holding a write lock on a leaf and often on upper level nodes
3039 	 * too, unnecessarily increasing the size of a critical section.
3040 	 */
3041 	u32 total_data_size;
3042 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3043 	int nr;
3044 };
3045 
3046 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3047 				 struct btrfs_path *path,
3048 				 const struct btrfs_key *key,
3049 				 u32 data_size);
3050 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3051 		      const struct btrfs_key *key, void *data, u32 data_size);
3052 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3053 			     struct btrfs_root *root,
3054 			     struct btrfs_path *path,
3055 			     const struct btrfs_item_batch *batch);
3056 
3057 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3058 					  struct btrfs_root *root,
3059 					  struct btrfs_path *path,
3060 					  const struct btrfs_key *key,
3061 					  u32 data_size)
3062 {
3063 	struct btrfs_item_batch batch;
3064 
3065 	batch.keys = key;
3066 	batch.data_sizes = &data_size;
3067 	batch.total_data_size = data_size;
3068 	batch.nr = 1;
3069 
3070 	return btrfs_insert_empty_items(trans, root, path, &batch);
3071 }
3072 
3073 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3074 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3075 			u64 time_seq);
3076 
3077 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3078 			   struct btrfs_path *path);
3079 
3080 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3081 			      struct btrfs_path *path);
3082 
3083 /*
3084  * Search in @root for a given @key, and store the slot found in @found_key.
3085  *
3086  * @root:	The root node of the tree.
3087  * @key:	The key we are looking for.
3088  * @found_key:	Will hold the found item.
3089  * @path:	Holds the current slot/leaf.
3090  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3091  * 		btrfs_get_next_valid_item, whichever was executed last.
3092  *
3093  * The @iter_ret is an output variable that will contain the return value of
3094  * btrfs_search_slot, if it encountered an error, or the value returned from
3095  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3096  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3097  *
3098  * It's recommended to use a separate variable for iter_ret and then use it to
3099  * set the function return value so there's no confusion of the 0/1/errno
3100  * values stemming from btrfs_search_slot.
3101  */
3102 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3103 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3104 		(iter_ret) >= 0 &&						\
3105 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3106 		(path)->slots[0]++						\
3107 	)
3108 
3109 static inline int btrfs_next_old_item(struct btrfs_root *root,
3110 				      struct btrfs_path *p, u64 time_seq)
3111 {
3112 	++p->slots[0];
3113 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3114 		return btrfs_next_old_leaf(root, p, time_seq);
3115 	return 0;
3116 }
3117 
3118 /*
3119  * Search the tree again to find a leaf with greater keys.
3120  *
3121  * Returns 0 if it found something or 1 if there are no greater leaves.
3122  * Returns < 0 on error.
3123  */
3124 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3125 {
3126 	return btrfs_next_old_leaf(root, path, 0);
3127 }
3128 
3129 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3130 {
3131 	return btrfs_next_old_item(root, p, 0);
3132 }
3133 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3134 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3135 				     int for_reloc);
3136 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3137 			struct btrfs_root *root,
3138 			struct extent_buffer *node,
3139 			struct extent_buffer *parent);
3140 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3141 {
3142 	/*
3143 	 * Do it this way so we only ever do one test_bit in the normal case.
3144 	 */
3145 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3146 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3147 			return 2;
3148 		return 1;
3149 	}
3150 	return 0;
3151 }
3152 
3153 /*
3154  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3155  * anything except sleeping. This function is used to check the status of
3156  * the fs.
3157  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3158  * since setting and checking for SB_RDONLY in the superblock's flags is not
3159  * atomic.
3160  */
3161 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3162 {
3163 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3164 		btrfs_fs_closing(fs_info);
3165 }
3166 
3167 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3168 {
3169 	sb->s_flags |= SB_RDONLY;
3170 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3171 }
3172 
3173 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3174 {
3175 	sb->s_flags &= ~SB_RDONLY;
3176 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3177 }
3178 
3179 /* root-item.c */
3180 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3181 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3182 		       int name_len);
3183 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3184 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3185 		       int name_len);
3186 int btrfs_del_root(struct btrfs_trans_handle *trans,
3187 		   const struct btrfs_key *key);
3188 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3189 		      const struct btrfs_key *key,
3190 		      struct btrfs_root_item *item);
3191 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3192 				   struct btrfs_root *root,
3193 				   struct btrfs_key *key,
3194 				   struct btrfs_root_item *item);
3195 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3196 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3197 		    struct btrfs_key *root_key);
3198 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3199 void btrfs_set_root_node(struct btrfs_root_item *item,
3200 			 struct extent_buffer *node);
3201 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3202 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3203 			     struct btrfs_root *root);
3204 
3205 /* uuid-tree.c */
3206 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3207 			u64 subid);
3208 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3209 			u64 subid);
3210 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3211 
3212 /* dir-item.c */
3213 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3214 			  const char *name, int name_len);
3215 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3216 			  int name_len, struct btrfs_inode *dir,
3217 			  struct btrfs_key *location, u8 type, u64 index);
3218 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3219 					     struct btrfs_root *root,
3220 					     struct btrfs_path *path, u64 dir,
3221 					     const char *name, int name_len,
3222 					     int mod);
3223 struct btrfs_dir_item *
3224 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3225 			    struct btrfs_root *root,
3226 			    struct btrfs_path *path, u64 dir,
3227 			    u64 index, const char *name, int name_len,
3228 			    int mod);
3229 struct btrfs_dir_item *
3230 btrfs_search_dir_index_item(struct btrfs_root *root,
3231 			    struct btrfs_path *path, u64 dirid,
3232 			    const char *name, int name_len);
3233 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3234 			      struct btrfs_root *root,
3235 			      struct btrfs_path *path,
3236 			      struct btrfs_dir_item *di);
3237 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3238 			    struct btrfs_root *root,
3239 			    struct btrfs_path *path, u64 objectid,
3240 			    const char *name, u16 name_len,
3241 			    const void *data, u16 data_len);
3242 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3243 					  struct btrfs_root *root,
3244 					  struct btrfs_path *path, u64 dir,
3245 					  const char *name, u16 name_len,
3246 					  int mod);
3247 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3248 						 struct btrfs_path *path,
3249 						 const char *name,
3250 						 int name_len);
3251 
3252 /* orphan.c */
3253 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3254 			     struct btrfs_root *root, u64 offset);
3255 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3256 			  struct btrfs_root *root, u64 offset);
3257 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3258 
3259 /* file-item.c */
3260 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3261 		    struct btrfs_root *root, u64 bytenr, u64 len);
3262 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3263 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3264 			     struct btrfs_root *root,
3265 			     u64 objectid, u64 pos,
3266 			     u64 disk_offset, u64 disk_num_bytes,
3267 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3268 			     u8 compression, u8 encryption, u16 other_encoding);
3269 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3270 			     struct btrfs_root *root,
3271 			     struct btrfs_path *path, u64 objectid,
3272 			     u64 bytenr, int mod);
3273 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3274 			   struct btrfs_root *root,
3275 			   struct btrfs_ordered_sum *sums);
3276 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3277 				u64 offset, bool one_ordered);
3278 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3279 			     struct list_head *list, int search_commit);
3280 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3281 				     const struct btrfs_path *path,
3282 				     struct btrfs_file_extent_item *fi,
3283 				     const bool new_inline,
3284 				     struct extent_map *em);
3285 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3286 					u64 len);
3287 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3288 				      u64 len);
3289 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3290 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3291 
3292 /* inode.c */
3293 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3294 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3295 			int mirror_num, enum btrfs_compression_type compress_type);
3296 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3297 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3298 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3299 			  u32 bio_offset, struct page *page, u32 pgoff);
3300 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3301 				    u32 bio_offset, struct page *page,
3302 				    u64 start, u64 end);
3303 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3304 			  u32 bio_offset, struct page *page, u32 pgoff);
3305 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3306 					   u64 start, u64 len);
3307 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3308 			      u64 *orig_start, u64 *orig_block_len,
3309 			      u64 *ram_bytes, bool strict);
3310 
3311 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3312 				struct btrfs_inode *inode);
3313 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3314 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3315 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3316 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3317 		       const char *name, int name_len);
3318 int btrfs_add_link(struct btrfs_trans_handle *trans,
3319 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3320 		   const char *name, int name_len, int add_backref, u64 index);
3321 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3322 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3323 			 int front);
3324 
3325 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3326 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3327 			       bool in_reclaim_context);
3328 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3329 			      unsigned int extra_bits,
3330 			      struct extent_state **cached_state);
3331 struct btrfs_new_inode_args {
3332 	/* Input */
3333 	struct inode *dir;
3334 	struct dentry *dentry;
3335 	struct inode *inode;
3336 	bool orphan;
3337 	bool subvol;
3338 
3339 	/*
3340 	 * Output from btrfs_new_inode_prepare(), input to
3341 	 * btrfs_create_new_inode().
3342 	 */
3343 	struct posix_acl *default_acl;
3344 	struct posix_acl *acl;
3345 };
3346 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3347 			    unsigned int *trans_num_items);
3348 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3349 			   struct btrfs_new_inode_args *args);
3350 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3351 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3352 				     struct inode *dir);
3353  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3354 			        u32 bits);
3355 void btrfs_clear_delalloc_extent(struct inode *inode,
3356 				 struct extent_state *state, u32 bits);
3357 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3358 				 struct extent_state *other);
3359 void btrfs_split_delalloc_extent(struct inode *inode,
3360 				 struct extent_state *orig, u64 split);
3361 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3362 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3363 void btrfs_evict_inode(struct inode *inode);
3364 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3365 struct inode *btrfs_alloc_inode(struct super_block *sb);
3366 void btrfs_destroy_inode(struct inode *inode);
3367 void btrfs_free_inode(struct inode *inode);
3368 int btrfs_drop_inode(struct inode *inode);
3369 int __init btrfs_init_cachep(void);
3370 void __cold btrfs_destroy_cachep(void);
3371 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3372 			      struct btrfs_root *root, struct btrfs_path *path);
3373 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3374 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3375 				    struct page *page, size_t pg_offset,
3376 				    u64 start, u64 end);
3377 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3378 		       struct btrfs_root *root, struct btrfs_inode *inode);
3379 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3380 				struct btrfs_root *root, struct btrfs_inode *inode);
3381 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3382 		struct btrfs_inode *inode);
3383 int btrfs_orphan_cleanup(struct btrfs_root *root);
3384 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3385 void btrfs_add_delayed_iput(struct inode *inode);
3386 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3387 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3388 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3389 			      u64 start, u64 num_bytes, u64 min_size,
3390 			      loff_t actual_len, u64 *alloc_hint);
3391 int btrfs_prealloc_file_range_trans(struct inode *inode,
3392 				    struct btrfs_trans_handle *trans, int mode,
3393 				    u64 start, u64 num_bytes, u64 min_size,
3394 				    loff_t actual_len, u64 *alloc_hint);
3395 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3396 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3397 		struct writeback_control *wbc);
3398 int btrfs_writepage_cow_fixup(struct page *page);
3399 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3400 					  struct page *page, u64 start,
3401 					  u64 end, bool uptodate);
3402 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3403 					     int compress_type);
3404 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3405 					  u64 file_offset, u64 disk_bytenr,
3406 					  u64 disk_io_size,
3407 					  struct page **pages);
3408 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3409 			   struct btrfs_ioctl_encoded_io_args *encoded);
3410 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3411 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3412 
3413 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3414 
3415 extern const struct dentry_operations btrfs_dentry_operations;
3416 
3417 /* Inode locking type flags, by default the exclusive lock is taken */
3418 #define BTRFS_ILOCK_SHARED	(1U << 0)
3419 #define BTRFS_ILOCK_TRY 	(1U << 1)
3420 #define BTRFS_ILOCK_MMAP	(1U << 2)
3421 
3422 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3423 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3424 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3425 			      const u64 add_bytes,
3426 			      const u64 del_bytes);
3427 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3428 
3429 /* ioctl.c */
3430 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3431 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3432 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3433 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3434 		       struct dentry *dentry, struct fileattr *fa);
3435 int btrfs_ioctl_get_supported_features(void __user *arg);
3436 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3437 int __pure btrfs_is_empty_uuid(u8 *uuid);
3438 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3439 		      struct btrfs_ioctl_defrag_range_args *range,
3440 		      u64 newer_than, unsigned long max_to_defrag);
3441 void btrfs_get_block_group_info(struct list_head *groups_list,
3442 				struct btrfs_ioctl_space_info *space);
3443 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3444 			       struct btrfs_ioctl_balance_args *bargs);
3445 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3446 			enum btrfs_exclusive_operation type);
3447 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3448 				 enum btrfs_exclusive_operation type);
3449 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3450 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3451 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3452 			  enum btrfs_exclusive_operation op);
3453 
3454 
3455 /* file.c */
3456 int __init btrfs_auto_defrag_init(void);
3457 void __cold btrfs_auto_defrag_exit(void);
3458 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3459 			   struct btrfs_inode *inode, u32 extent_thresh);
3460 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3461 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3462 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3463 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3464 			     int skip_pinned);
3465 extern const struct file_operations btrfs_file_operations;
3466 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3467 		       struct btrfs_root *root, struct btrfs_inode *inode,
3468 		       struct btrfs_drop_extents_args *args);
3469 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3470 			   struct btrfs_path *path, const u64 start,
3471 			   const u64 end,
3472 			   struct btrfs_replace_extent_info *extent_info,
3473 			   struct btrfs_trans_handle **trans_out);
3474 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3475 			      struct btrfs_inode *inode, u64 start, u64 end);
3476 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3477 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3478 int btrfs_release_file(struct inode *inode, struct file *file);
3479 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3480 		      size_t num_pages, loff_t pos, size_t write_bytes,
3481 		      struct extent_state **cached, bool noreserve);
3482 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3483 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3484 			   size_t *write_bytes);
3485 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3486 
3487 /* tree-defrag.c */
3488 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3489 			struct btrfs_root *root);
3490 
3491 /* super.c */
3492 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3493 			unsigned long new_flags);
3494 int btrfs_sync_fs(struct super_block *sb, int wait);
3495 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3496 					  u64 subvol_objectid);
3497 
3498 static inline __printf(2, 3) __cold
3499 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3500 {
3501 }
3502 
3503 #ifdef CONFIG_PRINTK_INDEX
3504 
3505 #define btrfs_printk(fs_info, fmt, args...)					\
3506 do {										\
3507 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3508 	_btrfs_printk(fs_info, fmt, ##args);					\
3509 } while (0)
3510 
3511 __printf(2, 3)
3512 __cold
3513 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3514 
3515 #elif defined(CONFIG_PRINTK)
3516 
3517 #define btrfs_printk(fs_info, fmt, args...)				\
3518 	_btrfs_printk(fs_info, fmt, ##args)
3519 
3520 __printf(2, 3)
3521 __cold
3522 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3523 
3524 #else
3525 
3526 #define btrfs_printk(fs_info, fmt, args...) \
3527 	btrfs_no_printk(fs_info, fmt, ##args)
3528 #endif
3529 
3530 #define btrfs_emerg(fs_info, fmt, args...) \
3531 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3532 #define btrfs_alert(fs_info, fmt, args...) \
3533 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3534 #define btrfs_crit(fs_info, fmt, args...) \
3535 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3536 #define btrfs_err(fs_info, fmt, args...) \
3537 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3538 #define btrfs_warn(fs_info, fmt, args...) \
3539 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3540 #define btrfs_notice(fs_info, fmt, args...) \
3541 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3542 #define btrfs_info(fs_info, fmt, args...) \
3543 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3544 
3545 /*
3546  * Wrappers that use printk_in_rcu
3547  */
3548 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3549 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3550 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3551 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3552 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3553 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3554 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3555 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3556 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3557 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3558 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3559 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3560 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3561 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3562 
3563 /*
3564  * Wrappers that use a ratelimited printk_in_rcu
3565  */
3566 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3567 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3568 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3569 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3570 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3571 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3572 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3573 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3574 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3575 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3576 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3577 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3578 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3579 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3580 
3581 /*
3582  * Wrappers that use a ratelimited printk
3583  */
3584 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3585 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3586 #define btrfs_alert_rl(fs_info, fmt, args...) \
3587 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3588 #define btrfs_crit_rl(fs_info, fmt, args...) \
3589 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3590 #define btrfs_err_rl(fs_info, fmt, args...) \
3591 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3592 #define btrfs_warn_rl(fs_info, fmt, args...) \
3593 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3594 #define btrfs_notice_rl(fs_info, fmt, args...) \
3595 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3596 #define btrfs_info_rl(fs_info, fmt, args...) \
3597 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3598 
3599 #if defined(CONFIG_DYNAMIC_DEBUG)
3600 #define btrfs_debug(fs_info, fmt, args...)				\
3601 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3602 				   fs_info, KERN_DEBUG fmt, ##args)
3603 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3604 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3605 				   fs_info, KERN_DEBUG fmt, ##args)
3606 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3607 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3608 				   fs_info, KERN_DEBUG fmt, ##args)
3609 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3610 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3611 				   fs_info, KERN_DEBUG fmt, ##args)
3612 #elif defined(DEBUG)
3613 #define btrfs_debug(fs_info, fmt, args...) \
3614 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3615 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3616 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3617 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3618 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3619 #define btrfs_debug_rl(fs_info, fmt, args...) \
3620 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3621 #else
3622 #define btrfs_debug(fs_info, fmt, args...) \
3623 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3624 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3625 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3626 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3627 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3628 #define btrfs_debug_rl(fs_info, fmt, args...) \
3629 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3630 #endif
3631 
3632 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3633 do {							\
3634 	rcu_read_lock();				\
3635 	btrfs_printk(fs_info, fmt, ##args);		\
3636 	rcu_read_unlock();				\
3637 } while (0)
3638 
3639 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3640 do {							\
3641 	rcu_read_lock();				\
3642 	btrfs_no_printk(fs_info, fmt, ##args);		\
3643 	rcu_read_unlock();				\
3644 } while (0)
3645 
3646 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3647 do {								\
3648 	static DEFINE_RATELIMIT_STATE(_rs,			\
3649 		DEFAULT_RATELIMIT_INTERVAL,			\
3650 		DEFAULT_RATELIMIT_BURST);       		\
3651 	if (__ratelimit(&_rs))					\
3652 		btrfs_printk(fs_info, fmt, ##args);		\
3653 } while (0)
3654 
3655 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3656 do {								\
3657 	rcu_read_lock();					\
3658 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3659 	rcu_read_unlock();					\
3660 } while (0)
3661 
3662 #ifdef CONFIG_BTRFS_ASSERT
3663 __cold __noreturn
3664 static inline void assertfail(const char *expr, const char *file, int line)
3665 {
3666 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3667 	BUG();
3668 }
3669 
3670 #define ASSERT(expr)						\
3671 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3672 
3673 #else
3674 static inline void assertfail(const char *expr, const char* file, int line) { }
3675 #define ASSERT(expr)	(void)(expr)
3676 #endif
3677 
3678 #if BITS_PER_LONG == 32
3679 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3680 /*
3681  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3682  * addresses of extents.
3683  *
3684  * For 4K page size it's about 10T, for 64K it's 160T.
3685  */
3686 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3687 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3688 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3689 #endif
3690 
3691 /*
3692  * Get the correct offset inside the page of extent buffer.
3693  *
3694  * @eb:		target extent buffer
3695  * @start:	offset inside the extent buffer
3696  *
3697  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3698  */
3699 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3700 					   unsigned long offset)
3701 {
3702 	/*
3703 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3704 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3705 	 *
3706 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3707 	 * to the eb, thus we have to take the eb->start into consideration.
3708 	 */
3709 	return offset_in_page(offset + eb->start);
3710 }
3711 
3712 static inline unsigned long get_eb_page_index(unsigned long offset)
3713 {
3714 	/*
3715 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3716 	 *
3717 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3718 	 * and have ensured that all tree blocks are contained in one page,
3719 	 * thus we always get index == 0.
3720 	 */
3721 	return offset >> PAGE_SHIFT;
3722 }
3723 
3724 /*
3725  * Use that for functions that are conditionally exported for sanity tests but
3726  * otherwise static
3727  */
3728 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3729 #define EXPORT_FOR_TESTS static
3730 #else
3731 #define EXPORT_FOR_TESTS
3732 #endif
3733 
3734 __cold
3735 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3736 {
3737 	btrfs_err(fs_info,
3738 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3739 }
3740 
3741 __printf(5, 6)
3742 __cold
3743 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3744 		     unsigned int line, int errno, const char *fmt, ...);
3745 
3746 const char * __attribute_const__ btrfs_decode_error(int errno);
3747 
3748 __cold
3749 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3750 			       const char *function,
3751 			       unsigned int line, int errno);
3752 
3753 /*
3754  * Call btrfs_abort_transaction as early as possible when an error condition is
3755  * detected, that way the exact line number is reported.
3756  */
3757 #define btrfs_abort_transaction(trans, errno)		\
3758 do {								\
3759 	/* Report first abort since mount */			\
3760 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3761 			&((trans)->fs_info->fs_state))) {	\
3762 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3763 			WARN(1, KERN_DEBUG				\
3764 			"BTRFS: Transaction aborted (error %d)\n",	\
3765 			(errno));					\
3766 		} else {						\
3767 			btrfs_debug((trans)->fs_info,			\
3768 				    "Transaction aborted (error %d)", \
3769 				  (errno));			\
3770 		}						\
3771 	}							\
3772 	__btrfs_abort_transaction((trans), __func__,		\
3773 				  __LINE__, (errno));		\
3774 } while (0)
3775 
3776 #ifdef CONFIG_PRINTK_INDEX
3777 
3778 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3779 do {									\
3780 	printk_index_subsys_emit(					\
3781 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3782 		KERN_CRIT, fmt);					\
3783 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3784 				(errno), fmt, ##args);			\
3785 } while (0)
3786 
3787 #else
3788 
3789 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3790 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3791 				(errno), fmt, ##args)
3792 
3793 #endif
3794 
3795 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3796 						   &(fs_info)->fs_state)))
3797 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3798 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3799 			   &(fs_info)->fs_state)))
3800 
3801 __printf(5, 6)
3802 __cold
3803 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3804 		   unsigned int line, int errno, const char *fmt, ...);
3805 /*
3806  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3807  * will panic().  Otherwise we BUG() here.
3808  */
3809 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3810 do {									\
3811 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3812 	BUG();								\
3813 } while (0)
3814 
3815 
3816 /* compatibility and incompatibility defines */
3817 
3818 #define btrfs_set_fs_incompat(__fs_info, opt) \
3819 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3820 				#opt)
3821 
3822 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3823 					   u64 flag, const char* name)
3824 {
3825 	struct btrfs_super_block *disk_super;
3826 	u64 features;
3827 
3828 	disk_super = fs_info->super_copy;
3829 	features = btrfs_super_incompat_flags(disk_super);
3830 	if (!(features & flag)) {
3831 		spin_lock(&fs_info->super_lock);
3832 		features = btrfs_super_incompat_flags(disk_super);
3833 		if (!(features & flag)) {
3834 			features |= flag;
3835 			btrfs_set_super_incompat_flags(disk_super, features);
3836 			btrfs_info(fs_info,
3837 				"setting incompat feature flag for %s (0x%llx)",
3838 				name, flag);
3839 		}
3840 		spin_unlock(&fs_info->super_lock);
3841 	}
3842 }
3843 
3844 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3845 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3846 				  #opt)
3847 
3848 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3849 					     u64 flag, const char* name)
3850 {
3851 	struct btrfs_super_block *disk_super;
3852 	u64 features;
3853 
3854 	disk_super = fs_info->super_copy;
3855 	features = btrfs_super_incompat_flags(disk_super);
3856 	if (features & flag) {
3857 		spin_lock(&fs_info->super_lock);
3858 		features = btrfs_super_incompat_flags(disk_super);
3859 		if (features & flag) {
3860 			features &= ~flag;
3861 			btrfs_set_super_incompat_flags(disk_super, features);
3862 			btrfs_info(fs_info,
3863 				"clearing incompat feature flag for %s (0x%llx)",
3864 				name, flag);
3865 		}
3866 		spin_unlock(&fs_info->super_lock);
3867 	}
3868 }
3869 
3870 #define btrfs_fs_incompat(fs_info, opt) \
3871 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3872 
3873 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3874 {
3875 	struct btrfs_super_block *disk_super;
3876 	disk_super = fs_info->super_copy;
3877 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3878 }
3879 
3880 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3881 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3882 				 #opt)
3883 
3884 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3885 					    u64 flag, const char *name)
3886 {
3887 	struct btrfs_super_block *disk_super;
3888 	u64 features;
3889 
3890 	disk_super = fs_info->super_copy;
3891 	features = btrfs_super_compat_ro_flags(disk_super);
3892 	if (!(features & flag)) {
3893 		spin_lock(&fs_info->super_lock);
3894 		features = btrfs_super_compat_ro_flags(disk_super);
3895 		if (!(features & flag)) {
3896 			features |= flag;
3897 			btrfs_set_super_compat_ro_flags(disk_super, features);
3898 			btrfs_info(fs_info,
3899 				"setting compat-ro feature flag for %s (0x%llx)",
3900 				name, flag);
3901 		}
3902 		spin_unlock(&fs_info->super_lock);
3903 	}
3904 }
3905 
3906 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3907 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3908 				   #opt)
3909 
3910 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3911 					      u64 flag, const char *name)
3912 {
3913 	struct btrfs_super_block *disk_super;
3914 	u64 features;
3915 
3916 	disk_super = fs_info->super_copy;
3917 	features = btrfs_super_compat_ro_flags(disk_super);
3918 	if (features & flag) {
3919 		spin_lock(&fs_info->super_lock);
3920 		features = btrfs_super_compat_ro_flags(disk_super);
3921 		if (features & flag) {
3922 			features &= ~flag;
3923 			btrfs_set_super_compat_ro_flags(disk_super, features);
3924 			btrfs_info(fs_info,
3925 				"clearing compat-ro feature flag for %s (0x%llx)",
3926 				name, flag);
3927 		}
3928 		spin_unlock(&fs_info->super_lock);
3929 	}
3930 }
3931 
3932 #define btrfs_fs_compat_ro(fs_info, opt) \
3933 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3934 
3935 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3936 {
3937 	struct btrfs_super_block *disk_super;
3938 	disk_super = fs_info->super_copy;
3939 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3940 }
3941 
3942 /* acl.c */
3943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3944 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3945 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3946 		  struct posix_acl *acl, int type);
3947 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3948 		    struct posix_acl *acl, int type);
3949 #else
3950 #define btrfs_get_acl NULL
3951 #define btrfs_set_acl NULL
3952 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3953 				  struct inode *inode, struct posix_acl *acl,
3954 				  int type)
3955 {
3956 	return -EOPNOTSUPP;
3957 }
3958 #endif
3959 
3960 /* relocation.c */
3961 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3962 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3963 			  struct btrfs_root *root);
3964 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3965 			    struct btrfs_root *root);
3966 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3967 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3968 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3969 			  struct btrfs_root *root, struct extent_buffer *buf,
3970 			  struct extent_buffer *cow);
3971 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3972 			      u64 *bytes_to_reserve);
3973 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3974 			      struct btrfs_pending_snapshot *pending);
3975 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3976 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3977 				   u64 bytenr);
3978 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3979 
3980 /* scrub.c */
3981 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3982 		    u64 end, struct btrfs_scrub_progress *progress,
3983 		    int readonly, int is_dev_replace);
3984 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3985 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3986 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3987 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3988 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3989 			 struct btrfs_scrub_progress *progress);
3990 static inline void btrfs_init_full_stripe_locks_tree(
3991 			struct btrfs_full_stripe_locks_tree *locks_root)
3992 {
3993 	locks_root->root = RB_ROOT;
3994 	mutex_init(&locks_root->lock);
3995 }
3996 
3997 /* dev-replace.c */
3998 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3999 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
4000 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
4001 
4002 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4003 {
4004 	btrfs_bio_counter_sub(fs_info, 1);
4005 }
4006 
4007 static inline int is_fstree(u64 rootid)
4008 {
4009 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4010 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4011 	      !btrfs_qgroup_level(rootid)))
4012 		return 1;
4013 	return 0;
4014 }
4015 
4016 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4017 {
4018 	return signal_pending(current);
4019 }
4020 
4021 /* verity.c */
4022 #ifdef CONFIG_FS_VERITY
4023 
4024 extern const struct fsverity_operations btrfs_verityops;
4025 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4026 
4027 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4028 		   encryption, 8);
4029 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4030 		   size, 64);
4031 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4032 			 struct btrfs_verity_descriptor_item, encryption, 8);
4033 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4034 			 struct btrfs_verity_descriptor_item, size, 64);
4035 
4036 #else
4037 
4038 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4039 {
4040 	return 0;
4041 }
4042 
4043 #endif
4044 
4045 /* Sanity test specific functions */
4046 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4047 void btrfs_test_destroy_inode(struct inode *inode);
4048 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4049 {
4050 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4051 }
4052 #else
4053 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4054 {
4055 	return 0;
4056 }
4057 #endif
4058 
4059 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4060 {
4061 	return fs_info->zone_size > 0;
4062 }
4063 
4064 /*
4065  * Count how many fs_info->max_extent_size cover the @size
4066  */
4067 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4068 {
4069 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4070 	if (!fs_info)
4071 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4072 #endif
4073 
4074 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4075 }
4076 
4077 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4078 {
4079 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4080 }
4081 
4082 /*
4083  * We use page status Private2 to indicate there is an ordered extent with
4084  * unfinished IO.
4085  *
4086  * Rename the Private2 accessors to Ordered, to improve readability.
4087  */
4088 #define PageOrdered(page)		PagePrivate2(page)
4089 #define SetPageOrdered(page)		SetPagePrivate2(page)
4090 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4091 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4092 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4093 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4094 
4095 #endif
4096