1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 111 { 112 BUG_ON(num_stripes == 0); 113 return sizeof(struct btrfs_chunk) + 114 sizeof(struct btrfs_stripe) * (num_stripes - 1); 115 } 116 117 /* 118 * Runtime (in-memory) states of filesystem 119 */ 120 enum { 121 /* Global indicator of serious filesystem errors */ 122 BTRFS_FS_STATE_ERROR, 123 /* 124 * Filesystem is being remounted, allow to skip some operations, like 125 * defrag 126 */ 127 BTRFS_FS_STATE_REMOUNTING, 128 /* Filesystem in RO mode */ 129 BTRFS_FS_STATE_RO, 130 /* Track if a transaction abort has been reported on this filesystem */ 131 BTRFS_FS_STATE_TRANS_ABORTED, 132 /* 133 * Bio operations should be blocked on this filesystem because a source 134 * or target device is being destroyed as part of a device replace 135 */ 136 BTRFS_FS_STATE_DEV_REPLACING, 137 /* The btrfs_fs_info created for self-tests */ 138 BTRFS_FS_STATE_DUMMY_FS_INFO, 139 140 BTRFS_FS_STATE_NO_CSUMS, 141 142 /* Indicates there was an error cleaning up a log tree. */ 143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 144 145 BTRFS_FS_STATE_COUNT 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * The reserved space at the beginning of each device. 226 * It covers the primary super block and leaves space for potential use by other 227 * tools like bootloaders or to lower potential damage of accidental overwrite. 228 */ 229 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) 230 231 /* 232 * the super block basically lists the main trees of the FS 233 * it currently lacks any block count etc etc 234 */ 235 struct btrfs_super_block { 236 /* the first 4 fields must match struct btrfs_header */ 237 u8 csum[BTRFS_CSUM_SIZE]; 238 /* FS specific UUID, visible to user */ 239 u8 fsid[BTRFS_FSID_SIZE]; 240 __le64 bytenr; /* this block number */ 241 __le64 flags; 242 243 /* allowed to be different from the btrfs_header from here own down */ 244 __le64 magic; 245 __le64 generation; 246 __le64 root; 247 __le64 chunk_root; 248 __le64 log_root; 249 250 /* 251 * This member has never been utilized since the very beginning, thus 252 * it's always 0 regardless of kernel version. We always use 253 * generation + 1 to read log tree root. So here we mark it deprecated. 254 */ 255 __le64 __unused_log_root_transid; 256 __le64 total_bytes; 257 __le64 bytes_used; 258 __le64 root_dir_objectid; 259 __le64 num_devices; 260 __le32 sectorsize; 261 __le32 nodesize; 262 __le32 __unused_leafsize; 263 __le32 stripesize; 264 __le32 sys_chunk_array_size; 265 __le64 chunk_root_generation; 266 __le64 compat_flags; 267 __le64 compat_ro_flags; 268 __le64 incompat_flags; 269 __le16 csum_type; 270 u8 root_level; 271 u8 chunk_root_level; 272 u8 log_root_level; 273 struct btrfs_dev_item dev_item; 274 275 char label[BTRFS_LABEL_SIZE]; 276 277 __le64 cache_generation; 278 __le64 uuid_tree_generation; 279 280 /* the UUID written into btree blocks */ 281 u8 metadata_uuid[BTRFS_FSID_SIZE]; 282 283 /* Extent tree v2 */ 284 __le64 block_group_root; 285 __le64 block_group_root_generation; 286 u8 block_group_root_level; 287 288 /* future expansion */ 289 u8 reserved8[7]; 290 __le64 reserved[25]; 291 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 292 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 293 294 /* Padded to 4096 bytes */ 295 u8 padding[565]; 296 } __attribute__ ((__packed__)); 297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 298 299 /* 300 * Compat flags that we support. If any incompat flags are set other than the 301 * ones specified below then we will fail to mount 302 */ 303 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 304 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 306 307 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 308 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 309 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 310 BTRFS_FEATURE_COMPAT_RO_VERITY) 311 312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 314 315 #ifdef CONFIG_BTRFS_DEBUG 316 /* 317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 318 */ 319 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 326 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 332 BTRFS_FEATURE_INCOMPAT_ZONED | \ 333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 334 #else 335 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 342 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 348 BTRFS_FEATURE_INCOMPAT_ZONED) 349 #endif 350 351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 354 355 /* 356 * A leaf is full of items. offset and size tell us where to find 357 * the item in the leaf (relative to the start of the data area) 358 */ 359 struct btrfs_item { 360 struct btrfs_disk_key key; 361 __le32 offset; 362 __le32 size; 363 } __attribute__ ((__packed__)); 364 365 /* 366 * leaves have an item area and a data area: 367 * [item0, item1....itemN] [free space] [dataN...data1, data0] 368 * 369 * The data is separate from the items to get the keys closer together 370 * during searches. 371 */ 372 struct btrfs_leaf { 373 struct btrfs_header header; 374 struct btrfs_item items[]; 375 } __attribute__ ((__packed__)); 376 377 /* 378 * all non-leaf blocks are nodes, they hold only keys and pointers to 379 * other blocks 380 */ 381 struct btrfs_key_ptr { 382 struct btrfs_disk_key key; 383 __le64 blockptr; 384 __le64 generation; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_node { 388 struct btrfs_header header; 389 struct btrfs_key_ptr ptrs[]; 390 } __attribute__ ((__packed__)); 391 392 /* Read ahead values for struct btrfs_path.reada */ 393 enum { 394 READA_NONE, 395 READA_BACK, 396 READA_FORWARD, 397 /* 398 * Similar to READA_FORWARD but unlike it: 399 * 400 * 1) It will trigger readahead even for leaves that are not close to 401 * each other on disk; 402 * 2) It also triggers readahead for nodes; 403 * 3) During a search, even when a node or leaf is already in memory, it 404 * will still trigger readahead for other nodes and leaves that follow 405 * it. 406 * 407 * This is meant to be used only when we know we are iterating over the 408 * entire tree or a very large part of it. 409 */ 410 READA_FORWARD_ALWAYS, 411 }; 412 413 /* 414 * btrfs_paths remember the path taken from the root down to the leaf. 415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 416 * to any other levels that are present. 417 * 418 * The slots array records the index of the item or block pointer 419 * used while walking the tree. 420 */ 421 struct btrfs_path { 422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 423 int slots[BTRFS_MAX_LEVEL]; 424 /* if there is real range locking, this locks field will change */ 425 u8 locks[BTRFS_MAX_LEVEL]; 426 u8 reada; 427 /* keep some upper locks as we walk down */ 428 u8 lowest_level; 429 430 /* 431 * set by btrfs_split_item, tells search_slot to keep all locks 432 * and to force calls to keep space in the nodes 433 */ 434 unsigned int search_for_split:1; 435 unsigned int keep_locks:1; 436 unsigned int skip_locking:1; 437 unsigned int search_commit_root:1; 438 unsigned int need_commit_sem:1; 439 unsigned int skip_release_on_error:1; 440 /* 441 * Indicate that new item (btrfs_search_slot) is extending already 442 * existing item and ins_len contains only the data size and not item 443 * header (ie. sizeof(struct btrfs_item) is not included). 444 */ 445 unsigned int search_for_extension:1; 446 }; 447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 448 sizeof(struct btrfs_item)) 449 struct btrfs_dev_replace { 450 u64 replace_state; /* see #define above */ 451 time64_t time_started; /* seconds since 1-Jan-1970 */ 452 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 453 atomic64_t num_write_errors; 454 atomic64_t num_uncorrectable_read_errors; 455 456 u64 cursor_left; 457 u64 committed_cursor_left; 458 u64 cursor_left_last_write_of_item; 459 u64 cursor_right; 460 461 u64 cont_reading_from_srcdev_mode; /* see #define above */ 462 463 int is_valid; 464 int item_needs_writeback; 465 struct btrfs_device *srcdev; 466 struct btrfs_device *tgtdev; 467 468 struct mutex lock_finishing_cancel_unmount; 469 struct rw_semaphore rwsem; 470 471 struct btrfs_scrub_progress scrub_progress; 472 473 struct percpu_counter bio_counter; 474 wait_queue_head_t replace_wait; 475 }; 476 477 /* 478 * free clusters are used to claim free space in relatively large chunks, 479 * allowing us to do less seeky writes. They are used for all metadata 480 * allocations. In ssd_spread mode they are also used for data allocations. 481 */ 482 struct btrfs_free_cluster { 483 spinlock_t lock; 484 spinlock_t refill_lock; 485 struct rb_root root; 486 487 /* largest extent in this cluster */ 488 u64 max_size; 489 490 /* first extent starting offset */ 491 u64 window_start; 492 493 /* We did a full search and couldn't create a cluster */ 494 bool fragmented; 495 496 struct btrfs_block_group *block_group; 497 /* 498 * when a cluster is allocated from a block group, we put the 499 * cluster onto a list in the block group so that it can 500 * be freed before the block group is freed. 501 */ 502 struct list_head block_group_list; 503 }; 504 505 enum btrfs_caching_type { 506 BTRFS_CACHE_NO, 507 BTRFS_CACHE_STARTED, 508 BTRFS_CACHE_FAST, 509 BTRFS_CACHE_FINISHED, 510 BTRFS_CACHE_ERROR, 511 }; 512 513 /* 514 * Tree to record all locked full stripes of a RAID5/6 block group 515 */ 516 struct btrfs_full_stripe_locks_tree { 517 struct rb_root root; 518 struct mutex lock; 519 }; 520 521 /* Discard control. */ 522 /* 523 * Async discard uses multiple lists to differentiate the discard filter 524 * parameters. Index 0 is for completely free block groups where we need to 525 * ensure the entire block group is trimmed without being lossy. Indices 526 * afterwards represent monotonically decreasing discard filter sizes to 527 * prioritize what should be discarded next. 528 */ 529 #define BTRFS_NR_DISCARD_LISTS 3 530 #define BTRFS_DISCARD_INDEX_UNUSED 0 531 #define BTRFS_DISCARD_INDEX_START 1 532 533 struct btrfs_discard_ctl { 534 struct workqueue_struct *discard_workers; 535 struct delayed_work work; 536 spinlock_t lock; 537 struct btrfs_block_group *block_group; 538 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 539 u64 prev_discard; 540 u64 prev_discard_time; 541 atomic_t discardable_extents; 542 atomic64_t discardable_bytes; 543 u64 max_discard_size; 544 u64 delay_ms; 545 u32 iops_limit; 546 u32 kbps_limit; 547 u64 discard_extent_bytes; 548 u64 discard_bitmap_bytes; 549 atomic64_t discard_bytes_saved; 550 }; 551 552 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 553 554 /* fs_info */ 555 struct reloc_control; 556 struct btrfs_device; 557 struct btrfs_fs_devices; 558 struct btrfs_balance_control; 559 struct btrfs_delayed_root; 560 561 /* 562 * Block group or device which contains an active swapfile. Used for preventing 563 * unsafe operations while a swapfile is active. 564 * 565 * These are sorted on (ptr, inode) (note that a block group or device can 566 * contain more than one swapfile). We compare the pointer values because we 567 * don't actually care what the object is, we just need a quick check whether 568 * the object exists in the rbtree. 569 */ 570 struct btrfs_swapfile_pin { 571 struct rb_node node; 572 void *ptr; 573 struct inode *inode; 574 /* 575 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 576 * points to a struct btrfs_device. 577 */ 578 bool is_block_group; 579 /* 580 * Only used when 'is_block_group' is true and it is the number of 581 * extents used by a swapfile for this block group ('ptr' field). 582 */ 583 int bg_extent_count; 584 }; 585 586 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 587 588 enum { 589 BTRFS_FS_CLOSING_START, 590 BTRFS_FS_CLOSING_DONE, 591 BTRFS_FS_LOG_RECOVERING, 592 BTRFS_FS_OPEN, 593 BTRFS_FS_QUOTA_ENABLED, 594 BTRFS_FS_UPDATE_UUID_TREE_GEN, 595 BTRFS_FS_CREATING_FREE_SPACE_TREE, 596 BTRFS_FS_BTREE_ERR, 597 BTRFS_FS_LOG1_ERR, 598 BTRFS_FS_LOG2_ERR, 599 BTRFS_FS_QUOTA_OVERRIDE, 600 /* Used to record internally whether fs has been frozen */ 601 BTRFS_FS_FROZEN, 602 /* 603 * Indicate that balance has been set up from the ioctl and is in the 604 * main phase. The fs_info::balance_ctl is initialized. 605 */ 606 BTRFS_FS_BALANCE_RUNNING, 607 608 /* 609 * Indicate that relocation of a chunk has started, it's set per chunk 610 * and is toggled between chunks. 611 */ 612 BTRFS_FS_RELOC_RUNNING, 613 614 /* Indicate that the cleaner thread is awake and doing something. */ 615 BTRFS_FS_CLEANER_RUNNING, 616 617 /* 618 * The checksumming has an optimized version and is considered fast, 619 * so we don't need to offload checksums to workqueues. 620 */ 621 BTRFS_FS_CSUM_IMPL_FAST, 622 623 /* Indicate that the discard workqueue can service discards. */ 624 BTRFS_FS_DISCARD_RUNNING, 625 626 /* Indicate that we need to cleanup space cache v1 */ 627 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 628 629 /* Indicate that we can't trust the free space tree for caching yet */ 630 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 631 632 /* Indicate whether there are any tree modification log users */ 633 BTRFS_FS_TREE_MOD_LOG_USERS, 634 635 /* Indicate that we want the transaction kthread to commit right now. */ 636 BTRFS_FS_COMMIT_TRANS, 637 638 /* Indicate we have half completed snapshot deletions pending. */ 639 BTRFS_FS_UNFINISHED_DROPS, 640 641 /* Indicate we have to finish a zone to do next allocation. */ 642 BTRFS_FS_NEED_ZONE_FINISH, 643 644 #if BITS_PER_LONG == 32 645 /* Indicate if we have error/warn message printed on 32bit systems */ 646 BTRFS_FS_32BIT_ERROR, 647 BTRFS_FS_32BIT_WARN, 648 #endif 649 }; 650 651 /* 652 * Exclusive operations (device replace, resize, device add/remove, balance) 653 */ 654 enum btrfs_exclusive_operation { 655 BTRFS_EXCLOP_NONE, 656 BTRFS_EXCLOP_BALANCE_PAUSED, 657 BTRFS_EXCLOP_BALANCE, 658 BTRFS_EXCLOP_DEV_ADD, 659 BTRFS_EXCLOP_DEV_REMOVE, 660 BTRFS_EXCLOP_DEV_REPLACE, 661 BTRFS_EXCLOP_RESIZE, 662 BTRFS_EXCLOP_SWAP_ACTIVATE, 663 }; 664 665 /* Store data about transaction commits, exported via sysfs. */ 666 struct btrfs_commit_stats { 667 /* Total number of commits */ 668 u64 commit_count; 669 /* The maximum commit duration so far in ns */ 670 u64 max_commit_dur; 671 /* The last commit duration in ns */ 672 u64 last_commit_dur; 673 /* The total commit duration in ns */ 674 u64 total_commit_dur; 675 }; 676 677 struct btrfs_fs_info { 678 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 679 unsigned long flags; 680 struct btrfs_root *tree_root; 681 struct btrfs_root *chunk_root; 682 struct btrfs_root *dev_root; 683 struct btrfs_root *fs_root; 684 struct btrfs_root *quota_root; 685 struct btrfs_root *uuid_root; 686 struct btrfs_root *data_reloc_root; 687 struct btrfs_root *block_group_root; 688 689 /* the log root tree is a directory of all the other log roots */ 690 struct btrfs_root *log_root_tree; 691 692 /* The tree that holds the global roots (csum, extent, etc) */ 693 rwlock_t global_root_lock; 694 struct rb_root global_root_tree; 695 696 spinlock_t fs_roots_radix_lock; 697 struct radix_tree_root fs_roots_radix; 698 699 /* block group cache stuff */ 700 rwlock_t block_group_cache_lock; 701 struct rb_root_cached block_group_cache_tree; 702 703 /* keep track of unallocated space */ 704 atomic64_t free_chunk_space; 705 706 /* Track ranges which are used by log trees blocks/logged data extents */ 707 struct extent_io_tree excluded_extents; 708 709 /* logical->physical extent mapping */ 710 struct extent_map_tree mapping_tree; 711 712 /* 713 * block reservation for extent, checksum, root tree and 714 * delayed dir index item 715 */ 716 struct btrfs_block_rsv global_block_rsv; 717 /* block reservation for metadata operations */ 718 struct btrfs_block_rsv trans_block_rsv; 719 /* block reservation for chunk tree */ 720 struct btrfs_block_rsv chunk_block_rsv; 721 /* block reservation for delayed operations */ 722 struct btrfs_block_rsv delayed_block_rsv; 723 /* block reservation for delayed refs */ 724 struct btrfs_block_rsv delayed_refs_rsv; 725 726 struct btrfs_block_rsv empty_block_rsv; 727 728 u64 generation; 729 u64 last_trans_committed; 730 /* 731 * Generation of the last transaction used for block group relocation 732 * since the filesystem was last mounted (or 0 if none happened yet). 733 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 734 */ 735 u64 last_reloc_trans; 736 u64 avg_delayed_ref_runtime; 737 738 /* 739 * this is updated to the current trans every time a full commit 740 * is required instead of the faster short fsync log commits 741 */ 742 u64 last_trans_log_full_commit; 743 unsigned long mount_opt; 744 /* 745 * Track requests for actions that need to be done during transaction 746 * commit (like for some mount options). 747 */ 748 unsigned long pending_changes; 749 unsigned long compress_type:4; 750 unsigned int compress_level; 751 u32 commit_interval; 752 /* 753 * It is a suggestive number, the read side is safe even it gets a 754 * wrong number because we will write out the data into a regular 755 * extent. The write side(mount/remount) is under ->s_umount lock, 756 * so it is also safe. 757 */ 758 u64 max_inline; 759 760 struct btrfs_transaction *running_transaction; 761 wait_queue_head_t transaction_throttle; 762 wait_queue_head_t transaction_wait; 763 wait_queue_head_t transaction_blocked_wait; 764 wait_queue_head_t async_submit_wait; 765 766 /* 767 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 768 * when they are updated. 769 * 770 * Because we do not clear the flags for ever, so we needn't use 771 * the lock on the read side. 772 * 773 * We also needn't use the lock when we mount the fs, because 774 * there is no other task which will update the flag. 775 */ 776 spinlock_t super_lock; 777 struct btrfs_super_block *super_copy; 778 struct btrfs_super_block *super_for_commit; 779 struct super_block *sb; 780 struct inode *btree_inode; 781 struct mutex tree_log_mutex; 782 struct mutex transaction_kthread_mutex; 783 struct mutex cleaner_mutex; 784 struct mutex chunk_mutex; 785 786 /* 787 * this is taken to make sure we don't set block groups ro after 788 * the free space cache has been allocated on them 789 */ 790 struct mutex ro_block_group_mutex; 791 792 /* this is used during read/modify/write to make sure 793 * no two ios are trying to mod the same stripe at the same 794 * time 795 */ 796 struct btrfs_stripe_hash_table *stripe_hash_table; 797 798 /* 799 * this protects the ordered operations list only while we are 800 * processing all of the entries on it. This way we make 801 * sure the commit code doesn't find the list temporarily empty 802 * because another function happens to be doing non-waiting preflush 803 * before jumping into the main commit. 804 */ 805 struct mutex ordered_operations_mutex; 806 807 struct rw_semaphore commit_root_sem; 808 809 struct rw_semaphore cleanup_work_sem; 810 811 struct rw_semaphore subvol_sem; 812 813 spinlock_t trans_lock; 814 /* 815 * the reloc mutex goes with the trans lock, it is taken 816 * during commit to protect us from the relocation code 817 */ 818 struct mutex reloc_mutex; 819 820 struct list_head trans_list; 821 struct list_head dead_roots; 822 struct list_head caching_block_groups; 823 824 spinlock_t delayed_iput_lock; 825 struct list_head delayed_iputs; 826 atomic_t nr_delayed_iputs; 827 wait_queue_head_t delayed_iputs_wait; 828 829 atomic64_t tree_mod_seq; 830 831 /* this protects tree_mod_log and tree_mod_seq_list */ 832 rwlock_t tree_mod_log_lock; 833 struct rb_root tree_mod_log; 834 struct list_head tree_mod_seq_list; 835 836 atomic_t async_delalloc_pages; 837 838 /* 839 * this is used to protect the following list -- ordered_roots. 840 */ 841 spinlock_t ordered_root_lock; 842 843 /* 844 * all fs/file tree roots in which there are data=ordered extents 845 * pending writeback are added into this list. 846 * 847 * these can span multiple transactions and basically include 848 * every dirty data page that isn't from nodatacow 849 */ 850 struct list_head ordered_roots; 851 852 struct mutex delalloc_root_mutex; 853 spinlock_t delalloc_root_lock; 854 /* all fs/file tree roots that have delalloc inodes. */ 855 struct list_head delalloc_roots; 856 857 /* 858 * there is a pool of worker threads for checksumming during writes 859 * and a pool for checksumming after reads. This is because readers 860 * can run with FS locks held, and the writers may be waiting for 861 * those locks. We don't want ordering in the pending list to cause 862 * deadlocks, and so the two are serviced separately. 863 * 864 * A third pool does submit_bio to avoid deadlocking with the other 865 * two 866 */ 867 struct btrfs_workqueue *workers; 868 struct btrfs_workqueue *hipri_workers; 869 struct btrfs_workqueue *delalloc_workers; 870 struct btrfs_workqueue *flush_workers; 871 struct workqueue_struct *endio_workers; 872 struct workqueue_struct *endio_meta_workers; 873 struct workqueue_struct *endio_raid56_workers; 874 struct workqueue_struct *rmw_workers; 875 struct workqueue_struct *compressed_write_workers; 876 struct btrfs_workqueue *endio_write_workers; 877 struct btrfs_workqueue *endio_freespace_worker; 878 struct btrfs_workqueue *caching_workers; 879 880 /* 881 * fixup workers take dirty pages that didn't properly go through 882 * the cow mechanism and make them safe to write. It happens 883 * for the sys_munmap function call path 884 */ 885 struct btrfs_workqueue *fixup_workers; 886 struct btrfs_workqueue *delayed_workers; 887 888 struct task_struct *transaction_kthread; 889 struct task_struct *cleaner_kthread; 890 u32 thread_pool_size; 891 892 struct kobject *space_info_kobj; 893 struct kobject *qgroups_kobj; 894 895 /* used to keep from writing metadata until there is a nice batch */ 896 struct percpu_counter dirty_metadata_bytes; 897 struct percpu_counter delalloc_bytes; 898 struct percpu_counter ordered_bytes; 899 s32 dirty_metadata_batch; 900 s32 delalloc_batch; 901 902 struct list_head dirty_cowonly_roots; 903 904 struct btrfs_fs_devices *fs_devices; 905 906 /* 907 * The space_info list is effectively read only after initial 908 * setup. It is populated at mount time and cleaned up after 909 * all block groups are removed. RCU is used to protect it. 910 */ 911 struct list_head space_info; 912 913 struct btrfs_space_info *data_sinfo; 914 915 struct reloc_control *reloc_ctl; 916 917 /* data_alloc_cluster is only used in ssd_spread mode */ 918 struct btrfs_free_cluster data_alloc_cluster; 919 920 /* all metadata allocations go through this cluster */ 921 struct btrfs_free_cluster meta_alloc_cluster; 922 923 /* auto defrag inodes go here */ 924 spinlock_t defrag_inodes_lock; 925 struct rb_root defrag_inodes; 926 atomic_t defrag_running; 927 928 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 929 seqlock_t profiles_lock; 930 /* 931 * these three are in extended format (availability of single 932 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 933 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 934 */ 935 u64 avail_data_alloc_bits; 936 u64 avail_metadata_alloc_bits; 937 u64 avail_system_alloc_bits; 938 939 /* restriper state */ 940 spinlock_t balance_lock; 941 struct mutex balance_mutex; 942 atomic_t balance_pause_req; 943 atomic_t balance_cancel_req; 944 struct btrfs_balance_control *balance_ctl; 945 wait_queue_head_t balance_wait_q; 946 947 /* Cancellation requests for chunk relocation */ 948 atomic_t reloc_cancel_req; 949 950 u32 data_chunk_allocations; 951 u32 metadata_ratio; 952 953 void *bdev_holder; 954 955 /* private scrub information */ 956 struct mutex scrub_lock; 957 atomic_t scrubs_running; 958 atomic_t scrub_pause_req; 959 atomic_t scrubs_paused; 960 atomic_t scrub_cancel_req; 961 wait_queue_head_t scrub_pause_wait; 962 /* 963 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 964 * running. 965 */ 966 refcount_t scrub_workers_refcnt; 967 struct workqueue_struct *scrub_workers; 968 struct workqueue_struct *scrub_wr_completion_workers; 969 struct workqueue_struct *scrub_parity_workers; 970 struct btrfs_subpage_info *subpage_info; 971 972 struct btrfs_discard_ctl discard_ctl; 973 974 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 975 u32 check_integrity_print_mask; 976 #endif 977 /* is qgroup tracking in a consistent state? */ 978 u64 qgroup_flags; 979 980 /* holds configuration and tracking. Protected by qgroup_lock */ 981 struct rb_root qgroup_tree; 982 spinlock_t qgroup_lock; 983 984 /* 985 * used to avoid frequently calling ulist_alloc()/ulist_free() 986 * when doing qgroup accounting, it must be protected by qgroup_lock. 987 */ 988 struct ulist *qgroup_ulist; 989 990 /* 991 * Protect user change for quota operations. If a transaction is needed, 992 * it must be started before locking this lock. 993 */ 994 struct mutex qgroup_ioctl_lock; 995 996 /* list of dirty qgroups to be written at next commit */ 997 struct list_head dirty_qgroups; 998 999 /* used by qgroup for an efficient tree traversal */ 1000 u64 qgroup_seq; 1001 1002 /* qgroup rescan items */ 1003 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1004 struct btrfs_key qgroup_rescan_progress; 1005 struct btrfs_workqueue *qgroup_rescan_workers; 1006 struct completion qgroup_rescan_completion; 1007 struct btrfs_work qgroup_rescan_work; 1008 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 1009 1010 /* filesystem state */ 1011 unsigned long fs_state; 1012 1013 struct btrfs_delayed_root *delayed_root; 1014 1015 /* Extent buffer radix tree */ 1016 spinlock_t buffer_lock; 1017 /* Entries are eb->start / sectorsize */ 1018 struct radix_tree_root buffer_radix; 1019 1020 /* next backup root to be overwritten */ 1021 int backup_root_index; 1022 1023 /* device replace state */ 1024 struct btrfs_dev_replace dev_replace; 1025 1026 struct semaphore uuid_tree_rescan_sem; 1027 1028 /* Used to reclaim the metadata space in the background. */ 1029 struct work_struct async_reclaim_work; 1030 struct work_struct async_data_reclaim_work; 1031 struct work_struct preempt_reclaim_work; 1032 1033 /* Reclaim partially filled block groups in the background */ 1034 struct work_struct reclaim_bgs_work; 1035 struct list_head reclaim_bgs; 1036 int bg_reclaim_threshold; 1037 1038 spinlock_t unused_bgs_lock; 1039 struct list_head unused_bgs; 1040 struct mutex unused_bg_unpin_mutex; 1041 /* Protect block groups that are going to be deleted */ 1042 struct mutex reclaim_bgs_lock; 1043 1044 /* Cached block sizes */ 1045 u32 nodesize; 1046 u32 sectorsize; 1047 /* ilog2 of sectorsize, use to avoid 64bit division */ 1048 u32 sectorsize_bits; 1049 u32 csum_size; 1050 u32 csums_per_leaf; 1051 u32 stripesize; 1052 1053 /* 1054 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular 1055 * filesystem, on zoned it depends on the device constraints. 1056 */ 1057 u64 max_extent_size; 1058 1059 /* Block groups and devices containing active swapfiles. */ 1060 spinlock_t swapfile_pins_lock; 1061 struct rb_root swapfile_pins; 1062 1063 struct crypto_shash *csum_shash; 1064 1065 /* Type of exclusive operation running, protected by super_lock */ 1066 enum btrfs_exclusive_operation exclusive_operation; 1067 1068 /* 1069 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1070 * if the mode is enabled 1071 */ 1072 u64 zone_size; 1073 1074 /* Max size to emit ZONE_APPEND write command */ 1075 u64 max_zone_append_size; 1076 struct mutex zoned_meta_io_lock; 1077 spinlock_t treelog_bg_lock; 1078 u64 treelog_bg; 1079 1080 /* 1081 * Start of the dedicated data relocation block group, protected by 1082 * relocation_bg_lock. 1083 */ 1084 spinlock_t relocation_bg_lock; 1085 u64 data_reloc_bg; 1086 struct mutex zoned_data_reloc_io_lock; 1087 1088 u64 nr_global_roots; 1089 1090 spinlock_t zone_active_bgs_lock; 1091 struct list_head zone_active_bgs; 1092 /* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */ 1093 wait_queue_head_t zone_finish_wait; 1094 1095 /* Updates are not protected by any lock */ 1096 struct btrfs_commit_stats commit_stats; 1097 1098 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1099 spinlock_t ref_verify_lock; 1100 struct rb_root block_tree; 1101 #endif 1102 1103 #ifdef CONFIG_BTRFS_DEBUG 1104 struct kobject *debug_kobj; 1105 struct kobject *discard_debug_kobj; 1106 struct list_head allocated_roots; 1107 1108 spinlock_t eb_leak_lock; 1109 struct list_head allocated_ebs; 1110 #endif 1111 }; 1112 1113 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1114 { 1115 return sb->s_fs_info; 1116 } 1117 1118 /* 1119 * The state of btrfs root 1120 */ 1121 enum { 1122 /* 1123 * btrfs_record_root_in_trans is a multi-step process, and it can race 1124 * with the balancing code. But the race is very small, and only the 1125 * first time the root is added to each transaction. So IN_TRANS_SETUP 1126 * is used to tell us when more checks are required 1127 */ 1128 BTRFS_ROOT_IN_TRANS_SETUP, 1129 1130 /* 1131 * Set if tree blocks of this root can be shared by other roots. 1132 * Only subvolume trees and their reloc trees have this bit set. 1133 * Conflicts with TRACK_DIRTY bit. 1134 * 1135 * This affects two things: 1136 * 1137 * - How balance works 1138 * For shareable roots, we need to use reloc tree and do path 1139 * replacement for balance, and need various pre/post hooks for 1140 * snapshot creation to handle them. 1141 * 1142 * While for non-shareable trees, we just simply do a tree search 1143 * with COW. 1144 * 1145 * - How dirty roots are tracked 1146 * For shareable roots, btrfs_record_root_in_trans() is needed to 1147 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1148 * don't need to set this manually. 1149 */ 1150 BTRFS_ROOT_SHAREABLE, 1151 BTRFS_ROOT_TRACK_DIRTY, 1152 BTRFS_ROOT_IN_RADIX, 1153 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1154 BTRFS_ROOT_DEFRAG_RUNNING, 1155 BTRFS_ROOT_FORCE_COW, 1156 BTRFS_ROOT_MULTI_LOG_TASKS, 1157 BTRFS_ROOT_DIRTY, 1158 BTRFS_ROOT_DELETING, 1159 1160 /* 1161 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1162 * 1163 * Set for the subvolume tree owning the reloc tree. 1164 */ 1165 BTRFS_ROOT_DEAD_RELOC_TREE, 1166 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1167 BTRFS_ROOT_DEAD_TREE, 1168 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1169 BTRFS_ROOT_HAS_LOG_TREE, 1170 /* Qgroup flushing is in progress */ 1171 BTRFS_ROOT_QGROUP_FLUSHING, 1172 /* We started the orphan cleanup for this root. */ 1173 BTRFS_ROOT_ORPHAN_CLEANUP, 1174 /* This root has a drop operation that was started previously. */ 1175 BTRFS_ROOT_UNFINISHED_DROP, 1176 /* This reloc root needs to have its buffers lockdep class reset. */ 1177 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 1178 }; 1179 1180 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1181 { 1182 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1183 } 1184 1185 /* 1186 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1187 * code. For detail check comment in fs/btrfs/qgroup.c. 1188 */ 1189 struct btrfs_qgroup_swapped_blocks { 1190 spinlock_t lock; 1191 /* RM_EMPTY_ROOT() of above blocks[] */ 1192 bool swapped; 1193 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1194 }; 1195 1196 /* 1197 * in ram representation of the tree. extent_root is used for all allocations 1198 * and for the extent tree extent_root root. 1199 */ 1200 struct btrfs_root { 1201 struct rb_node rb_node; 1202 1203 struct extent_buffer *node; 1204 1205 struct extent_buffer *commit_root; 1206 struct btrfs_root *log_root; 1207 struct btrfs_root *reloc_root; 1208 1209 unsigned long state; 1210 struct btrfs_root_item root_item; 1211 struct btrfs_key root_key; 1212 struct btrfs_fs_info *fs_info; 1213 struct extent_io_tree dirty_log_pages; 1214 1215 struct mutex objectid_mutex; 1216 1217 spinlock_t accounting_lock; 1218 struct btrfs_block_rsv *block_rsv; 1219 1220 struct mutex log_mutex; 1221 wait_queue_head_t log_writer_wait; 1222 wait_queue_head_t log_commit_wait[2]; 1223 struct list_head log_ctxs[2]; 1224 /* Used only for log trees of subvolumes, not for the log root tree */ 1225 atomic_t log_writers; 1226 atomic_t log_commit[2]; 1227 /* Used only for log trees of subvolumes, not for the log root tree */ 1228 atomic_t log_batch; 1229 int log_transid; 1230 /* No matter the commit succeeds or not*/ 1231 int log_transid_committed; 1232 /* Just be updated when the commit succeeds. */ 1233 int last_log_commit; 1234 pid_t log_start_pid; 1235 1236 u64 last_trans; 1237 1238 u32 type; 1239 1240 u64 free_objectid; 1241 1242 struct btrfs_key defrag_progress; 1243 struct btrfs_key defrag_max; 1244 1245 /* The dirty list is only used by non-shareable roots */ 1246 struct list_head dirty_list; 1247 1248 struct list_head root_list; 1249 1250 spinlock_t log_extents_lock[2]; 1251 struct list_head logged_list[2]; 1252 1253 spinlock_t inode_lock; 1254 /* red-black tree that keeps track of in-memory inodes */ 1255 struct rb_root inode_tree; 1256 1257 /* 1258 * radix tree that keeps track of delayed nodes of every inode, 1259 * protected by inode_lock 1260 */ 1261 struct radix_tree_root delayed_nodes_tree; 1262 /* 1263 * right now this just gets used so that a root has its own devid 1264 * for stat. It may be used for more later 1265 */ 1266 dev_t anon_dev; 1267 1268 spinlock_t root_item_lock; 1269 refcount_t refs; 1270 1271 struct mutex delalloc_mutex; 1272 spinlock_t delalloc_lock; 1273 /* 1274 * all of the inodes that have delalloc bytes. It is possible for 1275 * this list to be empty even when there is still dirty data=ordered 1276 * extents waiting to finish IO. 1277 */ 1278 struct list_head delalloc_inodes; 1279 struct list_head delalloc_root; 1280 u64 nr_delalloc_inodes; 1281 1282 struct mutex ordered_extent_mutex; 1283 /* 1284 * this is used by the balancing code to wait for all the pending 1285 * ordered extents 1286 */ 1287 spinlock_t ordered_extent_lock; 1288 1289 /* 1290 * all of the data=ordered extents pending writeback 1291 * these can span multiple transactions and basically include 1292 * every dirty data page that isn't from nodatacow 1293 */ 1294 struct list_head ordered_extents; 1295 struct list_head ordered_root; 1296 u64 nr_ordered_extents; 1297 1298 /* 1299 * Not empty if this subvolume root has gone through tree block swap 1300 * (relocation) 1301 * 1302 * Will be used by reloc_control::dirty_subvol_roots. 1303 */ 1304 struct list_head reloc_dirty_list; 1305 1306 /* 1307 * Number of currently running SEND ioctls to prevent 1308 * manipulation with the read-only status via SUBVOL_SETFLAGS 1309 */ 1310 int send_in_progress; 1311 /* 1312 * Number of currently running deduplication operations that have a 1313 * destination inode belonging to this root. Protected by the lock 1314 * root_item_lock. 1315 */ 1316 int dedupe_in_progress; 1317 /* For exclusion of snapshot creation and nocow writes */ 1318 struct btrfs_drew_lock snapshot_lock; 1319 1320 atomic_t snapshot_force_cow; 1321 1322 /* For qgroup metadata reserved space */ 1323 spinlock_t qgroup_meta_rsv_lock; 1324 u64 qgroup_meta_rsv_pertrans; 1325 u64 qgroup_meta_rsv_prealloc; 1326 wait_queue_head_t qgroup_flush_wait; 1327 1328 /* Number of active swapfiles */ 1329 atomic_t nr_swapfiles; 1330 1331 /* Record pairs of swapped blocks for qgroup */ 1332 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1333 1334 /* Used only by log trees, when logging csum items */ 1335 struct extent_io_tree log_csum_range; 1336 1337 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1338 u64 alloc_bytenr; 1339 #endif 1340 1341 #ifdef CONFIG_BTRFS_DEBUG 1342 struct list_head leak_list; 1343 #endif 1344 }; 1345 1346 /* 1347 * Structure that conveys information about an extent that is going to replace 1348 * all the extents in a file range. 1349 */ 1350 struct btrfs_replace_extent_info { 1351 u64 disk_offset; 1352 u64 disk_len; 1353 u64 data_offset; 1354 u64 data_len; 1355 u64 file_offset; 1356 /* Pointer to a file extent item of type regular or prealloc. */ 1357 char *extent_buf; 1358 /* 1359 * Set to true when attempting to replace a file range with a new extent 1360 * described by this structure, set to false when attempting to clone an 1361 * existing extent into a file range. 1362 */ 1363 bool is_new_extent; 1364 /* Indicate if we should update the inode's mtime and ctime. */ 1365 bool update_times; 1366 /* Meaningful only if is_new_extent is true. */ 1367 int qgroup_reserved; 1368 /* 1369 * Meaningful only if is_new_extent is true. 1370 * Used to track how many extent items we have already inserted in a 1371 * subvolume tree that refer to the extent described by this structure, 1372 * so that we know when to create a new delayed ref or update an existing 1373 * one. 1374 */ 1375 int insertions; 1376 }; 1377 1378 /* Arguments for btrfs_drop_extents() */ 1379 struct btrfs_drop_extents_args { 1380 /* Input parameters */ 1381 1382 /* 1383 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1384 * If 'replace_extent' is true, this must not be NULL. Also the path 1385 * is always released except if 'replace_extent' is true and 1386 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1387 * the path is kept locked. 1388 */ 1389 struct btrfs_path *path; 1390 /* Start offset of the range to drop extents from */ 1391 u64 start; 1392 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1393 u64 end; 1394 /* If true drop all the extent maps in the range */ 1395 bool drop_cache; 1396 /* 1397 * If true it means we want to insert a new extent after dropping all 1398 * the extents in the range. If this is true, the 'extent_item_size' 1399 * parameter must be set as well and the 'extent_inserted' field will 1400 * be set to true by btrfs_drop_extents() if it could insert the new 1401 * extent. 1402 * Note: when this is set to true the path must not be NULL. 1403 */ 1404 bool replace_extent; 1405 /* 1406 * Used if 'replace_extent' is true. Size of the file extent item to 1407 * insert after dropping all existing extents in the range 1408 */ 1409 u32 extent_item_size; 1410 1411 /* Output parameters */ 1412 1413 /* 1414 * Set to the minimum between the input parameter 'end' and the end 1415 * (exclusive, last byte + 1) of the last dropped extent. This is always 1416 * set even if btrfs_drop_extents() returns an error. 1417 */ 1418 u64 drop_end; 1419 /* 1420 * The number of allocated bytes found in the range. This can be smaller 1421 * than the range's length when there are holes in the range. 1422 */ 1423 u64 bytes_found; 1424 /* 1425 * Only set if 'replace_extent' is true. Set to true if we were able 1426 * to insert a replacement extent after dropping all extents in the 1427 * range, otherwise set to false by btrfs_drop_extents(). 1428 * Also, if btrfs_drop_extents() has set this to true it means it 1429 * returned with the path locked, otherwise if it has set this to 1430 * false it has returned with the path released. 1431 */ 1432 bool extent_inserted; 1433 }; 1434 1435 struct btrfs_file_private { 1436 void *filldir_buf; 1437 }; 1438 1439 1440 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1441 { 1442 1443 return info->nodesize - sizeof(struct btrfs_header); 1444 } 1445 1446 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1447 1448 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1449 { 1450 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1451 } 1452 1453 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1454 { 1455 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1456 } 1457 1458 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1459 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1460 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1461 { 1462 return BTRFS_MAX_ITEM_SIZE(info) - 1463 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1464 } 1465 1466 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1467 { 1468 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1469 } 1470 1471 /* 1472 * Flags for mount options. 1473 * 1474 * Note: don't forget to add new options to btrfs_show_options() 1475 */ 1476 enum { 1477 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1478 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1479 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1480 BTRFS_MOUNT_SSD = (1UL << 3), 1481 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1482 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1483 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1484 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1485 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1486 BTRFS_MOUNT_NOSSD = (1UL << 9), 1487 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1488 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1489 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1490 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1491 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1492 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1493 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1494 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1495 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1496 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1497 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1498 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1499 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1500 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1501 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1502 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1503 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1504 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1505 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1506 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1507 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1508 }; 1509 1510 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1511 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1512 1513 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1514 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1515 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1516 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1517 BTRFS_MOUNT_##opt) 1518 1519 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1520 do { \ 1521 if (!btrfs_test_opt(fs_info, opt)) \ 1522 btrfs_info(fs_info, fmt, ##args); \ 1523 btrfs_set_opt(fs_info->mount_opt, opt); \ 1524 } while (0) 1525 1526 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1527 do { \ 1528 if (btrfs_test_opt(fs_info, opt)) \ 1529 btrfs_info(fs_info, fmt, ##args); \ 1530 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1531 } while (0) 1532 1533 /* 1534 * Requests for changes that need to be done during transaction commit. 1535 * 1536 * Internal mount options that are used for special handling of the real 1537 * mount options (eg. cannot be set during remount and have to be set during 1538 * transaction commit) 1539 */ 1540 1541 #define BTRFS_PENDING_COMMIT (0) 1542 1543 #define btrfs_test_pending(info, opt) \ 1544 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1545 #define btrfs_set_pending(info, opt) \ 1546 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1547 #define btrfs_clear_pending(info, opt) \ 1548 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1549 1550 /* 1551 * Helpers for setting pending mount option changes. 1552 * 1553 * Expects corresponding macros 1554 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1555 */ 1556 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1557 do { \ 1558 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1559 btrfs_info((info), fmt, ##args); \ 1560 btrfs_set_pending((info), SET_##opt); \ 1561 btrfs_clear_pending((info), CLEAR_##opt); \ 1562 } \ 1563 } while(0) 1564 1565 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1566 do { \ 1567 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1568 btrfs_info((info), fmt, ##args); \ 1569 btrfs_set_pending((info), CLEAR_##opt); \ 1570 btrfs_clear_pending((info), SET_##opt); \ 1571 } \ 1572 } while(0) 1573 1574 /* 1575 * Inode flags 1576 */ 1577 #define BTRFS_INODE_NODATASUM (1U << 0) 1578 #define BTRFS_INODE_NODATACOW (1U << 1) 1579 #define BTRFS_INODE_READONLY (1U << 2) 1580 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1581 #define BTRFS_INODE_PREALLOC (1U << 4) 1582 #define BTRFS_INODE_SYNC (1U << 5) 1583 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1584 #define BTRFS_INODE_APPEND (1U << 7) 1585 #define BTRFS_INODE_NODUMP (1U << 8) 1586 #define BTRFS_INODE_NOATIME (1U << 9) 1587 #define BTRFS_INODE_DIRSYNC (1U << 10) 1588 #define BTRFS_INODE_COMPRESS (1U << 11) 1589 1590 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1591 1592 #define BTRFS_INODE_FLAG_MASK \ 1593 (BTRFS_INODE_NODATASUM | \ 1594 BTRFS_INODE_NODATACOW | \ 1595 BTRFS_INODE_READONLY | \ 1596 BTRFS_INODE_NOCOMPRESS | \ 1597 BTRFS_INODE_PREALLOC | \ 1598 BTRFS_INODE_SYNC | \ 1599 BTRFS_INODE_IMMUTABLE | \ 1600 BTRFS_INODE_APPEND | \ 1601 BTRFS_INODE_NODUMP | \ 1602 BTRFS_INODE_NOATIME | \ 1603 BTRFS_INODE_DIRSYNC | \ 1604 BTRFS_INODE_COMPRESS | \ 1605 BTRFS_INODE_ROOT_ITEM_INIT) 1606 1607 #define BTRFS_INODE_RO_VERITY (1U << 0) 1608 1609 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1610 1611 struct btrfs_map_token { 1612 struct extent_buffer *eb; 1613 char *kaddr; 1614 unsigned long offset; 1615 }; 1616 1617 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1618 ((bytes) >> (fs_info)->sectorsize_bits) 1619 1620 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1621 struct extent_buffer *eb) 1622 { 1623 token->eb = eb; 1624 token->kaddr = page_address(eb->pages[0]); 1625 token->offset = 0; 1626 } 1627 1628 /* some macros to generate set/get functions for the struct fields. This 1629 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1630 * one for u8: 1631 */ 1632 #define le8_to_cpu(v) (v) 1633 #define cpu_to_le8(v) (v) 1634 #define __le8 u8 1635 1636 static inline u8 get_unaligned_le8(const void *p) 1637 { 1638 return *(u8 *)p; 1639 } 1640 1641 static inline void put_unaligned_le8(u8 val, void *p) 1642 { 1643 *(u8 *)p = val; 1644 } 1645 1646 #define read_eb_member(eb, ptr, type, member, result) (\ 1647 read_extent_buffer(eb, (char *)(result), \ 1648 ((unsigned long)(ptr)) + \ 1649 offsetof(type, member), \ 1650 sizeof(((type *)0)->member))) 1651 1652 #define write_eb_member(eb, ptr, type, member, result) (\ 1653 write_extent_buffer(eb, (char *)(result), \ 1654 ((unsigned long)(ptr)) + \ 1655 offsetof(type, member), \ 1656 sizeof(((type *)0)->member))) 1657 1658 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1659 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1660 const void *ptr, unsigned long off); \ 1661 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1662 const void *ptr, unsigned long off, \ 1663 u##bits val); \ 1664 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1665 const void *ptr, unsigned long off); \ 1666 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1667 unsigned long off, u##bits val); 1668 1669 DECLARE_BTRFS_SETGET_BITS(8) 1670 DECLARE_BTRFS_SETGET_BITS(16) 1671 DECLARE_BTRFS_SETGET_BITS(32) 1672 DECLARE_BTRFS_SETGET_BITS(64) 1673 1674 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1675 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1676 const type *s) \ 1677 { \ 1678 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1679 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1680 } \ 1681 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1682 u##bits val) \ 1683 { \ 1684 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1685 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1686 } \ 1687 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1688 const type *s) \ 1689 { \ 1690 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1691 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1692 } \ 1693 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1694 type *s, u##bits val) \ 1695 { \ 1696 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1697 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1698 } 1699 1700 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1701 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1702 { \ 1703 const type *p = page_address(eb->pages[0]) + \ 1704 offset_in_page(eb->start); \ 1705 return get_unaligned_le##bits(&p->member); \ 1706 } \ 1707 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1708 u##bits val) \ 1709 { \ 1710 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1711 put_unaligned_le##bits(val, &p->member); \ 1712 } 1713 1714 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1715 static inline u##bits btrfs_##name(const type *s) \ 1716 { \ 1717 return get_unaligned_le##bits(&s->member); \ 1718 } \ 1719 static inline void btrfs_set_##name(type *s, u##bits val) \ 1720 { \ 1721 put_unaligned_le##bits(val, &s->member); \ 1722 } 1723 1724 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1725 struct btrfs_dev_item *s) 1726 { 1727 static_assert(sizeof(u64) == 1728 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1729 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1730 total_bytes)); 1731 } 1732 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1733 struct btrfs_dev_item *s, 1734 u64 val) 1735 { 1736 static_assert(sizeof(u64) == 1737 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1738 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1739 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1740 } 1741 1742 1743 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1744 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1745 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1746 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1747 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1748 start_offset, 64); 1749 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1750 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1751 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1752 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1753 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1754 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1755 1756 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1757 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1758 total_bytes, 64); 1759 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1760 bytes_used, 64); 1761 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1762 io_align, 32); 1763 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1764 io_width, 32); 1765 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1766 sector_size, 32); 1767 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1768 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1769 dev_group, 32); 1770 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1771 seek_speed, 8); 1772 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1773 bandwidth, 8); 1774 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1775 generation, 64); 1776 1777 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1778 { 1779 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1780 } 1781 1782 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1783 { 1784 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1785 } 1786 1787 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1788 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1789 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1790 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1791 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1792 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1793 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1794 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1795 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1796 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1797 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1798 1799 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1800 { 1801 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1802 } 1803 1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1806 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1807 stripe_len, 64); 1808 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1809 io_align, 32); 1810 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1811 io_width, 32); 1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1813 sector_size, 32); 1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1815 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1816 num_stripes, 16); 1817 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1818 sub_stripes, 16); 1819 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1820 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1821 1822 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1823 int nr) 1824 { 1825 unsigned long offset = (unsigned long)c; 1826 offset += offsetof(struct btrfs_chunk, stripe); 1827 offset += nr * sizeof(struct btrfs_stripe); 1828 return (struct btrfs_stripe *)offset; 1829 } 1830 1831 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1832 { 1833 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1834 } 1835 1836 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1837 struct btrfs_chunk *c, int nr) 1838 { 1839 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1840 } 1841 1842 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1843 struct btrfs_chunk *c, int nr) 1844 { 1845 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1846 } 1847 1848 /* struct btrfs_block_group_item */ 1849 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1850 used, 64); 1851 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1852 used, 64); 1853 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1854 struct btrfs_block_group_item, chunk_objectid, 64); 1855 1856 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1857 struct btrfs_block_group_item, chunk_objectid, 64); 1858 BTRFS_SETGET_FUNCS(block_group_flags, 1859 struct btrfs_block_group_item, flags, 64); 1860 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1861 struct btrfs_block_group_item, flags, 64); 1862 1863 /* struct btrfs_free_space_info */ 1864 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1865 extent_count, 32); 1866 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1867 1868 /* struct btrfs_inode_ref */ 1869 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1870 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1871 1872 /* struct btrfs_inode_extref */ 1873 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1874 parent_objectid, 64); 1875 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1876 name_len, 16); 1877 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1878 1879 /* struct btrfs_inode_item */ 1880 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1881 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1882 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1883 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1884 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1885 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1886 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1887 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1888 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1889 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1890 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1891 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1892 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1893 generation, 64); 1894 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1895 sequence, 64); 1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1897 transid, 64); 1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1899 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1900 nbytes, 64); 1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1902 block_group, 64); 1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1907 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1908 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1909 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1910 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1911 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1912 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1913 1914 /* struct btrfs_dev_extent */ 1915 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1916 chunk_tree, 64); 1917 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1918 chunk_objectid, 64); 1919 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1920 chunk_offset, 64); 1921 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1922 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1923 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1924 generation, 64); 1925 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1926 1927 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1928 1929 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1930 struct btrfs_tree_block_info *item, 1931 struct btrfs_disk_key *key) 1932 { 1933 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1934 } 1935 1936 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1937 struct btrfs_tree_block_info *item, 1938 struct btrfs_disk_key *key) 1939 { 1940 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1941 } 1942 1943 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1944 root, 64); 1945 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1946 objectid, 64); 1947 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1948 offset, 64); 1949 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1950 count, 32); 1951 1952 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1953 count, 32); 1954 1955 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1956 type, 8); 1957 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1958 offset, 64); 1959 1960 static inline u32 btrfs_extent_inline_ref_size(int type) 1961 { 1962 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1963 type == BTRFS_SHARED_BLOCK_REF_KEY) 1964 return sizeof(struct btrfs_extent_inline_ref); 1965 if (type == BTRFS_SHARED_DATA_REF_KEY) 1966 return sizeof(struct btrfs_shared_data_ref) + 1967 sizeof(struct btrfs_extent_inline_ref); 1968 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1969 return sizeof(struct btrfs_extent_data_ref) + 1970 offsetof(struct btrfs_extent_inline_ref, offset); 1971 return 0; 1972 } 1973 1974 /* struct btrfs_node */ 1975 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1976 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1977 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1978 blockptr, 64); 1979 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1980 generation, 64); 1981 1982 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1983 { 1984 unsigned long ptr; 1985 ptr = offsetof(struct btrfs_node, ptrs) + 1986 sizeof(struct btrfs_key_ptr) * nr; 1987 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1988 } 1989 1990 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1991 int nr, u64 val) 1992 { 1993 unsigned long ptr; 1994 ptr = offsetof(struct btrfs_node, ptrs) + 1995 sizeof(struct btrfs_key_ptr) * nr; 1996 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1997 } 1998 1999 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 2000 { 2001 unsigned long ptr; 2002 ptr = offsetof(struct btrfs_node, ptrs) + 2003 sizeof(struct btrfs_key_ptr) * nr; 2004 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2005 } 2006 2007 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 2008 int nr, u64 val) 2009 { 2010 unsigned long ptr; 2011 ptr = offsetof(struct btrfs_node, ptrs) + 2012 sizeof(struct btrfs_key_ptr) * nr; 2013 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2014 } 2015 2016 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2017 { 2018 return offsetof(struct btrfs_node, ptrs) + 2019 sizeof(struct btrfs_key_ptr) * nr; 2020 } 2021 2022 void btrfs_node_key(const struct extent_buffer *eb, 2023 struct btrfs_disk_key *disk_key, int nr); 2024 2025 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 2026 struct btrfs_disk_key *disk_key, int nr) 2027 { 2028 unsigned long ptr; 2029 ptr = btrfs_node_key_ptr_offset(nr); 2030 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2031 struct btrfs_key_ptr, key, disk_key); 2032 } 2033 2034 /* struct btrfs_item */ 2035 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2036 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2037 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2038 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2039 2040 static inline unsigned long btrfs_item_nr_offset(int nr) 2041 { 2042 return offsetof(struct btrfs_leaf, items) + 2043 sizeof(struct btrfs_item) * nr; 2044 } 2045 2046 static inline struct btrfs_item *btrfs_item_nr(int nr) 2047 { 2048 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2049 } 2050 2051 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2052 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2053 int slot) \ 2054 { \ 2055 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2056 } \ 2057 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2058 int slot, u32 val) \ 2059 { \ 2060 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2061 } \ 2062 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2063 int slot) \ 2064 { \ 2065 struct btrfs_item *item = btrfs_item_nr(slot); \ 2066 return btrfs_token_raw_item_##member(token, item); \ 2067 } \ 2068 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2069 int slot, u32 val) \ 2070 { \ 2071 struct btrfs_item *item = btrfs_item_nr(slot); \ 2072 btrfs_set_token_raw_item_##member(token, item, val); \ 2073 } 2074 2075 BTRFS_ITEM_SETGET_FUNCS(offset) 2076 BTRFS_ITEM_SETGET_FUNCS(size); 2077 2078 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2079 { 2080 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2081 } 2082 2083 static inline void btrfs_item_key(const struct extent_buffer *eb, 2084 struct btrfs_disk_key *disk_key, int nr) 2085 { 2086 struct btrfs_item *item = btrfs_item_nr(nr); 2087 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2088 } 2089 2090 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2091 struct btrfs_disk_key *disk_key, int nr) 2092 { 2093 struct btrfs_item *item = btrfs_item_nr(nr); 2094 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2095 } 2096 2097 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2098 2099 /* 2100 * struct btrfs_root_ref 2101 */ 2102 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2103 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2104 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2105 2106 /* struct btrfs_dir_item */ 2107 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2108 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2109 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2110 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2112 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2113 data_len, 16); 2114 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2115 name_len, 16); 2116 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2117 transid, 64); 2118 2119 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2120 const struct btrfs_dir_item *item, 2121 struct btrfs_disk_key *key) 2122 { 2123 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2124 } 2125 2126 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2127 struct btrfs_dir_item *item, 2128 const struct btrfs_disk_key *key) 2129 { 2130 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2131 } 2132 2133 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2134 num_entries, 64); 2135 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2136 num_bitmaps, 64); 2137 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2138 generation, 64); 2139 2140 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2141 const struct btrfs_free_space_header *h, 2142 struct btrfs_disk_key *key) 2143 { 2144 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2145 } 2146 2147 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2148 struct btrfs_free_space_header *h, 2149 const struct btrfs_disk_key *key) 2150 { 2151 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2152 } 2153 2154 /* struct btrfs_disk_key */ 2155 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2156 objectid, 64); 2157 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2158 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2159 2160 #ifdef __LITTLE_ENDIAN 2161 2162 /* 2163 * Optimized helpers for little-endian architectures where CPU and on-disk 2164 * structures have the same endianness and we can skip conversions. 2165 */ 2166 2167 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2168 const struct btrfs_disk_key *disk_key) 2169 { 2170 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2171 } 2172 2173 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2174 const struct btrfs_key *cpu_key) 2175 { 2176 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2177 } 2178 2179 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2180 struct btrfs_key *cpu_key, int nr) 2181 { 2182 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2183 2184 btrfs_node_key(eb, disk_key, nr); 2185 } 2186 2187 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2188 struct btrfs_key *cpu_key, int nr) 2189 { 2190 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2191 2192 btrfs_item_key(eb, disk_key, nr); 2193 } 2194 2195 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2196 const struct btrfs_dir_item *item, 2197 struct btrfs_key *cpu_key) 2198 { 2199 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2200 2201 btrfs_dir_item_key(eb, item, disk_key); 2202 } 2203 2204 #else 2205 2206 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2207 const struct btrfs_disk_key *disk) 2208 { 2209 cpu->offset = le64_to_cpu(disk->offset); 2210 cpu->type = disk->type; 2211 cpu->objectid = le64_to_cpu(disk->objectid); 2212 } 2213 2214 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2215 const struct btrfs_key *cpu) 2216 { 2217 disk->offset = cpu_to_le64(cpu->offset); 2218 disk->type = cpu->type; 2219 disk->objectid = cpu_to_le64(cpu->objectid); 2220 } 2221 2222 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2223 struct btrfs_key *key, int nr) 2224 { 2225 struct btrfs_disk_key disk_key; 2226 btrfs_node_key(eb, &disk_key, nr); 2227 btrfs_disk_key_to_cpu(key, &disk_key); 2228 } 2229 2230 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2231 struct btrfs_key *key, int nr) 2232 { 2233 struct btrfs_disk_key disk_key; 2234 btrfs_item_key(eb, &disk_key, nr); 2235 btrfs_disk_key_to_cpu(key, &disk_key); 2236 } 2237 2238 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2239 const struct btrfs_dir_item *item, 2240 struct btrfs_key *key) 2241 { 2242 struct btrfs_disk_key disk_key; 2243 btrfs_dir_item_key(eb, item, &disk_key); 2244 btrfs_disk_key_to_cpu(key, &disk_key); 2245 } 2246 2247 #endif 2248 2249 /* struct btrfs_header */ 2250 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2251 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2252 generation, 64); 2253 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2254 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2255 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2256 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2257 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2258 generation, 64); 2259 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2260 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2261 nritems, 32); 2262 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2263 2264 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2265 { 2266 return (btrfs_header_flags(eb) & flag) == flag; 2267 } 2268 2269 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2270 { 2271 u64 flags = btrfs_header_flags(eb); 2272 btrfs_set_header_flags(eb, flags | flag); 2273 } 2274 2275 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2276 { 2277 u64 flags = btrfs_header_flags(eb); 2278 btrfs_set_header_flags(eb, flags & ~flag); 2279 } 2280 2281 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2282 { 2283 u64 flags = btrfs_header_flags(eb); 2284 return flags >> BTRFS_BACKREF_REV_SHIFT; 2285 } 2286 2287 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2288 int rev) 2289 { 2290 u64 flags = btrfs_header_flags(eb); 2291 flags &= ~BTRFS_BACKREF_REV_MASK; 2292 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2293 btrfs_set_header_flags(eb, flags); 2294 } 2295 2296 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2297 { 2298 return btrfs_header_level(eb) == 0; 2299 } 2300 2301 /* struct btrfs_root_item */ 2302 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2303 generation, 64); 2304 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2305 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2306 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2307 2308 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2309 generation, 64); 2310 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2311 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2312 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2313 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2314 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2315 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2316 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2317 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2318 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2319 last_snapshot, 64); 2320 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2321 generation_v2, 64); 2322 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2323 ctransid, 64); 2324 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2325 otransid, 64); 2326 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2327 stransid, 64); 2328 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2329 rtransid, 64); 2330 2331 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2332 { 2333 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2334 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2335 } 2336 2337 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2338 { 2339 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2340 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2341 } 2342 2343 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2344 { 2345 return root->root_key.objectid; 2346 } 2347 2348 /* struct btrfs_root_backup */ 2349 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2350 tree_root, 64); 2351 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2352 tree_root_gen, 64); 2353 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2354 tree_root_level, 8); 2355 2356 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2357 chunk_root, 64); 2358 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2359 chunk_root_gen, 64); 2360 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2361 chunk_root_level, 8); 2362 2363 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2364 extent_root, 64); 2365 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2366 extent_root_gen, 64); 2367 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2368 extent_root_level, 8); 2369 2370 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2371 fs_root, 64); 2372 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2373 fs_root_gen, 64); 2374 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2375 fs_root_level, 8); 2376 2377 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2378 dev_root, 64); 2379 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2380 dev_root_gen, 64); 2381 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2382 dev_root_level, 8); 2383 2384 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2385 csum_root, 64); 2386 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2387 csum_root_gen, 64); 2388 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2389 csum_root_level, 8); 2390 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2391 total_bytes, 64); 2392 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2393 bytes_used, 64); 2394 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2395 num_devices, 64); 2396 2397 /* 2398 * For extent tree v2 we overload the extent root with the block group root, as 2399 * we will have multiple extent roots. 2400 */ 2401 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2402 extent_root, 64); 2403 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2404 extent_root_gen, 64); 2405 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2406 struct btrfs_root_backup, extent_root_level, 8); 2407 2408 /* struct btrfs_balance_item */ 2409 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2410 2411 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2412 const struct btrfs_balance_item *bi, 2413 struct btrfs_disk_balance_args *ba) 2414 { 2415 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2416 } 2417 2418 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2419 struct btrfs_balance_item *bi, 2420 const struct btrfs_disk_balance_args *ba) 2421 { 2422 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2423 } 2424 2425 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2426 const struct btrfs_balance_item *bi, 2427 struct btrfs_disk_balance_args *ba) 2428 { 2429 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2430 } 2431 2432 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2433 struct btrfs_balance_item *bi, 2434 const struct btrfs_disk_balance_args *ba) 2435 { 2436 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2437 } 2438 2439 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2440 const struct btrfs_balance_item *bi, 2441 struct btrfs_disk_balance_args *ba) 2442 { 2443 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2444 } 2445 2446 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2447 struct btrfs_balance_item *bi, 2448 const struct btrfs_disk_balance_args *ba) 2449 { 2450 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2451 } 2452 2453 static inline void 2454 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2455 const struct btrfs_disk_balance_args *disk) 2456 { 2457 memset(cpu, 0, sizeof(*cpu)); 2458 2459 cpu->profiles = le64_to_cpu(disk->profiles); 2460 cpu->usage = le64_to_cpu(disk->usage); 2461 cpu->devid = le64_to_cpu(disk->devid); 2462 cpu->pstart = le64_to_cpu(disk->pstart); 2463 cpu->pend = le64_to_cpu(disk->pend); 2464 cpu->vstart = le64_to_cpu(disk->vstart); 2465 cpu->vend = le64_to_cpu(disk->vend); 2466 cpu->target = le64_to_cpu(disk->target); 2467 cpu->flags = le64_to_cpu(disk->flags); 2468 cpu->limit = le64_to_cpu(disk->limit); 2469 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2470 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2471 } 2472 2473 static inline void 2474 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2475 const struct btrfs_balance_args *cpu) 2476 { 2477 memset(disk, 0, sizeof(*disk)); 2478 2479 disk->profiles = cpu_to_le64(cpu->profiles); 2480 disk->usage = cpu_to_le64(cpu->usage); 2481 disk->devid = cpu_to_le64(cpu->devid); 2482 disk->pstart = cpu_to_le64(cpu->pstart); 2483 disk->pend = cpu_to_le64(cpu->pend); 2484 disk->vstart = cpu_to_le64(cpu->vstart); 2485 disk->vend = cpu_to_le64(cpu->vend); 2486 disk->target = cpu_to_le64(cpu->target); 2487 disk->flags = cpu_to_le64(cpu->flags); 2488 disk->limit = cpu_to_le64(cpu->limit); 2489 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2490 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2491 } 2492 2493 /* struct btrfs_super_block */ 2494 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2495 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2496 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2497 generation, 64); 2498 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2499 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2500 struct btrfs_super_block, sys_chunk_array_size, 32); 2501 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2502 struct btrfs_super_block, chunk_root_generation, 64); 2503 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2504 root_level, 8); 2505 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2506 chunk_root, 64); 2507 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2508 chunk_root_level, 8); 2509 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2510 log_root, 64); 2511 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2512 log_root_level, 8); 2513 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2514 total_bytes, 64); 2515 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2516 bytes_used, 64); 2517 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2518 sectorsize, 32); 2519 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2520 nodesize, 32); 2521 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2522 stripesize, 32); 2523 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2524 root_dir_objectid, 64); 2525 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2526 num_devices, 64); 2527 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2528 compat_flags, 64); 2529 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2530 compat_ro_flags, 64); 2531 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2532 incompat_flags, 64); 2533 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2534 csum_type, 16); 2535 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2536 cache_generation, 64); 2537 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2538 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2539 uuid_tree_generation, 64); 2540 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2541 block_group_root, 64); 2542 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2543 struct btrfs_super_block, 2544 block_group_root_generation, 64); 2545 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2546 block_group_root_level, 8); 2547 2548 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2549 const char *btrfs_super_csum_name(u16 csum_type); 2550 const char *btrfs_super_csum_driver(u16 csum_type); 2551 size_t __attribute_const__ btrfs_get_num_csums(void); 2552 2553 2554 /* 2555 * The leaf data grows from end-to-front in the node. 2556 * this returns the address of the start of the last item, 2557 * which is the stop of the leaf data stack 2558 */ 2559 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2560 { 2561 u32 nr = btrfs_header_nritems(leaf); 2562 2563 if (nr == 0) 2564 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2565 return btrfs_item_offset(leaf, nr - 1); 2566 } 2567 2568 /* struct btrfs_file_extent_item */ 2569 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2570 type, 8); 2571 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2572 struct btrfs_file_extent_item, disk_bytenr, 64); 2573 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2574 struct btrfs_file_extent_item, offset, 64); 2575 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2576 struct btrfs_file_extent_item, generation, 64); 2577 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2578 struct btrfs_file_extent_item, num_bytes, 64); 2579 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2580 struct btrfs_file_extent_item, ram_bytes, 64); 2581 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2582 struct btrfs_file_extent_item, disk_num_bytes, 64); 2583 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2584 struct btrfs_file_extent_item, compression, 8); 2585 2586 static inline unsigned long 2587 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2588 { 2589 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2590 } 2591 2592 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2593 { 2594 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2595 } 2596 2597 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2598 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2599 disk_bytenr, 64); 2600 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2601 generation, 64); 2602 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2603 disk_num_bytes, 64); 2604 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2605 offset, 64); 2606 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2607 num_bytes, 64); 2608 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2609 ram_bytes, 64); 2610 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2611 compression, 8); 2612 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2613 encryption, 8); 2614 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2615 other_encoding, 16); 2616 2617 /* 2618 * this returns the number of bytes used by the item on disk, minus the 2619 * size of any extent headers. If a file is compressed on disk, this is 2620 * the compressed size 2621 */ 2622 static inline u32 btrfs_file_extent_inline_item_len( 2623 const struct extent_buffer *eb, 2624 int nr) 2625 { 2626 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2627 } 2628 2629 /* btrfs_qgroup_status_item */ 2630 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2631 generation, 64); 2632 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2633 version, 64); 2634 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2635 flags, 64); 2636 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2637 rescan, 64); 2638 2639 /* btrfs_qgroup_info_item */ 2640 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2641 generation, 64); 2642 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2643 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2644 rfer_cmpr, 64); 2645 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2646 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2647 excl_cmpr, 64); 2648 2649 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2650 struct btrfs_qgroup_info_item, generation, 64); 2651 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2652 rfer, 64); 2653 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2654 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2655 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2656 excl, 64); 2657 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2658 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2659 2660 /* btrfs_qgroup_limit_item */ 2661 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2662 flags, 64); 2663 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2664 max_rfer, 64); 2665 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2666 max_excl, 64); 2667 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2668 rsv_rfer, 64); 2669 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2670 rsv_excl, 64); 2671 2672 /* btrfs_dev_replace_item */ 2673 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2674 struct btrfs_dev_replace_item, src_devid, 64); 2675 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2676 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2677 64); 2678 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2679 replace_state, 64); 2680 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2681 time_started, 64); 2682 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2683 time_stopped, 64); 2684 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2685 num_write_errors, 64); 2686 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2687 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2688 64); 2689 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2690 cursor_left, 64); 2691 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2692 cursor_right, 64); 2693 2694 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2695 struct btrfs_dev_replace_item, src_devid, 64); 2696 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2697 struct btrfs_dev_replace_item, 2698 cont_reading_from_srcdev_mode, 64); 2699 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2700 struct btrfs_dev_replace_item, replace_state, 64); 2701 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2702 struct btrfs_dev_replace_item, time_started, 64); 2703 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2704 struct btrfs_dev_replace_item, time_stopped, 64); 2705 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2706 struct btrfs_dev_replace_item, num_write_errors, 64); 2707 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2708 struct btrfs_dev_replace_item, 2709 num_uncorrectable_read_errors, 64); 2710 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2711 struct btrfs_dev_replace_item, cursor_left, 64); 2712 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2713 struct btrfs_dev_replace_item, cursor_right, 64); 2714 2715 /* helper function to cast into the data area of the leaf. */ 2716 #define btrfs_item_ptr(leaf, slot, type) \ 2717 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2718 btrfs_item_offset(leaf, slot))) 2719 2720 #define btrfs_item_ptr_offset(leaf, slot) \ 2721 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2722 btrfs_item_offset(leaf, slot))) 2723 2724 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2725 { 2726 return crc32c(crc, address, length); 2727 } 2728 2729 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2730 { 2731 put_unaligned_le32(~crc, result); 2732 } 2733 2734 static inline u64 btrfs_name_hash(const char *name, int len) 2735 { 2736 return crc32c((u32)~1, name, len); 2737 } 2738 2739 /* 2740 * Figure the key offset of an extended inode ref 2741 */ 2742 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2743 int len) 2744 { 2745 return (u64) crc32c(parent_objectid, name, len); 2746 } 2747 2748 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2749 { 2750 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2751 } 2752 2753 /* extent-tree.c */ 2754 2755 enum btrfs_inline_ref_type { 2756 BTRFS_REF_TYPE_INVALID, 2757 BTRFS_REF_TYPE_BLOCK, 2758 BTRFS_REF_TYPE_DATA, 2759 BTRFS_REF_TYPE_ANY, 2760 }; 2761 2762 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2763 struct btrfs_extent_inline_ref *iref, 2764 enum btrfs_inline_ref_type is_data); 2765 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2766 2767 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, 2768 u64 offset) 2769 { 2770 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; 2771 2772 return csums + offset_in_sectors * fs_info->csum_size; 2773 } 2774 2775 /* 2776 * Take the number of bytes to be checksummed and figure out how many leaves 2777 * it would require to store the csums for that many bytes. 2778 */ 2779 static inline u64 btrfs_csum_bytes_to_leaves( 2780 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2781 { 2782 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2783 2784 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2785 } 2786 2787 /* 2788 * Use this if we would be adding new items, as we could split nodes as we cow 2789 * down the tree. 2790 */ 2791 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2792 unsigned num_items) 2793 { 2794 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2795 } 2796 2797 /* 2798 * Doing a truncate or a modification won't result in new nodes or leaves, just 2799 * what we need for COW. 2800 */ 2801 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2802 unsigned num_items) 2803 { 2804 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2805 } 2806 2807 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2808 u64 start, u64 num_bytes); 2809 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2810 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2811 unsigned long count); 2812 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2813 struct btrfs_delayed_ref_root *delayed_refs, 2814 struct btrfs_delayed_ref_head *head); 2815 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2816 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2817 struct btrfs_fs_info *fs_info, u64 bytenr, 2818 u64 offset, int metadata, u64 *refs, u64 *flags); 2819 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2820 int reserved); 2821 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2822 u64 bytenr, u64 num_bytes); 2823 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2824 int btrfs_cross_ref_exist(struct btrfs_root *root, 2825 u64 objectid, u64 offset, u64 bytenr, bool strict, 2826 struct btrfs_path *path); 2827 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2828 struct btrfs_root *root, 2829 u64 parent, u64 root_objectid, 2830 const struct btrfs_disk_key *key, 2831 int level, u64 hint, 2832 u64 empty_size, 2833 enum btrfs_lock_nesting nest); 2834 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2835 u64 root_id, 2836 struct extent_buffer *buf, 2837 u64 parent, int last_ref); 2838 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *root, u64 owner, 2840 u64 offset, u64 ram_bytes, 2841 struct btrfs_key *ins); 2842 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2843 u64 root_objectid, u64 owner, u64 offset, 2844 struct btrfs_key *ins); 2845 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2846 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2847 struct btrfs_key *ins, int is_data, int delalloc); 2848 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2849 struct extent_buffer *buf, int full_backref); 2850 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2851 struct extent_buffer *buf, int full_backref); 2852 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2853 struct extent_buffer *eb, u64 flags, int level); 2854 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2855 2856 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2857 u64 start, u64 len, int delalloc); 2858 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2859 u64 len); 2860 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2861 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2862 struct btrfs_ref *generic_ref); 2863 2864 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2865 2866 /* 2867 * Different levels for to flush space when doing space reservations. 2868 * 2869 * The higher the level, the more methods we try to reclaim space. 2870 */ 2871 enum btrfs_reserve_flush_enum { 2872 /* If we are in the transaction, we can't flush anything.*/ 2873 BTRFS_RESERVE_NO_FLUSH, 2874 2875 /* 2876 * Flush space by: 2877 * - Running delayed inode items 2878 * - Allocating a new chunk 2879 */ 2880 BTRFS_RESERVE_FLUSH_LIMIT, 2881 2882 /* 2883 * Flush space by: 2884 * - Running delayed inode items 2885 * - Running delayed refs 2886 * - Running delalloc and waiting for ordered extents 2887 * - Allocating a new chunk 2888 */ 2889 BTRFS_RESERVE_FLUSH_EVICT, 2890 2891 /* 2892 * Flush space by above mentioned methods and by: 2893 * - Running delayed iputs 2894 * - Committing transaction 2895 * 2896 * Can be interrupted by a fatal signal. 2897 */ 2898 BTRFS_RESERVE_FLUSH_DATA, 2899 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2900 BTRFS_RESERVE_FLUSH_ALL, 2901 2902 /* 2903 * Pretty much the same as FLUSH_ALL, but can also steal space from 2904 * global rsv. 2905 * 2906 * Can be interrupted by a fatal signal. 2907 */ 2908 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2909 }; 2910 2911 enum btrfs_flush_state { 2912 FLUSH_DELAYED_ITEMS_NR = 1, 2913 FLUSH_DELAYED_ITEMS = 2, 2914 FLUSH_DELAYED_REFS_NR = 3, 2915 FLUSH_DELAYED_REFS = 4, 2916 FLUSH_DELALLOC = 5, 2917 FLUSH_DELALLOC_WAIT = 6, 2918 FLUSH_DELALLOC_FULL = 7, 2919 ALLOC_CHUNK = 8, 2920 ALLOC_CHUNK_FORCE = 9, 2921 RUN_DELAYED_IPUTS = 10, 2922 COMMIT_TRANS = 11, 2923 }; 2924 2925 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2926 struct btrfs_block_rsv *rsv, 2927 int nitems, bool use_global_rsv); 2928 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2929 struct btrfs_block_rsv *rsv); 2930 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2931 2932 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2933 u64 disk_num_bytes, bool noflush); 2934 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2935 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2936 u64 start, u64 end); 2937 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2938 u64 num_bytes, u64 *actual_bytes); 2939 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2940 2941 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2942 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2943 struct btrfs_fs_info *fs_info); 2944 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2945 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2946 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2947 2948 /* ctree.c */ 2949 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2950 int *slot); 2951 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2952 int btrfs_previous_item(struct btrfs_root *root, 2953 struct btrfs_path *path, u64 min_objectid, 2954 int type); 2955 int btrfs_previous_extent_item(struct btrfs_root *root, 2956 struct btrfs_path *path, u64 min_objectid); 2957 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2958 struct btrfs_path *path, 2959 const struct btrfs_key *new_key); 2960 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2961 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2962 struct btrfs_key *key, int lowest_level, 2963 u64 min_trans); 2964 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2965 struct btrfs_path *path, 2966 u64 min_trans); 2967 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2968 int slot); 2969 2970 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2971 struct btrfs_root *root, struct extent_buffer *buf, 2972 struct extent_buffer *parent, int parent_slot, 2973 struct extent_buffer **cow_ret, 2974 enum btrfs_lock_nesting nest); 2975 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2976 struct btrfs_root *root, 2977 struct extent_buffer *buf, 2978 struct extent_buffer **cow_ret, u64 new_root_objectid); 2979 int btrfs_block_can_be_shared(struct btrfs_root *root, 2980 struct extent_buffer *buf); 2981 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2982 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2983 int btrfs_split_item(struct btrfs_trans_handle *trans, 2984 struct btrfs_root *root, 2985 struct btrfs_path *path, 2986 const struct btrfs_key *new_key, 2987 unsigned long split_offset); 2988 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2989 struct btrfs_root *root, 2990 struct btrfs_path *path, 2991 const struct btrfs_key *new_key); 2992 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2993 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2994 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2995 const struct btrfs_key *key, struct btrfs_path *p, 2996 int ins_len, int cow); 2997 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2998 struct btrfs_path *p, u64 time_seq); 2999 int btrfs_search_slot_for_read(struct btrfs_root *root, 3000 const struct btrfs_key *key, 3001 struct btrfs_path *p, int find_higher, 3002 int return_any); 3003 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3004 struct btrfs_root *root, struct extent_buffer *parent, 3005 int start_slot, u64 *last_ret, 3006 struct btrfs_key *progress); 3007 void btrfs_release_path(struct btrfs_path *p); 3008 struct btrfs_path *btrfs_alloc_path(void); 3009 void btrfs_free_path(struct btrfs_path *p); 3010 3011 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3012 struct btrfs_path *path, int slot, int nr); 3013 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3014 struct btrfs_root *root, 3015 struct btrfs_path *path) 3016 { 3017 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3018 } 3019 3020 /* 3021 * Describes a batch of items to insert in a btree. This is used by 3022 * btrfs_insert_empty_items(). 3023 */ 3024 struct btrfs_item_batch { 3025 /* 3026 * Pointer to an array containing the keys of the items to insert (in 3027 * sorted order). 3028 */ 3029 const struct btrfs_key *keys; 3030 /* Pointer to an array containing the data size for each item to insert. */ 3031 const u32 *data_sizes; 3032 /* 3033 * The sum of data sizes for all items. The caller can compute this while 3034 * setting up the data_sizes array, so it ends up being more efficient 3035 * than having btrfs_insert_empty_items() or setup_item_for_insert() 3036 * doing it, as it would avoid an extra loop over a potentially large 3037 * array, and in the case of setup_item_for_insert(), we would be doing 3038 * it while holding a write lock on a leaf and often on upper level nodes 3039 * too, unnecessarily increasing the size of a critical section. 3040 */ 3041 u32 total_data_size; 3042 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3043 int nr; 3044 }; 3045 3046 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3047 struct btrfs_path *path, 3048 const struct btrfs_key *key, 3049 u32 data_size); 3050 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3051 const struct btrfs_key *key, void *data, u32 data_size); 3052 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3053 struct btrfs_root *root, 3054 struct btrfs_path *path, 3055 const struct btrfs_item_batch *batch); 3056 3057 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3058 struct btrfs_root *root, 3059 struct btrfs_path *path, 3060 const struct btrfs_key *key, 3061 u32 data_size) 3062 { 3063 struct btrfs_item_batch batch; 3064 3065 batch.keys = key; 3066 batch.data_sizes = &data_size; 3067 batch.total_data_size = data_size; 3068 batch.nr = 1; 3069 3070 return btrfs_insert_empty_items(trans, root, path, &batch); 3071 } 3072 3073 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3074 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3075 u64 time_seq); 3076 3077 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3078 struct btrfs_path *path); 3079 3080 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3081 struct btrfs_path *path); 3082 3083 /* 3084 * Search in @root for a given @key, and store the slot found in @found_key. 3085 * 3086 * @root: The root node of the tree. 3087 * @key: The key we are looking for. 3088 * @found_key: Will hold the found item. 3089 * @path: Holds the current slot/leaf. 3090 * @iter_ret: Contains the value returned from btrfs_search_slot or 3091 * btrfs_get_next_valid_item, whichever was executed last. 3092 * 3093 * The @iter_ret is an output variable that will contain the return value of 3094 * btrfs_search_slot, if it encountered an error, or the value returned from 3095 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3096 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3097 * 3098 * It's recommended to use a separate variable for iter_ret and then use it to 3099 * set the function return value so there's no confusion of the 0/1/errno 3100 * values stemming from btrfs_search_slot. 3101 */ 3102 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3103 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3104 (iter_ret) >= 0 && \ 3105 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3106 (path)->slots[0]++ \ 3107 ) 3108 3109 static inline int btrfs_next_old_item(struct btrfs_root *root, 3110 struct btrfs_path *p, u64 time_seq) 3111 { 3112 ++p->slots[0]; 3113 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3114 return btrfs_next_old_leaf(root, p, time_seq); 3115 return 0; 3116 } 3117 3118 /* 3119 * Search the tree again to find a leaf with greater keys. 3120 * 3121 * Returns 0 if it found something or 1 if there are no greater leaves. 3122 * Returns < 0 on error. 3123 */ 3124 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3125 { 3126 return btrfs_next_old_leaf(root, path, 0); 3127 } 3128 3129 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3130 { 3131 return btrfs_next_old_item(root, p, 0); 3132 } 3133 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3134 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3135 int for_reloc); 3136 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3137 struct btrfs_root *root, 3138 struct extent_buffer *node, 3139 struct extent_buffer *parent); 3140 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3141 { 3142 /* 3143 * Do it this way so we only ever do one test_bit in the normal case. 3144 */ 3145 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3146 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3147 return 2; 3148 return 1; 3149 } 3150 return 0; 3151 } 3152 3153 /* 3154 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3155 * anything except sleeping. This function is used to check the status of 3156 * the fs. 3157 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3158 * since setting and checking for SB_RDONLY in the superblock's flags is not 3159 * atomic. 3160 */ 3161 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3162 { 3163 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3164 btrfs_fs_closing(fs_info); 3165 } 3166 3167 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3168 { 3169 sb->s_flags |= SB_RDONLY; 3170 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3171 } 3172 3173 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3174 { 3175 sb->s_flags &= ~SB_RDONLY; 3176 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3177 } 3178 3179 /* root-item.c */ 3180 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3181 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3182 int name_len); 3183 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3184 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3185 int name_len); 3186 int btrfs_del_root(struct btrfs_trans_handle *trans, 3187 const struct btrfs_key *key); 3188 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3189 const struct btrfs_key *key, 3190 struct btrfs_root_item *item); 3191 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3192 struct btrfs_root *root, 3193 struct btrfs_key *key, 3194 struct btrfs_root_item *item); 3195 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3196 struct btrfs_path *path, struct btrfs_root_item *root_item, 3197 struct btrfs_key *root_key); 3198 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3199 void btrfs_set_root_node(struct btrfs_root_item *item, 3200 struct extent_buffer *node); 3201 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3202 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3203 struct btrfs_root *root); 3204 3205 /* uuid-tree.c */ 3206 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3207 u64 subid); 3208 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3209 u64 subid); 3210 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3211 3212 /* dir-item.c */ 3213 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3214 const char *name, int name_len); 3215 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3216 int name_len, struct btrfs_inode *dir, 3217 struct btrfs_key *location, u8 type, u64 index); 3218 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3219 struct btrfs_root *root, 3220 struct btrfs_path *path, u64 dir, 3221 const char *name, int name_len, 3222 int mod); 3223 struct btrfs_dir_item * 3224 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *root, 3226 struct btrfs_path *path, u64 dir, 3227 u64 index, const char *name, int name_len, 3228 int mod); 3229 struct btrfs_dir_item * 3230 btrfs_search_dir_index_item(struct btrfs_root *root, 3231 struct btrfs_path *path, u64 dirid, 3232 const char *name, int name_len); 3233 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3234 struct btrfs_root *root, 3235 struct btrfs_path *path, 3236 struct btrfs_dir_item *di); 3237 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3238 struct btrfs_root *root, 3239 struct btrfs_path *path, u64 objectid, 3240 const char *name, u16 name_len, 3241 const void *data, u16 data_len); 3242 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3243 struct btrfs_root *root, 3244 struct btrfs_path *path, u64 dir, 3245 const char *name, u16 name_len, 3246 int mod); 3247 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3248 struct btrfs_path *path, 3249 const char *name, 3250 int name_len); 3251 3252 /* orphan.c */ 3253 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3254 struct btrfs_root *root, u64 offset); 3255 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3256 struct btrfs_root *root, u64 offset); 3257 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3258 3259 /* file-item.c */ 3260 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3261 struct btrfs_root *root, u64 bytenr, u64 len); 3262 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3263 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3264 struct btrfs_root *root, 3265 u64 objectid, u64 pos, 3266 u64 disk_offset, u64 disk_num_bytes, 3267 u64 num_bytes, u64 offset, u64 ram_bytes, 3268 u8 compression, u8 encryption, u16 other_encoding); 3269 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3270 struct btrfs_root *root, 3271 struct btrfs_path *path, u64 objectid, 3272 u64 bytenr, int mod); 3273 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3274 struct btrfs_root *root, 3275 struct btrfs_ordered_sum *sums); 3276 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3277 u64 offset, bool one_ordered); 3278 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3279 struct list_head *list, int search_commit); 3280 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3281 const struct btrfs_path *path, 3282 struct btrfs_file_extent_item *fi, 3283 const bool new_inline, 3284 struct extent_map *em); 3285 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3286 u64 len); 3287 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3288 u64 len); 3289 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3290 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3291 3292 /* inode.c */ 3293 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num); 3294 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 3295 int mirror_num, enum btrfs_compression_type compress_type); 3296 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3297 u32 pgoff, u8 *csum, const u8 * const csum_expected); 3298 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3299 u32 bio_offset, struct page *page, u32 pgoff); 3300 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3301 u32 bio_offset, struct page *page, 3302 u64 start, u64 end); 3303 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3304 u32 bio_offset, struct page *page, u32 pgoff); 3305 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3306 u64 start, u64 len); 3307 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3308 u64 *orig_start, u64 *orig_block_len, 3309 u64 *ram_bytes, bool strict); 3310 3311 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3312 struct btrfs_inode *inode); 3313 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3314 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3315 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3316 struct btrfs_inode *dir, struct btrfs_inode *inode, 3317 const char *name, int name_len); 3318 int btrfs_add_link(struct btrfs_trans_handle *trans, 3319 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3320 const char *name, int name_len, int add_backref, u64 index); 3321 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3322 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3323 int front); 3324 3325 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3326 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3327 bool in_reclaim_context); 3328 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3329 unsigned int extra_bits, 3330 struct extent_state **cached_state); 3331 struct btrfs_new_inode_args { 3332 /* Input */ 3333 struct inode *dir; 3334 struct dentry *dentry; 3335 struct inode *inode; 3336 bool orphan; 3337 bool subvol; 3338 3339 /* 3340 * Output from btrfs_new_inode_prepare(), input to 3341 * btrfs_create_new_inode(). 3342 */ 3343 struct posix_acl *default_acl; 3344 struct posix_acl *acl; 3345 }; 3346 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3347 unsigned int *trans_num_items); 3348 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3349 struct btrfs_new_inode_args *args); 3350 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3351 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3352 struct inode *dir); 3353 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3354 u32 bits); 3355 void btrfs_clear_delalloc_extent(struct inode *inode, 3356 struct extent_state *state, u32 bits); 3357 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3358 struct extent_state *other); 3359 void btrfs_split_delalloc_extent(struct inode *inode, 3360 struct extent_state *orig, u64 split); 3361 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3362 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3363 void btrfs_evict_inode(struct inode *inode); 3364 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3365 struct inode *btrfs_alloc_inode(struct super_block *sb); 3366 void btrfs_destroy_inode(struct inode *inode); 3367 void btrfs_free_inode(struct inode *inode); 3368 int btrfs_drop_inode(struct inode *inode); 3369 int __init btrfs_init_cachep(void); 3370 void __cold btrfs_destroy_cachep(void); 3371 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3372 struct btrfs_root *root, struct btrfs_path *path); 3373 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3374 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3375 struct page *page, size_t pg_offset, 3376 u64 start, u64 end); 3377 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3378 struct btrfs_root *root, struct btrfs_inode *inode); 3379 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3380 struct btrfs_root *root, struct btrfs_inode *inode); 3381 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3382 struct btrfs_inode *inode); 3383 int btrfs_orphan_cleanup(struct btrfs_root *root); 3384 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3385 void btrfs_add_delayed_iput(struct inode *inode); 3386 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3387 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3388 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3389 u64 start, u64 num_bytes, u64 min_size, 3390 loff_t actual_len, u64 *alloc_hint); 3391 int btrfs_prealloc_file_range_trans(struct inode *inode, 3392 struct btrfs_trans_handle *trans, int mode, 3393 u64 start, u64 num_bytes, u64 min_size, 3394 loff_t actual_len, u64 *alloc_hint); 3395 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3396 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3397 struct writeback_control *wbc); 3398 int btrfs_writepage_cow_fixup(struct page *page); 3399 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3400 struct page *page, u64 start, 3401 u64 end, bool uptodate); 3402 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 3403 int compress_type); 3404 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 3405 u64 file_offset, u64 disk_bytenr, 3406 u64 disk_io_size, 3407 struct page **pages); 3408 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3409 struct btrfs_ioctl_encoded_io_args *encoded); 3410 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3411 const struct btrfs_ioctl_encoded_io_args *encoded); 3412 3413 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3414 3415 extern const struct dentry_operations btrfs_dentry_operations; 3416 3417 /* Inode locking type flags, by default the exclusive lock is taken */ 3418 #define BTRFS_ILOCK_SHARED (1U << 0) 3419 #define BTRFS_ILOCK_TRY (1U << 1) 3420 #define BTRFS_ILOCK_MMAP (1U << 2) 3421 3422 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3423 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3424 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3425 const u64 add_bytes, 3426 const u64 del_bytes); 3427 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3428 3429 /* ioctl.c */ 3430 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3431 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3432 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3433 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3434 struct dentry *dentry, struct fileattr *fa); 3435 int btrfs_ioctl_get_supported_features(void __user *arg); 3436 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3437 int __pure btrfs_is_empty_uuid(u8 *uuid); 3438 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3439 struct btrfs_ioctl_defrag_range_args *range, 3440 u64 newer_than, unsigned long max_to_defrag); 3441 void btrfs_get_block_group_info(struct list_head *groups_list, 3442 struct btrfs_ioctl_space_info *space); 3443 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3444 struct btrfs_ioctl_balance_args *bargs); 3445 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3446 enum btrfs_exclusive_operation type); 3447 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3448 enum btrfs_exclusive_operation type); 3449 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3450 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3451 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3452 enum btrfs_exclusive_operation op); 3453 3454 3455 /* file.c */ 3456 int __init btrfs_auto_defrag_init(void); 3457 void __cold btrfs_auto_defrag_exit(void); 3458 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3459 struct btrfs_inode *inode, u32 extent_thresh); 3460 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3461 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3462 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3463 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3464 int skip_pinned); 3465 extern const struct file_operations btrfs_file_operations; 3466 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3467 struct btrfs_root *root, struct btrfs_inode *inode, 3468 struct btrfs_drop_extents_args *args); 3469 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3470 struct btrfs_path *path, const u64 start, 3471 const u64 end, 3472 struct btrfs_replace_extent_info *extent_info, 3473 struct btrfs_trans_handle **trans_out); 3474 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3475 struct btrfs_inode *inode, u64 start, u64 end); 3476 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3477 const struct btrfs_ioctl_encoded_io_args *encoded); 3478 int btrfs_release_file(struct inode *inode, struct file *file); 3479 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3480 size_t num_pages, loff_t pos, size_t write_bytes, 3481 struct extent_state **cached, bool noreserve); 3482 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3483 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3484 size_t *write_bytes); 3485 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3486 3487 /* tree-defrag.c */ 3488 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3489 struct btrfs_root *root); 3490 3491 /* super.c */ 3492 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3493 unsigned long new_flags); 3494 int btrfs_sync_fs(struct super_block *sb, int wait); 3495 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3496 u64 subvol_objectid); 3497 3498 static inline __printf(2, 3) __cold 3499 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3500 { 3501 } 3502 3503 #ifdef CONFIG_PRINTK_INDEX 3504 3505 #define btrfs_printk(fs_info, fmt, args...) \ 3506 do { \ 3507 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3508 _btrfs_printk(fs_info, fmt, ##args); \ 3509 } while (0) 3510 3511 __printf(2, 3) 3512 __cold 3513 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3514 3515 #elif defined(CONFIG_PRINTK) 3516 3517 #define btrfs_printk(fs_info, fmt, args...) \ 3518 _btrfs_printk(fs_info, fmt, ##args) 3519 3520 __printf(2, 3) 3521 __cold 3522 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3523 3524 #else 3525 3526 #define btrfs_printk(fs_info, fmt, args...) \ 3527 btrfs_no_printk(fs_info, fmt, ##args) 3528 #endif 3529 3530 #define btrfs_emerg(fs_info, fmt, args...) \ 3531 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3532 #define btrfs_alert(fs_info, fmt, args...) \ 3533 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3534 #define btrfs_crit(fs_info, fmt, args...) \ 3535 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3536 #define btrfs_err(fs_info, fmt, args...) \ 3537 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3538 #define btrfs_warn(fs_info, fmt, args...) \ 3539 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3540 #define btrfs_notice(fs_info, fmt, args...) \ 3541 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3542 #define btrfs_info(fs_info, fmt, args...) \ 3543 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3544 3545 /* 3546 * Wrappers that use printk_in_rcu 3547 */ 3548 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3549 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3550 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3551 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3552 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3553 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3554 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3555 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3556 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3557 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3558 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3559 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3560 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3561 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3562 3563 /* 3564 * Wrappers that use a ratelimited printk_in_rcu 3565 */ 3566 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3567 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3568 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3569 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3570 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3571 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3572 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3573 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3574 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3575 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3576 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3577 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3578 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3579 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3580 3581 /* 3582 * Wrappers that use a ratelimited printk 3583 */ 3584 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3585 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3586 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3587 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3588 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3589 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3590 #define btrfs_err_rl(fs_info, fmt, args...) \ 3591 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3592 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3593 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3594 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3595 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3596 #define btrfs_info_rl(fs_info, fmt, args...) \ 3597 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3598 3599 #if defined(CONFIG_DYNAMIC_DEBUG) 3600 #define btrfs_debug(fs_info, fmt, args...) \ 3601 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3602 fs_info, KERN_DEBUG fmt, ##args) 3603 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3604 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3605 fs_info, KERN_DEBUG fmt, ##args) 3606 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3607 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3608 fs_info, KERN_DEBUG fmt, ##args) 3609 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3610 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3611 fs_info, KERN_DEBUG fmt, ##args) 3612 #elif defined(DEBUG) 3613 #define btrfs_debug(fs_info, fmt, args...) \ 3614 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3615 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3616 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3617 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3618 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3619 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3620 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3621 #else 3622 #define btrfs_debug(fs_info, fmt, args...) \ 3623 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3624 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3625 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3626 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3627 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3628 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3629 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3630 #endif 3631 3632 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3633 do { \ 3634 rcu_read_lock(); \ 3635 btrfs_printk(fs_info, fmt, ##args); \ 3636 rcu_read_unlock(); \ 3637 } while (0) 3638 3639 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3640 do { \ 3641 rcu_read_lock(); \ 3642 btrfs_no_printk(fs_info, fmt, ##args); \ 3643 rcu_read_unlock(); \ 3644 } while (0) 3645 3646 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3647 do { \ 3648 static DEFINE_RATELIMIT_STATE(_rs, \ 3649 DEFAULT_RATELIMIT_INTERVAL, \ 3650 DEFAULT_RATELIMIT_BURST); \ 3651 if (__ratelimit(&_rs)) \ 3652 btrfs_printk(fs_info, fmt, ##args); \ 3653 } while (0) 3654 3655 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3656 do { \ 3657 rcu_read_lock(); \ 3658 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3659 rcu_read_unlock(); \ 3660 } while (0) 3661 3662 #ifdef CONFIG_BTRFS_ASSERT 3663 __cold __noreturn 3664 static inline void assertfail(const char *expr, const char *file, int line) 3665 { 3666 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3667 BUG(); 3668 } 3669 3670 #define ASSERT(expr) \ 3671 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3672 3673 #else 3674 static inline void assertfail(const char *expr, const char* file, int line) { } 3675 #define ASSERT(expr) (void)(expr) 3676 #endif 3677 3678 #if BITS_PER_LONG == 32 3679 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3680 /* 3681 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3682 * addresses of extents. 3683 * 3684 * For 4K page size it's about 10T, for 64K it's 160T. 3685 */ 3686 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3687 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3688 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3689 #endif 3690 3691 /* 3692 * Get the correct offset inside the page of extent buffer. 3693 * 3694 * @eb: target extent buffer 3695 * @start: offset inside the extent buffer 3696 * 3697 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3698 */ 3699 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3700 unsigned long offset) 3701 { 3702 /* 3703 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3704 * to PAGE_SIZE, thus adding it won't cause any difference. 3705 * 3706 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3707 * to the eb, thus we have to take the eb->start into consideration. 3708 */ 3709 return offset_in_page(offset + eb->start); 3710 } 3711 3712 static inline unsigned long get_eb_page_index(unsigned long offset) 3713 { 3714 /* 3715 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3716 * 3717 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3718 * and have ensured that all tree blocks are contained in one page, 3719 * thus we always get index == 0. 3720 */ 3721 return offset >> PAGE_SHIFT; 3722 } 3723 3724 /* 3725 * Use that for functions that are conditionally exported for sanity tests but 3726 * otherwise static 3727 */ 3728 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3729 #define EXPORT_FOR_TESTS static 3730 #else 3731 #define EXPORT_FOR_TESTS 3732 #endif 3733 3734 __cold 3735 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3736 { 3737 btrfs_err(fs_info, 3738 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3739 } 3740 3741 __printf(5, 6) 3742 __cold 3743 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3744 unsigned int line, int errno, const char *fmt, ...); 3745 3746 const char * __attribute_const__ btrfs_decode_error(int errno); 3747 3748 __cold 3749 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3750 const char *function, 3751 unsigned int line, int errno); 3752 3753 /* 3754 * Call btrfs_abort_transaction as early as possible when an error condition is 3755 * detected, that way the exact line number is reported. 3756 */ 3757 #define btrfs_abort_transaction(trans, errno) \ 3758 do { \ 3759 /* Report first abort since mount */ \ 3760 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3761 &((trans)->fs_info->fs_state))) { \ 3762 if ((errno) != -EIO && (errno) != -EROFS) { \ 3763 WARN(1, KERN_DEBUG \ 3764 "BTRFS: Transaction aborted (error %d)\n", \ 3765 (errno)); \ 3766 } else { \ 3767 btrfs_debug((trans)->fs_info, \ 3768 "Transaction aborted (error %d)", \ 3769 (errno)); \ 3770 } \ 3771 } \ 3772 __btrfs_abort_transaction((trans), __func__, \ 3773 __LINE__, (errno)); \ 3774 } while (0) 3775 3776 #ifdef CONFIG_PRINTK_INDEX 3777 3778 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3779 do { \ 3780 printk_index_subsys_emit( \ 3781 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3782 KERN_CRIT, fmt); \ 3783 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3784 (errno), fmt, ##args); \ 3785 } while (0) 3786 3787 #else 3788 3789 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3790 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3791 (errno), fmt, ##args) 3792 3793 #endif 3794 3795 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3796 &(fs_info)->fs_state))) 3797 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3798 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3799 &(fs_info)->fs_state))) 3800 3801 __printf(5, 6) 3802 __cold 3803 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3804 unsigned int line, int errno, const char *fmt, ...); 3805 /* 3806 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3807 * will panic(). Otherwise we BUG() here. 3808 */ 3809 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3810 do { \ 3811 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3812 BUG(); \ 3813 } while (0) 3814 3815 3816 /* compatibility and incompatibility defines */ 3817 3818 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3819 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3820 #opt) 3821 3822 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3823 u64 flag, const char* name) 3824 { 3825 struct btrfs_super_block *disk_super; 3826 u64 features; 3827 3828 disk_super = fs_info->super_copy; 3829 features = btrfs_super_incompat_flags(disk_super); 3830 if (!(features & flag)) { 3831 spin_lock(&fs_info->super_lock); 3832 features = btrfs_super_incompat_flags(disk_super); 3833 if (!(features & flag)) { 3834 features |= flag; 3835 btrfs_set_super_incompat_flags(disk_super, features); 3836 btrfs_info(fs_info, 3837 "setting incompat feature flag for %s (0x%llx)", 3838 name, flag); 3839 } 3840 spin_unlock(&fs_info->super_lock); 3841 } 3842 } 3843 3844 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3845 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3846 #opt) 3847 3848 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3849 u64 flag, const char* name) 3850 { 3851 struct btrfs_super_block *disk_super; 3852 u64 features; 3853 3854 disk_super = fs_info->super_copy; 3855 features = btrfs_super_incompat_flags(disk_super); 3856 if (features & flag) { 3857 spin_lock(&fs_info->super_lock); 3858 features = btrfs_super_incompat_flags(disk_super); 3859 if (features & flag) { 3860 features &= ~flag; 3861 btrfs_set_super_incompat_flags(disk_super, features); 3862 btrfs_info(fs_info, 3863 "clearing incompat feature flag for %s (0x%llx)", 3864 name, flag); 3865 } 3866 spin_unlock(&fs_info->super_lock); 3867 } 3868 } 3869 3870 #define btrfs_fs_incompat(fs_info, opt) \ 3871 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3872 3873 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3874 { 3875 struct btrfs_super_block *disk_super; 3876 disk_super = fs_info->super_copy; 3877 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3878 } 3879 3880 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3881 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3882 #opt) 3883 3884 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3885 u64 flag, const char *name) 3886 { 3887 struct btrfs_super_block *disk_super; 3888 u64 features; 3889 3890 disk_super = fs_info->super_copy; 3891 features = btrfs_super_compat_ro_flags(disk_super); 3892 if (!(features & flag)) { 3893 spin_lock(&fs_info->super_lock); 3894 features = btrfs_super_compat_ro_flags(disk_super); 3895 if (!(features & flag)) { 3896 features |= flag; 3897 btrfs_set_super_compat_ro_flags(disk_super, features); 3898 btrfs_info(fs_info, 3899 "setting compat-ro feature flag for %s (0x%llx)", 3900 name, flag); 3901 } 3902 spin_unlock(&fs_info->super_lock); 3903 } 3904 } 3905 3906 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3907 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3908 #opt) 3909 3910 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3911 u64 flag, const char *name) 3912 { 3913 struct btrfs_super_block *disk_super; 3914 u64 features; 3915 3916 disk_super = fs_info->super_copy; 3917 features = btrfs_super_compat_ro_flags(disk_super); 3918 if (features & flag) { 3919 spin_lock(&fs_info->super_lock); 3920 features = btrfs_super_compat_ro_flags(disk_super); 3921 if (features & flag) { 3922 features &= ~flag; 3923 btrfs_set_super_compat_ro_flags(disk_super, features); 3924 btrfs_info(fs_info, 3925 "clearing compat-ro feature flag for %s (0x%llx)", 3926 name, flag); 3927 } 3928 spin_unlock(&fs_info->super_lock); 3929 } 3930 } 3931 3932 #define btrfs_fs_compat_ro(fs_info, opt) \ 3933 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3934 3935 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3936 { 3937 struct btrfs_super_block *disk_super; 3938 disk_super = fs_info->super_copy; 3939 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3940 } 3941 3942 /* acl.c */ 3943 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3944 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3945 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3946 struct posix_acl *acl, int type); 3947 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3948 struct posix_acl *acl, int type); 3949 #else 3950 #define btrfs_get_acl NULL 3951 #define btrfs_set_acl NULL 3952 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3953 struct inode *inode, struct posix_acl *acl, 3954 int type) 3955 { 3956 return -EOPNOTSUPP; 3957 } 3958 #endif 3959 3960 /* relocation.c */ 3961 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3962 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3963 struct btrfs_root *root); 3964 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3965 struct btrfs_root *root); 3966 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3967 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3968 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3969 struct btrfs_root *root, struct extent_buffer *buf, 3970 struct extent_buffer *cow); 3971 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3972 u64 *bytes_to_reserve); 3973 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3974 struct btrfs_pending_snapshot *pending); 3975 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3976 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3977 u64 bytenr); 3978 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3979 3980 /* scrub.c */ 3981 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3982 u64 end, struct btrfs_scrub_progress *progress, 3983 int readonly, int is_dev_replace); 3984 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3985 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3986 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3987 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3988 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3989 struct btrfs_scrub_progress *progress); 3990 static inline void btrfs_init_full_stripe_locks_tree( 3991 struct btrfs_full_stripe_locks_tree *locks_root) 3992 { 3993 locks_root->root = RB_ROOT; 3994 mutex_init(&locks_root->lock); 3995 } 3996 3997 /* dev-replace.c */ 3998 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3999 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 4000 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 4001 4002 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 4003 { 4004 btrfs_bio_counter_sub(fs_info, 1); 4005 } 4006 4007 static inline int is_fstree(u64 rootid) 4008 { 4009 if (rootid == BTRFS_FS_TREE_OBJECTID || 4010 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 4011 !btrfs_qgroup_level(rootid))) 4012 return 1; 4013 return 0; 4014 } 4015 4016 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4017 { 4018 return signal_pending(current); 4019 } 4020 4021 /* verity.c */ 4022 #ifdef CONFIG_FS_VERITY 4023 4024 extern const struct fsverity_operations btrfs_verityops; 4025 int btrfs_drop_verity_items(struct btrfs_inode *inode); 4026 4027 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 4028 encryption, 8); 4029 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 4030 size, 64); 4031 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 4032 struct btrfs_verity_descriptor_item, encryption, 8); 4033 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 4034 struct btrfs_verity_descriptor_item, size, 64); 4035 4036 #else 4037 4038 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 4039 { 4040 return 0; 4041 } 4042 4043 #endif 4044 4045 /* Sanity test specific functions */ 4046 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4047 void btrfs_test_destroy_inode(struct inode *inode); 4048 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4049 { 4050 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4051 } 4052 #else 4053 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4054 { 4055 return 0; 4056 } 4057 #endif 4058 4059 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4060 { 4061 return fs_info->zone_size > 0; 4062 } 4063 4064 /* 4065 * Count how many fs_info->max_extent_size cover the @size 4066 */ 4067 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size) 4068 { 4069 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4070 if (!fs_info) 4071 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 4072 #endif 4073 4074 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); 4075 } 4076 4077 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4078 { 4079 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4080 } 4081 4082 /* 4083 * We use page status Private2 to indicate there is an ordered extent with 4084 * unfinished IO. 4085 * 4086 * Rename the Private2 accessors to Ordered, to improve readability. 4087 */ 4088 #define PageOrdered(page) PagePrivate2(page) 4089 #define SetPageOrdered(page) SetPagePrivate2(page) 4090 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4091 #define folio_test_ordered(folio) folio_test_private_2(folio) 4092 #define folio_set_ordered(folio) folio_set_private_2(folio) 4093 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4094 4095 #endif 4096