xref: /openbmc/linux/fs/btrfs/ctree.h (revision 2a9eb57e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
111 {
112 	BUG_ON(num_stripes == 0);
113 	return sizeof(struct btrfs_chunk) +
114 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
115 }
116 
117 /*
118  * Runtime (in-memory) states of filesystem
119  */
120 enum {
121 	/* Global indicator of serious filesystem errors */
122 	BTRFS_FS_STATE_ERROR,
123 	/*
124 	 * Filesystem is being remounted, allow to skip some operations, like
125 	 * defrag
126 	 */
127 	BTRFS_FS_STATE_REMOUNTING,
128 	/* Filesystem in RO mode */
129 	BTRFS_FS_STATE_RO,
130 	/* Track if a transaction abort has been reported on this filesystem */
131 	BTRFS_FS_STATE_TRANS_ABORTED,
132 	/*
133 	 * Bio operations should be blocked on this filesystem because a source
134 	 * or target device is being destroyed as part of a device replace
135 	 */
136 	BTRFS_FS_STATE_DEV_REPLACING,
137 	/* The btrfs_fs_info created for self-tests */
138 	BTRFS_FS_STATE_DUMMY_FS_INFO,
139 
140 	BTRFS_FS_STATE_NO_CSUMS,
141 
142 	/* Indicates there was an error cleaning up a log tree. */
143 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
144 
145 	BTRFS_FS_STATE_COUNT
146 };
147 
148 #define BTRFS_BACKREF_REV_MAX		256
149 #define BTRFS_BACKREF_REV_SHIFT		56
150 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
151 					 BTRFS_BACKREF_REV_SHIFT)
152 
153 #define BTRFS_OLD_BACKREF_REV		0
154 #define BTRFS_MIXED_BACKREF_REV		1
155 
156 /*
157  * every tree block (leaf or node) starts with this header.
158  */
159 struct btrfs_header {
160 	/* these first four must match the super block */
161 	u8 csum[BTRFS_CSUM_SIZE];
162 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
163 	__le64 bytenr; /* which block this node is supposed to live in */
164 	__le64 flags;
165 
166 	/* allowed to be different from the super from here on down */
167 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
168 	__le64 generation;
169 	__le64 owner;
170 	__le32 nritems;
171 	u8 level;
172 } __attribute__ ((__packed__));
173 
174 /*
175  * this is a very generous portion of the super block, giving us
176  * room to translate 14 chunks with 3 stripes each.
177  */
178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
179 
180 /*
181  * just in case we somehow lose the roots and are not able to mount,
182  * we store an array of the roots from previous transactions
183  * in the super.
184  */
185 #define BTRFS_NUM_BACKUP_ROOTS 4
186 struct btrfs_root_backup {
187 	__le64 tree_root;
188 	__le64 tree_root_gen;
189 
190 	__le64 chunk_root;
191 	__le64 chunk_root_gen;
192 
193 	__le64 extent_root;
194 	__le64 extent_root_gen;
195 
196 	__le64 fs_root;
197 	__le64 fs_root_gen;
198 
199 	__le64 dev_root;
200 	__le64 dev_root_gen;
201 
202 	__le64 csum_root;
203 	__le64 csum_root_gen;
204 
205 	__le64 total_bytes;
206 	__le64 bytes_used;
207 	__le64 num_devices;
208 	/* future */
209 	__le64 unused_64[4];
210 
211 	u8 tree_root_level;
212 	u8 chunk_root_level;
213 	u8 extent_root_level;
214 	u8 fs_root_level;
215 	u8 dev_root_level;
216 	u8 csum_root_level;
217 	/* future and to align */
218 	u8 unused_8[10];
219 } __attribute__ ((__packed__));
220 
221 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
222 #define BTRFS_SUPER_INFO_SIZE			4096
223 
224 /*
225  * The reserved space at the beginning of each device.
226  * It covers the primary super block and leaves space for potential use by other
227  * tools like bootloaders or to lower potential damage of accidental overwrite.
228  */
229 #define BTRFS_DEVICE_RANGE_RESERVED			(SZ_1M)
230 
231 /*
232  * the super block basically lists the main trees of the FS
233  * it currently lacks any block count etc etc
234  */
235 struct btrfs_super_block {
236 	/* the first 4 fields must match struct btrfs_header */
237 	u8 csum[BTRFS_CSUM_SIZE];
238 	/* FS specific UUID, visible to user */
239 	u8 fsid[BTRFS_FSID_SIZE];
240 	__le64 bytenr; /* this block number */
241 	__le64 flags;
242 
243 	/* allowed to be different from the btrfs_header from here own down */
244 	__le64 magic;
245 	__le64 generation;
246 	__le64 root;
247 	__le64 chunk_root;
248 	__le64 log_root;
249 
250 	/*
251 	 * This member has never been utilized since the very beginning, thus
252 	 * it's always 0 regardless of kernel version.  We always use
253 	 * generation + 1 to read log tree root.  So here we mark it deprecated.
254 	 */
255 	__le64 __unused_log_root_transid;
256 	__le64 total_bytes;
257 	__le64 bytes_used;
258 	__le64 root_dir_objectid;
259 	__le64 num_devices;
260 	__le32 sectorsize;
261 	__le32 nodesize;
262 	__le32 __unused_leafsize;
263 	__le32 stripesize;
264 	__le32 sys_chunk_array_size;
265 	__le64 chunk_root_generation;
266 	__le64 compat_flags;
267 	__le64 compat_ro_flags;
268 	__le64 incompat_flags;
269 	__le16 csum_type;
270 	u8 root_level;
271 	u8 chunk_root_level;
272 	u8 log_root_level;
273 	struct btrfs_dev_item dev_item;
274 
275 	char label[BTRFS_LABEL_SIZE];
276 
277 	__le64 cache_generation;
278 	__le64 uuid_tree_generation;
279 
280 	/* the UUID written into btree blocks */
281 	u8 metadata_uuid[BTRFS_FSID_SIZE];
282 
283 	/* Extent tree v2 */
284 	__le64 block_group_root;
285 	__le64 block_group_root_generation;
286 	u8 block_group_root_level;
287 
288 	/* future expansion */
289 	u8 reserved8[7];
290 	__le64 reserved[25];
291 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
292 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
293 
294 	/* Padded to 4096 bytes */
295 	u8 padding[565];
296 } __attribute__ ((__packed__));
297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
298 
299 /*
300  * Compat flags that we support.  If any incompat flags are set other than the
301  * ones specified below then we will fail to mount
302  */
303 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
304 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
306 
307 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
308 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
309 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
310 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
311 
312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
314 
315 #ifdef CONFIG_BTRFS_DEBUG
316 /*
317  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
318  */
319 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
320 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
321 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
322 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
323 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
324 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
325 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
326 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
327 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
328 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
329 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
330 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
331 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
332 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
333 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
334 #else
335 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
336 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
337 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
338 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
339 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
340 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
341 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
342 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
343 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
344 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
345 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
346 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
347 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
348 	 BTRFS_FEATURE_INCOMPAT_ZONED)
349 #endif
350 
351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
352 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
354 
355 /*
356  * A leaf is full of items. offset and size tell us where to find
357  * the item in the leaf (relative to the start of the data area)
358  */
359 struct btrfs_item {
360 	struct btrfs_disk_key key;
361 	__le32 offset;
362 	__le32 size;
363 } __attribute__ ((__packed__));
364 
365 /*
366  * leaves have an item area and a data area:
367  * [item0, item1....itemN] [free space] [dataN...data1, data0]
368  *
369  * The data is separate from the items to get the keys closer together
370  * during searches.
371  */
372 struct btrfs_leaf {
373 	struct btrfs_header header;
374 	struct btrfs_item items[];
375 } __attribute__ ((__packed__));
376 
377 /*
378  * all non-leaf blocks are nodes, they hold only keys and pointers to
379  * other blocks
380  */
381 struct btrfs_key_ptr {
382 	struct btrfs_disk_key key;
383 	__le64 blockptr;
384 	__le64 generation;
385 } __attribute__ ((__packed__));
386 
387 struct btrfs_node {
388 	struct btrfs_header header;
389 	struct btrfs_key_ptr ptrs[];
390 } __attribute__ ((__packed__));
391 
392 /* Read ahead values for struct btrfs_path.reada */
393 enum {
394 	READA_NONE,
395 	READA_BACK,
396 	READA_FORWARD,
397 	/*
398 	 * Similar to READA_FORWARD but unlike it:
399 	 *
400 	 * 1) It will trigger readahead even for leaves that are not close to
401 	 *    each other on disk;
402 	 * 2) It also triggers readahead for nodes;
403 	 * 3) During a search, even when a node or leaf is already in memory, it
404 	 *    will still trigger readahead for other nodes and leaves that follow
405 	 *    it.
406 	 *
407 	 * This is meant to be used only when we know we are iterating over the
408 	 * entire tree or a very large part of it.
409 	 */
410 	READA_FORWARD_ALWAYS,
411 };
412 
413 /*
414  * btrfs_paths remember the path taken from the root down to the leaf.
415  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
416  * to any other levels that are present.
417  *
418  * The slots array records the index of the item or block pointer
419  * used while walking the tree.
420  */
421 struct btrfs_path {
422 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
423 	int slots[BTRFS_MAX_LEVEL];
424 	/* if there is real range locking, this locks field will change */
425 	u8 locks[BTRFS_MAX_LEVEL];
426 	u8 reada;
427 	/* keep some upper locks as we walk down */
428 	u8 lowest_level;
429 
430 	/*
431 	 * set by btrfs_split_item, tells search_slot to keep all locks
432 	 * and to force calls to keep space in the nodes
433 	 */
434 	unsigned int search_for_split:1;
435 	unsigned int keep_locks:1;
436 	unsigned int skip_locking:1;
437 	unsigned int search_commit_root:1;
438 	unsigned int need_commit_sem:1;
439 	unsigned int skip_release_on_error:1;
440 	/*
441 	 * Indicate that new item (btrfs_search_slot) is extending already
442 	 * existing item and ins_len contains only the data size and not item
443 	 * header (ie. sizeof(struct btrfs_item) is not included).
444 	 */
445 	unsigned int search_for_extension:1;
446 };
447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
448 					sizeof(struct btrfs_item))
449 struct btrfs_dev_replace {
450 	u64 replace_state;	/* see #define above */
451 	time64_t time_started;	/* seconds since 1-Jan-1970 */
452 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
453 	atomic64_t num_write_errors;
454 	atomic64_t num_uncorrectable_read_errors;
455 
456 	u64 cursor_left;
457 	u64 committed_cursor_left;
458 	u64 cursor_left_last_write_of_item;
459 	u64 cursor_right;
460 
461 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
462 
463 	int is_valid;
464 	int item_needs_writeback;
465 	struct btrfs_device *srcdev;
466 	struct btrfs_device *tgtdev;
467 
468 	struct mutex lock_finishing_cancel_unmount;
469 	struct rw_semaphore rwsem;
470 
471 	struct btrfs_scrub_progress scrub_progress;
472 
473 	struct percpu_counter bio_counter;
474 	wait_queue_head_t replace_wait;
475 };
476 
477 /*
478  * free clusters are used to claim free space in relatively large chunks,
479  * allowing us to do less seeky writes. They are used for all metadata
480  * allocations. In ssd_spread mode they are also used for data allocations.
481  */
482 struct btrfs_free_cluster {
483 	spinlock_t lock;
484 	spinlock_t refill_lock;
485 	struct rb_root root;
486 
487 	/* largest extent in this cluster */
488 	u64 max_size;
489 
490 	/* first extent starting offset */
491 	u64 window_start;
492 
493 	/* We did a full search and couldn't create a cluster */
494 	bool fragmented;
495 
496 	struct btrfs_block_group *block_group;
497 	/*
498 	 * when a cluster is allocated from a block group, we put the
499 	 * cluster onto a list in the block group so that it can
500 	 * be freed before the block group is freed.
501 	 */
502 	struct list_head block_group_list;
503 };
504 
505 enum btrfs_caching_type {
506 	BTRFS_CACHE_NO,
507 	BTRFS_CACHE_STARTED,
508 	BTRFS_CACHE_FAST,
509 	BTRFS_CACHE_FINISHED,
510 	BTRFS_CACHE_ERROR,
511 };
512 
513 /*
514  * Tree to record all locked full stripes of a RAID5/6 block group
515  */
516 struct btrfs_full_stripe_locks_tree {
517 	struct rb_root root;
518 	struct mutex lock;
519 };
520 
521 /* Discard control. */
522 /*
523  * Async discard uses multiple lists to differentiate the discard filter
524  * parameters.  Index 0 is for completely free block groups where we need to
525  * ensure the entire block group is trimmed without being lossy.  Indices
526  * afterwards represent monotonically decreasing discard filter sizes to
527  * prioritize what should be discarded next.
528  */
529 #define BTRFS_NR_DISCARD_LISTS		3
530 #define BTRFS_DISCARD_INDEX_UNUSED	0
531 #define BTRFS_DISCARD_INDEX_START	1
532 
533 struct btrfs_discard_ctl {
534 	struct workqueue_struct *discard_workers;
535 	struct delayed_work work;
536 	spinlock_t lock;
537 	struct btrfs_block_group *block_group;
538 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
539 	u64 prev_discard;
540 	u64 prev_discard_time;
541 	atomic_t discardable_extents;
542 	atomic64_t discardable_bytes;
543 	u64 max_discard_size;
544 	u64 delay_ms;
545 	u32 iops_limit;
546 	u32 kbps_limit;
547 	u64 discard_extent_bytes;
548 	u64 discard_bitmap_bytes;
549 	atomic64_t discard_bytes_saved;
550 };
551 
552 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
553 
554 /* fs_info */
555 struct reloc_control;
556 struct btrfs_device;
557 struct btrfs_fs_devices;
558 struct btrfs_balance_control;
559 struct btrfs_delayed_root;
560 
561 /*
562  * Block group or device which contains an active swapfile. Used for preventing
563  * unsafe operations while a swapfile is active.
564  *
565  * These are sorted on (ptr, inode) (note that a block group or device can
566  * contain more than one swapfile). We compare the pointer values because we
567  * don't actually care what the object is, we just need a quick check whether
568  * the object exists in the rbtree.
569  */
570 struct btrfs_swapfile_pin {
571 	struct rb_node node;
572 	void *ptr;
573 	struct inode *inode;
574 	/*
575 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
576 	 * points to a struct btrfs_device.
577 	 */
578 	bool is_block_group;
579 	/*
580 	 * Only used when 'is_block_group' is true and it is the number of
581 	 * extents used by a swapfile for this block group ('ptr' field).
582 	 */
583 	int bg_extent_count;
584 };
585 
586 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
587 
588 enum {
589 	BTRFS_FS_CLOSING_START,
590 	BTRFS_FS_CLOSING_DONE,
591 	BTRFS_FS_LOG_RECOVERING,
592 	BTRFS_FS_OPEN,
593 	BTRFS_FS_QUOTA_ENABLED,
594 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
595 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
596 	BTRFS_FS_BTREE_ERR,
597 	BTRFS_FS_LOG1_ERR,
598 	BTRFS_FS_LOG2_ERR,
599 	BTRFS_FS_QUOTA_OVERRIDE,
600 	/* Used to record internally whether fs has been frozen */
601 	BTRFS_FS_FROZEN,
602 	/*
603 	 * Indicate that balance has been set up from the ioctl and is in the
604 	 * main phase. The fs_info::balance_ctl is initialized.
605 	 */
606 	BTRFS_FS_BALANCE_RUNNING,
607 
608 	/*
609 	 * Indicate that relocation of a chunk has started, it's set per chunk
610 	 * and is toggled between chunks.
611 	 */
612 	BTRFS_FS_RELOC_RUNNING,
613 
614 	/* Indicate that the cleaner thread is awake and doing something. */
615 	BTRFS_FS_CLEANER_RUNNING,
616 
617 	/*
618 	 * The checksumming has an optimized version and is considered fast,
619 	 * so we don't need to offload checksums to workqueues.
620 	 */
621 	BTRFS_FS_CSUM_IMPL_FAST,
622 
623 	/* Indicate that the discard workqueue can service discards. */
624 	BTRFS_FS_DISCARD_RUNNING,
625 
626 	/* Indicate that we need to cleanup space cache v1 */
627 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
628 
629 	/* Indicate that we can't trust the free space tree for caching yet */
630 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
631 
632 	/* Indicate whether there are any tree modification log users */
633 	BTRFS_FS_TREE_MOD_LOG_USERS,
634 
635 	/* Indicate that we want the transaction kthread to commit right now. */
636 	BTRFS_FS_COMMIT_TRANS,
637 
638 	/* Indicate we have half completed snapshot deletions pending. */
639 	BTRFS_FS_UNFINISHED_DROPS,
640 
641 	/* Indicate we have to finish a zone to do next allocation. */
642 	BTRFS_FS_NEED_ZONE_FINISH,
643 
644 #if BITS_PER_LONG == 32
645 	/* Indicate if we have error/warn message printed on 32bit systems */
646 	BTRFS_FS_32BIT_ERROR,
647 	BTRFS_FS_32BIT_WARN,
648 #endif
649 };
650 
651 /*
652  * Exclusive operations (device replace, resize, device add/remove, balance)
653  */
654 enum btrfs_exclusive_operation {
655 	BTRFS_EXCLOP_NONE,
656 	BTRFS_EXCLOP_BALANCE_PAUSED,
657 	BTRFS_EXCLOP_BALANCE,
658 	BTRFS_EXCLOP_DEV_ADD,
659 	BTRFS_EXCLOP_DEV_REMOVE,
660 	BTRFS_EXCLOP_DEV_REPLACE,
661 	BTRFS_EXCLOP_RESIZE,
662 	BTRFS_EXCLOP_SWAP_ACTIVATE,
663 };
664 
665 /* Store data about transaction commits, exported via sysfs. */
666 struct btrfs_commit_stats {
667 	/* Total number of commits */
668 	u64 commit_count;
669 	/* The maximum commit duration so far in ns */
670 	u64 max_commit_dur;
671 	/* The last commit duration in ns */
672 	u64 last_commit_dur;
673 	/* The total commit duration in ns */
674 	u64 total_commit_dur;
675 };
676 
677 struct btrfs_fs_info {
678 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
679 	unsigned long flags;
680 	struct btrfs_root *tree_root;
681 	struct btrfs_root *chunk_root;
682 	struct btrfs_root *dev_root;
683 	struct btrfs_root *fs_root;
684 	struct btrfs_root *quota_root;
685 	struct btrfs_root *uuid_root;
686 	struct btrfs_root *data_reloc_root;
687 	struct btrfs_root *block_group_root;
688 
689 	/* the log root tree is a directory of all the other log roots */
690 	struct btrfs_root *log_root_tree;
691 
692 	/* The tree that holds the global roots (csum, extent, etc) */
693 	rwlock_t global_root_lock;
694 	struct rb_root global_root_tree;
695 
696 	spinlock_t fs_roots_radix_lock;
697 	struct radix_tree_root fs_roots_radix;
698 
699 	/* block group cache stuff */
700 	rwlock_t block_group_cache_lock;
701 	struct rb_root_cached block_group_cache_tree;
702 
703 	/* keep track of unallocated space */
704 	atomic64_t free_chunk_space;
705 
706 	/* Track ranges which are used by log trees blocks/logged data extents */
707 	struct extent_io_tree excluded_extents;
708 
709 	/* logical->physical extent mapping */
710 	struct extent_map_tree mapping_tree;
711 
712 	/*
713 	 * block reservation for extent, checksum, root tree and
714 	 * delayed dir index item
715 	 */
716 	struct btrfs_block_rsv global_block_rsv;
717 	/* block reservation for metadata operations */
718 	struct btrfs_block_rsv trans_block_rsv;
719 	/* block reservation for chunk tree */
720 	struct btrfs_block_rsv chunk_block_rsv;
721 	/* block reservation for delayed operations */
722 	struct btrfs_block_rsv delayed_block_rsv;
723 	/* block reservation for delayed refs */
724 	struct btrfs_block_rsv delayed_refs_rsv;
725 
726 	struct btrfs_block_rsv empty_block_rsv;
727 
728 	u64 generation;
729 	u64 last_trans_committed;
730 	/*
731 	 * Generation of the last transaction used for block group relocation
732 	 * since the filesystem was last mounted (or 0 if none happened yet).
733 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
734 	 */
735 	u64 last_reloc_trans;
736 	u64 avg_delayed_ref_runtime;
737 
738 	/*
739 	 * this is updated to the current trans every time a full commit
740 	 * is required instead of the faster short fsync log commits
741 	 */
742 	u64 last_trans_log_full_commit;
743 	unsigned long mount_opt;
744 	/*
745 	 * Track requests for actions that need to be done during transaction
746 	 * commit (like for some mount options).
747 	 */
748 	unsigned long pending_changes;
749 	unsigned long compress_type:4;
750 	unsigned int compress_level;
751 	u32 commit_interval;
752 	/*
753 	 * It is a suggestive number, the read side is safe even it gets a
754 	 * wrong number because we will write out the data into a regular
755 	 * extent. The write side(mount/remount) is under ->s_umount lock,
756 	 * so it is also safe.
757 	 */
758 	u64 max_inline;
759 
760 	struct btrfs_transaction *running_transaction;
761 	wait_queue_head_t transaction_throttle;
762 	wait_queue_head_t transaction_wait;
763 	wait_queue_head_t transaction_blocked_wait;
764 	wait_queue_head_t async_submit_wait;
765 
766 	/*
767 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
768 	 * when they are updated.
769 	 *
770 	 * Because we do not clear the flags for ever, so we needn't use
771 	 * the lock on the read side.
772 	 *
773 	 * We also needn't use the lock when we mount the fs, because
774 	 * there is no other task which will update the flag.
775 	 */
776 	spinlock_t super_lock;
777 	struct btrfs_super_block *super_copy;
778 	struct btrfs_super_block *super_for_commit;
779 	struct super_block *sb;
780 	struct inode *btree_inode;
781 	struct mutex tree_log_mutex;
782 	struct mutex transaction_kthread_mutex;
783 	struct mutex cleaner_mutex;
784 	struct mutex chunk_mutex;
785 
786 	/*
787 	 * this is taken to make sure we don't set block groups ro after
788 	 * the free space cache has been allocated on them
789 	 */
790 	struct mutex ro_block_group_mutex;
791 
792 	/* this is used during read/modify/write to make sure
793 	 * no two ios are trying to mod the same stripe at the same
794 	 * time
795 	 */
796 	struct btrfs_stripe_hash_table *stripe_hash_table;
797 
798 	/*
799 	 * this protects the ordered operations list only while we are
800 	 * processing all of the entries on it.  This way we make
801 	 * sure the commit code doesn't find the list temporarily empty
802 	 * because another function happens to be doing non-waiting preflush
803 	 * before jumping into the main commit.
804 	 */
805 	struct mutex ordered_operations_mutex;
806 
807 	struct rw_semaphore commit_root_sem;
808 
809 	struct rw_semaphore cleanup_work_sem;
810 
811 	struct rw_semaphore subvol_sem;
812 
813 	spinlock_t trans_lock;
814 	/*
815 	 * the reloc mutex goes with the trans lock, it is taken
816 	 * during commit to protect us from the relocation code
817 	 */
818 	struct mutex reloc_mutex;
819 
820 	struct list_head trans_list;
821 	struct list_head dead_roots;
822 	struct list_head caching_block_groups;
823 
824 	spinlock_t delayed_iput_lock;
825 	struct list_head delayed_iputs;
826 	atomic_t nr_delayed_iputs;
827 	wait_queue_head_t delayed_iputs_wait;
828 
829 	atomic64_t tree_mod_seq;
830 
831 	/* this protects tree_mod_log and tree_mod_seq_list */
832 	rwlock_t tree_mod_log_lock;
833 	struct rb_root tree_mod_log;
834 	struct list_head tree_mod_seq_list;
835 
836 	atomic_t async_delalloc_pages;
837 
838 	/*
839 	 * this is used to protect the following list -- ordered_roots.
840 	 */
841 	spinlock_t ordered_root_lock;
842 
843 	/*
844 	 * all fs/file tree roots in which there are data=ordered extents
845 	 * pending writeback are added into this list.
846 	 *
847 	 * these can span multiple transactions and basically include
848 	 * every dirty data page that isn't from nodatacow
849 	 */
850 	struct list_head ordered_roots;
851 
852 	struct mutex delalloc_root_mutex;
853 	spinlock_t delalloc_root_lock;
854 	/* all fs/file tree roots that have delalloc inodes. */
855 	struct list_head delalloc_roots;
856 
857 	/*
858 	 * there is a pool of worker threads for checksumming during writes
859 	 * and a pool for checksumming after reads.  This is because readers
860 	 * can run with FS locks held, and the writers may be waiting for
861 	 * those locks.  We don't want ordering in the pending list to cause
862 	 * deadlocks, and so the two are serviced separately.
863 	 *
864 	 * A third pool does submit_bio to avoid deadlocking with the other
865 	 * two
866 	 */
867 	struct btrfs_workqueue *workers;
868 	struct btrfs_workqueue *hipri_workers;
869 	struct btrfs_workqueue *delalloc_workers;
870 	struct btrfs_workqueue *flush_workers;
871 	struct workqueue_struct *endio_workers;
872 	struct workqueue_struct *endio_meta_workers;
873 	struct workqueue_struct *endio_raid56_workers;
874 	struct workqueue_struct *rmw_workers;
875 	struct workqueue_struct *compressed_write_workers;
876 	struct btrfs_workqueue *endio_write_workers;
877 	struct btrfs_workqueue *endio_freespace_worker;
878 	struct btrfs_workqueue *caching_workers;
879 
880 	/*
881 	 * fixup workers take dirty pages that didn't properly go through
882 	 * the cow mechanism and make them safe to write.  It happens
883 	 * for the sys_munmap function call path
884 	 */
885 	struct btrfs_workqueue *fixup_workers;
886 	struct btrfs_workqueue *delayed_workers;
887 
888 	struct task_struct *transaction_kthread;
889 	struct task_struct *cleaner_kthread;
890 	u32 thread_pool_size;
891 
892 	struct kobject *space_info_kobj;
893 	struct kobject *qgroups_kobj;
894 
895 	/* used to keep from writing metadata until there is a nice batch */
896 	struct percpu_counter dirty_metadata_bytes;
897 	struct percpu_counter delalloc_bytes;
898 	struct percpu_counter ordered_bytes;
899 	s32 dirty_metadata_batch;
900 	s32 delalloc_batch;
901 
902 	struct list_head dirty_cowonly_roots;
903 
904 	struct btrfs_fs_devices *fs_devices;
905 
906 	/*
907 	 * The space_info list is effectively read only after initial
908 	 * setup.  It is populated at mount time and cleaned up after
909 	 * all block groups are removed.  RCU is used to protect it.
910 	 */
911 	struct list_head space_info;
912 
913 	struct btrfs_space_info *data_sinfo;
914 
915 	struct reloc_control *reloc_ctl;
916 
917 	/* data_alloc_cluster is only used in ssd_spread mode */
918 	struct btrfs_free_cluster data_alloc_cluster;
919 
920 	/* all metadata allocations go through this cluster */
921 	struct btrfs_free_cluster meta_alloc_cluster;
922 
923 	/* auto defrag inodes go here */
924 	spinlock_t defrag_inodes_lock;
925 	struct rb_root defrag_inodes;
926 	atomic_t defrag_running;
927 
928 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
929 	seqlock_t profiles_lock;
930 	/*
931 	 * these three are in extended format (availability of single
932 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
933 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
934 	 */
935 	u64 avail_data_alloc_bits;
936 	u64 avail_metadata_alloc_bits;
937 	u64 avail_system_alloc_bits;
938 
939 	/* restriper state */
940 	spinlock_t balance_lock;
941 	struct mutex balance_mutex;
942 	atomic_t balance_pause_req;
943 	atomic_t balance_cancel_req;
944 	struct btrfs_balance_control *balance_ctl;
945 	wait_queue_head_t balance_wait_q;
946 
947 	/* Cancellation requests for chunk relocation */
948 	atomic_t reloc_cancel_req;
949 
950 	u32 data_chunk_allocations;
951 	u32 metadata_ratio;
952 
953 	void *bdev_holder;
954 
955 	/* private scrub information */
956 	struct mutex scrub_lock;
957 	atomic_t scrubs_running;
958 	atomic_t scrub_pause_req;
959 	atomic_t scrubs_paused;
960 	atomic_t scrub_cancel_req;
961 	wait_queue_head_t scrub_pause_wait;
962 	/*
963 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
964 	 * running.
965 	 */
966 	refcount_t scrub_workers_refcnt;
967 	struct workqueue_struct *scrub_workers;
968 	struct workqueue_struct *scrub_wr_completion_workers;
969 	struct workqueue_struct *scrub_parity_workers;
970 	struct btrfs_subpage_info *subpage_info;
971 
972 	struct btrfs_discard_ctl discard_ctl;
973 
974 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
975 	u32 check_integrity_print_mask;
976 #endif
977 	/* is qgroup tracking in a consistent state? */
978 	u64 qgroup_flags;
979 
980 	/* holds configuration and tracking. Protected by qgroup_lock */
981 	struct rb_root qgroup_tree;
982 	spinlock_t qgroup_lock;
983 
984 	/*
985 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
986 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
987 	 */
988 	struct ulist *qgroup_ulist;
989 
990 	/*
991 	 * Protect user change for quota operations. If a transaction is needed,
992 	 * it must be started before locking this lock.
993 	 */
994 	struct mutex qgroup_ioctl_lock;
995 
996 	/* list of dirty qgroups to be written at next commit */
997 	struct list_head dirty_qgroups;
998 
999 	/* used by qgroup for an efficient tree traversal */
1000 	u64 qgroup_seq;
1001 
1002 	/* qgroup rescan items */
1003 	struct mutex qgroup_rescan_lock; /* protects the progress item */
1004 	struct btrfs_key qgroup_rescan_progress;
1005 	struct btrfs_workqueue *qgroup_rescan_workers;
1006 	struct completion qgroup_rescan_completion;
1007 	struct btrfs_work qgroup_rescan_work;
1008 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
1009 
1010 	/* filesystem state */
1011 	unsigned long fs_state;
1012 
1013 	struct btrfs_delayed_root *delayed_root;
1014 
1015 	/* Extent buffer radix tree */
1016 	spinlock_t buffer_lock;
1017 	/* Entries are eb->start / sectorsize */
1018 	struct radix_tree_root buffer_radix;
1019 
1020 	/* next backup root to be overwritten */
1021 	int backup_root_index;
1022 
1023 	/* device replace state */
1024 	struct btrfs_dev_replace dev_replace;
1025 
1026 	struct semaphore uuid_tree_rescan_sem;
1027 
1028 	/* Used to reclaim the metadata space in the background. */
1029 	struct work_struct async_reclaim_work;
1030 	struct work_struct async_data_reclaim_work;
1031 	struct work_struct preempt_reclaim_work;
1032 
1033 	/* Reclaim partially filled block groups in the background */
1034 	struct work_struct reclaim_bgs_work;
1035 	struct list_head reclaim_bgs;
1036 	int bg_reclaim_threshold;
1037 
1038 	spinlock_t unused_bgs_lock;
1039 	struct list_head unused_bgs;
1040 	struct mutex unused_bg_unpin_mutex;
1041 	/* Protect block groups that are going to be deleted */
1042 	struct mutex reclaim_bgs_lock;
1043 
1044 	/* Cached block sizes */
1045 	u32 nodesize;
1046 	u32 sectorsize;
1047 	/* ilog2 of sectorsize, use to avoid 64bit division */
1048 	u32 sectorsize_bits;
1049 	u32 csum_size;
1050 	u32 csums_per_leaf;
1051 	u32 stripesize;
1052 
1053 	/*
1054 	 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular
1055 	 * filesystem, on zoned it depends on the device constraints.
1056 	 */
1057 	u64 max_extent_size;
1058 
1059 	/* Block groups and devices containing active swapfiles. */
1060 	spinlock_t swapfile_pins_lock;
1061 	struct rb_root swapfile_pins;
1062 
1063 	struct crypto_shash *csum_shash;
1064 
1065 	/* Type of exclusive operation running, protected by super_lock */
1066 	enum btrfs_exclusive_operation exclusive_operation;
1067 
1068 	/*
1069 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1070 	 * if the mode is enabled
1071 	 */
1072 	u64 zone_size;
1073 
1074 	/* Max size to emit ZONE_APPEND write command */
1075 	u64 max_zone_append_size;
1076 	struct mutex zoned_meta_io_lock;
1077 	spinlock_t treelog_bg_lock;
1078 	u64 treelog_bg;
1079 
1080 	/*
1081 	 * Start of the dedicated data relocation block group, protected by
1082 	 * relocation_bg_lock.
1083 	 */
1084 	spinlock_t relocation_bg_lock;
1085 	u64 data_reloc_bg;
1086 	struct mutex zoned_data_reloc_io_lock;
1087 
1088 	u64 nr_global_roots;
1089 
1090 	spinlock_t zone_active_bgs_lock;
1091 	struct list_head zone_active_bgs;
1092 	/* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */
1093 	wait_queue_head_t zone_finish_wait;
1094 
1095 	/* Updates are not protected by any lock */
1096 	struct btrfs_commit_stats commit_stats;
1097 
1098 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1099 	spinlock_t ref_verify_lock;
1100 	struct rb_root block_tree;
1101 #endif
1102 
1103 #ifdef CONFIG_BTRFS_DEBUG
1104 	struct kobject *debug_kobj;
1105 	struct kobject *discard_debug_kobj;
1106 	struct list_head allocated_roots;
1107 
1108 	spinlock_t eb_leak_lock;
1109 	struct list_head allocated_ebs;
1110 #endif
1111 };
1112 
1113 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1114 {
1115 	return sb->s_fs_info;
1116 }
1117 
1118 /*
1119  * The state of btrfs root
1120  */
1121 enum {
1122 	/*
1123 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1124 	 * with the balancing code.   But the race is very small, and only the
1125 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1126 	 * is used to tell us when more checks are required
1127 	 */
1128 	BTRFS_ROOT_IN_TRANS_SETUP,
1129 
1130 	/*
1131 	 * Set if tree blocks of this root can be shared by other roots.
1132 	 * Only subvolume trees and their reloc trees have this bit set.
1133 	 * Conflicts with TRACK_DIRTY bit.
1134 	 *
1135 	 * This affects two things:
1136 	 *
1137 	 * - How balance works
1138 	 *   For shareable roots, we need to use reloc tree and do path
1139 	 *   replacement for balance, and need various pre/post hooks for
1140 	 *   snapshot creation to handle them.
1141 	 *
1142 	 *   While for non-shareable trees, we just simply do a tree search
1143 	 *   with COW.
1144 	 *
1145 	 * - How dirty roots are tracked
1146 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1147 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1148 	 *   don't need to set this manually.
1149 	 */
1150 	BTRFS_ROOT_SHAREABLE,
1151 	BTRFS_ROOT_TRACK_DIRTY,
1152 	BTRFS_ROOT_IN_RADIX,
1153 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1154 	BTRFS_ROOT_DEFRAG_RUNNING,
1155 	BTRFS_ROOT_FORCE_COW,
1156 	BTRFS_ROOT_MULTI_LOG_TASKS,
1157 	BTRFS_ROOT_DIRTY,
1158 	BTRFS_ROOT_DELETING,
1159 
1160 	/*
1161 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1162 	 *
1163 	 * Set for the subvolume tree owning the reloc tree.
1164 	 */
1165 	BTRFS_ROOT_DEAD_RELOC_TREE,
1166 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1167 	BTRFS_ROOT_DEAD_TREE,
1168 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1169 	BTRFS_ROOT_HAS_LOG_TREE,
1170 	/* Qgroup flushing is in progress */
1171 	BTRFS_ROOT_QGROUP_FLUSHING,
1172 	/* We started the orphan cleanup for this root. */
1173 	BTRFS_ROOT_ORPHAN_CLEANUP,
1174 	/* This root has a drop operation that was started previously. */
1175 	BTRFS_ROOT_UNFINISHED_DROP,
1176 };
1177 
1178 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1179 {
1180 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1181 }
1182 
1183 /*
1184  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1185  * code. For detail check comment in fs/btrfs/qgroup.c.
1186  */
1187 struct btrfs_qgroup_swapped_blocks {
1188 	spinlock_t lock;
1189 	/* RM_EMPTY_ROOT() of above blocks[] */
1190 	bool swapped;
1191 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1192 };
1193 
1194 /*
1195  * in ram representation of the tree.  extent_root is used for all allocations
1196  * and for the extent tree extent_root root.
1197  */
1198 struct btrfs_root {
1199 	struct rb_node rb_node;
1200 
1201 	struct extent_buffer *node;
1202 
1203 	struct extent_buffer *commit_root;
1204 	struct btrfs_root *log_root;
1205 	struct btrfs_root *reloc_root;
1206 
1207 	unsigned long state;
1208 	struct btrfs_root_item root_item;
1209 	struct btrfs_key root_key;
1210 	struct btrfs_fs_info *fs_info;
1211 	struct extent_io_tree dirty_log_pages;
1212 
1213 	struct mutex objectid_mutex;
1214 
1215 	spinlock_t accounting_lock;
1216 	struct btrfs_block_rsv *block_rsv;
1217 
1218 	struct mutex log_mutex;
1219 	wait_queue_head_t log_writer_wait;
1220 	wait_queue_head_t log_commit_wait[2];
1221 	struct list_head log_ctxs[2];
1222 	/* Used only for log trees of subvolumes, not for the log root tree */
1223 	atomic_t log_writers;
1224 	atomic_t log_commit[2];
1225 	/* Used only for log trees of subvolumes, not for the log root tree */
1226 	atomic_t log_batch;
1227 	int log_transid;
1228 	/* No matter the commit succeeds or not*/
1229 	int log_transid_committed;
1230 	/* Just be updated when the commit succeeds. */
1231 	int last_log_commit;
1232 	pid_t log_start_pid;
1233 
1234 	u64 last_trans;
1235 
1236 	u32 type;
1237 
1238 	u64 free_objectid;
1239 
1240 	struct btrfs_key defrag_progress;
1241 	struct btrfs_key defrag_max;
1242 
1243 	/* The dirty list is only used by non-shareable roots */
1244 	struct list_head dirty_list;
1245 
1246 	struct list_head root_list;
1247 
1248 	spinlock_t log_extents_lock[2];
1249 	struct list_head logged_list[2];
1250 
1251 	spinlock_t inode_lock;
1252 	/* red-black tree that keeps track of in-memory inodes */
1253 	struct rb_root inode_tree;
1254 
1255 	/*
1256 	 * radix tree that keeps track of delayed nodes of every inode,
1257 	 * protected by inode_lock
1258 	 */
1259 	struct radix_tree_root delayed_nodes_tree;
1260 	/*
1261 	 * right now this just gets used so that a root has its own devid
1262 	 * for stat.  It may be used for more later
1263 	 */
1264 	dev_t anon_dev;
1265 
1266 	spinlock_t root_item_lock;
1267 	refcount_t refs;
1268 
1269 	struct mutex delalloc_mutex;
1270 	spinlock_t delalloc_lock;
1271 	/*
1272 	 * all of the inodes that have delalloc bytes.  It is possible for
1273 	 * this list to be empty even when there is still dirty data=ordered
1274 	 * extents waiting to finish IO.
1275 	 */
1276 	struct list_head delalloc_inodes;
1277 	struct list_head delalloc_root;
1278 	u64 nr_delalloc_inodes;
1279 
1280 	struct mutex ordered_extent_mutex;
1281 	/*
1282 	 * this is used by the balancing code to wait for all the pending
1283 	 * ordered extents
1284 	 */
1285 	spinlock_t ordered_extent_lock;
1286 
1287 	/*
1288 	 * all of the data=ordered extents pending writeback
1289 	 * these can span multiple transactions and basically include
1290 	 * every dirty data page that isn't from nodatacow
1291 	 */
1292 	struct list_head ordered_extents;
1293 	struct list_head ordered_root;
1294 	u64 nr_ordered_extents;
1295 
1296 	/*
1297 	 * Not empty if this subvolume root has gone through tree block swap
1298 	 * (relocation)
1299 	 *
1300 	 * Will be used by reloc_control::dirty_subvol_roots.
1301 	 */
1302 	struct list_head reloc_dirty_list;
1303 
1304 	/*
1305 	 * Number of currently running SEND ioctls to prevent
1306 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1307 	 */
1308 	int send_in_progress;
1309 	/*
1310 	 * Number of currently running deduplication operations that have a
1311 	 * destination inode belonging to this root. Protected by the lock
1312 	 * root_item_lock.
1313 	 */
1314 	int dedupe_in_progress;
1315 	/* For exclusion of snapshot creation and nocow writes */
1316 	struct btrfs_drew_lock snapshot_lock;
1317 
1318 	atomic_t snapshot_force_cow;
1319 
1320 	/* For qgroup metadata reserved space */
1321 	spinlock_t qgroup_meta_rsv_lock;
1322 	u64 qgroup_meta_rsv_pertrans;
1323 	u64 qgroup_meta_rsv_prealloc;
1324 	wait_queue_head_t qgroup_flush_wait;
1325 
1326 	/* Number of active swapfiles */
1327 	atomic_t nr_swapfiles;
1328 
1329 	/* Record pairs of swapped blocks for qgroup */
1330 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1331 
1332 	/* Used only by log trees, when logging csum items */
1333 	struct extent_io_tree log_csum_range;
1334 
1335 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1336 	u64 alloc_bytenr;
1337 #endif
1338 
1339 #ifdef CONFIG_BTRFS_DEBUG
1340 	struct list_head leak_list;
1341 #endif
1342 };
1343 
1344 /*
1345  * Structure that conveys information about an extent that is going to replace
1346  * all the extents in a file range.
1347  */
1348 struct btrfs_replace_extent_info {
1349 	u64 disk_offset;
1350 	u64 disk_len;
1351 	u64 data_offset;
1352 	u64 data_len;
1353 	u64 file_offset;
1354 	/* Pointer to a file extent item of type regular or prealloc. */
1355 	char *extent_buf;
1356 	/*
1357 	 * Set to true when attempting to replace a file range with a new extent
1358 	 * described by this structure, set to false when attempting to clone an
1359 	 * existing extent into a file range.
1360 	 */
1361 	bool is_new_extent;
1362 	/* Indicate if we should update the inode's mtime and ctime. */
1363 	bool update_times;
1364 	/* Meaningful only if is_new_extent is true. */
1365 	int qgroup_reserved;
1366 	/*
1367 	 * Meaningful only if is_new_extent is true.
1368 	 * Used to track how many extent items we have already inserted in a
1369 	 * subvolume tree that refer to the extent described by this structure,
1370 	 * so that we know when to create a new delayed ref or update an existing
1371 	 * one.
1372 	 */
1373 	int insertions;
1374 };
1375 
1376 /* Arguments for btrfs_drop_extents() */
1377 struct btrfs_drop_extents_args {
1378 	/* Input parameters */
1379 
1380 	/*
1381 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1382 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1383 	 * is always released except if 'replace_extent' is true and
1384 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1385 	 * the path is kept locked.
1386 	 */
1387 	struct btrfs_path *path;
1388 	/* Start offset of the range to drop extents from */
1389 	u64 start;
1390 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1391 	u64 end;
1392 	/* If true drop all the extent maps in the range */
1393 	bool drop_cache;
1394 	/*
1395 	 * If true it means we want to insert a new extent after dropping all
1396 	 * the extents in the range. If this is true, the 'extent_item_size'
1397 	 * parameter must be set as well and the 'extent_inserted' field will
1398 	 * be set to true by btrfs_drop_extents() if it could insert the new
1399 	 * extent.
1400 	 * Note: when this is set to true the path must not be NULL.
1401 	 */
1402 	bool replace_extent;
1403 	/*
1404 	 * Used if 'replace_extent' is true. Size of the file extent item to
1405 	 * insert after dropping all existing extents in the range
1406 	 */
1407 	u32 extent_item_size;
1408 
1409 	/* Output parameters */
1410 
1411 	/*
1412 	 * Set to the minimum between the input parameter 'end' and the end
1413 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1414 	 * set even if btrfs_drop_extents() returns an error.
1415 	 */
1416 	u64 drop_end;
1417 	/*
1418 	 * The number of allocated bytes found in the range. This can be smaller
1419 	 * than the range's length when there are holes in the range.
1420 	 */
1421 	u64 bytes_found;
1422 	/*
1423 	 * Only set if 'replace_extent' is true. Set to true if we were able
1424 	 * to insert a replacement extent after dropping all extents in the
1425 	 * range, otherwise set to false by btrfs_drop_extents().
1426 	 * Also, if btrfs_drop_extents() has set this to true it means it
1427 	 * returned with the path locked, otherwise if it has set this to
1428 	 * false it has returned with the path released.
1429 	 */
1430 	bool extent_inserted;
1431 };
1432 
1433 struct btrfs_file_private {
1434 	void *filldir_buf;
1435 };
1436 
1437 
1438 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1439 {
1440 
1441 	return info->nodesize - sizeof(struct btrfs_header);
1442 }
1443 
1444 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1445 
1446 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1447 {
1448 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1449 }
1450 
1451 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1452 {
1453 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1454 }
1455 
1456 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1457 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1458 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1459 {
1460 	return BTRFS_MAX_ITEM_SIZE(info) -
1461 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1462 }
1463 
1464 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1465 {
1466 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1467 }
1468 
1469 /*
1470  * Flags for mount options.
1471  *
1472  * Note: don't forget to add new options to btrfs_show_options()
1473  */
1474 enum {
1475 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1476 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1477 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1478 	BTRFS_MOUNT_SSD				= (1UL << 3),
1479 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1480 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1481 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1482 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1483 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1484 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1485 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1486 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1487 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1488 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1489 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1490 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1491 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1492 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1493 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1494 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1495 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1496 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1497 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1498 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1499 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1500 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1501 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1502 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1503 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1504 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1505 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1506 };
1507 
1508 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1509 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1510 
1511 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1512 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1513 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1514 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1515 					 BTRFS_MOUNT_##opt)
1516 
1517 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1518 do {									\
1519 	if (!btrfs_test_opt(fs_info, opt))				\
1520 		btrfs_info(fs_info, fmt, ##args);			\
1521 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1522 } while (0)
1523 
1524 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1525 do {									\
1526 	if (btrfs_test_opt(fs_info, opt))				\
1527 		btrfs_info(fs_info, fmt, ##args);			\
1528 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1529 } while (0)
1530 
1531 /*
1532  * Requests for changes that need to be done during transaction commit.
1533  *
1534  * Internal mount options that are used for special handling of the real
1535  * mount options (eg. cannot be set during remount and have to be set during
1536  * transaction commit)
1537  */
1538 
1539 #define BTRFS_PENDING_COMMIT			(0)
1540 
1541 #define btrfs_test_pending(info, opt)	\
1542 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1543 #define btrfs_set_pending(info, opt)	\
1544 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1545 #define btrfs_clear_pending(info, opt)	\
1546 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1547 
1548 /*
1549  * Helpers for setting pending mount option changes.
1550  *
1551  * Expects corresponding macros
1552  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1553  */
1554 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1555 do {                                                                   \
1556        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1557                btrfs_info((info), fmt, ##args);                        \
1558                btrfs_set_pending((info), SET_##opt);                   \
1559                btrfs_clear_pending((info), CLEAR_##opt);               \
1560        }                                                               \
1561 } while(0)
1562 
1563 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1564 do {                                                                   \
1565        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1566                btrfs_info((info), fmt, ##args);                        \
1567                btrfs_set_pending((info), CLEAR_##opt);                 \
1568                btrfs_clear_pending((info), SET_##opt);                 \
1569        }                                                               \
1570 } while(0)
1571 
1572 /*
1573  * Inode flags
1574  */
1575 #define BTRFS_INODE_NODATASUM		(1U << 0)
1576 #define BTRFS_INODE_NODATACOW		(1U << 1)
1577 #define BTRFS_INODE_READONLY		(1U << 2)
1578 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1579 #define BTRFS_INODE_PREALLOC		(1U << 4)
1580 #define BTRFS_INODE_SYNC		(1U << 5)
1581 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1582 #define BTRFS_INODE_APPEND		(1U << 7)
1583 #define BTRFS_INODE_NODUMP		(1U << 8)
1584 #define BTRFS_INODE_NOATIME		(1U << 9)
1585 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1586 #define BTRFS_INODE_COMPRESS		(1U << 11)
1587 
1588 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1589 
1590 #define BTRFS_INODE_FLAG_MASK						\
1591 	(BTRFS_INODE_NODATASUM |					\
1592 	 BTRFS_INODE_NODATACOW |					\
1593 	 BTRFS_INODE_READONLY |						\
1594 	 BTRFS_INODE_NOCOMPRESS |					\
1595 	 BTRFS_INODE_PREALLOC |						\
1596 	 BTRFS_INODE_SYNC |						\
1597 	 BTRFS_INODE_IMMUTABLE |					\
1598 	 BTRFS_INODE_APPEND |						\
1599 	 BTRFS_INODE_NODUMP |						\
1600 	 BTRFS_INODE_NOATIME |						\
1601 	 BTRFS_INODE_DIRSYNC |						\
1602 	 BTRFS_INODE_COMPRESS |						\
1603 	 BTRFS_INODE_ROOT_ITEM_INIT)
1604 
1605 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1606 
1607 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1608 
1609 struct btrfs_map_token {
1610 	struct extent_buffer *eb;
1611 	char *kaddr;
1612 	unsigned long offset;
1613 };
1614 
1615 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1616 				((bytes) >> (fs_info)->sectorsize_bits)
1617 
1618 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1619 					struct extent_buffer *eb)
1620 {
1621 	token->eb = eb;
1622 	token->kaddr = page_address(eb->pages[0]);
1623 	token->offset = 0;
1624 }
1625 
1626 /* some macros to generate set/get functions for the struct fields.  This
1627  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1628  * one for u8:
1629  */
1630 #define le8_to_cpu(v) (v)
1631 #define cpu_to_le8(v) (v)
1632 #define __le8 u8
1633 
1634 static inline u8 get_unaligned_le8(const void *p)
1635 {
1636        return *(u8 *)p;
1637 }
1638 
1639 static inline void put_unaligned_le8(u8 val, void *p)
1640 {
1641        *(u8 *)p = val;
1642 }
1643 
1644 #define read_eb_member(eb, ptr, type, member, result) (\
1645 	read_extent_buffer(eb, (char *)(result),			\
1646 			   ((unsigned long)(ptr)) +			\
1647 			    offsetof(type, member),			\
1648 			   sizeof(((type *)0)->member)))
1649 
1650 #define write_eb_member(eb, ptr, type, member, result) (\
1651 	write_extent_buffer(eb, (char *)(result),			\
1652 			   ((unsigned long)(ptr)) +			\
1653 			    offsetof(type, member),			\
1654 			   sizeof(((type *)0)->member)))
1655 
1656 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1657 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1658 			       const void *ptr, unsigned long off);	\
1659 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1660 			    const void *ptr, unsigned long off,		\
1661 			    u##bits val);				\
1662 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1663 			 const void *ptr, unsigned long off);		\
1664 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1665 		      unsigned long off, u##bits val);
1666 
1667 DECLARE_BTRFS_SETGET_BITS(8)
1668 DECLARE_BTRFS_SETGET_BITS(16)
1669 DECLARE_BTRFS_SETGET_BITS(32)
1670 DECLARE_BTRFS_SETGET_BITS(64)
1671 
1672 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1673 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1674 				   const type *s)			\
1675 {									\
1676 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1677 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1678 }									\
1679 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1680 				    u##bits val)			\
1681 {									\
1682 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1683 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1684 }									\
1685 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1686 					 const type *s)			\
1687 {									\
1688 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1689 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1690 }									\
1691 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1692 					  type *s, u##bits val)		\
1693 {									\
1694 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1695 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1696 }
1697 
1698 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1699 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1700 {									\
1701 	const type *p = page_address(eb->pages[0]) +			\
1702 			offset_in_page(eb->start);			\
1703 	return get_unaligned_le##bits(&p->member);			\
1704 }									\
1705 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1706 				    u##bits val)			\
1707 {									\
1708 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1709 	put_unaligned_le##bits(val, &p->member);			\
1710 }
1711 
1712 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1713 static inline u##bits btrfs_##name(const type *s)			\
1714 {									\
1715 	return get_unaligned_le##bits(&s->member);			\
1716 }									\
1717 static inline void btrfs_set_##name(type *s, u##bits val)		\
1718 {									\
1719 	put_unaligned_le##bits(val, &s->member);			\
1720 }
1721 
1722 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1723 					   struct btrfs_dev_item *s)
1724 {
1725 	static_assert(sizeof(u64) ==
1726 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1727 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1728 					    total_bytes));
1729 }
1730 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1731 						struct btrfs_dev_item *s,
1732 						u64 val)
1733 {
1734 	static_assert(sizeof(u64) ==
1735 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1736 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1737 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1738 }
1739 
1740 
1741 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1742 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1743 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1744 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1745 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1746 		   start_offset, 64);
1747 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1748 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1749 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1750 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1751 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1752 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1753 
1754 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1755 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1756 			 total_bytes, 64);
1757 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1758 			 bytes_used, 64);
1759 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1760 			 io_align, 32);
1761 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1762 			 io_width, 32);
1763 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1764 			 sector_size, 32);
1765 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1766 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1767 			 dev_group, 32);
1768 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1769 			 seek_speed, 8);
1770 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1771 			 bandwidth, 8);
1772 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1773 			 generation, 64);
1774 
1775 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1776 {
1777 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1778 }
1779 
1780 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1781 {
1782 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1783 }
1784 
1785 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1786 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1787 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1788 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1789 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1790 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1791 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1792 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1793 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1794 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1795 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1796 
1797 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1798 {
1799 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1800 }
1801 
1802 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1805 			 stripe_len, 64);
1806 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1807 			 io_align, 32);
1808 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1809 			 io_width, 32);
1810 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1811 			 sector_size, 32);
1812 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1813 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1814 			 num_stripes, 16);
1815 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1816 			 sub_stripes, 16);
1817 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1818 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1819 
1820 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1821 						   int nr)
1822 {
1823 	unsigned long offset = (unsigned long)c;
1824 	offset += offsetof(struct btrfs_chunk, stripe);
1825 	offset += nr * sizeof(struct btrfs_stripe);
1826 	return (struct btrfs_stripe *)offset;
1827 }
1828 
1829 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1830 {
1831 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1832 }
1833 
1834 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1835 					 struct btrfs_chunk *c, int nr)
1836 {
1837 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1838 }
1839 
1840 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1841 					 struct btrfs_chunk *c, int nr)
1842 {
1843 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1844 }
1845 
1846 /* struct btrfs_block_group_item */
1847 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1848 			 used, 64);
1849 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1850 			 used, 64);
1851 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1852 			struct btrfs_block_group_item, chunk_objectid, 64);
1853 
1854 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1855 		   struct btrfs_block_group_item, chunk_objectid, 64);
1856 BTRFS_SETGET_FUNCS(block_group_flags,
1857 		   struct btrfs_block_group_item, flags, 64);
1858 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1859 			struct btrfs_block_group_item, flags, 64);
1860 
1861 /* struct btrfs_free_space_info */
1862 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1863 		   extent_count, 32);
1864 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1865 
1866 /* struct btrfs_inode_ref */
1867 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1868 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1869 
1870 /* struct btrfs_inode_extref */
1871 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1872 		   parent_objectid, 64);
1873 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1874 		   name_len, 16);
1875 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1876 
1877 /* struct btrfs_inode_item */
1878 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1879 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1880 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1881 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1882 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1883 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1884 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1885 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1886 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1887 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1888 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1889 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1890 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1891 			 generation, 64);
1892 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1893 			 sequence, 64);
1894 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1895 			 transid, 64);
1896 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1897 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1898 			 nbytes, 64);
1899 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1900 			 block_group, 64);
1901 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1907 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1908 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1909 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1910 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1911 
1912 /* struct btrfs_dev_extent */
1913 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1914 		   chunk_tree, 64);
1915 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1916 		   chunk_objectid, 64);
1917 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1918 		   chunk_offset, 64);
1919 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1920 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1921 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1922 		   generation, 64);
1923 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1924 
1925 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1926 
1927 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1928 					struct btrfs_tree_block_info *item,
1929 					struct btrfs_disk_key *key)
1930 {
1931 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1932 }
1933 
1934 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1935 					    struct btrfs_tree_block_info *item,
1936 					    struct btrfs_disk_key *key)
1937 {
1938 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1939 }
1940 
1941 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1942 		   root, 64);
1943 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1944 		   objectid, 64);
1945 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1946 		   offset, 64);
1947 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1948 		   count, 32);
1949 
1950 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1951 		   count, 32);
1952 
1953 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1954 		   type, 8);
1955 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1956 		   offset, 64);
1957 
1958 static inline u32 btrfs_extent_inline_ref_size(int type)
1959 {
1960 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1961 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1962 		return sizeof(struct btrfs_extent_inline_ref);
1963 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1964 		return sizeof(struct btrfs_shared_data_ref) +
1965 		       sizeof(struct btrfs_extent_inline_ref);
1966 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1967 		return sizeof(struct btrfs_extent_data_ref) +
1968 		       offsetof(struct btrfs_extent_inline_ref, offset);
1969 	return 0;
1970 }
1971 
1972 /* struct btrfs_node */
1973 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1974 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1975 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1976 			 blockptr, 64);
1977 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1978 			 generation, 64);
1979 
1980 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1981 {
1982 	unsigned long ptr;
1983 	ptr = offsetof(struct btrfs_node, ptrs) +
1984 		sizeof(struct btrfs_key_ptr) * nr;
1985 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1986 }
1987 
1988 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1989 					   int nr, u64 val)
1990 {
1991 	unsigned long ptr;
1992 	ptr = offsetof(struct btrfs_node, ptrs) +
1993 		sizeof(struct btrfs_key_ptr) * nr;
1994 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1995 }
1996 
1997 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1998 {
1999 	unsigned long ptr;
2000 	ptr = offsetof(struct btrfs_node, ptrs) +
2001 		sizeof(struct btrfs_key_ptr) * nr;
2002 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
2003 }
2004 
2005 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
2006 						 int nr, u64 val)
2007 {
2008 	unsigned long ptr;
2009 	ptr = offsetof(struct btrfs_node, ptrs) +
2010 		sizeof(struct btrfs_key_ptr) * nr;
2011 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
2012 }
2013 
2014 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
2015 {
2016 	return offsetof(struct btrfs_node, ptrs) +
2017 		sizeof(struct btrfs_key_ptr) * nr;
2018 }
2019 
2020 void btrfs_node_key(const struct extent_buffer *eb,
2021 		    struct btrfs_disk_key *disk_key, int nr);
2022 
2023 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
2024 				      struct btrfs_disk_key *disk_key, int nr)
2025 {
2026 	unsigned long ptr;
2027 	ptr = btrfs_node_key_ptr_offset(nr);
2028 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
2029 		       struct btrfs_key_ptr, key, disk_key);
2030 }
2031 
2032 /* struct btrfs_item */
2033 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2034 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2035 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2036 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2037 
2038 static inline unsigned long btrfs_item_nr_offset(int nr)
2039 {
2040 	return offsetof(struct btrfs_leaf, items) +
2041 		sizeof(struct btrfs_item) * nr;
2042 }
2043 
2044 static inline struct btrfs_item *btrfs_item_nr(int nr)
2045 {
2046 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2047 }
2048 
2049 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2050 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2051 				      int slot)					\
2052 {										\
2053 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2054 }										\
2055 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2056 					   int slot, u32 val)			\
2057 {										\
2058 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2059 }										\
2060 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2061 					    int slot)				\
2062 {										\
2063 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2064 	return btrfs_token_raw_item_##member(token, item);			\
2065 }										\
2066 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2067 						 int slot, u32 val)		\
2068 {										\
2069 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2070 	btrfs_set_token_raw_item_##member(token, item, val);			\
2071 }
2072 
2073 BTRFS_ITEM_SETGET_FUNCS(offset)
2074 BTRFS_ITEM_SETGET_FUNCS(size);
2075 
2076 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2077 {
2078 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2079 }
2080 
2081 static inline void btrfs_item_key(const struct extent_buffer *eb,
2082 			   struct btrfs_disk_key *disk_key, int nr)
2083 {
2084 	struct btrfs_item *item = btrfs_item_nr(nr);
2085 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2086 }
2087 
2088 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2089 			       struct btrfs_disk_key *disk_key, int nr)
2090 {
2091 	struct btrfs_item *item = btrfs_item_nr(nr);
2092 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2093 }
2094 
2095 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2096 
2097 /*
2098  * struct btrfs_root_ref
2099  */
2100 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2101 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2102 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2103 
2104 /* struct btrfs_dir_item */
2105 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2106 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2107 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2108 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2109 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2110 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2111 			 data_len, 16);
2112 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2113 			 name_len, 16);
2114 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2115 			 transid, 64);
2116 
2117 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2118 				      const struct btrfs_dir_item *item,
2119 				      struct btrfs_disk_key *key)
2120 {
2121 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2122 }
2123 
2124 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2125 					  struct btrfs_dir_item *item,
2126 					  const struct btrfs_disk_key *key)
2127 {
2128 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2129 }
2130 
2131 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2132 		   num_entries, 64);
2133 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2134 		   num_bitmaps, 64);
2135 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2136 		   generation, 64);
2137 
2138 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2139 					const struct btrfs_free_space_header *h,
2140 					struct btrfs_disk_key *key)
2141 {
2142 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2143 }
2144 
2145 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2146 					    struct btrfs_free_space_header *h,
2147 					    const struct btrfs_disk_key *key)
2148 {
2149 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2150 }
2151 
2152 /* struct btrfs_disk_key */
2153 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2154 			 objectid, 64);
2155 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2156 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2157 
2158 #ifdef __LITTLE_ENDIAN
2159 
2160 /*
2161  * Optimized helpers for little-endian architectures where CPU and on-disk
2162  * structures have the same endianness and we can skip conversions.
2163  */
2164 
2165 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2166 					 const struct btrfs_disk_key *disk_key)
2167 {
2168 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2169 }
2170 
2171 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2172 					 const struct btrfs_key *cpu_key)
2173 {
2174 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2175 }
2176 
2177 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2178 					 struct btrfs_key *cpu_key, int nr)
2179 {
2180 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2181 
2182 	btrfs_node_key(eb, disk_key, nr);
2183 }
2184 
2185 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2186 					 struct btrfs_key *cpu_key, int nr)
2187 {
2188 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2189 
2190 	btrfs_item_key(eb, disk_key, nr);
2191 }
2192 
2193 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2194 					     const struct btrfs_dir_item *item,
2195 					     struct btrfs_key *cpu_key)
2196 {
2197 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2198 
2199 	btrfs_dir_item_key(eb, item, disk_key);
2200 }
2201 
2202 #else
2203 
2204 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2205 					 const struct btrfs_disk_key *disk)
2206 {
2207 	cpu->offset = le64_to_cpu(disk->offset);
2208 	cpu->type = disk->type;
2209 	cpu->objectid = le64_to_cpu(disk->objectid);
2210 }
2211 
2212 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2213 					 const struct btrfs_key *cpu)
2214 {
2215 	disk->offset = cpu_to_le64(cpu->offset);
2216 	disk->type = cpu->type;
2217 	disk->objectid = cpu_to_le64(cpu->objectid);
2218 }
2219 
2220 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2221 					 struct btrfs_key *key, int nr)
2222 {
2223 	struct btrfs_disk_key disk_key;
2224 	btrfs_node_key(eb, &disk_key, nr);
2225 	btrfs_disk_key_to_cpu(key, &disk_key);
2226 }
2227 
2228 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2229 					 struct btrfs_key *key, int nr)
2230 {
2231 	struct btrfs_disk_key disk_key;
2232 	btrfs_item_key(eb, &disk_key, nr);
2233 	btrfs_disk_key_to_cpu(key, &disk_key);
2234 }
2235 
2236 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2237 					     const struct btrfs_dir_item *item,
2238 					     struct btrfs_key *key)
2239 {
2240 	struct btrfs_disk_key disk_key;
2241 	btrfs_dir_item_key(eb, item, &disk_key);
2242 	btrfs_disk_key_to_cpu(key, &disk_key);
2243 }
2244 
2245 #endif
2246 
2247 /* struct btrfs_header */
2248 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2249 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2250 			  generation, 64);
2251 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2252 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2253 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2254 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2255 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2256 			 generation, 64);
2257 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2258 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2259 			 nritems, 32);
2260 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2261 
2262 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2263 {
2264 	return (btrfs_header_flags(eb) & flag) == flag;
2265 }
2266 
2267 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2268 {
2269 	u64 flags = btrfs_header_flags(eb);
2270 	btrfs_set_header_flags(eb, flags | flag);
2271 }
2272 
2273 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2274 {
2275 	u64 flags = btrfs_header_flags(eb);
2276 	btrfs_set_header_flags(eb, flags & ~flag);
2277 }
2278 
2279 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2280 {
2281 	u64 flags = btrfs_header_flags(eb);
2282 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2283 }
2284 
2285 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2286 						int rev)
2287 {
2288 	u64 flags = btrfs_header_flags(eb);
2289 	flags &= ~BTRFS_BACKREF_REV_MASK;
2290 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2291 	btrfs_set_header_flags(eb, flags);
2292 }
2293 
2294 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2295 {
2296 	return btrfs_header_level(eb) == 0;
2297 }
2298 
2299 /* struct btrfs_root_item */
2300 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2301 		   generation, 64);
2302 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2303 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2304 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2305 
2306 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2307 			 generation, 64);
2308 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2309 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2310 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2311 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2312 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2313 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2314 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2315 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2316 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2317 			 last_snapshot, 64);
2318 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2319 			 generation_v2, 64);
2320 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2321 			 ctransid, 64);
2322 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2323 			 otransid, 64);
2324 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2325 			 stransid, 64);
2326 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2327 			 rtransid, 64);
2328 
2329 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2330 {
2331 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2332 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2333 }
2334 
2335 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2336 {
2337 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2338 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2339 }
2340 
2341 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2342 {
2343 	return root->root_key.objectid;
2344 }
2345 
2346 /* struct btrfs_root_backup */
2347 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2348 		   tree_root, 64);
2349 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2350 		   tree_root_gen, 64);
2351 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2352 		   tree_root_level, 8);
2353 
2354 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2355 		   chunk_root, 64);
2356 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2357 		   chunk_root_gen, 64);
2358 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2359 		   chunk_root_level, 8);
2360 
2361 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2362 		   extent_root, 64);
2363 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2364 		   extent_root_gen, 64);
2365 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2366 		   extent_root_level, 8);
2367 
2368 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2369 		   fs_root, 64);
2370 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2371 		   fs_root_gen, 64);
2372 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2373 		   fs_root_level, 8);
2374 
2375 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2376 		   dev_root, 64);
2377 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2378 		   dev_root_gen, 64);
2379 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2380 		   dev_root_level, 8);
2381 
2382 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2383 		   csum_root, 64);
2384 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2385 		   csum_root_gen, 64);
2386 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2387 		   csum_root_level, 8);
2388 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2389 		   total_bytes, 64);
2390 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2391 		   bytes_used, 64);
2392 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2393 		   num_devices, 64);
2394 
2395 /*
2396  * For extent tree v2 we overload the extent root with the block group root, as
2397  * we will have multiple extent roots.
2398  */
2399 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2400 			 extent_root, 64);
2401 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2402 			 extent_root_gen, 64);
2403 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2404 			 struct btrfs_root_backup, extent_root_level, 8);
2405 
2406 /* struct btrfs_balance_item */
2407 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2408 
2409 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2410 				      const struct btrfs_balance_item *bi,
2411 				      struct btrfs_disk_balance_args *ba)
2412 {
2413 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2414 }
2415 
2416 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2417 				  struct btrfs_balance_item *bi,
2418 				  const struct btrfs_disk_balance_args *ba)
2419 {
2420 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2421 }
2422 
2423 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2424 				      const struct btrfs_balance_item *bi,
2425 				      struct btrfs_disk_balance_args *ba)
2426 {
2427 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2428 }
2429 
2430 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2431 				  struct btrfs_balance_item *bi,
2432 				  const struct btrfs_disk_balance_args *ba)
2433 {
2434 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2435 }
2436 
2437 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2438 				     const struct btrfs_balance_item *bi,
2439 				     struct btrfs_disk_balance_args *ba)
2440 {
2441 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2442 }
2443 
2444 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2445 				 struct btrfs_balance_item *bi,
2446 				 const struct btrfs_disk_balance_args *ba)
2447 {
2448 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2449 }
2450 
2451 static inline void
2452 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2453 			       const struct btrfs_disk_balance_args *disk)
2454 {
2455 	memset(cpu, 0, sizeof(*cpu));
2456 
2457 	cpu->profiles = le64_to_cpu(disk->profiles);
2458 	cpu->usage = le64_to_cpu(disk->usage);
2459 	cpu->devid = le64_to_cpu(disk->devid);
2460 	cpu->pstart = le64_to_cpu(disk->pstart);
2461 	cpu->pend = le64_to_cpu(disk->pend);
2462 	cpu->vstart = le64_to_cpu(disk->vstart);
2463 	cpu->vend = le64_to_cpu(disk->vend);
2464 	cpu->target = le64_to_cpu(disk->target);
2465 	cpu->flags = le64_to_cpu(disk->flags);
2466 	cpu->limit = le64_to_cpu(disk->limit);
2467 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2468 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2469 }
2470 
2471 static inline void
2472 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2473 			       const struct btrfs_balance_args *cpu)
2474 {
2475 	memset(disk, 0, sizeof(*disk));
2476 
2477 	disk->profiles = cpu_to_le64(cpu->profiles);
2478 	disk->usage = cpu_to_le64(cpu->usage);
2479 	disk->devid = cpu_to_le64(cpu->devid);
2480 	disk->pstart = cpu_to_le64(cpu->pstart);
2481 	disk->pend = cpu_to_le64(cpu->pend);
2482 	disk->vstart = cpu_to_le64(cpu->vstart);
2483 	disk->vend = cpu_to_le64(cpu->vend);
2484 	disk->target = cpu_to_le64(cpu->target);
2485 	disk->flags = cpu_to_le64(cpu->flags);
2486 	disk->limit = cpu_to_le64(cpu->limit);
2487 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2488 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2489 }
2490 
2491 /* struct btrfs_super_block */
2492 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2493 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2494 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2495 			 generation, 64);
2496 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2497 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2498 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2499 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2500 			 struct btrfs_super_block, chunk_root_generation, 64);
2501 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2502 			 root_level, 8);
2503 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2504 			 chunk_root, 64);
2505 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2506 			 chunk_root_level, 8);
2507 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2508 			 log_root, 64);
2509 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2510 			 log_root_level, 8);
2511 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2512 			 total_bytes, 64);
2513 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2514 			 bytes_used, 64);
2515 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2516 			 sectorsize, 32);
2517 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2518 			 nodesize, 32);
2519 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2520 			 stripesize, 32);
2521 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2522 			 root_dir_objectid, 64);
2523 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2524 			 num_devices, 64);
2525 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2526 			 compat_flags, 64);
2527 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2528 			 compat_ro_flags, 64);
2529 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2530 			 incompat_flags, 64);
2531 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2532 			 csum_type, 16);
2533 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2534 			 cache_generation, 64);
2535 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2536 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2537 			 uuid_tree_generation, 64);
2538 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2539 			 block_group_root, 64);
2540 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2541 			 struct btrfs_super_block,
2542 			 block_group_root_generation, 64);
2543 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2544 			 block_group_root_level, 8);
2545 
2546 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2547 const char *btrfs_super_csum_name(u16 csum_type);
2548 const char *btrfs_super_csum_driver(u16 csum_type);
2549 size_t __attribute_const__ btrfs_get_num_csums(void);
2550 
2551 
2552 /*
2553  * The leaf data grows from end-to-front in the node.
2554  * this returns the address of the start of the last item,
2555  * which is the stop of the leaf data stack
2556  */
2557 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2558 {
2559 	u32 nr = btrfs_header_nritems(leaf);
2560 
2561 	if (nr == 0)
2562 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2563 	return btrfs_item_offset(leaf, nr - 1);
2564 }
2565 
2566 /* struct btrfs_file_extent_item */
2567 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2568 			 type, 8);
2569 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2570 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2571 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2572 			 struct btrfs_file_extent_item, offset, 64);
2573 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2574 			 struct btrfs_file_extent_item, generation, 64);
2575 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2576 			 struct btrfs_file_extent_item, num_bytes, 64);
2577 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2578 			 struct btrfs_file_extent_item, ram_bytes, 64);
2579 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2580 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2581 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2582 			 struct btrfs_file_extent_item, compression, 8);
2583 
2584 static inline unsigned long
2585 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2586 {
2587 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2588 }
2589 
2590 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2591 {
2592 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2593 }
2594 
2595 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2596 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2597 		   disk_bytenr, 64);
2598 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2599 		   generation, 64);
2600 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2601 		   disk_num_bytes, 64);
2602 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2603 		  offset, 64);
2604 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2605 		   num_bytes, 64);
2606 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2607 		   ram_bytes, 64);
2608 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2609 		   compression, 8);
2610 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2611 		   encryption, 8);
2612 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2613 		   other_encoding, 16);
2614 
2615 /*
2616  * this returns the number of bytes used by the item on disk, minus the
2617  * size of any extent headers.  If a file is compressed on disk, this is
2618  * the compressed size
2619  */
2620 static inline u32 btrfs_file_extent_inline_item_len(
2621 						const struct extent_buffer *eb,
2622 						int nr)
2623 {
2624 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2625 }
2626 
2627 /* btrfs_qgroup_status_item */
2628 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2629 		   generation, 64);
2630 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2631 		   version, 64);
2632 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2633 		   flags, 64);
2634 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2635 		   rescan, 64);
2636 
2637 /* btrfs_qgroup_info_item */
2638 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2639 		   generation, 64);
2640 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2641 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2642 		   rfer_cmpr, 64);
2643 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2644 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2645 		   excl_cmpr, 64);
2646 
2647 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2648 			 struct btrfs_qgroup_info_item, generation, 64);
2649 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2650 			 rfer, 64);
2651 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2652 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2653 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2654 			 excl, 64);
2655 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2656 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2657 
2658 /* btrfs_qgroup_limit_item */
2659 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2660 		   flags, 64);
2661 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2662 		   max_rfer, 64);
2663 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2664 		   max_excl, 64);
2665 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2666 		   rsv_rfer, 64);
2667 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2668 		   rsv_excl, 64);
2669 
2670 /* btrfs_dev_replace_item */
2671 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2672 		   struct btrfs_dev_replace_item, src_devid, 64);
2673 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2674 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2675 		   64);
2676 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2677 		   replace_state, 64);
2678 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2679 		   time_started, 64);
2680 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2681 		   time_stopped, 64);
2682 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2683 		   num_write_errors, 64);
2684 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2685 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2686 		   64);
2687 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2688 		   cursor_left, 64);
2689 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2690 		   cursor_right, 64);
2691 
2692 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2693 			 struct btrfs_dev_replace_item, src_devid, 64);
2694 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2695 			 struct btrfs_dev_replace_item,
2696 			 cont_reading_from_srcdev_mode, 64);
2697 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2698 			 struct btrfs_dev_replace_item, replace_state, 64);
2699 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2700 			 struct btrfs_dev_replace_item, time_started, 64);
2701 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2702 			 struct btrfs_dev_replace_item, time_stopped, 64);
2703 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2704 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2705 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2706 			 struct btrfs_dev_replace_item,
2707 			 num_uncorrectable_read_errors, 64);
2708 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2709 			 struct btrfs_dev_replace_item, cursor_left, 64);
2710 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2711 			 struct btrfs_dev_replace_item, cursor_right, 64);
2712 
2713 /* helper function to cast into the data area of the leaf. */
2714 #define btrfs_item_ptr(leaf, slot, type) \
2715 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2716 	btrfs_item_offset(leaf, slot)))
2717 
2718 #define btrfs_item_ptr_offset(leaf, slot) \
2719 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2720 	btrfs_item_offset(leaf, slot)))
2721 
2722 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2723 {
2724 	return crc32c(crc, address, length);
2725 }
2726 
2727 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2728 {
2729 	put_unaligned_le32(~crc, result);
2730 }
2731 
2732 static inline u64 btrfs_name_hash(const char *name, int len)
2733 {
2734        return crc32c((u32)~1, name, len);
2735 }
2736 
2737 /*
2738  * Figure the key offset of an extended inode ref
2739  */
2740 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2741                                    int len)
2742 {
2743        return (u64) crc32c(parent_objectid, name, len);
2744 }
2745 
2746 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2747 {
2748 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2749 }
2750 
2751 /* extent-tree.c */
2752 
2753 enum btrfs_inline_ref_type {
2754 	BTRFS_REF_TYPE_INVALID,
2755 	BTRFS_REF_TYPE_BLOCK,
2756 	BTRFS_REF_TYPE_DATA,
2757 	BTRFS_REF_TYPE_ANY,
2758 };
2759 
2760 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2761 				     struct btrfs_extent_inline_ref *iref,
2762 				     enum btrfs_inline_ref_type is_data);
2763 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2764 
2765 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums,
2766 				 u64 offset)
2767 {
2768 	u64 offset_in_sectors = offset >> fs_info->sectorsize_bits;
2769 
2770 	return csums + offset_in_sectors * fs_info->csum_size;
2771 }
2772 
2773 /*
2774  * Take the number of bytes to be checksummed and figure out how many leaves
2775  * it would require to store the csums for that many bytes.
2776  */
2777 static inline u64 btrfs_csum_bytes_to_leaves(
2778 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2779 {
2780 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2781 
2782 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2783 }
2784 
2785 /*
2786  * Use this if we would be adding new items, as we could split nodes as we cow
2787  * down the tree.
2788  */
2789 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2790 						  unsigned num_items)
2791 {
2792 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2793 }
2794 
2795 /*
2796  * Doing a truncate or a modification won't result in new nodes or leaves, just
2797  * what we need for COW.
2798  */
2799 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2800 						 unsigned num_items)
2801 {
2802 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2803 }
2804 
2805 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2806 			      u64 start, u64 num_bytes);
2807 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2808 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2809 			   unsigned long count);
2810 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2811 				  struct btrfs_delayed_ref_root *delayed_refs,
2812 				  struct btrfs_delayed_ref_head *head);
2813 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2814 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2815 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2816 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2817 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2818 		     int reserved);
2819 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2820 				    u64 bytenr, u64 num_bytes);
2821 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2822 int btrfs_cross_ref_exist(struct btrfs_root *root,
2823 			  u64 objectid, u64 offset, u64 bytenr, bool strict,
2824 			  struct btrfs_path *path);
2825 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2826 					     struct btrfs_root *root,
2827 					     u64 parent, u64 root_objectid,
2828 					     const struct btrfs_disk_key *key,
2829 					     int level, u64 hint,
2830 					     u64 empty_size,
2831 					     enum btrfs_lock_nesting nest);
2832 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2833 			   u64 root_id,
2834 			   struct extent_buffer *buf,
2835 			   u64 parent, int last_ref);
2836 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2837 				     struct btrfs_root *root, u64 owner,
2838 				     u64 offset, u64 ram_bytes,
2839 				     struct btrfs_key *ins);
2840 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2841 				   u64 root_objectid, u64 owner, u64 offset,
2842 				   struct btrfs_key *ins);
2843 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2844 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2845 			 struct btrfs_key *ins, int is_data, int delalloc);
2846 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2847 		  struct extent_buffer *buf, int full_backref);
2848 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2849 		  struct extent_buffer *buf, int full_backref);
2850 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2851 				struct extent_buffer *eb, u64 flags, int level);
2852 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2853 
2854 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2855 			       u64 start, u64 len, int delalloc);
2856 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2857 			      u64 len);
2858 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2859 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2860 			 struct btrfs_ref *generic_ref);
2861 
2862 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2863 
2864 /*
2865  * Different levels for to flush space when doing space reservations.
2866  *
2867  * The higher the level, the more methods we try to reclaim space.
2868  */
2869 enum btrfs_reserve_flush_enum {
2870 	/* If we are in the transaction, we can't flush anything.*/
2871 	BTRFS_RESERVE_NO_FLUSH,
2872 
2873 	/*
2874 	 * Flush space by:
2875 	 * - Running delayed inode items
2876 	 * - Allocating a new chunk
2877 	 */
2878 	BTRFS_RESERVE_FLUSH_LIMIT,
2879 
2880 	/*
2881 	 * Flush space by:
2882 	 * - Running delayed inode items
2883 	 * - Running delayed refs
2884 	 * - Running delalloc and waiting for ordered extents
2885 	 * - Allocating a new chunk
2886 	 */
2887 	BTRFS_RESERVE_FLUSH_EVICT,
2888 
2889 	/*
2890 	 * Flush space by above mentioned methods and by:
2891 	 * - Running delayed iputs
2892 	 * - Committing transaction
2893 	 *
2894 	 * Can be interrupted by a fatal signal.
2895 	 */
2896 	BTRFS_RESERVE_FLUSH_DATA,
2897 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2898 	BTRFS_RESERVE_FLUSH_ALL,
2899 
2900 	/*
2901 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2902 	 * global rsv.
2903 	 *
2904 	 * Can be interrupted by a fatal signal.
2905 	 */
2906 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2907 };
2908 
2909 enum btrfs_flush_state {
2910 	FLUSH_DELAYED_ITEMS_NR	=	1,
2911 	FLUSH_DELAYED_ITEMS	=	2,
2912 	FLUSH_DELAYED_REFS_NR	=	3,
2913 	FLUSH_DELAYED_REFS	=	4,
2914 	FLUSH_DELALLOC		=	5,
2915 	FLUSH_DELALLOC_WAIT	=	6,
2916 	FLUSH_DELALLOC_FULL	=	7,
2917 	ALLOC_CHUNK		=	8,
2918 	ALLOC_CHUNK_FORCE	=	9,
2919 	RUN_DELAYED_IPUTS	=	10,
2920 	COMMIT_TRANS		=	11,
2921 };
2922 
2923 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2924 				     struct btrfs_block_rsv *rsv,
2925 				     int nitems, bool use_global_rsv);
2926 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2927 				      struct btrfs_block_rsv *rsv);
2928 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2929 
2930 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2931 				    u64 disk_num_bytes, bool noflush);
2932 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2933 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2934 				   u64 start, u64 end);
2935 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2936 			 u64 num_bytes, u64 *actual_bytes);
2937 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2938 
2939 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2940 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2941 					 struct btrfs_fs_info *fs_info);
2942 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2943 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2944 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2945 
2946 /* ctree.c */
2947 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2948 		     int *slot);
2949 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2950 int btrfs_previous_item(struct btrfs_root *root,
2951 			struct btrfs_path *path, u64 min_objectid,
2952 			int type);
2953 int btrfs_previous_extent_item(struct btrfs_root *root,
2954 			struct btrfs_path *path, u64 min_objectid);
2955 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2956 			     struct btrfs_path *path,
2957 			     const struct btrfs_key *new_key);
2958 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2959 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2960 			struct btrfs_key *key, int lowest_level,
2961 			u64 min_trans);
2962 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2963 			 struct btrfs_path *path,
2964 			 u64 min_trans);
2965 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2966 					   int slot);
2967 
2968 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2969 		    struct btrfs_root *root, struct extent_buffer *buf,
2970 		    struct extent_buffer *parent, int parent_slot,
2971 		    struct extent_buffer **cow_ret,
2972 		    enum btrfs_lock_nesting nest);
2973 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2974 		      struct btrfs_root *root,
2975 		      struct extent_buffer *buf,
2976 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2977 int btrfs_block_can_be_shared(struct btrfs_root *root,
2978 			      struct extent_buffer *buf);
2979 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2980 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2981 int btrfs_split_item(struct btrfs_trans_handle *trans,
2982 		     struct btrfs_root *root,
2983 		     struct btrfs_path *path,
2984 		     const struct btrfs_key *new_key,
2985 		     unsigned long split_offset);
2986 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2987 			 struct btrfs_root *root,
2988 			 struct btrfs_path *path,
2989 			 const struct btrfs_key *new_key);
2990 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2991 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2992 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2993 		      const struct btrfs_key *key, struct btrfs_path *p,
2994 		      int ins_len, int cow);
2995 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2996 			  struct btrfs_path *p, u64 time_seq);
2997 int btrfs_search_slot_for_read(struct btrfs_root *root,
2998 			       const struct btrfs_key *key,
2999 			       struct btrfs_path *p, int find_higher,
3000 			       int return_any);
3001 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
3002 		       struct btrfs_root *root, struct extent_buffer *parent,
3003 		       int start_slot, u64 *last_ret,
3004 		       struct btrfs_key *progress);
3005 void btrfs_release_path(struct btrfs_path *p);
3006 struct btrfs_path *btrfs_alloc_path(void);
3007 void btrfs_free_path(struct btrfs_path *p);
3008 
3009 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3010 		   struct btrfs_path *path, int slot, int nr);
3011 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
3012 				 struct btrfs_root *root,
3013 				 struct btrfs_path *path)
3014 {
3015 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
3016 }
3017 
3018 /*
3019  * Describes a batch of items to insert in a btree. This is used by
3020  * btrfs_insert_empty_items().
3021  */
3022 struct btrfs_item_batch {
3023 	/*
3024 	 * Pointer to an array containing the keys of the items to insert (in
3025 	 * sorted order).
3026 	 */
3027 	const struct btrfs_key *keys;
3028 	/* Pointer to an array containing the data size for each item to insert. */
3029 	const u32 *data_sizes;
3030 	/*
3031 	 * The sum of data sizes for all items. The caller can compute this while
3032 	 * setting up the data_sizes array, so it ends up being more efficient
3033 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
3034 	 * doing it, as it would avoid an extra loop over a potentially large
3035 	 * array, and in the case of setup_item_for_insert(), we would be doing
3036 	 * it while holding a write lock on a leaf and often on upper level nodes
3037 	 * too, unnecessarily increasing the size of a critical section.
3038 	 */
3039 	u32 total_data_size;
3040 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3041 	int nr;
3042 };
3043 
3044 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3045 				 struct btrfs_path *path,
3046 				 const struct btrfs_key *key,
3047 				 u32 data_size);
3048 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3049 		      const struct btrfs_key *key, void *data, u32 data_size);
3050 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3051 			     struct btrfs_root *root,
3052 			     struct btrfs_path *path,
3053 			     const struct btrfs_item_batch *batch);
3054 
3055 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3056 					  struct btrfs_root *root,
3057 					  struct btrfs_path *path,
3058 					  const struct btrfs_key *key,
3059 					  u32 data_size)
3060 {
3061 	struct btrfs_item_batch batch;
3062 
3063 	batch.keys = key;
3064 	batch.data_sizes = &data_size;
3065 	batch.total_data_size = data_size;
3066 	batch.nr = 1;
3067 
3068 	return btrfs_insert_empty_items(trans, root, path, &batch);
3069 }
3070 
3071 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3072 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3073 			u64 time_seq);
3074 
3075 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3076 			   struct btrfs_path *path);
3077 
3078 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
3079 			      struct btrfs_path *path);
3080 
3081 /*
3082  * Search in @root for a given @key, and store the slot found in @found_key.
3083  *
3084  * @root:	The root node of the tree.
3085  * @key:	The key we are looking for.
3086  * @found_key:	Will hold the found item.
3087  * @path:	Holds the current slot/leaf.
3088  * @iter_ret:	Contains the value returned from btrfs_search_slot or
3089  * 		btrfs_get_next_valid_item, whichever was executed last.
3090  *
3091  * The @iter_ret is an output variable that will contain the return value of
3092  * btrfs_search_slot, if it encountered an error, or the value returned from
3093  * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
3094  * slot was found, 1 if there were no more leaves, and <0 if there was an error.
3095  *
3096  * It's recommended to use a separate variable for iter_ret and then use it to
3097  * set the function return value so there's no confusion of the 0/1/errno
3098  * values stemming from btrfs_search_slot.
3099  */
3100 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
3101 	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
3102 		(iter_ret) >= 0 &&						\
3103 		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
3104 		(path)->slots[0]++						\
3105 	)
3106 
3107 static inline int btrfs_next_old_item(struct btrfs_root *root,
3108 				      struct btrfs_path *p, u64 time_seq)
3109 {
3110 	++p->slots[0];
3111 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3112 		return btrfs_next_old_leaf(root, p, time_seq);
3113 	return 0;
3114 }
3115 
3116 /*
3117  * Search the tree again to find a leaf with greater keys.
3118  *
3119  * Returns 0 if it found something or 1 if there are no greater leaves.
3120  * Returns < 0 on error.
3121  */
3122 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3123 {
3124 	return btrfs_next_old_leaf(root, path, 0);
3125 }
3126 
3127 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3128 {
3129 	return btrfs_next_old_item(root, p, 0);
3130 }
3131 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3132 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3133 				     int for_reloc);
3134 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3135 			struct btrfs_root *root,
3136 			struct extent_buffer *node,
3137 			struct extent_buffer *parent);
3138 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3139 {
3140 	/*
3141 	 * Do it this way so we only ever do one test_bit in the normal case.
3142 	 */
3143 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3144 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3145 			return 2;
3146 		return 1;
3147 	}
3148 	return 0;
3149 }
3150 
3151 /*
3152  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3153  * anything except sleeping. This function is used to check the status of
3154  * the fs.
3155  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3156  * since setting and checking for SB_RDONLY in the superblock's flags is not
3157  * atomic.
3158  */
3159 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3160 {
3161 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3162 		btrfs_fs_closing(fs_info);
3163 }
3164 
3165 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3166 {
3167 	sb->s_flags |= SB_RDONLY;
3168 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3169 }
3170 
3171 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3172 {
3173 	sb->s_flags &= ~SB_RDONLY;
3174 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3175 }
3176 
3177 /* root-item.c */
3178 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3179 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3180 		       int name_len);
3181 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3182 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3183 		       int name_len);
3184 int btrfs_del_root(struct btrfs_trans_handle *trans,
3185 		   const struct btrfs_key *key);
3186 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3187 		      const struct btrfs_key *key,
3188 		      struct btrfs_root_item *item);
3189 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3190 				   struct btrfs_root *root,
3191 				   struct btrfs_key *key,
3192 				   struct btrfs_root_item *item);
3193 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3194 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3195 		    struct btrfs_key *root_key);
3196 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3197 void btrfs_set_root_node(struct btrfs_root_item *item,
3198 			 struct extent_buffer *node);
3199 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3200 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3201 			     struct btrfs_root *root);
3202 
3203 /* uuid-tree.c */
3204 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3205 			u64 subid);
3206 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3207 			u64 subid);
3208 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3209 
3210 /* dir-item.c */
3211 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3212 			  const char *name, int name_len);
3213 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3214 			  int name_len, struct btrfs_inode *dir,
3215 			  struct btrfs_key *location, u8 type, u64 index);
3216 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3217 					     struct btrfs_root *root,
3218 					     struct btrfs_path *path, u64 dir,
3219 					     const char *name, int name_len,
3220 					     int mod);
3221 struct btrfs_dir_item *
3222 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3223 			    struct btrfs_root *root,
3224 			    struct btrfs_path *path, u64 dir,
3225 			    u64 index, const char *name, int name_len,
3226 			    int mod);
3227 struct btrfs_dir_item *
3228 btrfs_search_dir_index_item(struct btrfs_root *root,
3229 			    struct btrfs_path *path, u64 dirid,
3230 			    const char *name, int name_len);
3231 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3232 			      struct btrfs_root *root,
3233 			      struct btrfs_path *path,
3234 			      struct btrfs_dir_item *di);
3235 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3236 			    struct btrfs_root *root,
3237 			    struct btrfs_path *path, u64 objectid,
3238 			    const char *name, u16 name_len,
3239 			    const void *data, u16 data_len);
3240 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3241 					  struct btrfs_root *root,
3242 					  struct btrfs_path *path, u64 dir,
3243 					  const char *name, u16 name_len,
3244 					  int mod);
3245 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3246 						 struct btrfs_path *path,
3247 						 const char *name,
3248 						 int name_len);
3249 
3250 /* orphan.c */
3251 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3252 			     struct btrfs_root *root, u64 offset);
3253 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3254 			  struct btrfs_root *root, u64 offset);
3255 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3256 
3257 /* file-item.c */
3258 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3259 		    struct btrfs_root *root, u64 bytenr, u64 len);
3260 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3261 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3262 			     struct btrfs_root *root,
3263 			     u64 objectid, u64 pos,
3264 			     u64 disk_offset, u64 disk_num_bytes,
3265 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3266 			     u8 compression, u8 encryption, u16 other_encoding);
3267 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3268 			     struct btrfs_root *root,
3269 			     struct btrfs_path *path, u64 objectid,
3270 			     u64 bytenr, int mod);
3271 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3272 			   struct btrfs_root *root,
3273 			   struct btrfs_ordered_sum *sums);
3274 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3275 				u64 offset, bool one_ordered);
3276 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3277 			     struct list_head *list, int search_commit);
3278 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3279 				     const struct btrfs_path *path,
3280 				     struct btrfs_file_extent_item *fi,
3281 				     const bool new_inline,
3282 				     struct extent_map *em);
3283 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3284 					u64 len);
3285 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3286 				      u64 len);
3287 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3288 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3289 
3290 /* inode.c */
3291 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num);
3292 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio,
3293 			int mirror_num, enum btrfs_compression_type compress_type);
3294 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
3295 			    u32 pgoff, u8 *csum, const u8 * const csum_expected);
3296 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3297 			  u32 bio_offset, struct page *page, u32 pgoff);
3298 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3299 				    u32 bio_offset, struct page *page,
3300 				    u64 start, u64 end);
3301 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio,
3302 			  u32 bio_offset, struct page *page, u32 pgoff);
3303 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3304 					   u64 start, u64 len);
3305 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3306 			      u64 *orig_start, u64 *orig_block_len,
3307 			      u64 *ram_bytes, bool strict);
3308 
3309 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3310 				struct btrfs_inode *inode);
3311 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3312 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3313 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3314 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3315 		       const char *name, int name_len);
3316 int btrfs_add_link(struct btrfs_trans_handle *trans,
3317 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3318 		   const char *name, int name_len, int add_backref, u64 index);
3319 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3320 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3321 			 int front);
3322 
3323 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3324 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3325 			       bool in_reclaim_context);
3326 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3327 			      unsigned int extra_bits,
3328 			      struct extent_state **cached_state);
3329 struct btrfs_new_inode_args {
3330 	/* Input */
3331 	struct inode *dir;
3332 	struct dentry *dentry;
3333 	struct inode *inode;
3334 	bool orphan;
3335 	bool subvol;
3336 
3337 	/*
3338 	 * Output from btrfs_new_inode_prepare(), input to
3339 	 * btrfs_create_new_inode().
3340 	 */
3341 	struct posix_acl *default_acl;
3342 	struct posix_acl *acl;
3343 };
3344 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
3345 			    unsigned int *trans_num_items);
3346 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
3347 			   struct btrfs_new_inode_args *args);
3348 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
3349 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns,
3350 				     struct inode *dir);
3351  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3352 			        u32 bits);
3353 void btrfs_clear_delalloc_extent(struct inode *inode,
3354 				 struct extent_state *state, u32 bits);
3355 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3356 				 struct extent_state *other);
3357 void btrfs_split_delalloc_extent(struct inode *inode,
3358 				 struct extent_state *orig, u64 split);
3359 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3360 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3361 void btrfs_evict_inode(struct inode *inode);
3362 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3363 struct inode *btrfs_alloc_inode(struct super_block *sb);
3364 void btrfs_destroy_inode(struct inode *inode);
3365 void btrfs_free_inode(struct inode *inode);
3366 int btrfs_drop_inode(struct inode *inode);
3367 int __init btrfs_init_cachep(void);
3368 void __cold btrfs_destroy_cachep(void);
3369 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3370 			      struct btrfs_root *root, struct btrfs_path *path);
3371 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3372 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3373 				    struct page *page, size_t pg_offset,
3374 				    u64 start, u64 end);
3375 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3376 		       struct btrfs_root *root, struct btrfs_inode *inode);
3377 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3378 				struct btrfs_root *root, struct btrfs_inode *inode);
3379 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3380 		struct btrfs_inode *inode);
3381 int btrfs_orphan_cleanup(struct btrfs_root *root);
3382 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3383 void btrfs_add_delayed_iput(struct inode *inode);
3384 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3385 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3386 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3387 			      u64 start, u64 num_bytes, u64 min_size,
3388 			      loff_t actual_len, u64 *alloc_hint);
3389 int btrfs_prealloc_file_range_trans(struct inode *inode,
3390 				    struct btrfs_trans_handle *trans, int mode,
3391 				    u64 start, u64 num_bytes, u64 min_size,
3392 				    loff_t actual_len, u64 *alloc_hint);
3393 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3394 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3395 		struct writeback_control *wbc);
3396 int btrfs_writepage_cow_fixup(struct page *page);
3397 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3398 					  struct page *page, u64 start,
3399 					  u64 end, bool uptodate);
3400 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
3401 					     int compress_type);
3402 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
3403 					  u64 file_offset, u64 disk_bytenr,
3404 					  u64 disk_io_size,
3405 					  struct page **pages);
3406 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3407 			   struct btrfs_ioctl_encoded_io_args *encoded);
3408 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3409 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3410 
3411 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before);
3412 
3413 extern const struct dentry_operations btrfs_dentry_operations;
3414 
3415 /* Inode locking type flags, by default the exclusive lock is taken */
3416 #define BTRFS_ILOCK_SHARED	(1U << 0)
3417 #define BTRFS_ILOCK_TRY 	(1U << 1)
3418 #define BTRFS_ILOCK_MMAP	(1U << 2)
3419 
3420 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3421 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3422 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3423 			      const u64 add_bytes,
3424 			      const u64 del_bytes);
3425 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
3426 
3427 /* ioctl.c */
3428 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3429 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3430 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3431 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3432 		       struct dentry *dentry, struct fileattr *fa);
3433 int btrfs_ioctl_get_supported_features(void __user *arg);
3434 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3435 int __pure btrfs_is_empty_uuid(u8 *uuid);
3436 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3437 		      struct btrfs_ioctl_defrag_range_args *range,
3438 		      u64 newer_than, unsigned long max_to_defrag);
3439 void btrfs_get_block_group_info(struct list_head *groups_list,
3440 				struct btrfs_ioctl_space_info *space);
3441 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3442 			       struct btrfs_ioctl_balance_args *bargs);
3443 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3444 			enum btrfs_exclusive_operation type);
3445 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3446 				 enum btrfs_exclusive_operation type);
3447 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3448 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3449 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3450 			  enum btrfs_exclusive_operation op);
3451 
3452 
3453 /* file.c */
3454 int __init btrfs_auto_defrag_init(void);
3455 void __cold btrfs_auto_defrag_exit(void);
3456 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3457 			   struct btrfs_inode *inode, u32 extent_thresh);
3458 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3459 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3460 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3461 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3462 			     int skip_pinned);
3463 extern const struct file_operations btrfs_file_operations;
3464 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3465 		       struct btrfs_root *root, struct btrfs_inode *inode,
3466 		       struct btrfs_drop_extents_args *args);
3467 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3468 			   struct btrfs_path *path, const u64 start,
3469 			   const u64 end,
3470 			   struct btrfs_replace_extent_info *extent_info,
3471 			   struct btrfs_trans_handle **trans_out);
3472 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3473 			      struct btrfs_inode *inode, u64 start, u64 end);
3474 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3475 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3476 int btrfs_release_file(struct inode *inode, struct file *file);
3477 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3478 		      size_t num_pages, loff_t pos, size_t write_bytes,
3479 		      struct extent_state **cached, bool noreserve);
3480 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3481 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3482 			   size_t *write_bytes);
3483 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3484 
3485 /* tree-defrag.c */
3486 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3487 			struct btrfs_root *root);
3488 
3489 /* super.c */
3490 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3491 			unsigned long new_flags);
3492 int btrfs_sync_fs(struct super_block *sb, int wait);
3493 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3494 					  u64 subvol_objectid);
3495 
3496 static inline __printf(2, 3) __cold
3497 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3498 {
3499 }
3500 
3501 #ifdef CONFIG_PRINTK_INDEX
3502 
3503 #define btrfs_printk(fs_info, fmt, args...)					\
3504 do {										\
3505 	printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt);	\
3506 	_btrfs_printk(fs_info, fmt, ##args);					\
3507 } while (0)
3508 
3509 __printf(2, 3)
3510 __cold
3511 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3512 
3513 #elif defined(CONFIG_PRINTK)
3514 
3515 #define btrfs_printk(fs_info, fmt, args...)				\
3516 	_btrfs_printk(fs_info, fmt, ##args)
3517 
3518 __printf(2, 3)
3519 __cold
3520 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3521 
3522 #else
3523 
3524 #define btrfs_printk(fs_info, fmt, args...) \
3525 	btrfs_no_printk(fs_info, fmt, ##args)
3526 #endif
3527 
3528 #define btrfs_emerg(fs_info, fmt, args...) \
3529 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3530 #define btrfs_alert(fs_info, fmt, args...) \
3531 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3532 #define btrfs_crit(fs_info, fmt, args...) \
3533 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3534 #define btrfs_err(fs_info, fmt, args...) \
3535 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3536 #define btrfs_warn(fs_info, fmt, args...) \
3537 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3538 #define btrfs_notice(fs_info, fmt, args...) \
3539 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3540 #define btrfs_info(fs_info, fmt, args...) \
3541 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3542 
3543 /*
3544  * Wrappers that use printk_in_rcu
3545  */
3546 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3547 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3548 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3549 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3550 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3551 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3552 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3553 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3554 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3555 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3556 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3557 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3558 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3559 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3560 
3561 /*
3562  * Wrappers that use a ratelimited printk_in_rcu
3563  */
3564 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3565 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3566 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3567 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3568 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3569 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3570 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3571 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3572 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3573 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3574 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3575 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3576 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3577 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3578 
3579 /*
3580  * Wrappers that use a ratelimited printk
3581  */
3582 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3583 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3584 #define btrfs_alert_rl(fs_info, fmt, args...) \
3585 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3586 #define btrfs_crit_rl(fs_info, fmt, args...) \
3587 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3588 #define btrfs_err_rl(fs_info, fmt, args...) \
3589 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3590 #define btrfs_warn_rl(fs_info, fmt, args...) \
3591 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3592 #define btrfs_notice_rl(fs_info, fmt, args...) \
3593 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3594 #define btrfs_info_rl(fs_info, fmt, args...) \
3595 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3596 
3597 #if defined(CONFIG_DYNAMIC_DEBUG)
3598 #define btrfs_debug(fs_info, fmt, args...)				\
3599 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3600 				   fs_info, KERN_DEBUG fmt, ##args)
3601 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3602 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3603 				   fs_info, KERN_DEBUG fmt, ##args)
3604 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3605 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3606 				   fs_info, KERN_DEBUG fmt, ##args)
3607 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3608 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3609 				   fs_info, KERN_DEBUG fmt, ##args)
3610 #elif defined(DEBUG)
3611 #define btrfs_debug(fs_info, fmt, args...) \
3612 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3613 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3614 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3615 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3616 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3617 #define btrfs_debug_rl(fs_info, fmt, args...) \
3618 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3619 #else
3620 #define btrfs_debug(fs_info, fmt, args...) \
3621 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3622 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3623 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3624 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3625 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3626 #define btrfs_debug_rl(fs_info, fmt, args...) \
3627 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3628 #endif
3629 
3630 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3631 do {							\
3632 	rcu_read_lock();				\
3633 	btrfs_printk(fs_info, fmt, ##args);		\
3634 	rcu_read_unlock();				\
3635 } while (0)
3636 
3637 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3638 do {							\
3639 	rcu_read_lock();				\
3640 	btrfs_no_printk(fs_info, fmt, ##args);		\
3641 	rcu_read_unlock();				\
3642 } while (0)
3643 
3644 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3645 do {								\
3646 	static DEFINE_RATELIMIT_STATE(_rs,			\
3647 		DEFAULT_RATELIMIT_INTERVAL,			\
3648 		DEFAULT_RATELIMIT_BURST);       		\
3649 	if (__ratelimit(&_rs))					\
3650 		btrfs_printk(fs_info, fmt, ##args);		\
3651 } while (0)
3652 
3653 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3654 do {								\
3655 	rcu_read_lock();					\
3656 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3657 	rcu_read_unlock();					\
3658 } while (0)
3659 
3660 #ifdef CONFIG_BTRFS_ASSERT
3661 __cold __noreturn
3662 static inline void assertfail(const char *expr, const char *file, int line)
3663 {
3664 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3665 	BUG();
3666 }
3667 
3668 #define ASSERT(expr)						\
3669 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3670 
3671 #else
3672 static inline void assertfail(const char *expr, const char* file, int line) { }
3673 #define ASSERT(expr)	(void)(expr)
3674 #endif
3675 
3676 #if BITS_PER_LONG == 32
3677 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3678 /*
3679  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3680  * addresses of extents.
3681  *
3682  * For 4K page size it's about 10T, for 64K it's 160T.
3683  */
3684 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3685 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3686 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3687 #endif
3688 
3689 /*
3690  * Get the correct offset inside the page of extent buffer.
3691  *
3692  * @eb:		target extent buffer
3693  * @start:	offset inside the extent buffer
3694  *
3695  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3696  */
3697 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3698 					   unsigned long offset)
3699 {
3700 	/*
3701 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3702 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3703 	 *
3704 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3705 	 * to the eb, thus we have to take the eb->start into consideration.
3706 	 */
3707 	return offset_in_page(offset + eb->start);
3708 }
3709 
3710 static inline unsigned long get_eb_page_index(unsigned long offset)
3711 {
3712 	/*
3713 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3714 	 *
3715 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3716 	 * and have ensured that all tree blocks are contained in one page,
3717 	 * thus we always get index == 0.
3718 	 */
3719 	return offset >> PAGE_SHIFT;
3720 }
3721 
3722 /*
3723  * Use that for functions that are conditionally exported for sanity tests but
3724  * otherwise static
3725  */
3726 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3727 #define EXPORT_FOR_TESTS static
3728 #else
3729 #define EXPORT_FOR_TESTS
3730 #endif
3731 
3732 __cold
3733 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3734 {
3735 	btrfs_err(fs_info,
3736 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3737 }
3738 
3739 __printf(5, 6)
3740 __cold
3741 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3742 		     unsigned int line, int errno, const char *fmt, ...);
3743 
3744 const char * __attribute_const__ btrfs_decode_error(int errno);
3745 
3746 __cold
3747 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3748 			       const char *function,
3749 			       unsigned int line, int errno);
3750 
3751 /*
3752  * Call btrfs_abort_transaction as early as possible when an error condition is
3753  * detected, that way the exact line number is reported.
3754  */
3755 #define btrfs_abort_transaction(trans, errno)		\
3756 do {								\
3757 	/* Report first abort since mount */			\
3758 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3759 			&((trans)->fs_info->fs_state))) {	\
3760 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3761 			WARN(1, KERN_DEBUG				\
3762 			"BTRFS: Transaction aborted (error %d)\n",	\
3763 			(errno));					\
3764 		} else {						\
3765 			btrfs_debug((trans)->fs_info,			\
3766 				    "Transaction aborted (error %d)", \
3767 				  (errno));			\
3768 		}						\
3769 	}							\
3770 	__btrfs_abort_transaction((trans), __func__,		\
3771 				  __LINE__, (errno));		\
3772 } while (0)
3773 
3774 #ifdef CONFIG_PRINTK_INDEX
3775 
3776 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3777 do {									\
3778 	printk_index_subsys_emit(					\
3779 		"BTRFS: error (device %s%s) in %s:%d: errno=%d %s",	\
3780 		KERN_CRIT, fmt);					\
3781 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3782 				(errno), fmt, ##args);			\
3783 } while (0)
3784 
3785 #else
3786 
3787 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3788 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,		\
3789 				(errno), fmt, ##args)
3790 
3791 #endif
3792 
3793 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3794 						   &(fs_info)->fs_state)))
3795 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3796 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3797 			   &(fs_info)->fs_state)))
3798 
3799 __printf(5, 6)
3800 __cold
3801 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3802 		   unsigned int line, int errno, const char *fmt, ...);
3803 /*
3804  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3805  * will panic().  Otherwise we BUG() here.
3806  */
3807 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3808 do {									\
3809 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3810 	BUG();								\
3811 } while (0)
3812 
3813 
3814 /* compatibility and incompatibility defines */
3815 
3816 #define btrfs_set_fs_incompat(__fs_info, opt) \
3817 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3818 				#opt)
3819 
3820 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3821 					   u64 flag, const char* name)
3822 {
3823 	struct btrfs_super_block *disk_super;
3824 	u64 features;
3825 
3826 	disk_super = fs_info->super_copy;
3827 	features = btrfs_super_incompat_flags(disk_super);
3828 	if (!(features & flag)) {
3829 		spin_lock(&fs_info->super_lock);
3830 		features = btrfs_super_incompat_flags(disk_super);
3831 		if (!(features & flag)) {
3832 			features |= flag;
3833 			btrfs_set_super_incompat_flags(disk_super, features);
3834 			btrfs_info(fs_info,
3835 				"setting incompat feature flag for %s (0x%llx)",
3836 				name, flag);
3837 		}
3838 		spin_unlock(&fs_info->super_lock);
3839 	}
3840 }
3841 
3842 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3843 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3844 				  #opt)
3845 
3846 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3847 					     u64 flag, const char* name)
3848 {
3849 	struct btrfs_super_block *disk_super;
3850 	u64 features;
3851 
3852 	disk_super = fs_info->super_copy;
3853 	features = btrfs_super_incompat_flags(disk_super);
3854 	if (features & flag) {
3855 		spin_lock(&fs_info->super_lock);
3856 		features = btrfs_super_incompat_flags(disk_super);
3857 		if (features & flag) {
3858 			features &= ~flag;
3859 			btrfs_set_super_incompat_flags(disk_super, features);
3860 			btrfs_info(fs_info,
3861 				"clearing incompat feature flag for %s (0x%llx)",
3862 				name, flag);
3863 		}
3864 		spin_unlock(&fs_info->super_lock);
3865 	}
3866 }
3867 
3868 #define btrfs_fs_incompat(fs_info, opt) \
3869 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3870 
3871 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3872 {
3873 	struct btrfs_super_block *disk_super;
3874 	disk_super = fs_info->super_copy;
3875 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3876 }
3877 
3878 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3879 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3880 				 #opt)
3881 
3882 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3883 					    u64 flag, const char *name)
3884 {
3885 	struct btrfs_super_block *disk_super;
3886 	u64 features;
3887 
3888 	disk_super = fs_info->super_copy;
3889 	features = btrfs_super_compat_ro_flags(disk_super);
3890 	if (!(features & flag)) {
3891 		spin_lock(&fs_info->super_lock);
3892 		features = btrfs_super_compat_ro_flags(disk_super);
3893 		if (!(features & flag)) {
3894 			features |= flag;
3895 			btrfs_set_super_compat_ro_flags(disk_super, features);
3896 			btrfs_info(fs_info,
3897 				"setting compat-ro feature flag for %s (0x%llx)",
3898 				name, flag);
3899 		}
3900 		spin_unlock(&fs_info->super_lock);
3901 	}
3902 }
3903 
3904 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3905 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3906 				   #opt)
3907 
3908 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3909 					      u64 flag, const char *name)
3910 {
3911 	struct btrfs_super_block *disk_super;
3912 	u64 features;
3913 
3914 	disk_super = fs_info->super_copy;
3915 	features = btrfs_super_compat_ro_flags(disk_super);
3916 	if (features & flag) {
3917 		spin_lock(&fs_info->super_lock);
3918 		features = btrfs_super_compat_ro_flags(disk_super);
3919 		if (features & flag) {
3920 			features &= ~flag;
3921 			btrfs_set_super_compat_ro_flags(disk_super, features);
3922 			btrfs_info(fs_info,
3923 				"clearing compat-ro feature flag for %s (0x%llx)",
3924 				name, flag);
3925 		}
3926 		spin_unlock(&fs_info->super_lock);
3927 	}
3928 }
3929 
3930 #define btrfs_fs_compat_ro(fs_info, opt) \
3931 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3932 
3933 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3934 {
3935 	struct btrfs_super_block *disk_super;
3936 	disk_super = fs_info->super_copy;
3937 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3938 }
3939 
3940 /* acl.c */
3941 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3942 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3943 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3944 		  struct posix_acl *acl, int type);
3945 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode,
3946 		    struct posix_acl *acl, int type);
3947 #else
3948 #define btrfs_get_acl NULL
3949 #define btrfs_set_acl NULL
3950 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans,
3951 				  struct inode *inode, struct posix_acl *acl,
3952 				  int type)
3953 {
3954 	return -EOPNOTSUPP;
3955 }
3956 #endif
3957 
3958 /* relocation.c */
3959 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3960 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3961 			  struct btrfs_root *root);
3962 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3963 			    struct btrfs_root *root);
3964 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3965 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3966 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3967 			  struct btrfs_root *root, struct extent_buffer *buf,
3968 			  struct extent_buffer *cow);
3969 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3970 			      u64 *bytes_to_reserve);
3971 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3972 			      struct btrfs_pending_snapshot *pending);
3973 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3974 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3975 				   u64 bytenr);
3976 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3977 
3978 /* scrub.c */
3979 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3980 		    u64 end, struct btrfs_scrub_progress *progress,
3981 		    int readonly, int is_dev_replace);
3982 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3983 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3984 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3985 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3986 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3987 			 struct btrfs_scrub_progress *progress);
3988 static inline void btrfs_init_full_stripe_locks_tree(
3989 			struct btrfs_full_stripe_locks_tree *locks_root)
3990 {
3991 	locks_root->root = RB_ROOT;
3992 	mutex_init(&locks_root->lock);
3993 }
3994 
3995 /* dev-replace.c */
3996 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3997 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3998 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3999 
4000 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
4001 {
4002 	btrfs_bio_counter_sub(fs_info, 1);
4003 }
4004 
4005 static inline int is_fstree(u64 rootid)
4006 {
4007 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
4008 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
4009 	      !btrfs_qgroup_level(rootid)))
4010 		return 1;
4011 	return 0;
4012 }
4013 
4014 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
4015 {
4016 	return signal_pending(current);
4017 }
4018 
4019 /* verity.c */
4020 #ifdef CONFIG_FS_VERITY
4021 
4022 extern const struct fsverity_operations btrfs_verityops;
4023 int btrfs_drop_verity_items(struct btrfs_inode *inode);
4024 
4025 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
4026 		   encryption, 8);
4027 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
4028 		   size, 64);
4029 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
4030 			 struct btrfs_verity_descriptor_item, encryption, 8);
4031 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
4032 			 struct btrfs_verity_descriptor_item, size, 64);
4033 
4034 #else
4035 
4036 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
4037 {
4038 	return 0;
4039 }
4040 
4041 #endif
4042 
4043 /* Sanity test specific functions */
4044 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4045 void btrfs_test_destroy_inode(struct inode *inode);
4046 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4047 {
4048 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
4049 }
4050 #else
4051 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
4052 {
4053 	return 0;
4054 }
4055 #endif
4056 
4057 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
4058 {
4059 	return fs_info->zone_size > 0;
4060 }
4061 
4062 /*
4063  * Count how many fs_info->max_extent_size cover the @size
4064  */
4065 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size)
4066 {
4067 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4068 	if (!fs_info)
4069 		return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
4070 #endif
4071 
4072 	return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size);
4073 }
4074 
4075 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
4076 {
4077 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
4078 }
4079 
4080 /*
4081  * We use page status Private2 to indicate there is an ordered extent with
4082  * unfinished IO.
4083  *
4084  * Rename the Private2 accessors to Ordered, to improve readability.
4085  */
4086 #define PageOrdered(page)		PagePrivate2(page)
4087 #define SetPageOrdered(page)		SetPagePrivate2(page)
4088 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
4089 #define folio_test_ordered(folio)	folio_test_private_2(folio)
4090 #define folio_set_ordered(folio)	folio_set_private_2(folio)
4091 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
4092 
4093 #endif
4094