xref: /openbmc/linux/fs/btrfs/ctree.h (revision 294299b3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #ifndef BTRFS_CTREE_H
7 #define BTRFS_CTREE_H
8 
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/highmem.h>
12 #include <linux/fs.h>
13 #include <linux/rwsem.h>
14 #include <linux/semaphore.h>
15 #include <linux/completion.h>
16 #include <linux/backing-dev.h>
17 #include <linux/wait.h>
18 #include <linux/slab.h>
19 #include <trace/events/btrfs.h>
20 #include <asm/unaligned.h>
21 #include <linux/pagemap.h>
22 #include <linux/btrfs.h>
23 #include <linux/btrfs_tree.h>
24 #include <linux/workqueue.h>
25 #include <linux/security.h>
26 #include <linux/sizes.h>
27 #include <linux/dynamic_debug.h>
28 #include <linux/refcount.h>
29 #include <linux/crc32c.h>
30 #include <linux/iomap.h>
31 #include "extent-io-tree.h"
32 #include "extent_io.h"
33 #include "extent_map.h"
34 #include "async-thread.h"
35 #include "block-rsv.h"
36 #include "locking.h"
37 
38 struct btrfs_trans_handle;
39 struct btrfs_transaction;
40 struct btrfs_pending_snapshot;
41 struct btrfs_delayed_ref_root;
42 struct btrfs_space_info;
43 struct btrfs_block_group;
44 extern struct kmem_cache *btrfs_trans_handle_cachep;
45 extern struct kmem_cache *btrfs_bit_radix_cachep;
46 extern struct kmem_cache *btrfs_path_cachep;
47 extern struct kmem_cache *btrfs_free_space_cachep;
48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49 struct btrfs_ordered_sum;
50 struct btrfs_ref;
51 struct btrfs_bio;
52 struct btrfs_ioctl_encoded_io_args;
53 
54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
55 
56 /*
57  * Maximum number of mirrors that can be available for all profiles counting
58  * the target device of dev-replace as one. During an active device replace
59  * procedure, the target device of the copy operation is a mirror for the
60  * filesystem data as well that can be used to read data in order to repair
61  * read errors on other disks.
62  *
63  * Current value is derived from RAID1C4 with 4 copies.
64  */
65 #define BTRFS_MAX_MIRRORS (4 + 1)
66 
67 #define BTRFS_MAX_LEVEL 8
68 
69 #define BTRFS_OLDEST_GENERATION	0ULL
70 
71 /*
72  * we can actually store much bigger names, but lets not confuse the rest
73  * of linux
74  */
75 #define BTRFS_NAME_LEN 255
76 
77 /*
78  * Theoretical limit is larger, but we keep this down to a sane
79  * value. That should limit greatly the possibility of collisions on
80  * inode ref items.
81  */
82 #define BTRFS_LINK_MAX 65535U
83 
84 #define BTRFS_EMPTY_DIR_SIZE 0
85 
86 /* ioprio of readahead is set to idle */
87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
88 
89 #define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
90 
91 /*
92  * Use large batch size to reduce overhead of metadata updates.  On the reader
93  * side, we only read it when we are close to ENOSPC and the read overhead is
94  * mostly related to the number of CPUs, so it is OK to use arbitrary large
95  * value here.
96  */
97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
98 
99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M
100 
101 /*
102  * Deltas are an effective way to populate global statistics.  Give macro names
103  * to make it clear what we're doing.  An example is discard_extents in
104  * btrfs_free_space_ctl.
105  */
106 #define BTRFS_STAT_NR_ENTRIES	2
107 #define BTRFS_STAT_CURR		0
108 #define BTRFS_STAT_PREV		1
109 
110 /*
111  * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
112  */
113 static inline u32 count_max_extents(u64 size)
114 {
115 	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
116 }
117 
118 static inline unsigned long btrfs_chunk_item_size(int num_stripes)
119 {
120 	BUG_ON(num_stripes == 0);
121 	return sizeof(struct btrfs_chunk) +
122 		sizeof(struct btrfs_stripe) * (num_stripes - 1);
123 }
124 
125 /*
126  * Runtime (in-memory) states of filesystem
127  */
128 enum {
129 	/* Global indicator of serious filesystem errors */
130 	BTRFS_FS_STATE_ERROR,
131 	/*
132 	 * Filesystem is being remounted, allow to skip some operations, like
133 	 * defrag
134 	 */
135 	BTRFS_FS_STATE_REMOUNTING,
136 	/* Filesystem in RO mode */
137 	BTRFS_FS_STATE_RO,
138 	/* Track if a transaction abort has been reported on this filesystem */
139 	BTRFS_FS_STATE_TRANS_ABORTED,
140 	/*
141 	 * Bio operations should be blocked on this filesystem because a source
142 	 * or target device is being destroyed as part of a device replace
143 	 */
144 	BTRFS_FS_STATE_DEV_REPLACING,
145 	/* The btrfs_fs_info created for self-tests */
146 	BTRFS_FS_STATE_DUMMY_FS_INFO,
147 
148 	BTRFS_FS_STATE_NO_CSUMS,
149 
150 	/* Indicates there was an error cleaning up a log tree. */
151 	BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
152 
153 	BTRFS_FS_STATE_COUNT
154 };
155 
156 #define BTRFS_BACKREF_REV_MAX		256
157 #define BTRFS_BACKREF_REV_SHIFT		56
158 #define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
159 					 BTRFS_BACKREF_REV_SHIFT)
160 
161 #define BTRFS_OLD_BACKREF_REV		0
162 #define BTRFS_MIXED_BACKREF_REV		1
163 
164 /*
165  * every tree block (leaf or node) starts with this header.
166  */
167 struct btrfs_header {
168 	/* these first four must match the super block */
169 	u8 csum[BTRFS_CSUM_SIZE];
170 	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
171 	__le64 bytenr; /* which block this node is supposed to live in */
172 	__le64 flags;
173 
174 	/* allowed to be different from the super from here on down */
175 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
176 	__le64 generation;
177 	__le64 owner;
178 	__le32 nritems;
179 	u8 level;
180 } __attribute__ ((__packed__));
181 
182 /*
183  * this is a very generous portion of the super block, giving us
184  * room to translate 14 chunks with 3 stripes each.
185  */
186 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
187 
188 /*
189  * just in case we somehow lose the roots and are not able to mount,
190  * we store an array of the roots from previous transactions
191  * in the super.
192  */
193 #define BTRFS_NUM_BACKUP_ROOTS 4
194 struct btrfs_root_backup {
195 	__le64 tree_root;
196 	__le64 tree_root_gen;
197 
198 	__le64 chunk_root;
199 	__le64 chunk_root_gen;
200 
201 	__le64 extent_root;
202 	__le64 extent_root_gen;
203 
204 	__le64 fs_root;
205 	__le64 fs_root_gen;
206 
207 	__le64 dev_root;
208 	__le64 dev_root_gen;
209 
210 	__le64 csum_root;
211 	__le64 csum_root_gen;
212 
213 	__le64 total_bytes;
214 	__le64 bytes_used;
215 	__le64 num_devices;
216 	/* future */
217 	__le64 unused_64[4];
218 
219 	u8 tree_root_level;
220 	u8 chunk_root_level;
221 	u8 extent_root_level;
222 	u8 fs_root_level;
223 	u8 dev_root_level;
224 	u8 csum_root_level;
225 	/* future and to align */
226 	u8 unused_8[10];
227 } __attribute__ ((__packed__));
228 
229 #define BTRFS_SUPER_INFO_OFFSET			SZ_64K
230 #define BTRFS_SUPER_INFO_SIZE			4096
231 
232 /*
233  * the super block basically lists the main trees of the FS
234  * it currently lacks any block count etc etc
235  */
236 struct btrfs_super_block {
237 	/* the first 4 fields must match struct btrfs_header */
238 	u8 csum[BTRFS_CSUM_SIZE];
239 	/* FS specific UUID, visible to user */
240 	u8 fsid[BTRFS_FSID_SIZE];
241 	__le64 bytenr; /* this block number */
242 	__le64 flags;
243 
244 	/* allowed to be different from the btrfs_header from here own down */
245 	__le64 magic;
246 	__le64 generation;
247 	__le64 root;
248 	__le64 chunk_root;
249 	__le64 log_root;
250 
251 	/* this will help find the new super based on the log root */
252 	__le64 log_root_transid;
253 	__le64 total_bytes;
254 	__le64 bytes_used;
255 	__le64 root_dir_objectid;
256 	__le64 num_devices;
257 	__le32 sectorsize;
258 	__le32 nodesize;
259 	__le32 __unused_leafsize;
260 	__le32 stripesize;
261 	__le32 sys_chunk_array_size;
262 	__le64 chunk_root_generation;
263 	__le64 compat_flags;
264 	__le64 compat_ro_flags;
265 	__le64 incompat_flags;
266 	__le16 csum_type;
267 	u8 root_level;
268 	u8 chunk_root_level;
269 	u8 log_root_level;
270 	struct btrfs_dev_item dev_item;
271 
272 	char label[BTRFS_LABEL_SIZE];
273 
274 	__le64 cache_generation;
275 	__le64 uuid_tree_generation;
276 
277 	/* the UUID written into btree blocks */
278 	u8 metadata_uuid[BTRFS_FSID_SIZE];
279 
280 	/* Extent tree v2 */
281 	__le64 block_group_root;
282 	__le64 block_group_root_generation;
283 	u8 block_group_root_level;
284 
285 	/* future expansion */
286 	u8 reserved8[7];
287 	__le64 reserved[25];
288 	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
289 	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
290 
291 	/* Padded to 4096 bytes */
292 	u8 padding[565];
293 } __attribute__ ((__packed__));
294 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE);
295 
296 /*
297  * Compat flags that we support.  If any incompat flags are set other than the
298  * ones specified below then we will fail to mount
299  */
300 #define BTRFS_FEATURE_COMPAT_SUPP		0ULL
301 #define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
302 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
303 
304 #define BTRFS_FEATURE_COMPAT_RO_SUPP			\
305 	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
306 	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \
307 	 BTRFS_FEATURE_COMPAT_RO_VERITY)
308 
309 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
310 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
311 
312 #ifdef CONFIG_BTRFS_DEBUG
313 /*
314  * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG
315  */
316 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
317 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
318 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
319 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
320 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
321 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
322 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
323 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
324 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
325 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
326 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
327 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
328 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
329 	 BTRFS_FEATURE_INCOMPAT_ZONED		|	\
330 	 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2)
331 #else
332 #define BTRFS_FEATURE_INCOMPAT_SUPP			\
333 	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
334 	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
335 	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
336 	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
337 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
338 	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
339 	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
340 	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
341 	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
342 	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
343 	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
344 	 BTRFS_FEATURE_INCOMPAT_RAID1C34	|	\
345 	 BTRFS_FEATURE_INCOMPAT_ZONED)
346 #endif
347 
348 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
349 	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
350 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
351 
352 /*
353  * A leaf is full of items. offset and size tell us where to find
354  * the item in the leaf (relative to the start of the data area)
355  */
356 struct btrfs_item {
357 	struct btrfs_disk_key key;
358 	__le32 offset;
359 	__le32 size;
360 } __attribute__ ((__packed__));
361 
362 /*
363  * leaves have an item area and a data area:
364  * [item0, item1....itemN] [free space] [dataN...data1, data0]
365  *
366  * The data is separate from the items to get the keys closer together
367  * during searches.
368  */
369 struct btrfs_leaf {
370 	struct btrfs_header header;
371 	struct btrfs_item items[];
372 } __attribute__ ((__packed__));
373 
374 /*
375  * all non-leaf blocks are nodes, they hold only keys and pointers to
376  * other blocks
377  */
378 struct btrfs_key_ptr {
379 	struct btrfs_disk_key key;
380 	__le64 blockptr;
381 	__le64 generation;
382 } __attribute__ ((__packed__));
383 
384 struct btrfs_node {
385 	struct btrfs_header header;
386 	struct btrfs_key_ptr ptrs[];
387 } __attribute__ ((__packed__));
388 
389 /* Read ahead values for struct btrfs_path.reada */
390 enum {
391 	READA_NONE,
392 	READA_BACK,
393 	READA_FORWARD,
394 	/*
395 	 * Similar to READA_FORWARD but unlike it:
396 	 *
397 	 * 1) It will trigger readahead even for leaves that are not close to
398 	 *    each other on disk;
399 	 * 2) It also triggers readahead for nodes;
400 	 * 3) During a search, even when a node or leaf is already in memory, it
401 	 *    will still trigger readahead for other nodes and leaves that follow
402 	 *    it.
403 	 *
404 	 * This is meant to be used only when we know we are iterating over the
405 	 * entire tree or a very large part of it.
406 	 */
407 	READA_FORWARD_ALWAYS,
408 };
409 
410 /*
411  * btrfs_paths remember the path taken from the root down to the leaf.
412  * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
413  * to any other levels that are present.
414  *
415  * The slots array records the index of the item or block pointer
416  * used while walking the tree.
417  */
418 struct btrfs_path {
419 	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
420 	int slots[BTRFS_MAX_LEVEL];
421 	/* if there is real range locking, this locks field will change */
422 	u8 locks[BTRFS_MAX_LEVEL];
423 	u8 reada;
424 	/* keep some upper locks as we walk down */
425 	u8 lowest_level;
426 
427 	/*
428 	 * set by btrfs_split_item, tells search_slot to keep all locks
429 	 * and to force calls to keep space in the nodes
430 	 */
431 	unsigned int search_for_split:1;
432 	unsigned int keep_locks:1;
433 	unsigned int skip_locking:1;
434 	unsigned int search_commit_root:1;
435 	unsigned int need_commit_sem:1;
436 	unsigned int skip_release_on_error:1;
437 	/*
438 	 * Indicate that new item (btrfs_search_slot) is extending already
439 	 * existing item and ins_len contains only the data size and not item
440 	 * header (ie. sizeof(struct btrfs_item) is not included).
441 	 */
442 	unsigned int search_for_extension:1;
443 };
444 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
445 					sizeof(struct btrfs_item))
446 struct btrfs_dev_replace {
447 	u64 replace_state;	/* see #define above */
448 	time64_t time_started;	/* seconds since 1-Jan-1970 */
449 	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
450 	atomic64_t num_write_errors;
451 	atomic64_t num_uncorrectable_read_errors;
452 
453 	u64 cursor_left;
454 	u64 committed_cursor_left;
455 	u64 cursor_left_last_write_of_item;
456 	u64 cursor_right;
457 
458 	u64 cont_reading_from_srcdev_mode;	/* see #define above */
459 
460 	int is_valid;
461 	int item_needs_writeback;
462 	struct btrfs_device *srcdev;
463 	struct btrfs_device *tgtdev;
464 
465 	struct mutex lock_finishing_cancel_unmount;
466 	struct rw_semaphore rwsem;
467 
468 	struct btrfs_scrub_progress scrub_progress;
469 
470 	struct percpu_counter bio_counter;
471 	wait_queue_head_t replace_wait;
472 };
473 
474 /*
475  * free clusters are used to claim free space in relatively large chunks,
476  * allowing us to do less seeky writes. They are used for all metadata
477  * allocations. In ssd_spread mode they are also used for data allocations.
478  */
479 struct btrfs_free_cluster {
480 	spinlock_t lock;
481 	spinlock_t refill_lock;
482 	struct rb_root root;
483 
484 	/* largest extent in this cluster */
485 	u64 max_size;
486 
487 	/* first extent starting offset */
488 	u64 window_start;
489 
490 	/* We did a full search and couldn't create a cluster */
491 	bool fragmented;
492 
493 	struct btrfs_block_group *block_group;
494 	/*
495 	 * when a cluster is allocated from a block group, we put the
496 	 * cluster onto a list in the block group so that it can
497 	 * be freed before the block group is freed.
498 	 */
499 	struct list_head block_group_list;
500 };
501 
502 enum btrfs_caching_type {
503 	BTRFS_CACHE_NO,
504 	BTRFS_CACHE_STARTED,
505 	BTRFS_CACHE_FAST,
506 	BTRFS_CACHE_FINISHED,
507 	BTRFS_CACHE_ERROR,
508 };
509 
510 /*
511  * Tree to record all locked full stripes of a RAID5/6 block group
512  */
513 struct btrfs_full_stripe_locks_tree {
514 	struct rb_root root;
515 	struct mutex lock;
516 };
517 
518 /* Discard control. */
519 /*
520  * Async discard uses multiple lists to differentiate the discard filter
521  * parameters.  Index 0 is for completely free block groups where we need to
522  * ensure the entire block group is trimmed without being lossy.  Indices
523  * afterwards represent monotonically decreasing discard filter sizes to
524  * prioritize what should be discarded next.
525  */
526 #define BTRFS_NR_DISCARD_LISTS		3
527 #define BTRFS_DISCARD_INDEX_UNUSED	0
528 #define BTRFS_DISCARD_INDEX_START	1
529 
530 struct btrfs_discard_ctl {
531 	struct workqueue_struct *discard_workers;
532 	struct delayed_work work;
533 	spinlock_t lock;
534 	struct btrfs_block_group *block_group;
535 	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
536 	u64 prev_discard;
537 	u64 prev_discard_time;
538 	atomic_t discardable_extents;
539 	atomic64_t discardable_bytes;
540 	u64 max_discard_size;
541 	u64 delay_ms;
542 	u32 iops_limit;
543 	u32 kbps_limit;
544 	u64 discard_extent_bytes;
545 	u64 discard_bitmap_bytes;
546 	atomic64_t discard_bytes_saved;
547 };
548 
549 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info);
550 
551 /* fs_info */
552 struct reloc_control;
553 struct btrfs_device;
554 struct btrfs_fs_devices;
555 struct btrfs_balance_control;
556 struct btrfs_delayed_root;
557 
558 /*
559  * Block group or device which contains an active swapfile. Used for preventing
560  * unsafe operations while a swapfile is active.
561  *
562  * These are sorted on (ptr, inode) (note that a block group or device can
563  * contain more than one swapfile). We compare the pointer values because we
564  * don't actually care what the object is, we just need a quick check whether
565  * the object exists in the rbtree.
566  */
567 struct btrfs_swapfile_pin {
568 	struct rb_node node;
569 	void *ptr;
570 	struct inode *inode;
571 	/*
572 	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
573 	 * points to a struct btrfs_device.
574 	 */
575 	bool is_block_group;
576 	/*
577 	 * Only used when 'is_block_group' is true and it is the number of
578 	 * extents used by a swapfile for this block group ('ptr' field).
579 	 */
580 	int bg_extent_count;
581 };
582 
583 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
584 
585 enum {
586 	BTRFS_FS_CLOSING_START,
587 	BTRFS_FS_CLOSING_DONE,
588 	BTRFS_FS_LOG_RECOVERING,
589 	BTRFS_FS_OPEN,
590 	BTRFS_FS_QUOTA_ENABLED,
591 	BTRFS_FS_UPDATE_UUID_TREE_GEN,
592 	BTRFS_FS_CREATING_FREE_SPACE_TREE,
593 	BTRFS_FS_BTREE_ERR,
594 	BTRFS_FS_LOG1_ERR,
595 	BTRFS_FS_LOG2_ERR,
596 	BTRFS_FS_QUOTA_OVERRIDE,
597 	/* Used to record internally whether fs has been frozen */
598 	BTRFS_FS_FROZEN,
599 	/*
600 	 * Indicate that balance has been set up from the ioctl and is in the
601 	 * main phase. The fs_info::balance_ctl is initialized.
602 	 */
603 	BTRFS_FS_BALANCE_RUNNING,
604 
605 	/*
606 	 * Indicate that relocation of a chunk has started, it's set per chunk
607 	 * and is toggled between chunks.
608 	 */
609 	BTRFS_FS_RELOC_RUNNING,
610 
611 	/* Indicate that the cleaner thread is awake and doing something. */
612 	BTRFS_FS_CLEANER_RUNNING,
613 
614 	/*
615 	 * The checksumming has an optimized version and is considered fast,
616 	 * so we don't need to offload checksums to workqueues.
617 	 */
618 	BTRFS_FS_CSUM_IMPL_FAST,
619 
620 	/* Indicate that the discard workqueue can service discards. */
621 	BTRFS_FS_DISCARD_RUNNING,
622 
623 	/* Indicate that we need to cleanup space cache v1 */
624 	BTRFS_FS_CLEANUP_SPACE_CACHE_V1,
625 
626 	/* Indicate that we can't trust the free space tree for caching yet */
627 	BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED,
628 
629 	/* Indicate whether there are any tree modification log users */
630 	BTRFS_FS_TREE_MOD_LOG_USERS,
631 
632 	/* Indicate that we want the transaction kthread to commit right now. */
633 	BTRFS_FS_COMMIT_TRANS,
634 
635 	/* Indicate we have half completed snapshot deletions pending. */
636 	BTRFS_FS_UNFINISHED_DROPS,
637 
638 #if BITS_PER_LONG == 32
639 	/* Indicate if we have error/warn message printed on 32bit systems */
640 	BTRFS_FS_32BIT_ERROR,
641 	BTRFS_FS_32BIT_WARN,
642 #endif
643 };
644 
645 /*
646  * Exclusive operations (device replace, resize, device add/remove, balance)
647  */
648 enum btrfs_exclusive_operation {
649 	BTRFS_EXCLOP_NONE,
650 	BTRFS_EXCLOP_BALANCE_PAUSED,
651 	BTRFS_EXCLOP_BALANCE,
652 	BTRFS_EXCLOP_DEV_ADD,
653 	BTRFS_EXCLOP_DEV_REMOVE,
654 	BTRFS_EXCLOP_DEV_REPLACE,
655 	BTRFS_EXCLOP_RESIZE,
656 	BTRFS_EXCLOP_SWAP_ACTIVATE,
657 };
658 
659 struct btrfs_fs_info {
660 	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
661 	unsigned long flags;
662 	struct btrfs_root *tree_root;
663 	struct btrfs_root *chunk_root;
664 	struct btrfs_root *dev_root;
665 	struct btrfs_root *fs_root;
666 	struct btrfs_root *quota_root;
667 	struct btrfs_root *uuid_root;
668 	struct btrfs_root *data_reloc_root;
669 	struct btrfs_root *block_group_root;
670 
671 	/* the log root tree is a directory of all the other log roots */
672 	struct btrfs_root *log_root_tree;
673 
674 	/* The tree that holds the global roots (csum, extent, etc) */
675 	rwlock_t global_root_lock;
676 	struct rb_root global_root_tree;
677 
678 	spinlock_t fs_roots_radix_lock;
679 	struct radix_tree_root fs_roots_radix;
680 
681 	/* block group cache stuff */
682 	spinlock_t block_group_cache_lock;
683 	u64 first_logical_byte;
684 	struct rb_root block_group_cache_tree;
685 
686 	/* keep track of unallocated space */
687 	atomic64_t free_chunk_space;
688 
689 	/* Track ranges which are used by log trees blocks/logged data extents */
690 	struct extent_io_tree excluded_extents;
691 
692 	/* logical->physical extent mapping */
693 	struct extent_map_tree mapping_tree;
694 
695 	/*
696 	 * block reservation for extent, checksum, root tree and
697 	 * delayed dir index item
698 	 */
699 	struct btrfs_block_rsv global_block_rsv;
700 	/* block reservation for metadata operations */
701 	struct btrfs_block_rsv trans_block_rsv;
702 	/* block reservation for chunk tree */
703 	struct btrfs_block_rsv chunk_block_rsv;
704 	/* block reservation for delayed operations */
705 	struct btrfs_block_rsv delayed_block_rsv;
706 	/* block reservation for delayed refs */
707 	struct btrfs_block_rsv delayed_refs_rsv;
708 
709 	struct btrfs_block_rsv empty_block_rsv;
710 
711 	u64 generation;
712 	u64 last_trans_committed;
713 	/*
714 	 * Generation of the last transaction used for block group relocation
715 	 * since the filesystem was last mounted (or 0 if none happened yet).
716 	 * Must be written and read while holding btrfs_fs_info::commit_root_sem.
717 	 */
718 	u64 last_reloc_trans;
719 	u64 avg_delayed_ref_runtime;
720 
721 	/*
722 	 * this is updated to the current trans every time a full commit
723 	 * is required instead of the faster short fsync log commits
724 	 */
725 	u64 last_trans_log_full_commit;
726 	unsigned long mount_opt;
727 	/*
728 	 * Track requests for actions that need to be done during transaction
729 	 * commit (like for some mount options).
730 	 */
731 	unsigned long pending_changes;
732 	unsigned long compress_type:4;
733 	unsigned int compress_level;
734 	u32 commit_interval;
735 	/*
736 	 * It is a suggestive number, the read side is safe even it gets a
737 	 * wrong number because we will write out the data into a regular
738 	 * extent. The write side(mount/remount) is under ->s_umount lock,
739 	 * so it is also safe.
740 	 */
741 	u64 max_inline;
742 
743 	struct btrfs_transaction *running_transaction;
744 	wait_queue_head_t transaction_throttle;
745 	wait_queue_head_t transaction_wait;
746 	wait_queue_head_t transaction_blocked_wait;
747 	wait_queue_head_t async_submit_wait;
748 
749 	/*
750 	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
751 	 * when they are updated.
752 	 *
753 	 * Because we do not clear the flags for ever, so we needn't use
754 	 * the lock on the read side.
755 	 *
756 	 * We also needn't use the lock when we mount the fs, because
757 	 * there is no other task which will update the flag.
758 	 */
759 	spinlock_t super_lock;
760 	struct btrfs_super_block *super_copy;
761 	struct btrfs_super_block *super_for_commit;
762 	struct super_block *sb;
763 	struct inode *btree_inode;
764 	struct mutex tree_log_mutex;
765 	struct mutex transaction_kthread_mutex;
766 	struct mutex cleaner_mutex;
767 	struct mutex chunk_mutex;
768 
769 	/*
770 	 * this is taken to make sure we don't set block groups ro after
771 	 * the free space cache has been allocated on them
772 	 */
773 	struct mutex ro_block_group_mutex;
774 
775 	/* this is used during read/modify/write to make sure
776 	 * no two ios are trying to mod the same stripe at the same
777 	 * time
778 	 */
779 	struct btrfs_stripe_hash_table *stripe_hash_table;
780 
781 	/*
782 	 * this protects the ordered operations list only while we are
783 	 * processing all of the entries on it.  This way we make
784 	 * sure the commit code doesn't find the list temporarily empty
785 	 * because another function happens to be doing non-waiting preflush
786 	 * before jumping into the main commit.
787 	 */
788 	struct mutex ordered_operations_mutex;
789 
790 	struct rw_semaphore commit_root_sem;
791 
792 	struct rw_semaphore cleanup_work_sem;
793 
794 	struct rw_semaphore subvol_sem;
795 
796 	spinlock_t trans_lock;
797 	/*
798 	 * the reloc mutex goes with the trans lock, it is taken
799 	 * during commit to protect us from the relocation code
800 	 */
801 	struct mutex reloc_mutex;
802 
803 	struct list_head trans_list;
804 	struct list_head dead_roots;
805 	struct list_head caching_block_groups;
806 
807 	spinlock_t delayed_iput_lock;
808 	struct list_head delayed_iputs;
809 	atomic_t nr_delayed_iputs;
810 	wait_queue_head_t delayed_iputs_wait;
811 
812 	atomic64_t tree_mod_seq;
813 
814 	/* this protects tree_mod_log and tree_mod_seq_list */
815 	rwlock_t tree_mod_log_lock;
816 	struct rb_root tree_mod_log;
817 	struct list_head tree_mod_seq_list;
818 
819 	atomic_t async_delalloc_pages;
820 
821 	/*
822 	 * this is used to protect the following list -- ordered_roots.
823 	 */
824 	spinlock_t ordered_root_lock;
825 
826 	/*
827 	 * all fs/file tree roots in which there are data=ordered extents
828 	 * pending writeback are added into this list.
829 	 *
830 	 * these can span multiple transactions and basically include
831 	 * every dirty data page that isn't from nodatacow
832 	 */
833 	struct list_head ordered_roots;
834 
835 	struct mutex delalloc_root_mutex;
836 	spinlock_t delalloc_root_lock;
837 	/* all fs/file tree roots that have delalloc inodes. */
838 	struct list_head delalloc_roots;
839 
840 	/*
841 	 * there is a pool of worker threads for checksumming during writes
842 	 * and a pool for checksumming after reads.  This is because readers
843 	 * can run with FS locks held, and the writers may be waiting for
844 	 * those locks.  We don't want ordering in the pending list to cause
845 	 * deadlocks, and so the two are serviced separately.
846 	 *
847 	 * A third pool does submit_bio to avoid deadlocking with the other
848 	 * two
849 	 */
850 	struct btrfs_workqueue *workers;
851 	struct btrfs_workqueue *delalloc_workers;
852 	struct btrfs_workqueue *flush_workers;
853 	struct btrfs_workqueue *endio_workers;
854 	struct btrfs_workqueue *endio_meta_workers;
855 	struct btrfs_workqueue *endio_raid56_workers;
856 	struct btrfs_workqueue *rmw_workers;
857 	struct btrfs_workqueue *endio_meta_write_workers;
858 	struct btrfs_workqueue *endio_write_workers;
859 	struct btrfs_workqueue *endio_freespace_worker;
860 	struct btrfs_workqueue *caching_workers;
861 
862 	/*
863 	 * fixup workers take dirty pages that didn't properly go through
864 	 * the cow mechanism and make them safe to write.  It happens
865 	 * for the sys_munmap function call path
866 	 */
867 	struct btrfs_workqueue *fixup_workers;
868 	struct btrfs_workqueue *delayed_workers;
869 
870 	struct task_struct *transaction_kthread;
871 	struct task_struct *cleaner_kthread;
872 	u32 thread_pool_size;
873 
874 	struct kobject *space_info_kobj;
875 	struct kobject *qgroups_kobj;
876 
877 	/* used to keep from writing metadata until there is a nice batch */
878 	struct percpu_counter dirty_metadata_bytes;
879 	struct percpu_counter delalloc_bytes;
880 	struct percpu_counter ordered_bytes;
881 	s32 dirty_metadata_batch;
882 	s32 delalloc_batch;
883 
884 	struct list_head dirty_cowonly_roots;
885 
886 	struct btrfs_fs_devices *fs_devices;
887 
888 	/*
889 	 * The space_info list is effectively read only after initial
890 	 * setup.  It is populated at mount time and cleaned up after
891 	 * all block groups are removed.  RCU is used to protect it.
892 	 */
893 	struct list_head space_info;
894 
895 	struct btrfs_space_info *data_sinfo;
896 
897 	struct reloc_control *reloc_ctl;
898 
899 	/* data_alloc_cluster is only used in ssd_spread mode */
900 	struct btrfs_free_cluster data_alloc_cluster;
901 
902 	/* all metadata allocations go through this cluster */
903 	struct btrfs_free_cluster meta_alloc_cluster;
904 
905 	/* auto defrag inodes go here */
906 	spinlock_t defrag_inodes_lock;
907 	struct rb_root defrag_inodes;
908 	atomic_t defrag_running;
909 
910 	/* Used to protect avail_{data, metadata, system}_alloc_bits */
911 	seqlock_t profiles_lock;
912 	/*
913 	 * these three are in extended format (availability of single
914 	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
915 	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
916 	 */
917 	u64 avail_data_alloc_bits;
918 	u64 avail_metadata_alloc_bits;
919 	u64 avail_system_alloc_bits;
920 
921 	/* restriper state */
922 	spinlock_t balance_lock;
923 	struct mutex balance_mutex;
924 	atomic_t balance_pause_req;
925 	atomic_t balance_cancel_req;
926 	struct btrfs_balance_control *balance_ctl;
927 	wait_queue_head_t balance_wait_q;
928 
929 	/* Cancellation requests for chunk relocation */
930 	atomic_t reloc_cancel_req;
931 
932 	u32 data_chunk_allocations;
933 	u32 metadata_ratio;
934 
935 	void *bdev_holder;
936 
937 	/* private scrub information */
938 	struct mutex scrub_lock;
939 	atomic_t scrubs_running;
940 	atomic_t scrub_pause_req;
941 	atomic_t scrubs_paused;
942 	atomic_t scrub_cancel_req;
943 	wait_queue_head_t scrub_pause_wait;
944 	/*
945 	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
946 	 * running.
947 	 */
948 	refcount_t scrub_workers_refcnt;
949 	struct btrfs_workqueue *scrub_workers;
950 	struct btrfs_workqueue *scrub_wr_completion_workers;
951 	struct btrfs_workqueue *scrub_parity_workers;
952 	struct btrfs_subpage_info *subpage_info;
953 
954 	struct btrfs_discard_ctl discard_ctl;
955 
956 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
957 	u32 check_integrity_print_mask;
958 #endif
959 	/* is qgroup tracking in a consistent state? */
960 	u64 qgroup_flags;
961 
962 	/* holds configuration and tracking. Protected by qgroup_lock */
963 	struct rb_root qgroup_tree;
964 	spinlock_t qgroup_lock;
965 
966 	/*
967 	 * used to avoid frequently calling ulist_alloc()/ulist_free()
968 	 * when doing qgroup accounting, it must be protected by qgroup_lock.
969 	 */
970 	struct ulist *qgroup_ulist;
971 
972 	/*
973 	 * Protect user change for quota operations. If a transaction is needed,
974 	 * it must be started before locking this lock.
975 	 */
976 	struct mutex qgroup_ioctl_lock;
977 
978 	/* list of dirty qgroups to be written at next commit */
979 	struct list_head dirty_qgroups;
980 
981 	/* used by qgroup for an efficient tree traversal */
982 	u64 qgroup_seq;
983 
984 	/* qgroup rescan items */
985 	struct mutex qgroup_rescan_lock; /* protects the progress item */
986 	struct btrfs_key qgroup_rescan_progress;
987 	struct btrfs_workqueue *qgroup_rescan_workers;
988 	struct completion qgroup_rescan_completion;
989 	struct btrfs_work qgroup_rescan_work;
990 	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
991 
992 	/* filesystem state */
993 	unsigned long fs_state;
994 
995 	struct btrfs_delayed_root *delayed_root;
996 
997 	/* Extent buffer radix tree */
998 	spinlock_t buffer_lock;
999 	/* Entries are eb->start / sectorsize */
1000 	struct radix_tree_root buffer_radix;
1001 
1002 	/* next backup root to be overwritten */
1003 	int backup_root_index;
1004 
1005 	/* device replace state */
1006 	struct btrfs_dev_replace dev_replace;
1007 
1008 	struct semaphore uuid_tree_rescan_sem;
1009 
1010 	/* Used to reclaim the metadata space in the background. */
1011 	struct work_struct async_reclaim_work;
1012 	struct work_struct async_data_reclaim_work;
1013 	struct work_struct preempt_reclaim_work;
1014 
1015 	/* Reclaim partially filled block groups in the background */
1016 	struct work_struct reclaim_bgs_work;
1017 	struct list_head reclaim_bgs;
1018 	int bg_reclaim_threshold;
1019 
1020 	spinlock_t unused_bgs_lock;
1021 	struct list_head unused_bgs;
1022 	struct mutex unused_bg_unpin_mutex;
1023 	/* Protect block groups that are going to be deleted */
1024 	struct mutex reclaim_bgs_lock;
1025 
1026 	/* Cached block sizes */
1027 	u32 nodesize;
1028 	u32 sectorsize;
1029 	/* ilog2 of sectorsize, use to avoid 64bit division */
1030 	u32 sectorsize_bits;
1031 	u32 csum_size;
1032 	u32 csums_per_leaf;
1033 	u32 stripesize;
1034 
1035 	/* Block groups and devices containing active swapfiles. */
1036 	spinlock_t swapfile_pins_lock;
1037 	struct rb_root swapfile_pins;
1038 
1039 	struct crypto_shash *csum_shash;
1040 
1041 	/* Type of exclusive operation running, protected by super_lock */
1042 	enum btrfs_exclusive_operation exclusive_operation;
1043 
1044 	/*
1045 	 * Zone size > 0 when in ZONED mode, otherwise it's used for a check
1046 	 * if the mode is enabled
1047 	 */
1048 	union {
1049 		u64 zone_size;
1050 		u64 zoned;
1051 	};
1052 
1053 	struct mutex zoned_meta_io_lock;
1054 	spinlock_t treelog_bg_lock;
1055 	u64 treelog_bg;
1056 
1057 	/*
1058 	 * Start of the dedicated data relocation block group, protected by
1059 	 * relocation_bg_lock.
1060 	 */
1061 	spinlock_t relocation_bg_lock;
1062 	u64 data_reloc_bg;
1063 
1064 	u64 nr_global_roots;
1065 
1066 	spinlock_t zone_active_bgs_lock;
1067 	struct list_head zone_active_bgs;
1068 
1069 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
1070 	spinlock_t ref_verify_lock;
1071 	struct rb_root block_tree;
1072 #endif
1073 
1074 #ifdef CONFIG_BTRFS_DEBUG
1075 	struct kobject *debug_kobj;
1076 	struct kobject *discard_debug_kobj;
1077 	struct list_head allocated_roots;
1078 
1079 	spinlock_t eb_leak_lock;
1080 	struct list_head allocated_ebs;
1081 #endif
1082 };
1083 
1084 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1085 {
1086 	return sb->s_fs_info;
1087 }
1088 
1089 /*
1090  * The state of btrfs root
1091  */
1092 enum {
1093 	/*
1094 	 * btrfs_record_root_in_trans is a multi-step process, and it can race
1095 	 * with the balancing code.   But the race is very small, and only the
1096 	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
1097 	 * is used to tell us when more checks are required
1098 	 */
1099 	BTRFS_ROOT_IN_TRANS_SETUP,
1100 
1101 	/*
1102 	 * Set if tree blocks of this root can be shared by other roots.
1103 	 * Only subvolume trees and their reloc trees have this bit set.
1104 	 * Conflicts with TRACK_DIRTY bit.
1105 	 *
1106 	 * This affects two things:
1107 	 *
1108 	 * - How balance works
1109 	 *   For shareable roots, we need to use reloc tree and do path
1110 	 *   replacement for balance, and need various pre/post hooks for
1111 	 *   snapshot creation to handle them.
1112 	 *
1113 	 *   While for non-shareable trees, we just simply do a tree search
1114 	 *   with COW.
1115 	 *
1116 	 * - How dirty roots are tracked
1117 	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
1118 	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
1119 	 *   don't need to set this manually.
1120 	 */
1121 	BTRFS_ROOT_SHAREABLE,
1122 	BTRFS_ROOT_TRACK_DIRTY,
1123 	BTRFS_ROOT_IN_RADIX,
1124 	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
1125 	BTRFS_ROOT_DEFRAG_RUNNING,
1126 	BTRFS_ROOT_FORCE_COW,
1127 	BTRFS_ROOT_MULTI_LOG_TASKS,
1128 	BTRFS_ROOT_DIRTY,
1129 	BTRFS_ROOT_DELETING,
1130 
1131 	/*
1132 	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1133 	 *
1134 	 * Set for the subvolume tree owning the reloc tree.
1135 	 */
1136 	BTRFS_ROOT_DEAD_RELOC_TREE,
1137 	/* Mark dead root stored on device whose cleanup needs to be resumed */
1138 	BTRFS_ROOT_DEAD_TREE,
1139 	/* The root has a log tree. Used for subvolume roots and the tree root. */
1140 	BTRFS_ROOT_HAS_LOG_TREE,
1141 	/* Qgroup flushing is in progress */
1142 	BTRFS_ROOT_QGROUP_FLUSHING,
1143 	/* We started the orphan cleanup for this root. */
1144 	BTRFS_ROOT_ORPHAN_CLEANUP,
1145 	/* This root has a drop operation that was started previously. */
1146 	BTRFS_ROOT_UNFINISHED_DROP,
1147 };
1148 
1149 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1150 {
1151 	clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags);
1152 }
1153 
1154 /*
1155  * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1156  * code. For detail check comment in fs/btrfs/qgroup.c.
1157  */
1158 struct btrfs_qgroup_swapped_blocks {
1159 	spinlock_t lock;
1160 	/* RM_EMPTY_ROOT() of above blocks[] */
1161 	bool swapped;
1162 	struct rb_root blocks[BTRFS_MAX_LEVEL];
1163 };
1164 
1165 /*
1166  * in ram representation of the tree.  extent_root is used for all allocations
1167  * and for the extent tree extent_root root.
1168  */
1169 struct btrfs_root {
1170 	struct rb_node rb_node;
1171 
1172 	struct extent_buffer *node;
1173 
1174 	struct extent_buffer *commit_root;
1175 	struct btrfs_root *log_root;
1176 	struct btrfs_root *reloc_root;
1177 
1178 	unsigned long state;
1179 	struct btrfs_root_item root_item;
1180 	struct btrfs_key root_key;
1181 	struct btrfs_fs_info *fs_info;
1182 	struct extent_io_tree dirty_log_pages;
1183 
1184 	struct mutex objectid_mutex;
1185 
1186 	spinlock_t accounting_lock;
1187 	struct btrfs_block_rsv *block_rsv;
1188 
1189 	struct mutex log_mutex;
1190 	wait_queue_head_t log_writer_wait;
1191 	wait_queue_head_t log_commit_wait[2];
1192 	struct list_head log_ctxs[2];
1193 	/* Used only for log trees of subvolumes, not for the log root tree */
1194 	atomic_t log_writers;
1195 	atomic_t log_commit[2];
1196 	/* Used only for log trees of subvolumes, not for the log root tree */
1197 	atomic_t log_batch;
1198 	int log_transid;
1199 	/* No matter the commit succeeds or not*/
1200 	int log_transid_committed;
1201 	/* Just be updated when the commit succeeds. */
1202 	int last_log_commit;
1203 	pid_t log_start_pid;
1204 
1205 	u64 last_trans;
1206 
1207 	u32 type;
1208 
1209 	u64 free_objectid;
1210 
1211 	struct btrfs_key defrag_progress;
1212 	struct btrfs_key defrag_max;
1213 
1214 	/* The dirty list is only used by non-shareable roots */
1215 	struct list_head dirty_list;
1216 
1217 	struct list_head root_list;
1218 
1219 	spinlock_t log_extents_lock[2];
1220 	struct list_head logged_list[2];
1221 
1222 	spinlock_t inode_lock;
1223 	/* red-black tree that keeps track of in-memory inodes */
1224 	struct rb_root inode_tree;
1225 
1226 	/*
1227 	 * radix tree that keeps track of delayed nodes of every inode,
1228 	 * protected by inode_lock
1229 	 */
1230 	struct radix_tree_root delayed_nodes_tree;
1231 	/*
1232 	 * right now this just gets used so that a root has its own devid
1233 	 * for stat.  It may be used for more later
1234 	 */
1235 	dev_t anon_dev;
1236 
1237 	spinlock_t root_item_lock;
1238 	refcount_t refs;
1239 
1240 	struct mutex delalloc_mutex;
1241 	spinlock_t delalloc_lock;
1242 	/*
1243 	 * all of the inodes that have delalloc bytes.  It is possible for
1244 	 * this list to be empty even when there is still dirty data=ordered
1245 	 * extents waiting to finish IO.
1246 	 */
1247 	struct list_head delalloc_inodes;
1248 	struct list_head delalloc_root;
1249 	u64 nr_delalloc_inodes;
1250 
1251 	struct mutex ordered_extent_mutex;
1252 	/*
1253 	 * this is used by the balancing code to wait for all the pending
1254 	 * ordered extents
1255 	 */
1256 	spinlock_t ordered_extent_lock;
1257 
1258 	/*
1259 	 * all of the data=ordered extents pending writeback
1260 	 * these can span multiple transactions and basically include
1261 	 * every dirty data page that isn't from nodatacow
1262 	 */
1263 	struct list_head ordered_extents;
1264 	struct list_head ordered_root;
1265 	u64 nr_ordered_extents;
1266 
1267 	/*
1268 	 * Not empty if this subvolume root has gone through tree block swap
1269 	 * (relocation)
1270 	 *
1271 	 * Will be used by reloc_control::dirty_subvol_roots.
1272 	 */
1273 	struct list_head reloc_dirty_list;
1274 
1275 	/*
1276 	 * Number of currently running SEND ioctls to prevent
1277 	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1278 	 */
1279 	int send_in_progress;
1280 	/*
1281 	 * Number of currently running deduplication operations that have a
1282 	 * destination inode belonging to this root. Protected by the lock
1283 	 * root_item_lock.
1284 	 */
1285 	int dedupe_in_progress;
1286 	/* For exclusion of snapshot creation and nocow writes */
1287 	struct btrfs_drew_lock snapshot_lock;
1288 
1289 	atomic_t snapshot_force_cow;
1290 
1291 	/* For qgroup metadata reserved space */
1292 	spinlock_t qgroup_meta_rsv_lock;
1293 	u64 qgroup_meta_rsv_pertrans;
1294 	u64 qgroup_meta_rsv_prealloc;
1295 	wait_queue_head_t qgroup_flush_wait;
1296 
1297 	/* Number of active swapfiles */
1298 	atomic_t nr_swapfiles;
1299 
1300 	/* Record pairs of swapped blocks for qgroup */
1301 	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1302 
1303 	/* Used only by log trees, when logging csum items */
1304 	struct extent_io_tree log_csum_range;
1305 
1306 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1307 	u64 alloc_bytenr;
1308 #endif
1309 
1310 #ifdef CONFIG_BTRFS_DEBUG
1311 	struct list_head leak_list;
1312 #endif
1313 };
1314 
1315 /*
1316  * Structure that conveys information about an extent that is going to replace
1317  * all the extents in a file range.
1318  */
1319 struct btrfs_replace_extent_info {
1320 	u64 disk_offset;
1321 	u64 disk_len;
1322 	u64 data_offset;
1323 	u64 data_len;
1324 	u64 file_offset;
1325 	/* Pointer to a file extent item of type regular or prealloc. */
1326 	char *extent_buf;
1327 	/*
1328 	 * Set to true when attempting to replace a file range with a new extent
1329 	 * described by this structure, set to false when attempting to clone an
1330 	 * existing extent into a file range.
1331 	 */
1332 	bool is_new_extent;
1333 	/* Meaningful only if is_new_extent is true. */
1334 	int qgroup_reserved;
1335 	/*
1336 	 * Meaningful only if is_new_extent is true.
1337 	 * Used to track how many extent items we have already inserted in a
1338 	 * subvolume tree that refer to the extent described by this structure,
1339 	 * so that we know when to create a new delayed ref or update an existing
1340 	 * one.
1341 	 */
1342 	int insertions;
1343 };
1344 
1345 /* Arguments for btrfs_drop_extents() */
1346 struct btrfs_drop_extents_args {
1347 	/* Input parameters */
1348 
1349 	/*
1350 	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
1351 	 * If 'replace_extent' is true, this must not be NULL. Also the path
1352 	 * is always released except if 'replace_extent' is true and
1353 	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
1354 	 * the path is kept locked.
1355 	 */
1356 	struct btrfs_path *path;
1357 	/* Start offset of the range to drop extents from */
1358 	u64 start;
1359 	/* End (exclusive, last byte + 1) of the range to drop extents from */
1360 	u64 end;
1361 	/* If true drop all the extent maps in the range */
1362 	bool drop_cache;
1363 	/*
1364 	 * If true it means we want to insert a new extent after dropping all
1365 	 * the extents in the range. If this is true, the 'extent_item_size'
1366 	 * parameter must be set as well and the 'extent_inserted' field will
1367 	 * be set to true by btrfs_drop_extents() if it could insert the new
1368 	 * extent.
1369 	 * Note: when this is set to true the path must not be NULL.
1370 	 */
1371 	bool replace_extent;
1372 	/*
1373 	 * Used if 'replace_extent' is true. Size of the file extent item to
1374 	 * insert after dropping all existing extents in the range
1375 	 */
1376 	u32 extent_item_size;
1377 
1378 	/* Output parameters */
1379 
1380 	/*
1381 	 * Set to the minimum between the input parameter 'end' and the end
1382 	 * (exclusive, last byte + 1) of the last dropped extent. This is always
1383 	 * set even if btrfs_drop_extents() returns an error.
1384 	 */
1385 	u64 drop_end;
1386 	/*
1387 	 * The number of allocated bytes found in the range. This can be smaller
1388 	 * than the range's length when there are holes in the range.
1389 	 */
1390 	u64 bytes_found;
1391 	/*
1392 	 * Only set if 'replace_extent' is true. Set to true if we were able
1393 	 * to insert a replacement extent after dropping all extents in the
1394 	 * range, otherwise set to false by btrfs_drop_extents().
1395 	 * Also, if btrfs_drop_extents() has set this to true it means it
1396 	 * returned with the path locked, otherwise if it has set this to
1397 	 * false it has returned with the path released.
1398 	 */
1399 	bool extent_inserted;
1400 };
1401 
1402 struct btrfs_file_private {
1403 	void *filldir_buf;
1404 };
1405 
1406 
1407 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1408 {
1409 
1410 	return info->nodesize - sizeof(struct btrfs_header);
1411 }
1412 
1413 #define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1414 
1415 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1416 {
1417 	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1418 }
1419 
1420 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1421 {
1422 	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1423 }
1424 
1425 #define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1426 		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1427 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1428 {
1429 	return BTRFS_MAX_ITEM_SIZE(info) -
1430 	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1431 }
1432 
1433 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1434 {
1435 	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1436 }
1437 
1438 /*
1439  * Flags for mount options.
1440  *
1441  * Note: don't forget to add new options to btrfs_show_options()
1442  */
1443 enum {
1444 	BTRFS_MOUNT_NODATASUM			= (1UL << 0),
1445 	BTRFS_MOUNT_NODATACOW			= (1UL << 1),
1446 	BTRFS_MOUNT_NOBARRIER			= (1UL << 2),
1447 	BTRFS_MOUNT_SSD				= (1UL << 3),
1448 	BTRFS_MOUNT_DEGRADED			= (1UL << 4),
1449 	BTRFS_MOUNT_COMPRESS			= (1UL << 5),
1450 	BTRFS_MOUNT_NOTREELOG   		= (1UL << 6),
1451 	BTRFS_MOUNT_FLUSHONCOMMIT		= (1UL << 7),
1452 	BTRFS_MOUNT_SSD_SPREAD			= (1UL << 8),
1453 	BTRFS_MOUNT_NOSSD			= (1UL << 9),
1454 	BTRFS_MOUNT_DISCARD_SYNC		= (1UL << 10),
1455 	BTRFS_MOUNT_FORCE_COMPRESS      	= (1UL << 11),
1456 	BTRFS_MOUNT_SPACE_CACHE			= (1UL << 12),
1457 	BTRFS_MOUNT_CLEAR_CACHE			= (1UL << 13),
1458 	BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED	= (1UL << 14),
1459 	BTRFS_MOUNT_ENOSPC_DEBUG		= (1UL << 15),
1460 	BTRFS_MOUNT_AUTO_DEFRAG			= (1UL << 16),
1461 	BTRFS_MOUNT_USEBACKUPROOT		= (1UL << 17),
1462 	BTRFS_MOUNT_SKIP_BALANCE		= (1UL << 18),
1463 	BTRFS_MOUNT_CHECK_INTEGRITY		= (1UL << 19),
1464 	BTRFS_MOUNT_CHECK_INTEGRITY_DATA	= (1UL << 20),
1465 	BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	= (1UL << 21),
1466 	BTRFS_MOUNT_RESCAN_UUID_TREE		= (1UL << 22),
1467 	BTRFS_MOUNT_FRAGMENT_DATA		= (1UL << 23),
1468 	BTRFS_MOUNT_FRAGMENT_METADATA		= (1UL << 24),
1469 	BTRFS_MOUNT_FREE_SPACE_TREE		= (1UL << 25),
1470 	BTRFS_MOUNT_NOLOGREPLAY			= (1UL << 26),
1471 	BTRFS_MOUNT_REF_VERIFY			= (1UL << 27),
1472 	BTRFS_MOUNT_DISCARD_ASYNC		= (1UL << 28),
1473 	BTRFS_MOUNT_IGNOREBADROOTS		= (1UL << 29),
1474 	BTRFS_MOUNT_IGNOREDATACSUMS		= (1UL << 30),
1475 };
1476 
1477 #define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1478 #define BTRFS_DEFAULT_MAX_INLINE	(2048)
1479 
1480 #define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1481 #define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1482 #define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1483 #define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1484 					 BTRFS_MOUNT_##opt)
1485 
1486 #define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1487 do {									\
1488 	if (!btrfs_test_opt(fs_info, opt))				\
1489 		btrfs_info(fs_info, fmt, ##args);			\
1490 	btrfs_set_opt(fs_info->mount_opt, opt);				\
1491 } while (0)
1492 
1493 #define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1494 do {									\
1495 	if (btrfs_test_opt(fs_info, opt))				\
1496 		btrfs_info(fs_info, fmt, ##args);			\
1497 	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1498 } while (0)
1499 
1500 /*
1501  * Requests for changes that need to be done during transaction commit.
1502  *
1503  * Internal mount options that are used for special handling of the real
1504  * mount options (eg. cannot be set during remount and have to be set during
1505  * transaction commit)
1506  */
1507 
1508 #define BTRFS_PENDING_COMMIT			(0)
1509 
1510 #define btrfs_test_pending(info, opt)	\
1511 	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1512 #define btrfs_set_pending(info, opt)	\
1513 	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1514 #define btrfs_clear_pending(info, opt)	\
1515 	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1516 
1517 /*
1518  * Helpers for setting pending mount option changes.
1519  *
1520  * Expects corresponding macros
1521  * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1522  */
1523 #define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1524 do {                                                                   \
1525        if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1526                btrfs_info((info), fmt, ##args);                        \
1527                btrfs_set_pending((info), SET_##opt);                   \
1528                btrfs_clear_pending((info), CLEAR_##opt);               \
1529        }                                                               \
1530 } while(0)
1531 
1532 #define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1533 do {                                                                   \
1534        if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1535                btrfs_info((info), fmt, ##args);                        \
1536                btrfs_set_pending((info), CLEAR_##opt);                 \
1537                btrfs_clear_pending((info), SET_##opt);                 \
1538        }                                                               \
1539 } while(0)
1540 
1541 /*
1542  * Inode flags
1543  */
1544 #define BTRFS_INODE_NODATASUM		(1U << 0)
1545 #define BTRFS_INODE_NODATACOW		(1U << 1)
1546 #define BTRFS_INODE_READONLY		(1U << 2)
1547 #define BTRFS_INODE_NOCOMPRESS		(1U << 3)
1548 #define BTRFS_INODE_PREALLOC		(1U << 4)
1549 #define BTRFS_INODE_SYNC		(1U << 5)
1550 #define BTRFS_INODE_IMMUTABLE		(1U << 6)
1551 #define BTRFS_INODE_APPEND		(1U << 7)
1552 #define BTRFS_INODE_NODUMP		(1U << 8)
1553 #define BTRFS_INODE_NOATIME		(1U << 9)
1554 #define BTRFS_INODE_DIRSYNC		(1U << 10)
1555 #define BTRFS_INODE_COMPRESS		(1U << 11)
1556 
1557 #define BTRFS_INODE_ROOT_ITEM_INIT	(1U << 31)
1558 
1559 #define BTRFS_INODE_FLAG_MASK						\
1560 	(BTRFS_INODE_NODATASUM |					\
1561 	 BTRFS_INODE_NODATACOW |					\
1562 	 BTRFS_INODE_READONLY |						\
1563 	 BTRFS_INODE_NOCOMPRESS |					\
1564 	 BTRFS_INODE_PREALLOC |						\
1565 	 BTRFS_INODE_SYNC |						\
1566 	 BTRFS_INODE_IMMUTABLE |					\
1567 	 BTRFS_INODE_APPEND |						\
1568 	 BTRFS_INODE_NODUMP |						\
1569 	 BTRFS_INODE_NOATIME |						\
1570 	 BTRFS_INODE_DIRSYNC |						\
1571 	 BTRFS_INODE_COMPRESS |						\
1572 	 BTRFS_INODE_ROOT_ITEM_INIT)
1573 
1574 #define BTRFS_INODE_RO_VERITY		(1U << 0)
1575 
1576 #define BTRFS_INODE_RO_FLAG_MASK	(BTRFS_INODE_RO_VERITY)
1577 
1578 struct btrfs_map_token {
1579 	struct extent_buffer *eb;
1580 	char *kaddr;
1581 	unsigned long offset;
1582 };
1583 
1584 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1585 				((bytes) >> (fs_info)->sectorsize_bits)
1586 
1587 static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1588 					struct extent_buffer *eb)
1589 {
1590 	token->eb = eb;
1591 	token->kaddr = page_address(eb->pages[0]);
1592 	token->offset = 0;
1593 }
1594 
1595 /* some macros to generate set/get functions for the struct fields.  This
1596  * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1597  * one for u8:
1598  */
1599 #define le8_to_cpu(v) (v)
1600 #define cpu_to_le8(v) (v)
1601 #define __le8 u8
1602 
1603 static inline u8 get_unaligned_le8(const void *p)
1604 {
1605        return *(u8 *)p;
1606 }
1607 
1608 static inline void put_unaligned_le8(u8 val, void *p)
1609 {
1610        *(u8 *)p = val;
1611 }
1612 
1613 #define read_eb_member(eb, ptr, type, member, result) (\
1614 	read_extent_buffer(eb, (char *)(result),			\
1615 			   ((unsigned long)(ptr)) +			\
1616 			    offsetof(type, member),			\
1617 			   sizeof(((type *)0)->member)))
1618 
1619 #define write_eb_member(eb, ptr, type, member, result) (\
1620 	write_extent_buffer(eb, (char *)(result),			\
1621 			   ((unsigned long)(ptr)) +			\
1622 			    offsetof(type, member),			\
1623 			   sizeof(((type *)0)->member)))
1624 
1625 #define DECLARE_BTRFS_SETGET_BITS(bits)					\
1626 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1627 			       const void *ptr, unsigned long off);	\
1628 void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1629 			    const void *ptr, unsigned long off,		\
1630 			    u##bits val);				\
1631 u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1632 			 const void *ptr, unsigned long off);		\
1633 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1634 		      unsigned long off, u##bits val);
1635 
1636 DECLARE_BTRFS_SETGET_BITS(8)
1637 DECLARE_BTRFS_SETGET_BITS(16)
1638 DECLARE_BTRFS_SETGET_BITS(32)
1639 DECLARE_BTRFS_SETGET_BITS(64)
1640 
1641 #define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1642 static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1643 				   const type *s)			\
1644 {									\
1645 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1646 	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1647 }									\
1648 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1649 				    u##bits val)			\
1650 {									\
1651 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1652 	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1653 }									\
1654 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1655 					 const type *s)			\
1656 {									\
1657 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1658 	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1659 }									\
1660 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1661 					  type *s, u##bits val)		\
1662 {									\
1663 	static_assert(sizeof(u##bits) == sizeof(((type *)0))->member);	\
1664 	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1665 }
1666 
1667 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1668 static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1669 {									\
1670 	const type *p = page_address(eb->pages[0]) +			\
1671 			offset_in_page(eb->start);			\
1672 	return get_unaligned_le##bits(&p->member);			\
1673 }									\
1674 static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1675 				    u##bits val)			\
1676 {									\
1677 	type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \
1678 	put_unaligned_le##bits(val, &p->member);			\
1679 }
1680 
1681 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1682 static inline u##bits btrfs_##name(const type *s)			\
1683 {									\
1684 	return get_unaligned_le##bits(&s->member);			\
1685 }									\
1686 static inline void btrfs_set_##name(type *s, u##bits val)		\
1687 {									\
1688 	put_unaligned_le##bits(val, &s->member);			\
1689 }
1690 
1691 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1692 					   struct btrfs_dev_item *s)
1693 {
1694 	static_assert(sizeof(u64) ==
1695 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1696 	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1697 					    total_bytes));
1698 }
1699 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1700 						struct btrfs_dev_item *s,
1701 						u64 val)
1702 {
1703 	static_assert(sizeof(u64) ==
1704 		      sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1705 	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1706 	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1707 }
1708 
1709 
1710 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1711 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1712 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1713 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1714 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1715 		   start_offset, 64);
1716 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1717 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1718 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1719 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1720 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1721 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1722 
1723 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1724 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1725 			 total_bytes, 64);
1726 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1727 			 bytes_used, 64);
1728 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1729 			 io_align, 32);
1730 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1731 			 io_width, 32);
1732 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1733 			 sector_size, 32);
1734 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1735 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1736 			 dev_group, 32);
1737 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1738 			 seek_speed, 8);
1739 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1740 			 bandwidth, 8);
1741 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1742 			 generation, 64);
1743 
1744 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1745 {
1746 	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1747 }
1748 
1749 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1750 {
1751 	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1752 }
1753 
1754 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1755 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1756 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1757 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1758 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1759 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1760 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1761 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1762 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1763 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1764 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1765 
1766 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1767 {
1768 	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1769 }
1770 
1771 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1772 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1773 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1774 			 stripe_len, 64);
1775 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1776 			 io_align, 32);
1777 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1778 			 io_width, 32);
1779 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1780 			 sector_size, 32);
1781 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1782 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1783 			 num_stripes, 16);
1784 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1785 			 sub_stripes, 16);
1786 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1787 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1788 
1789 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1790 						   int nr)
1791 {
1792 	unsigned long offset = (unsigned long)c;
1793 	offset += offsetof(struct btrfs_chunk, stripe);
1794 	offset += nr * sizeof(struct btrfs_stripe);
1795 	return (struct btrfs_stripe *)offset;
1796 }
1797 
1798 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1799 {
1800 	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1801 }
1802 
1803 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1804 					 struct btrfs_chunk *c, int nr)
1805 {
1806 	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1807 }
1808 
1809 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1810 					 struct btrfs_chunk *c, int nr)
1811 {
1812 	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1813 }
1814 
1815 /* struct btrfs_block_group_item */
1816 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1817 			 used, 64);
1818 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1819 			 used, 64);
1820 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1821 			struct btrfs_block_group_item, chunk_objectid, 64);
1822 
1823 BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1824 		   struct btrfs_block_group_item, chunk_objectid, 64);
1825 BTRFS_SETGET_FUNCS(block_group_flags,
1826 		   struct btrfs_block_group_item, flags, 64);
1827 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1828 			struct btrfs_block_group_item, flags, 64);
1829 
1830 /* struct btrfs_free_space_info */
1831 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1832 		   extent_count, 32);
1833 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1834 
1835 /* struct btrfs_inode_ref */
1836 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1837 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1838 
1839 /* struct btrfs_inode_extref */
1840 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1841 		   parent_objectid, 64);
1842 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1843 		   name_len, 16);
1844 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1845 
1846 /* struct btrfs_inode_item */
1847 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1848 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1849 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1850 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1851 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1852 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1853 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1854 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1855 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1856 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1857 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1858 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1859 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1860 			 generation, 64);
1861 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1862 			 sequence, 64);
1863 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1864 			 transid, 64);
1865 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1866 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1867 			 nbytes, 64);
1868 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1869 			 block_group, 64);
1870 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1871 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1872 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1873 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1874 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1875 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1876 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1877 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1878 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1879 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1880 
1881 /* struct btrfs_dev_extent */
1882 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1883 		   chunk_tree, 64);
1884 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1885 		   chunk_objectid, 64);
1886 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1887 		   chunk_offset, 64);
1888 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1889 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1890 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1891 		   generation, 64);
1892 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1893 
1894 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1895 
1896 static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1897 					struct btrfs_tree_block_info *item,
1898 					struct btrfs_disk_key *key)
1899 {
1900 	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1901 }
1902 
1903 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1904 					    struct btrfs_tree_block_info *item,
1905 					    struct btrfs_disk_key *key)
1906 {
1907 	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1908 }
1909 
1910 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1911 		   root, 64);
1912 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1913 		   objectid, 64);
1914 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1915 		   offset, 64);
1916 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1917 		   count, 32);
1918 
1919 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1920 		   count, 32);
1921 
1922 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1923 		   type, 8);
1924 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1925 		   offset, 64);
1926 
1927 static inline u32 btrfs_extent_inline_ref_size(int type)
1928 {
1929 	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1930 	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1931 		return sizeof(struct btrfs_extent_inline_ref);
1932 	if (type == BTRFS_SHARED_DATA_REF_KEY)
1933 		return sizeof(struct btrfs_shared_data_ref) +
1934 		       sizeof(struct btrfs_extent_inline_ref);
1935 	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1936 		return sizeof(struct btrfs_extent_data_ref) +
1937 		       offsetof(struct btrfs_extent_inline_ref, offset);
1938 	return 0;
1939 }
1940 
1941 /* struct btrfs_node */
1942 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1943 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1944 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1945 			 blockptr, 64);
1946 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1947 			 generation, 64);
1948 
1949 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1950 {
1951 	unsigned long ptr;
1952 	ptr = offsetof(struct btrfs_node, ptrs) +
1953 		sizeof(struct btrfs_key_ptr) * nr;
1954 	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1955 }
1956 
1957 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1958 					   int nr, u64 val)
1959 {
1960 	unsigned long ptr;
1961 	ptr = offsetof(struct btrfs_node, ptrs) +
1962 		sizeof(struct btrfs_key_ptr) * nr;
1963 	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1964 }
1965 
1966 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1967 {
1968 	unsigned long ptr;
1969 	ptr = offsetof(struct btrfs_node, ptrs) +
1970 		sizeof(struct btrfs_key_ptr) * nr;
1971 	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1972 }
1973 
1974 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1975 						 int nr, u64 val)
1976 {
1977 	unsigned long ptr;
1978 	ptr = offsetof(struct btrfs_node, ptrs) +
1979 		sizeof(struct btrfs_key_ptr) * nr;
1980 	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1981 }
1982 
1983 static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1984 {
1985 	return offsetof(struct btrfs_node, ptrs) +
1986 		sizeof(struct btrfs_key_ptr) * nr;
1987 }
1988 
1989 void btrfs_node_key(const struct extent_buffer *eb,
1990 		    struct btrfs_disk_key *disk_key, int nr);
1991 
1992 static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1993 				      struct btrfs_disk_key *disk_key, int nr)
1994 {
1995 	unsigned long ptr;
1996 	ptr = btrfs_node_key_ptr_offset(nr);
1997 	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1998 		       struct btrfs_key_ptr, key, disk_key);
1999 }
2000 
2001 /* struct btrfs_item */
2002 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32);
2003 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32);
2004 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
2005 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
2006 
2007 static inline unsigned long btrfs_item_nr_offset(int nr)
2008 {
2009 	return offsetof(struct btrfs_leaf, items) +
2010 		sizeof(struct btrfs_item) * nr;
2011 }
2012 
2013 static inline struct btrfs_item *btrfs_item_nr(int nr)
2014 {
2015 	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
2016 }
2017 
2018 #define BTRFS_ITEM_SETGET_FUNCS(member)						\
2019 static inline u32 btrfs_item_##member(const struct extent_buffer *eb,		\
2020 				      int slot)					\
2021 {										\
2022 	return btrfs_raw_item_##member(eb, btrfs_item_nr(slot));		\
2023 }										\
2024 static inline void btrfs_set_item_##member(const struct extent_buffer *eb,	\
2025 					   int slot, u32 val)			\
2026 {										\
2027 	btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val);		\
2028 }										\
2029 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token,	\
2030 					    int slot)				\
2031 {										\
2032 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2033 	return btrfs_token_raw_item_##member(token, item);			\
2034 }										\
2035 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token,	\
2036 						 int slot, u32 val)		\
2037 {										\
2038 	struct btrfs_item *item = btrfs_item_nr(slot);				\
2039 	btrfs_set_token_raw_item_##member(token, item, val);			\
2040 }
2041 
2042 BTRFS_ITEM_SETGET_FUNCS(offset)
2043 BTRFS_ITEM_SETGET_FUNCS(size);
2044 
2045 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr)
2046 {
2047 	return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr);
2048 }
2049 
2050 static inline void btrfs_item_key(const struct extent_buffer *eb,
2051 			   struct btrfs_disk_key *disk_key, int nr)
2052 {
2053 	struct btrfs_item *item = btrfs_item_nr(nr);
2054 	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
2055 }
2056 
2057 static inline void btrfs_set_item_key(struct extent_buffer *eb,
2058 			       struct btrfs_disk_key *disk_key, int nr)
2059 {
2060 	struct btrfs_item *item = btrfs_item_nr(nr);
2061 	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2062 }
2063 
2064 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2065 
2066 /*
2067  * struct btrfs_root_ref
2068  */
2069 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2070 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2071 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2072 
2073 /* struct btrfs_dir_item */
2074 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2075 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2076 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2077 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2078 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
2079 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
2080 			 data_len, 16);
2081 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
2082 			 name_len, 16);
2083 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
2084 			 transid, 64);
2085 
2086 static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
2087 				      const struct btrfs_dir_item *item,
2088 				      struct btrfs_disk_key *key)
2089 {
2090 	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2091 }
2092 
2093 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2094 					  struct btrfs_dir_item *item,
2095 					  const struct btrfs_disk_key *key)
2096 {
2097 	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2098 }
2099 
2100 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2101 		   num_entries, 64);
2102 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2103 		   num_bitmaps, 64);
2104 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2105 		   generation, 64);
2106 
2107 static inline void btrfs_free_space_key(const struct extent_buffer *eb,
2108 					const struct btrfs_free_space_header *h,
2109 					struct btrfs_disk_key *key)
2110 {
2111 	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2112 }
2113 
2114 static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2115 					    struct btrfs_free_space_header *h,
2116 					    const struct btrfs_disk_key *key)
2117 {
2118 	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2119 }
2120 
2121 /* struct btrfs_disk_key */
2122 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2123 			 objectid, 64);
2124 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2125 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
2126 
2127 #ifdef __LITTLE_ENDIAN
2128 
2129 /*
2130  * Optimized helpers for little-endian architectures where CPU and on-disk
2131  * structures have the same endianness and we can skip conversions.
2132  */
2133 
2134 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
2135 					 const struct btrfs_disk_key *disk_key)
2136 {
2137 	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
2138 }
2139 
2140 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
2141 					 const struct btrfs_key *cpu_key)
2142 {
2143 	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
2144 }
2145 
2146 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2147 					 struct btrfs_key *cpu_key, int nr)
2148 {
2149 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2150 
2151 	btrfs_node_key(eb, disk_key, nr);
2152 }
2153 
2154 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2155 					 struct btrfs_key *cpu_key, int nr)
2156 {
2157 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2158 
2159 	btrfs_item_key(eb, disk_key, nr);
2160 }
2161 
2162 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2163 					     const struct btrfs_dir_item *item,
2164 					     struct btrfs_key *cpu_key)
2165 {
2166 	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
2167 
2168 	btrfs_dir_item_key(eb, item, disk_key);
2169 }
2170 
2171 #else
2172 
2173 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2174 					 const struct btrfs_disk_key *disk)
2175 {
2176 	cpu->offset = le64_to_cpu(disk->offset);
2177 	cpu->type = disk->type;
2178 	cpu->objectid = le64_to_cpu(disk->objectid);
2179 }
2180 
2181 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2182 					 const struct btrfs_key *cpu)
2183 {
2184 	disk->offset = cpu_to_le64(cpu->offset);
2185 	disk->type = cpu->type;
2186 	disk->objectid = cpu_to_le64(cpu->objectid);
2187 }
2188 
2189 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
2190 					 struct btrfs_key *key, int nr)
2191 {
2192 	struct btrfs_disk_key disk_key;
2193 	btrfs_node_key(eb, &disk_key, nr);
2194 	btrfs_disk_key_to_cpu(key, &disk_key);
2195 }
2196 
2197 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
2198 					 struct btrfs_key *key, int nr)
2199 {
2200 	struct btrfs_disk_key disk_key;
2201 	btrfs_item_key(eb, &disk_key, nr);
2202 	btrfs_disk_key_to_cpu(key, &disk_key);
2203 }
2204 
2205 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
2206 					     const struct btrfs_dir_item *item,
2207 					     struct btrfs_key *key)
2208 {
2209 	struct btrfs_disk_key disk_key;
2210 	btrfs_dir_item_key(eb, item, &disk_key);
2211 	btrfs_disk_key_to_cpu(key, &disk_key);
2212 }
2213 
2214 #endif
2215 
2216 /* struct btrfs_header */
2217 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2218 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2219 			  generation, 64);
2220 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2221 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2222 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2223 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2224 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2225 			 generation, 64);
2226 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2227 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2228 			 nritems, 32);
2229 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2230 
2231 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2232 {
2233 	return (btrfs_header_flags(eb) & flag) == flag;
2234 }
2235 
2236 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2237 {
2238 	u64 flags = btrfs_header_flags(eb);
2239 	btrfs_set_header_flags(eb, flags | flag);
2240 }
2241 
2242 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2243 {
2244 	u64 flags = btrfs_header_flags(eb);
2245 	btrfs_set_header_flags(eb, flags & ~flag);
2246 }
2247 
2248 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2249 {
2250 	u64 flags = btrfs_header_flags(eb);
2251 	return flags >> BTRFS_BACKREF_REV_SHIFT;
2252 }
2253 
2254 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2255 						int rev)
2256 {
2257 	u64 flags = btrfs_header_flags(eb);
2258 	flags &= ~BTRFS_BACKREF_REV_MASK;
2259 	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2260 	btrfs_set_header_flags(eb, flags);
2261 }
2262 
2263 static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2264 {
2265 	return btrfs_header_level(eb) == 0;
2266 }
2267 
2268 /* struct btrfs_root_item */
2269 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2270 		   generation, 64);
2271 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2272 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2273 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2274 
2275 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2276 			 generation, 64);
2277 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2278 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8);
2279 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2280 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2281 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2282 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2283 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2284 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2285 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2286 			 last_snapshot, 64);
2287 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2288 			 generation_v2, 64);
2289 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2290 			 ctransid, 64);
2291 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2292 			 otransid, 64);
2293 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2294 			 stransid, 64);
2295 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2296 			 rtransid, 64);
2297 
2298 static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2299 {
2300 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2301 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2302 }
2303 
2304 static inline bool btrfs_root_dead(const struct btrfs_root *root)
2305 {
2306 	/* Byte-swap the constant at compile time, root_item::flags is LE */
2307 	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2308 }
2309 
2310 static inline u64 btrfs_root_id(const struct btrfs_root *root)
2311 {
2312 	return root->root_key.objectid;
2313 }
2314 
2315 /* struct btrfs_root_backup */
2316 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2317 		   tree_root, 64);
2318 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2319 		   tree_root_gen, 64);
2320 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2321 		   tree_root_level, 8);
2322 
2323 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2324 		   chunk_root, 64);
2325 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2326 		   chunk_root_gen, 64);
2327 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2328 		   chunk_root_level, 8);
2329 
2330 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2331 		   extent_root, 64);
2332 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2333 		   extent_root_gen, 64);
2334 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2335 		   extent_root_level, 8);
2336 
2337 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2338 		   fs_root, 64);
2339 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2340 		   fs_root_gen, 64);
2341 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2342 		   fs_root_level, 8);
2343 
2344 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2345 		   dev_root, 64);
2346 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2347 		   dev_root_gen, 64);
2348 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2349 		   dev_root_level, 8);
2350 
2351 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2352 		   csum_root, 64);
2353 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2354 		   csum_root_gen, 64);
2355 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2356 		   csum_root_level, 8);
2357 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2358 		   total_bytes, 64);
2359 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2360 		   bytes_used, 64);
2361 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2362 		   num_devices, 64);
2363 
2364 /*
2365  * For extent tree v2 we overload the extent root with the block group root, as
2366  * we will have multiple extent roots.
2367  */
2368 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup,
2369 			 extent_root, 64);
2370 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup,
2371 			 extent_root_gen, 64);
2372 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level,
2373 			 struct btrfs_root_backup, extent_root_level, 8);
2374 
2375 /* struct btrfs_balance_item */
2376 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2377 
2378 static inline void btrfs_balance_data(const struct extent_buffer *eb,
2379 				      const struct btrfs_balance_item *bi,
2380 				      struct btrfs_disk_balance_args *ba)
2381 {
2382 	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2383 }
2384 
2385 static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2386 				  struct btrfs_balance_item *bi,
2387 				  const struct btrfs_disk_balance_args *ba)
2388 {
2389 	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2390 }
2391 
2392 static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2393 				      const struct btrfs_balance_item *bi,
2394 				      struct btrfs_disk_balance_args *ba)
2395 {
2396 	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2397 }
2398 
2399 static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2400 				  struct btrfs_balance_item *bi,
2401 				  const struct btrfs_disk_balance_args *ba)
2402 {
2403 	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2404 }
2405 
2406 static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2407 				     const struct btrfs_balance_item *bi,
2408 				     struct btrfs_disk_balance_args *ba)
2409 {
2410 	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2411 }
2412 
2413 static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2414 				 struct btrfs_balance_item *bi,
2415 				 const struct btrfs_disk_balance_args *ba)
2416 {
2417 	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2418 }
2419 
2420 static inline void
2421 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2422 			       const struct btrfs_disk_balance_args *disk)
2423 {
2424 	memset(cpu, 0, sizeof(*cpu));
2425 
2426 	cpu->profiles = le64_to_cpu(disk->profiles);
2427 	cpu->usage = le64_to_cpu(disk->usage);
2428 	cpu->devid = le64_to_cpu(disk->devid);
2429 	cpu->pstart = le64_to_cpu(disk->pstart);
2430 	cpu->pend = le64_to_cpu(disk->pend);
2431 	cpu->vstart = le64_to_cpu(disk->vstart);
2432 	cpu->vend = le64_to_cpu(disk->vend);
2433 	cpu->target = le64_to_cpu(disk->target);
2434 	cpu->flags = le64_to_cpu(disk->flags);
2435 	cpu->limit = le64_to_cpu(disk->limit);
2436 	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2437 	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2438 }
2439 
2440 static inline void
2441 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2442 			       const struct btrfs_balance_args *cpu)
2443 {
2444 	memset(disk, 0, sizeof(*disk));
2445 
2446 	disk->profiles = cpu_to_le64(cpu->profiles);
2447 	disk->usage = cpu_to_le64(cpu->usage);
2448 	disk->devid = cpu_to_le64(cpu->devid);
2449 	disk->pstart = cpu_to_le64(cpu->pstart);
2450 	disk->pend = cpu_to_le64(cpu->pend);
2451 	disk->vstart = cpu_to_le64(cpu->vstart);
2452 	disk->vend = cpu_to_le64(cpu->vend);
2453 	disk->target = cpu_to_le64(cpu->target);
2454 	disk->flags = cpu_to_le64(cpu->flags);
2455 	disk->limit = cpu_to_le64(cpu->limit);
2456 	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2457 	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2458 }
2459 
2460 /* struct btrfs_super_block */
2461 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2462 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2463 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2464 			 generation, 64);
2465 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2466 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2467 			 struct btrfs_super_block, sys_chunk_array_size, 32);
2468 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2469 			 struct btrfs_super_block, chunk_root_generation, 64);
2470 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2471 			 root_level, 8);
2472 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2473 			 chunk_root, 64);
2474 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2475 			 chunk_root_level, 8);
2476 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2477 			 log_root, 64);
2478 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2479 			 log_root_transid, 64);
2480 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2481 			 log_root_level, 8);
2482 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2483 			 total_bytes, 64);
2484 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2485 			 bytes_used, 64);
2486 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2487 			 sectorsize, 32);
2488 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2489 			 nodesize, 32);
2490 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2491 			 stripesize, 32);
2492 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2493 			 root_dir_objectid, 64);
2494 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2495 			 num_devices, 64);
2496 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2497 			 compat_flags, 64);
2498 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2499 			 compat_ro_flags, 64);
2500 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2501 			 incompat_flags, 64);
2502 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2503 			 csum_type, 16);
2504 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2505 			 cache_generation, 64);
2506 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2507 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2508 			 uuid_tree_generation, 64);
2509 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block,
2510 			 block_group_root, 64);
2511 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation,
2512 			 struct btrfs_super_block,
2513 			 block_group_root_generation, 64);
2514 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block,
2515 			 block_group_root_level, 8);
2516 
2517 int btrfs_super_csum_size(const struct btrfs_super_block *s);
2518 const char *btrfs_super_csum_name(u16 csum_type);
2519 const char *btrfs_super_csum_driver(u16 csum_type);
2520 size_t __attribute_const__ btrfs_get_num_csums(void);
2521 
2522 
2523 /*
2524  * The leaf data grows from end-to-front in the node.
2525  * this returns the address of the start of the last item,
2526  * which is the stop of the leaf data stack
2527  */
2528 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2529 {
2530 	u32 nr = btrfs_header_nritems(leaf);
2531 
2532 	if (nr == 0)
2533 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2534 	return btrfs_item_offset(leaf, nr - 1);
2535 }
2536 
2537 /* struct btrfs_file_extent_item */
2538 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2539 			 type, 8);
2540 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2541 			 struct btrfs_file_extent_item, disk_bytenr, 64);
2542 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2543 			 struct btrfs_file_extent_item, offset, 64);
2544 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2545 			 struct btrfs_file_extent_item, generation, 64);
2546 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2547 			 struct btrfs_file_extent_item, num_bytes, 64);
2548 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2549 			 struct btrfs_file_extent_item, ram_bytes, 64);
2550 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2551 			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2552 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2553 			 struct btrfs_file_extent_item, compression, 8);
2554 
2555 static inline unsigned long
2556 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2557 {
2558 	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2559 }
2560 
2561 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2562 {
2563 	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2564 }
2565 
2566 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2567 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2568 		   disk_bytenr, 64);
2569 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2570 		   generation, 64);
2571 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2572 		   disk_num_bytes, 64);
2573 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2574 		  offset, 64);
2575 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2576 		   num_bytes, 64);
2577 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2578 		   ram_bytes, 64);
2579 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2580 		   compression, 8);
2581 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2582 		   encryption, 8);
2583 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2584 		   other_encoding, 16);
2585 
2586 /*
2587  * this returns the number of bytes used by the item on disk, minus the
2588  * size of any extent headers.  If a file is compressed on disk, this is
2589  * the compressed size
2590  */
2591 static inline u32 btrfs_file_extent_inline_item_len(
2592 						const struct extent_buffer *eb,
2593 						int nr)
2594 {
2595 	return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2596 }
2597 
2598 /* btrfs_qgroup_status_item */
2599 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2600 		   generation, 64);
2601 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2602 		   version, 64);
2603 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2604 		   flags, 64);
2605 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2606 		   rescan, 64);
2607 
2608 /* btrfs_qgroup_info_item */
2609 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2610 		   generation, 64);
2611 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2612 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2613 		   rfer_cmpr, 64);
2614 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2615 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2616 		   excl_cmpr, 64);
2617 
2618 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2619 			 struct btrfs_qgroup_info_item, generation, 64);
2620 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2621 			 rfer, 64);
2622 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2623 			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2624 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2625 			 excl, 64);
2626 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2627 			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2628 
2629 /* btrfs_qgroup_limit_item */
2630 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2631 		   flags, 64);
2632 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2633 		   max_rfer, 64);
2634 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2635 		   max_excl, 64);
2636 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2637 		   rsv_rfer, 64);
2638 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2639 		   rsv_excl, 64);
2640 
2641 /* btrfs_dev_replace_item */
2642 BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2643 		   struct btrfs_dev_replace_item, src_devid, 64);
2644 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2645 		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2646 		   64);
2647 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2648 		   replace_state, 64);
2649 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2650 		   time_started, 64);
2651 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2652 		   time_stopped, 64);
2653 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2654 		   num_write_errors, 64);
2655 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2656 		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2657 		   64);
2658 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2659 		   cursor_left, 64);
2660 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2661 		   cursor_right, 64);
2662 
2663 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2664 			 struct btrfs_dev_replace_item, src_devid, 64);
2665 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2666 			 struct btrfs_dev_replace_item,
2667 			 cont_reading_from_srcdev_mode, 64);
2668 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2669 			 struct btrfs_dev_replace_item, replace_state, 64);
2670 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2671 			 struct btrfs_dev_replace_item, time_started, 64);
2672 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2673 			 struct btrfs_dev_replace_item, time_stopped, 64);
2674 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2675 			 struct btrfs_dev_replace_item, num_write_errors, 64);
2676 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2677 			 struct btrfs_dev_replace_item,
2678 			 num_uncorrectable_read_errors, 64);
2679 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2680 			 struct btrfs_dev_replace_item, cursor_left, 64);
2681 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2682 			 struct btrfs_dev_replace_item, cursor_right, 64);
2683 
2684 /* helper function to cast into the data area of the leaf. */
2685 #define btrfs_item_ptr(leaf, slot, type) \
2686 	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2687 	btrfs_item_offset(leaf, slot)))
2688 
2689 #define btrfs_item_ptr_offset(leaf, slot) \
2690 	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2691 	btrfs_item_offset(leaf, slot)))
2692 
2693 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2694 {
2695 	return crc32c(crc, address, length);
2696 }
2697 
2698 static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2699 {
2700 	put_unaligned_le32(~crc, result);
2701 }
2702 
2703 static inline u64 btrfs_name_hash(const char *name, int len)
2704 {
2705        return crc32c((u32)~1, name, len);
2706 }
2707 
2708 /*
2709  * Figure the key offset of an extended inode ref
2710  */
2711 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2712                                    int len)
2713 {
2714        return (u64) crc32c(parent_objectid, name, len);
2715 }
2716 
2717 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2718 {
2719 	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2720 }
2721 
2722 /* extent-tree.c */
2723 
2724 enum btrfs_inline_ref_type {
2725 	BTRFS_REF_TYPE_INVALID,
2726 	BTRFS_REF_TYPE_BLOCK,
2727 	BTRFS_REF_TYPE_DATA,
2728 	BTRFS_REF_TYPE_ANY,
2729 };
2730 
2731 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2732 				     struct btrfs_extent_inline_ref *iref,
2733 				     enum btrfs_inline_ref_type is_data);
2734 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2735 
2736 /*
2737  * Take the number of bytes to be checksummmed and figure out how many leaves
2738  * it would require to store the csums for that many bytes.
2739  */
2740 static inline u64 btrfs_csum_bytes_to_leaves(
2741 			const struct btrfs_fs_info *fs_info, u64 csum_bytes)
2742 {
2743 	const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits;
2744 
2745 	return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf);
2746 }
2747 
2748 /*
2749  * Use this if we would be adding new items, as we could split nodes as we cow
2750  * down the tree.
2751  */
2752 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2753 						  unsigned num_items)
2754 {
2755 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2756 }
2757 
2758 /*
2759  * Doing a truncate or a modification won't result in new nodes or leaves, just
2760  * what we need for COW.
2761  */
2762 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2763 						 unsigned num_items)
2764 {
2765 	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2766 }
2767 
2768 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2769 			      u64 start, u64 num_bytes);
2770 void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2771 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2772 			   unsigned long count);
2773 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2774 				  struct btrfs_delayed_ref_root *delayed_refs,
2775 				  struct btrfs_delayed_ref_head *head);
2776 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2777 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2778 			     struct btrfs_fs_info *fs_info, u64 bytenr,
2779 			     u64 offset, int metadata, u64 *refs, u64 *flags);
2780 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2781 		     int reserved);
2782 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2783 				    u64 bytenr, u64 num_bytes);
2784 int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2785 int btrfs_cross_ref_exist(struct btrfs_root *root,
2786 			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2787 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2788 					     struct btrfs_root *root,
2789 					     u64 parent, u64 root_objectid,
2790 					     const struct btrfs_disk_key *key,
2791 					     int level, u64 hint,
2792 					     u64 empty_size,
2793 					     enum btrfs_lock_nesting nest);
2794 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2795 			   u64 root_id,
2796 			   struct extent_buffer *buf,
2797 			   u64 parent, int last_ref);
2798 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2799 				     struct btrfs_root *root, u64 owner,
2800 				     u64 offset, u64 ram_bytes,
2801 				     struct btrfs_key *ins);
2802 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2803 				   u64 root_objectid, u64 owner, u64 offset,
2804 				   struct btrfs_key *ins);
2805 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2806 			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2807 			 struct btrfs_key *ins, int is_data, int delalloc);
2808 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2809 		  struct extent_buffer *buf, int full_backref);
2810 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2811 		  struct extent_buffer *buf, int full_backref);
2812 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2813 				struct extent_buffer *eb, u64 flags,
2814 				int level, int is_data);
2815 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2816 
2817 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2818 			       u64 start, u64 len, int delalloc);
2819 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2820 			      u64 len);
2821 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2822 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2823 			 struct btrfs_ref *generic_ref);
2824 
2825 void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2826 
2827 /*
2828  * Different levels for to flush space when doing space reservations.
2829  *
2830  * The higher the level, the more methods we try to reclaim space.
2831  */
2832 enum btrfs_reserve_flush_enum {
2833 	/* If we are in the transaction, we can't flush anything.*/
2834 	BTRFS_RESERVE_NO_FLUSH,
2835 
2836 	/*
2837 	 * Flush space by:
2838 	 * - Running delayed inode items
2839 	 * - Allocating a new chunk
2840 	 */
2841 	BTRFS_RESERVE_FLUSH_LIMIT,
2842 
2843 	/*
2844 	 * Flush space by:
2845 	 * - Running delayed inode items
2846 	 * - Running delayed refs
2847 	 * - Running delalloc and waiting for ordered extents
2848 	 * - Allocating a new chunk
2849 	 */
2850 	BTRFS_RESERVE_FLUSH_EVICT,
2851 
2852 	/*
2853 	 * Flush space by above mentioned methods and by:
2854 	 * - Running delayed iputs
2855 	 * - Committing transaction
2856 	 *
2857 	 * Can be interrupted by a fatal signal.
2858 	 */
2859 	BTRFS_RESERVE_FLUSH_DATA,
2860 	BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE,
2861 	BTRFS_RESERVE_FLUSH_ALL,
2862 
2863 	/*
2864 	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2865 	 * global rsv.
2866 	 *
2867 	 * Can be interrupted by a fatal signal.
2868 	 */
2869 	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2870 };
2871 
2872 enum btrfs_flush_state {
2873 	FLUSH_DELAYED_ITEMS_NR	=	1,
2874 	FLUSH_DELAYED_ITEMS	=	2,
2875 	FLUSH_DELAYED_REFS_NR	=	3,
2876 	FLUSH_DELAYED_REFS	=	4,
2877 	FLUSH_DELALLOC		=	5,
2878 	FLUSH_DELALLOC_WAIT	=	6,
2879 	FLUSH_DELALLOC_FULL	=	7,
2880 	ALLOC_CHUNK		=	8,
2881 	ALLOC_CHUNK_FORCE	=	9,
2882 	RUN_DELAYED_IPUTS	=	10,
2883 	COMMIT_TRANS		=	11,
2884 };
2885 
2886 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2887 				     struct btrfs_block_rsv *rsv,
2888 				     int nitems, bool use_global_rsv);
2889 void btrfs_subvolume_release_metadata(struct btrfs_root *root,
2890 				      struct btrfs_block_rsv *rsv);
2891 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2892 
2893 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes,
2894 				    u64 disk_num_bytes);
2895 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2896 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2897 				   u64 start, u64 end);
2898 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2899 			 u64 num_bytes, u64 *actual_bytes);
2900 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2901 
2902 int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2903 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2904 					 struct btrfs_fs_info *fs_info);
2905 int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2906 void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2907 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2908 
2909 /* ctree.c */
2910 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2911 		     int *slot);
2912 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2913 int btrfs_previous_item(struct btrfs_root *root,
2914 			struct btrfs_path *path, u64 min_objectid,
2915 			int type);
2916 int btrfs_previous_extent_item(struct btrfs_root *root,
2917 			struct btrfs_path *path, u64 min_objectid);
2918 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2919 			     struct btrfs_path *path,
2920 			     const struct btrfs_key *new_key);
2921 struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2922 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2923 			struct btrfs_key *key, int lowest_level,
2924 			u64 min_trans);
2925 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2926 			 struct btrfs_path *path,
2927 			 u64 min_trans);
2928 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2929 					   int slot);
2930 
2931 int btrfs_cow_block(struct btrfs_trans_handle *trans,
2932 		    struct btrfs_root *root, struct extent_buffer *buf,
2933 		    struct extent_buffer *parent, int parent_slot,
2934 		    struct extent_buffer **cow_ret,
2935 		    enum btrfs_lock_nesting nest);
2936 int btrfs_copy_root(struct btrfs_trans_handle *trans,
2937 		      struct btrfs_root *root,
2938 		      struct extent_buffer *buf,
2939 		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2940 int btrfs_block_can_be_shared(struct btrfs_root *root,
2941 			      struct extent_buffer *buf);
2942 void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2943 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2944 int btrfs_split_item(struct btrfs_trans_handle *trans,
2945 		     struct btrfs_root *root,
2946 		     struct btrfs_path *path,
2947 		     const struct btrfs_key *new_key,
2948 		     unsigned long split_offset);
2949 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2950 			 struct btrfs_root *root,
2951 			 struct btrfs_path *path,
2952 			 const struct btrfs_key *new_key);
2953 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2954 		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2955 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2956 		      const struct btrfs_key *key, struct btrfs_path *p,
2957 		      int ins_len, int cow);
2958 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2959 			  struct btrfs_path *p, u64 time_seq);
2960 int btrfs_search_slot_for_read(struct btrfs_root *root,
2961 			       const struct btrfs_key *key,
2962 			       struct btrfs_path *p, int find_higher,
2963 			       int return_any);
2964 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2965 		       struct btrfs_root *root, struct extent_buffer *parent,
2966 		       int start_slot, u64 *last_ret,
2967 		       struct btrfs_key *progress);
2968 void btrfs_release_path(struct btrfs_path *p);
2969 struct btrfs_path *btrfs_alloc_path(void);
2970 void btrfs_free_path(struct btrfs_path *p);
2971 
2972 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2973 		   struct btrfs_path *path, int slot, int nr);
2974 static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2975 				 struct btrfs_root *root,
2976 				 struct btrfs_path *path)
2977 {
2978 	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2979 }
2980 
2981 /*
2982  * Describes a batch of items to insert in a btree. This is used by
2983  * btrfs_insert_empty_items().
2984  */
2985 struct btrfs_item_batch {
2986 	/*
2987 	 * Pointer to an array containing the keys of the items to insert (in
2988 	 * sorted order).
2989 	 */
2990 	const struct btrfs_key *keys;
2991 	/* Pointer to an array containing the data size for each item to insert. */
2992 	const u32 *data_sizes;
2993 	/*
2994 	 * The sum of data sizes for all items. The caller can compute this while
2995 	 * setting up the data_sizes array, so it ends up being more efficient
2996 	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
2997 	 * doing it, as it would avoid an extra loop over a potentially large
2998 	 * array, and in the case of setup_item_for_insert(), we would be doing
2999 	 * it while holding a write lock on a leaf and often on upper level nodes
3000 	 * too, unnecessarily increasing the size of a critical section.
3001 	 */
3002 	u32 total_data_size;
3003 	/* Size of the keys and data_sizes arrays (number of items in the batch). */
3004 	int nr;
3005 };
3006 
3007 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3008 				 struct btrfs_path *path,
3009 				 const struct btrfs_key *key,
3010 				 u32 data_size);
3011 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3012 		      const struct btrfs_key *key, void *data, u32 data_size);
3013 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3014 			     struct btrfs_root *root,
3015 			     struct btrfs_path *path,
3016 			     const struct btrfs_item_batch *batch);
3017 
3018 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
3019 					  struct btrfs_root *root,
3020 					  struct btrfs_path *path,
3021 					  const struct btrfs_key *key,
3022 					  u32 data_size)
3023 {
3024 	struct btrfs_item_batch batch;
3025 
3026 	batch.keys = key;
3027 	batch.data_sizes = &data_size;
3028 	batch.total_data_size = data_size;
3029 	batch.nr = 1;
3030 
3031 	return btrfs_insert_empty_items(trans, root, path, &batch);
3032 }
3033 
3034 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
3035 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
3036 			u64 time_seq);
3037 
3038 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
3039 			   struct btrfs_path *path);
3040 
3041 static inline int btrfs_next_old_item(struct btrfs_root *root,
3042 				      struct btrfs_path *p, u64 time_seq)
3043 {
3044 	++p->slots[0];
3045 	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
3046 		return btrfs_next_old_leaf(root, p, time_seq);
3047 	return 0;
3048 }
3049 
3050 /*
3051  * Search the tree again to find a leaf with greater keys.
3052  *
3053  * Returns 0 if it found something or 1 if there are no greater leaves.
3054  * Returns < 0 on error.
3055  */
3056 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
3057 {
3058 	return btrfs_next_old_leaf(root, path, 0);
3059 }
3060 
3061 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
3062 {
3063 	return btrfs_next_old_item(root, p, 0);
3064 }
3065 int btrfs_leaf_free_space(struct extent_buffer *leaf);
3066 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
3067 				     int for_reloc);
3068 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
3069 			struct btrfs_root *root,
3070 			struct extent_buffer *node,
3071 			struct extent_buffer *parent);
3072 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
3073 {
3074 	/*
3075 	 * Do it this way so we only ever do one test_bit in the normal case.
3076 	 */
3077 	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
3078 		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
3079 			return 2;
3080 		return 1;
3081 	}
3082 	return 0;
3083 }
3084 
3085 /*
3086  * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
3087  * anything except sleeping. This function is used to check the status of
3088  * the fs.
3089  * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount,
3090  * since setting and checking for SB_RDONLY in the superblock's flags is not
3091  * atomic.
3092  */
3093 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
3094 {
3095 	return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) ||
3096 		btrfs_fs_closing(fs_info);
3097 }
3098 
3099 static inline void btrfs_set_sb_rdonly(struct super_block *sb)
3100 {
3101 	sb->s_flags |= SB_RDONLY;
3102 	set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3103 }
3104 
3105 static inline void btrfs_clear_sb_rdonly(struct super_block *sb)
3106 {
3107 	sb->s_flags &= ~SB_RDONLY;
3108 	clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state);
3109 }
3110 
3111 /* root-item.c */
3112 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3113 		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
3114 		       int name_len);
3115 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
3116 		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
3117 		       int name_len);
3118 int btrfs_del_root(struct btrfs_trans_handle *trans,
3119 		   const struct btrfs_key *key);
3120 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3121 		      const struct btrfs_key *key,
3122 		      struct btrfs_root_item *item);
3123 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
3124 				   struct btrfs_root *root,
3125 				   struct btrfs_key *key,
3126 				   struct btrfs_root_item *item);
3127 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
3128 		    struct btrfs_path *path, struct btrfs_root_item *root_item,
3129 		    struct btrfs_key *root_key);
3130 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
3131 void btrfs_set_root_node(struct btrfs_root_item *item,
3132 			 struct extent_buffer *node);
3133 void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
3134 void btrfs_update_root_times(struct btrfs_trans_handle *trans,
3135 			     struct btrfs_root *root);
3136 
3137 /* uuid-tree.c */
3138 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3139 			u64 subid);
3140 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
3141 			u64 subid);
3142 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
3143 
3144 /* dir-item.c */
3145 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
3146 			  const char *name, int name_len);
3147 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
3148 			  int name_len, struct btrfs_inode *dir,
3149 			  struct btrfs_key *location, u8 type, u64 index);
3150 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
3151 					     struct btrfs_root *root,
3152 					     struct btrfs_path *path, u64 dir,
3153 					     const char *name, int name_len,
3154 					     int mod);
3155 struct btrfs_dir_item *
3156 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
3157 			    struct btrfs_root *root,
3158 			    struct btrfs_path *path, u64 dir,
3159 			    u64 index, const char *name, int name_len,
3160 			    int mod);
3161 struct btrfs_dir_item *
3162 btrfs_search_dir_index_item(struct btrfs_root *root,
3163 			    struct btrfs_path *path, u64 dirid,
3164 			    const char *name, int name_len);
3165 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
3166 			      struct btrfs_root *root,
3167 			      struct btrfs_path *path,
3168 			      struct btrfs_dir_item *di);
3169 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3170 			    struct btrfs_root *root,
3171 			    struct btrfs_path *path, u64 objectid,
3172 			    const char *name, u16 name_len,
3173 			    const void *data, u16 data_len);
3174 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3175 					  struct btrfs_root *root,
3176 					  struct btrfs_path *path, u64 dir,
3177 					  const char *name, u16 name_len,
3178 					  int mod);
3179 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3180 						 struct btrfs_path *path,
3181 						 const char *name,
3182 						 int name_len);
3183 
3184 /* orphan.c */
3185 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3186 			     struct btrfs_root *root, u64 offset);
3187 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3188 			  struct btrfs_root *root, u64 offset);
3189 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3190 
3191 /* file-item.c */
3192 struct btrfs_dio_private;
3193 int btrfs_del_csums(struct btrfs_trans_handle *trans,
3194 		    struct btrfs_root *root, u64 bytenr, u64 len);
3195 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst);
3196 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3197 			     struct btrfs_root *root,
3198 			     u64 objectid, u64 pos,
3199 			     u64 disk_offset, u64 disk_num_bytes,
3200 			     u64 num_bytes, u64 offset, u64 ram_bytes,
3201 			     u8 compression, u8 encryption, u16 other_encoding);
3202 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3203 			     struct btrfs_root *root,
3204 			     struct btrfs_path *path, u64 objectid,
3205 			     u64 bytenr, int mod);
3206 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3207 			   struct btrfs_root *root,
3208 			   struct btrfs_ordered_sum *sums);
3209 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
3210 				u64 offset, bool one_ordered);
3211 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3212 			     struct list_head *list, int search_commit);
3213 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
3214 				     const struct btrfs_path *path,
3215 				     struct btrfs_file_extent_item *fi,
3216 				     const bool new_inline,
3217 				     struct extent_map *em);
3218 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
3219 					u64 len);
3220 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
3221 				      u64 len);
3222 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size);
3223 u64 btrfs_file_extent_end(const struct btrfs_path *path);
3224 
3225 /* inode.c */
3226 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio,
3227 				   int mirror_num, unsigned long bio_flags);
3228 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio,
3229 				    u32 bio_offset, struct page *page,
3230 				    u64 start, u64 end);
3231 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
3232 					   u64 start, u64 len);
3233 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3234 			      u64 *orig_start, u64 *orig_block_len,
3235 			      u64 *ram_bytes, bool strict);
3236 
3237 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
3238 				struct btrfs_inode *inode);
3239 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3240 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
3241 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3242 		       struct btrfs_inode *dir, struct btrfs_inode *inode,
3243 		       const char *name, int name_len);
3244 int btrfs_add_link(struct btrfs_trans_handle *trans,
3245 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
3246 		   const char *name, int name_len, int add_backref, u64 index);
3247 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
3248 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
3249 			 int front);
3250 
3251 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
3252 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
3253 			       bool in_reclaim_context);
3254 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
3255 			      unsigned int extra_bits,
3256 			      struct extent_state **cached_state);
3257 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3258 			     struct btrfs_root *new_root,
3259 			     struct btrfs_root *parent_root,
3260 			     struct user_namespace *mnt_userns);
3261  void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
3262 			       unsigned *bits);
3263 void btrfs_clear_delalloc_extent(struct inode *inode,
3264 				 struct extent_state *state, unsigned *bits);
3265 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
3266 				 struct extent_state *other);
3267 void btrfs_split_delalloc_extent(struct inode *inode,
3268 				 struct extent_state *orig, u64 split);
3269 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
3270 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
3271 int btrfs_readpage(struct file *file, struct page *page);
3272 void btrfs_evict_inode(struct inode *inode);
3273 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3274 struct inode *btrfs_alloc_inode(struct super_block *sb);
3275 void btrfs_destroy_inode(struct inode *inode);
3276 void btrfs_free_inode(struct inode *inode);
3277 int btrfs_drop_inode(struct inode *inode);
3278 int __init btrfs_init_cachep(void);
3279 void __cold btrfs_destroy_cachep(void);
3280 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
3281 			      struct btrfs_root *root, struct btrfs_path *path);
3282 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
3283 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
3284 				    struct page *page, size_t pg_offset,
3285 				    u64 start, u64 end);
3286 int btrfs_update_inode(struct btrfs_trans_handle *trans,
3287 		       struct btrfs_root *root, struct btrfs_inode *inode);
3288 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3289 				struct btrfs_root *root, struct btrfs_inode *inode);
3290 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3291 		struct btrfs_inode *inode);
3292 int btrfs_orphan_cleanup(struct btrfs_root *root);
3293 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
3294 void btrfs_add_delayed_iput(struct inode *inode);
3295 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3296 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3297 int btrfs_prealloc_file_range(struct inode *inode, int mode,
3298 			      u64 start, u64 num_bytes, u64 min_size,
3299 			      loff_t actual_len, u64 *alloc_hint);
3300 int btrfs_prealloc_file_range_trans(struct inode *inode,
3301 				    struct btrfs_trans_handle *trans, int mode,
3302 				    u64 start, u64 num_bytes, u64 min_size,
3303 				    loff_t actual_len, u64 *alloc_hint);
3304 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3305 		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3306 		struct writeback_control *wbc);
3307 int btrfs_writepage_cow_fixup(struct page *page);
3308 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode,
3309 					  struct page *page, u64 start,
3310 					  u64 end, bool uptodate);
3311 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
3312 			   struct btrfs_ioctl_encoded_io_args *encoded);
3313 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
3314 			     const struct btrfs_ioctl_encoded_io_args *encoded);
3315 
3316 extern const struct dentry_operations btrfs_dentry_operations;
3317 extern const struct iomap_ops btrfs_dio_iomap_ops;
3318 extern const struct iomap_dio_ops btrfs_dio_ops;
3319 
3320 /* Inode locking type flags, by default the exclusive lock is taken */
3321 #define BTRFS_ILOCK_SHARED	(1U << 0)
3322 #define BTRFS_ILOCK_TRY 	(1U << 1)
3323 #define BTRFS_ILOCK_MMAP	(1U << 2)
3324 
3325 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags);
3326 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags);
3327 void btrfs_update_inode_bytes(struct btrfs_inode *inode,
3328 			      const u64 add_bytes,
3329 			      const u64 del_bytes);
3330 
3331 /* ioctl.c */
3332 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3333 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3334 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3335 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
3336 		       struct dentry *dentry, struct fileattr *fa);
3337 int btrfs_ioctl_get_supported_features(void __user *arg);
3338 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3339 int __pure btrfs_is_empty_uuid(u8 *uuid);
3340 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
3341 		      struct btrfs_ioctl_defrag_range_args *range,
3342 		      u64 newer_than, unsigned long max_to_defrag);
3343 void btrfs_get_block_group_info(struct list_head *groups_list,
3344 				struct btrfs_ioctl_space_info *space);
3345 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3346 			       struct btrfs_ioctl_balance_args *bargs);
3347 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
3348 			enum btrfs_exclusive_operation type);
3349 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
3350 				 enum btrfs_exclusive_operation type);
3351 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info);
3352 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info);
3353 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
3354 			  enum btrfs_exclusive_operation op);
3355 
3356 
3357 /* file.c */
3358 int __init btrfs_auto_defrag_init(void);
3359 void __cold btrfs_auto_defrag_exit(void);
3360 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3361 			   struct btrfs_inode *inode, u32 extent_thresh);
3362 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3363 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3364 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3365 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3366 			     int skip_pinned);
3367 extern const struct file_operations btrfs_file_operations;
3368 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3369 		       struct btrfs_root *root, struct btrfs_inode *inode,
3370 		       struct btrfs_drop_extents_args *args);
3371 int btrfs_replace_file_extents(struct btrfs_inode *inode,
3372 			   struct btrfs_path *path, const u64 start,
3373 			   const u64 end,
3374 			   struct btrfs_replace_extent_info *extent_info,
3375 			   struct btrfs_trans_handle **trans_out);
3376 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3377 			      struct btrfs_inode *inode, u64 start, u64 end);
3378 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
3379 			    const struct btrfs_ioctl_encoded_io_args *encoded);
3380 int btrfs_release_file(struct inode *inode, struct file *file);
3381 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3382 		      size_t num_pages, loff_t pos, size_t write_bytes,
3383 		      struct extent_state **cached, bool noreserve);
3384 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3385 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3386 			   size_t *write_bytes);
3387 void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3388 
3389 /* tree-defrag.c */
3390 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3391 			struct btrfs_root *root);
3392 
3393 /* super.c */
3394 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3395 			unsigned long new_flags);
3396 int btrfs_sync_fs(struct super_block *sb, int wait);
3397 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3398 					  u64 subvol_objectid);
3399 
3400 static inline __printf(2, 3) __cold
3401 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3402 {
3403 }
3404 
3405 #ifdef CONFIG_PRINTK
3406 __printf(2, 3)
3407 __cold
3408 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3409 #else
3410 #define btrfs_printk(fs_info, fmt, args...) \
3411 	btrfs_no_printk(fs_info, fmt, ##args)
3412 #endif
3413 
3414 #define btrfs_emerg(fs_info, fmt, args...) \
3415 	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3416 #define btrfs_alert(fs_info, fmt, args...) \
3417 	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3418 #define btrfs_crit(fs_info, fmt, args...) \
3419 	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3420 #define btrfs_err(fs_info, fmt, args...) \
3421 	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3422 #define btrfs_warn(fs_info, fmt, args...) \
3423 	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3424 #define btrfs_notice(fs_info, fmt, args...) \
3425 	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3426 #define btrfs_info(fs_info, fmt, args...) \
3427 	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3428 
3429 /*
3430  * Wrappers that use printk_in_rcu
3431  */
3432 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3433 	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3434 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3435 	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3436 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3437 	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3438 #define btrfs_err_in_rcu(fs_info, fmt, args...) \
3439 	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3440 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3441 	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3442 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3443 	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3444 #define btrfs_info_in_rcu(fs_info, fmt, args...) \
3445 	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3446 
3447 /*
3448  * Wrappers that use a ratelimited printk_in_rcu
3449  */
3450 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3451 	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3452 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3453 	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3454 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3455 	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3456 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3457 	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3458 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3459 	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3460 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3461 	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3462 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3463 	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3464 
3465 /*
3466  * Wrappers that use a ratelimited printk
3467  */
3468 #define btrfs_emerg_rl(fs_info, fmt, args...) \
3469 	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3470 #define btrfs_alert_rl(fs_info, fmt, args...) \
3471 	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3472 #define btrfs_crit_rl(fs_info, fmt, args...) \
3473 	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3474 #define btrfs_err_rl(fs_info, fmt, args...) \
3475 	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3476 #define btrfs_warn_rl(fs_info, fmt, args...) \
3477 	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3478 #define btrfs_notice_rl(fs_info, fmt, args...) \
3479 	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3480 #define btrfs_info_rl(fs_info, fmt, args...) \
3481 	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3482 
3483 #if defined(CONFIG_DYNAMIC_DEBUG)
3484 #define btrfs_debug(fs_info, fmt, args...)				\
3485 	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3486 				   fs_info, KERN_DEBUG fmt, ##args)
3487 #define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3488 	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3489 				   fs_info, KERN_DEBUG fmt, ##args)
3490 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3491 	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3492 				   fs_info, KERN_DEBUG fmt, ##args)
3493 #define btrfs_debug_rl(fs_info, fmt, args...)				\
3494 	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3495 				   fs_info, KERN_DEBUG fmt, ##args)
3496 #elif defined(DEBUG)
3497 #define btrfs_debug(fs_info, fmt, args...) \
3498 	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3499 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3500 	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3501 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3502 	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3503 #define btrfs_debug_rl(fs_info, fmt, args...) \
3504 	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3505 #else
3506 #define btrfs_debug(fs_info, fmt, args...) \
3507 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3508 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3509 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3510 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3511 	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3512 #define btrfs_debug_rl(fs_info, fmt, args...) \
3513 	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3514 #endif
3515 
3516 #define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3517 do {							\
3518 	rcu_read_lock();				\
3519 	btrfs_printk(fs_info, fmt, ##args);		\
3520 	rcu_read_unlock();				\
3521 } while (0)
3522 
3523 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3524 do {							\
3525 	rcu_read_lock();				\
3526 	btrfs_no_printk(fs_info, fmt, ##args);		\
3527 	rcu_read_unlock();				\
3528 } while (0)
3529 
3530 #define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3531 do {								\
3532 	static DEFINE_RATELIMIT_STATE(_rs,			\
3533 		DEFAULT_RATELIMIT_INTERVAL,			\
3534 		DEFAULT_RATELIMIT_BURST);       		\
3535 	if (__ratelimit(&_rs))					\
3536 		btrfs_printk(fs_info, fmt, ##args);		\
3537 } while (0)
3538 
3539 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3540 do {								\
3541 	rcu_read_lock();					\
3542 	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3543 	rcu_read_unlock();					\
3544 } while (0)
3545 
3546 #ifdef CONFIG_BTRFS_ASSERT
3547 __cold __noreturn
3548 static inline void assertfail(const char *expr, const char *file, int line)
3549 {
3550 	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3551 	BUG();
3552 }
3553 
3554 #define ASSERT(expr)						\
3555 	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3556 
3557 #else
3558 static inline void assertfail(const char *expr, const char* file, int line) { }
3559 #define ASSERT(expr)	(void)(expr)
3560 #endif
3561 
3562 #if BITS_PER_LONG == 32
3563 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT)
3564 /*
3565  * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical
3566  * addresses of extents.
3567  *
3568  * For 4K page size it's about 10T, for 64K it's 160T.
3569  */
3570 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8)
3571 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info);
3572 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info);
3573 #endif
3574 
3575 /*
3576  * Get the correct offset inside the page of extent buffer.
3577  *
3578  * @eb:		target extent buffer
3579  * @start:	offset inside the extent buffer
3580  *
3581  * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases.
3582  */
3583 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb,
3584 					   unsigned long offset)
3585 {
3586 	/*
3587 	 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned
3588 	 * to PAGE_SIZE, thus adding it won't cause any difference.
3589 	 *
3590 	 * For sectorsize < PAGE_SIZE, we must only read the data that belongs
3591 	 * to the eb, thus we have to take the eb->start into consideration.
3592 	 */
3593 	return offset_in_page(offset + eb->start);
3594 }
3595 
3596 static inline unsigned long get_eb_page_index(unsigned long offset)
3597 {
3598 	/*
3599 	 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough.
3600 	 *
3601 	 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE,
3602 	 * and have ensured that all tree blocks are contained in one page,
3603 	 * thus we always get index == 0.
3604 	 */
3605 	return offset >> PAGE_SHIFT;
3606 }
3607 
3608 /*
3609  * Use that for functions that are conditionally exported for sanity tests but
3610  * otherwise static
3611  */
3612 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3613 #define EXPORT_FOR_TESTS static
3614 #else
3615 #define EXPORT_FOR_TESTS
3616 #endif
3617 
3618 __cold
3619 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3620 {
3621 	btrfs_err(fs_info,
3622 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3623 }
3624 
3625 __printf(5, 6)
3626 __cold
3627 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3628 		     unsigned int line, int errno, const char *fmt, ...);
3629 
3630 const char * __attribute_const__ btrfs_decode_error(int errno);
3631 
3632 __cold
3633 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3634 			       const char *function,
3635 			       unsigned int line, int errno);
3636 
3637 /*
3638  * Call btrfs_abort_transaction as early as possible when an error condition is
3639  * detected, that way the exact line number is reported.
3640  */
3641 #define btrfs_abort_transaction(trans, errno)		\
3642 do {								\
3643 	/* Report first abort since mount */			\
3644 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3645 			&((trans)->fs_info->fs_state))) {	\
3646 		if ((errno) != -EIO && (errno) != -EROFS) {		\
3647 			WARN(1, KERN_DEBUG				\
3648 			"BTRFS: Transaction aborted (error %d)\n",	\
3649 			(errno));					\
3650 		} else {						\
3651 			btrfs_debug((trans)->fs_info,			\
3652 				    "Transaction aborted (error %d)", \
3653 				  (errno));			\
3654 		}						\
3655 	}							\
3656 	__btrfs_abort_transaction((trans), __func__,		\
3657 				  __LINE__, (errno));		\
3658 } while (0)
3659 
3660 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3661 do {								\
3662 	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3663 			  (errno), fmt, ##args);		\
3664 } while (0)
3665 
3666 #define BTRFS_FS_ERROR(fs_info)	(unlikely(test_bit(BTRFS_FS_STATE_ERROR, \
3667 						   &(fs_info)->fs_state)))
3668 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info)				\
3669 	(unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,		\
3670 			   &(fs_info)->fs_state)))
3671 
3672 __printf(5, 6)
3673 __cold
3674 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3675 		   unsigned int line, int errno, const char *fmt, ...);
3676 /*
3677  * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3678  * will panic().  Otherwise we BUG() here.
3679  */
3680 #define btrfs_panic(fs_info, errno, fmt, args...)			\
3681 do {									\
3682 	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3683 	BUG();								\
3684 } while (0)
3685 
3686 
3687 /* compatibility and incompatibility defines */
3688 
3689 #define btrfs_set_fs_incompat(__fs_info, opt) \
3690 	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3691 				#opt)
3692 
3693 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3694 					   u64 flag, const char* name)
3695 {
3696 	struct btrfs_super_block *disk_super;
3697 	u64 features;
3698 
3699 	disk_super = fs_info->super_copy;
3700 	features = btrfs_super_incompat_flags(disk_super);
3701 	if (!(features & flag)) {
3702 		spin_lock(&fs_info->super_lock);
3703 		features = btrfs_super_incompat_flags(disk_super);
3704 		if (!(features & flag)) {
3705 			features |= flag;
3706 			btrfs_set_super_incompat_flags(disk_super, features);
3707 			btrfs_info(fs_info,
3708 				"setting incompat feature flag for %s (0x%llx)",
3709 				name, flag);
3710 		}
3711 		spin_unlock(&fs_info->super_lock);
3712 	}
3713 }
3714 
3715 #define btrfs_clear_fs_incompat(__fs_info, opt) \
3716 	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3717 				  #opt)
3718 
3719 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3720 					     u64 flag, const char* name)
3721 {
3722 	struct btrfs_super_block *disk_super;
3723 	u64 features;
3724 
3725 	disk_super = fs_info->super_copy;
3726 	features = btrfs_super_incompat_flags(disk_super);
3727 	if (features & flag) {
3728 		spin_lock(&fs_info->super_lock);
3729 		features = btrfs_super_incompat_flags(disk_super);
3730 		if (features & flag) {
3731 			features &= ~flag;
3732 			btrfs_set_super_incompat_flags(disk_super, features);
3733 			btrfs_info(fs_info,
3734 				"clearing incompat feature flag for %s (0x%llx)",
3735 				name, flag);
3736 		}
3737 		spin_unlock(&fs_info->super_lock);
3738 	}
3739 }
3740 
3741 #define btrfs_fs_incompat(fs_info, opt) \
3742 	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3743 
3744 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3745 {
3746 	struct btrfs_super_block *disk_super;
3747 	disk_super = fs_info->super_copy;
3748 	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3749 }
3750 
3751 #define btrfs_set_fs_compat_ro(__fs_info, opt) \
3752 	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3753 				 #opt)
3754 
3755 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3756 					    u64 flag, const char *name)
3757 {
3758 	struct btrfs_super_block *disk_super;
3759 	u64 features;
3760 
3761 	disk_super = fs_info->super_copy;
3762 	features = btrfs_super_compat_ro_flags(disk_super);
3763 	if (!(features & flag)) {
3764 		spin_lock(&fs_info->super_lock);
3765 		features = btrfs_super_compat_ro_flags(disk_super);
3766 		if (!(features & flag)) {
3767 			features |= flag;
3768 			btrfs_set_super_compat_ro_flags(disk_super, features);
3769 			btrfs_info(fs_info,
3770 				"setting compat-ro feature flag for %s (0x%llx)",
3771 				name, flag);
3772 		}
3773 		spin_unlock(&fs_info->super_lock);
3774 	}
3775 }
3776 
3777 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3778 	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3779 				   #opt)
3780 
3781 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3782 					      u64 flag, const char *name)
3783 {
3784 	struct btrfs_super_block *disk_super;
3785 	u64 features;
3786 
3787 	disk_super = fs_info->super_copy;
3788 	features = btrfs_super_compat_ro_flags(disk_super);
3789 	if (features & flag) {
3790 		spin_lock(&fs_info->super_lock);
3791 		features = btrfs_super_compat_ro_flags(disk_super);
3792 		if (features & flag) {
3793 			features &= ~flag;
3794 			btrfs_set_super_compat_ro_flags(disk_super, features);
3795 			btrfs_info(fs_info,
3796 				"clearing compat-ro feature flag for %s (0x%llx)",
3797 				name, flag);
3798 		}
3799 		spin_unlock(&fs_info->super_lock);
3800 	}
3801 }
3802 
3803 #define btrfs_fs_compat_ro(fs_info, opt) \
3804 	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3805 
3806 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3807 {
3808 	struct btrfs_super_block *disk_super;
3809 	disk_super = fs_info->super_copy;
3810 	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3811 }
3812 
3813 /* acl.c */
3814 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
3815 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu);
3816 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode,
3817 		  struct posix_acl *acl, int type);
3818 int btrfs_init_acl(struct btrfs_trans_handle *trans,
3819 		   struct inode *inode, struct inode *dir);
3820 #else
3821 #define btrfs_get_acl NULL
3822 #define btrfs_set_acl NULL
3823 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3824 				 struct inode *inode, struct inode *dir)
3825 {
3826 	return 0;
3827 }
3828 #endif
3829 
3830 /* relocation.c */
3831 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3832 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3833 			  struct btrfs_root *root);
3834 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3835 			    struct btrfs_root *root);
3836 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info);
3837 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3838 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3839 			  struct btrfs_root *root, struct extent_buffer *buf,
3840 			  struct extent_buffer *cow);
3841 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3842 			      u64 *bytes_to_reserve);
3843 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3844 			      struct btrfs_pending_snapshot *pending);
3845 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3846 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3847 				   u64 bytenr);
3848 int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3849 
3850 /* scrub.c */
3851 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3852 		    u64 end, struct btrfs_scrub_progress *progress,
3853 		    int readonly, int is_dev_replace);
3854 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3855 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3856 int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3857 int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3858 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3859 			 struct btrfs_scrub_progress *progress);
3860 static inline void btrfs_init_full_stripe_locks_tree(
3861 			struct btrfs_full_stripe_locks_tree *locks_root)
3862 {
3863 	locks_root->root = RB_ROOT;
3864 	mutex_init(&locks_root->lock);
3865 }
3866 
3867 /* dev-replace.c */
3868 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3869 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3870 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3871 
3872 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3873 {
3874 	btrfs_bio_counter_sub(fs_info, 1);
3875 }
3876 
3877 static inline int is_fstree(u64 rootid)
3878 {
3879 	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3880 	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3881 	      !btrfs_qgroup_level(rootid)))
3882 		return 1;
3883 	return 0;
3884 }
3885 
3886 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3887 {
3888 	return signal_pending(current);
3889 }
3890 
3891 /* verity.c */
3892 #ifdef CONFIG_FS_VERITY
3893 
3894 extern const struct fsverity_operations btrfs_verityops;
3895 int btrfs_drop_verity_items(struct btrfs_inode *inode);
3896 
3897 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item,
3898 		   encryption, 8);
3899 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item,
3900 		   size, 64);
3901 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption,
3902 			 struct btrfs_verity_descriptor_item, encryption, 8);
3903 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size,
3904 			 struct btrfs_verity_descriptor_item, size, 64);
3905 
3906 #else
3907 
3908 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode)
3909 {
3910 	return 0;
3911 }
3912 
3913 #endif
3914 
3915 /* Sanity test specific functions */
3916 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3917 void btrfs_test_destroy_inode(struct inode *inode);
3918 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3919 {
3920 	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3921 }
3922 #else
3923 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3924 {
3925 	return 0;
3926 }
3927 #endif
3928 
3929 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info)
3930 {
3931 	return fs_info->zoned != 0;
3932 }
3933 
3934 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
3935 {
3936 	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
3937 }
3938 
3939 /*
3940  * We use page status Private2 to indicate there is an ordered extent with
3941  * unfinished IO.
3942  *
3943  * Rename the Private2 accessors to Ordered, to improve readability.
3944  */
3945 #define PageOrdered(page)		PagePrivate2(page)
3946 #define SetPageOrdered(page)		SetPagePrivate2(page)
3947 #define ClearPageOrdered(page)		ClearPagePrivate2(page)
3948 #define folio_test_ordered(folio)	folio_test_private_2(folio)
3949 #define folio_set_ordered(folio)	folio_set_private_2(folio)
3950 #define folio_clear_ordered(folio)	folio_clear_private_2(folio)
3951 
3952 #endif
3953