1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #ifndef __BTRFS_CTREE__ 20 #define __BTRFS_CTREE__ 21 22 #include <linux/mm.h> 23 #include <linux/highmem.h> 24 #include <linux/fs.h> 25 #include <linux/rwsem.h> 26 #include <linux/semaphore.h> 27 #include <linux/completion.h> 28 #include <linux/backing-dev.h> 29 #include <linux/wait.h> 30 #include <linux/slab.h> 31 #include <linux/kobject.h> 32 #include <trace/events/btrfs.h> 33 #include <asm/kmap_types.h> 34 #include <linux/pagemap.h> 35 #include <linux/btrfs.h> 36 #include "extent_io.h" 37 #include "extent_map.h" 38 #include "async-thread.h" 39 40 struct btrfs_trans_handle; 41 struct btrfs_transaction; 42 struct btrfs_pending_snapshot; 43 extern struct kmem_cache *btrfs_trans_handle_cachep; 44 extern struct kmem_cache *btrfs_transaction_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 struct btrfs_ordered_sum; 49 50 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 51 #define STATIC noinline 52 #else 53 #define STATIC static noinline 54 #endif 55 56 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 57 58 #define BTRFS_MAX_MIRRORS 3 59 60 #define BTRFS_MAX_LEVEL 8 61 62 #define BTRFS_COMPAT_EXTENT_TREE_V0 63 64 /* 65 * files bigger than this get some pre-flushing when they are added 66 * to the ordered operations list. That way we limit the total 67 * work done by the commit 68 */ 69 #define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024) 70 71 /* holds pointers to all of the tree roots */ 72 #define BTRFS_ROOT_TREE_OBJECTID 1ULL 73 74 /* stores information about which extents are in use, and reference counts */ 75 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL 76 77 /* 78 * chunk tree stores translations from logical -> physical block numbering 79 * the super block points to the chunk tree 80 */ 81 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL 82 83 /* 84 * stores information about which areas of a given device are in use. 85 * one per device. The tree of tree roots points to the device tree 86 */ 87 #define BTRFS_DEV_TREE_OBJECTID 4ULL 88 89 /* one per subvolume, storing files and directories */ 90 #define BTRFS_FS_TREE_OBJECTID 5ULL 91 92 /* directory objectid inside the root tree */ 93 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 94 95 /* holds checksums of all the data extents */ 96 #define BTRFS_CSUM_TREE_OBJECTID 7ULL 97 98 /* holds quota configuration and tracking */ 99 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL 100 101 /* for storing items that use the BTRFS_UUID_KEY* types */ 102 #define BTRFS_UUID_TREE_OBJECTID 9ULL 103 104 /* for storing balance parameters in the root tree */ 105 #define BTRFS_BALANCE_OBJECTID -4ULL 106 107 /* orhpan objectid for tracking unlinked/truncated files */ 108 #define BTRFS_ORPHAN_OBJECTID -5ULL 109 110 /* does write ahead logging to speed up fsyncs */ 111 #define BTRFS_TREE_LOG_OBJECTID -6ULL 112 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 113 114 /* for space balancing */ 115 #define BTRFS_TREE_RELOC_OBJECTID -8ULL 116 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 117 118 /* 119 * extent checksums all have this objectid 120 * this allows them to share the logging tree 121 * for fsyncs 122 */ 123 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 124 125 /* For storing free space cache */ 126 #define BTRFS_FREE_SPACE_OBJECTID -11ULL 127 128 /* 129 * The inode number assigned to the special inode for storing 130 * free ino cache 131 */ 132 #define BTRFS_FREE_INO_OBJECTID -12ULL 133 134 /* dummy objectid represents multiple objectids */ 135 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL 136 137 /* 138 * All files have objectids in this range. 139 */ 140 #define BTRFS_FIRST_FREE_OBJECTID 256ULL 141 #define BTRFS_LAST_FREE_OBJECTID -256ULL 142 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 143 144 145 /* 146 * the device items go into the chunk tree. The key is in the form 147 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 148 */ 149 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL 150 151 #define BTRFS_BTREE_INODE_OBJECTID 1 152 153 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 154 155 #define BTRFS_DEV_REPLACE_DEVID 0ULL 156 157 /* 158 * the max metadata block size. This limit is somewhat artificial, 159 * but the memmove costs go through the roof for larger blocks. 160 */ 161 #define BTRFS_MAX_METADATA_BLOCKSIZE 65536 162 163 /* 164 * we can actually store much bigger names, but lets not confuse the rest 165 * of linux 166 */ 167 #define BTRFS_NAME_LEN 255 168 169 /* 170 * Theoretical limit is larger, but we keep this down to a sane 171 * value. That should limit greatly the possibility of collisions on 172 * inode ref items. 173 */ 174 #define BTRFS_LINK_MAX 65535U 175 176 /* 32 bytes in various csum fields */ 177 #define BTRFS_CSUM_SIZE 32 178 179 /* csum types */ 180 #define BTRFS_CSUM_TYPE_CRC32 0 181 182 static int btrfs_csum_sizes[] = { 4, 0 }; 183 184 /* four bytes for CRC32 */ 185 #define BTRFS_EMPTY_DIR_SIZE 0 186 187 /* spefic to btrfs_map_block(), therefore not in include/linux/blk_types.h */ 188 #define REQ_GET_READ_MIRRORS (1 << 30) 189 190 #define BTRFS_FT_UNKNOWN 0 191 #define BTRFS_FT_REG_FILE 1 192 #define BTRFS_FT_DIR 2 193 #define BTRFS_FT_CHRDEV 3 194 #define BTRFS_FT_BLKDEV 4 195 #define BTRFS_FT_FIFO 5 196 #define BTRFS_FT_SOCK 6 197 #define BTRFS_FT_SYMLINK 7 198 #define BTRFS_FT_XATTR 8 199 #define BTRFS_FT_MAX 9 200 201 /* ioprio of readahead is set to idle */ 202 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 203 204 #define BTRFS_DIRTY_METADATA_THRESH (32 * 1024 * 1024) 205 206 /* 207 * The key defines the order in the tree, and so it also defines (optimal) 208 * block layout. 209 * 210 * objectid corresponds to the inode number. 211 * 212 * type tells us things about the object, and is a kind of stream selector. 213 * so for a given inode, keys with type of 1 might refer to the inode data, 214 * type of 2 may point to file data in the btree and type == 3 may point to 215 * extents. 216 * 217 * offset is the starting byte offset for this key in the stream. 218 * 219 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 220 * in cpu native order. Otherwise they are identical and their sizes 221 * should be the same (ie both packed) 222 */ 223 struct btrfs_disk_key { 224 __le64 objectid; 225 u8 type; 226 __le64 offset; 227 } __attribute__ ((__packed__)); 228 229 struct btrfs_key { 230 u64 objectid; 231 u8 type; 232 u64 offset; 233 } __attribute__ ((__packed__)); 234 235 struct btrfs_mapping_tree { 236 struct extent_map_tree map_tree; 237 }; 238 239 struct btrfs_dev_item { 240 /* the internal btrfs device id */ 241 __le64 devid; 242 243 /* size of the device */ 244 __le64 total_bytes; 245 246 /* bytes used */ 247 __le64 bytes_used; 248 249 /* optimal io alignment for this device */ 250 __le32 io_align; 251 252 /* optimal io width for this device */ 253 __le32 io_width; 254 255 /* minimal io size for this device */ 256 __le32 sector_size; 257 258 /* type and info about this device */ 259 __le64 type; 260 261 /* expected generation for this device */ 262 __le64 generation; 263 264 /* 265 * starting byte of this partition on the device, 266 * to allow for stripe alignment in the future 267 */ 268 __le64 start_offset; 269 270 /* grouping information for allocation decisions */ 271 __le32 dev_group; 272 273 /* seek speed 0-100 where 100 is fastest */ 274 u8 seek_speed; 275 276 /* bandwidth 0-100 where 100 is fastest */ 277 u8 bandwidth; 278 279 /* btrfs generated uuid for this device */ 280 u8 uuid[BTRFS_UUID_SIZE]; 281 282 /* uuid of FS who owns this device */ 283 u8 fsid[BTRFS_UUID_SIZE]; 284 } __attribute__ ((__packed__)); 285 286 struct btrfs_stripe { 287 __le64 devid; 288 __le64 offset; 289 u8 dev_uuid[BTRFS_UUID_SIZE]; 290 } __attribute__ ((__packed__)); 291 292 struct btrfs_chunk { 293 /* size of this chunk in bytes */ 294 __le64 length; 295 296 /* objectid of the root referencing this chunk */ 297 __le64 owner; 298 299 __le64 stripe_len; 300 __le64 type; 301 302 /* optimal io alignment for this chunk */ 303 __le32 io_align; 304 305 /* optimal io width for this chunk */ 306 __le32 io_width; 307 308 /* minimal io size for this chunk */ 309 __le32 sector_size; 310 311 /* 2^16 stripes is quite a lot, a second limit is the size of a single 312 * item in the btree 313 */ 314 __le16 num_stripes; 315 316 /* sub stripes only matter for raid10 */ 317 __le16 sub_stripes; 318 struct btrfs_stripe stripe; 319 /* additional stripes go here */ 320 } __attribute__ ((__packed__)); 321 322 #define BTRFS_FREE_SPACE_EXTENT 1 323 #define BTRFS_FREE_SPACE_BITMAP 2 324 325 struct btrfs_free_space_entry { 326 __le64 offset; 327 __le64 bytes; 328 u8 type; 329 } __attribute__ ((__packed__)); 330 331 struct btrfs_free_space_header { 332 struct btrfs_disk_key location; 333 __le64 generation; 334 __le64 num_entries; 335 __le64 num_bitmaps; 336 } __attribute__ ((__packed__)); 337 338 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 339 { 340 BUG_ON(num_stripes == 0); 341 return sizeof(struct btrfs_chunk) + 342 sizeof(struct btrfs_stripe) * (num_stripes - 1); 343 } 344 345 #define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 346 #define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 347 348 /* 349 * File system states 350 */ 351 #define BTRFS_FS_STATE_ERROR 0 352 #define BTRFS_FS_STATE_REMOUNTING 1 353 #define BTRFS_FS_STATE_TRANS_ABORTED 2 354 #define BTRFS_FS_STATE_DEV_REPLACING 3 355 356 /* Super block flags */ 357 /* Errors detected */ 358 #define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 359 360 #define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 361 #define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 362 363 #define BTRFS_BACKREF_REV_MAX 256 364 #define BTRFS_BACKREF_REV_SHIFT 56 365 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 366 BTRFS_BACKREF_REV_SHIFT) 367 368 #define BTRFS_OLD_BACKREF_REV 0 369 #define BTRFS_MIXED_BACKREF_REV 1 370 371 /* 372 * every tree block (leaf or node) starts with this header. 373 */ 374 struct btrfs_header { 375 /* these first four must match the super block */ 376 u8 csum[BTRFS_CSUM_SIZE]; 377 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 378 __le64 bytenr; /* which block this node is supposed to live in */ 379 __le64 flags; 380 381 /* allowed to be different from the super from here on down */ 382 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 383 __le64 generation; 384 __le64 owner; 385 __le32 nritems; 386 u8 level; 387 } __attribute__ ((__packed__)); 388 389 #define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \ 390 sizeof(struct btrfs_header)) / \ 391 sizeof(struct btrfs_key_ptr)) 392 #define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header)) 393 #define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize)) 394 #define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 395 sizeof(struct btrfs_item) - \ 396 sizeof(struct btrfs_file_extent_item)) 397 #define BTRFS_MAX_XATTR_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \ 398 sizeof(struct btrfs_item) -\ 399 sizeof(struct btrfs_dir_item)) 400 401 402 /* 403 * this is a very generous portion of the super block, giving us 404 * room to translate 14 chunks with 3 stripes each. 405 */ 406 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 407 #define BTRFS_LABEL_SIZE 256 408 409 /* 410 * just in case we somehow lose the roots and are not able to mount, 411 * we store an array of the roots from previous transactions 412 * in the super. 413 */ 414 #define BTRFS_NUM_BACKUP_ROOTS 4 415 struct btrfs_root_backup { 416 __le64 tree_root; 417 __le64 tree_root_gen; 418 419 __le64 chunk_root; 420 __le64 chunk_root_gen; 421 422 __le64 extent_root; 423 __le64 extent_root_gen; 424 425 __le64 fs_root; 426 __le64 fs_root_gen; 427 428 __le64 dev_root; 429 __le64 dev_root_gen; 430 431 __le64 csum_root; 432 __le64 csum_root_gen; 433 434 __le64 total_bytes; 435 __le64 bytes_used; 436 __le64 num_devices; 437 /* future */ 438 __le64 unused_64[4]; 439 440 u8 tree_root_level; 441 u8 chunk_root_level; 442 u8 extent_root_level; 443 u8 fs_root_level; 444 u8 dev_root_level; 445 u8 csum_root_level; 446 /* future and to align */ 447 u8 unused_8[10]; 448 } __attribute__ ((__packed__)); 449 450 /* 451 * the super block basically lists the main trees of the FS 452 * it currently lacks any block count etc etc 453 */ 454 struct btrfs_super_block { 455 u8 csum[BTRFS_CSUM_SIZE]; 456 /* the first 4 fields must match struct btrfs_header */ 457 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 458 __le64 bytenr; /* this block number */ 459 __le64 flags; 460 461 /* allowed to be different from the btrfs_header from here own down */ 462 __le64 magic; 463 __le64 generation; 464 __le64 root; 465 __le64 chunk_root; 466 __le64 log_root; 467 468 /* this will help find the new super based on the log root */ 469 __le64 log_root_transid; 470 __le64 total_bytes; 471 __le64 bytes_used; 472 __le64 root_dir_objectid; 473 __le64 num_devices; 474 __le32 sectorsize; 475 __le32 nodesize; 476 __le32 leafsize; 477 __le32 stripesize; 478 __le32 sys_chunk_array_size; 479 __le64 chunk_root_generation; 480 __le64 compat_flags; 481 __le64 compat_ro_flags; 482 __le64 incompat_flags; 483 __le16 csum_type; 484 u8 root_level; 485 u8 chunk_root_level; 486 u8 log_root_level; 487 struct btrfs_dev_item dev_item; 488 489 char label[BTRFS_LABEL_SIZE]; 490 491 __le64 cache_generation; 492 __le64 uuid_tree_generation; 493 494 /* future expansion */ 495 __le64 reserved[30]; 496 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 497 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 498 } __attribute__ ((__packed__)); 499 500 /* 501 * Compat flags that we support. If any incompat flags are set other than the 502 * ones specified below then we will fail to mount 503 */ 504 #define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF (1ULL << 0) 505 #define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL (1ULL << 1) 506 #define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS (1ULL << 2) 507 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO (1ULL << 3) 508 /* 509 * some patches floated around with a second compression method 510 * lets save that incompat here for when they do get in 511 * Note we don't actually support it, we're just reserving the 512 * number 513 */ 514 #define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2 (1ULL << 4) 515 516 /* 517 * older kernels tried to do bigger metadata blocks, but the 518 * code was pretty buggy. Lets not let them try anymore. 519 */ 520 #define BTRFS_FEATURE_INCOMPAT_BIG_METADATA (1ULL << 5) 521 522 #define BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF (1ULL << 6) 523 #define BTRFS_FEATURE_INCOMPAT_RAID56 (1ULL << 7) 524 #define BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA (1ULL << 8) 525 #define BTRFS_FEATURE_INCOMPAT_NO_HOLES (1ULL << 9) 526 527 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 528 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 529 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 530 #define BTRFS_FEATURE_COMPAT_RO_SUPP 0ULL 531 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 532 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 533 534 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 535 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 536 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 537 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 538 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 539 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 540 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 541 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 542 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 543 BTRFS_FEATURE_INCOMPAT_NO_HOLES) 544 545 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 546 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 547 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 548 549 /* 550 * A leaf is full of items. offset and size tell us where to find 551 * the item in the leaf (relative to the start of the data area) 552 */ 553 struct btrfs_item { 554 struct btrfs_disk_key key; 555 __le32 offset; 556 __le32 size; 557 } __attribute__ ((__packed__)); 558 559 /* 560 * leaves have an item area and a data area: 561 * [item0, item1....itemN] [free space] [dataN...data1, data0] 562 * 563 * The data is separate from the items to get the keys closer together 564 * during searches. 565 */ 566 struct btrfs_leaf { 567 struct btrfs_header header; 568 struct btrfs_item items[]; 569 } __attribute__ ((__packed__)); 570 571 /* 572 * all non-leaf blocks are nodes, they hold only keys and pointers to 573 * other blocks 574 */ 575 struct btrfs_key_ptr { 576 struct btrfs_disk_key key; 577 __le64 blockptr; 578 __le64 generation; 579 } __attribute__ ((__packed__)); 580 581 struct btrfs_node { 582 struct btrfs_header header; 583 struct btrfs_key_ptr ptrs[]; 584 } __attribute__ ((__packed__)); 585 586 /* 587 * btrfs_paths remember the path taken from the root down to the leaf. 588 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 589 * to any other levels that are present. 590 * 591 * The slots array records the index of the item or block pointer 592 * used while walking the tree. 593 */ 594 struct btrfs_path { 595 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 596 int slots[BTRFS_MAX_LEVEL]; 597 /* if there is real range locking, this locks field will change */ 598 int locks[BTRFS_MAX_LEVEL]; 599 int reada; 600 /* keep some upper locks as we walk down */ 601 int lowest_level; 602 603 /* 604 * set by btrfs_split_item, tells search_slot to keep all locks 605 * and to force calls to keep space in the nodes 606 */ 607 unsigned int search_for_split:1; 608 unsigned int keep_locks:1; 609 unsigned int skip_locking:1; 610 unsigned int leave_spinning:1; 611 unsigned int search_commit_root:1; 612 unsigned int need_commit_sem:1; 613 }; 614 615 /* 616 * items in the extent btree are used to record the objectid of the 617 * owner of the block and the number of references 618 */ 619 620 struct btrfs_extent_item { 621 __le64 refs; 622 __le64 generation; 623 __le64 flags; 624 } __attribute__ ((__packed__)); 625 626 struct btrfs_extent_item_v0 { 627 __le32 refs; 628 } __attribute__ ((__packed__)); 629 630 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \ 631 sizeof(struct btrfs_item)) 632 633 #define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 634 #define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 635 636 /* following flags only apply to tree blocks */ 637 638 /* use full backrefs for extent pointers in the block */ 639 #define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 640 641 /* 642 * this flag is only used internally by scrub and may be changed at any time 643 * it is only declared here to avoid collisions 644 */ 645 #define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 646 647 struct btrfs_tree_block_info { 648 struct btrfs_disk_key key; 649 u8 level; 650 } __attribute__ ((__packed__)); 651 652 struct btrfs_extent_data_ref { 653 __le64 root; 654 __le64 objectid; 655 __le64 offset; 656 __le32 count; 657 } __attribute__ ((__packed__)); 658 659 struct btrfs_shared_data_ref { 660 __le32 count; 661 } __attribute__ ((__packed__)); 662 663 struct btrfs_extent_inline_ref { 664 u8 type; 665 __le64 offset; 666 } __attribute__ ((__packed__)); 667 668 /* old style backrefs item */ 669 struct btrfs_extent_ref_v0 { 670 __le64 root; 671 __le64 generation; 672 __le64 objectid; 673 __le32 count; 674 } __attribute__ ((__packed__)); 675 676 677 /* dev extents record free space on individual devices. The owner 678 * field points back to the chunk allocation mapping tree that allocated 679 * the extent. The chunk tree uuid field is a way to double check the owner 680 */ 681 struct btrfs_dev_extent { 682 __le64 chunk_tree; 683 __le64 chunk_objectid; 684 __le64 chunk_offset; 685 __le64 length; 686 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 687 } __attribute__ ((__packed__)); 688 689 struct btrfs_inode_ref { 690 __le64 index; 691 __le16 name_len; 692 /* name goes here */ 693 } __attribute__ ((__packed__)); 694 695 struct btrfs_inode_extref { 696 __le64 parent_objectid; 697 __le64 index; 698 __le16 name_len; 699 __u8 name[0]; 700 /* name goes here */ 701 } __attribute__ ((__packed__)); 702 703 struct btrfs_timespec { 704 __le64 sec; 705 __le32 nsec; 706 } __attribute__ ((__packed__)); 707 708 enum btrfs_compression_type { 709 BTRFS_COMPRESS_NONE = 0, 710 BTRFS_COMPRESS_ZLIB = 1, 711 BTRFS_COMPRESS_LZO = 2, 712 BTRFS_COMPRESS_TYPES = 2, 713 BTRFS_COMPRESS_LAST = 3, 714 }; 715 716 struct btrfs_inode_item { 717 /* nfs style generation number */ 718 __le64 generation; 719 /* transid that last touched this inode */ 720 __le64 transid; 721 __le64 size; 722 __le64 nbytes; 723 __le64 block_group; 724 __le32 nlink; 725 __le32 uid; 726 __le32 gid; 727 __le32 mode; 728 __le64 rdev; 729 __le64 flags; 730 731 /* modification sequence number for NFS */ 732 __le64 sequence; 733 734 /* 735 * a little future expansion, for more than this we can 736 * just grow the inode item and version it 737 */ 738 __le64 reserved[4]; 739 struct btrfs_timespec atime; 740 struct btrfs_timespec ctime; 741 struct btrfs_timespec mtime; 742 struct btrfs_timespec otime; 743 } __attribute__ ((__packed__)); 744 745 struct btrfs_dir_log_item { 746 __le64 end; 747 } __attribute__ ((__packed__)); 748 749 struct btrfs_dir_item { 750 struct btrfs_disk_key location; 751 __le64 transid; 752 __le16 data_len; 753 __le16 name_len; 754 u8 type; 755 } __attribute__ ((__packed__)); 756 757 #define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 758 759 struct btrfs_root_item { 760 struct btrfs_inode_item inode; 761 __le64 generation; 762 __le64 root_dirid; 763 __le64 bytenr; 764 __le64 byte_limit; 765 __le64 bytes_used; 766 __le64 last_snapshot; 767 __le64 flags; 768 __le32 refs; 769 struct btrfs_disk_key drop_progress; 770 u8 drop_level; 771 u8 level; 772 773 /* 774 * The following fields appear after subvol_uuids+subvol_times 775 * were introduced. 776 */ 777 778 /* 779 * This generation number is used to test if the new fields are valid 780 * and up to date while reading the root item. Everytime the root item 781 * is written out, the "generation" field is copied into this field. If 782 * anyone ever mounted the fs with an older kernel, we will have 783 * mismatching generation values here and thus must invalidate the 784 * new fields. See btrfs_update_root and btrfs_find_last_root for 785 * details. 786 * the offset of generation_v2 is also used as the start for the memset 787 * when invalidating the fields. 788 */ 789 __le64 generation_v2; 790 u8 uuid[BTRFS_UUID_SIZE]; 791 u8 parent_uuid[BTRFS_UUID_SIZE]; 792 u8 received_uuid[BTRFS_UUID_SIZE]; 793 __le64 ctransid; /* updated when an inode changes */ 794 __le64 otransid; /* trans when created */ 795 __le64 stransid; /* trans when sent. non-zero for received subvol */ 796 __le64 rtransid; /* trans when received. non-zero for received subvol */ 797 struct btrfs_timespec ctime; 798 struct btrfs_timespec otime; 799 struct btrfs_timespec stime; 800 struct btrfs_timespec rtime; 801 __le64 reserved[8]; /* for future */ 802 } __attribute__ ((__packed__)); 803 804 /* 805 * this is used for both forward and backward root refs 806 */ 807 struct btrfs_root_ref { 808 __le64 dirid; 809 __le64 sequence; 810 __le16 name_len; 811 } __attribute__ ((__packed__)); 812 813 struct btrfs_disk_balance_args { 814 /* 815 * profiles to operate on, single is denoted by 816 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 817 */ 818 __le64 profiles; 819 820 /* usage filter */ 821 __le64 usage; 822 823 /* devid filter */ 824 __le64 devid; 825 826 /* devid subset filter [pstart..pend) */ 827 __le64 pstart; 828 __le64 pend; 829 830 /* btrfs virtual address space subset filter [vstart..vend) */ 831 __le64 vstart; 832 __le64 vend; 833 834 /* 835 * profile to convert to, single is denoted by 836 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 837 */ 838 __le64 target; 839 840 /* BTRFS_BALANCE_ARGS_* */ 841 __le64 flags; 842 843 __le64 unused[8]; 844 } __attribute__ ((__packed__)); 845 846 /* 847 * store balance parameters to disk so that balance can be properly 848 * resumed after crash or unmount 849 */ 850 struct btrfs_balance_item { 851 /* BTRFS_BALANCE_* */ 852 __le64 flags; 853 854 struct btrfs_disk_balance_args data; 855 struct btrfs_disk_balance_args meta; 856 struct btrfs_disk_balance_args sys; 857 858 __le64 unused[4]; 859 } __attribute__ ((__packed__)); 860 861 #define BTRFS_FILE_EXTENT_INLINE 0 862 #define BTRFS_FILE_EXTENT_REG 1 863 #define BTRFS_FILE_EXTENT_PREALLOC 2 864 865 struct btrfs_file_extent_item { 866 /* 867 * transaction id that created this extent 868 */ 869 __le64 generation; 870 /* 871 * max number of bytes to hold this extent in ram 872 * when we split a compressed extent we can't know how big 873 * each of the resulting pieces will be. So, this is 874 * an upper limit on the size of the extent in ram instead of 875 * an exact limit. 876 */ 877 __le64 ram_bytes; 878 879 /* 880 * 32 bits for the various ways we might encode the data, 881 * including compression and encryption. If any of these 882 * are set to something a given disk format doesn't understand 883 * it is treated like an incompat flag for reading and writing, 884 * but not for stat. 885 */ 886 u8 compression; 887 u8 encryption; 888 __le16 other_encoding; /* spare for later use */ 889 890 /* are we inline data or a real extent? */ 891 u8 type; 892 893 /* 894 * disk space consumed by the extent, checksum blocks are included 895 * in these numbers 896 */ 897 __le64 disk_bytenr; 898 __le64 disk_num_bytes; 899 /* 900 * the logical offset in file blocks (no csums) 901 * this extent record is for. This allows a file extent to point 902 * into the middle of an existing extent on disk, sharing it 903 * between two snapshots (useful if some bytes in the middle of the 904 * extent have changed 905 */ 906 __le64 offset; 907 /* 908 * the logical number of file blocks (no csums included). This 909 * always reflects the size uncompressed and without encoding. 910 */ 911 __le64 num_bytes; 912 913 } __attribute__ ((__packed__)); 914 915 struct btrfs_csum_item { 916 u8 csum; 917 } __attribute__ ((__packed__)); 918 919 struct btrfs_dev_stats_item { 920 /* 921 * grow this item struct at the end for future enhancements and keep 922 * the existing values unchanged 923 */ 924 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 925 } __attribute__ ((__packed__)); 926 927 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 928 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 929 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED 0 930 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED 1 931 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED 2 932 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED 3 933 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED 4 934 935 struct btrfs_dev_replace { 936 u64 replace_state; /* see #define above */ 937 u64 time_started; /* seconds since 1-Jan-1970 */ 938 u64 time_stopped; /* seconds since 1-Jan-1970 */ 939 atomic64_t num_write_errors; 940 atomic64_t num_uncorrectable_read_errors; 941 942 u64 cursor_left; 943 u64 committed_cursor_left; 944 u64 cursor_left_last_write_of_item; 945 u64 cursor_right; 946 947 u64 cont_reading_from_srcdev_mode; /* see #define above */ 948 949 int is_valid; 950 int item_needs_writeback; 951 struct btrfs_device *srcdev; 952 struct btrfs_device *tgtdev; 953 954 pid_t lock_owner; 955 atomic_t nesting_level; 956 struct mutex lock_finishing_cancel_unmount; 957 struct mutex lock_management_lock; 958 struct mutex lock; 959 960 struct btrfs_scrub_progress scrub_progress; 961 }; 962 963 struct btrfs_dev_replace_item { 964 /* 965 * grow this item struct at the end for future enhancements and keep 966 * the existing values unchanged 967 */ 968 __le64 src_devid; 969 __le64 cursor_left; 970 __le64 cursor_right; 971 __le64 cont_reading_from_srcdev_mode; 972 973 __le64 replace_state; 974 __le64 time_started; 975 __le64 time_stopped; 976 __le64 num_write_errors; 977 __le64 num_uncorrectable_read_errors; 978 } __attribute__ ((__packed__)); 979 980 /* different types of block groups (and chunks) */ 981 #define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 982 #define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 983 #define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 984 #define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 985 #define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 986 #define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 987 #define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 988 #define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 989 #define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 990 #define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 991 BTRFS_SPACE_INFO_GLOBAL_RSV) 992 993 enum btrfs_raid_types { 994 BTRFS_RAID_RAID10, 995 BTRFS_RAID_RAID1, 996 BTRFS_RAID_DUP, 997 BTRFS_RAID_RAID0, 998 BTRFS_RAID_SINGLE, 999 BTRFS_RAID_RAID5, 1000 BTRFS_RAID_RAID6, 1001 BTRFS_NR_RAID_TYPES 1002 }; 1003 1004 #define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 1005 BTRFS_BLOCK_GROUP_SYSTEM | \ 1006 BTRFS_BLOCK_GROUP_METADATA) 1007 1008 #define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 1009 BTRFS_BLOCK_GROUP_RAID1 | \ 1010 BTRFS_BLOCK_GROUP_RAID5 | \ 1011 BTRFS_BLOCK_GROUP_RAID6 | \ 1012 BTRFS_BLOCK_GROUP_DUP | \ 1013 BTRFS_BLOCK_GROUP_RAID10) 1014 /* 1015 * We need a bit for restriper to be able to tell when chunks of type 1016 * SINGLE are available. This "extended" profile format is used in 1017 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 1018 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 1019 * to avoid remappings between two formats in future. 1020 */ 1021 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 1022 1023 /* 1024 * A fake block group type that is used to communicate global block reserve 1025 * size to userspace via the SPACE_INFO ioctl. 1026 */ 1027 #define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 1028 1029 #define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 1030 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 1031 1032 static inline u64 chunk_to_extended(u64 flags) 1033 { 1034 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 1035 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1036 1037 return flags; 1038 } 1039 static inline u64 extended_to_chunk(u64 flags) 1040 { 1041 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 1042 } 1043 1044 struct btrfs_block_group_item { 1045 __le64 used; 1046 __le64 chunk_objectid; 1047 __le64 flags; 1048 } __attribute__ ((__packed__)); 1049 1050 /* 1051 * is subvolume quota turned on? 1052 */ 1053 #define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 1054 /* 1055 * RESCAN is set during the initialization phase 1056 */ 1057 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 1058 /* 1059 * Some qgroup entries are known to be out of date, 1060 * either because the configuration has changed in a way that 1061 * makes a rescan necessary, or because the fs has been mounted 1062 * with a non-qgroup-aware version. 1063 * Turning qouta off and on again makes it inconsistent, too. 1064 */ 1065 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 1066 1067 #define BTRFS_QGROUP_STATUS_VERSION 1 1068 1069 struct btrfs_qgroup_status_item { 1070 __le64 version; 1071 /* 1072 * the generation is updated during every commit. As older 1073 * versions of btrfs are not aware of qgroups, it will be 1074 * possible to detect inconsistencies by checking the 1075 * generation on mount time 1076 */ 1077 __le64 generation; 1078 1079 /* flag definitions see above */ 1080 __le64 flags; 1081 1082 /* 1083 * only used during scanning to record the progress 1084 * of the scan. It contains a logical address 1085 */ 1086 __le64 rescan; 1087 } __attribute__ ((__packed__)); 1088 1089 struct btrfs_qgroup_info_item { 1090 __le64 generation; 1091 __le64 rfer; 1092 __le64 rfer_cmpr; 1093 __le64 excl; 1094 __le64 excl_cmpr; 1095 } __attribute__ ((__packed__)); 1096 1097 /* flags definition for qgroup limits */ 1098 #define BTRFS_QGROUP_LIMIT_MAX_RFER (1ULL << 0) 1099 #define BTRFS_QGROUP_LIMIT_MAX_EXCL (1ULL << 1) 1100 #define BTRFS_QGROUP_LIMIT_RSV_RFER (1ULL << 2) 1101 #define BTRFS_QGROUP_LIMIT_RSV_EXCL (1ULL << 3) 1102 #define BTRFS_QGROUP_LIMIT_RFER_CMPR (1ULL << 4) 1103 #define BTRFS_QGROUP_LIMIT_EXCL_CMPR (1ULL << 5) 1104 1105 struct btrfs_qgroup_limit_item { 1106 /* 1107 * only updated when any of the other values change 1108 */ 1109 __le64 flags; 1110 __le64 max_rfer; 1111 __le64 max_excl; 1112 __le64 rsv_rfer; 1113 __le64 rsv_excl; 1114 } __attribute__ ((__packed__)); 1115 1116 struct btrfs_space_info { 1117 spinlock_t lock; 1118 1119 u64 total_bytes; /* total bytes in the space, 1120 this doesn't take mirrors into account */ 1121 u64 bytes_used; /* total bytes used, 1122 this doesn't take mirrors into account */ 1123 u64 bytes_pinned; /* total bytes pinned, will be freed when the 1124 transaction finishes */ 1125 u64 bytes_reserved; /* total bytes the allocator has reserved for 1126 current allocations */ 1127 u64 bytes_may_use; /* number of bytes that may be used for 1128 delalloc/allocations */ 1129 u64 bytes_readonly; /* total bytes that are read only */ 1130 1131 unsigned int full:1; /* indicates that we cannot allocate any more 1132 chunks for this space */ 1133 unsigned int chunk_alloc:1; /* set if we are allocating a chunk */ 1134 1135 unsigned int flush:1; /* set if we are trying to make space */ 1136 1137 unsigned int force_alloc; /* set if we need to force a chunk 1138 alloc for this space */ 1139 1140 u64 disk_used; /* total bytes used on disk */ 1141 u64 disk_total; /* total bytes on disk, takes mirrors into 1142 account */ 1143 1144 u64 flags; 1145 1146 /* 1147 * bytes_pinned is kept in line with what is actually pinned, as in 1148 * we've called update_block_group and dropped the bytes_used counter 1149 * and increased the bytes_pinned counter. However this means that 1150 * bytes_pinned does not reflect the bytes that will be pinned once the 1151 * delayed refs are flushed, so this counter is inc'ed everytime we call 1152 * btrfs_free_extent so it is a realtime count of what will be freed 1153 * once the transaction is committed. It will be zero'ed everytime the 1154 * transaction commits. 1155 */ 1156 struct percpu_counter total_bytes_pinned; 1157 1158 struct list_head list; 1159 1160 struct rw_semaphore groups_sem; 1161 /* for block groups in our same type */ 1162 struct list_head block_groups[BTRFS_NR_RAID_TYPES]; 1163 wait_queue_head_t wait; 1164 1165 struct kobject kobj; 1166 struct kobject block_group_kobjs[BTRFS_NR_RAID_TYPES]; 1167 }; 1168 1169 #define BTRFS_BLOCK_RSV_GLOBAL 1 1170 #define BTRFS_BLOCK_RSV_DELALLOC 2 1171 #define BTRFS_BLOCK_RSV_TRANS 3 1172 #define BTRFS_BLOCK_RSV_CHUNK 4 1173 #define BTRFS_BLOCK_RSV_DELOPS 5 1174 #define BTRFS_BLOCK_RSV_EMPTY 6 1175 #define BTRFS_BLOCK_RSV_TEMP 7 1176 1177 struct btrfs_block_rsv { 1178 u64 size; 1179 u64 reserved; 1180 struct btrfs_space_info *space_info; 1181 spinlock_t lock; 1182 unsigned short full; 1183 unsigned short type; 1184 unsigned short failfast; 1185 }; 1186 1187 /* 1188 * free clusters are used to claim free space in relatively large chunks, 1189 * allowing us to do less seeky writes. They are used for all metadata 1190 * allocations and data allocations in ssd mode. 1191 */ 1192 struct btrfs_free_cluster { 1193 spinlock_t lock; 1194 spinlock_t refill_lock; 1195 struct rb_root root; 1196 1197 /* largest extent in this cluster */ 1198 u64 max_size; 1199 1200 /* first extent starting offset */ 1201 u64 window_start; 1202 1203 struct btrfs_block_group_cache *block_group; 1204 /* 1205 * when a cluster is allocated from a block group, we put the 1206 * cluster onto a list in the block group so that it can 1207 * be freed before the block group is freed. 1208 */ 1209 struct list_head block_group_list; 1210 }; 1211 1212 enum btrfs_caching_type { 1213 BTRFS_CACHE_NO = 0, 1214 BTRFS_CACHE_STARTED = 1, 1215 BTRFS_CACHE_FAST = 2, 1216 BTRFS_CACHE_FINISHED = 3, 1217 BTRFS_CACHE_ERROR = 4, 1218 }; 1219 1220 enum btrfs_disk_cache_state { 1221 BTRFS_DC_WRITTEN = 0, 1222 BTRFS_DC_ERROR = 1, 1223 BTRFS_DC_CLEAR = 2, 1224 BTRFS_DC_SETUP = 3, 1225 BTRFS_DC_NEED_WRITE = 4, 1226 }; 1227 1228 struct btrfs_caching_control { 1229 struct list_head list; 1230 struct mutex mutex; 1231 wait_queue_head_t wait; 1232 struct btrfs_work work; 1233 struct btrfs_block_group_cache *block_group; 1234 u64 progress; 1235 atomic_t count; 1236 }; 1237 1238 struct btrfs_block_group_cache { 1239 struct btrfs_key key; 1240 struct btrfs_block_group_item item; 1241 struct btrfs_fs_info *fs_info; 1242 struct inode *inode; 1243 spinlock_t lock; 1244 u64 pinned; 1245 u64 reserved; 1246 u64 bytes_super; 1247 u64 flags; 1248 u64 sectorsize; 1249 u64 cache_generation; 1250 1251 /* for raid56, this is a full stripe, without parity */ 1252 unsigned long full_stripe_len; 1253 1254 unsigned int ro:1; 1255 unsigned int dirty:1; 1256 unsigned int iref:1; 1257 1258 int disk_cache_state; 1259 1260 /* cache tracking stuff */ 1261 int cached; 1262 struct btrfs_caching_control *caching_ctl; 1263 u64 last_byte_to_unpin; 1264 1265 struct btrfs_space_info *space_info; 1266 1267 /* free space cache stuff */ 1268 struct btrfs_free_space_ctl *free_space_ctl; 1269 1270 /* block group cache stuff */ 1271 struct rb_node cache_node; 1272 1273 /* for block groups in the same raid type */ 1274 struct list_head list; 1275 1276 /* usage count */ 1277 atomic_t count; 1278 1279 /* List of struct btrfs_free_clusters for this block group. 1280 * Today it will only have one thing on it, but that may change 1281 */ 1282 struct list_head cluster_list; 1283 1284 /* For delayed block group creation */ 1285 struct list_head new_bg_list; 1286 }; 1287 1288 /* delayed seq elem */ 1289 struct seq_list { 1290 struct list_head list; 1291 u64 seq; 1292 }; 1293 1294 enum btrfs_orphan_cleanup_state { 1295 ORPHAN_CLEANUP_STARTED = 1, 1296 ORPHAN_CLEANUP_DONE = 2, 1297 }; 1298 1299 /* used by the raid56 code to lock stripes for read/modify/write */ 1300 struct btrfs_stripe_hash { 1301 struct list_head hash_list; 1302 wait_queue_head_t wait; 1303 spinlock_t lock; 1304 }; 1305 1306 /* used by the raid56 code to lock stripes for read/modify/write */ 1307 struct btrfs_stripe_hash_table { 1308 struct list_head stripe_cache; 1309 spinlock_t cache_lock; 1310 int cache_size; 1311 struct btrfs_stripe_hash table[]; 1312 }; 1313 1314 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 1315 1316 /* fs_info */ 1317 struct reloc_control; 1318 struct btrfs_device; 1319 struct btrfs_fs_devices; 1320 struct btrfs_balance_control; 1321 struct btrfs_delayed_root; 1322 struct btrfs_fs_info { 1323 u8 fsid[BTRFS_FSID_SIZE]; 1324 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 1325 struct btrfs_root *extent_root; 1326 struct btrfs_root *tree_root; 1327 struct btrfs_root *chunk_root; 1328 struct btrfs_root *dev_root; 1329 struct btrfs_root *fs_root; 1330 struct btrfs_root *csum_root; 1331 struct btrfs_root *quota_root; 1332 struct btrfs_root *uuid_root; 1333 1334 /* the log root tree is a directory of all the other log roots */ 1335 struct btrfs_root *log_root_tree; 1336 1337 spinlock_t fs_roots_radix_lock; 1338 struct radix_tree_root fs_roots_radix; 1339 1340 /* block group cache stuff */ 1341 spinlock_t block_group_cache_lock; 1342 u64 first_logical_byte; 1343 struct rb_root block_group_cache_tree; 1344 1345 /* keep track of unallocated space */ 1346 spinlock_t free_chunk_lock; 1347 u64 free_chunk_space; 1348 1349 struct extent_io_tree freed_extents[2]; 1350 struct extent_io_tree *pinned_extents; 1351 1352 /* logical->physical extent mapping */ 1353 struct btrfs_mapping_tree mapping_tree; 1354 1355 /* 1356 * block reservation for extent, checksum, root tree and 1357 * delayed dir index item 1358 */ 1359 struct btrfs_block_rsv global_block_rsv; 1360 /* block reservation for delay allocation */ 1361 struct btrfs_block_rsv delalloc_block_rsv; 1362 /* block reservation for metadata operations */ 1363 struct btrfs_block_rsv trans_block_rsv; 1364 /* block reservation for chunk tree */ 1365 struct btrfs_block_rsv chunk_block_rsv; 1366 /* block reservation for delayed operations */ 1367 struct btrfs_block_rsv delayed_block_rsv; 1368 1369 struct btrfs_block_rsv empty_block_rsv; 1370 1371 u64 generation; 1372 u64 last_trans_committed; 1373 u64 avg_delayed_ref_runtime; 1374 1375 /* 1376 * this is updated to the current trans every time a full commit 1377 * is required instead of the faster short fsync log commits 1378 */ 1379 u64 last_trans_log_full_commit; 1380 unsigned long mount_opt; 1381 unsigned long compress_type:4; 1382 int commit_interval; 1383 /* 1384 * It is a suggestive number, the read side is safe even it gets a 1385 * wrong number because we will write out the data into a regular 1386 * extent. The write side(mount/remount) is under ->s_umount lock, 1387 * so it is also safe. 1388 */ 1389 u64 max_inline; 1390 /* 1391 * Protected by ->chunk_mutex and sb->s_umount. 1392 * 1393 * The reason that we use two lock to protect it is because only 1394 * remount and mount operations can change it and these two operations 1395 * are under sb->s_umount, but the read side (chunk allocation) can not 1396 * acquire sb->s_umount or the deadlock would happen. So we use two 1397 * locks to protect it. On the write side, we must acquire two locks, 1398 * and on the read side, we just need acquire one of them. 1399 */ 1400 u64 alloc_start; 1401 struct btrfs_transaction *running_transaction; 1402 wait_queue_head_t transaction_throttle; 1403 wait_queue_head_t transaction_wait; 1404 wait_queue_head_t transaction_blocked_wait; 1405 wait_queue_head_t async_submit_wait; 1406 1407 /* 1408 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 1409 * when they are updated. 1410 * 1411 * Because we do not clear the flags for ever, so we needn't use 1412 * the lock on the read side. 1413 * 1414 * We also needn't use the lock when we mount the fs, because 1415 * there is no other task which will update the flag. 1416 */ 1417 spinlock_t super_lock; 1418 struct btrfs_super_block *super_copy; 1419 struct btrfs_super_block *super_for_commit; 1420 struct block_device *__bdev; 1421 struct super_block *sb; 1422 struct inode *btree_inode; 1423 struct backing_dev_info bdi; 1424 struct mutex tree_log_mutex; 1425 struct mutex transaction_kthread_mutex; 1426 struct mutex cleaner_mutex; 1427 struct mutex chunk_mutex; 1428 struct mutex volume_mutex; 1429 1430 /* this is used during read/modify/write to make sure 1431 * no two ios are trying to mod the same stripe at the same 1432 * time 1433 */ 1434 struct btrfs_stripe_hash_table *stripe_hash_table; 1435 1436 /* 1437 * this protects the ordered operations list only while we are 1438 * processing all of the entries on it. This way we make 1439 * sure the commit code doesn't find the list temporarily empty 1440 * because another function happens to be doing non-waiting preflush 1441 * before jumping into the main commit. 1442 */ 1443 struct mutex ordered_operations_mutex; 1444 1445 /* 1446 * Same as ordered_operations_mutex except this is for ordered extents 1447 * and not the operations. 1448 */ 1449 struct mutex ordered_extent_flush_mutex; 1450 1451 struct rw_semaphore commit_root_sem; 1452 1453 struct rw_semaphore cleanup_work_sem; 1454 1455 struct rw_semaphore subvol_sem; 1456 struct srcu_struct subvol_srcu; 1457 1458 spinlock_t trans_lock; 1459 /* 1460 * the reloc mutex goes with the trans lock, it is taken 1461 * during commit to protect us from the relocation code 1462 */ 1463 struct mutex reloc_mutex; 1464 1465 struct list_head trans_list; 1466 struct list_head dead_roots; 1467 struct list_head caching_block_groups; 1468 1469 spinlock_t delayed_iput_lock; 1470 struct list_head delayed_iputs; 1471 1472 /* this protects tree_mod_seq_list */ 1473 spinlock_t tree_mod_seq_lock; 1474 atomic64_t tree_mod_seq; 1475 struct list_head tree_mod_seq_list; 1476 1477 /* this protects tree_mod_log */ 1478 rwlock_t tree_mod_log_lock; 1479 struct rb_root tree_mod_log; 1480 1481 atomic_t nr_async_submits; 1482 atomic_t async_submit_draining; 1483 atomic_t nr_async_bios; 1484 atomic_t async_delalloc_pages; 1485 atomic_t open_ioctl_trans; 1486 1487 /* 1488 * this is used to protect the following list -- ordered_roots. 1489 */ 1490 spinlock_t ordered_root_lock; 1491 1492 /* 1493 * all fs/file tree roots in which there are data=ordered extents 1494 * pending writeback are added into this list. 1495 * 1496 * these can span multiple transactions and basically include 1497 * every dirty data page that isn't from nodatacow 1498 */ 1499 struct list_head ordered_roots; 1500 1501 struct mutex delalloc_root_mutex; 1502 spinlock_t delalloc_root_lock; 1503 /* all fs/file tree roots that have delalloc inodes. */ 1504 struct list_head delalloc_roots; 1505 1506 /* 1507 * there is a pool of worker threads for checksumming during writes 1508 * and a pool for checksumming after reads. This is because readers 1509 * can run with FS locks held, and the writers may be waiting for 1510 * those locks. We don't want ordering in the pending list to cause 1511 * deadlocks, and so the two are serviced separately. 1512 * 1513 * A third pool does submit_bio to avoid deadlocking with the other 1514 * two 1515 */ 1516 struct btrfs_workqueue *workers; 1517 struct btrfs_workqueue *delalloc_workers; 1518 struct btrfs_workqueue *flush_workers; 1519 struct btrfs_workqueue *endio_workers; 1520 struct btrfs_workqueue *endio_meta_workers; 1521 struct btrfs_workqueue *endio_raid56_workers; 1522 struct btrfs_workqueue *rmw_workers; 1523 struct btrfs_workqueue *endio_meta_write_workers; 1524 struct btrfs_workqueue *endio_write_workers; 1525 struct btrfs_workqueue *endio_freespace_worker; 1526 struct btrfs_workqueue *submit_workers; 1527 struct btrfs_workqueue *caching_workers; 1528 struct btrfs_workqueue *readahead_workers; 1529 1530 /* 1531 * fixup workers take dirty pages that didn't properly go through 1532 * the cow mechanism and make them safe to write. It happens 1533 * for the sys_munmap function call path 1534 */ 1535 struct btrfs_workqueue *fixup_workers; 1536 struct btrfs_workqueue *delayed_workers; 1537 struct task_struct *transaction_kthread; 1538 struct task_struct *cleaner_kthread; 1539 int thread_pool_size; 1540 1541 struct kobject super_kobj; 1542 struct kobject *space_info_kobj; 1543 struct kobject *device_dir_kobj; 1544 struct completion kobj_unregister; 1545 int do_barriers; 1546 int closing; 1547 int log_root_recovering; 1548 1549 u64 total_pinned; 1550 1551 /* used to keep from writing metadata until there is a nice batch */ 1552 struct percpu_counter dirty_metadata_bytes; 1553 struct percpu_counter delalloc_bytes; 1554 s32 dirty_metadata_batch; 1555 s32 delalloc_batch; 1556 1557 struct list_head dirty_cowonly_roots; 1558 1559 struct btrfs_fs_devices *fs_devices; 1560 1561 /* 1562 * the space_info list is almost entirely read only. It only changes 1563 * when we add a new raid type to the FS, and that happens 1564 * very rarely. RCU is used to protect it. 1565 */ 1566 struct list_head space_info; 1567 1568 struct btrfs_space_info *data_sinfo; 1569 1570 struct reloc_control *reloc_ctl; 1571 1572 /* data_alloc_cluster is only used in ssd mode */ 1573 struct btrfs_free_cluster data_alloc_cluster; 1574 1575 /* all metadata allocations go through this cluster */ 1576 struct btrfs_free_cluster meta_alloc_cluster; 1577 1578 /* auto defrag inodes go here */ 1579 spinlock_t defrag_inodes_lock; 1580 struct rb_root defrag_inodes; 1581 atomic_t defrag_running; 1582 1583 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 1584 seqlock_t profiles_lock; 1585 /* 1586 * these three are in extended format (availability of single 1587 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 1588 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 1589 */ 1590 u64 avail_data_alloc_bits; 1591 u64 avail_metadata_alloc_bits; 1592 u64 avail_system_alloc_bits; 1593 1594 /* restriper state */ 1595 spinlock_t balance_lock; 1596 struct mutex balance_mutex; 1597 atomic_t balance_running; 1598 atomic_t balance_pause_req; 1599 atomic_t balance_cancel_req; 1600 struct btrfs_balance_control *balance_ctl; 1601 wait_queue_head_t balance_wait_q; 1602 1603 unsigned data_chunk_allocations; 1604 unsigned metadata_ratio; 1605 1606 void *bdev_holder; 1607 1608 /* private scrub information */ 1609 struct mutex scrub_lock; 1610 atomic_t scrubs_running; 1611 atomic_t scrub_pause_req; 1612 atomic_t scrubs_paused; 1613 atomic_t scrub_cancel_req; 1614 wait_queue_head_t scrub_pause_wait; 1615 int scrub_workers_refcnt; 1616 struct btrfs_workqueue *scrub_workers; 1617 struct btrfs_workqueue *scrub_wr_completion_workers; 1618 struct btrfs_workqueue *scrub_nocow_workers; 1619 1620 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1621 u32 check_integrity_print_mask; 1622 #endif 1623 /* 1624 * quota information 1625 */ 1626 unsigned int quota_enabled:1; 1627 1628 /* 1629 * quota_enabled only changes state after a commit. This holds the 1630 * next state. 1631 */ 1632 unsigned int pending_quota_state:1; 1633 1634 /* is qgroup tracking in a consistent state? */ 1635 u64 qgroup_flags; 1636 1637 /* holds configuration and tracking. Protected by qgroup_lock */ 1638 struct rb_root qgroup_tree; 1639 spinlock_t qgroup_lock; 1640 1641 /* 1642 * used to avoid frequently calling ulist_alloc()/ulist_free() 1643 * when doing qgroup accounting, it must be protected by qgroup_lock. 1644 */ 1645 struct ulist *qgroup_ulist; 1646 1647 /* protect user change for quota operations */ 1648 struct mutex qgroup_ioctl_lock; 1649 1650 /* list of dirty qgroups to be written at next commit */ 1651 struct list_head dirty_qgroups; 1652 1653 /* used by btrfs_qgroup_record_ref for an efficient tree traversal */ 1654 u64 qgroup_seq; 1655 1656 /* qgroup rescan items */ 1657 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1658 struct btrfs_key qgroup_rescan_progress; 1659 struct btrfs_workqueue *qgroup_rescan_workers; 1660 struct completion qgroup_rescan_completion; 1661 struct btrfs_work qgroup_rescan_work; 1662 1663 /* filesystem state */ 1664 unsigned long fs_state; 1665 1666 struct btrfs_delayed_root *delayed_root; 1667 1668 /* readahead tree */ 1669 spinlock_t reada_lock; 1670 struct radix_tree_root reada_tree; 1671 1672 /* Extent buffer radix tree */ 1673 spinlock_t buffer_lock; 1674 struct radix_tree_root buffer_radix; 1675 1676 /* next backup root to be overwritten */ 1677 int backup_root_index; 1678 1679 int num_tolerated_disk_barrier_failures; 1680 1681 /* device replace state */ 1682 struct btrfs_dev_replace dev_replace; 1683 1684 atomic_t mutually_exclusive_operation_running; 1685 1686 struct percpu_counter bio_counter; 1687 wait_queue_head_t replace_wait; 1688 1689 struct semaphore uuid_tree_rescan_sem; 1690 unsigned int update_uuid_tree_gen:1; 1691 }; 1692 1693 struct btrfs_subvolume_writers { 1694 struct percpu_counter counter; 1695 wait_queue_head_t wait; 1696 }; 1697 1698 /* 1699 * in ram representation of the tree. extent_root is used for all allocations 1700 * and for the extent tree extent_root root. 1701 */ 1702 struct btrfs_root { 1703 struct extent_buffer *node; 1704 1705 struct extent_buffer *commit_root; 1706 struct btrfs_root *log_root; 1707 struct btrfs_root *reloc_root; 1708 1709 struct btrfs_root_item root_item; 1710 struct btrfs_key root_key; 1711 struct btrfs_fs_info *fs_info; 1712 struct extent_io_tree dirty_log_pages; 1713 1714 struct kobject root_kobj; 1715 struct completion kobj_unregister; 1716 struct mutex objectid_mutex; 1717 1718 spinlock_t accounting_lock; 1719 struct btrfs_block_rsv *block_rsv; 1720 1721 /* free ino cache stuff */ 1722 struct btrfs_free_space_ctl *free_ino_ctl; 1723 enum btrfs_caching_type cached; 1724 spinlock_t cache_lock; 1725 wait_queue_head_t cache_wait; 1726 struct btrfs_free_space_ctl *free_ino_pinned; 1727 u64 cache_progress; 1728 struct inode *cache_inode; 1729 1730 struct mutex log_mutex; 1731 wait_queue_head_t log_writer_wait; 1732 wait_queue_head_t log_commit_wait[2]; 1733 struct list_head log_ctxs[2]; 1734 atomic_t log_writers; 1735 atomic_t log_commit[2]; 1736 atomic_t log_batch; 1737 int log_transid; 1738 /* No matter the commit succeeds or not*/ 1739 int log_transid_committed; 1740 /* Just be updated when the commit succeeds. */ 1741 int last_log_commit; 1742 pid_t log_start_pid; 1743 bool log_multiple_pids; 1744 1745 u64 objectid; 1746 u64 last_trans; 1747 1748 /* data allocations are done in sectorsize units */ 1749 u32 sectorsize; 1750 1751 /* node allocations are done in nodesize units */ 1752 u32 nodesize; 1753 1754 /* leaf allocations are done in leafsize units */ 1755 u32 leafsize; 1756 1757 u32 stripesize; 1758 1759 u32 type; 1760 1761 u64 highest_objectid; 1762 1763 /* btrfs_record_root_in_trans is a multi-step process, 1764 * and it can race with the balancing code. But the 1765 * race is very small, and only the first time the root 1766 * is added to each transaction. So in_trans_setup 1767 * is used to tell us when more checks are required 1768 */ 1769 unsigned long in_trans_setup; 1770 int ref_cows; 1771 int track_dirty; 1772 int in_radix; 1773 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1774 int dummy_root; 1775 #endif 1776 u64 defrag_trans_start; 1777 struct btrfs_key defrag_progress; 1778 struct btrfs_key defrag_max; 1779 int defrag_running; 1780 char *name; 1781 1782 /* the dirty list is only used by non-reference counted roots */ 1783 struct list_head dirty_list; 1784 1785 struct list_head root_list; 1786 1787 spinlock_t log_extents_lock[2]; 1788 struct list_head logged_list[2]; 1789 1790 spinlock_t orphan_lock; 1791 atomic_t orphan_inodes; 1792 struct btrfs_block_rsv *orphan_block_rsv; 1793 int orphan_item_inserted; 1794 int orphan_cleanup_state; 1795 1796 spinlock_t inode_lock; 1797 /* red-black tree that keeps track of in-memory inodes */ 1798 struct rb_root inode_tree; 1799 1800 /* 1801 * radix tree that keeps track of delayed nodes of every inode, 1802 * protected by inode_lock 1803 */ 1804 struct radix_tree_root delayed_nodes_tree; 1805 /* 1806 * right now this just gets used so that a root has its own devid 1807 * for stat. It may be used for more later 1808 */ 1809 dev_t anon_dev; 1810 1811 int force_cow; 1812 1813 spinlock_t root_item_lock; 1814 atomic_t refs; 1815 1816 struct mutex delalloc_mutex; 1817 spinlock_t delalloc_lock; 1818 /* 1819 * all of the inodes that have delalloc bytes. It is possible for 1820 * this list to be empty even when there is still dirty data=ordered 1821 * extents waiting to finish IO. 1822 */ 1823 struct list_head delalloc_inodes; 1824 struct list_head delalloc_root; 1825 u64 nr_delalloc_inodes; 1826 1827 struct mutex ordered_extent_mutex; 1828 /* 1829 * this is used by the balancing code to wait for all the pending 1830 * ordered extents 1831 */ 1832 spinlock_t ordered_extent_lock; 1833 1834 /* 1835 * all of the data=ordered extents pending writeback 1836 * these can span multiple transactions and basically include 1837 * every dirty data page that isn't from nodatacow 1838 */ 1839 struct list_head ordered_extents; 1840 struct list_head ordered_root; 1841 u64 nr_ordered_extents; 1842 1843 /* 1844 * Number of currently running SEND ioctls to prevent 1845 * manipulation with the read-only status via SUBVOL_SETFLAGS 1846 */ 1847 int send_in_progress; 1848 struct btrfs_subvolume_writers *subv_writers; 1849 atomic_t will_be_snapshoted; 1850 }; 1851 1852 struct btrfs_ioctl_defrag_range_args { 1853 /* start of the defrag operation */ 1854 __u64 start; 1855 1856 /* number of bytes to defrag, use (u64)-1 to say all */ 1857 __u64 len; 1858 1859 /* 1860 * flags for the operation, which can include turning 1861 * on compression for this one defrag 1862 */ 1863 __u64 flags; 1864 1865 /* 1866 * any extent bigger than this will be considered 1867 * already defragged. Use 0 to take the kernel default 1868 * Use 1 to say every single extent must be rewritten 1869 */ 1870 __u32 extent_thresh; 1871 1872 /* 1873 * which compression method to use if turning on compression 1874 * for this defrag operation. If unspecified, zlib will 1875 * be used 1876 */ 1877 __u32 compress_type; 1878 1879 /* spare for later */ 1880 __u32 unused[4]; 1881 }; 1882 1883 1884 /* 1885 * inode items have the data typically returned from stat and store other 1886 * info about object characteristics. There is one for every file and dir in 1887 * the FS 1888 */ 1889 #define BTRFS_INODE_ITEM_KEY 1 1890 #define BTRFS_INODE_REF_KEY 12 1891 #define BTRFS_INODE_EXTREF_KEY 13 1892 #define BTRFS_XATTR_ITEM_KEY 24 1893 #define BTRFS_ORPHAN_ITEM_KEY 48 1894 /* reserve 2-15 close to the inode for later flexibility */ 1895 1896 /* 1897 * dir items are the name -> inode pointers in a directory. There is one 1898 * for every name in a directory. 1899 */ 1900 #define BTRFS_DIR_LOG_ITEM_KEY 60 1901 #define BTRFS_DIR_LOG_INDEX_KEY 72 1902 #define BTRFS_DIR_ITEM_KEY 84 1903 #define BTRFS_DIR_INDEX_KEY 96 1904 /* 1905 * extent data is for file data 1906 */ 1907 #define BTRFS_EXTENT_DATA_KEY 108 1908 1909 /* 1910 * extent csums are stored in a separate tree and hold csums for 1911 * an entire extent on disk. 1912 */ 1913 #define BTRFS_EXTENT_CSUM_KEY 128 1914 1915 /* 1916 * root items point to tree roots. They are typically in the root 1917 * tree used by the super block to find all the other trees 1918 */ 1919 #define BTRFS_ROOT_ITEM_KEY 132 1920 1921 /* 1922 * root backrefs tie subvols and snapshots to the directory entries that 1923 * reference them 1924 */ 1925 #define BTRFS_ROOT_BACKREF_KEY 144 1926 1927 /* 1928 * root refs make a fast index for listing all of the snapshots and 1929 * subvolumes referenced by a given root. They point directly to the 1930 * directory item in the root that references the subvol 1931 */ 1932 #define BTRFS_ROOT_REF_KEY 156 1933 1934 /* 1935 * extent items are in the extent map tree. These record which blocks 1936 * are used, and how many references there are to each block 1937 */ 1938 #define BTRFS_EXTENT_ITEM_KEY 168 1939 1940 /* 1941 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 1942 * the length, so we save the level in key->offset instead of the length. 1943 */ 1944 #define BTRFS_METADATA_ITEM_KEY 169 1945 1946 #define BTRFS_TREE_BLOCK_REF_KEY 176 1947 1948 #define BTRFS_EXTENT_DATA_REF_KEY 178 1949 1950 #define BTRFS_EXTENT_REF_V0_KEY 180 1951 1952 #define BTRFS_SHARED_BLOCK_REF_KEY 182 1953 1954 #define BTRFS_SHARED_DATA_REF_KEY 184 1955 1956 /* 1957 * block groups give us hints into the extent allocation trees. Which 1958 * blocks are free etc etc 1959 */ 1960 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192 1961 1962 #define BTRFS_DEV_EXTENT_KEY 204 1963 #define BTRFS_DEV_ITEM_KEY 216 1964 #define BTRFS_CHUNK_ITEM_KEY 228 1965 1966 /* 1967 * Records the overall state of the qgroups. 1968 * There's only one instance of this key present, 1969 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 1970 */ 1971 #define BTRFS_QGROUP_STATUS_KEY 240 1972 /* 1973 * Records the currently used space of the qgroup. 1974 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 1975 */ 1976 #define BTRFS_QGROUP_INFO_KEY 242 1977 /* 1978 * Contains the user configured limits for the qgroup. 1979 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 1980 */ 1981 #define BTRFS_QGROUP_LIMIT_KEY 244 1982 /* 1983 * Records the child-parent relationship of qgroups. For 1984 * each relation, 2 keys are present: 1985 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 1986 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 1987 */ 1988 #define BTRFS_QGROUP_RELATION_KEY 246 1989 1990 #define BTRFS_BALANCE_ITEM_KEY 248 1991 1992 /* 1993 * Persistantly stores the io stats in the device tree. 1994 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid). 1995 */ 1996 #define BTRFS_DEV_STATS_KEY 249 1997 1998 /* 1999 * Persistantly stores the device replace state in the device tree. 2000 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 2001 */ 2002 #define BTRFS_DEV_REPLACE_KEY 250 2003 2004 /* 2005 * Stores items that allow to quickly map UUIDs to something else. 2006 * These items are part of the filesystem UUID tree. 2007 * The key is built like this: 2008 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 2009 */ 2010 #if BTRFS_UUID_SIZE != 16 2011 #error "UUID items require BTRFS_UUID_SIZE == 16!" 2012 #endif 2013 #define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 2014 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 2015 * received subvols */ 2016 2017 /* 2018 * string items are for debugging. They just store a short string of 2019 * data in the FS 2020 */ 2021 #define BTRFS_STRING_ITEM_KEY 253 2022 2023 /* 2024 * Flags for mount options. 2025 * 2026 * Note: don't forget to add new options to btrfs_show_options() 2027 */ 2028 #define BTRFS_MOUNT_NODATASUM (1 << 0) 2029 #define BTRFS_MOUNT_NODATACOW (1 << 1) 2030 #define BTRFS_MOUNT_NOBARRIER (1 << 2) 2031 #define BTRFS_MOUNT_SSD (1 << 3) 2032 #define BTRFS_MOUNT_DEGRADED (1 << 4) 2033 #define BTRFS_MOUNT_COMPRESS (1 << 5) 2034 #define BTRFS_MOUNT_NOTREELOG (1 << 6) 2035 #define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7) 2036 #define BTRFS_MOUNT_SSD_SPREAD (1 << 8) 2037 #define BTRFS_MOUNT_NOSSD (1 << 9) 2038 #define BTRFS_MOUNT_DISCARD (1 << 10) 2039 #define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11) 2040 #define BTRFS_MOUNT_SPACE_CACHE (1 << 12) 2041 #define BTRFS_MOUNT_CLEAR_CACHE (1 << 13) 2042 #define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14) 2043 #define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15) 2044 #define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16) 2045 #define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17) 2046 #define BTRFS_MOUNT_RECOVERY (1 << 18) 2047 #define BTRFS_MOUNT_SKIP_BALANCE (1 << 19) 2048 #define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20) 2049 #define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21) 2050 #define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22) 2051 #define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23) 2052 #define BTRFS_MOUNT_CHANGE_INODE_CACHE (1 << 24) 2053 2054 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 2055 2056 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 2057 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 2058 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 2059 #define btrfs_test_opt(root, opt) ((root)->fs_info->mount_opt & \ 2060 BTRFS_MOUNT_##opt) 2061 /* 2062 * Inode flags 2063 */ 2064 #define BTRFS_INODE_NODATASUM (1 << 0) 2065 #define BTRFS_INODE_NODATACOW (1 << 1) 2066 #define BTRFS_INODE_READONLY (1 << 2) 2067 #define BTRFS_INODE_NOCOMPRESS (1 << 3) 2068 #define BTRFS_INODE_PREALLOC (1 << 4) 2069 #define BTRFS_INODE_SYNC (1 << 5) 2070 #define BTRFS_INODE_IMMUTABLE (1 << 6) 2071 #define BTRFS_INODE_APPEND (1 << 7) 2072 #define BTRFS_INODE_NODUMP (1 << 8) 2073 #define BTRFS_INODE_NOATIME (1 << 9) 2074 #define BTRFS_INODE_DIRSYNC (1 << 10) 2075 #define BTRFS_INODE_COMPRESS (1 << 11) 2076 2077 #define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31) 2078 2079 struct btrfs_map_token { 2080 struct extent_buffer *eb; 2081 char *kaddr; 2082 unsigned long offset; 2083 }; 2084 2085 static inline void btrfs_init_map_token (struct btrfs_map_token *token) 2086 { 2087 token->kaddr = NULL; 2088 } 2089 2090 /* some macros to generate set/get funcs for the struct fields. This 2091 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 2092 * one for u8: 2093 */ 2094 #define le8_to_cpu(v) (v) 2095 #define cpu_to_le8(v) (v) 2096 #define __le8 u8 2097 2098 #define read_eb_member(eb, ptr, type, member, result) ( \ 2099 read_extent_buffer(eb, (char *)(result), \ 2100 ((unsigned long)(ptr)) + \ 2101 offsetof(type, member), \ 2102 sizeof(((type *)0)->member))) 2103 2104 #define write_eb_member(eb, ptr, type, member, result) ( \ 2105 write_extent_buffer(eb, (char *)(result), \ 2106 ((unsigned long)(ptr)) + \ 2107 offsetof(type, member), \ 2108 sizeof(((type *)0)->member))) 2109 2110 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 2111 u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr, \ 2112 unsigned long off, \ 2113 struct btrfs_map_token *token); \ 2114 void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr, \ 2115 unsigned long off, u##bits val, \ 2116 struct btrfs_map_token *token); \ 2117 static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \ 2118 unsigned long off) \ 2119 { \ 2120 return btrfs_get_token_##bits(eb, ptr, off, NULL); \ 2121 } \ 2122 static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \ 2123 unsigned long off, u##bits val) \ 2124 { \ 2125 btrfs_set_token_##bits(eb, ptr, off, val, NULL); \ 2126 } 2127 2128 DECLARE_BTRFS_SETGET_BITS(8) 2129 DECLARE_BTRFS_SETGET_BITS(16) 2130 DECLARE_BTRFS_SETGET_BITS(32) 2131 DECLARE_BTRFS_SETGET_BITS(64) 2132 2133 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 2134 static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s) \ 2135 { \ 2136 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2137 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 2138 } \ 2139 static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \ 2140 u##bits val) \ 2141 { \ 2142 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2143 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 2144 } \ 2145 static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \ 2146 struct btrfs_map_token *token) \ 2147 { \ 2148 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2149 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \ 2150 } \ 2151 static inline void btrfs_set_token_##name(struct extent_buffer *eb, \ 2152 type *s, u##bits val, \ 2153 struct btrfs_map_token *token) \ 2154 { \ 2155 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 2156 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \ 2157 } 2158 2159 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 2160 static inline u##bits btrfs_##name(struct extent_buffer *eb) \ 2161 { \ 2162 type *p = page_address(eb->pages[0]); \ 2163 u##bits res = le##bits##_to_cpu(p->member); \ 2164 return res; \ 2165 } \ 2166 static inline void btrfs_set_##name(struct extent_buffer *eb, \ 2167 u##bits val) \ 2168 { \ 2169 type *p = page_address(eb->pages[0]); \ 2170 p->member = cpu_to_le##bits(val); \ 2171 } 2172 2173 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 2174 static inline u##bits btrfs_##name(type *s) \ 2175 { \ 2176 return le##bits##_to_cpu(s->member); \ 2177 } \ 2178 static inline void btrfs_set_##name(type *s, u##bits val) \ 2179 { \ 2180 s->member = cpu_to_le##bits(val); \ 2181 } 2182 2183 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 2184 BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64); 2185 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 2186 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 2187 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 2188 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 2189 start_offset, 64); 2190 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 2191 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 2192 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 2193 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 2194 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 2195 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 2196 2197 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 2198 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 2199 total_bytes, 64); 2200 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 2201 bytes_used, 64); 2202 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 2203 io_align, 32); 2204 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 2205 io_width, 32); 2206 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 2207 sector_size, 32); 2208 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 2209 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 2210 dev_group, 32); 2211 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 2212 seek_speed, 8); 2213 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 2214 bandwidth, 8); 2215 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 2216 generation, 64); 2217 2218 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 2219 { 2220 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 2221 } 2222 2223 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 2224 { 2225 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 2226 } 2227 2228 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 2229 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 2230 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 2231 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 2232 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 2233 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 2234 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 2235 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 2236 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 2237 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 2238 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 2239 2240 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 2241 { 2242 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 2243 } 2244 2245 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 2246 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 2247 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 2248 stripe_len, 64); 2249 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 2250 io_align, 32); 2251 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 2252 io_width, 32); 2253 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 2254 sector_size, 32); 2255 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 2256 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 2257 num_stripes, 16); 2258 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 2259 sub_stripes, 16); 2260 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 2261 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 2262 2263 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 2264 int nr) 2265 { 2266 unsigned long offset = (unsigned long)c; 2267 offset += offsetof(struct btrfs_chunk, stripe); 2268 offset += nr * sizeof(struct btrfs_stripe); 2269 return (struct btrfs_stripe *)offset; 2270 } 2271 2272 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 2273 { 2274 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 2275 } 2276 2277 static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb, 2278 struct btrfs_chunk *c, int nr) 2279 { 2280 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 2281 } 2282 2283 static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb, 2284 struct btrfs_chunk *c, int nr) 2285 { 2286 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 2287 } 2288 2289 /* struct btrfs_block_group_item */ 2290 BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item, 2291 used, 64); 2292 BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item, 2293 used, 64); 2294 BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid, 2295 struct btrfs_block_group_item, chunk_objectid, 64); 2296 2297 BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid, 2298 struct btrfs_block_group_item, chunk_objectid, 64); 2299 BTRFS_SETGET_FUNCS(disk_block_group_flags, 2300 struct btrfs_block_group_item, flags, 64); 2301 BTRFS_SETGET_STACK_FUNCS(block_group_flags, 2302 struct btrfs_block_group_item, flags, 64); 2303 2304 /* struct btrfs_inode_ref */ 2305 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 2306 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 2307 2308 /* struct btrfs_inode_extref */ 2309 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 2310 parent_objectid, 64); 2311 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 2312 name_len, 16); 2313 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 2314 2315 /* struct btrfs_inode_item */ 2316 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 2317 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 2318 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 2319 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 2320 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 2321 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 2322 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 2323 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 2324 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 2325 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 2326 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 2327 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 2328 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 2329 generation, 64); 2330 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 2331 sequence, 64); 2332 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 2333 transid, 64); 2334 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 2335 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 2336 nbytes, 64); 2337 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 2338 block_group, 64); 2339 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 2340 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 2341 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 2342 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 2343 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 2344 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 2345 2346 static inline struct btrfs_timespec * 2347 btrfs_inode_atime(struct btrfs_inode_item *inode_item) 2348 { 2349 unsigned long ptr = (unsigned long)inode_item; 2350 ptr += offsetof(struct btrfs_inode_item, atime); 2351 return (struct btrfs_timespec *)ptr; 2352 } 2353 2354 static inline struct btrfs_timespec * 2355 btrfs_inode_mtime(struct btrfs_inode_item *inode_item) 2356 { 2357 unsigned long ptr = (unsigned long)inode_item; 2358 ptr += offsetof(struct btrfs_inode_item, mtime); 2359 return (struct btrfs_timespec *)ptr; 2360 } 2361 2362 static inline struct btrfs_timespec * 2363 btrfs_inode_ctime(struct btrfs_inode_item *inode_item) 2364 { 2365 unsigned long ptr = (unsigned long)inode_item; 2366 ptr += offsetof(struct btrfs_inode_item, ctime); 2367 return (struct btrfs_timespec *)ptr; 2368 } 2369 2370 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 2371 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 2372 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 2373 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 2374 2375 /* struct btrfs_dev_extent */ 2376 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 2377 chunk_tree, 64); 2378 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 2379 chunk_objectid, 64); 2380 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 2381 chunk_offset, 64); 2382 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 2383 2384 static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev) 2385 { 2386 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid); 2387 return (unsigned long)dev + ptr; 2388 } 2389 2390 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 2391 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 2392 generation, 64); 2393 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 2394 2395 BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32); 2396 2397 2398 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 2399 2400 static inline void btrfs_tree_block_key(struct extent_buffer *eb, 2401 struct btrfs_tree_block_info *item, 2402 struct btrfs_disk_key *key) 2403 { 2404 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2405 } 2406 2407 static inline void btrfs_set_tree_block_key(struct extent_buffer *eb, 2408 struct btrfs_tree_block_info *item, 2409 struct btrfs_disk_key *key) 2410 { 2411 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 2412 } 2413 2414 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 2415 root, 64); 2416 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 2417 objectid, 64); 2418 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 2419 offset, 64); 2420 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 2421 count, 32); 2422 2423 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 2424 count, 32); 2425 2426 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 2427 type, 8); 2428 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 2429 offset, 64); 2430 2431 static inline u32 btrfs_extent_inline_ref_size(int type) 2432 { 2433 if (type == BTRFS_TREE_BLOCK_REF_KEY || 2434 type == BTRFS_SHARED_BLOCK_REF_KEY) 2435 return sizeof(struct btrfs_extent_inline_ref); 2436 if (type == BTRFS_SHARED_DATA_REF_KEY) 2437 return sizeof(struct btrfs_shared_data_ref) + 2438 sizeof(struct btrfs_extent_inline_ref); 2439 if (type == BTRFS_EXTENT_DATA_REF_KEY) 2440 return sizeof(struct btrfs_extent_data_ref) + 2441 offsetof(struct btrfs_extent_inline_ref, offset); 2442 BUG(); 2443 return 0; 2444 } 2445 2446 BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64); 2447 BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0, 2448 generation, 64); 2449 BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64); 2450 BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32); 2451 2452 /* struct btrfs_node */ 2453 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 2454 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 2455 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 2456 blockptr, 64); 2457 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 2458 generation, 64); 2459 2460 static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr) 2461 { 2462 unsigned long ptr; 2463 ptr = offsetof(struct btrfs_node, ptrs) + 2464 sizeof(struct btrfs_key_ptr) * nr; 2465 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 2466 } 2467 2468 static inline void btrfs_set_node_blockptr(struct extent_buffer *eb, 2469 int nr, u64 val) 2470 { 2471 unsigned long ptr; 2472 ptr = offsetof(struct btrfs_node, ptrs) + 2473 sizeof(struct btrfs_key_ptr) * nr; 2474 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 2475 } 2476 2477 static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr) 2478 { 2479 unsigned long ptr; 2480 ptr = offsetof(struct btrfs_node, ptrs) + 2481 sizeof(struct btrfs_key_ptr) * nr; 2482 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2483 } 2484 2485 static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb, 2486 int nr, u64 val) 2487 { 2488 unsigned long ptr; 2489 ptr = offsetof(struct btrfs_node, ptrs) + 2490 sizeof(struct btrfs_key_ptr) * nr; 2491 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2492 } 2493 2494 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2495 { 2496 return offsetof(struct btrfs_node, ptrs) + 2497 sizeof(struct btrfs_key_ptr) * nr; 2498 } 2499 2500 void btrfs_node_key(struct extent_buffer *eb, 2501 struct btrfs_disk_key *disk_key, int nr); 2502 2503 static inline void btrfs_set_node_key(struct extent_buffer *eb, 2504 struct btrfs_disk_key *disk_key, int nr) 2505 { 2506 unsigned long ptr; 2507 ptr = btrfs_node_key_ptr_offset(nr); 2508 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2509 struct btrfs_key_ptr, key, disk_key); 2510 } 2511 2512 /* struct btrfs_item */ 2513 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 2514 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 2515 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2516 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2517 2518 static inline unsigned long btrfs_item_nr_offset(int nr) 2519 { 2520 return offsetof(struct btrfs_leaf, items) + 2521 sizeof(struct btrfs_item) * nr; 2522 } 2523 2524 static inline struct btrfs_item *btrfs_item_nr(int nr) 2525 { 2526 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2527 } 2528 2529 static inline u32 btrfs_item_end(struct extent_buffer *eb, 2530 struct btrfs_item *item) 2531 { 2532 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 2533 } 2534 2535 static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr) 2536 { 2537 return btrfs_item_end(eb, btrfs_item_nr(nr)); 2538 } 2539 2540 static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr) 2541 { 2542 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 2543 } 2544 2545 static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr) 2546 { 2547 return btrfs_item_size(eb, btrfs_item_nr(nr)); 2548 } 2549 2550 static inline void btrfs_item_key(struct extent_buffer *eb, 2551 struct btrfs_disk_key *disk_key, int nr) 2552 { 2553 struct btrfs_item *item = btrfs_item_nr(nr); 2554 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2555 } 2556 2557 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2558 struct btrfs_disk_key *disk_key, int nr) 2559 { 2560 struct btrfs_item *item = btrfs_item_nr(nr); 2561 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2562 } 2563 2564 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2565 2566 /* 2567 * struct btrfs_root_ref 2568 */ 2569 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2570 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2571 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2572 2573 /* struct btrfs_dir_item */ 2574 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2575 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2576 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2577 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2578 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2579 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2580 data_len, 16); 2581 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2582 name_len, 16); 2583 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2584 transid, 64); 2585 2586 static inline void btrfs_dir_item_key(struct extent_buffer *eb, 2587 struct btrfs_dir_item *item, 2588 struct btrfs_disk_key *key) 2589 { 2590 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2591 } 2592 2593 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2594 struct btrfs_dir_item *item, 2595 struct btrfs_disk_key *key) 2596 { 2597 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2598 } 2599 2600 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2601 num_entries, 64); 2602 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2603 num_bitmaps, 64); 2604 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2605 generation, 64); 2606 2607 static inline void btrfs_free_space_key(struct extent_buffer *eb, 2608 struct btrfs_free_space_header *h, 2609 struct btrfs_disk_key *key) 2610 { 2611 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2612 } 2613 2614 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2615 struct btrfs_free_space_header *h, 2616 struct btrfs_disk_key *key) 2617 { 2618 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2619 } 2620 2621 /* struct btrfs_disk_key */ 2622 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2623 objectid, 64); 2624 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2625 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2626 2627 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2628 struct btrfs_disk_key *disk) 2629 { 2630 cpu->offset = le64_to_cpu(disk->offset); 2631 cpu->type = disk->type; 2632 cpu->objectid = le64_to_cpu(disk->objectid); 2633 } 2634 2635 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2636 struct btrfs_key *cpu) 2637 { 2638 disk->offset = cpu_to_le64(cpu->offset); 2639 disk->type = cpu->type; 2640 disk->objectid = cpu_to_le64(cpu->objectid); 2641 } 2642 2643 static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb, 2644 struct btrfs_key *key, int nr) 2645 { 2646 struct btrfs_disk_key disk_key; 2647 btrfs_node_key(eb, &disk_key, nr); 2648 btrfs_disk_key_to_cpu(key, &disk_key); 2649 } 2650 2651 static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb, 2652 struct btrfs_key *key, int nr) 2653 { 2654 struct btrfs_disk_key disk_key; 2655 btrfs_item_key(eb, &disk_key, nr); 2656 btrfs_disk_key_to_cpu(key, &disk_key); 2657 } 2658 2659 static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb, 2660 struct btrfs_dir_item *item, 2661 struct btrfs_key *key) 2662 { 2663 struct btrfs_disk_key disk_key; 2664 btrfs_dir_item_key(eb, item, &disk_key); 2665 btrfs_disk_key_to_cpu(key, &disk_key); 2666 } 2667 2668 2669 static inline u8 btrfs_key_type(struct btrfs_key *key) 2670 { 2671 return key->type; 2672 } 2673 2674 static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val) 2675 { 2676 key->type = val; 2677 } 2678 2679 /* struct btrfs_header */ 2680 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2681 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2682 generation, 64); 2683 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2684 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2685 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2686 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2687 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2688 generation, 64); 2689 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2690 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2691 nritems, 32); 2692 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2693 2694 static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag) 2695 { 2696 return (btrfs_header_flags(eb) & flag) == flag; 2697 } 2698 2699 static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2700 { 2701 u64 flags = btrfs_header_flags(eb); 2702 btrfs_set_header_flags(eb, flags | flag); 2703 return (flags & flag) == flag; 2704 } 2705 2706 static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2707 { 2708 u64 flags = btrfs_header_flags(eb); 2709 btrfs_set_header_flags(eb, flags & ~flag); 2710 return (flags & flag) == flag; 2711 } 2712 2713 static inline int btrfs_header_backref_rev(struct extent_buffer *eb) 2714 { 2715 u64 flags = btrfs_header_flags(eb); 2716 return flags >> BTRFS_BACKREF_REV_SHIFT; 2717 } 2718 2719 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2720 int rev) 2721 { 2722 u64 flags = btrfs_header_flags(eb); 2723 flags &= ~BTRFS_BACKREF_REV_MASK; 2724 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2725 btrfs_set_header_flags(eb, flags); 2726 } 2727 2728 static inline unsigned long btrfs_header_fsid(void) 2729 { 2730 return offsetof(struct btrfs_header, fsid); 2731 } 2732 2733 static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb) 2734 { 2735 return offsetof(struct btrfs_header, chunk_tree_uuid); 2736 } 2737 2738 static inline int btrfs_is_leaf(struct extent_buffer *eb) 2739 { 2740 return btrfs_header_level(eb) == 0; 2741 } 2742 2743 /* struct btrfs_root_item */ 2744 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2745 generation, 64); 2746 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2747 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2748 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2749 2750 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2751 generation, 64); 2752 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2753 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2754 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2755 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2756 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2757 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2758 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2759 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2760 last_snapshot, 64); 2761 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2762 generation_v2, 64); 2763 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2764 ctransid, 64); 2765 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2766 otransid, 64); 2767 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2768 stransid, 64); 2769 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2770 rtransid, 64); 2771 2772 static inline bool btrfs_root_readonly(struct btrfs_root *root) 2773 { 2774 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2775 } 2776 2777 /* struct btrfs_root_backup */ 2778 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2779 tree_root, 64); 2780 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2781 tree_root_gen, 64); 2782 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2783 tree_root_level, 8); 2784 2785 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2786 chunk_root, 64); 2787 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2788 chunk_root_gen, 64); 2789 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2790 chunk_root_level, 8); 2791 2792 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2793 extent_root, 64); 2794 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2795 extent_root_gen, 64); 2796 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2797 extent_root_level, 8); 2798 2799 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2800 fs_root, 64); 2801 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2802 fs_root_gen, 64); 2803 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2804 fs_root_level, 8); 2805 2806 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2807 dev_root, 64); 2808 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2809 dev_root_gen, 64); 2810 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2811 dev_root_level, 8); 2812 2813 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2814 csum_root, 64); 2815 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2816 csum_root_gen, 64); 2817 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2818 csum_root_level, 8); 2819 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2820 total_bytes, 64); 2821 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2822 bytes_used, 64); 2823 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2824 num_devices, 64); 2825 2826 /* struct btrfs_balance_item */ 2827 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2828 2829 static inline void btrfs_balance_data(struct extent_buffer *eb, 2830 struct btrfs_balance_item *bi, 2831 struct btrfs_disk_balance_args *ba) 2832 { 2833 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2834 } 2835 2836 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2837 struct btrfs_balance_item *bi, 2838 struct btrfs_disk_balance_args *ba) 2839 { 2840 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2841 } 2842 2843 static inline void btrfs_balance_meta(struct extent_buffer *eb, 2844 struct btrfs_balance_item *bi, 2845 struct btrfs_disk_balance_args *ba) 2846 { 2847 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2848 } 2849 2850 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2851 struct btrfs_balance_item *bi, 2852 struct btrfs_disk_balance_args *ba) 2853 { 2854 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2855 } 2856 2857 static inline void btrfs_balance_sys(struct extent_buffer *eb, 2858 struct btrfs_balance_item *bi, 2859 struct btrfs_disk_balance_args *ba) 2860 { 2861 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2862 } 2863 2864 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2865 struct btrfs_balance_item *bi, 2866 struct btrfs_disk_balance_args *ba) 2867 { 2868 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2869 } 2870 2871 static inline void 2872 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2873 struct btrfs_disk_balance_args *disk) 2874 { 2875 memset(cpu, 0, sizeof(*cpu)); 2876 2877 cpu->profiles = le64_to_cpu(disk->profiles); 2878 cpu->usage = le64_to_cpu(disk->usage); 2879 cpu->devid = le64_to_cpu(disk->devid); 2880 cpu->pstart = le64_to_cpu(disk->pstart); 2881 cpu->pend = le64_to_cpu(disk->pend); 2882 cpu->vstart = le64_to_cpu(disk->vstart); 2883 cpu->vend = le64_to_cpu(disk->vend); 2884 cpu->target = le64_to_cpu(disk->target); 2885 cpu->flags = le64_to_cpu(disk->flags); 2886 } 2887 2888 static inline void 2889 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2890 struct btrfs_balance_args *cpu) 2891 { 2892 memset(disk, 0, sizeof(*disk)); 2893 2894 disk->profiles = cpu_to_le64(cpu->profiles); 2895 disk->usage = cpu_to_le64(cpu->usage); 2896 disk->devid = cpu_to_le64(cpu->devid); 2897 disk->pstart = cpu_to_le64(cpu->pstart); 2898 disk->pend = cpu_to_le64(cpu->pend); 2899 disk->vstart = cpu_to_le64(cpu->vstart); 2900 disk->vend = cpu_to_le64(cpu->vend); 2901 disk->target = cpu_to_le64(cpu->target); 2902 disk->flags = cpu_to_le64(cpu->flags); 2903 } 2904 2905 /* struct btrfs_super_block */ 2906 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2907 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2908 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2909 generation, 64); 2910 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2911 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2912 struct btrfs_super_block, sys_chunk_array_size, 32); 2913 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2914 struct btrfs_super_block, chunk_root_generation, 64); 2915 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2916 root_level, 8); 2917 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2918 chunk_root, 64); 2919 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2920 chunk_root_level, 8); 2921 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2922 log_root, 64); 2923 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2924 log_root_transid, 64); 2925 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2926 log_root_level, 8); 2927 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2928 total_bytes, 64); 2929 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2930 bytes_used, 64); 2931 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2932 sectorsize, 32); 2933 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2934 nodesize, 32); 2935 BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block, 2936 leafsize, 32); 2937 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2938 stripesize, 32); 2939 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2940 root_dir_objectid, 64); 2941 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2942 num_devices, 64); 2943 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2944 compat_flags, 64); 2945 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2946 compat_ro_flags, 64); 2947 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2948 incompat_flags, 64); 2949 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2950 csum_type, 16); 2951 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2952 cache_generation, 64); 2953 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2954 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2955 uuid_tree_generation, 64); 2956 2957 static inline int btrfs_super_csum_size(struct btrfs_super_block *s) 2958 { 2959 u16 t = btrfs_super_csum_type(s); 2960 /* 2961 * csum type is validated at mount time 2962 */ 2963 return btrfs_csum_sizes[t]; 2964 } 2965 2966 static inline unsigned long btrfs_leaf_data(struct extent_buffer *l) 2967 { 2968 return offsetof(struct btrfs_leaf, items); 2969 } 2970 2971 /* struct btrfs_file_extent_item */ 2972 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2973 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2974 struct btrfs_file_extent_item, disk_bytenr, 64); 2975 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2976 struct btrfs_file_extent_item, offset, 64); 2977 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2978 struct btrfs_file_extent_item, generation, 64); 2979 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2980 struct btrfs_file_extent_item, num_bytes, 64); 2981 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2982 struct btrfs_file_extent_item, disk_num_bytes, 64); 2983 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2984 struct btrfs_file_extent_item, compression, 8); 2985 2986 static inline unsigned long 2987 btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e) 2988 { 2989 unsigned long offset = (unsigned long)e; 2990 offset += offsetof(struct btrfs_file_extent_item, disk_bytenr); 2991 return offset; 2992 } 2993 2994 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2995 { 2996 return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize; 2997 } 2998 2999 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 3000 disk_bytenr, 64); 3001 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 3002 generation, 64); 3003 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 3004 disk_num_bytes, 64); 3005 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 3006 offset, 64); 3007 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 3008 num_bytes, 64); 3009 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 3010 ram_bytes, 64); 3011 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 3012 compression, 8); 3013 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 3014 encryption, 8); 3015 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 3016 other_encoding, 16); 3017 3018 /* 3019 * this returns the number of bytes used by the item on disk, minus the 3020 * size of any extent headers. If a file is compressed on disk, this is 3021 * the compressed size 3022 */ 3023 static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb, 3024 struct btrfs_item *e) 3025 { 3026 unsigned long offset; 3027 offset = offsetof(struct btrfs_file_extent_item, disk_bytenr); 3028 return btrfs_item_size(eb, e) - offset; 3029 } 3030 3031 /* this returns the number of file bytes represented by the inline item. 3032 * If an item is compressed, this is the uncompressed size 3033 */ 3034 static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb, 3035 int slot, 3036 struct btrfs_file_extent_item *fi) 3037 { 3038 struct btrfs_map_token token; 3039 3040 btrfs_init_map_token(&token); 3041 /* 3042 * return the space used on disk if this item isn't 3043 * compressed or encoded 3044 */ 3045 if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 && 3046 btrfs_token_file_extent_encryption(eb, fi, &token) == 0 && 3047 btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) { 3048 return btrfs_file_extent_inline_item_len(eb, 3049 btrfs_item_nr(slot)); 3050 } 3051 3052 /* otherwise use the ram bytes field */ 3053 return btrfs_token_file_extent_ram_bytes(eb, fi, &token); 3054 } 3055 3056 3057 /* btrfs_dev_stats_item */ 3058 static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb, 3059 struct btrfs_dev_stats_item *ptr, 3060 int index) 3061 { 3062 u64 val; 3063 3064 read_extent_buffer(eb, &val, 3065 offsetof(struct btrfs_dev_stats_item, values) + 3066 ((unsigned long)ptr) + (index * sizeof(u64)), 3067 sizeof(val)); 3068 return val; 3069 } 3070 3071 static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb, 3072 struct btrfs_dev_stats_item *ptr, 3073 int index, u64 val) 3074 { 3075 write_extent_buffer(eb, &val, 3076 offsetof(struct btrfs_dev_stats_item, values) + 3077 ((unsigned long)ptr) + (index * sizeof(u64)), 3078 sizeof(val)); 3079 } 3080 3081 /* btrfs_qgroup_status_item */ 3082 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 3083 generation, 64); 3084 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 3085 version, 64); 3086 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 3087 flags, 64); 3088 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 3089 rescan, 64); 3090 3091 /* btrfs_qgroup_info_item */ 3092 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 3093 generation, 64); 3094 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 3095 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 3096 rfer_cmpr, 64); 3097 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 3098 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 3099 excl_cmpr, 64); 3100 3101 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 3102 struct btrfs_qgroup_info_item, generation, 64); 3103 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 3104 rfer, 64); 3105 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 3106 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 3107 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 3108 excl, 64); 3109 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 3110 struct btrfs_qgroup_info_item, excl_cmpr, 64); 3111 3112 /* btrfs_qgroup_limit_item */ 3113 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 3114 flags, 64); 3115 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 3116 max_rfer, 64); 3117 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 3118 max_excl, 64); 3119 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 3120 rsv_rfer, 64); 3121 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 3122 rsv_excl, 64); 3123 3124 /* btrfs_dev_replace_item */ 3125 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 3126 struct btrfs_dev_replace_item, src_devid, 64); 3127 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 3128 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 3129 64); 3130 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 3131 replace_state, 64); 3132 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 3133 time_started, 64); 3134 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 3135 time_stopped, 64); 3136 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 3137 num_write_errors, 64); 3138 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 3139 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 3140 64); 3141 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 3142 cursor_left, 64); 3143 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 3144 cursor_right, 64); 3145 3146 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 3147 struct btrfs_dev_replace_item, src_devid, 64); 3148 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 3149 struct btrfs_dev_replace_item, 3150 cont_reading_from_srcdev_mode, 64); 3151 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 3152 struct btrfs_dev_replace_item, replace_state, 64); 3153 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 3154 struct btrfs_dev_replace_item, time_started, 64); 3155 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 3156 struct btrfs_dev_replace_item, time_stopped, 64); 3157 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 3158 struct btrfs_dev_replace_item, num_write_errors, 64); 3159 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 3160 struct btrfs_dev_replace_item, 3161 num_uncorrectable_read_errors, 64); 3162 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 3163 struct btrfs_dev_replace_item, cursor_left, 64); 3164 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 3165 struct btrfs_dev_replace_item, cursor_right, 64); 3166 3167 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 3168 { 3169 return sb->s_fs_info; 3170 } 3171 3172 static inline u32 btrfs_level_size(struct btrfs_root *root, int level) 3173 { 3174 if (level == 0) 3175 return root->leafsize; 3176 return root->nodesize; 3177 } 3178 3179 /* helper function to cast into the data area of the leaf. */ 3180 #define btrfs_item_ptr(leaf, slot, type) \ 3181 ((type *)(btrfs_leaf_data(leaf) + \ 3182 btrfs_item_offset_nr(leaf, slot))) 3183 3184 #define btrfs_item_ptr_offset(leaf, slot) \ 3185 ((unsigned long)(btrfs_leaf_data(leaf) + \ 3186 btrfs_item_offset_nr(leaf, slot))) 3187 3188 static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info) 3189 { 3190 return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) && 3191 (space_info->flags & BTRFS_BLOCK_GROUP_DATA)); 3192 } 3193 3194 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 3195 { 3196 return mapping_gfp_mask(mapping) & ~__GFP_FS; 3197 } 3198 3199 /* extent-tree.c */ 3200 static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root, 3201 unsigned num_items) 3202 { 3203 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3204 2 * num_items; 3205 } 3206 3207 /* 3208 * Doing a truncate won't result in new nodes or leaves, just what we need for 3209 * COW. 3210 */ 3211 static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root, 3212 unsigned num_items) 3213 { 3214 return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) * 3215 num_items; 3216 } 3217 3218 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, 3219 struct btrfs_root *root); 3220 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, 3221 struct btrfs_root *root); 3222 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3223 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, unsigned long count); 3225 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len); 3226 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 3227 struct btrfs_root *root, u64 bytenr, 3228 u64 offset, int metadata, u64 *refs, u64 *flags); 3229 int btrfs_pin_extent(struct btrfs_root *root, 3230 u64 bytenr, u64 num, int reserved); 3231 int btrfs_pin_extent_for_log_replay(struct btrfs_root *root, 3232 u64 bytenr, u64 num_bytes); 3233 int btrfs_exclude_logged_extents(struct btrfs_root *root, 3234 struct extent_buffer *eb); 3235 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans, 3236 struct btrfs_root *root, 3237 u64 objectid, u64 offset, u64 bytenr); 3238 struct btrfs_block_group_cache *btrfs_lookup_block_group( 3239 struct btrfs_fs_info *info, 3240 u64 bytenr); 3241 void btrfs_put_block_group(struct btrfs_block_group_cache *cache); 3242 int get_block_group_index(struct btrfs_block_group_cache *cache); 3243 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans, 3244 struct btrfs_root *root, u32 blocksize, 3245 u64 parent, u64 root_objectid, 3246 struct btrfs_disk_key *key, int level, 3247 u64 hint, u64 empty_size); 3248 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 3249 struct btrfs_root *root, 3250 struct extent_buffer *buf, 3251 u64 parent, int last_ref); 3252 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 3253 struct btrfs_root *root, 3254 u64 root_objectid, u64 owner, 3255 u64 offset, struct btrfs_key *ins); 3256 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 3257 struct btrfs_root *root, 3258 u64 root_objectid, u64 owner, u64 offset, 3259 struct btrfs_key *ins); 3260 int btrfs_reserve_extent(struct btrfs_root *root, u64 num_bytes, 3261 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 3262 struct btrfs_key *ins, int is_data); 3263 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3264 struct extent_buffer *buf, int full_backref, int for_cow); 3265 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3266 struct extent_buffer *buf, int full_backref, int for_cow); 3267 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 3268 struct btrfs_root *root, 3269 u64 bytenr, u64 num_bytes, u64 flags, 3270 int level, int is_data); 3271 int btrfs_free_extent(struct btrfs_trans_handle *trans, 3272 struct btrfs_root *root, 3273 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, 3274 u64 owner, u64 offset, int for_cow); 3275 3276 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len); 3277 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root, 3278 u64 start, u64 len); 3279 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans, 3280 struct btrfs_root *root); 3281 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans, 3282 struct btrfs_root *root); 3283 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 3284 struct btrfs_root *root, 3285 u64 bytenr, u64 num_bytes, u64 parent, 3286 u64 root_objectid, u64 owner, u64 offset, int for_cow); 3287 3288 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, 3289 struct btrfs_root *root); 3290 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr); 3291 int btrfs_free_block_groups(struct btrfs_fs_info *info); 3292 int btrfs_read_block_groups(struct btrfs_root *root); 3293 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr); 3294 int btrfs_make_block_group(struct btrfs_trans_handle *trans, 3295 struct btrfs_root *root, u64 bytes_used, 3296 u64 type, u64 chunk_objectid, u64 chunk_offset, 3297 u64 size); 3298 int btrfs_remove_block_group(struct btrfs_trans_handle *trans, 3299 struct btrfs_root *root, u64 group_start); 3300 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans, 3301 struct btrfs_root *root); 3302 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data); 3303 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 3304 3305 enum btrfs_reserve_flush_enum { 3306 /* If we are in the transaction, we can't flush anything.*/ 3307 BTRFS_RESERVE_NO_FLUSH, 3308 /* 3309 * Flushing delalloc may cause deadlock somewhere, in this 3310 * case, use FLUSH LIMIT 3311 */ 3312 BTRFS_RESERVE_FLUSH_LIMIT, 3313 BTRFS_RESERVE_FLUSH_ALL, 3314 }; 3315 3316 int btrfs_check_data_free_space(struct inode *inode, u64 bytes); 3317 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes); 3318 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans, 3319 struct btrfs_root *root); 3320 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans, 3321 struct inode *inode); 3322 void btrfs_orphan_release_metadata(struct inode *inode); 3323 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 3324 struct btrfs_block_rsv *rsv, 3325 int nitems, 3326 u64 *qgroup_reserved, bool use_global_rsv); 3327 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 3328 struct btrfs_block_rsv *rsv, 3329 u64 qgroup_reserved); 3330 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes); 3331 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes); 3332 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes); 3333 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes); 3334 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type); 3335 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root, 3336 unsigned short type); 3337 void btrfs_free_block_rsv(struct btrfs_root *root, 3338 struct btrfs_block_rsv *rsv); 3339 int btrfs_block_rsv_add(struct btrfs_root *root, 3340 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 3341 enum btrfs_reserve_flush_enum flush); 3342 int btrfs_block_rsv_check(struct btrfs_root *root, 3343 struct btrfs_block_rsv *block_rsv, int min_factor); 3344 int btrfs_block_rsv_refill(struct btrfs_root *root, 3345 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 3346 enum btrfs_reserve_flush_enum flush); 3347 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv, 3348 struct btrfs_block_rsv *dst_rsv, 3349 u64 num_bytes); 3350 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 3351 struct btrfs_block_rsv *dest, u64 num_bytes, 3352 int min_factor); 3353 void btrfs_block_rsv_release(struct btrfs_root *root, 3354 struct btrfs_block_rsv *block_rsv, 3355 u64 num_bytes); 3356 int btrfs_set_block_group_ro(struct btrfs_root *root, 3357 struct btrfs_block_group_cache *cache); 3358 void btrfs_set_block_group_rw(struct btrfs_root *root, 3359 struct btrfs_block_group_cache *cache); 3360 void btrfs_put_block_group_cache(struct btrfs_fs_info *info); 3361 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 3362 int btrfs_error_unpin_extent_range(struct btrfs_root *root, 3363 u64 start, u64 end); 3364 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr, 3365 u64 num_bytes, u64 *actual_bytes); 3366 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, 3367 struct btrfs_root *root, u64 type); 3368 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range); 3369 3370 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 3371 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 3372 struct btrfs_fs_info *fs_info); 3373 int __get_raid_index(u64 flags); 3374 3375 int btrfs_start_nocow_write(struct btrfs_root *root); 3376 void btrfs_end_nocow_write(struct btrfs_root *root); 3377 /* ctree.c */ 3378 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 3379 int level, int *slot); 3380 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2); 3381 int btrfs_previous_item(struct btrfs_root *root, 3382 struct btrfs_path *path, u64 min_objectid, 3383 int type); 3384 int btrfs_previous_extent_item(struct btrfs_root *root, 3385 struct btrfs_path *path, u64 min_objectid); 3386 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3387 struct btrfs_key *new_key); 3388 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 3389 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root); 3390 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 3391 struct btrfs_key *key, int lowest_level, 3392 u64 min_trans); 3393 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3394 struct btrfs_path *path, 3395 u64 min_trans); 3396 enum btrfs_compare_tree_result { 3397 BTRFS_COMPARE_TREE_NEW, 3398 BTRFS_COMPARE_TREE_DELETED, 3399 BTRFS_COMPARE_TREE_CHANGED, 3400 BTRFS_COMPARE_TREE_SAME, 3401 }; 3402 typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root, 3403 struct btrfs_root *right_root, 3404 struct btrfs_path *left_path, 3405 struct btrfs_path *right_path, 3406 struct btrfs_key *key, 3407 enum btrfs_compare_tree_result result, 3408 void *ctx); 3409 int btrfs_compare_trees(struct btrfs_root *left_root, 3410 struct btrfs_root *right_root, 3411 btrfs_changed_cb_t cb, void *ctx); 3412 int btrfs_cow_block(struct btrfs_trans_handle *trans, 3413 struct btrfs_root *root, struct extent_buffer *buf, 3414 struct extent_buffer *parent, int parent_slot, 3415 struct extent_buffer **cow_ret); 3416 int btrfs_copy_root(struct btrfs_trans_handle *trans, 3417 struct btrfs_root *root, 3418 struct extent_buffer *buf, 3419 struct extent_buffer **cow_ret, u64 new_root_objectid); 3420 int btrfs_block_can_be_shared(struct btrfs_root *root, 3421 struct extent_buffer *buf); 3422 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 3423 u32 data_size); 3424 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 3425 u32 new_size, int from_end); 3426 int btrfs_split_item(struct btrfs_trans_handle *trans, 3427 struct btrfs_root *root, 3428 struct btrfs_path *path, 3429 struct btrfs_key *new_key, 3430 unsigned long split_offset); 3431 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3432 struct btrfs_root *root, 3433 struct btrfs_path *path, 3434 struct btrfs_key *new_key); 3435 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 3436 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 3437 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 3438 *root, struct btrfs_key *key, struct btrfs_path *p, int 3439 ins_len, int cow); 3440 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 3441 struct btrfs_path *p, u64 time_seq); 3442 int btrfs_search_slot_for_read(struct btrfs_root *root, 3443 struct btrfs_key *key, struct btrfs_path *p, 3444 int find_higher, int return_any); 3445 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3446 struct btrfs_root *root, struct extent_buffer *parent, 3447 int start_slot, u64 *last_ret, 3448 struct btrfs_key *progress); 3449 void btrfs_release_path(struct btrfs_path *p); 3450 struct btrfs_path *btrfs_alloc_path(void); 3451 void btrfs_free_path(struct btrfs_path *p); 3452 void btrfs_set_path_blocking(struct btrfs_path *p); 3453 void btrfs_clear_path_blocking(struct btrfs_path *p, 3454 struct extent_buffer *held, int held_rw); 3455 void btrfs_unlock_up_safe(struct btrfs_path *p, int level); 3456 3457 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3458 struct btrfs_path *path, int slot, int nr); 3459 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3460 struct btrfs_root *root, 3461 struct btrfs_path *path) 3462 { 3463 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3464 } 3465 3466 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 3467 struct btrfs_key *cpu_key, u32 *data_size, 3468 u32 total_data, u32 total_size, int nr); 3469 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3470 *root, struct btrfs_key *key, void *data, u32 data_size); 3471 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3472 struct btrfs_root *root, 3473 struct btrfs_path *path, 3474 struct btrfs_key *cpu_key, u32 *data_size, int nr); 3475 3476 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3477 struct btrfs_root *root, 3478 struct btrfs_path *path, 3479 struct btrfs_key *key, 3480 u32 data_size) 3481 { 3482 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 3483 } 3484 3485 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path); 3486 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3487 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3488 u64 time_seq); 3489 static inline int btrfs_next_old_item(struct btrfs_root *root, 3490 struct btrfs_path *p, u64 time_seq) 3491 { 3492 ++p->slots[0]; 3493 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3494 return btrfs_next_old_leaf(root, p, time_seq); 3495 return 0; 3496 } 3497 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3498 { 3499 return btrfs_next_old_item(root, p, 0); 3500 } 3501 int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf); 3502 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, 3503 struct btrfs_block_rsv *block_rsv, 3504 int update_ref, int for_reloc); 3505 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3506 struct btrfs_root *root, 3507 struct extent_buffer *node, 3508 struct extent_buffer *parent); 3509 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3510 { 3511 /* 3512 * Get synced with close_ctree() 3513 */ 3514 smp_mb(); 3515 return fs_info->closing; 3516 } 3517 3518 /* 3519 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3520 * anything except sleeping. This function is used to check the status of 3521 * the fs. 3522 */ 3523 static inline int btrfs_need_cleaner_sleep(struct btrfs_root *root) 3524 { 3525 return (root->fs_info->sb->s_flags & MS_RDONLY || 3526 btrfs_fs_closing(root->fs_info)); 3527 } 3528 3529 static inline void free_fs_info(struct btrfs_fs_info *fs_info) 3530 { 3531 kfree(fs_info->balance_ctl); 3532 kfree(fs_info->delayed_root); 3533 kfree(fs_info->extent_root); 3534 kfree(fs_info->tree_root); 3535 kfree(fs_info->chunk_root); 3536 kfree(fs_info->dev_root); 3537 kfree(fs_info->csum_root); 3538 kfree(fs_info->quota_root); 3539 kfree(fs_info->uuid_root); 3540 kfree(fs_info->super_copy); 3541 kfree(fs_info->super_for_commit); 3542 kfree(fs_info); 3543 } 3544 3545 /* tree mod log functions from ctree.c */ 3546 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 3547 struct seq_list *elem); 3548 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 3549 struct seq_list *elem); 3550 u64 btrfs_tree_mod_seq_prev(u64 seq); 3551 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq); 3552 3553 /* root-item.c */ 3554 int btrfs_find_root_ref(struct btrfs_root *tree_root, 3555 struct btrfs_path *path, 3556 u64 root_id, u64 ref_id); 3557 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, 3558 struct btrfs_root *tree_root, 3559 u64 root_id, u64 ref_id, u64 dirid, u64 sequence, 3560 const char *name, int name_len); 3561 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, 3562 struct btrfs_root *tree_root, 3563 u64 root_id, u64 ref_id, u64 dirid, u64 *sequence, 3564 const char *name, int name_len); 3565 int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3566 struct btrfs_key *key); 3567 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root 3568 *root, struct btrfs_key *key, struct btrfs_root_item 3569 *item); 3570 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3571 struct btrfs_root *root, 3572 struct btrfs_key *key, 3573 struct btrfs_root_item *item); 3574 int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key, 3575 struct btrfs_path *path, struct btrfs_root_item *root_item, 3576 struct btrfs_key *root_key); 3577 int btrfs_find_orphan_roots(struct btrfs_root *tree_root); 3578 void btrfs_set_root_node(struct btrfs_root_item *item, 3579 struct extent_buffer *node); 3580 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3581 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3582 struct btrfs_root *root); 3583 3584 /* uuid-tree.c */ 3585 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, 3586 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3587 u64 subid); 3588 int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans, 3589 struct btrfs_root *uuid_root, u8 *uuid, u8 type, 3590 u64 subid); 3591 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info, 3592 int (*check_func)(struct btrfs_fs_info *, u8 *, u8, 3593 u64)); 3594 3595 /* dir-item.c */ 3596 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3597 const char *name, int name_len); 3598 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, 3599 struct btrfs_root *root, const char *name, 3600 int name_len, struct inode *dir, 3601 struct btrfs_key *location, u8 type, u64 index); 3602 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3603 struct btrfs_root *root, 3604 struct btrfs_path *path, u64 dir, 3605 const char *name, int name_len, 3606 int mod); 3607 struct btrfs_dir_item * 3608 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3609 struct btrfs_root *root, 3610 struct btrfs_path *path, u64 dir, 3611 u64 objectid, const char *name, int name_len, 3612 int mod); 3613 struct btrfs_dir_item * 3614 btrfs_search_dir_index_item(struct btrfs_root *root, 3615 struct btrfs_path *path, u64 dirid, 3616 const char *name, int name_len); 3617 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3618 struct btrfs_root *root, 3619 struct btrfs_path *path, 3620 struct btrfs_dir_item *di); 3621 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3622 struct btrfs_root *root, 3623 struct btrfs_path *path, u64 objectid, 3624 const char *name, u16 name_len, 3625 const void *data, u16 data_len); 3626 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3627 struct btrfs_root *root, 3628 struct btrfs_path *path, u64 dir, 3629 const char *name, u16 name_len, 3630 int mod); 3631 int verify_dir_item(struct btrfs_root *root, 3632 struct extent_buffer *leaf, 3633 struct btrfs_dir_item *dir_item); 3634 3635 /* orphan.c */ 3636 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3637 struct btrfs_root *root, u64 offset); 3638 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3639 struct btrfs_root *root, u64 offset); 3640 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3641 3642 /* inode-item.c */ 3643 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3644 struct btrfs_root *root, 3645 const char *name, int name_len, 3646 u64 inode_objectid, u64 ref_objectid, u64 index); 3647 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3648 struct btrfs_root *root, 3649 const char *name, int name_len, 3650 u64 inode_objectid, u64 ref_objectid, u64 *index); 3651 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3652 struct btrfs_root *root, 3653 struct btrfs_path *path, u64 objectid); 3654 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3655 *root, struct btrfs_path *path, 3656 struct btrfs_key *location, int mod); 3657 3658 struct btrfs_inode_extref * 3659 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3660 struct btrfs_root *root, 3661 struct btrfs_path *path, 3662 const char *name, int name_len, 3663 u64 inode_objectid, u64 ref_objectid, int ins_len, 3664 int cow); 3665 3666 int btrfs_find_name_in_ext_backref(struct btrfs_path *path, 3667 u64 ref_objectid, const char *name, 3668 int name_len, 3669 struct btrfs_inode_extref **extref_ret); 3670 3671 /* file-item.c */ 3672 struct btrfs_dio_private; 3673 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3674 struct btrfs_root *root, u64 bytenr, u64 len); 3675 int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode, 3676 struct bio *bio, u32 *dst); 3677 int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode, 3678 struct btrfs_dio_private *dip, struct bio *bio, 3679 u64 logical_offset); 3680 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3681 struct btrfs_root *root, 3682 u64 objectid, u64 pos, 3683 u64 disk_offset, u64 disk_num_bytes, 3684 u64 num_bytes, u64 offset, u64 ram_bytes, 3685 u8 compression, u8 encryption, u16 other_encoding); 3686 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3687 struct btrfs_root *root, 3688 struct btrfs_path *path, u64 objectid, 3689 u64 bytenr, int mod); 3690 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3691 struct btrfs_root *root, 3692 struct btrfs_ordered_sum *sums); 3693 int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode, 3694 struct bio *bio, u64 file_start, int contig); 3695 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3696 struct list_head *list, int search_commit); 3697 /* inode.c */ 3698 struct btrfs_delalloc_work { 3699 struct inode *inode; 3700 int wait; 3701 int delay_iput; 3702 struct completion completion; 3703 struct list_head list; 3704 struct btrfs_work work; 3705 }; 3706 3707 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode, 3708 int wait, int delay_iput); 3709 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work); 3710 3711 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page, 3712 size_t pg_offset, u64 start, u64 len, 3713 int create); 3714 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3715 u64 *orig_start, u64 *orig_block_len, 3716 u64 *ram_bytes); 3717 3718 /* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */ 3719 #if defined(ClearPageFsMisc) && !defined(ClearPageChecked) 3720 #define ClearPageChecked ClearPageFsMisc 3721 #define SetPageChecked SetPageFsMisc 3722 #define PageChecked PageFsMisc 3723 #endif 3724 3725 /* This forces readahead on a given range of bytes in an inode */ 3726 static inline void btrfs_force_ra(struct address_space *mapping, 3727 struct file_ra_state *ra, struct file *file, 3728 pgoff_t offset, unsigned long req_size) 3729 { 3730 page_cache_sync_readahead(mapping, ra, file, offset, req_size); 3731 } 3732 3733 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3734 int btrfs_set_inode_index(struct inode *dir, u64 *index); 3735 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3736 struct btrfs_root *root, 3737 struct inode *dir, struct inode *inode, 3738 const char *name, int name_len); 3739 int btrfs_add_link(struct btrfs_trans_handle *trans, 3740 struct inode *parent_inode, struct inode *inode, 3741 const char *name, int name_len, int add_backref, u64 index); 3742 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, 3743 struct btrfs_root *root, 3744 struct inode *dir, u64 objectid, 3745 const char *name, int name_len); 3746 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len, 3747 int front); 3748 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3749 struct btrfs_root *root, 3750 struct inode *inode, u64 new_size, 3751 u32 min_type); 3752 3753 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput); 3754 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput, 3755 int nr); 3756 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, 3757 struct extent_state **cached_state); 3758 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3759 struct btrfs_root *new_root, 3760 struct btrfs_root *parent_root, 3761 u64 new_dirid); 3762 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset, 3763 size_t size, struct bio *bio, 3764 unsigned long bio_flags); 3765 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 3766 int btrfs_readpage(struct file *file, struct page *page); 3767 void btrfs_evict_inode(struct inode *inode); 3768 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3769 struct inode *btrfs_alloc_inode(struct super_block *sb); 3770 void btrfs_destroy_inode(struct inode *inode); 3771 int btrfs_drop_inode(struct inode *inode); 3772 int btrfs_init_cachep(void); 3773 void btrfs_destroy_cachep(void); 3774 long btrfs_ioctl_trans_end(struct file *file); 3775 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, 3776 struct btrfs_root *root, int *was_new); 3777 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page, 3778 size_t pg_offset, u64 start, u64 end, 3779 int create); 3780 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3781 struct btrfs_root *root, 3782 struct inode *inode); 3783 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3784 struct btrfs_root *root, struct inode *inode); 3785 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode); 3786 int btrfs_orphan_cleanup(struct btrfs_root *root); 3787 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans, 3788 struct btrfs_root *root); 3789 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size); 3790 void btrfs_invalidate_inodes(struct btrfs_root *root); 3791 void btrfs_add_delayed_iput(struct inode *inode); 3792 void btrfs_run_delayed_iputs(struct btrfs_root *root); 3793 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3794 u64 start, u64 num_bytes, u64 min_size, 3795 loff_t actual_len, u64 *alloc_hint); 3796 int btrfs_prealloc_file_range_trans(struct inode *inode, 3797 struct btrfs_trans_handle *trans, int mode, 3798 u64 start, u64 num_bytes, u64 min_size, 3799 loff_t actual_len, u64 *alloc_hint); 3800 extern const struct dentry_operations btrfs_dentry_operations; 3801 3802 /* ioctl.c */ 3803 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3804 void btrfs_update_iflags(struct inode *inode); 3805 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir); 3806 int btrfs_is_empty_uuid(u8 *uuid); 3807 int btrfs_defrag_file(struct inode *inode, struct file *file, 3808 struct btrfs_ioctl_defrag_range_args *range, 3809 u64 newer_than, unsigned long max_pages); 3810 void btrfs_get_block_group_info(struct list_head *groups_list, 3811 struct btrfs_ioctl_space_info *space); 3812 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 3813 struct btrfs_ioctl_balance_args *bargs); 3814 3815 3816 /* file.c */ 3817 int btrfs_auto_defrag_init(void); 3818 void btrfs_auto_defrag_exit(void); 3819 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3820 struct inode *inode); 3821 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3822 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3823 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3824 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end, 3825 int skip_pinned); 3826 extern const struct file_operations btrfs_file_operations; 3827 int __btrfs_drop_extents(struct btrfs_trans_handle *trans, 3828 struct btrfs_root *root, struct inode *inode, 3829 struct btrfs_path *path, u64 start, u64 end, 3830 u64 *drop_end, int drop_cache, 3831 int replace_extent, 3832 u32 extent_item_size, 3833 int *key_inserted); 3834 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root, struct inode *inode, u64 start, 3836 u64 end, int drop_cache); 3837 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3838 struct inode *inode, u64 start, u64 end); 3839 int btrfs_release_file(struct inode *inode, struct file *file); 3840 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode, 3841 struct page **pages, size_t num_pages, 3842 loff_t pos, size_t write_bytes, 3843 struct extent_state **cached); 3844 3845 /* tree-defrag.c */ 3846 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3847 struct btrfs_root *root); 3848 3849 /* sysfs.c */ 3850 int btrfs_init_sysfs(void); 3851 void btrfs_exit_sysfs(void); 3852 int btrfs_sysfs_add_one(struct btrfs_fs_info *fs_info); 3853 void btrfs_sysfs_remove_one(struct btrfs_fs_info *fs_info); 3854 3855 /* xattr.c */ 3856 ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size); 3857 3858 /* super.c */ 3859 int btrfs_parse_options(struct btrfs_root *root, char *options); 3860 int btrfs_sync_fs(struct super_block *sb, int wait); 3861 3862 #ifdef CONFIG_PRINTK 3863 __printf(2, 3) 3864 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3865 #else 3866 static inline __printf(2, 3) 3867 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3868 { 3869 } 3870 #endif 3871 3872 #define btrfs_emerg(fs_info, fmt, args...) \ 3873 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3874 #define btrfs_alert(fs_info, fmt, args...) \ 3875 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3876 #define btrfs_crit(fs_info, fmt, args...) \ 3877 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3878 #define btrfs_err(fs_info, fmt, args...) \ 3879 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3880 #define btrfs_warn(fs_info, fmt, args...) \ 3881 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3882 #define btrfs_notice(fs_info, fmt, args...) \ 3883 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3884 #define btrfs_info(fs_info, fmt, args...) \ 3885 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3886 3887 #ifdef DEBUG 3888 #define btrfs_debug(fs_info, fmt, args...) \ 3889 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3890 #else 3891 #define btrfs_debug(fs_info, fmt, args...) \ 3892 no_printk(KERN_DEBUG fmt, ##args) 3893 #endif 3894 3895 #ifdef CONFIG_BTRFS_ASSERT 3896 3897 static inline void assfail(char *expr, char *file, int line) 3898 { 3899 pr_err("BTRFS: assertion failed: %s, file: %s, line: %d", 3900 expr, file, line); 3901 BUG(); 3902 } 3903 3904 #define ASSERT(expr) \ 3905 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__)) 3906 #else 3907 #define ASSERT(expr) ((void)0) 3908 #endif 3909 3910 #define btrfs_assert() 3911 __printf(5, 6) 3912 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function, 3913 unsigned int line, int errno, const char *fmt, ...); 3914 3915 3916 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3917 struct btrfs_root *root, const char *function, 3918 unsigned int line, int errno); 3919 3920 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3921 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3922 3923 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3924 u64 flag) 3925 { 3926 struct btrfs_super_block *disk_super; 3927 u64 features; 3928 3929 disk_super = fs_info->super_copy; 3930 features = btrfs_super_incompat_flags(disk_super); 3931 if (!(features & flag)) { 3932 spin_lock(&fs_info->super_lock); 3933 features = btrfs_super_incompat_flags(disk_super); 3934 if (!(features & flag)) { 3935 features |= flag; 3936 btrfs_set_super_incompat_flags(disk_super, features); 3937 btrfs_info(fs_info, "setting %llu feature flag", 3938 flag); 3939 } 3940 spin_unlock(&fs_info->super_lock); 3941 } 3942 } 3943 3944 #define btrfs_fs_incompat(fs_info, opt) \ 3945 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3946 3947 static inline int __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3948 { 3949 struct btrfs_super_block *disk_super; 3950 disk_super = fs_info->super_copy; 3951 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3952 } 3953 3954 /* 3955 * Call btrfs_abort_transaction as early as possible when an error condition is 3956 * detected, that way the exact line number is reported. 3957 */ 3958 3959 #define btrfs_abort_transaction(trans, root, errno) \ 3960 do { \ 3961 __btrfs_abort_transaction(trans, root, __func__, \ 3962 __LINE__, errno); \ 3963 } while (0) 3964 3965 #define btrfs_std_error(fs_info, errno) \ 3966 do { \ 3967 if ((errno)) \ 3968 __btrfs_std_error((fs_info), __func__, \ 3969 __LINE__, (errno), NULL); \ 3970 } while (0) 3971 3972 #define btrfs_error(fs_info, errno, fmt, args...) \ 3973 do { \ 3974 __btrfs_std_error((fs_info), __func__, __LINE__, \ 3975 (errno), fmt, ##args); \ 3976 } while (0) 3977 3978 __printf(5, 6) 3979 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3980 unsigned int line, int errno, const char *fmt, ...); 3981 3982 /* 3983 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3984 * will panic(). Otherwise we BUG() here. 3985 */ 3986 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3987 do { \ 3988 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3989 BUG(); \ 3990 } while (0) 3991 3992 /* acl.c */ 3993 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3994 struct posix_acl *btrfs_get_acl(struct inode *inode, int type); 3995 int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type); 3996 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3997 struct inode *inode, struct inode *dir); 3998 #else 3999 #define btrfs_get_acl NULL 4000 #define btrfs_set_acl NULL 4001 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 4002 struct inode *inode, struct inode *dir) 4003 { 4004 return 0; 4005 } 4006 #endif 4007 4008 /* relocation.c */ 4009 int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start); 4010 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 4011 struct btrfs_root *root); 4012 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 4013 struct btrfs_root *root); 4014 int btrfs_recover_relocation(struct btrfs_root *root); 4015 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len); 4016 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4017 struct btrfs_root *root, struct extent_buffer *buf, 4018 struct extent_buffer *cow); 4019 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4020 struct btrfs_pending_snapshot *pending, 4021 u64 *bytes_to_reserve); 4022 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4023 struct btrfs_pending_snapshot *pending); 4024 4025 /* scrub.c */ 4026 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4027 u64 end, struct btrfs_scrub_progress *progress, 4028 int readonly, int is_dev_replace); 4029 void btrfs_scrub_pause(struct btrfs_root *root); 4030 void btrfs_scrub_continue(struct btrfs_root *root); 4031 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 4032 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info, 4033 struct btrfs_device *dev); 4034 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, 4035 struct btrfs_scrub_progress *progress); 4036 4037 /* dev-replace.c */ 4038 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 4039 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 4040 void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info); 4041 4042 /* reada.c */ 4043 struct reada_control { 4044 struct btrfs_root *root; /* tree to prefetch */ 4045 struct btrfs_key key_start; 4046 struct btrfs_key key_end; /* exclusive */ 4047 atomic_t elems; 4048 struct kref refcnt; 4049 wait_queue_head_t wait; 4050 }; 4051 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 4052 struct btrfs_key *start, struct btrfs_key *end); 4053 int btrfs_reada_wait(void *handle); 4054 void btrfs_reada_detach(void *handle); 4055 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, 4056 u64 start, int err); 4057 4058 /* qgroup.c */ 4059 struct qgroup_update { 4060 struct list_head list; 4061 struct btrfs_delayed_ref_node *node; 4062 struct btrfs_delayed_extent_op *extent_op; 4063 }; 4064 4065 int btrfs_quota_enable(struct btrfs_trans_handle *trans, 4066 struct btrfs_fs_info *fs_info); 4067 int btrfs_quota_disable(struct btrfs_trans_handle *trans, 4068 struct btrfs_fs_info *fs_info); 4069 int btrfs_qgroup_rescan(struct btrfs_fs_info *fs_info); 4070 void btrfs_qgroup_rescan_resume(struct btrfs_fs_info *fs_info); 4071 int btrfs_qgroup_wait_for_completion(struct btrfs_fs_info *fs_info); 4072 int btrfs_add_qgroup_relation(struct btrfs_trans_handle *trans, 4073 struct btrfs_fs_info *fs_info, u64 src, u64 dst); 4074 int btrfs_del_qgroup_relation(struct btrfs_trans_handle *trans, 4075 struct btrfs_fs_info *fs_info, u64 src, u64 dst); 4076 int btrfs_create_qgroup(struct btrfs_trans_handle *trans, 4077 struct btrfs_fs_info *fs_info, u64 qgroupid, 4078 char *name); 4079 int btrfs_remove_qgroup(struct btrfs_trans_handle *trans, 4080 struct btrfs_fs_info *fs_info, u64 qgroupid); 4081 int btrfs_limit_qgroup(struct btrfs_trans_handle *trans, 4082 struct btrfs_fs_info *fs_info, u64 qgroupid, 4083 struct btrfs_qgroup_limit *limit); 4084 int btrfs_read_qgroup_config(struct btrfs_fs_info *fs_info); 4085 void btrfs_free_qgroup_config(struct btrfs_fs_info *fs_info); 4086 struct btrfs_delayed_extent_op; 4087 int btrfs_qgroup_record_ref(struct btrfs_trans_handle *trans, 4088 struct btrfs_delayed_ref_node *node, 4089 struct btrfs_delayed_extent_op *extent_op); 4090 int btrfs_qgroup_account_ref(struct btrfs_trans_handle *trans, 4091 struct btrfs_fs_info *fs_info, 4092 struct btrfs_delayed_ref_node *node, 4093 struct btrfs_delayed_extent_op *extent_op); 4094 int btrfs_run_qgroups(struct btrfs_trans_handle *trans, 4095 struct btrfs_fs_info *fs_info); 4096 int btrfs_qgroup_inherit(struct btrfs_trans_handle *trans, 4097 struct btrfs_fs_info *fs_info, u64 srcid, u64 objectid, 4098 struct btrfs_qgroup_inherit *inherit); 4099 int btrfs_qgroup_reserve(struct btrfs_root *root, u64 num_bytes); 4100 void btrfs_qgroup_free(struct btrfs_root *root, u64 num_bytes); 4101 4102 void assert_qgroups_uptodate(struct btrfs_trans_handle *trans); 4103 4104 static inline int is_fstree(u64 rootid) 4105 { 4106 if (rootid == BTRFS_FS_TREE_OBJECTID || 4107 (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID) 4108 return 1; 4109 return 0; 4110 } 4111 4112 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4113 { 4114 return signal_pending(current); 4115 } 4116 4117 /* Sanity test specific functions */ 4118 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4119 void btrfs_test_destroy_inode(struct inode *inode); 4120 #endif 4121 4122 #endif 4123