1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 52 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 53 54 /* 55 * Maximum number of mirrors that can be available for all profiles counting 56 * the target device of dev-replace as one. During an active device replace 57 * procedure, the target device of the copy operation is a mirror for the 58 * filesystem data as well that can be used to read data in order to repair 59 * read errors on other disks. 60 * 61 * Current value is derived from RAID1C4 with 4 copies. 62 */ 63 #define BTRFS_MAX_MIRRORS (4 + 1) 64 65 #define BTRFS_MAX_LEVEL 8 66 67 #define BTRFS_OLDEST_GENERATION 0ULL 68 69 /* 70 * we can actually store much bigger names, but lets not confuse the rest 71 * of linux 72 */ 73 #define BTRFS_NAME_LEN 255 74 75 /* 76 * Theoretical limit is larger, but we keep this down to a sane 77 * value. That should limit greatly the possibility of collisions on 78 * inode ref items. 79 */ 80 #define BTRFS_LINK_MAX 65535U 81 82 #define BTRFS_EMPTY_DIR_SIZE 0 83 84 /* ioprio of readahead is set to idle */ 85 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 86 87 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 88 89 /* 90 * Use large batch size to reduce overhead of metadata updates. On the reader 91 * side, we only read it when we are close to ENOSPC and the read overhead is 92 * mostly related to the number of CPUs, so it is OK to use arbitrary large 93 * value here. 94 */ 95 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 96 97 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 98 99 /* 100 * Deltas are an effective way to populate global statistics. Give macro names 101 * to make it clear what we're doing. An example is discard_extents in 102 * btrfs_free_space_ctl. 103 */ 104 #define BTRFS_STAT_NR_ENTRIES 2 105 #define BTRFS_STAT_CURR 0 106 #define BTRFS_STAT_PREV 1 107 108 /* 109 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size 110 */ 111 static inline u32 count_max_extents(u64 size) 112 { 113 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 114 } 115 116 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 117 { 118 BUG_ON(num_stripes == 0); 119 return sizeof(struct btrfs_chunk) + 120 sizeof(struct btrfs_stripe) * (num_stripes - 1); 121 } 122 123 /* 124 * Runtime (in-memory) states of filesystem 125 */ 126 enum { 127 /* Global indicator of serious filesystem errors */ 128 BTRFS_FS_STATE_ERROR, 129 /* 130 * Filesystem is being remounted, allow to skip some operations, like 131 * defrag 132 */ 133 BTRFS_FS_STATE_REMOUNTING, 134 /* Filesystem in RO mode */ 135 BTRFS_FS_STATE_RO, 136 /* Track if a transaction abort has been reported on this filesystem */ 137 BTRFS_FS_STATE_TRANS_ABORTED, 138 /* 139 * Bio operations should be blocked on this filesystem because a source 140 * or target device is being destroyed as part of a device replace 141 */ 142 BTRFS_FS_STATE_DEV_REPLACING, 143 /* The btrfs_fs_info created for self-tests */ 144 BTRFS_FS_STATE_DUMMY_FS_INFO, 145 }; 146 147 #define BTRFS_BACKREF_REV_MAX 256 148 #define BTRFS_BACKREF_REV_SHIFT 56 149 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 150 BTRFS_BACKREF_REV_SHIFT) 151 152 #define BTRFS_OLD_BACKREF_REV 0 153 #define BTRFS_MIXED_BACKREF_REV 1 154 155 /* 156 * every tree block (leaf or node) starts with this header. 157 */ 158 struct btrfs_header { 159 /* these first four must match the super block */ 160 u8 csum[BTRFS_CSUM_SIZE]; 161 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 162 __le64 bytenr; /* which block this node is supposed to live in */ 163 __le64 flags; 164 165 /* allowed to be different from the super from here on down */ 166 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 167 __le64 generation; 168 __le64 owner; 169 __le32 nritems; 170 u8 level; 171 } __attribute__ ((__packed__)); 172 173 /* 174 * this is a very generous portion of the super block, giving us 175 * room to translate 14 chunks with 3 stripes each. 176 */ 177 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 178 179 /* 180 * just in case we somehow lose the roots and are not able to mount, 181 * we store an array of the roots from previous transactions 182 * in the super. 183 */ 184 #define BTRFS_NUM_BACKUP_ROOTS 4 185 struct btrfs_root_backup { 186 __le64 tree_root; 187 __le64 tree_root_gen; 188 189 __le64 chunk_root; 190 __le64 chunk_root_gen; 191 192 __le64 extent_root; 193 __le64 extent_root_gen; 194 195 __le64 fs_root; 196 __le64 fs_root_gen; 197 198 __le64 dev_root; 199 __le64 dev_root_gen; 200 201 __le64 csum_root; 202 __le64 csum_root_gen; 203 204 __le64 total_bytes; 205 __le64 bytes_used; 206 __le64 num_devices; 207 /* future */ 208 __le64 unused_64[4]; 209 210 u8 tree_root_level; 211 u8 chunk_root_level; 212 u8 extent_root_level; 213 u8 fs_root_level; 214 u8 dev_root_level; 215 u8 csum_root_level; 216 /* future and to align */ 217 u8 unused_8[10]; 218 } __attribute__ ((__packed__)); 219 220 /* 221 * the super block basically lists the main trees of the FS 222 * it currently lacks any block count etc etc 223 */ 224 struct btrfs_super_block { 225 /* the first 4 fields must match struct btrfs_header */ 226 u8 csum[BTRFS_CSUM_SIZE]; 227 /* FS specific UUID, visible to user */ 228 u8 fsid[BTRFS_FSID_SIZE]; 229 __le64 bytenr; /* this block number */ 230 __le64 flags; 231 232 /* allowed to be different from the btrfs_header from here own down */ 233 __le64 magic; 234 __le64 generation; 235 __le64 root; 236 __le64 chunk_root; 237 __le64 log_root; 238 239 /* this will help find the new super based on the log root */ 240 __le64 log_root_transid; 241 __le64 total_bytes; 242 __le64 bytes_used; 243 __le64 root_dir_objectid; 244 __le64 num_devices; 245 __le32 sectorsize; 246 __le32 nodesize; 247 __le32 __unused_leafsize; 248 __le32 stripesize; 249 __le32 sys_chunk_array_size; 250 __le64 chunk_root_generation; 251 __le64 compat_flags; 252 __le64 compat_ro_flags; 253 __le64 incompat_flags; 254 __le16 csum_type; 255 u8 root_level; 256 u8 chunk_root_level; 257 u8 log_root_level; 258 struct btrfs_dev_item dev_item; 259 260 char label[BTRFS_LABEL_SIZE]; 261 262 __le64 cache_generation; 263 __le64 uuid_tree_generation; 264 265 /* the UUID written into btree blocks */ 266 u8 metadata_uuid[BTRFS_FSID_SIZE]; 267 268 /* future expansion */ 269 __le64 reserved[28]; 270 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 271 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 272 } __attribute__ ((__packed__)); 273 274 /* 275 * Compat flags that we support. If any incompat flags are set other than the 276 * ones specified below then we will fail to mount 277 */ 278 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 279 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 280 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 281 282 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 283 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 284 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 285 BTRFS_FEATURE_COMPAT_RO_VERITY) 286 287 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 288 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 289 290 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 291 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 292 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 293 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 294 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 295 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 296 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 297 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 298 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 299 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 300 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 301 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 302 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 303 BTRFS_FEATURE_INCOMPAT_ZONED) 304 305 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 306 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 307 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 308 309 /* 310 * A leaf is full of items. offset and size tell us where to find 311 * the item in the leaf (relative to the start of the data area) 312 */ 313 struct btrfs_item { 314 struct btrfs_disk_key key; 315 __le32 offset; 316 __le32 size; 317 } __attribute__ ((__packed__)); 318 319 /* 320 * leaves have an item area and a data area: 321 * [item0, item1....itemN] [free space] [dataN...data1, data0] 322 * 323 * The data is separate from the items to get the keys closer together 324 * during searches. 325 */ 326 struct btrfs_leaf { 327 struct btrfs_header header; 328 struct btrfs_item items[]; 329 } __attribute__ ((__packed__)); 330 331 /* 332 * all non-leaf blocks are nodes, they hold only keys and pointers to 333 * other blocks 334 */ 335 struct btrfs_key_ptr { 336 struct btrfs_disk_key key; 337 __le64 blockptr; 338 __le64 generation; 339 } __attribute__ ((__packed__)); 340 341 struct btrfs_node { 342 struct btrfs_header header; 343 struct btrfs_key_ptr ptrs[]; 344 } __attribute__ ((__packed__)); 345 346 /* Read ahead values for struct btrfs_path.reada */ 347 enum { 348 READA_NONE, 349 READA_BACK, 350 READA_FORWARD, 351 /* 352 * Similar to READA_FORWARD but unlike it: 353 * 354 * 1) It will trigger readahead even for leaves that are not close to 355 * each other on disk; 356 * 2) It also triggers readahead for nodes; 357 * 3) During a search, even when a node or leaf is already in memory, it 358 * will still trigger readahead for other nodes and leaves that follow 359 * it. 360 * 361 * This is meant to be used only when we know we are iterating over the 362 * entire tree or a very large part of it. 363 */ 364 READA_FORWARD_ALWAYS, 365 }; 366 367 /* 368 * btrfs_paths remember the path taken from the root down to the leaf. 369 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 370 * to any other levels that are present. 371 * 372 * The slots array records the index of the item or block pointer 373 * used while walking the tree. 374 */ 375 struct btrfs_path { 376 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 377 int slots[BTRFS_MAX_LEVEL]; 378 /* if there is real range locking, this locks field will change */ 379 u8 locks[BTRFS_MAX_LEVEL]; 380 u8 reada; 381 /* keep some upper locks as we walk down */ 382 u8 lowest_level; 383 384 /* 385 * set by btrfs_split_item, tells search_slot to keep all locks 386 * and to force calls to keep space in the nodes 387 */ 388 unsigned int search_for_split:1; 389 unsigned int keep_locks:1; 390 unsigned int skip_locking:1; 391 unsigned int search_commit_root:1; 392 unsigned int need_commit_sem:1; 393 unsigned int skip_release_on_error:1; 394 /* 395 * Indicate that new item (btrfs_search_slot) is extending already 396 * existing item and ins_len contains only the data size and not item 397 * header (ie. sizeof(struct btrfs_item) is not included). 398 */ 399 unsigned int search_for_extension:1; 400 }; 401 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 402 sizeof(struct btrfs_item)) 403 struct btrfs_dev_replace { 404 u64 replace_state; /* see #define above */ 405 time64_t time_started; /* seconds since 1-Jan-1970 */ 406 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 407 atomic64_t num_write_errors; 408 atomic64_t num_uncorrectable_read_errors; 409 410 u64 cursor_left; 411 u64 committed_cursor_left; 412 u64 cursor_left_last_write_of_item; 413 u64 cursor_right; 414 415 u64 cont_reading_from_srcdev_mode; /* see #define above */ 416 417 int is_valid; 418 int item_needs_writeback; 419 struct btrfs_device *srcdev; 420 struct btrfs_device *tgtdev; 421 422 struct mutex lock_finishing_cancel_unmount; 423 struct rw_semaphore rwsem; 424 425 struct btrfs_scrub_progress scrub_progress; 426 427 struct percpu_counter bio_counter; 428 wait_queue_head_t replace_wait; 429 }; 430 431 /* 432 * free clusters are used to claim free space in relatively large chunks, 433 * allowing us to do less seeky writes. They are used for all metadata 434 * allocations. In ssd_spread mode they are also used for data allocations. 435 */ 436 struct btrfs_free_cluster { 437 spinlock_t lock; 438 spinlock_t refill_lock; 439 struct rb_root root; 440 441 /* largest extent in this cluster */ 442 u64 max_size; 443 444 /* first extent starting offset */ 445 u64 window_start; 446 447 /* We did a full search and couldn't create a cluster */ 448 bool fragmented; 449 450 struct btrfs_block_group *block_group; 451 /* 452 * when a cluster is allocated from a block group, we put the 453 * cluster onto a list in the block group so that it can 454 * be freed before the block group is freed. 455 */ 456 struct list_head block_group_list; 457 }; 458 459 enum btrfs_caching_type { 460 BTRFS_CACHE_NO, 461 BTRFS_CACHE_STARTED, 462 BTRFS_CACHE_FAST, 463 BTRFS_CACHE_FINISHED, 464 BTRFS_CACHE_ERROR, 465 }; 466 467 /* 468 * Tree to record all locked full stripes of a RAID5/6 block group 469 */ 470 struct btrfs_full_stripe_locks_tree { 471 struct rb_root root; 472 struct mutex lock; 473 }; 474 475 /* Discard control. */ 476 /* 477 * Async discard uses multiple lists to differentiate the discard filter 478 * parameters. Index 0 is for completely free block groups where we need to 479 * ensure the entire block group is trimmed without being lossy. Indices 480 * afterwards represent monotonically decreasing discard filter sizes to 481 * prioritize what should be discarded next. 482 */ 483 #define BTRFS_NR_DISCARD_LISTS 3 484 #define BTRFS_DISCARD_INDEX_UNUSED 0 485 #define BTRFS_DISCARD_INDEX_START 1 486 487 struct btrfs_discard_ctl { 488 struct workqueue_struct *discard_workers; 489 struct delayed_work work; 490 spinlock_t lock; 491 struct btrfs_block_group *block_group; 492 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 493 u64 prev_discard; 494 u64 prev_discard_time; 495 atomic_t discardable_extents; 496 atomic64_t discardable_bytes; 497 u64 max_discard_size; 498 u64 delay_ms; 499 u32 iops_limit; 500 u32 kbps_limit; 501 u64 discard_extent_bytes; 502 u64 discard_bitmap_bytes; 503 atomic64_t discard_bytes_saved; 504 }; 505 506 enum btrfs_orphan_cleanup_state { 507 ORPHAN_CLEANUP_STARTED = 1, 508 ORPHAN_CLEANUP_DONE = 2, 509 }; 510 511 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 512 513 /* fs_info */ 514 struct reloc_control; 515 struct btrfs_device; 516 struct btrfs_fs_devices; 517 struct btrfs_balance_control; 518 struct btrfs_delayed_root; 519 520 /* 521 * Block group or device which contains an active swapfile. Used for preventing 522 * unsafe operations while a swapfile is active. 523 * 524 * These are sorted on (ptr, inode) (note that a block group or device can 525 * contain more than one swapfile). We compare the pointer values because we 526 * don't actually care what the object is, we just need a quick check whether 527 * the object exists in the rbtree. 528 */ 529 struct btrfs_swapfile_pin { 530 struct rb_node node; 531 void *ptr; 532 struct inode *inode; 533 /* 534 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 535 * points to a struct btrfs_device. 536 */ 537 bool is_block_group; 538 /* 539 * Only used when 'is_block_group' is true and it is the number of 540 * extents used by a swapfile for this block group ('ptr' field). 541 */ 542 int bg_extent_count; 543 }; 544 545 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 546 547 enum { 548 BTRFS_FS_BARRIER, 549 BTRFS_FS_CLOSING_START, 550 BTRFS_FS_CLOSING_DONE, 551 BTRFS_FS_LOG_RECOVERING, 552 BTRFS_FS_OPEN, 553 BTRFS_FS_QUOTA_ENABLED, 554 BTRFS_FS_UPDATE_UUID_TREE_GEN, 555 BTRFS_FS_CREATING_FREE_SPACE_TREE, 556 BTRFS_FS_BTREE_ERR, 557 BTRFS_FS_LOG1_ERR, 558 BTRFS_FS_LOG2_ERR, 559 BTRFS_FS_QUOTA_OVERRIDE, 560 /* Used to record internally whether fs has been frozen */ 561 BTRFS_FS_FROZEN, 562 /* 563 * Indicate that balance has been set up from the ioctl and is in the 564 * main phase. The fs_info::balance_ctl is initialized. 565 */ 566 BTRFS_FS_BALANCE_RUNNING, 567 568 /* 569 * Indicate that relocation of a chunk has started, it's set per chunk 570 * and is toggled between chunks. 571 * Set, tested and cleared while holding fs_info::send_reloc_lock. 572 */ 573 BTRFS_FS_RELOC_RUNNING, 574 575 /* Indicate that the cleaner thread is awake and doing something. */ 576 BTRFS_FS_CLEANER_RUNNING, 577 578 /* 579 * The checksumming has an optimized version and is considered fast, 580 * so we don't need to offload checksums to workqueues. 581 */ 582 BTRFS_FS_CSUM_IMPL_FAST, 583 584 /* Indicate that the discard workqueue can service discards. */ 585 BTRFS_FS_DISCARD_RUNNING, 586 587 /* Indicate that we need to cleanup space cache v1 */ 588 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 589 590 /* Indicate that we can't trust the free space tree for caching yet */ 591 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 592 593 /* Indicate whether there are any tree modification log users */ 594 BTRFS_FS_TREE_MOD_LOG_USERS, 595 596 #if BITS_PER_LONG == 32 597 /* Indicate if we have error/warn message printed on 32bit systems */ 598 BTRFS_FS_32BIT_ERROR, 599 BTRFS_FS_32BIT_WARN, 600 #endif 601 }; 602 603 /* 604 * Exclusive operations (device replace, resize, device add/remove, balance) 605 */ 606 enum btrfs_exclusive_operation { 607 BTRFS_EXCLOP_NONE, 608 BTRFS_EXCLOP_BALANCE, 609 BTRFS_EXCLOP_DEV_ADD, 610 BTRFS_EXCLOP_DEV_REMOVE, 611 BTRFS_EXCLOP_DEV_REPLACE, 612 BTRFS_EXCLOP_RESIZE, 613 BTRFS_EXCLOP_SWAP_ACTIVATE, 614 }; 615 616 struct btrfs_fs_info { 617 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 618 unsigned long flags; 619 struct btrfs_root *extent_root; 620 struct btrfs_root *tree_root; 621 struct btrfs_root *chunk_root; 622 struct btrfs_root *dev_root; 623 struct btrfs_root *fs_root; 624 struct btrfs_root *csum_root; 625 struct btrfs_root *quota_root; 626 struct btrfs_root *uuid_root; 627 struct btrfs_root *free_space_root; 628 struct btrfs_root *data_reloc_root; 629 630 /* the log root tree is a directory of all the other log roots */ 631 struct btrfs_root *log_root_tree; 632 633 spinlock_t fs_roots_radix_lock; 634 struct radix_tree_root fs_roots_radix; 635 636 /* block group cache stuff */ 637 spinlock_t block_group_cache_lock; 638 u64 first_logical_byte; 639 struct rb_root block_group_cache_tree; 640 641 /* keep track of unallocated space */ 642 atomic64_t free_chunk_space; 643 644 /* Track ranges which are used by log trees blocks/logged data extents */ 645 struct extent_io_tree excluded_extents; 646 647 /* logical->physical extent mapping */ 648 struct extent_map_tree mapping_tree; 649 650 /* 651 * block reservation for extent, checksum, root tree and 652 * delayed dir index item 653 */ 654 struct btrfs_block_rsv global_block_rsv; 655 /* block reservation for metadata operations */ 656 struct btrfs_block_rsv trans_block_rsv; 657 /* block reservation for chunk tree */ 658 struct btrfs_block_rsv chunk_block_rsv; 659 /* block reservation for delayed operations */ 660 struct btrfs_block_rsv delayed_block_rsv; 661 /* block reservation for delayed refs */ 662 struct btrfs_block_rsv delayed_refs_rsv; 663 664 struct btrfs_block_rsv empty_block_rsv; 665 666 u64 generation; 667 u64 last_trans_committed; 668 u64 avg_delayed_ref_runtime; 669 670 /* 671 * this is updated to the current trans every time a full commit 672 * is required instead of the faster short fsync log commits 673 */ 674 u64 last_trans_log_full_commit; 675 unsigned long mount_opt; 676 /* 677 * Track requests for actions that need to be done during transaction 678 * commit (like for some mount options). 679 */ 680 unsigned long pending_changes; 681 unsigned long compress_type:4; 682 unsigned int compress_level; 683 u32 commit_interval; 684 /* 685 * It is a suggestive number, the read side is safe even it gets a 686 * wrong number because we will write out the data into a regular 687 * extent. The write side(mount/remount) is under ->s_umount lock, 688 * so it is also safe. 689 */ 690 u64 max_inline; 691 692 struct btrfs_transaction *running_transaction; 693 wait_queue_head_t transaction_throttle; 694 wait_queue_head_t transaction_wait; 695 wait_queue_head_t transaction_blocked_wait; 696 wait_queue_head_t async_submit_wait; 697 698 /* 699 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 700 * when they are updated. 701 * 702 * Because we do not clear the flags for ever, so we needn't use 703 * the lock on the read side. 704 * 705 * We also needn't use the lock when we mount the fs, because 706 * there is no other task which will update the flag. 707 */ 708 spinlock_t super_lock; 709 struct btrfs_super_block *super_copy; 710 struct btrfs_super_block *super_for_commit; 711 struct super_block *sb; 712 struct inode *btree_inode; 713 struct mutex tree_log_mutex; 714 struct mutex transaction_kthread_mutex; 715 struct mutex cleaner_mutex; 716 struct mutex chunk_mutex; 717 718 /* 719 * this is taken to make sure we don't set block groups ro after 720 * the free space cache has been allocated on them 721 */ 722 struct mutex ro_block_group_mutex; 723 724 /* this is used during read/modify/write to make sure 725 * no two ios are trying to mod the same stripe at the same 726 * time 727 */ 728 struct btrfs_stripe_hash_table *stripe_hash_table; 729 730 /* 731 * this protects the ordered operations list only while we are 732 * processing all of the entries on it. This way we make 733 * sure the commit code doesn't find the list temporarily empty 734 * because another function happens to be doing non-waiting preflush 735 * before jumping into the main commit. 736 */ 737 struct mutex ordered_operations_mutex; 738 739 struct rw_semaphore commit_root_sem; 740 741 struct rw_semaphore cleanup_work_sem; 742 743 struct rw_semaphore subvol_sem; 744 745 spinlock_t trans_lock; 746 /* 747 * the reloc mutex goes with the trans lock, it is taken 748 * during commit to protect us from the relocation code 749 */ 750 struct mutex reloc_mutex; 751 752 struct list_head trans_list; 753 struct list_head dead_roots; 754 struct list_head caching_block_groups; 755 756 spinlock_t delayed_iput_lock; 757 struct list_head delayed_iputs; 758 atomic_t nr_delayed_iputs; 759 wait_queue_head_t delayed_iputs_wait; 760 761 atomic64_t tree_mod_seq; 762 763 /* this protects tree_mod_log and tree_mod_seq_list */ 764 rwlock_t tree_mod_log_lock; 765 struct rb_root tree_mod_log; 766 struct list_head tree_mod_seq_list; 767 768 atomic_t async_delalloc_pages; 769 770 /* 771 * this is used to protect the following list -- ordered_roots. 772 */ 773 spinlock_t ordered_root_lock; 774 775 /* 776 * all fs/file tree roots in which there are data=ordered extents 777 * pending writeback are added into this list. 778 * 779 * these can span multiple transactions and basically include 780 * every dirty data page that isn't from nodatacow 781 */ 782 struct list_head ordered_roots; 783 784 struct mutex delalloc_root_mutex; 785 spinlock_t delalloc_root_lock; 786 /* all fs/file tree roots that have delalloc inodes. */ 787 struct list_head delalloc_roots; 788 789 /* 790 * there is a pool of worker threads for checksumming during writes 791 * and a pool for checksumming after reads. This is because readers 792 * can run with FS locks held, and the writers may be waiting for 793 * those locks. We don't want ordering in the pending list to cause 794 * deadlocks, and so the two are serviced separately. 795 * 796 * A third pool does submit_bio to avoid deadlocking with the other 797 * two 798 */ 799 struct btrfs_workqueue *workers; 800 struct btrfs_workqueue *delalloc_workers; 801 struct btrfs_workqueue *flush_workers; 802 struct btrfs_workqueue *endio_workers; 803 struct btrfs_workqueue *endio_meta_workers; 804 struct btrfs_workqueue *endio_raid56_workers; 805 struct btrfs_workqueue *rmw_workers; 806 struct btrfs_workqueue *endio_meta_write_workers; 807 struct btrfs_workqueue *endio_write_workers; 808 struct btrfs_workqueue *endio_freespace_worker; 809 struct btrfs_workqueue *caching_workers; 810 struct btrfs_workqueue *readahead_workers; 811 812 /* 813 * fixup workers take dirty pages that didn't properly go through 814 * the cow mechanism and make them safe to write. It happens 815 * for the sys_munmap function call path 816 */ 817 struct btrfs_workqueue *fixup_workers; 818 struct btrfs_workqueue *delayed_workers; 819 820 struct task_struct *transaction_kthread; 821 struct task_struct *cleaner_kthread; 822 u32 thread_pool_size; 823 824 struct kobject *space_info_kobj; 825 struct kobject *qgroups_kobj; 826 827 /* used to keep from writing metadata until there is a nice batch */ 828 struct percpu_counter dirty_metadata_bytes; 829 struct percpu_counter delalloc_bytes; 830 struct percpu_counter ordered_bytes; 831 s32 dirty_metadata_batch; 832 s32 delalloc_batch; 833 834 struct list_head dirty_cowonly_roots; 835 836 struct btrfs_fs_devices *fs_devices; 837 838 /* 839 * The space_info list is effectively read only after initial 840 * setup. It is populated at mount time and cleaned up after 841 * all block groups are removed. RCU is used to protect it. 842 */ 843 struct list_head space_info; 844 845 struct btrfs_space_info *data_sinfo; 846 847 struct reloc_control *reloc_ctl; 848 849 /* data_alloc_cluster is only used in ssd_spread mode */ 850 struct btrfs_free_cluster data_alloc_cluster; 851 852 /* all metadata allocations go through this cluster */ 853 struct btrfs_free_cluster meta_alloc_cluster; 854 855 /* auto defrag inodes go here */ 856 spinlock_t defrag_inodes_lock; 857 struct rb_root defrag_inodes; 858 atomic_t defrag_running; 859 860 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 861 seqlock_t profiles_lock; 862 /* 863 * these three are in extended format (availability of single 864 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 865 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 866 */ 867 u64 avail_data_alloc_bits; 868 u64 avail_metadata_alloc_bits; 869 u64 avail_system_alloc_bits; 870 871 /* restriper state */ 872 spinlock_t balance_lock; 873 struct mutex balance_mutex; 874 atomic_t balance_pause_req; 875 atomic_t balance_cancel_req; 876 struct btrfs_balance_control *balance_ctl; 877 wait_queue_head_t balance_wait_q; 878 879 /* Cancellation requests for chunk relocation */ 880 atomic_t reloc_cancel_req; 881 882 u32 data_chunk_allocations; 883 u32 metadata_ratio; 884 885 void *bdev_holder; 886 887 /* private scrub information */ 888 struct mutex scrub_lock; 889 atomic_t scrubs_running; 890 atomic_t scrub_pause_req; 891 atomic_t scrubs_paused; 892 atomic_t scrub_cancel_req; 893 wait_queue_head_t scrub_pause_wait; 894 /* 895 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 896 * running. 897 */ 898 refcount_t scrub_workers_refcnt; 899 struct btrfs_workqueue *scrub_workers; 900 struct btrfs_workqueue *scrub_wr_completion_workers; 901 struct btrfs_workqueue *scrub_parity_workers; 902 903 struct btrfs_discard_ctl discard_ctl; 904 905 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 906 u32 check_integrity_print_mask; 907 #endif 908 /* is qgroup tracking in a consistent state? */ 909 u64 qgroup_flags; 910 911 /* holds configuration and tracking. Protected by qgroup_lock */ 912 struct rb_root qgroup_tree; 913 spinlock_t qgroup_lock; 914 915 /* 916 * used to avoid frequently calling ulist_alloc()/ulist_free() 917 * when doing qgroup accounting, it must be protected by qgroup_lock. 918 */ 919 struct ulist *qgroup_ulist; 920 921 /* 922 * Protect user change for quota operations. If a transaction is needed, 923 * it must be started before locking this lock. 924 */ 925 struct mutex qgroup_ioctl_lock; 926 927 /* list of dirty qgroups to be written at next commit */ 928 struct list_head dirty_qgroups; 929 930 /* used by qgroup for an efficient tree traversal */ 931 u64 qgroup_seq; 932 933 /* qgroup rescan items */ 934 struct mutex qgroup_rescan_lock; /* protects the progress item */ 935 struct btrfs_key qgroup_rescan_progress; 936 struct btrfs_workqueue *qgroup_rescan_workers; 937 struct completion qgroup_rescan_completion; 938 struct btrfs_work qgroup_rescan_work; 939 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 940 941 /* filesystem state */ 942 unsigned long fs_state; 943 944 struct btrfs_delayed_root *delayed_root; 945 946 /* readahead tree */ 947 spinlock_t reada_lock; 948 struct radix_tree_root reada_tree; 949 950 /* readahead works cnt */ 951 atomic_t reada_works_cnt; 952 953 /* Extent buffer radix tree */ 954 spinlock_t buffer_lock; 955 /* Entries are eb->start / sectorsize */ 956 struct radix_tree_root buffer_radix; 957 958 /* next backup root to be overwritten */ 959 int backup_root_index; 960 961 /* device replace state */ 962 struct btrfs_dev_replace dev_replace; 963 964 struct semaphore uuid_tree_rescan_sem; 965 966 /* Used to reclaim the metadata space in the background. */ 967 struct work_struct async_reclaim_work; 968 struct work_struct async_data_reclaim_work; 969 struct work_struct preempt_reclaim_work; 970 971 /* Reclaim partially filled block groups in the background */ 972 struct work_struct reclaim_bgs_work; 973 struct list_head reclaim_bgs; 974 int bg_reclaim_threshold; 975 976 spinlock_t unused_bgs_lock; 977 struct list_head unused_bgs; 978 struct mutex unused_bg_unpin_mutex; 979 /* Protect block groups that are going to be deleted */ 980 struct mutex reclaim_bgs_lock; 981 982 /* Cached block sizes */ 983 u32 nodesize; 984 u32 sectorsize; 985 /* ilog2 of sectorsize, use to avoid 64bit division */ 986 u32 sectorsize_bits; 987 u32 csum_size; 988 u32 csums_per_leaf; 989 u32 stripesize; 990 991 /* Block groups and devices containing active swapfiles. */ 992 spinlock_t swapfile_pins_lock; 993 struct rb_root swapfile_pins; 994 995 struct crypto_shash *csum_shash; 996 997 spinlock_t send_reloc_lock; 998 /* 999 * Number of send operations in progress. 1000 * Updated while holding fs_info::send_reloc_lock. 1001 */ 1002 int send_in_progress; 1003 1004 /* Type of exclusive operation running, protected by super_lock */ 1005 enum btrfs_exclusive_operation exclusive_operation; 1006 1007 /* 1008 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1009 * if the mode is enabled 1010 */ 1011 union { 1012 u64 zone_size; 1013 u64 zoned; 1014 }; 1015 1016 struct mutex zoned_meta_io_lock; 1017 spinlock_t treelog_bg_lock; 1018 u64 treelog_bg; 1019 1020 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1021 spinlock_t ref_verify_lock; 1022 struct rb_root block_tree; 1023 #endif 1024 1025 #ifdef CONFIG_BTRFS_DEBUG 1026 struct kobject *debug_kobj; 1027 struct kobject *discard_debug_kobj; 1028 struct list_head allocated_roots; 1029 1030 spinlock_t eb_leak_lock; 1031 struct list_head allocated_ebs; 1032 #endif 1033 }; 1034 1035 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1036 { 1037 return sb->s_fs_info; 1038 } 1039 1040 /* 1041 * The state of btrfs root 1042 */ 1043 enum { 1044 /* 1045 * btrfs_record_root_in_trans is a multi-step process, and it can race 1046 * with the balancing code. But the race is very small, and only the 1047 * first time the root is added to each transaction. So IN_TRANS_SETUP 1048 * is used to tell us when more checks are required 1049 */ 1050 BTRFS_ROOT_IN_TRANS_SETUP, 1051 1052 /* 1053 * Set if tree blocks of this root can be shared by other roots. 1054 * Only subvolume trees and their reloc trees have this bit set. 1055 * Conflicts with TRACK_DIRTY bit. 1056 * 1057 * This affects two things: 1058 * 1059 * - How balance works 1060 * For shareable roots, we need to use reloc tree and do path 1061 * replacement for balance, and need various pre/post hooks for 1062 * snapshot creation to handle them. 1063 * 1064 * While for non-shareable trees, we just simply do a tree search 1065 * with COW. 1066 * 1067 * - How dirty roots are tracked 1068 * For shareable roots, btrfs_record_root_in_trans() is needed to 1069 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1070 * don't need to set this manually. 1071 */ 1072 BTRFS_ROOT_SHAREABLE, 1073 BTRFS_ROOT_TRACK_DIRTY, 1074 BTRFS_ROOT_IN_RADIX, 1075 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1076 BTRFS_ROOT_DEFRAG_RUNNING, 1077 BTRFS_ROOT_FORCE_COW, 1078 BTRFS_ROOT_MULTI_LOG_TASKS, 1079 BTRFS_ROOT_DIRTY, 1080 BTRFS_ROOT_DELETING, 1081 1082 /* 1083 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1084 * 1085 * Set for the subvolume tree owning the reloc tree. 1086 */ 1087 BTRFS_ROOT_DEAD_RELOC_TREE, 1088 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1089 BTRFS_ROOT_DEAD_TREE, 1090 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1091 BTRFS_ROOT_HAS_LOG_TREE, 1092 /* Qgroup flushing is in progress */ 1093 BTRFS_ROOT_QGROUP_FLUSHING, 1094 }; 1095 1096 /* 1097 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1098 * code. For detail check comment in fs/btrfs/qgroup.c. 1099 */ 1100 struct btrfs_qgroup_swapped_blocks { 1101 spinlock_t lock; 1102 /* RM_EMPTY_ROOT() of above blocks[] */ 1103 bool swapped; 1104 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1105 }; 1106 1107 /* 1108 * in ram representation of the tree. extent_root is used for all allocations 1109 * and for the extent tree extent_root root. 1110 */ 1111 struct btrfs_root { 1112 struct extent_buffer *node; 1113 1114 struct extent_buffer *commit_root; 1115 struct btrfs_root *log_root; 1116 struct btrfs_root *reloc_root; 1117 1118 unsigned long state; 1119 struct btrfs_root_item root_item; 1120 struct btrfs_key root_key; 1121 struct btrfs_fs_info *fs_info; 1122 struct extent_io_tree dirty_log_pages; 1123 1124 struct mutex objectid_mutex; 1125 1126 spinlock_t accounting_lock; 1127 struct btrfs_block_rsv *block_rsv; 1128 1129 struct mutex log_mutex; 1130 wait_queue_head_t log_writer_wait; 1131 wait_queue_head_t log_commit_wait[2]; 1132 struct list_head log_ctxs[2]; 1133 /* Used only for log trees of subvolumes, not for the log root tree */ 1134 atomic_t log_writers; 1135 atomic_t log_commit[2]; 1136 /* Used only for log trees of subvolumes, not for the log root tree */ 1137 atomic_t log_batch; 1138 int log_transid; 1139 /* No matter the commit succeeds or not*/ 1140 int log_transid_committed; 1141 /* Just be updated when the commit succeeds. */ 1142 int last_log_commit; 1143 pid_t log_start_pid; 1144 1145 u64 last_trans; 1146 1147 u32 type; 1148 1149 u64 free_objectid; 1150 1151 struct btrfs_key defrag_progress; 1152 struct btrfs_key defrag_max; 1153 1154 /* The dirty list is only used by non-shareable roots */ 1155 struct list_head dirty_list; 1156 1157 struct list_head root_list; 1158 1159 spinlock_t log_extents_lock[2]; 1160 struct list_head logged_list[2]; 1161 1162 int orphan_cleanup_state; 1163 1164 spinlock_t inode_lock; 1165 /* red-black tree that keeps track of in-memory inodes */ 1166 struct rb_root inode_tree; 1167 1168 /* 1169 * radix tree that keeps track of delayed nodes of every inode, 1170 * protected by inode_lock 1171 */ 1172 struct radix_tree_root delayed_nodes_tree; 1173 /* 1174 * right now this just gets used so that a root has its own devid 1175 * for stat. It may be used for more later 1176 */ 1177 dev_t anon_dev; 1178 1179 spinlock_t root_item_lock; 1180 refcount_t refs; 1181 1182 struct mutex delalloc_mutex; 1183 spinlock_t delalloc_lock; 1184 /* 1185 * all of the inodes that have delalloc bytes. It is possible for 1186 * this list to be empty even when there is still dirty data=ordered 1187 * extents waiting to finish IO. 1188 */ 1189 struct list_head delalloc_inodes; 1190 struct list_head delalloc_root; 1191 u64 nr_delalloc_inodes; 1192 1193 struct mutex ordered_extent_mutex; 1194 /* 1195 * this is used by the balancing code to wait for all the pending 1196 * ordered extents 1197 */ 1198 spinlock_t ordered_extent_lock; 1199 1200 /* 1201 * all of the data=ordered extents pending writeback 1202 * these can span multiple transactions and basically include 1203 * every dirty data page that isn't from nodatacow 1204 */ 1205 struct list_head ordered_extents; 1206 struct list_head ordered_root; 1207 u64 nr_ordered_extents; 1208 1209 /* 1210 * Not empty if this subvolume root has gone through tree block swap 1211 * (relocation) 1212 * 1213 * Will be used by reloc_control::dirty_subvol_roots. 1214 */ 1215 struct list_head reloc_dirty_list; 1216 1217 /* 1218 * Number of currently running SEND ioctls to prevent 1219 * manipulation with the read-only status via SUBVOL_SETFLAGS 1220 */ 1221 int send_in_progress; 1222 /* 1223 * Number of currently running deduplication operations that have a 1224 * destination inode belonging to this root. Protected by the lock 1225 * root_item_lock. 1226 */ 1227 int dedupe_in_progress; 1228 /* For exclusion of snapshot creation and nocow writes */ 1229 struct btrfs_drew_lock snapshot_lock; 1230 1231 atomic_t snapshot_force_cow; 1232 1233 /* For qgroup metadata reserved space */ 1234 spinlock_t qgroup_meta_rsv_lock; 1235 u64 qgroup_meta_rsv_pertrans; 1236 u64 qgroup_meta_rsv_prealloc; 1237 wait_queue_head_t qgroup_flush_wait; 1238 1239 /* Number of active swapfiles */ 1240 atomic_t nr_swapfiles; 1241 1242 /* Record pairs of swapped blocks for qgroup */ 1243 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1244 1245 /* Used only by log trees, when logging csum items */ 1246 struct extent_io_tree log_csum_range; 1247 1248 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1249 u64 alloc_bytenr; 1250 #endif 1251 1252 #ifdef CONFIG_BTRFS_DEBUG 1253 struct list_head leak_list; 1254 #endif 1255 }; 1256 1257 /* 1258 * Structure that conveys information about an extent that is going to replace 1259 * all the extents in a file range. 1260 */ 1261 struct btrfs_replace_extent_info { 1262 u64 disk_offset; 1263 u64 disk_len; 1264 u64 data_offset; 1265 u64 data_len; 1266 u64 file_offset; 1267 /* Pointer to a file extent item of type regular or prealloc. */ 1268 char *extent_buf; 1269 /* 1270 * Set to true when attempting to replace a file range with a new extent 1271 * described by this structure, set to false when attempting to clone an 1272 * existing extent into a file range. 1273 */ 1274 bool is_new_extent; 1275 /* Meaningful only if is_new_extent is true. */ 1276 int qgroup_reserved; 1277 /* 1278 * Meaningful only if is_new_extent is true. 1279 * Used to track how many extent items we have already inserted in a 1280 * subvolume tree that refer to the extent described by this structure, 1281 * so that we know when to create a new delayed ref or update an existing 1282 * one. 1283 */ 1284 int insertions; 1285 }; 1286 1287 /* Arguments for btrfs_drop_extents() */ 1288 struct btrfs_drop_extents_args { 1289 /* Input parameters */ 1290 1291 /* 1292 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1293 * If 'replace_extent' is true, this must not be NULL. Also the path 1294 * is always released except if 'replace_extent' is true and 1295 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1296 * the path is kept locked. 1297 */ 1298 struct btrfs_path *path; 1299 /* Start offset of the range to drop extents from */ 1300 u64 start; 1301 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1302 u64 end; 1303 /* If true drop all the extent maps in the range */ 1304 bool drop_cache; 1305 /* 1306 * If true it means we want to insert a new extent after dropping all 1307 * the extents in the range. If this is true, the 'extent_item_size' 1308 * parameter must be set as well and the 'extent_inserted' field will 1309 * be set to true by btrfs_drop_extents() if it could insert the new 1310 * extent. 1311 * Note: when this is set to true the path must not be NULL. 1312 */ 1313 bool replace_extent; 1314 /* 1315 * Used if 'replace_extent' is true. Size of the file extent item to 1316 * insert after dropping all existing extents in the range 1317 */ 1318 u32 extent_item_size; 1319 1320 /* Output parameters */ 1321 1322 /* 1323 * Set to the minimum between the input parameter 'end' and the end 1324 * (exclusive, last byte + 1) of the last dropped extent. This is always 1325 * set even if btrfs_drop_extents() returns an error. 1326 */ 1327 u64 drop_end; 1328 /* 1329 * The number of allocated bytes found in the range. This can be smaller 1330 * than the range's length when there are holes in the range. 1331 */ 1332 u64 bytes_found; 1333 /* 1334 * Only set if 'replace_extent' is true. Set to true if we were able 1335 * to insert a replacement extent after dropping all extents in the 1336 * range, otherwise set to false by btrfs_drop_extents(). 1337 * Also, if btrfs_drop_extents() has set this to true it means it 1338 * returned with the path locked, otherwise if it has set this to 1339 * false it has returned with the path released. 1340 */ 1341 bool extent_inserted; 1342 }; 1343 1344 struct btrfs_file_private { 1345 void *filldir_buf; 1346 }; 1347 1348 1349 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1350 { 1351 1352 return info->nodesize - sizeof(struct btrfs_header); 1353 } 1354 1355 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1356 1357 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1358 { 1359 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1360 } 1361 1362 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1363 { 1364 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1365 } 1366 1367 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1368 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1369 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1370 { 1371 return BTRFS_MAX_ITEM_SIZE(info) - 1372 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1373 } 1374 1375 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1376 { 1377 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1378 } 1379 1380 /* 1381 * Flags for mount options. 1382 * 1383 * Note: don't forget to add new options to btrfs_show_options() 1384 */ 1385 enum { 1386 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1387 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1388 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1389 BTRFS_MOUNT_SSD = (1UL << 3), 1390 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1391 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1392 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1393 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1394 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1395 BTRFS_MOUNT_NOSSD = (1UL << 9), 1396 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1397 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1398 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1399 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1400 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1401 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1402 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1403 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1404 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1405 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1406 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1407 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1408 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1409 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1410 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1411 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1412 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1413 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1414 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1415 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1416 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1417 }; 1418 1419 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1420 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1421 1422 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1423 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1424 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1425 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1426 BTRFS_MOUNT_##opt) 1427 1428 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1429 do { \ 1430 if (!btrfs_test_opt(fs_info, opt)) \ 1431 btrfs_info(fs_info, fmt, ##args); \ 1432 btrfs_set_opt(fs_info->mount_opt, opt); \ 1433 } while (0) 1434 1435 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1436 do { \ 1437 if (btrfs_test_opt(fs_info, opt)) \ 1438 btrfs_info(fs_info, fmt, ##args); \ 1439 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1440 } while (0) 1441 1442 /* 1443 * Requests for changes that need to be done during transaction commit. 1444 * 1445 * Internal mount options that are used for special handling of the real 1446 * mount options (eg. cannot be set during remount and have to be set during 1447 * transaction commit) 1448 */ 1449 1450 #define BTRFS_PENDING_COMMIT (0) 1451 1452 #define btrfs_test_pending(info, opt) \ 1453 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1454 #define btrfs_set_pending(info, opt) \ 1455 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1456 #define btrfs_clear_pending(info, opt) \ 1457 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1458 1459 /* 1460 * Helpers for setting pending mount option changes. 1461 * 1462 * Expects corresponding macros 1463 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1464 */ 1465 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1466 do { \ 1467 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1468 btrfs_info((info), fmt, ##args); \ 1469 btrfs_set_pending((info), SET_##opt); \ 1470 btrfs_clear_pending((info), CLEAR_##opt); \ 1471 } \ 1472 } while(0) 1473 1474 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1475 do { \ 1476 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1477 btrfs_info((info), fmt, ##args); \ 1478 btrfs_set_pending((info), CLEAR_##opt); \ 1479 btrfs_clear_pending((info), SET_##opt); \ 1480 } \ 1481 } while(0) 1482 1483 /* 1484 * Inode flags 1485 */ 1486 #define BTRFS_INODE_NODATASUM (1U << 0) 1487 #define BTRFS_INODE_NODATACOW (1U << 1) 1488 #define BTRFS_INODE_READONLY (1U << 2) 1489 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1490 #define BTRFS_INODE_PREALLOC (1U << 4) 1491 #define BTRFS_INODE_SYNC (1U << 5) 1492 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1493 #define BTRFS_INODE_APPEND (1U << 7) 1494 #define BTRFS_INODE_NODUMP (1U << 8) 1495 #define BTRFS_INODE_NOATIME (1U << 9) 1496 #define BTRFS_INODE_DIRSYNC (1U << 10) 1497 #define BTRFS_INODE_COMPRESS (1U << 11) 1498 1499 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1500 1501 #define BTRFS_INODE_FLAG_MASK \ 1502 (BTRFS_INODE_NODATASUM | \ 1503 BTRFS_INODE_NODATACOW | \ 1504 BTRFS_INODE_READONLY | \ 1505 BTRFS_INODE_NOCOMPRESS | \ 1506 BTRFS_INODE_PREALLOC | \ 1507 BTRFS_INODE_SYNC | \ 1508 BTRFS_INODE_IMMUTABLE | \ 1509 BTRFS_INODE_APPEND | \ 1510 BTRFS_INODE_NODUMP | \ 1511 BTRFS_INODE_NOATIME | \ 1512 BTRFS_INODE_DIRSYNC | \ 1513 BTRFS_INODE_COMPRESS | \ 1514 BTRFS_INODE_ROOT_ITEM_INIT) 1515 1516 #define BTRFS_INODE_RO_VERITY (1U << 0) 1517 1518 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1519 1520 struct btrfs_map_token { 1521 struct extent_buffer *eb; 1522 char *kaddr; 1523 unsigned long offset; 1524 }; 1525 1526 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1527 ((bytes) >> (fs_info)->sectorsize_bits) 1528 1529 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1530 struct extent_buffer *eb) 1531 { 1532 token->eb = eb; 1533 token->kaddr = page_address(eb->pages[0]); 1534 token->offset = 0; 1535 } 1536 1537 /* some macros to generate set/get functions for the struct fields. This 1538 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1539 * one for u8: 1540 */ 1541 #define le8_to_cpu(v) (v) 1542 #define cpu_to_le8(v) (v) 1543 #define __le8 u8 1544 1545 static inline u8 get_unaligned_le8(const void *p) 1546 { 1547 return *(u8 *)p; 1548 } 1549 1550 static inline void put_unaligned_le8(u8 val, void *p) 1551 { 1552 *(u8 *)p = val; 1553 } 1554 1555 #define read_eb_member(eb, ptr, type, member, result) (\ 1556 read_extent_buffer(eb, (char *)(result), \ 1557 ((unsigned long)(ptr)) + \ 1558 offsetof(type, member), \ 1559 sizeof(((type *)0)->member))) 1560 1561 #define write_eb_member(eb, ptr, type, member, result) (\ 1562 write_extent_buffer(eb, (char *)(result), \ 1563 ((unsigned long)(ptr)) + \ 1564 offsetof(type, member), \ 1565 sizeof(((type *)0)->member))) 1566 1567 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1568 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1569 const void *ptr, unsigned long off); \ 1570 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1571 const void *ptr, unsigned long off, \ 1572 u##bits val); \ 1573 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1574 const void *ptr, unsigned long off); \ 1575 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1576 unsigned long off, u##bits val); 1577 1578 DECLARE_BTRFS_SETGET_BITS(8) 1579 DECLARE_BTRFS_SETGET_BITS(16) 1580 DECLARE_BTRFS_SETGET_BITS(32) 1581 DECLARE_BTRFS_SETGET_BITS(64) 1582 1583 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1584 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1585 const type *s) \ 1586 { \ 1587 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1588 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1589 } \ 1590 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1591 u##bits val) \ 1592 { \ 1593 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1594 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1595 } \ 1596 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1597 const type *s) \ 1598 { \ 1599 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1600 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1601 } \ 1602 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1603 type *s, u##bits val) \ 1604 { \ 1605 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \ 1606 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1607 } 1608 1609 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1610 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1611 { \ 1612 const type *p = page_address(eb->pages[0]) + \ 1613 offset_in_page(eb->start); \ 1614 return get_unaligned_le##bits(&p->member); \ 1615 } \ 1616 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1617 u##bits val) \ 1618 { \ 1619 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1620 put_unaligned_le##bits(val, &p->member); \ 1621 } 1622 1623 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1624 static inline u##bits btrfs_##name(const type *s) \ 1625 { \ 1626 return get_unaligned_le##bits(&s->member); \ 1627 } \ 1628 static inline void btrfs_set_##name(type *s, u##bits val) \ 1629 { \ 1630 put_unaligned_le##bits(val, &s->member); \ 1631 } 1632 1633 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1634 struct btrfs_dev_item *s) 1635 { 1636 BUILD_BUG_ON(sizeof(u64) != 1637 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1638 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1639 total_bytes)); 1640 } 1641 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1642 struct btrfs_dev_item *s, 1643 u64 val) 1644 { 1645 BUILD_BUG_ON(sizeof(u64) != 1646 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1647 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1648 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1649 } 1650 1651 1652 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1653 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1654 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1655 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1656 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1657 start_offset, 64); 1658 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1659 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1660 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1661 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1662 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1663 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1664 1665 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1666 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1667 total_bytes, 64); 1668 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1669 bytes_used, 64); 1670 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1671 io_align, 32); 1672 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1673 io_width, 32); 1674 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1675 sector_size, 32); 1676 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1677 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1678 dev_group, 32); 1679 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1680 seek_speed, 8); 1681 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1682 bandwidth, 8); 1683 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1684 generation, 64); 1685 1686 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1687 { 1688 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1689 } 1690 1691 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1692 { 1693 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1694 } 1695 1696 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1697 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1698 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1699 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1700 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1701 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1702 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1703 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1704 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1705 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1706 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1707 1708 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1709 { 1710 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1711 } 1712 1713 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1714 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1715 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1716 stripe_len, 64); 1717 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1718 io_align, 32); 1719 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1720 io_width, 32); 1721 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1722 sector_size, 32); 1723 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1724 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1725 num_stripes, 16); 1726 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1727 sub_stripes, 16); 1728 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1729 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1730 1731 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1732 int nr) 1733 { 1734 unsigned long offset = (unsigned long)c; 1735 offset += offsetof(struct btrfs_chunk, stripe); 1736 offset += nr * sizeof(struct btrfs_stripe); 1737 return (struct btrfs_stripe *)offset; 1738 } 1739 1740 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1741 { 1742 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1743 } 1744 1745 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1746 struct btrfs_chunk *c, int nr) 1747 { 1748 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1749 } 1750 1751 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1752 struct btrfs_chunk *c, int nr) 1753 { 1754 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1755 } 1756 1757 /* struct btrfs_block_group_item */ 1758 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1759 used, 64); 1760 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1761 used, 64); 1762 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1763 struct btrfs_block_group_item, chunk_objectid, 64); 1764 1765 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1766 struct btrfs_block_group_item, chunk_objectid, 64); 1767 BTRFS_SETGET_FUNCS(block_group_flags, 1768 struct btrfs_block_group_item, flags, 64); 1769 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1770 struct btrfs_block_group_item, flags, 64); 1771 1772 /* struct btrfs_free_space_info */ 1773 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1774 extent_count, 32); 1775 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1776 1777 /* struct btrfs_inode_ref */ 1778 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1779 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1780 1781 /* struct btrfs_inode_extref */ 1782 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1783 parent_objectid, 64); 1784 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1785 name_len, 16); 1786 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1787 1788 /* struct btrfs_inode_item */ 1789 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1790 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1791 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1792 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1793 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1794 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1795 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1796 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1797 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1798 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1799 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1800 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1801 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1802 generation, 64); 1803 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1804 sequence, 64); 1805 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1806 transid, 64); 1807 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1808 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1809 nbytes, 64); 1810 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1811 block_group, 64); 1812 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1813 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1814 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1815 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1816 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1817 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1818 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1819 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1820 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1821 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1822 1823 /* struct btrfs_dev_extent */ 1824 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1825 chunk_tree, 64); 1826 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1827 chunk_objectid, 64); 1828 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1829 chunk_offset, 64); 1830 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1831 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1832 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1833 generation, 64); 1834 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1835 1836 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1837 1838 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1839 struct btrfs_tree_block_info *item, 1840 struct btrfs_disk_key *key) 1841 { 1842 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1843 } 1844 1845 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1846 struct btrfs_tree_block_info *item, 1847 struct btrfs_disk_key *key) 1848 { 1849 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1850 } 1851 1852 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1853 root, 64); 1854 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1855 objectid, 64); 1856 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1857 offset, 64); 1858 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1859 count, 32); 1860 1861 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1862 count, 32); 1863 1864 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1865 type, 8); 1866 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1867 offset, 64); 1868 1869 static inline u32 btrfs_extent_inline_ref_size(int type) 1870 { 1871 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1872 type == BTRFS_SHARED_BLOCK_REF_KEY) 1873 return sizeof(struct btrfs_extent_inline_ref); 1874 if (type == BTRFS_SHARED_DATA_REF_KEY) 1875 return sizeof(struct btrfs_shared_data_ref) + 1876 sizeof(struct btrfs_extent_inline_ref); 1877 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1878 return sizeof(struct btrfs_extent_data_ref) + 1879 offsetof(struct btrfs_extent_inline_ref, offset); 1880 return 0; 1881 } 1882 1883 /* struct btrfs_node */ 1884 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1885 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1886 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1887 blockptr, 64); 1888 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1889 generation, 64); 1890 1891 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1892 { 1893 unsigned long ptr; 1894 ptr = offsetof(struct btrfs_node, ptrs) + 1895 sizeof(struct btrfs_key_ptr) * nr; 1896 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1897 } 1898 1899 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1900 int nr, u64 val) 1901 { 1902 unsigned long ptr; 1903 ptr = offsetof(struct btrfs_node, ptrs) + 1904 sizeof(struct btrfs_key_ptr) * nr; 1905 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1906 } 1907 1908 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1909 { 1910 unsigned long ptr; 1911 ptr = offsetof(struct btrfs_node, ptrs) + 1912 sizeof(struct btrfs_key_ptr) * nr; 1913 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 1914 } 1915 1916 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 1917 int nr, u64 val) 1918 { 1919 unsigned long ptr; 1920 ptr = offsetof(struct btrfs_node, ptrs) + 1921 sizeof(struct btrfs_key_ptr) * nr; 1922 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 1923 } 1924 1925 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 1926 { 1927 return offsetof(struct btrfs_node, ptrs) + 1928 sizeof(struct btrfs_key_ptr) * nr; 1929 } 1930 1931 void btrfs_node_key(const struct extent_buffer *eb, 1932 struct btrfs_disk_key *disk_key, int nr); 1933 1934 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 1935 struct btrfs_disk_key *disk_key, int nr) 1936 { 1937 unsigned long ptr; 1938 ptr = btrfs_node_key_ptr_offset(nr); 1939 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 1940 struct btrfs_key_ptr, key, disk_key); 1941 } 1942 1943 /* struct btrfs_item */ 1944 BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32); 1945 BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32); 1946 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 1947 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 1948 1949 static inline unsigned long btrfs_item_nr_offset(int nr) 1950 { 1951 return offsetof(struct btrfs_leaf, items) + 1952 sizeof(struct btrfs_item) * nr; 1953 } 1954 1955 static inline struct btrfs_item *btrfs_item_nr(int nr) 1956 { 1957 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 1958 } 1959 1960 static inline u32 btrfs_item_end(const struct extent_buffer *eb, 1961 struct btrfs_item *item) 1962 { 1963 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item); 1964 } 1965 1966 static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr) 1967 { 1968 return btrfs_item_end(eb, btrfs_item_nr(nr)); 1969 } 1970 1971 static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr) 1972 { 1973 return btrfs_item_offset(eb, btrfs_item_nr(nr)); 1974 } 1975 1976 static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr) 1977 { 1978 return btrfs_item_size(eb, btrfs_item_nr(nr)); 1979 } 1980 1981 static inline void btrfs_item_key(const struct extent_buffer *eb, 1982 struct btrfs_disk_key *disk_key, int nr) 1983 { 1984 struct btrfs_item *item = btrfs_item_nr(nr); 1985 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 1986 } 1987 1988 static inline void btrfs_set_item_key(struct extent_buffer *eb, 1989 struct btrfs_disk_key *disk_key, int nr) 1990 { 1991 struct btrfs_item *item = btrfs_item_nr(nr); 1992 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 1993 } 1994 1995 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 1996 1997 /* 1998 * struct btrfs_root_ref 1999 */ 2000 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2001 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2002 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2003 2004 /* struct btrfs_dir_item */ 2005 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2006 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2007 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2008 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2009 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2010 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2011 data_len, 16); 2012 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2013 name_len, 16); 2014 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2015 transid, 64); 2016 2017 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2018 const struct btrfs_dir_item *item, 2019 struct btrfs_disk_key *key) 2020 { 2021 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2022 } 2023 2024 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2025 struct btrfs_dir_item *item, 2026 const struct btrfs_disk_key *key) 2027 { 2028 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2029 } 2030 2031 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2032 num_entries, 64); 2033 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2034 num_bitmaps, 64); 2035 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2036 generation, 64); 2037 2038 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2039 const struct btrfs_free_space_header *h, 2040 struct btrfs_disk_key *key) 2041 { 2042 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2043 } 2044 2045 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2046 struct btrfs_free_space_header *h, 2047 const struct btrfs_disk_key *key) 2048 { 2049 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2050 } 2051 2052 /* struct btrfs_disk_key */ 2053 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2054 objectid, 64); 2055 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2056 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2057 2058 #ifdef __LITTLE_ENDIAN 2059 2060 /* 2061 * Optimized helpers for little-endian architectures where CPU and on-disk 2062 * structures have the same endianness and we can skip conversions. 2063 */ 2064 2065 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2066 const struct btrfs_disk_key *disk_key) 2067 { 2068 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2069 } 2070 2071 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2072 const struct btrfs_key *cpu_key) 2073 { 2074 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2075 } 2076 2077 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2078 struct btrfs_key *cpu_key, int nr) 2079 { 2080 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2081 2082 btrfs_node_key(eb, disk_key, nr); 2083 } 2084 2085 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2086 struct btrfs_key *cpu_key, int nr) 2087 { 2088 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2089 2090 btrfs_item_key(eb, disk_key, nr); 2091 } 2092 2093 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2094 const struct btrfs_dir_item *item, 2095 struct btrfs_key *cpu_key) 2096 { 2097 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2098 2099 btrfs_dir_item_key(eb, item, disk_key); 2100 } 2101 2102 #else 2103 2104 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2105 const struct btrfs_disk_key *disk) 2106 { 2107 cpu->offset = le64_to_cpu(disk->offset); 2108 cpu->type = disk->type; 2109 cpu->objectid = le64_to_cpu(disk->objectid); 2110 } 2111 2112 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2113 const struct btrfs_key *cpu) 2114 { 2115 disk->offset = cpu_to_le64(cpu->offset); 2116 disk->type = cpu->type; 2117 disk->objectid = cpu_to_le64(cpu->objectid); 2118 } 2119 2120 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2121 struct btrfs_key *key, int nr) 2122 { 2123 struct btrfs_disk_key disk_key; 2124 btrfs_node_key(eb, &disk_key, nr); 2125 btrfs_disk_key_to_cpu(key, &disk_key); 2126 } 2127 2128 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2129 struct btrfs_key *key, int nr) 2130 { 2131 struct btrfs_disk_key disk_key; 2132 btrfs_item_key(eb, &disk_key, nr); 2133 btrfs_disk_key_to_cpu(key, &disk_key); 2134 } 2135 2136 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2137 const struct btrfs_dir_item *item, 2138 struct btrfs_key *key) 2139 { 2140 struct btrfs_disk_key disk_key; 2141 btrfs_dir_item_key(eb, item, &disk_key); 2142 btrfs_disk_key_to_cpu(key, &disk_key); 2143 } 2144 2145 #endif 2146 2147 /* struct btrfs_header */ 2148 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2149 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2150 generation, 64); 2151 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2152 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2153 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2154 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2155 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2156 generation, 64); 2157 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2158 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2159 nritems, 32); 2160 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2161 2162 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2163 { 2164 return (btrfs_header_flags(eb) & flag) == flag; 2165 } 2166 2167 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2168 { 2169 u64 flags = btrfs_header_flags(eb); 2170 btrfs_set_header_flags(eb, flags | flag); 2171 } 2172 2173 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2174 { 2175 u64 flags = btrfs_header_flags(eb); 2176 btrfs_set_header_flags(eb, flags & ~flag); 2177 } 2178 2179 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2180 { 2181 u64 flags = btrfs_header_flags(eb); 2182 return flags >> BTRFS_BACKREF_REV_SHIFT; 2183 } 2184 2185 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2186 int rev) 2187 { 2188 u64 flags = btrfs_header_flags(eb); 2189 flags &= ~BTRFS_BACKREF_REV_MASK; 2190 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2191 btrfs_set_header_flags(eb, flags); 2192 } 2193 2194 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2195 { 2196 return btrfs_header_level(eb) == 0; 2197 } 2198 2199 /* struct btrfs_root_item */ 2200 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2201 generation, 64); 2202 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2203 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2204 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2205 2206 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2207 generation, 64); 2208 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2209 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2210 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2211 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2212 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2213 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2214 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2215 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2216 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2217 last_snapshot, 64); 2218 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2219 generation_v2, 64); 2220 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2221 ctransid, 64); 2222 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2223 otransid, 64); 2224 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2225 stransid, 64); 2226 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2227 rtransid, 64); 2228 2229 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2230 { 2231 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2232 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2233 } 2234 2235 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2236 { 2237 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2238 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2239 } 2240 2241 /* struct btrfs_root_backup */ 2242 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2243 tree_root, 64); 2244 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2245 tree_root_gen, 64); 2246 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2247 tree_root_level, 8); 2248 2249 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2250 chunk_root, 64); 2251 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2252 chunk_root_gen, 64); 2253 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2254 chunk_root_level, 8); 2255 2256 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2257 extent_root, 64); 2258 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2259 extent_root_gen, 64); 2260 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2261 extent_root_level, 8); 2262 2263 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2264 fs_root, 64); 2265 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2266 fs_root_gen, 64); 2267 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2268 fs_root_level, 8); 2269 2270 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2271 dev_root, 64); 2272 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2273 dev_root_gen, 64); 2274 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2275 dev_root_level, 8); 2276 2277 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2278 csum_root, 64); 2279 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2280 csum_root_gen, 64); 2281 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2282 csum_root_level, 8); 2283 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2284 total_bytes, 64); 2285 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2286 bytes_used, 64); 2287 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2288 num_devices, 64); 2289 2290 /* struct btrfs_balance_item */ 2291 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2292 2293 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2294 const struct btrfs_balance_item *bi, 2295 struct btrfs_disk_balance_args *ba) 2296 { 2297 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2298 } 2299 2300 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2301 struct btrfs_balance_item *bi, 2302 const struct btrfs_disk_balance_args *ba) 2303 { 2304 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2305 } 2306 2307 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2308 const struct btrfs_balance_item *bi, 2309 struct btrfs_disk_balance_args *ba) 2310 { 2311 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2312 } 2313 2314 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2315 struct btrfs_balance_item *bi, 2316 const struct btrfs_disk_balance_args *ba) 2317 { 2318 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2319 } 2320 2321 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2322 const struct btrfs_balance_item *bi, 2323 struct btrfs_disk_balance_args *ba) 2324 { 2325 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2326 } 2327 2328 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2329 struct btrfs_balance_item *bi, 2330 const struct btrfs_disk_balance_args *ba) 2331 { 2332 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2333 } 2334 2335 static inline void 2336 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2337 const struct btrfs_disk_balance_args *disk) 2338 { 2339 memset(cpu, 0, sizeof(*cpu)); 2340 2341 cpu->profiles = le64_to_cpu(disk->profiles); 2342 cpu->usage = le64_to_cpu(disk->usage); 2343 cpu->devid = le64_to_cpu(disk->devid); 2344 cpu->pstart = le64_to_cpu(disk->pstart); 2345 cpu->pend = le64_to_cpu(disk->pend); 2346 cpu->vstart = le64_to_cpu(disk->vstart); 2347 cpu->vend = le64_to_cpu(disk->vend); 2348 cpu->target = le64_to_cpu(disk->target); 2349 cpu->flags = le64_to_cpu(disk->flags); 2350 cpu->limit = le64_to_cpu(disk->limit); 2351 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2352 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2353 } 2354 2355 static inline void 2356 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2357 const struct btrfs_balance_args *cpu) 2358 { 2359 memset(disk, 0, sizeof(*disk)); 2360 2361 disk->profiles = cpu_to_le64(cpu->profiles); 2362 disk->usage = cpu_to_le64(cpu->usage); 2363 disk->devid = cpu_to_le64(cpu->devid); 2364 disk->pstart = cpu_to_le64(cpu->pstart); 2365 disk->pend = cpu_to_le64(cpu->pend); 2366 disk->vstart = cpu_to_le64(cpu->vstart); 2367 disk->vend = cpu_to_le64(cpu->vend); 2368 disk->target = cpu_to_le64(cpu->target); 2369 disk->flags = cpu_to_le64(cpu->flags); 2370 disk->limit = cpu_to_le64(cpu->limit); 2371 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2372 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2373 } 2374 2375 /* struct btrfs_super_block */ 2376 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2377 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2378 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2379 generation, 64); 2380 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2381 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2382 struct btrfs_super_block, sys_chunk_array_size, 32); 2383 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2384 struct btrfs_super_block, chunk_root_generation, 64); 2385 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2386 root_level, 8); 2387 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2388 chunk_root, 64); 2389 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2390 chunk_root_level, 8); 2391 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2392 log_root, 64); 2393 BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block, 2394 log_root_transid, 64); 2395 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2396 log_root_level, 8); 2397 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2398 total_bytes, 64); 2399 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2400 bytes_used, 64); 2401 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2402 sectorsize, 32); 2403 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2404 nodesize, 32); 2405 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2406 stripesize, 32); 2407 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2408 root_dir_objectid, 64); 2409 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2410 num_devices, 64); 2411 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2412 compat_flags, 64); 2413 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2414 compat_ro_flags, 64); 2415 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2416 incompat_flags, 64); 2417 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2418 csum_type, 16); 2419 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2420 cache_generation, 64); 2421 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2422 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2423 uuid_tree_generation, 64); 2424 2425 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2426 const char *btrfs_super_csum_name(u16 csum_type); 2427 const char *btrfs_super_csum_driver(u16 csum_type); 2428 size_t __attribute_const__ btrfs_get_num_csums(void); 2429 2430 2431 /* 2432 * The leaf data grows from end-to-front in the node. 2433 * this returns the address of the start of the last item, 2434 * which is the stop of the leaf data stack 2435 */ 2436 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2437 { 2438 u32 nr = btrfs_header_nritems(leaf); 2439 2440 if (nr == 0) 2441 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2442 return btrfs_item_offset_nr(leaf, nr - 1); 2443 } 2444 2445 /* struct btrfs_file_extent_item */ 2446 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2447 type, 8); 2448 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2449 struct btrfs_file_extent_item, disk_bytenr, 64); 2450 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2451 struct btrfs_file_extent_item, offset, 64); 2452 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2453 struct btrfs_file_extent_item, generation, 64); 2454 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2455 struct btrfs_file_extent_item, num_bytes, 64); 2456 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2457 struct btrfs_file_extent_item, ram_bytes, 64); 2458 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2459 struct btrfs_file_extent_item, disk_num_bytes, 64); 2460 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2461 struct btrfs_file_extent_item, compression, 8); 2462 2463 static inline unsigned long 2464 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2465 { 2466 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2467 } 2468 2469 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2470 { 2471 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2472 } 2473 2474 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2475 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2476 disk_bytenr, 64); 2477 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2478 generation, 64); 2479 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2480 disk_num_bytes, 64); 2481 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2482 offset, 64); 2483 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2484 num_bytes, 64); 2485 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2486 ram_bytes, 64); 2487 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2488 compression, 8); 2489 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2490 encryption, 8); 2491 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2492 other_encoding, 16); 2493 2494 /* 2495 * this returns the number of bytes used by the item on disk, minus the 2496 * size of any extent headers. If a file is compressed on disk, this is 2497 * the compressed size 2498 */ 2499 static inline u32 btrfs_file_extent_inline_item_len( 2500 const struct extent_buffer *eb, 2501 struct btrfs_item *e) 2502 { 2503 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2504 } 2505 2506 /* btrfs_qgroup_status_item */ 2507 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2508 generation, 64); 2509 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2510 version, 64); 2511 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2512 flags, 64); 2513 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2514 rescan, 64); 2515 2516 /* btrfs_qgroup_info_item */ 2517 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2518 generation, 64); 2519 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2520 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2521 rfer_cmpr, 64); 2522 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2523 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2524 excl_cmpr, 64); 2525 2526 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2527 struct btrfs_qgroup_info_item, generation, 64); 2528 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2529 rfer, 64); 2530 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2531 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2532 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2533 excl, 64); 2534 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2535 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2536 2537 /* btrfs_qgroup_limit_item */ 2538 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2539 flags, 64); 2540 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2541 max_rfer, 64); 2542 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2543 max_excl, 64); 2544 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2545 rsv_rfer, 64); 2546 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2547 rsv_excl, 64); 2548 2549 /* btrfs_dev_replace_item */ 2550 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2551 struct btrfs_dev_replace_item, src_devid, 64); 2552 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2553 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2554 64); 2555 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2556 replace_state, 64); 2557 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2558 time_started, 64); 2559 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2560 time_stopped, 64); 2561 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2562 num_write_errors, 64); 2563 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2564 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2565 64); 2566 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2567 cursor_left, 64); 2568 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2569 cursor_right, 64); 2570 2571 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2572 struct btrfs_dev_replace_item, src_devid, 64); 2573 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2574 struct btrfs_dev_replace_item, 2575 cont_reading_from_srcdev_mode, 64); 2576 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2577 struct btrfs_dev_replace_item, replace_state, 64); 2578 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2579 struct btrfs_dev_replace_item, time_started, 64); 2580 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2581 struct btrfs_dev_replace_item, time_stopped, 64); 2582 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2583 struct btrfs_dev_replace_item, num_write_errors, 64); 2584 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2585 struct btrfs_dev_replace_item, 2586 num_uncorrectable_read_errors, 64); 2587 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2588 struct btrfs_dev_replace_item, cursor_left, 64); 2589 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2590 struct btrfs_dev_replace_item, cursor_right, 64); 2591 2592 /* helper function to cast into the data area of the leaf. */ 2593 #define btrfs_item_ptr(leaf, slot, type) \ 2594 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2595 btrfs_item_offset_nr(leaf, slot))) 2596 2597 #define btrfs_item_ptr_offset(leaf, slot) \ 2598 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2599 btrfs_item_offset_nr(leaf, slot))) 2600 2601 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2602 { 2603 return crc32c(crc, address, length); 2604 } 2605 2606 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2607 { 2608 put_unaligned_le32(~crc, result); 2609 } 2610 2611 static inline u64 btrfs_name_hash(const char *name, int len) 2612 { 2613 return crc32c((u32)~1, name, len); 2614 } 2615 2616 /* 2617 * Figure the key offset of an extended inode ref 2618 */ 2619 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2620 int len) 2621 { 2622 return (u64) crc32c(parent_objectid, name, len); 2623 } 2624 2625 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2626 { 2627 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2628 } 2629 2630 /* extent-tree.c */ 2631 2632 enum btrfs_inline_ref_type { 2633 BTRFS_REF_TYPE_INVALID, 2634 BTRFS_REF_TYPE_BLOCK, 2635 BTRFS_REF_TYPE_DATA, 2636 BTRFS_REF_TYPE_ANY, 2637 }; 2638 2639 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2640 struct btrfs_extent_inline_ref *iref, 2641 enum btrfs_inline_ref_type is_data); 2642 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2643 2644 /* 2645 * Take the number of bytes to be checksummmed and figure out how many leaves 2646 * it would require to store the csums for that many bytes. 2647 */ 2648 static inline u64 btrfs_csum_bytes_to_leaves( 2649 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2650 { 2651 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2652 2653 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2654 } 2655 2656 /* 2657 * Use this if we would be adding new items, as we could split nodes as we cow 2658 * down the tree. 2659 */ 2660 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2661 unsigned num_items) 2662 { 2663 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2664 } 2665 2666 /* 2667 * Doing a truncate or a modification won't result in new nodes or leaves, just 2668 * what we need for COW. 2669 */ 2670 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2671 unsigned num_items) 2672 { 2673 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2674 } 2675 2676 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2677 u64 start, u64 num_bytes); 2678 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2679 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2680 unsigned long count); 2681 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2682 struct btrfs_delayed_ref_root *delayed_refs, 2683 struct btrfs_delayed_ref_head *head); 2684 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2685 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2686 struct btrfs_fs_info *fs_info, u64 bytenr, 2687 u64 offset, int metadata, u64 *refs, u64 *flags); 2688 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2689 int reserved); 2690 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2691 u64 bytenr, u64 num_bytes); 2692 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2693 int btrfs_cross_ref_exist(struct btrfs_root *root, 2694 u64 objectid, u64 offset, u64 bytenr, bool strict); 2695 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2696 struct btrfs_root *root, 2697 u64 parent, u64 root_objectid, 2698 const struct btrfs_disk_key *key, 2699 int level, u64 hint, 2700 u64 empty_size, 2701 enum btrfs_lock_nesting nest); 2702 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2703 struct btrfs_root *root, 2704 struct extent_buffer *buf, 2705 u64 parent, int last_ref); 2706 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2707 struct btrfs_root *root, u64 owner, 2708 u64 offset, u64 ram_bytes, 2709 struct btrfs_key *ins); 2710 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2711 u64 root_objectid, u64 owner, u64 offset, 2712 struct btrfs_key *ins); 2713 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2714 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2715 struct btrfs_key *ins, int is_data, int delalloc); 2716 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2717 struct extent_buffer *buf, int full_backref); 2718 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2719 struct extent_buffer *buf, int full_backref); 2720 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2721 struct extent_buffer *eb, u64 flags, 2722 int level, int is_data); 2723 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2724 2725 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2726 u64 start, u64 len, int delalloc); 2727 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2728 u64 len); 2729 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2730 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2731 struct btrfs_ref *generic_ref); 2732 2733 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2734 2735 /* 2736 * Different levels for to flush space when doing space reservations. 2737 * 2738 * The higher the level, the more methods we try to reclaim space. 2739 */ 2740 enum btrfs_reserve_flush_enum { 2741 /* If we are in the transaction, we can't flush anything.*/ 2742 BTRFS_RESERVE_NO_FLUSH, 2743 2744 /* 2745 * Flush space by: 2746 * - Running delayed inode items 2747 * - Allocating a new chunk 2748 */ 2749 BTRFS_RESERVE_FLUSH_LIMIT, 2750 2751 /* 2752 * Flush space by: 2753 * - Running delayed inode items 2754 * - Running delayed refs 2755 * - Running delalloc and waiting for ordered extents 2756 * - Allocating a new chunk 2757 */ 2758 BTRFS_RESERVE_FLUSH_EVICT, 2759 2760 /* 2761 * Flush space by above mentioned methods and by: 2762 * - Running delayed iputs 2763 * - Committing transaction 2764 * 2765 * Can be interrupted by a fatal signal. 2766 */ 2767 BTRFS_RESERVE_FLUSH_DATA, 2768 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2769 BTRFS_RESERVE_FLUSH_ALL, 2770 2771 /* 2772 * Pretty much the same as FLUSH_ALL, but can also steal space from 2773 * global rsv. 2774 * 2775 * Can be interrupted by a fatal signal. 2776 */ 2777 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2778 }; 2779 2780 enum btrfs_flush_state { 2781 FLUSH_DELAYED_ITEMS_NR = 1, 2782 FLUSH_DELAYED_ITEMS = 2, 2783 FLUSH_DELAYED_REFS_NR = 3, 2784 FLUSH_DELAYED_REFS = 4, 2785 FLUSH_DELALLOC = 5, 2786 FLUSH_DELALLOC_WAIT = 6, 2787 FLUSH_DELALLOC_FULL = 7, 2788 ALLOC_CHUNK = 8, 2789 ALLOC_CHUNK_FORCE = 9, 2790 RUN_DELAYED_IPUTS = 10, 2791 COMMIT_TRANS = 11, 2792 }; 2793 2794 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2795 struct btrfs_block_rsv *rsv, 2796 int nitems, bool use_global_rsv); 2797 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2798 struct btrfs_block_rsv *rsv); 2799 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2800 2801 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes); 2802 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2803 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2804 u64 start, u64 end); 2805 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2806 u64 num_bytes, u64 *actual_bytes); 2807 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2808 2809 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2810 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2811 struct btrfs_fs_info *fs_info); 2812 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2813 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2814 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2815 2816 /* ctree.c */ 2817 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2818 int *slot); 2819 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2820 int btrfs_previous_item(struct btrfs_root *root, 2821 struct btrfs_path *path, u64 min_objectid, 2822 int type); 2823 int btrfs_previous_extent_item(struct btrfs_root *root, 2824 struct btrfs_path *path, u64 min_objectid); 2825 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2826 struct btrfs_path *path, 2827 const struct btrfs_key *new_key); 2828 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2829 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2830 struct btrfs_key *key, int lowest_level, 2831 u64 min_trans); 2832 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2833 struct btrfs_path *path, 2834 u64 min_trans); 2835 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2836 int slot); 2837 2838 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2839 struct btrfs_root *root, struct extent_buffer *buf, 2840 struct extent_buffer *parent, int parent_slot, 2841 struct extent_buffer **cow_ret, 2842 enum btrfs_lock_nesting nest); 2843 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2844 struct btrfs_root *root, 2845 struct extent_buffer *buf, 2846 struct extent_buffer **cow_ret, u64 new_root_objectid); 2847 int btrfs_block_can_be_shared(struct btrfs_root *root, 2848 struct extent_buffer *buf); 2849 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2850 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2851 int btrfs_split_item(struct btrfs_trans_handle *trans, 2852 struct btrfs_root *root, 2853 struct btrfs_path *path, 2854 const struct btrfs_key *new_key, 2855 unsigned long split_offset); 2856 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2857 struct btrfs_root *root, 2858 struct btrfs_path *path, 2859 const struct btrfs_key *new_key); 2860 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2861 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2862 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2863 const struct btrfs_key *key, struct btrfs_path *p, 2864 int ins_len, int cow); 2865 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2866 struct btrfs_path *p, u64 time_seq); 2867 int btrfs_search_slot_for_read(struct btrfs_root *root, 2868 const struct btrfs_key *key, 2869 struct btrfs_path *p, int find_higher, 2870 int return_any); 2871 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 2872 struct btrfs_root *root, struct extent_buffer *parent, 2873 int start_slot, u64 *last_ret, 2874 struct btrfs_key *progress); 2875 void btrfs_release_path(struct btrfs_path *p); 2876 struct btrfs_path *btrfs_alloc_path(void); 2877 void btrfs_free_path(struct btrfs_path *p); 2878 2879 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2880 struct btrfs_path *path, int slot, int nr); 2881 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 2882 struct btrfs_root *root, 2883 struct btrfs_path *path) 2884 { 2885 return btrfs_del_items(trans, root, path, path->slots[0], 1); 2886 } 2887 2888 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 2889 const struct btrfs_key *cpu_key, u32 *data_size, 2890 int nr); 2891 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2892 const struct btrfs_key *key, void *data, u32 data_size); 2893 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 2894 struct btrfs_root *root, 2895 struct btrfs_path *path, 2896 const struct btrfs_key *cpu_key, u32 *data_size, 2897 int nr); 2898 2899 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 2900 struct btrfs_root *root, 2901 struct btrfs_path *path, 2902 const struct btrfs_key *key, 2903 u32 data_size) 2904 { 2905 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1); 2906 } 2907 2908 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 2909 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 2910 u64 time_seq); 2911 2912 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2913 struct btrfs_path *path); 2914 2915 static inline int btrfs_next_old_item(struct btrfs_root *root, 2916 struct btrfs_path *p, u64 time_seq) 2917 { 2918 ++p->slots[0]; 2919 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 2920 return btrfs_next_old_leaf(root, p, time_seq); 2921 return 0; 2922 } 2923 2924 /* 2925 * Search the tree again to find a leaf with greater keys. 2926 * 2927 * Returns 0 if it found something or 1 if there are no greater leaves. 2928 * Returns < 0 on error. 2929 */ 2930 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 2931 { 2932 return btrfs_next_old_leaf(root, path, 0); 2933 } 2934 2935 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 2936 { 2937 return btrfs_next_old_item(root, p, 0); 2938 } 2939 int btrfs_leaf_free_space(struct extent_buffer *leaf); 2940 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 2941 int for_reloc); 2942 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 2943 struct btrfs_root *root, 2944 struct extent_buffer *node, 2945 struct extent_buffer *parent); 2946 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 2947 { 2948 /* 2949 * Do it this way so we only ever do one test_bit in the normal case. 2950 */ 2951 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 2952 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 2953 return 2; 2954 return 1; 2955 } 2956 return 0; 2957 } 2958 2959 /* 2960 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 2961 * anything except sleeping. This function is used to check the status of 2962 * the fs. 2963 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 2964 * since setting and checking for SB_RDONLY in the superblock's flags is not 2965 * atomic. 2966 */ 2967 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 2968 { 2969 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 2970 btrfs_fs_closing(fs_info); 2971 } 2972 2973 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 2974 { 2975 sb->s_flags |= SB_RDONLY; 2976 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2977 } 2978 2979 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 2980 { 2981 sb->s_flags &= ~SB_RDONLY; 2982 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 2983 } 2984 2985 /* root-item.c */ 2986 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2987 u64 ref_id, u64 dirid, u64 sequence, const char *name, 2988 int name_len); 2989 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 2990 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 2991 int name_len); 2992 int btrfs_del_root(struct btrfs_trans_handle *trans, 2993 const struct btrfs_key *key); 2994 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2995 const struct btrfs_key *key, 2996 struct btrfs_root_item *item); 2997 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 2998 struct btrfs_root *root, 2999 struct btrfs_key *key, 3000 struct btrfs_root_item *item); 3001 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3002 struct btrfs_path *path, struct btrfs_root_item *root_item, 3003 struct btrfs_key *root_key); 3004 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3005 void btrfs_set_root_node(struct btrfs_root_item *item, 3006 struct extent_buffer *node); 3007 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3008 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3009 struct btrfs_root *root); 3010 3011 /* uuid-tree.c */ 3012 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3013 u64 subid); 3014 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3015 u64 subid); 3016 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3017 3018 /* dir-item.c */ 3019 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3020 const char *name, int name_len); 3021 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3022 int name_len, struct btrfs_inode *dir, 3023 struct btrfs_key *location, u8 type, u64 index); 3024 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3025 struct btrfs_root *root, 3026 struct btrfs_path *path, u64 dir, 3027 const char *name, int name_len, 3028 int mod); 3029 struct btrfs_dir_item * 3030 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3031 struct btrfs_root *root, 3032 struct btrfs_path *path, u64 dir, 3033 u64 index, const char *name, int name_len, 3034 int mod); 3035 struct btrfs_dir_item * 3036 btrfs_search_dir_index_item(struct btrfs_root *root, 3037 struct btrfs_path *path, u64 dirid, 3038 const char *name, int name_len); 3039 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3040 struct btrfs_root *root, 3041 struct btrfs_path *path, 3042 struct btrfs_dir_item *di); 3043 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3044 struct btrfs_root *root, 3045 struct btrfs_path *path, u64 objectid, 3046 const char *name, u16 name_len, 3047 const void *data, u16 data_len); 3048 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3049 struct btrfs_root *root, 3050 struct btrfs_path *path, u64 dir, 3051 const char *name, u16 name_len, 3052 int mod); 3053 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3054 struct btrfs_path *path, 3055 const char *name, 3056 int name_len); 3057 3058 /* orphan.c */ 3059 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3060 struct btrfs_root *root, u64 offset); 3061 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3062 struct btrfs_root *root, u64 offset); 3063 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3064 3065 /* inode-item.c */ 3066 int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans, 3067 struct btrfs_root *root, 3068 const char *name, int name_len, 3069 u64 inode_objectid, u64 ref_objectid, u64 index); 3070 int btrfs_del_inode_ref(struct btrfs_trans_handle *trans, 3071 struct btrfs_root *root, 3072 const char *name, int name_len, 3073 u64 inode_objectid, u64 ref_objectid, u64 *index); 3074 int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans, 3075 struct btrfs_root *root, 3076 struct btrfs_path *path, u64 objectid); 3077 int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root 3078 *root, struct btrfs_path *path, 3079 struct btrfs_key *location, int mod); 3080 3081 struct btrfs_inode_extref * 3082 btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans, 3083 struct btrfs_root *root, 3084 struct btrfs_path *path, 3085 const char *name, int name_len, 3086 u64 inode_objectid, u64 ref_objectid, int ins_len, 3087 int cow); 3088 3089 struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf, 3090 int slot, const char *name, 3091 int name_len); 3092 struct btrfs_inode_extref *btrfs_find_name_in_ext_backref( 3093 struct extent_buffer *leaf, int slot, u64 ref_objectid, 3094 const char *name, int name_len); 3095 /* file-item.c */ 3096 struct btrfs_dio_private; 3097 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3098 struct btrfs_root *root, u64 bytenr, u64 len); 3099 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3100 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3101 struct btrfs_root *root, 3102 u64 objectid, u64 pos, 3103 u64 disk_offset, u64 disk_num_bytes, 3104 u64 num_bytes, u64 offset, u64 ram_bytes, 3105 u8 compression, u8 encryption, u16 other_encoding); 3106 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3107 struct btrfs_root *root, 3108 struct btrfs_path *path, u64 objectid, 3109 u64 bytenr, int mod); 3110 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3111 struct btrfs_root *root, 3112 struct btrfs_ordered_sum *sums); 3113 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3114 u64 file_start, int contig); 3115 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3116 struct list_head *list, int search_commit); 3117 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3118 const struct btrfs_path *path, 3119 struct btrfs_file_extent_item *fi, 3120 const bool new_inline, 3121 struct extent_map *em); 3122 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3123 u64 len); 3124 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3125 u64 len); 3126 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3127 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3128 3129 /* inode.c */ 3130 blk_status_t btrfs_submit_data_bio(struct inode *inode, struct bio *bio, 3131 int mirror_num, unsigned long bio_flags); 3132 unsigned int btrfs_verify_data_csum(struct btrfs_io_bio *io_bio, u32 bio_offset, 3133 struct page *page, u64 start, u64 end); 3134 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3135 u64 start, u64 len); 3136 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3137 u64 *orig_start, u64 *orig_block_len, 3138 u64 *ram_bytes, bool strict); 3139 3140 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3141 struct btrfs_inode *inode); 3142 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3143 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3144 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3145 struct btrfs_root *root, 3146 struct btrfs_inode *dir, struct btrfs_inode *inode, 3147 const char *name, int name_len); 3148 int btrfs_add_link(struct btrfs_trans_handle *trans, 3149 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3150 const char *name, int name_len, int add_backref, u64 index); 3151 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3152 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3153 int front); 3154 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, 3155 struct btrfs_root *root, 3156 struct btrfs_inode *inode, u64 new_size, 3157 u32 min_type, u64 *extents_found); 3158 3159 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3160 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3161 bool in_reclaim_context); 3162 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3163 unsigned int extra_bits, 3164 struct extent_state **cached_state); 3165 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, 3166 struct btrfs_root *new_root, 3167 struct btrfs_root *parent_root, 3168 struct user_namespace *mnt_userns); 3169 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3170 unsigned *bits); 3171 void btrfs_clear_delalloc_extent(struct inode *inode, 3172 struct extent_state *state, unsigned *bits); 3173 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3174 struct extent_state *other); 3175 void btrfs_split_delalloc_extent(struct inode *inode, 3176 struct extent_state *orig, u64 split); 3177 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio, 3178 unsigned long bio_flags); 3179 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3180 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3181 int btrfs_readpage(struct file *file, struct page *page); 3182 void btrfs_evict_inode(struct inode *inode); 3183 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3184 struct inode *btrfs_alloc_inode(struct super_block *sb); 3185 void btrfs_destroy_inode(struct inode *inode); 3186 void btrfs_free_inode(struct inode *inode); 3187 int btrfs_drop_inode(struct inode *inode); 3188 int __init btrfs_init_cachep(void); 3189 void __cold btrfs_destroy_cachep(void); 3190 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3191 struct btrfs_root *root, struct btrfs_path *path); 3192 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3193 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3194 struct page *page, size_t pg_offset, 3195 u64 start, u64 end); 3196 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3197 struct btrfs_root *root, struct btrfs_inode *inode); 3198 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3199 struct btrfs_root *root, struct btrfs_inode *inode); 3200 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3201 struct btrfs_inode *inode); 3202 int btrfs_orphan_cleanup(struct btrfs_root *root); 3203 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3204 void btrfs_add_delayed_iput(struct inode *inode); 3205 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3206 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3207 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3208 u64 start, u64 num_bytes, u64 min_size, 3209 loff_t actual_len, u64 *alloc_hint); 3210 int btrfs_prealloc_file_range_trans(struct inode *inode, 3211 struct btrfs_trans_handle *trans, int mode, 3212 u64 start, u64 num_bytes, u64 min_size, 3213 loff_t actual_len, u64 *alloc_hint); 3214 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3215 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3216 struct writeback_control *wbc); 3217 int btrfs_writepage_cow_fixup(struct page *page); 3218 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3219 struct page *page, u64 start, 3220 u64 end, bool uptodate); 3221 extern const struct dentry_operations btrfs_dentry_operations; 3222 extern const struct iomap_ops btrfs_dio_iomap_ops; 3223 extern const struct iomap_dio_ops btrfs_dio_ops; 3224 3225 /* Inode locking type flags, by default the exclusive lock is taken */ 3226 #define BTRFS_ILOCK_SHARED (1U << 0) 3227 #define BTRFS_ILOCK_TRY (1U << 1) 3228 #define BTRFS_ILOCK_MMAP (1U << 2) 3229 3230 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3231 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3232 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3233 const u64 add_bytes, 3234 const u64 del_bytes); 3235 3236 /* ioctl.c */ 3237 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3238 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3239 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3240 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3241 struct dentry *dentry, struct fileattr *fa); 3242 int btrfs_ioctl_get_supported_features(void __user *arg); 3243 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3244 int __pure btrfs_is_empty_uuid(u8 *uuid); 3245 int btrfs_defrag_file(struct inode *inode, struct file *file, 3246 struct btrfs_ioctl_defrag_range_args *range, 3247 u64 newer_than, unsigned long max_pages); 3248 void btrfs_get_block_group_info(struct list_head *groups_list, 3249 struct btrfs_ioctl_space_info *space); 3250 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3251 struct btrfs_ioctl_balance_args *bargs); 3252 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3253 enum btrfs_exclusive_operation type); 3254 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3255 enum btrfs_exclusive_operation type); 3256 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3257 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3258 3259 /* file.c */ 3260 int __init btrfs_auto_defrag_init(void); 3261 void __cold btrfs_auto_defrag_exit(void); 3262 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3263 struct btrfs_inode *inode); 3264 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3265 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3266 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3267 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3268 int skip_pinned); 3269 extern const struct file_operations btrfs_file_operations; 3270 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3271 struct btrfs_root *root, struct btrfs_inode *inode, 3272 struct btrfs_drop_extents_args *args); 3273 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3274 struct btrfs_path *path, const u64 start, 3275 const u64 end, 3276 struct btrfs_replace_extent_info *extent_info, 3277 struct btrfs_trans_handle **trans_out); 3278 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3279 struct btrfs_inode *inode, u64 start, u64 end); 3280 int btrfs_release_file(struct inode *inode, struct file *file); 3281 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3282 size_t num_pages, loff_t pos, size_t write_bytes, 3283 struct extent_state **cached, bool noreserve); 3284 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3285 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3286 size_t *write_bytes); 3287 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3288 3289 /* tree-defrag.c */ 3290 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3291 struct btrfs_root *root); 3292 3293 /* super.c */ 3294 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3295 unsigned long new_flags); 3296 int btrfs_sync_fs(struct super_block *sb, int wait); 3297 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3298 u64 subvol_objectid); 3299 3300 static inline __printf(2, 3) __cold 3301 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3302 { 3303 } 3304 3305 #ifdef CONFIG_PRINTK 3306 __printf(2, 3) 3307 __cold 3308 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3309 #else 3310 #define btrfs_printk(fs_info, fmt, args...) \ 3311 btrfs_no_printk(fs_info, fmt, ##args) 3312 #endif 3313 3314 #define btrfs_emerg(fs_info, fmt, args...) \ 3315 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3316 #define btrfs_alert(fs_info, fmt, args...) \ 3317 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3318 #define btrfs_crit(fs_info, fmt, args...) \ 3319 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3320 #define btrfs_err(fs_info, fmt, args...) \ 3321 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3322 #define btrfs_warn(fs_info, fmt, args...) \ 3323 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3324 #define btrfs_notice(fs_info, fmt, args...) \ 3325 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3326 #define btrfs_info(fs_info, fmt, args...) \ 3327 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3328 3329 /* 3330 * Wrappers that use printk_in_rcu 3331 */ 3332 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3333 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3334 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3335 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3336 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3337 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3338 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3339 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3340 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3341 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3342 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3343 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3344 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3345 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3346 3347 /* 3348 * Wrappers that use a ratelimited printk_in_rcu 3349 */ 3350 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3351 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3352 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3353 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3354 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3355 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3356 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3357 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3358 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3359 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3360 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3361 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3362 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3363 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3364 3365 /* 3366 * Wrappers that use a ratelimited printk 3367 */ 3368 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3369 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3370 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3371 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3372 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3373 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3374 #define btrfs_err_rl(fs_info, fmt, args...) \ 3375 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3376 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3377 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3378 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3379 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3380 #define btrfs_info_rl(fs_info, fmt, args...) \ 3381 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3382 3383 #if defined(CONFIG_DYNAMIC_DEBUG) 3384 #define btrfs_debug(fs_info, fmt, args...) \ 3385 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3386 fs_info, KERN_DEBUG fmt, ##args) 3387 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3388 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3389 fs_info, KERN_DEBUG fmt, ##args) 3390 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3391 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3392 fs_info, KERN_DEBUG fmt, ##args) 3393 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3394 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3395 fs_info, KERN_DEBUG fmt, ##args) 3396 #elif defined(DEBUG) 3397 #define btrfs_debug(fs_info, fmt, args...) \ 3398 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3399 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3400 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3401 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3402 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3403 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3404 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3405 #else 3406 #define btrfs_debug(fs_info, fmt, args...) \ 3407 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3408 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3409 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3410 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3411 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3412 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3413 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3414 #endif 3415 3416 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3417 do { \ 3418 rcu_read_lock(); \ 3419 btrfs_printk(fs_info, fmt, ##args); \ 3420 rcu_read_unlock(); \ 3421 } while (0) 3422 3423 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3424 do { \ 3425 rcu_read_lock(); \ 3426 btrfs_no_printk(fs_info, fmt, ##args); \ 3427 rcu_read_unlock(); \ 3428 } while (0) 3429 3430 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3431 do { \ 3432 static DEFINE_RATELIMIT_STATE(_rs, \ 3433 DEFAULT_RATELIMIT_INTERVAL, \ 3434 DEFAULT_RATELIMIT_BURST); \ 3435 if (__ratelimit(&_rs)) \ 3436 btrfs_printk(fs_info, fmt, ##args); \ 3437 } while (0) 3438 3439 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3440 do { \ 3441 rcu_read_lock(); \ 3442 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3443 rcu_read_unlock(); \ 3444 } while (0) 3445 3446 #ifdef CONFIG_BTRFS_ASSERT 3447 __cold __noreturn 3448 static inline void assertfail(const char *expr, const char *file, int line) 3449 { 3450 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3451 BUG(); 3452 } 3453 3454 #define ASSERT(expr) \ 3455 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3456 3457 #else 3458 static inline void assertfail(const char *expr, const char* file, int line) { } 3459 #define ASSERT(expr) (void)(expr) 3460 #endif 3461 3462 #if BITS_PER_LONG == 32 3463 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3464 /* 3465 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3466 * addresses of extents. 3467 * 3468 * For 4K page size it's about 10T, for 64K it's 160T. 3469 */ 3470 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3471 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3472 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3473 #endif 3474 3475 /* 3476 * Get the correct offset inside the page of extent buffer. 3477 * 3478 * @eb: target extent buffer 3479 * @start: offset inside the extent buffer 3480 * 3481 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3482 */ 3483 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3484 unsigned long offset) 3485 { 3486 /* 3487 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3488 * to PAGE_SIZE, thus adding it won't cause any difference. 3489 * 3490 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3491 * to the eb, thus we have to take the eb->start into consideration. 3492 */ 3493 return offset_in_page(offset + eb->start); 3494 } 3495 3496 static inline unsigned long get_eb_page_index(unsigned long offset) 3497 { 3498 /* 3499 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3500 * 3501 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3502 * and have ensured that all tree blocks are contained in one page, 3503 * thus we always get index == 0. 3504 */ 3505 return offset >> PAGE_SHIFT; 3506 } 3507 3508 /* 3509 * Use that for functions that are conditionally exported for sanity tests but 3510 * otherwise static 3511 */ 3512 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3513 #define EXPORT_FOR_TESTS static 3514 #else 3515 #define EXPORT_FOR_TESTS 3516 #endif 3517 3518 __cold 3519 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3520 { 3521 btrfs_err(fs_info, 3522 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3523 } 3524 3525 __printf(5, 6) 3526 __cold 3527 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3528 unsigned int line, int errno, const char *fmt, ...); 3529 3530 const char * __attribute_const__ btrfs_decode_error(int errno); 3531 3532 __cold 3533 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3534 const char *function, 3535 unsigned int line, int errno); 3536 3537 /* 3538 * Call btrfs_abort_transaction as early as possible when an error condition is 3539 * detected, that way the exact line number is reported. 3540 */ 3541 #define btrfs_abort_transaction(trans, errno) \ 3542 do { \ 3543 /* Report first abort since mount */ \ 3544 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3545 &((trans)->fs_info->fs_state))) { \ 3546 if ((errno) != -EIO && (errno) != -EROFS) { \ 3547 WARN(1, KERN_DEBUG \ 3548 "BTRFS: Transaction aborted (error %d)\n", \ 3549 (errno)); \ 3550 } else { \ 3551 btrfs_debug((trans)->fs_info, \ 3552 "Transaction aborted (error %d)", \ 3553 (errno)); \ 3554 } \ 3555 } \ 3556 __btrfs_abort_transaction((trans), __func__, \ 3557 __LINE__, (errno)); \ 3558 } while (0) 3559 3560 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3561 do { \ 3562 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3563 (errno), fmt, ##args); \ 3564 } while (0) 3565 3566 __printf(5, 6) 3567 __cold 3568 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3569 unsigned int line, int errno, const char *fmt, ...); 3570 /* 3571 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3572 * will panic(). Otherwise we BUG() here. 3573 */ 3574 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3575 do { \ 3576 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3577 BUG(); \ 3578 } while (0) 3579 3580 3581 /* compatibility and incompatibility defines */ 3582 3583 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3584 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3585 #opt) 3586 3587 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3588 u64 flag, const char* name) 3589 { 3590 struct btrfs_super_block *disk_super; 3591 u64 features; 3592 3593 disk_super = fs_info->super_copy; 3594 features = btrfs_super_incompat_flags(disk_super); 3595 if (!(features & flag)) { 3596 spin_lock(&fs_info->super_lock); 3597 features = btrfs_super_incompat_flags(disk_super); 3598 if (!(features & flag)) { 3599 features |= flag; 3600 btrfs_set_super_incompat_flags(disk_super, features); 3601 btrfs_info(fs_info, 3602 "setting incompat feature flag for %s (0x%llx)", 3603 name, flag); 3604 } 3605 spin_unlock(&fs_info->super_lock); 3606 } 3607 } 3608 3609 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3610 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3611 #opt) 3612 3613 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3614 u64 flag, const char* name) 3615 { 3616 struct btrfs_super_block *disk_super; 3617 u64 features; 3618 3619 disk_super = fs_info->super_copy; 3620 features = btrfs_super_incompat_flags(disk_super); 3621 if (features & flag) { 3622 spin_lock(&fs_info->super_lock); 3623 features = btrfs_super_incompat_flags(disk_super); 3624 if (features & flag) { 3625 features &= ~flag; 3626 btrfs_set_super_incompat_flags(disk_super, features); 3627 btrfs_info(fs_info, 3628 "clearing incompat feature flag for %s (0x%llx)", 3629 name, flag); 3630 } 3631 spin_unlock(&fs_info->super_lock); 3632 } 3633 } 3634 3635 #define btrfs_fs_incompat(fs_info, opt) \ 3636 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3637 3638 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3639 { 3640 struct btrfs_super_block *disk_super; 3641 disk_super = fs_info->super_copy; 3642 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3643 } 3644 3645 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3646 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3647 #opt) 3648 3649 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3650 u64 flag, const char *name) 3651 { 3652 struct btrfs_super_block *disk_super; 3653 u64 features; 3654 3655 disk_super = fs_info->super_copy; 3656 features = btrfs_super_compat_ro_flags(disk_super); 3657 if (!(features & flag)) { 3658 spin_lock(&fs_info->super_lock); 3659 features = btrfs_super_compat_ro_flags(disk_super); 3660 if (!(features & flag)) { 3661 features |= flag; 3662 btrfs_set_super_compat_ro_flags(disk_super, features); 3663 btrfs_info(fs_info, 3664 "setting compat-ro feature flag for %s (0x%llx)", 3665 name, flag); 3666 } 3667 spin_unlock(&fs_info->super_lock); 3668 } 3669 } 3670 3671 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3672 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3673 #opt) 3674 3675 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3676 u64 flag, const char *name) 3677 { 3678 struct btrfs_super_block *disk_super; 3679 u64 features; 3680 3681 disk_super = fs_info->super_copy; 3682 features = btrfs_super_compat_ro_flags(disk_super); 3683 if (features & flag) { 3684 spin_lock(&fs_info->super_lock); 3685 features = btrfs_super_compat_ro_flags(disk_super); 3686 if (features & flag) { 3687 features &= ~flag; 3688 btrfs_set_super_compat_ro_flags(disk_super, features); 3689 btrfs_info(fs_info, 3690 "clearing compat-ro feature flag for %s (0x%llx)", 3691 name, flag); 3692 } 3693 spin_unlock(&fs_info->super_lock); 3694 } 3695 } 3696 3697 #define btrfs_fs_compat_ro(fs_info, opt) \ 3698 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3699 3700 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3701 { 3702 struct btrfs_super_block *disk_super; 3703 disk_super = fs_info->super_copy; 3704 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3705 } 3706 3707 /* acl.c */ 3708 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3709 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3710 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3711 struct posix_acl *acl, int type); 3712 int btrfs_init_acl(struct btrfs_trans_handle *trans, 3713 struct inode *inode, struct inode *dir); 3714 #else 3715 #define btrfs_get_acl NULL 3716 #define btrfs_set_acl NULL 3717 static inline int btrfs_init_acl(struct btrfs_trans_handle *trans, 3718 struct inode *inode, struct inode *dir) 3719 { 3720 return 0; 3721 } 3722 #endif 3723 3724 /* relocation.c */ 3725 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3726 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3727 struct btrfs_root *root); 3728 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3729 struct btrfs_root *root); 3730 int btrfs_recover_relocation(struct btrfs_root *root); 3731 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3732 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3733 struct btrfs_root *root, struct extent_buffer *buf, 3734 struct extent_buffer *cow); 3735 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3736 u64 *bytes_to_reserve); 3737 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3738 struct btrfs_pending_snapshot *pending); 3739 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3740 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3741 u64 bytenr); 3742 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3743 3744 /* scrub.c */ 3745 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3746 u64 end, struct btrfs_scrub_progress *progress, 3747 int readonly, int is_dev_replace); 3748 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3749 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3750 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3751 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3752 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3753 struct btrfs_scrub_progress *progress); 3754 static inline void btrfs_init_full_stripe_locks_tree( 3755 struct btrfs_full_stripe_locks_tree *locks_root) 3756 { 3757 locks_root->root = RB_ROOT; 3758 mutex_init(&locks_root->lock); 3759 } 3760 3761 /* dev-replace.c */ 3762 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3763 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3764 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 3765 3766 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 3767 { 3768 btrfs_bio_counter_sub(fs_info, 1); 3769 } 3770 3771 /* reada.c */ 3772 struct reada_control { 3773 struct btrfs_fs_info *fs_info; /* tree to prefetch */ 3774 struct btrfs_key key_start; 3775 struct btrfs_key key_end; /* exclusive */ 3776 atomic_t elems; 3777 struct kref refcnt; 3778 wait_queue_head_t wait; 3779 }; 3780 struct reada_control *btrfs_reada_add(struct btrfs_root *root, 3781 struct btrfs_key *start, struct btrfs_key *end); 3782 int btrfs_reada_wait(void *handle); 3783 void btrfs_reada_detach(void *handle); 3784 int btree_readahead_hook(struct extent_buffer *eb, int err); 3785 void btrfs_reada_remove_dev(struct btrfs_device *dev); 3786 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev); 3787 3788 static inline int is_fstree(u64 rootid) 3789 { 3790 if (rootid == BTRFS_FS_TREE_OBJECTID || 3791 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 3792 !btrfs_qgroup_level(rootid))) 3793 return 1; 3794 return 0; 3795 } 3796 3797 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 3798 { 3799 return signal_pending(current); 3800 } 3801 3802 /* verity.c */ 3803 #ifdef CONFIG_FS_VERITY 3804 3805 extern const struct fsverity_operations btrfs_verityops; 3806 int btrfs_drop_verity_items(struct btrfs_inode *inode); 3807 3808 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 3809 encryption, 8); 3810 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 3811 size, 64); 3812 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 3813 struct btrfs_verity_descriptor_item, encryption, 8); 3814 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 3815 struct btrfs_verity_descriptor_item, size, 64); 3816 3817 #else 3818 3819 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 3820 { 3821 return 0; 3822 } 3823 3824 #endif 3825 3826 /* Sanity test specific functions */ 3827 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3828 void btrfs_test_destroy_inode(struct inode *inode); 3829 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3830 { 3831 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 3832 } 3833 #else 3834 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 3835 { 3836 return 0; 3837 } 3838 #endif 3839 3840 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 3841 { 3842 return fs_info->zoned != 0; 3843 } 3844 3845 /* 3846 * We use page status Private2 to indicate there is an ordered extent with 3847 * unfinished IO. 3848 * 3849 * Rename the Private2 accessors to Ordered, to improve readability. 3850 */ 3851 #define PageOrdered(page) PagePrivate2(page) 3852 #define SetPageOrdered(page) SetPagePrivate2(page) 3853 #define ClearPageOrdered(page) ClearPagePrivate2(page) 3854 3855 #endif 3856