1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #ifndef BTRFS_CTREE_H 7 #define BTRFS_CTREE_H 8 9 #include <linux/mm.h> 10 #include <linux/sched/signal.h> 11 #include <linux/highmem.h> 12 #include <linux/fs.h> 13 #include <linux/rwsem.h> 14 #include <linux/semaphore.h> 15 #include <linux/completion.h> 16 #include <linux/backing-dev.h> 17 #include <linux/wait.h> 18 #include <linux/slab.h> 19 #include <trace/events/btrfs.h> 20 #include <asm/unaligned.h> 21 #include <linux/pagemap.h> 22 #include <linux/btrfs.h> 23 #include <linux/btrfs_tree.h> 24 #include <linux/workqueue.h> 25 #include <linux/security.h> 26 #include <linux/sizes.h> 27 #include <linux/dynamic_debug.h> 28 #include <linux/refcount.h> 29 #include <linux/crc32c.h> 30 #include <linux/iomap.h> 31 #include "extent-io-tree.h" 32 #include "extent_io.h" 33 #include "extent_map.h" 34 #include "async-thread.h" 35 #include "block-rsv.h" 36 #include "locking.h" 37 38 struct btrfs_trans_handle; 39 struct btrfs_transaction; 40 struct btrfs_pending_snapshot; 41 struct btrfs_delayed_ref_root; 42 struct btrfs_space_info; 43 struct btrfs_block_group; 44 extern struct kmem_cache *btrfs_trans_handle_cachep; 45 extern struct kmem_cache *btrfs_bit_radix_cachep; 46 extern struct kmem_cache *btrfs_path_cachep; 47 extern struct kmem_cache *btrfs_free_space_cachep; 48 extern struct kmem_cache *btrfs_free_space_bitmap_cachep; 49 struct btrfs_ordered_sum; 50 struct btrfs_ref; 51 struct btrfs_bio; 52 struct btrfs_ioctl_encoded_io_args; 53 54 #define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */ 55 56 /* 57 * Maximum number of mirrors that can be available for all profiles counting 58 * the target device of dev-replace as one. During an active device replace 59 * procedure, the target device of the copy operation is a mirror for the 60 * filesystem data as well that can be used to read data in order to repair 61 * read errors on other disks. 62 * 63 * Current value is derived from RAID1C4 with 4 copies. 64 */ 65 #define BTRFS_MAX_MIRRORS (4 + 1) 66 67 #define BTRFS_MAX_LEVEL 8 68 69 #define BTRFS_OLDEST_GENERATION 0ULL 70 71 /* 72 * we can actually store much bigger names, but lets not confuse the rest 73 * of linux 74 */ 75 #define BTRFS_NAME_LEN 255 76 77 /* 78 * Theoretical limit is larger, but we keep this down to a sane 79 * value. That should limit greatly the possibility of collisions on 80 * inode ref items. 81 */ 82 #define BTRFS_LINK_MAX 65535U 83 84 #define BTRFS_EMPTY_DIR_SIZE 0 85 86 /* ioprio of readahead is set to idle */ 87 #define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)) 88 89 #define BTRFS_DIRTY_METADATA_THRESH SZ_32M 90 91 /* 92 * Use large batch size to reduce overhead of metadata updates. On the reader 93 * side, we only read it when we are close to ENOSPC and the read overhead is 94 * mostly related to the number of CPUs, so it is OK to use arbitrary large 95 * value here. 96 */ 97 #define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M 98 99 #define BTRFS_MAX_EXTENT_SIZE SZ_128M 100 101 /* 102 * Deltas are an effective way to populate global statistics. Give macro names 103 * to make it clear what we're doing. An example is discard_extents in 104 * btrfs_free_space_ctl. 105 */ 106 #define BTRFS_STAT_NR_ENTRIES 2 107 #define BTRFS_STAT_CURR 0 108 #define BTRFS_STAT_PREV 1 109 110 static inline unsigned long btrfs_chunk_item_size(int num_stripes) 111 { 112 BUG_ON(num_stripes == 0); 113 return sizeof(struct btrfs_chunk) + 114 sizeof(struct btrfs_stripe) * (num_stripes - 1); 115 } 116 117 /* 118 * Runtime (in-memory) states of filesystem 119 */ 120 enum { 121 /* Global indicator of serious filesystem errors */ 122 BTRFS_FS_STATE_ERROR, 123 /* 124 * Filesystem is being remounted, allow to skip some operations, like 125 * defrag 126 */ 127 BTRFS_FS_STATE_REMOUNTING, 128 /* Filesystem in RO mode */ 129 BTRFS_FS_STATE_RO, 130 /* Track if a transaction abort has been reported on this filesystem */ 131 BTRFS_FS_STATE_TRANS_ABORTED, 132 /* 133 * Bio operations should be blocked on this filesystem because a source 134 * or target device is being destroyed as part of a device replace 135 */ 136 BTRFS_FS_STATE_DEV_REPLACING, 137 /* The btrfs_fs_info created for self-tests */ 138 BTRFS_FS_STATE_DUMMY_FS_INFO, 139 140 BTRFS_FS_STATE_NO_CSUMS, 141 142 /* Indicates there was an error cleaning up a log tree. */ 143 BTRFS_FS_STATE_LOG_CLEANUP_ERROR, 144 145 BTRFS_FS_STATE_COUNT 146 }; 147 148 #define BTRFS_BACKREF_REV_MAX 256 149 #define BTRFS_BACKREF_REV_SHIFT 56 150 #define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \ 151 BTRFS_BACKREF_REV_SHIFT) 152 153 #define BTRFS_OLD_BACKREF_REV 0 154 #define BTRFS_MIXED_BACKREF_REV 1 155 156 /* 157 * every tree block (leaf or node) starts with this header. 158 */ 159 struct btrfs_header { 160 /* these first four must match the super block */ 161 u8 csum[BTRFS_CSUM_SIZE]; 162 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */ 163 __le64 bytenr; /* which block this node is supposed to live in */ 164 __le64 flags; 165 166 /* allowed to be different from the super from here on down */ 167 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 168 __le64 generation; 169 __le64 owner; 170 __le32 nritems; 171 u8 level; 172 } __attribute__ ((__packed__)); 173 174 /* 175 * this is a very generous portion of the super block, giving us 176 * room to translate 14 chunks with 3 stripes each. 177 */ 178 #define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048 179 180 /* 181 * just in case we somehow lose the roots and are not able to mount, 182 * we store an array of the roots from previous transactions 183 * in the super. 184 */ 185 #define BTRFS_NUM_BACKUP_ROOTS 4 186 struct btrfs_root_backup { 187 __le64 tree_root; 188 __le64 tree_root_gen; 189 190 __le64 chunk_root; 191 __le64 chunk_root_gen; 192 193 __le64 extent_root; 194 __le64 extent_root_gen; 195 196 __le64 fs_root; 197 __le64 fs_root_gen; 198 199 __le64 dev_root; 200 __le64 dev_root_gen; 201 202 __le64 csum_root; 203 __le64 csum_root_gen; 204 205 __le64 total_bytes; 206 __le64 bytes_used; 207 __le64 num_devices; 208 /* future */ 209 __le64 unused_64[4]; 210 211 u8 tree_root_level; 212 u8 chunk_root_level; 213 u8 extent_root_level; 214 u8 fs_root_level; 215 u8 dev_root_level; 216 u8 csum_root_level; 217 /* future and to align */ 218 u8 unused_8[10]; 219 } __attribute__ ((__packed__)); 220 221 #define BTRFS_SUPER_INFO_OFFSET SZ_64K 222 #define BTRFS_SUPER_INFO_SIZE 4096 223 224 /* 225 * The reserved space at the beginning of each device. 226 * It covers the primary super block and leaves space for potential use by other 227 * tools like bootloaders or to lower potential damage of accidental overwrite. 228 */ 229 #define BTRFS_DEVICE_RANGE_RESERVED (SZ_1M) 230 231 /* 232 * the super block basically lists the main trees of the FS 233 * it currently lacks any block count etc etc 234 */ 235 struct btrfs_super_block { 236 /* the first 4 fields must match struct btrfs_header */ 237 u8 csum[BTRFS_CSUM_SIZE]; 238 /* FS specific UUID, visible to user */ 239 u8 fsid[BTRFS_FSID_SIZE]; 240 __le64 bytenr; /* this block number */ 241 __le64 flags; 242 243 /* allowed to be different from the btrfs_header from here own down */ 244 __le64 magic; 245 __le64 generation; 246 __le64 root; 247 __le64 chunk_root; 248 __le64 log_root; 249 250 /* 251 * This member has never been utilized since the very beginning, thus 252 * it's always 0 regardless of kernel version. We always use 253 * generation + 1 to read log tree root. So here we mark it deprecated. 254 */ 255 __le64 __unused_log_root_transid; 256 __le64 total_bytes; 257 __le64 bytes_used; 258 __le64 root_dir_objectid; 259 __le64 num_devices; 260 __le32 sectorsize; 261 __le32 nodesize; 262 __le32 __unused_leafsize; 263 __le32 stripesize; 264 __le32 sys_chunk_array_size; 265 __le64 chunk_root_generation; 266 __le64 compat_flags; 267 __le64 compat_ro_flags; 268 __le64 incompat_flags; 269 __le16 csum_type; 270 u8 root_level; 271 u8 chunk_root_level; 272 u8 log_root_level; 273 struct btrfs_dev_item dev_item; 274 275 char label[BTRFS_LABEL_SIZE]; 276 277 __le64 cache_generation; 278 __le64 uuid_tree_generation; 279 280 /* the UUID written into btree blocks */ 281 u8 metadata_uuid[BTRFS_FSID_SIZE]; 282 283 /* Extent tree v2 */ 284 __le64 block_group_root; 285 __le64 block_group_root_generation; 286 u8 block_group_root_level; 287 288 /* future expansion */ 289 u8 reserved8[7]; 290 __le64 reserved[25]; 291 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE]; 292 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS]; 293 294 /* Padded to 4096 bytes */ 295 u8 padding[565]; 296 } __attribute__ ((__packed__)); 297 static_assert(sizeof(struct btrfs_super_block) == BTRFS_SUPER_INFO_SIZE); 298 299 /* 300 * Compat flags that we support. If any incompat flags are set other than the 301 * ones specified below then we will fail to mount 302 */ 303 #define BTRFS_FEATURE_COMPAT_SUPP 0ULL 304 #define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL 305 #define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL 306 307 #define BTRFS_FEATURE_COMPAT_RO_SUPP \ 308 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \ 309 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID | \ 310 BTRFS_FEATURE_COMPAT_RO_VERITY) 311 312 #define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL 313 #define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL 314 315 #ifdef CONFIG_BTRFS_DEBUG 316 /* 317 * Extent tree v2 supported only with CONFIG_BTRFS_DEBUG 318 */ 319 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 320 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 321 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 322 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 323 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 324 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 325 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 326 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 327 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 328 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 329 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 330 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 331 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 332 BTRFS_FEATURE_INCOMPAT_ZONED | \ 333 BTRFS_FEATURE_INCOMPAT_EXTENT_TREE_V2) 334 #else 335 #define BTRFS_FEATURE_INCOMPAT_SUPP \ 336 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \ 337 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \ 338 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \ 339 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \ 340 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \ 341 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \ 342 BTRFS_FEATURE_INCOMPAT_RAID56 | \ 343 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \ 344 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \ 345 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \ 346 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \ 347 BTRFS_FEATURE_INCOMPAT_RAID1C34 | \ 348 BTRFS_FEATURE_INCOMPAT_ZONED) 349 #endif 350 351 #define BTRFS_FEATURE_INCOMPAT_SAFE_SET \ 352 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF) 353 #define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL 354 355 /* 356 * A leaf is full of items. offset and size tell us where to find 357 * the item in the leaf (relative to the start of the data area) 358 */ 359 struct btrfs_item { 360 struct btrfs_disk_key key; 361 __le32 offset; 362 __le32 size; 363 } __attribute__ ((__packed__)); 364 365 /* 366 * leaves have an item area and a data area: 367 * [item0, item1....itemN] [free space] [dataN...data1, data0] 368 * 369 * The data is separate from the items to get the keys closer together 370 * during searches. 371 */ 372 struct btrfs_leaf { 373 struct btrfs_header header; 374 struct btrfs_item items[]; 375 } __attribute__ ((__packed__)); 376 377 /* 378 * all non-leaf blocks are nodes, they hold only keys and pointers to 379 * other blocks 380 */ 381 struct btrfs_key_ptr { 382 struct btrfs_disk_key key; 383 __le64 blockptr; 384 __le64 generation; 385 } __attribute__ ((__packed__)); 386 387 struct btrfs_node { 388 struct btrfs_header header; 389 struct btrfs_key_ptr ptrs[]; 390 } __attribute__ ((__packed__)); 391 392 /* Read ahead values for struct btrfs_path.reada */ 393 enum { 394 READA_NONE, 395 READA_BACK, 396 READA_FORWARD, 397 /* 398 * Similar to READA_FORWARD but unlike it: 399 * 400 * 1) It will trigger readahead even for leaves that are not close to 401 * each other on disk; 402 * 2) It also triggers readahead for nodes; 403 * 3) During a search, even when a node or leaf is already in memory, it 404 * will still trigger readahead for other nodes and leaves that follow 405 * it. 406 * 407 * This is meant to be used only when we know we are iterating over the 408 * entire tree or a very large part of it. 409 */ 410 READA_FORWARD_ALWAYS, 411 }; 412 413 /* 414 * btrfs_paths remember the path taken from the root down to the leaf. 415 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point 416 * to any other levels that are present. 417 * 418 * The slots array records the index of the item or block pointer 419 * used while walking the tree. 420 */ 421 struct btrfs_path { 422 struct extent_buffer *nodes[BTRFS_MAX_LEVEL]; 423 int slots[BTRFS_MAX_LEVEL]; 424 /* if there is real range locking, this locks field will change */ 425 u8 locks[BTRFS_MAX_LEVEL]; 426 u8 reada; 427 /* keep some upper locks as we walk down */ 428 u8 lowest_level; 429 430 /* 431 * set by btrfs_split_item, tells search_slot to keep all locks 432 * and to force calls to keep space in the nodes 433 */ 434 unsigned int search_for_split:1; 435 unsigned int keep_locks:1; 436 unsigned int skip_locking:1; 437 unsigned int search_commit_root:1; 438 unsigned int need_commit_sem:1; 439 unsigned int skip_release_on_error:1; 440 /* 441 * Indicate that new item (btrfs_search_slot) is extending already 442 * existing item and ins_len contains only the data size and not item 443 * header (ie. sizeof(struct btrfs_item) is not included). 444 */ 445 unsigned int search_for_extension:1; 446 }; 447 #define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \ 448 sizeof(struct btrfs_item)) 449 struct btrfs_dev_replace { 450 u64 replace_state; /* see #define above */ 451 time64_t time_started; /* seconds since 1-Jan-1970 */ 452 time64_t time_stopped; /* seconds since 1-Jan-1970 */ 453 atomic64_t num_write_errors; 454 atomic64_t num_uncorrectable_read_errors; 455 456 u64 cursor_left; 457 u64 committed_cursor_left; 458 u64 cursor_left_last_write_of_item; 459 u64 cursor_right; 460 461 u64 cont_reading_from_srcdev_mode; /* see #define above */ 462 463 int is_valid; 464 int item_needs_writeback; 465 struct btrfs_device *srcdev; 466 struct btrfs_device *tgtdev; 467 468 struct mutex lock_finishing_cancel_unmount; 469 struct rw_semaphore rwsem; 470 471 struct btrfs_scrub_progress scrub_progress; 472 473 struct percpu_counter bio_counter; 474 wait_queue_head_t replace_wait; 475 }; 476 477 /* 478 * free clusters are used to claim free space in relatively large chunks, 479 * allowing us to do less seeky writes. They are used for all metadata 480 * allocations. In ssd_spread mode they are also used for data allocations. 481 */ 482 struct btrfs_free_cluster { 483 spinlock_t lock; 484 spinlock_t refill_lock; 485 struct rb_root root; 486 487 /* largest extent in this cluster */ 488 u64 max_size; 489 490 /* first extent starting offset */ 491 u64 window_start; 492 493 /* We did a full search and couldn't create a cluster */ 494 bool fragmented; 495 496 struct btrfs_block_group *block_group; 497 /* 498 * when a cluster is allocated from a block group, we put the 499 * cluster onto a list in the block group so that it can 500 * be freed before the block group is freed. 501 */ 502 struct list_head block_group_list; 503 }; 504 505 enum btrfs_caching_type { 506 BTRFS_CACHE_NO, 507 BTRFS_CACHE_STARTED, 508 BTRFS_CACHE_FINISHED, 509 BTRFS_CACHE_ERROR, 510 }; 511 512 /* 513 * Tree to record all locked full stripes of a RAID5/6 block group 514 */ 515 struct btrfs_full_stripe_locks_tree { 516 struct rb_root root; 517 struct mutex lock; 518 }; 519 520 /* Discard control. */ 521 /* 522 * Async discard uses multiple lists to differentiate the discard filter 523 * parameters. Index 0 is for completely free block groups where we need to 524 * ensure the entire block group is trimmed without being lossy. Indices 525 * afterwards represent monotonically decreasing discard filter sizes to 526 * prioritize what should be discarded next. 527 */ 528 #define BTRFS_NR_DISCARD_LISTS 3 529 #define BTRFS_DISCARD_INDEX_UNUSED 0 530 #define BTRFS_DISCARD_INDEX_START 1 531 532 struct btrfs_discard_ctl { 533 struct workqueue_struct *discard_workers; 534 struct delayed_work work; 535 spinlock_t lock; 536 struct btrfs_block_group *block_group; 537 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS]; 538 u64 prev_discard; 539 u64 prev_discard_time; 540 atomic_t discardable_extents; 541 atomic64_t discardable_bytes; 542 u64 max_discard_size; 543 u64 delay_ms; 544 u32 iops_limit; 545 u32 kbps_limit; 546 u64 discard_extent_bytes; 547 u64 discard_bitmap_bytes; 548 atomic64_t discard_bytes_saved; 549 }; 550 551 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info); 552 553 /* fs_info */ 554 struct reloc_control; 555 struct btrfs_device; 556 struct btrfs_fs_devices; 557 struct btrfs_balance_control; 558 struct btrfs_delayed_root; 559 560 /* 561 * Block group or device which contains an active swapfile. Used for preventing 562 * unsafe operations while a swapfile is active. 563 * 564 * These are sorted on (ptr, inode) (note that a block group or device can 565 * contain more than one swapfile). We compare the pointer values because we 566 * don't actually care what the object is, we just need a quick check whether 567 * the object exists in the rbtree. 568 */ 569 struct btrfs_swapfile_pin { 570 struct rb_node node; 571 void *ptr; 572 struct inode *inode; 573 /* 574 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr 575 * points to a struct btrfs_device. 576 */ 577 bool is_block_group; 578 /* 579 * Only used when 'is_block_group' is true and it is the number of 580 * extents used by a swapfile for this block group ('ptr' field). 581 */ 582 int bg_extent_count; 583 }; 584 585 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr); 586 587 enum { 588 BTRFS_FS_CLOSING_START, 589 BTRFS_FS_CLOSING_DONE, 590 BTRFS_FS_LOG_RECOVERING, 591 BTRFS_FS_OPEN, 592 BTRFS_FS_QUOTA_ENABLED, 593 BTRFS_FS_UPDATE_UUID_TREE_GEN, 594 BTRFS_FS_CREATING_FREE_SPACE_TREE, 595 BTRFS_FS_BTREE_ERR, 596 BTRFS_FS_LOG1_ERR, 597 BTRFS_FS_LOG2_ERR, 598 BTRFS_FS_QUOTA_OVERRIDE, 599 /* Used to record internally whether fs has been frozen */ 600 BTRFS_FS_FROZEN, 601 /* 602 * Indicate that balance has been set up from the ioctl and is in the 603 * main phase. The fs_info::balance_ctl is initialized. 604 */ 605 BTRFS_FS_BALANCE_RUNNING, 606 607 /* 608 * Indicate that relocation of a chunk has started, it's set per chunk 609 * and is toggled between chunks. 610 */ 611 BTRFS_FS_RELOC_RUNNING, 612 613 /* Indicate that the cleaner thread is awake and doing something. */ 614 BTRFS_FS_CLEANER_RUNNING, 615 616 /* 617 * The checksumming has an optimized version and is considered fast, 618 * so we don't need to offload checksums to workqueues. 619 */ 620 BTRFS_FS_CSUM_IMPL_FAST, 621 622 /* Indicate that the discard workqueue can service discards. */ 623 BTRFS_FS_DISCARD_RUNNING, 624 625 /* Indicate that we need to cleanup space cache v1 */ 626 BTRFS_FS_CLEANUP_SPACE_CACHE_V1, 627 628 /* Indicate that we can't trust the free space tree for caching yet */ 629 BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, 630 631 /* Indicate whether there are any tree modification log users */ 632 BTRFS_FS_TREE_MOD_LOG_USERS, 633 634 /* Indicate that we want the transaction kthread to commit right now. */ 635 BTRFS_FS_COMMIT_TRANS, 636 637 /* Indicate we have half completed snapshot deletions pending. */ 638 BTRFS_FS_UNFINISHED_DROPS, 639 640 /* Indicate we have to finish a zone to do next allocation. */ 641 BTRFS_FS_NEED_ZONE_FINISH, 642 643 #if BITS_PER_LONG == 32 644 /* Indicate if we have error/warn message printed on 32bit systems */ 645 BTRFS_FS_32BIT_ERROR, 646 BTRFS_FS_32BIT_WARN, 647 #endif 648 }; 649 650 /* 651 * Exclusive operations (device replace, resize, device add/remove, balance) 652 */ 653 enum btrfs_exclusive_operation { 654 BTRFS_EXCLOP_NONE, 655 BTRFS_EXCLOP_BALANCE_PAUSED, 656 BTRFS_EXCLOP_BALANCE, 657 BTRFS_EXCLOP_DEV_ADD, 658 BTRFS_EXCLOP_DEV_REMOVE, 659 BTRFS_EXCLOP_DEV_REPLACE, 660 BTRFS_EXCLOP_RESIZE, 661 BTRFS_EXCLOP_SWAP_ACTIVATE, 662 }; 663 664 /* Store data about transaction commits, exported via sysfs. */ 665 struct btrfs_commit_stats { 666 /* Total number of commits */ 667 u64 commit_count; 668 /* The maximum commit duration so far in ns */ 669 u64 max_commit_dur; 670 /* The last commit duration in ns */ 671 u64 last_commit_dur; 672 /* The total commit duration in ns */ 673 u64 total_commit_dur; 674 }; 675 676 struct btrfs_fs_info { 677 u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 678 unsigned long flags; 679 struct btrfs_root *tree_root; 680 struct btrfs_root *chunk_root; 681 struct btrfs_root *dev_root; 682 struct btrfs_root *fs_root; 683 struct btrfs_root *quota_root; 684 struct btrfs_root *uuid_root; 685 struct btrfs_root *data_reloc_root; 686 struct btrfs_root *block_group_root; 687 688 /* the log root tree is a directory of all the other log roots */ 689 struct btrfs_root *log_root_tree; 690 691 /* The tree that holds the global roots (csum, extent, etc) */ 692 rwlock_t global_root_lock; 693 struct rb_root global_root_tree; 694 695 spinlock_t fs_roots_radix_lock; 696 struct radix_tree_root fs_roots_radix; 697 698 /* block group cache stuff */ 699 rwlock_t block_group_cache_lock; 700 struct rb_root_cached block_group_cache_tree; 701 702 /* keep track of unallocated space */ 703 atomic64_t free_chunk_space; 704 705 /* Track ranges which are used by log trees blocks/logged data extents */ 706 struct extent_io_tree excluded_extents; 707 708 /* logical->physical extent mapping */ 709 struct extent_map_tree mapping_tree; 710 711 /* 712 * block reservation for extent, checksum, root tree and 713 * delayed dir index item 714 */ 715 struct btrfs_block_rsv global_block_rsv; 716 /* block reservation for metadata operations */ 717 struct btrfs_block_rsv trans_block_rsv; 718 /* block reservation for chunk tree */ 719 struct btrfs_block_rsv chunk_block_rsv; 720 /* block reservation for delayed operations */ 721 struct btrfs_block_rsv delayed_block_rsv; 722 /* block reservation for delayed refs */ 723 struct btrfs_block_rsv delayed_refs_rsv; 724 725 struct btrfs_block_rsv empty_block_rsv; 726 727 u64 generation; 728 u64 last_trans_committed; 729 /* 730 * Generation of the last transaction used for block group relocation 731 * since the filesystem was last mounted (or 0 if none happened yet). 732 * Must be written and read while holding btrfs_fs_info::commit_root_sem. 733 */ 734 u64 last_reloc_trans; 735 u64 avg_delayed_ref_runtime; 736 737 /* 738 * this is updated to the current trans every time a full commit 739 * is required instead of the faster short fsync log commits 740 */ 741 u64 last_trans_log_full_commit; 742 unsigned long mount_opt; 743 /* 744 * Track requests for actions that need to be done during transaction 745 * commit (like for some mount options). 746 */ 747 unsigned long pending_changes; 748 unsigned long compress_type:4; 749 unsigned int compress_level; 750 u32 commit_interval; 751 /* 752 * It is a suggestive number, the read side is safe even it gets a 753 * wrong number because we will write out the data into a regular 754 * extent. The write side(mount/remount) is under ->s_umount lock, 755 * so it is also safe. 756 */ 757 u64 max_inline; 758 759 struct btrfs_transaction *running_transaction; 760 wait_queue_head_t transaction_throttle; 761 wait_queue_head_t transaction_wait; 762 wait_queue_head_t transaction_blocked_wait; 763 wait_queue_head_t async_submit_wait; 764 765 /* 766 * Used to protect the incompat_flags, compat_flags, compat_ro_flags 767 * when they are updated. 768 * 769 * Because we do not clear the flags for ever, so we needn't use 770 * the lock on the read side. 771 * 772 * We also needn't use the lock when we mount the fs, because 773 * there is no other task which will update the flag. 774 */ 775 spinlock_t super_lock; 776 struct btrfs_super_block *super_copy; 777 struct btrfs_super_block *super_for_commit; 778 struct super_block *sb; 779 struct inode *btree_inode; 780 struct mutex tree_log_mutex; 781 struct mutex transaction_kthread_mutex; 782 struct mutex cleaner_mutex; 783 struct mutex chunk_mutex; 784 785 /* 786 * this is taken to make sure we don't set block groups ro after 787 * the free space cache has been allocated on them 788 */ 789 struct mutex ro_block_group_mutex; 790 791 /* this is used during read/modify/write to make sure 792 * no two ios are trying to mod the same stripe at the same 793 * time 794 */ 795 struct btrfs_stripe_hash_table *stripe_hash_table; 796 797 /* 798 * this protects the ordered operations list only while we are 799 * processing all of the entries on it. This way we make 800 * sure the commit code doesn't find the list temporarily empty 801 * because another function happens to be doing non-waiting preflush 802 * before jumping into the main commit. 803 */ 804 struct mutex ordered_operations_mutex; 805 806 struct rw_semaphore commit_root_sem; 807 808 struct rw_semaphore cleanup_work_sem; 809 810 struct rw_semaphore subvol_sem; 811 812 spinlock_t trans_lock; 813 /* 814 * the reloc mutex goes with the trans lock, it is taken 815 * during commit to protect us from the relocation code 816 */ 817 struct mutex reloc_mutex; 818 819 struct list_head trans_list; 820 struct list_head dead_roots; 821 struct list_head caching_block_groups; 822 823 spinlock_t delayed_iput_lock; 824 struct list_head delayed_iputs; 825 atomic_t nr_delayed_iputs; 826 wait_queue_head_t delayed_iputs_wait; 827 828 atomic64_t tree_mod_seq; 829 830 /* this protects tree_mod_log and tree_mod_seq_list */ 831 rwlock_t tree_mod_log_lock; 832 struct rb_root tree_mod_log; 833 struct list_head tree_mod_seq_list; 834 835 atomic_t async_delalloc_pages; 836 837 /* 838 * this is used to protect the following list -- ordered_roots. 839 */ 840 spinlock_t ordered_root_lock; 841 842 /* 843 * all fs/file tree roots in which there are data=ordered extents 844 * pending writeback are added into this list. 845 * 846 * these can span multiple transactions and basically include 847 * every dirty data page that isn't from nodatacow 848 */ 849 struct list_head ordered_roots; 850 851 struct mutex delalloc_root_mutex; 852 spinlock_t delalloc_root_lock; 853 /* all fs/file tree roots that have delalloc inodes. */ 854 struct list_head delalloc_roots; 855 856 /* 857 * there is a pool of worker threads for checksumming during writes 858 * and a pool for checksumming after reads. This is because readers 859 * can run with FS locks held, and the writers may be waiting for 860 * those locks. We don't want ordering in the pending list to cause 861 * deadlocks, and so the two are serviced separately. 862 * 863 * A third pool does submit_bio to avoid deadlocking with the other 864 * two 865 */ 866 struct btrfs_workqueue *workers; 867 struct btrfs_workqueue *hipri_workers; 868 struct btrfs_workqueue *delalloc_workers; 869 struct btrfs_workqueue *flush_workers; 870 struct workqueue_struct *endio_workers; 871 struct workqueue_struct *endio_meta_workers; 872 struct workqueue_struct *endio_raid56_workers; 873 struct workqueue_struct *rmw_workers; 874 struct workqueue_struct *compressed_write_workers; 875 struct btrfs_workqueue *endio_write_workers; 876 struct btrfs_workqueue *endio_freespace_worker; 877 struct btrfs_workqueue *caching_workers; 878 879 /* 880 * fixup workers take dirty pages that didn't properly go through 881 * the cow mechanism and make them safe to write. It happens 882 * for the sys_munmap function call path 883 */ 884 struct btrfs_workqueue *fixup_workers; 885 struct btrfs_workqueue *delayed_workers; 886 887 struct task_struct *transaction_kthread; 888 struct task_struct *cleaner_kthread; 889 u32 thread_pool_size; 890 891 struct kobject *space_info_kobj; 892 struct kobject *qgroups_kobj; 893 894 /* used to keep from writing metadata until there is a nice batch */ 895 struct percpu_counter dirty_metadata_bytes; 896 struct percpu_counter delalloc_bytes; 897 struct percpu_counter ordered_bytes; 898 s32 dirty_metadata_batch; 899 s32 delalloc_batch; 900 901 struct list_head dirty_cowonly_roots; 902 903 struct btrfs_fs_devices *fs_devices; 904 905 /* 906 * The space_info list is effectively read only after initial 907 * setup. It is populated at mount time and cleaned up after 908 * all block groups are removed. RCU is used to protect it. 909 */ 910 struct list_head space_info; 911 912 struct btrfs_space_info *data_sinfo; 913 914 struct reloc_control *reloc_ctl; 915 916 /* data_alloc_cluster is only used in ssd_spread mode */ 917 struct btrfs_free_cluster data_alloc_cluster; 918 919 /* all metadata allocations go through this cluster */ 920 struct btrfs_free_cluster meta_alloc_cluster; 921 922 /* auto defrag inodes go here */ 923 spinlock_t defrag_inodes_lock; 924 struct rb_root defrag_inodes; 925 atomic_t defrag_running; 926 927 /* Used to protect avail_{data, metadata, system}_alloc_bits */ 928 seqlock_t profiles_lock; 929 /* 930 * these three are in extended format (availability of single 931 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other 932 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits) 933 */ 934 u64 avail_data_alloc_bits; 935 u64 avail_metadata_alloc_bits; 936 u64 avail_system_alloc_bits; 937 938 /* restriper state */ 939 spinlock_t balance_lock; 940 struct mutex balance_mutex; 941 atomic_t balance_pause_req; 942 atomic_t balance_cancel_req; 943 struct btrfs_balance_control *balance_ctl; 944 wait_queue_head_t balance_wait_q; 945 946 /* Cancellation requests for chunk relocation */ 947 atomic_t reloc_cancel_req; 948 949 u32 data_chunk_allocations; 950 u32 metadata_ratio; 951 952 void *bdev_holder; 953 954 /* private scrub information */ 955 struct mutex scrub_lock; 956 atomic_t scrubs_running; 957 atomic_t scrub_pause_req; 958 atomic_t scrubs_paused; 959 atomic_t scrub_cancel_req; 960 wait_queue_head_t scrub_pause_wait; 961 /* 962 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not 963 * running. 964 */ 965 refcount_t scrub_workers_refcnt; 966 struct workqueue_struct *scrub_workers; 967 struct workqueue_struct *scrub_wr_completion_workers; 968 struct workqueue_struct *scrub_parity_workers; 969 struct btrfs_subpage_info *subpage_info; 970 971 struct btrfs_discard_ctl discard_ctl; 972 973 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 974 u32 check_integrity_print_mask; 975 #endif 976 /* is qgroup tracking in a consistent state? */ 977 u64 qgroup_flags; 978 979 /* holds configuration and tracking. Protected by qgroup_lock */ 980 struct rb_root qgroup_tree; 981 spinlock_t qgroup_lock; 982 983 /* 984 * used to avoid frequently calling ulist_alloc()/ulist_free() 985 * when doing qgroup accounting, it must be protected by qgroup_lock. 986 */ 987 struct ulist *qgroup_ulist; 988 989 /* 990 * Protect user change for quota operations. If a transaction is needed, 991 * it must be started before locking this lock. 992 */ 993 struct mutex qgroup_ioctl_lock; 994 995 /* list of dirty qgroups to be written at next commit */ 996 struct list_head dirty_qgroups; 997 998 /* used by qgroup for an efficient tree traversal */ 999 u64 qgroup_seq; 1000 1001 /* qgroup rescan items */ 1002 struct mutex qgroup_rescan_lock; /* protects the progress item */ 1003 struct btrfs_key qgroup_rescan_progress; 1004 struct btrfs_workqueue *qgroup_rescan_workers; 1005 struct completion qgroup_rescan_completion; 1006 struct btrfs_work qgroup_rescan_work; 1007 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */ 1008 1009 /* filesystem state */ 1010 unsigned long fs_state; 1011 1012 struct btrfs_delayed_root *delayed_root; 1013 1014 /* Extent buffer radix tree */ 1015 spinlock_t buffer_lock; 1016 /* Entries are eb->start / sectorsize */ 1017 struct radix_tree_root buffer_radix; 1018 1019 /* next backup root to be overwritten */ 1020 int backup_root_index; 1021 1022 /* device replace state */ 1023 struct btrfs_dev_replace dev_replace; 1024 1025 struct semaphore uuid_tree_rescan_sem; 1026 1027 /* Used to reclaim the metadata space in the background. */ 1028 struct work_struct async_reclaim_work; 1029 struct work_struct async_data_reclaim_work; 1030 struct work_struct preempt_reclaim_work; 1031 1032 /* Reclaim partially filled block groups in the background */ 1033 struct work_struct reclaim_bgs_work; 1034 struct list_head reclaim_bgs; 1035 int bg_reclaim_threshold; 1036 1037 spinlock_t unused_bgs_lock; 1038 struct list_head unused_bgs; 1039 struct mutex unused_bg_unpin_mutex; 1040 /* Protect block groups that are going to be deleted */ 1041 struct mutex reclaim_bgs_lock; 1042 1043 /* Cached block sizes */ 1044 u32 nodesize; 1045 u32 sectorsize; 1046 /* ilog2 of sectorsize, use to avoid 64bit division */ 1047 u32 sectorsize_bits; 1048 u32 csum_size; 1049 u32 csums_per_leaf; 1050 u32 stripesize; 1051 1052 /* 1053 * Maximum size of an extent. BTRFS_MAX_EXTENT_SIZE on regular 1054 * filesystem, on zoned it depends on the device constraints. 1055 */ 1056 u64 max_extent_size; 1057 1058 /* Block groups and devices containing active swapfiles. */ 1059 spinlock_t swapfile_pins_lock; 1060 struct rb_root swapfile_pins; 1061 1062 struct crypto_shash *csum_shash; 1063 1064 /* Type of exclusive operation running, protected by super_lock */ 1065 enum btrfs_exclusive_operation exclusive_operation; 1066 1067 /* 1068 * Zone size > 0 when in ZONED mode, otherwise it's used for a check 1069 * if the mode is enabled 1070 */ 1071 u64 zone_size; 1072 1073 /* Max size to emit ZONE_APPEND write command */ 1074 u64 max_zone_append_size; 1075 struct mutex zoned_meta_io_lock; 1076 spinlock_t treelog_bg_lock; 1077 u64 treelog_bg; 1078 1079 /* 1080 * Start of the dedicated data relocation block group, protected by 1081 * relocation_bg_lock. 1082 */ 1083 spinlock_t relocation_bg_lock; 1084 u64 data_reloc_bg; 1085 struct mutex zoned_data_reloc_io_lock; 1086 1087 u64 nr_global_roots; 1088 1089 spinlock_t zone_active_bgs_lock; 1090 struct list_head zone_active_bgs; 1091 /* Waiters when BTRFS_FS_NEED_ZONE_FINISH is set */ 1092 wait_queue_head_t zone_finish_wait; 1093 1094 /* Updates are not protected by any lock */ 1095 struct btrfs_commit_stats commit_stats; 1096 1097 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 1098 spinlock_t ref_verify_lock; 1099 struct rb_root block_tree; 1100 #endif 1101 1102 #ifdef CONFIG_BTRFS_DEBUG 1103 struct kobject *debug_kobj; 1104 struct kobject *discard_debug_kobj; 1105 struct list_head allocated_roots; 1106 1107 spinlock_t eb_leak_lock; 1108 struct list_head allocated_ebs; 1109 #endif 1110 }; 1111 1112 static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb) 1113 { 1114 return sb->s_fs_info; 1115 } 1116 1117 /* 1118 * The state of btrfs root 1119 */ 1120 enum { 1121 /* 1122 * btrfs_record_root_in_trans is a multi-step process, and it can race 1123 * with the balancing code. But the race is very small, and only the 1124 * first time the root is added to each transaction. So IN_TRANS_SETUP 1125 * is used to tell us when more checks are required 1126 */ 1127 BTRFS_ROOT_IN_TRANS_SETUP, 1128 1129 /* 1130 * Set if tree blocks of this root can be shared by other roots. 1131 * Only subvolume trees and their reloc trees have this bit set. 1132 * Conflicts with TRACK_DIRTY bit. 1133 * 1134 * This affects two things: 1135 * 1136 * - How balance works 1137 * For shareable roots, we need to use reloc tree and do path 1138 * replacement for balance, and need various pre/post hooks for 1139 * snapshot creation to handle them. 1140 * 1141 * While for non-shareable trees, we just simply do a tree search 1142 * with COW. 1143 * 1144 * - How dirty roots are tracked 1145 * For shareable roots, btrfs_record_root_in_trans() is needed to 1146 * track them, while non-subvolume roots have TRACK_DIRTY bit, they 1147 * don't need to set this manually. 1148 */ 1149 BTRFS_ROOT_SHAREABLE, 1150 BTRFS_ROOT_TRACK_DIRTY, 1151 BTRFS_ROOT_IN_RADIX, 1152 BTRFS_ROOT_ORPHAN_ITEM_INSERTED, 1153 BTRFS_ROOT_DEFRAG_RUNNING, 1154 BTRFS_ROOT_FORCE_COW, 1155 BTRFS_ROOT_MULTI_LOG_TASKS, 1156 BTRFS_ROOT_DIRTY, 1157 BTRFS_ROOT_DELETING, 1158 1159 /* 1160 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan 1161 * 1162 * Set for the subvolume tree owning the reloc tree. 1163 */ 1164 BTRFS_ROOT_DEAD_RELOC_TREE, 1165 /* Mark dead root stored on device whose cleanup needs to be resumed */ 1166 BTRFS_ROOT_DEAD_TREE, 1167 /* The root has a log tree. Used for subvolume roots and the tree root. */ 1168 BTRFS_ROOT_HAS_LOG_TREE, 1169 /* Qgroup flushing is in progress */ 1170 BTRFS_ROOT_QGROUP_FLUSHING, 1171 /* We started the orphan cleanup for this root. */ 1172 BTRFS_ROOT_ORPHAN_CLEANUP, 1173 /* This root has a drop operation that was started previously. */ 1174 BTRFS_ROOT_UNFINISHED_DROP, 1175 /* This reloc root needs to have its buffers lockdep class reset. */ 1176 BTRFS_ROOT_RESET_LOCKDEP_CLASS, 1177 }; 1178 1179 static inline void btrfs_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1180 { 1181 clear_and_wake_up_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags); 1182 } 1183 1184 /* 1185 * Record swapped tree blocks of a subvolume tree for delayed subtree trace 1186 * code. For detail check comment in fs/btrfs/qgroup.c. 1187 */ 1188 struct btrfs_qgroup_swapped_blocks { 1189 spinlock_t lock; 1190 /* RM_EMPTY_ROOT() of above blocks[] */ 1191 bool swapped; 1192 struct rb_root blocks[BTRFS_MAX_LEVEL]; 1193 }; 1194 1195 /* 1196 * in ram representation of the tree. extent_root is used for all allocations 1197 * and for the extent tree extent_root root. 1198 */ 1199 struct btrfs_root { 1200 struct rb_node rb_node; 1201 1202 struct extent_buffer *node; 1203 1204 struct extent_buffer *commit_root; 1205 struct btrfs_root *log_root; 1206 struct btrfs_root *reloc_root; 1207 1208 unsigned long state; 1209 struct btrfs_root_item root_item; 1210 struct btrfs_key root_key; 1211 struct btrfs_fs_info *fs_info; 1212 struct extent_io_tree dirty_log_pages; 1213 1214 struct mutex objectid_mutex; 1215 1216 spinlock_t accounting_lock; 1217 struct btrfs_block_rsv *block_rsv; 1218 1219 struct mutex log_mutex; 1220 wait_queue_head_t log_writer_wait; 1221 wait_queue_head_t log_commit_wait[2]; 1222 struct list_head log_ctxs[2]; 1223 /* Used only for log trees of subvolumes, not for the log root tree */ 1224 atomic_t log_writers; 1225 atomic_t log_commit[2]; 1226 /* Used only for log trees of subvolumes, not for the log root tree */ 1227 atomic_t log_batch; 1228 int log_transid; 1229 /* No matter the commit succeeds or not*/ 1230 int log_transid_committed; 1231 /* Just be updated when the commit succeeds. */ 1232 int last_log_commit; 1233 pid_t log_start_pid; 1234 1235 u64 last_trans; 1236 1237 u32 type; 1238 1239 u64 free_objectid; 1240 1241 struct btrfs_key defrag_progress; 1242 struct btrfs_key defrag_max; 1243 1244 /* The dirty list is only used by non-shareable roots */ 1245 struct list_head dirty_list; 1246 1247 struct list_head root_list; 1248 1249 spinlock_t log_extents_lock[2]; 1250 struct list_head logged_list[2]; 1251 1252 spinlock_t inode_lock; 1253 /* red-black tree that keeps track of in-memory inodes */ 1254 struct rb_root inode_tree; 1255 1256 /* 1257 * radix tree that keeps track of delayed nodes of every inode, 1258 * protected by inode_lock 1259 */ 1260 struct radix_tree_root delayed_nodes_tree; 1261 /* 1262 * right now this just gets used so that a root has its own devid 1263 * for stat. It may be used for more later 1264 */ 1265 dev_t anon_dev; 1266 1267 spinlock_t root_item_lock; 1268 refcount_t refs; 1269 1270 struct mutex delalloc_mutex; 1271 spinlock_t delalloc_lock; 1272 /* 1273 * all of the inodes that have delalloc bytes. It is possible for 1274 * this list to be empty even when there is still dirty data=ordered 1275 * extents waiting to finish IO. 1276 */ 1277 struct list_head delalloc_inodes; 1278 struct list_head delalloc_root; 1279 u64 nr_delalloc_inodes; 1280 1281 struct mutex ordered_extent_mutex; 1282 /* 1283 * this is used by the balancing code to wait for all the pending 1284 * ordered extents 1285 */ 1286 spinlock_t ordered_extent_lock; 1287 1288 /* 1289 * all of the data=ordered extents pending writeback 1290 * these can span multiple transactions and basically include 1291 * every dirty data page that isn't from nodatacow 1292 */ 1293 struct list_head ordered_extents; 1294 struct list_head ordered_root; 1295 u64 nr_ordered_extents; 1296 1297 /* 1298 * Not empty if this subvolume root has gone through tree block swap 1299 * (relocation) 1300 * 1301 * Will be used by reloc_control::dirty_subvol_roots. 1302 */ 1303 struct list_head reloc_dirty_list; 1304 1305 /* 1306 * Number of currently running SEND ioctls to prevent 1307 * manipulation with the read-only status via SUBVOL_SETFLAGS 1308 */ 1309 int send_in_progress; 1310 /* 1311 * Number of currently running deduplication operations that have a 1312 * destination inode belonging to this root. Protected by the lock 1313 * root_item_lock. 1314 */ 1315 int dedupe_in_progress; 1316 /* For exclusion of snapshot creation and nocow writes */ 1317 struct btrfs_drew_lock snapshot_lock; 1318 1319 atomic_t snapshot_force_cow; 1320 1321 /* For qgroup metadata reserved space */ 1322 spinlock_t qgroup_meta_rsv_lock; 1323 u64 qgroup_meta_rsv_pertrans; 1324 u64 qgroup_meta_rsv_prealloc; 1325 wait_queue_head_t qgroup_flush_wait; 1326 1327 /* Number of active swapfiles */ 1328 atomic_t nr_swapfiles; 1329 1330 /* Record pairs of swapped blocks for qgroup */ 1331 struct btrfs_qgroup_swapped_blocks swapped_blocks; 1332 1333 /* Used only by log trees, when logging csum items */ 1334 struct extent_io_tree log_csum_range; 1335 1336 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1337 u64 alloc_bytenr; 1338 #endif 1339 1340 #ifdef CONFIG_BTRFS_DEBUG 1341 struct list_head leak_list; 1342 #endif 1343 }; 1344 1345 /* 1346 * Structure that conveys information about an extent that is going to replace 1347 * all the extents in a file range. 1348 */ 1349 struct btrfs_replace_extent_info { 1350 u64 disk_offset; 1351 u64 disk_len; 1352 u64 data_offset; 1353 u64 data_len; 1354 u64 file_offset; 1355 /* Pointer to a file extent item of type regular or prealloc. */ 1356 char *extent_buf; 1357 /* 1358 * Set to true when attempting to replace a file range with a new extent 1359 * described by this structure, set to false when attempting to clone an 1360 * existing extent into a file range. 1361 */ 1362 bool is_new_extent; 1363 /* Indicate if we should update the inode's mtime and ctime. */ 1364 bool update_times; 1365 /* Meaningful only if is_new_extent is true. */ 1366 int qgroup_reserved; 1367 /* 1368 * Meaningful only if is_new_extent is true. 1369 * Used to track how many extent items we have already inserted in a 1370 * subvolume tree that refer to the extent described by this structure, 1371 * so that we know when to create a new delayed ref or update an existing 1372 * one. 1373 */ 1374 int insertions; 1375 }; 1376 1377 /* Arguments for btrfs_drop_extents() */ 1378 struct btrfs_drop_extents_args { 1379 /* Input parameters */ 1380 1381 /* 1382 * If NULL, btrfs_drop_extents() will allocate and free its own path. 1383 * If 'replace_extent' is true, this must not be NULL. Also the path 1384 * is always released except if 'replace_extent' is true and 1385 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case 1386 * the path is kept locked. 1387 */ 1388 struct btrfs_path *path; 1389 /* Start offset of the range to drop extents from */ 1390 u64 start; 1391 /* End (exclusive, last byte + 1) of the range to drop extents from */ 1392 u64 end; 1393 /* If true drop all the extent maps in the range */ 1394 bool drop_cache; 1395 /* 1396 * If true it means we want to insert a new extent after dropping all 1397 * the extents in the range. If this is true, the 'extent_item_size' 1398 * parameter must be set as well and the 'extent_inserted' field will 1399 * be set to true by btrfs_drop_extents() if it could insert the new 1400 * extent. 1401 * Note: when this is set to true the path must not be NULL. 1402 */ 1403 bool replace_extent; 1404 /* 1405 * Used if 'replace_extent' is true. Size of the file extent item to 1406 * insert after dropping all existing extents in the range 1407 */ 1408 u32 extent_item_size; 1409 1410 /* Output parameters */ 1411 1412 /* 1413 * Set to the minimum between the input parameter 'end' and the end 1414 * (exclusive, last byte + 1) of the last dropped extent. This is always 1415 * set even if btrfs_drop_extents() returns an error. 1416 */ 1417 u64 drop_end; 1418 /* 1419 * The number of allocated bytes found in the range. This can be smaller 1420 * than the range's length when there are holes in the range. 1421 */ 1422 u64 bytes_found; 1423 /* 1424 * Only set if 'replace_extent' is true. Set to true if we were able 1425 * to insert a replacement extent after dropping all extents in the 1426 * range, otherwise set to false by btrfs_drop_extents(). 1427 * Also, if btrfs_drop_extents() has set this to true it means it 1428 * returned with the path locked, otherwise if it has set this to 1429 * false it has returned with the path released. 1430 */ 1431 bool extent_inserted; 1432 }; 1433 1434 struct btrfs_file_private { 1435 void *filldir_buf; 1436 }; 1437 1438 1439 static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info) 1440 { 1441 1442 return info->nodesize - sizeof(struct btrfs_header); 1443 } 1444 1445 #define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items) 1446 1447 static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info) 1448 { 1449 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item); 1450 } 1451 1452 static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info) 1453 { 1454 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr); 1455 } 1456 1457 #define BTRFS_FILE_EXTENT_INLINE_DATA_START \ 1458 (offsetof(struct btrfs_file_extent_item, disk_bytenr)) 1459 static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info) 1460 { 1461 return BTRFS_MAX_ITEM_SIZE(info) - 1462 BTRFS_FILE_EXTENT_INLINE_DATA_START; 1463 } 1464 1465 static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info) 1466 { 1467 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item); 1468 } 1469 1470 /* 1471 * Flags for mount options. 1472 * 1473 * Note: don't forget to add new options to btrfs_show_options() 1474 */ 1475 enum { 1476 BTRFS_MOUNT_NODATASUM = (1UL << 0), 1477 BTRFS_MOUNT_NODATACOW = (1UL << 1), 1478 BTRFS_MOUNT_NOBARRIER = (1UL << 2), 1479 BTRFS_MOUNT_SSD = (1UL << 3), 1480 BTRFS_MOUNT_DEGRADED = (1UL << 4), 1481 BTRFS_MOUNT_COMPRESS = (1UL << 5), 1482 BTRFS_MOUNT_NOTREELOG = (1UL << 6), 1483 BTRFS_MOUNT_FLUSHONCOMMIT = (1UL << 7), 1484 BTRFS_MOUNT_SSD_SPREAD = (1UL << 8), 1485 BTRFS_MOUNT_NOSSD = (1UL << 9), 1486 BTRFS_MOUNT_DISCARD_SYNC = (1UL << 10), 1487 BTRFS_MOUNT_FORCE_COMPRESS = (1UL << 11), 1488 BTRFS_MOUNT_SPACE_CACHE = (1UL << 12), 1489 BTRFS_MOUNT_CLEAR_CACHE = (1UL << 13), 1490 BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED = (1UL << 14), 1491 BTRFS_MOUNT_ENOSPC_DEBUG = (1UL << 15), 1492 BTRFS_MOUNT_AUTO_DEFRAG = (1UL << 16), 1493 BTRFS_MOUNT_USEBACKUPROOT = (1UL << 17), 1494 BTRFS_MOUNT_SKIP_BALANCE = (1UL << 18), 1495 BTRFS_MOUNT_CHECK_INTEGRITY = (1UL << 19), 1496 BTRFS_MOUNT_CHECK_INTEGRITY_DATA = (1UL << 20), 1497 BTRFS_MOUNT_PANIC_ON_FATAL_ERROR = (1UL << 21), 1498 BTRFS_MOUNT_RESCAN_UUID_TREE = (1UL << 22), 1499 BTRFS_MOUNT_FRAGMENT_DATA = (1UL << 23), 1500 BTRFS_MOUNT_FRAGMENT_METADATA = (1UL << 24), 1501 BTRFS_MOUNT_FREE_SPACE_TREE = (1UL << 25), 1502 BTRFS_MOUNT_NOLOGREPLAY = (1UL << 26), 1503 BTRFS_MOUNT_REF_VERIFY = (1UL << 27), 1504 BTRFS_MOUNT_DISCARD_ASYNC = (1UL << 28), 1505 BTRFS_MOUNT_IGNOREBADROOTS = (1UL << 29), 1506 BTRFS_MOUNT_IGNOREDATACSUMS = (1UL << 30), 1507 }; 1508 1509 #define BTRFS_DEFAULT_COMMIT_INTERVAL (30) 1510 #define BTRFS_DEFAULT_MAX_INLINE (2048) 1511 1512 #define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt) 1513 #define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt) 1514 #define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt) 1515 #define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \ 1516 BTRFS_MOUNT_##opt) 1517 1518 #define btrfs_set_and_info(fs_info, opt, fmt, args...) \ 1519 do { \ 1520 if (!btrfs_test_opt(fs_info, opt)) \ 1521 btrfs_info(fs_info, fmt, ##args); \ 1522 btrfs_set_opt(fs_info->mount_opt, opt); \ 1523 } while (0) 1524 1525 #define btrfs_clear_and_info(fs_info, opt, fmt, args...) \ 1526 do { \ 1527 if (btrfs_test_opt(fs_info, opt)) \ 1528 btrfs_info(fs_info, fmt, ##args); \ 1529 btrfs_clear_opt(fs_info->mount_opt, opt); \ 1530 } while (0) 1531 1532 /* 1533 * Requests for changes that need to be done during transaction commit. 1534 * 1535 * Internal mount options that are used for special handling of the real 1536 * mount options (eg. cannot be set during remount and have to be set during 1537 * transaction commit) 1538 */ 1539 1540 #define BTRFS_PENDING_COMMIT (0) 1541 1542 #define btrfs_test_pending(info, opt) \ 1543 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1544 #define btrfs_set_pending(info, opt) \ 1545 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1546 #define btrfs_clear_pending(info, opt) \ 1547 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes) 1548 1549 /* 1550 * Helpers for setting pending mount option changes. 1551 * 1552 * Expects corresponding macros 1553 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name 1554 */ 1555 #define btrfs_set_pending_and_info(info, opt, fmt, args...) \ 1556 do { \ 1557 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1558 btrfs_info((info), fmt, ##args); \ 1559 btrfs_set_pending((info), SET_##opt); \ 1560 btrfs_clear_pending((info), CLEAR_##opt); \ 1561 } \ 1562 } while(0) 1563 1564 #define btrfs_clear_pending_and_info(info, opt, fmt, args...) \ 1565 do { \ 1566 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \ 1567 btrfs_info((info), fmt, ##args); \ 1568 btrfs_set_pending((info), CLEAR_##opt); \ 1569 btrfs_clear_pending((info), SET_##opt); \ 1570 } \ 1571 } while(0) 1572 1573 /* 1574 * Inode flags 1575 */ 1576 #define BTRFS_INODE_NODATASUM (1U << 0) 1577 #define BTRFS_INODE_NODATACOW (1U << 1) 1578 #define BTRFS_INODE_READONLY (1U << 2) 1579 #define BTRFS_INODE_NOCOMPRESS (1U << 3) 1580 #define BTRFS_INODE_PREALLOC (1U << 4) 1581 #define BTRFS_INODE_SYNC (1U << 5) 1582 #define BTRFS_INODE_IMMUTABLE (1U << 6) 1583 #define BTRFS_INODE_APPEND (1U << 7) 1584 #define BTRFS_INODE_NODUMP (1U << 8) 1585 #define BTRFS_INODE_NOATIME (1U << 9) 1586 #define BTRFS_INODE_DIRSYNC (1U << 10) 1587 #define BTRFS_INODE_COMPRESS (1U << 11) 1588 1589 #define BTRFS_INODE_ROOT_ITEM_INIT (1U << 31) 1590 1591 #define BTRFS_INODE_FLAG_MASK \ 1592 (BTRFS_INODE_NODATASUM | \ 1593 BTRFS_INODE_NODATACOW | \ 1594 BTRFS_INODE_READONLY | \ 1595 BTRFS_INODE_NOCOMPRESS | \ 1596 BTRFS_INODE_PREALLOC | \ 1597 BTRFS_INODE_SYNC | \ 1598 BTRFS_INODE_IMMUTABLE | \ 1599 BTRFS_INODE_APPEND | \ 1600 BTRFS_INODE_NODUMP | \ 1601 BTRFS_INODE_NOATIME | \ 1602 BTRFS_INODE_DIRSYNC | \ 1603 BTRFS_INODE_COMPRESS | \ 1604 BTRFS_INODE_ROOT_ITEM_INIT) 1605 1606 #define BTRFS_INODE_RO_VERITY (1U << 0) 1607 1608 #define BTRFS_INODE_RO_FLAG_MASK (BTRFS_INODE_RO_VERITY) 1609 1610 struct btrfs_map_token { 1611 struct extent_buffer *eb; 1612 char *kaddr; 1613 unsigned long offset; 1614 }; 1615 1616 #define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \ 1617 ((bytes) >> (fs_info)->sectorsize_bits) 1618 1619 static inline void btrfs_init_map_token(struct btrfs_map_token *token, 1620 struct extent_buffer *eb) 1621 { 1622 token->eb = eb; 1623 token->kaddr = page_address(eb->pages[0]); 1624 token->offset = 0; 1625 } 1626 1627 /* some macros to generate set/get functions for the struct fields. This 1628 * assumes there is a lefoo_to_cpu for every type, so lets make a simple 1629 * one for u8: 1630 */ 1631 #define le8_to_cpu(v) (v) 1632 #define cpu_to_le8(v) (v) 1633 #define __le8 u8 1634 1635 static inline u8 get_unaligned_le8(const void *p) 1636 { 1637 return *(u8 *)p; 1638 } 1639 1640 static inline void put_unaligned_le8(u8 val, void *p) 1641 { 1642 *(u8 *)p = val; 1643 } 1644 1645 #define read_eb_member(eb, ptr, type, member, result) (\ 1646 read_extent_buffer(eb, (char *)(result), \ 1647 ((unsigned long)(ptr)) + \ 1648 offsetof(type, member), \ 1649 sizeof(((type *)0)->member))) 1650 1651 #define write_eb_member(eb, ptr, type, member, result) (\ 1652 write_extent_buffer(eb, (char *)(result), \ 1653 ((unsigned long)(ptr)) + \ 1654 offsetof(type, member), \ 1655 sizeof(((type *)0)->member))) 1656 1657 #define DECLARE_BTRFS_SETGET_BITS(bits) \ 1658 u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \ 1659 const void *ptr, unsigned long off); \ 1660 void btrfs_set_token_##bits(struct btrfs_map_token *token, \ 1661 const void *ptr, unsigned long off, \ 1662 u##bits val); \ 1663 u##bits btrfs_get_##bits(const struct extent_buffer *eb, \ 1664 const void *ptr, unsigned long off); \ 1665 void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \ 1666 unsigned long off, u##bits val); 1667 1668 DECLARE_BTRFS_SETGET_BITS(8) 1669 DECLARE_BTRFS_SETGET_BITS(16) 1670 DECLARE_BTRFS_SETGET_BITS(32) 1671 DECLARE_BTRFS_SETGET_BITS(64) 1672 1673 #define BTRFS_SETGET_FUNCS(name, type, member, bits) \ 1674 static inline u##bits btrfs_##name(const struct extent_buffer *eb, \ 1675 const type *s) \ 1676 { \ 1677 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1678 return btrfs_get_##bits(eb, s, offsetof(type, member)); \ 1679 } \ 1680 static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \ 1681 u##bits val) \ 1682 { \ 1683 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1684 btrfs_set_##bits(eb, s, offsetof(type, member), val); \ 1685 } \ 1686 static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \ 1687 const type *s) \ 1688 { \ 1689 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1690 return btrfs_get_token_##bits(token, s, offsetof(type, member));\ 1691 } \ 1692 static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\ 1693 type *s, u##bits val) \ 1694 { \ 1695 static_assert(sizeof(u##bits) == sizeof(((type *)0))->member); \ 1696 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \ 1697 } 1698 1699 #define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \ 1700 static inline u##bits btrfs_##name(const struct extent_buffer *eb) \ 1701 { \ 1702 const type *p = page_address(eb->pages[0]) + \ 1703 offset_in_page(eb->start); \ 1704 return get_unaligned_le##bits(&p->member); \ 1705 } \ 1706 static inline void btrfs_set_##name(const struct extent_buffer *eb, \ 1707 u##bits val) \ 1708 { \ 1709 type *p = page_address(eb->pages[0]) + offset_in_page(eb->start); \ 1710 put_unaligned_le##bits(val, &p->member); \ 1711 } 1712 1713 #define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \ 1714 static inline u##bits btrfs_##name(const type *s) \ 1715 { \ 1716 return get_unaligned_le##bits(&s->member); \ 1717 } \ 1718 static inline void btrfs_set_##name(type *s, u##bits val) \ 1719 { \ 1720 put_unaligned_le##bits(val, &s->member); \ 1721 } 1722 1723 static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb, 1724 struct btrfs_dev_item *s) 1725 { 1726 static_assert(sizeof(u64) == 1727 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1728 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item, 1729 total_bytes)); 1730 } 1731 static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb, 1732 struct btrfs_dev_item *s, 1733 u64 val) 1734 { 1735 static_assert(sizeof(u64) == 1736 sizeof(((struct btrfs_dev_item *)0))->total_bytes); 1737 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize)); 1738 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val); 1739 } 1740 1741 1742 BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64); 1743 BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64); 1744 BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32); 1745 BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32); 1746 BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item, 1747 start_offset, 64); 1748 BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32); 1749 BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64); 1750 BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32); 1751 BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8); 1752 BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8); 1753 BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64); 1754 1755 BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64); 1756 BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item, 1757 total_bytes, 64); 1758 BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item, 1759 bytes_used, 64); 1760 BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item, 1761 io_align, 32); 1762 BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item, 1763 io_width, 32); 1764 BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item, 1765 sector_size, 32); 1766 BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64); 1767 BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item, 1768 dev_group, 32); 1769 BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item, 1770 seek_speed, 8); 1771 BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item, 1772 bandwidth, 8); 1773 BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item, 1774 generation, 64); 1775 1776 static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d) 1777 { 1778 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid); 1779 } 1780 1781 static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d) 1782 { 1783 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid); 1784 } 1785 1786 BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64); 1787 BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64); 1788 BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64); 1789 BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32); 1790 BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32); 1791 BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32); 1792 BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64); 1793 BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16); 1794 BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16); 1795 BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64); 1796 BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64); 1797 1798 static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s) 1799 { 1800 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid); 1801 } 1802 1803 BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64); 1804 BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64); 1805 BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk, 1806 stripe_len, 64); 1807 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk, 1808 io_align, 32); 1809 BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk, 1810 io_width, 32); 1811 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk, 1812 sector_size, 32); 1813 BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64); 1814 BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk, 1815 num_stripes, 16); 1816 BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk, 1817 sub_stripes, 16); 1818 BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64); 1819 BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64); 1820 1821 static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c, 1822 int nr) 1823 { 1824 unsigned long offset = (unsigned long)c; 1825 offset += offsetof(struct btrfs_chunk, stripe); 1826 offset += nr * sizeof(struct btrfs_stripe); 1827 return (struct btrfs_stripe *)offset; 1828 } 1829 1830 static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr) 1831 { 1832 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr)); 1833 } 1834 1835 static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb, 1836 struct btrfs_chunk *c, int nr) 1837 { 1838 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr)); 1839 } 1840 1841 static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb, 1842 struct btrfs_chunk *c, int nr) 1843 { 1844 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr)); 1845 } 1846 1847 /* struct btrfs_block_group_item */ 1848 BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item, 1849 used, 64); 1850 BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item, 1851 used, 64); 1852 BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid, 1853 struct btrfs_block_group_item, chunk_objectid, 64); 1854 1855 BTRFS_SETGET_FUNCS(block_group_chunk_objectid, 1856 struct btrfs_block_group_item, chunk_objectid, 64); 1857 BTRFS_SETGET_FUNCS(block_group_flags, 1858 struct btrfs_block_group_item, flags, 64); 1859 BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags, 1860 struct btrfs_block_group_item, flags, 64); 1861 1862 /* struct btrfs_free_space_info */ 1863 BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info, 1864 extent_count, 32); 1865 BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32); 1866 1867 /* struct btrfs_inode_ref */ 1868 BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16); 1869 BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64); 1870 1871 /* struct btrfs_inode_extref */ 1872 BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref, 1873 parent_objectid, 64); 1874 BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref, 1875 name_len, 16); 1876 BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64); 1877 1878 /* struct btrfs_inode_item */ 1879 BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64); 1880 BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64); 1881 BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64); 1882 BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64); 1883 BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64); 1884 BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64); 1885 BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32); 1886 BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32); 1887 BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32); 1888 BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32); 1889 BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64); 1890 BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64); 1891 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item, 1892 generation, 64); 1893 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item, 1894 sequence, 64); 1895 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item, 1896 transid, 64); 1897 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64); 1898 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item, 1899 nbytes, 64); 1900 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item, 1901 block_group, 64); 1902 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32); 1903 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32); 1904 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32); 1905 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32); 1906 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64); 1907 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64); 1908 BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64); 1909 BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32); 1910 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64); 1911 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32); 1912 1913 /* struct btrfs_dev_extent */ 1914 BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent, 1915 chunk_tree, 64); 1916 BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent, 1917 chunk_objectid, 64); 1918 BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent, 1919 chunk_offset, 64); 1920 BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64); 1921 BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64); 1922 BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item, 1923 generation, 64); 1924 BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64); 1925 1926 BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8); 1927 1928 static inline void btrfs_tree_block_key(const struct extent_buffer *eb, 1929 struct btrfs_tree_block_info *item, 1930 struct btrfs_disk_key *key) 1931 { 1932 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1933 } 1934 1935 static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb, 1936 struct btrfs_tree_block_info *item, 1937 struct btrfs_disk_key *key) 1938 { 1939 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key); 1940 } 1941 1942 BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref, 1943 root, 64); 1944 BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref, 1945 objectid, 64); 1946 BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref, 1947 offset, 64); 1948 BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref, 1949 count, 32); 1950 1951 BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref, 1952 count, 32); 1953 1954 BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref, 1955 type, 8); 1956 BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref, 1957 offset, 64); 1958 1959 static inline u32 btrfs_extent_inline_ref_size(int type) 1960 { 1961 if (type == BTRFS_TREE_BLOCK_REF_KEY || 1962 type == BTRFS_SHARED_BLOCK_REF_KEY) 1963 return sizeof(struct btrfs_extent_inline_ref); 1964 if (type == BTRFS_SHARED_DATA_REF_KEY) 1965 return sizeof(struct btrfs_shared_data_ref) + 1966 sizeof(struct btrfs_extent_inline_ref); 1967 if (type == BTRFS_EXTENT_DATA_REF_KEY) 1968 return sizeof(struct btrfs_extent_data_ref) + 1969 offsetof(struct btrfs_extent_inline_ref, offset); 1970 return 0; 1971 } 1972 1973 /* struct btrfs_node */ 1974 BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64); 1975 BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64); 1976 BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr, 1977 blockptr, 64); 1978 BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr, 1979 generation, 64); 1980 1981 static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr) 1982 { 1983 unsigned long ptr; 1984 ptr = offsetof(struct btrfs_node, ptrs) + 1985 sizeof(struct btrfs_key_ptr) * nr; 1986 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr); 1987 } 1988 1989 static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb, 1990 int nr, u64 val) 1991 { 1992 unsigned long ptr; 1993 ptr = offsetof(struct btrfs_node, ptrs) + 1994 sizeof(struct btrfs_key_ptr) * nr; 1995 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val); 1996 } 1997 1998 static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr) 1999 { 2000 unsigned long ptr; 2001 ptr = offsetof(struct btrfs_node, ptrs) + 2002 sizeof(struct btrfs_key_ptr) * nr; 2003 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr); 2004 } 2005 2006 static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb, 2007 int nr, u64 val) 2008 { 2009 unsigned long ptr; 2010 ptr = offsetof(struct btrfs_node, ptrs) + 2011 sizeof(struct btrfs_key_ptr) * nr; 2012 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val); 2013 } 2014 2015 static inline unsigned long btrfs_node_key_ptr_offset(int nr) 2016 { 2017 return offsetof(struct btrfs_node, ptrs) + 2018 sizeof(struct btrfs_key_ptr) * nr; 2019 } 2020 2021 void btrfs_node_key(const struct extent_buffer *eb, 2022 struct btrfs_disk_key *disk_key, int nr); 2023 2024 static inline void btrfs_set_node_key(const struct extent_buffer *eb, 2025 struct btrfs_disk_key *disk_key, int nr) 2026 { 2027 unsigned long ptr; 2028 ptr = btrfs_node_key_ptr_offset(nr); 2029 write_eb_member(eb, (struct btrfs_key_ptr *)ptr, 2030 struct btrfs_key_ptr, key, disk_key); 2031 } 2032 2033 /* struct btrfs_item */ 2034 BTRFS_SETGET_FUNCS(raw_item_offset, struct btrfs_item, offset, 32); 2035 BTRFS_SETGET_FUNCS(raw_item_size, struct btrfs_item, size, 32); 2036 BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32); 2037 BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32); 2038 2039 static inline unsigned long btrfs_item_nr_offset(int nr) 2040 { 2041 return offsetof(struct btrfs_leaf, items) + 2042 sizeof(struct btrfs_item) * nr; 2043 } 2044 2045 static inline struct btrfs_item *btrfs_item_nr(int nr) 2046 { 2047 return (struct btrfs_item *)btrfs_item_nr_offset(nr); 2048 } 2049 2050 #define BTRFS_ITEM_SETGET_FUNCS(member) \ 2051 static inline u32 btrfs_item_##member(const struct extent_buffer *eb, \ 2052 int slot) \ 2053 { \ 2054 return btrfs_raw_item_##member(eb, btrfs_item_nr(slot)); \ 2055 } \ 2056 static inline void btrfs_set_item_##member(const struct extent_buffer *eb, \ 2057 int slot, u32 val) \ 2058 { \ 2059 btrfs_set_raw_item_##member(eb, btrfs_item_nr(slot), val); \ 2060 } \ 2061 static inline u32 btrfs_token_item_##member(struct btrfs_map_token *token, \ 2062 int slot) \ 2063 { \ 2064 struct btrfs_item *item = btrfs_item_nr(slot); \ 2065 return btrfs_token_raw_item_##member(token, item); \ 2066 } \ 2067 static inline void btrfs_set_token_item_##member(struct btrfs_map_token *token, \ 2068 int slot, u32 val) \ 2069 { \ 2070 struct btrfs_item *item = btrfs_item_nr(slot); \ 2071 btrfs_set_token_raw_item_##member(token, item, val); \ 2072 } 2073 2074 BTRFS_ITEM_SETGET_FUNCS(offset) 2075 BTRFS_ITEM_SETGET_FUNCS(size); 2076 2077 static inline u32 btrfs_item_data_end(const struct extent_buffer *eb, int nr) 2078 { 2079 return btrfs_item_offset(eb, nr) + btrfs_item_size(eb, nr); 2080 } 2081 2082 static inline void btrfs_item_key(const struct extent_buffer *eb, 2083 struct btrfs_disk_key *disk_key, int nr) 2084 { 2085 struct btrfs_item *item = btrfs_item_nr(nr); 2086 read_eb_member(eb, item, struct btrfs_item, key, disk_key); 2087 } 2088 2089 static inline void btrfs_set_item_key(struct extent_buffer *eb, 2090 struct btrfs_disk_key *disk_key, int nr) 2091 { 2092 struct btrfs_item *item = btrfs_item_nr(nr); 2093 write_eb_member(eb, item, struct btrfs_item, key, disk_key); 2094 } 2095 2096 BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64); 2097 2098 /* 2099 * struct btrfs_root_ref 2100 */ 2101 BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64); 2102 BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64); 2103 BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16); 2104 2105 /* struct btrfs_dir_item */ 2106 BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16); 2107 BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8); 2108 BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16); 2109 BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64); 2110 BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8); 2111 BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item, 2112 data_len, 16); 2113 BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item, 2114 name_len, 16); 2115 BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item, 2116 transid, 64); 2117 2118 static inline void btrfs_dir_item_key(const struct extent_buffer *eb, 2119 const struct btrfs_dir_item *item, 2120 struct btrfs_disk_key *key) 2121 { 2122 read_eb_member(eb, item, struct btrfs_dir_item, location, key); 2123 } 2124 2125 static inline void btrfs_set_dir_item_key(struct extent_buffer *eb, 2126 struct btrfs_dir_item *item, 2127 const struct btrfs_disk_key *key) 2128 { 2129 write_eb_member(eb, item, struct btrfs_dir_item, location, key); 2130 } 2131 2132 BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header, 2133 num_entries, 64); 2134 BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header, 2135 num_bitmaps, 64); 2136 BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header, 2137 generation, 64); 2138 2139 static inline void btrfs_free_space_key(const struct extent_buffer *eb, 2140 const struct btrfs_free_space_header *h, 2141 struct btrfs_disk_key *key) 2142 { 2143 read_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2144 } 2145 2146 static inline void btrfs_set_free_space_key(struct extent_buffer *eb, 2147 struct btrfs_free_space_header *h, 2148 const struct btrfs_disk_key *key) 2149 { 2150 write_eb_member(eb, h, struct btrfs_free_space_header, location, key); 2151 } 2152 2153 /* struct btrfs_disk_key */ 2154 BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key, 2155 objectid, 64); 2156 BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64); 2157 BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8); 2158 2159 #ifdef __LITTLE_ENDIAN 2160 2161 /* 2162 * Optimized helpers for little-endian architectures where CPU and on-disk 2163 * structures have the same endianness and we can skip conversions. 2164 */ 2165 2166 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key, 2167 const struct btrfs_disk_key *disk_key) 2168 { 2169 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key)); 2170 } 2171 2172 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key, 2173 const struct btrfs_key *cpu_key) 2174 { 2175 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key)); 2176 } 2177 2178 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2179 struct btrfs_key *cpu_key, int nr) 2180 { 2181 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2182 2183 btrfs_node_key(eb, disk_key, nr); 2184 } 2185 2186 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2187 struct btrfs_key *cpu_key, int nr) 2188 { 2189 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2190 2191 btrfs_item_key(eb, disk_key, nr); 2192 } 2193 2194 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2195 const struct btrfs_dir_item *item, 2196 struct btrfs_key *cpu_key) 2197 { 2198 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key; 2199 2200 btrfs_dir_item_key(eb, item, disk_key); 2201 } 2202 2203 #else 2204 2205 static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu, 2206 const struct btrfs_disk_key *disk) 2207 { 2208 cpu->offset = le64_to_cpu(disk->offset); 2209 cpu->type = disk->type; 2210 cpu->objectid = le64_to_cpu(disk->objectid); 2211 } 2212 2213 static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk, 2214 const struct btrfs_key *cpu) 2215 { 2216 disk->offset = cpu_to_le64(cpu->offset); 2217 disk->type = cpu->type; 2218 disk->objectid = cpu_to_le64(cpu->objectid); 2219 } 2220 2221 static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb, 2222 struct btrfs_key *key, int nr) 2223 { 2224 struct btrfs_disk_key disk_key; 2225 btrfs_node_key(eb, &disk_key, nr); 2226 btrfs_disk_key_to_cpu(key, &disk_key); 2227 } 2228 2229 static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb, 2230 struct btrfs_key *key, int nr) 2231 { 2232 struct btrfs_disk_key disk_key; 2233 btrfs_item_key(eb, &disk_key, nr); 2234 btrfs_disk_key_to_cpu(key, &disk_key); 2235 } 2236 2237 static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb, 2238 const struct btrfs_dir_item *item, 2239 struct btrfs_key *key) 2240 { 2241 struct btrfs_disk_key disk_key; 2242 btrfs_dir_item_key(eb, item, &disk_key); 2243 btrfs_disk_key_to_cpu(key, &disk_key); 2244 } 2245 2246 #endif 2247 2248 /* struct btrfs_header */ 2249 BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64); 2250 BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header, 2251 generation, 64); 2252 BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64); 2253 BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32); 2254 BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64); 2255 BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8); 2256 BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header, 2257 generation, 64); 2258 BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64); 2259 BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header, 2260 nritems, 32); 2261 BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64); 2262 2263 static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag) 2264 { 2265 return (btrfs_header_flags(eb) & flag) == flag; 2266 } 2267 2268 static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag) 2269 { 2270 u64 flags = btrfs_header_flags(eb); 2271 btrfs_set_header_flags(eb, flags | flag); 2272 } 2273 2274 static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag) 2275 { 2276 u64 flags = btrfs_header_flags(eb); 2277 btrfs_set_header_flags(eb, flags & ~flag); 2278 } 2279 2280 static inline int btrfs_header_backref_rev(const struct extent_buffer *eb) 2281 { 2282 u64 flags = btrfs_header_flags(eb); 2283 return flags >> BTRFS_BACKREF_REV_SHIFT; 2284 } 2285 2286 static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb, 2287 int rev) 2288 { 2289 u64 flags = btrfs_header_flags(eb); 2290 flags &= ~BTRFS_BACKREF_REV_MASK; 2291 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT; 2292 btrfs_set_header_flags(eb, flags); 2293 } 2294 2295 static inline int btrfs_is_leaf(const struct extent_buffer *eb) 2296 { 2297 return btrfs_header_level(eb) == 0; 2298 } 2299 2300 /* struct btrfs_root_item */ 2301 BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item, 2302 generation, 64); 2303 BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32); 2304 BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64); 2305 BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8); 2306 2307 BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item, 2308 generation, 64); 2309 BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64); 2310 BTRFS_SETGET_STACK_FUNCS(root_drop_level, struct btrfs_root_item, drop_level, 8); 2311 BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8); 2312 BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64); 2313 BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32); 2314 BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64); 2315 BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64); 2316 BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64); 2317 BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item, 2318 last_snapshot, 64); 2319 BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item, 2320 generation_v2, 64); 2321 BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item, 2322 ctransid, 64); 2323 BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item, 2324 otransid, 64); 2325 BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item, 2326 stransid, 64); 2327 BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item, 2328 rtransid, 64); 2329 2330 static inline bool btrfs_root_readonly(const struct btrfs_root *root) 2331 { 2332 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2333 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0; 2334 } 2335 2336 static inline bool btrfs_root_dead(const struct btrfs_root *root) 2337 { 2338 /* Byte-swap the constant at compile time, root_item::flags is LE */ 2339 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0; 2340 } 2341 2342 static inline u64 btrfs_root_id(const struct btrfs_root *root) 2343 { 2344 return root->root_key.objectid; 2345 } 2346 2347 /* struct btrfs_root_backup */ 2348 BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup, 2349 tree_root, 64); 2350 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup, 2351 tree_root_gen, 64); 2352 BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup, 2353 tree_root_level, 8); 2354 2355 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup, 2356 chunk_root, 64); 2357 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup, 2358 chunk_root_gen, 64); 2359 BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup, 2360 chunk_root_level, 8); 2361 2362 BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup, 2363 extent_root, 64); 2364 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup, 2365 extent_root_gen, 64); 2366 BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup, 2367 extent_root_level, 8); 2368 2369 BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup, 2370 fs_root, 64); 2371 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup, 2372 fs_root_gen, 64); 2373 BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup, 2374 fs_root_level, 8); 2375 2376 BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup, 2377 dev_root, 64); 2378 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup, 2379 dev_root_gen, 64); 2380 BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup, 2381 dev_root_level, 8); 2382 2383 BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup, 2384 csum_root, 64); 2385 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup, 2386 csum_root_gen, 64); 2387 BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup, 2388 csum_root_level, 8); 2389 BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup, 2390 total_bytes, 64); 2391 BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup, 2392 bytes_used, 64); 2393 BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup, 2394 num_devices, 64); 2395 2396 /* 2397 * For extent tree v2 we overload the extent root with the block group root, as 2398 * we will have multiple extent roots. 2399 */ 2400 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root, struct btrfs_root_backup, 2401 extent_root, 64); 2402 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_gen, struct btrfs_root_backup, 2403 extent_root_gen, 64); 2404 BTRFS_SETGET_STACK_FUNCS(backup_block_group_root_level, 2405 struct btrfs_root_backup, extent_root_level, 8); 2406 2407 /* struct btrfs_balance_item */ 2408 BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64); 2409 2410 static inline void btrfs_balance_data(const struct extent_buffer *eb, 2411 const struct btrfs_balance_item *bi, 2412 struct btrfs_disk_balance_args *ba) 2413 { 2414 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2415 } 2416 2417 static inline void btrfs_set_balance_data(struct extent_buffer *eb, 2418 struct btrfs_balance_item *bi, 2419 const struct btrfs_disk_balance_args *ba) 2420 { 2421 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba); 2422 } 2423 2424 static inline void btrfs_balance_meta(const struct extent_buffer *eb, 2425 const struct btrfs_balance_item *bi, 2426 struct btrfs_disk_balance_args *ba) 2427 { 2428 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2429 } 2430 2431 static inline void btrfs_set_balance_meta(struct extent_buffer *eb, 2432 struct btrfs_balance_item *bi, 2433 const struct btrfs_disk_balance_args *ba) 2434 { 2435 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba); 2436 } 2437 2438 static inline void btrfs_balance_sys(const struct extent_buffer *eb, 2439 const struct btrfs_balance_item *bi, 2440 struct btrfs_disk_balance_args *ba) 2441 { 2442 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2443 } 2444 2445 static inline void btrfs_set_balance_sys(struct extent_buffer *eb, 2446 struct btrfs_balance_item *bi, 2447 const struct btrfs_disk_balance_args *ba) 2448 { 2449 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba); 2450 } 2451 2452 static inline void 2453 btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu, 2454 const struct btrfs_disk_balance_args *disk) 2455 { 2456 memset(cpu, 0, sizeof(*cpu)); 2457 2458 cpu->profiles = le64_to_cpu(disk->profiles); 2459 cpu->usage = le64_to_cpu(disk->usage); 2460 cpu->devid = le64_to_cpu(disk->devid); 2461 cpu->pstart = le64_to_cpu(disk->pstart); 2462 cpu->pend = le64_to_cpu(disk->pend); 2463 cpu->vstart = le64_to_cpu(disk->vstart); 2464 cpu->vend = le64_to_cpu(disk->vend); 2465 cpu->target = le64_to_cpu(disk->target); 2466 cpu->flags = le64_to_cpu(disk->flags); 2467 cpu->limit = le64_to_cpu(disk->limit); 2468 cpu->stripes_min = le32_to_cpu(disk->stripes_min); 2469 cpu->stripes_max = le32_to_cpu(disk->stripes_max); 2470 } 2471 2472 static inline void 2473 btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk, 2474 const struct btrfs_balance_args *cpu) 2475 { 2476 memset(disk, 0, sizeof(*disk)); 2477 2478 disk->profiles = cpu_to_le64(cpu->profiles); 2479 disk->usage = cpu_to_le64(cpu->usage); 2480 disk->devid = cpu_to_le64(cpu->devid); 2481 disk->pstart = cpu_to_le64(cpu->pstart); 2482 disk->pend = cpu_to_le64(cpu->pend); 2483 disk->vstart = cpu_to_le64(cpu->vstart); 2484 disk->vend = cpu_to_le64(cpu->vend); 2485 disk->target = cpu_to_le64(cpu->target); 2486 disk->flags = cpu_to_le64(cpu->flags); 2487 disk->limit = cpu_to_le64(cpu->limit); 2488 disk->stripes_min = cpu_to_le32(cpu->stripes_min); 2489 disk->stripes_max = cpu_to_le32(cpu->stripes_max); 2490 } 2491 2492 /* struct btrfs_super_block */ 2493 BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64); 2494 BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64); 2495 BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block, 2496 generation, 64); 2497 BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64); 2498 BTRFS_SETGET_STACK_FUNCS(super_sys_array_size, 2499 struct btrfs_super_block, sys_chunk_array_size, 32); 2500 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation, 2501 struct btrfs_super_block, chunk_root_generation, 64); 2502 BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block, 2503 root_level, 8); 2504 BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block, 2505 chunk_root, 64); 2506 BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block, 2507 chunk_root_level, 8); 2508 BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block, 2509 log_root, 64); 2510 BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block, 2511 log_root_level, 8); 2512 BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block, 2513 total_bytes, 64); 2514 BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block, 2515 bytes_used, 64); 2516 BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block, 2517 sectorsize, 32); 2518 BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block, 2519 nodesize, 32); 2520 BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block, 2521 stripesize, 32); 2522 BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block, 2523 root_dir_objectid, 64); 2524 BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block, 2525 num_devices, 64); 2526 BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block, 2527 compat_flags, 64); 2528 BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block, 2529 compat_ro_flags, 64); 2530 BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block, 2531 incompat_flags, 64); 2532 BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block, 2533 csum_type, 16); 2534 BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block, 2535 cache_generation, 64); 2536 BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64); 2537 BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block, 2538 uuid_tree_generation, 64); 2539 BTRFS_SETGET_STACK_FUNCS(super_block_group_root, struct btrfs_super_block, 2540 block_group_root, 64); 2541 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_generation, 2542 struct btrfs_super_block, 2543 block_group_root_generation, 64); 2544 BTRFS_SETGET_STACK_FUNCS(super_block_group_root_level, struct btrfs_super_block, 2545 block_group_root_level, 8); 2546 2547 int btrfs_super_csum_size(const struct btrfs_super_block *s); 2548 const char *btrfs_super_csum_name(u16 csum_type); 2549 const char *btrfs_super_csum_driver(u16 csum_type); 2550 size_t __attribute_const__ btrfs_get_num_csums(void); 2551 2552 2553 /* 2554 * The leaf data grows from end-to-front in the node. 2555 * this returns the address of the start of the last item, 2556 * which is the stop of the leaf data stack 2557 */ 2558 static inline unsigned int leaf_data_end(const struct extent_buffer *leaf) 2559 { 2560 u32 nr = btrfs_header_nritems(leaf); 2561 2562 if (nr == 0) 2563 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 2564 return btrfs_item_offset(leaf, nr - 1); 2565 } 2566 2567 /* struct btrfs_file_extent_item */ 2568 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item, 2569 type, 8); 2570 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr, 2571 struct btrfs_file_extent_item, disk_bytenr, 64); 2572 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset, 2573 struct btrfs_file_extent_item, offset, 64); 2574 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation, 2575 struct btrfs_file_extent_item, generation, 64); 2576 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes, 2577 struct btrfs_file_extent_item, num_bytes, 64); 2578 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes, 2579 struct btrfs_file_extent_item, ram_bytes, 64); 2580 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes, 2581 struct btrfs_file_extent_item, disk_num_bytes, 64); 2582 BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression, 2583 struct btrfs_file_extent_item, compression, 8); 2584 2585 static inline unsigned long 2586 btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e) 2587 { 2588 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START; 2589 } 2590 2591 static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize) 2592 { 2593 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize; 2594 } 2595 2596 BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8); 2597 BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item, 2598 disk_bytenr, 64); 2599 BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item, 2600 generation, 64); 2601 BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item, 2602 disk_num_bytes, 64); 2603 BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item, 2604 offset, 64); 2605 BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item, 2606 num_bytes, 64); 2607 BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item, 2608 ram_bytes, 64); 2609 BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item, 2610 compression, 8); 2611 BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item, 2612 encryption, 8); 2613 BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item, 2614 other_encoding, 16); 2615 2616 /* 2617 * this returns the number of bytes used by the item on disk, minus the 2618 * size of any extent headers. If a file is compressed on disk, this is 2619 * the compressed size 2620 */ 2621 static inline u32 btrfs_file_extent_inline_item_len( 2622 const struct extent_buffer *eb, 2623 int nr) 2624 { 2625 return btrfs_item_size(eb, nr) - BTRFS_FILE_EXTENT_INLINE_DATA_START; 2626 } 2627 2628 /* btrfs_qgroup_status_item */ 2629 BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item, 2630 generation, 64); 2631 BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item, 2632 version, 64); 2633 BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item, 2634 flags, 64); 2635 BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item, 2636 rescan, 64); 2637 2638 /* btrfs_qgroup_info_item */ 2639 BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item, 2640 generation, 64); 2641 BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64); 2642 BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item, 2643 rfer_cmpr, 64); 2644 BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64); 2645 BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item, 2646 excl_cmpr, 64); 2647 2648 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation, 2649 struct btrfs_qgroup_info_item, generation, 64); 2650 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item, 2651 rfer, 64); 2652 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr, 2653 struct btrfs_qgroup_info_item, rfer_cmpr, 64); 2654 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item, 2655 excl, 64); 2656 BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr, 2657 struct btrfs_qgroup_info_item, excl_cmpr, 64); 2658 2659 /* btrfs_qgroup_limit_item */ 2660 BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item, 2661 flags, 64); 2662 BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item, 2663 max_rfer, 64); 2664 BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item, 2665 max_excl, 64); 2666 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item, 2667 rsv_rfer, 64); 2668 BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item, 2669 rsv_excl, 64); 2670 2671 /* btrfs_dev_replace_item */ 2672 BTRFS_SETGET_FUNCS(dev_replace_src_devid, 2673 struct btrfs_dev_replace_item, src_devid, 64); 2674 BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode, 2675 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode, 2676 64); 2677 BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item, 2678 replace_state, 64); 2679 BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item, 2680 time_started, 64); 2681 BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item, 2682 time_stopped, 64); 2683 BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item, 2684 num_write_errors, 64); 2685 BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors, 2686 struct btrfs_dev_replace_item, num_uncorrectable_read_errors, 2687 64); 2688 BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item, 2689 cursor_left, 64); 2690 BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item, 2691 cursor_right, 64); 2692 2693 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid, 2694 struct btrfs_dev_replace_item, src_devid, 64); 2695 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode, 2696 struct btrfs_dev_replace_item, 2697 cont_reading_from_srcdev_mode, 64); 2698 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state, 2699 struct btrfs_dev_replace_item, replace_state, 64); 2700 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started, 2701 struct btrfs_dev_replace_item, time_started, 64); 2702 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped, 2703 struct btrfs_dev_replace_item, time_stopped, 64); 2704 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors, 2705 struct btrfs_dev_replace_item, num_write_errors, 64); 2706 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors, 2707 struct btrfs_dev_replace_item, 2708 num_uncorrectable_read_errors, 64); 2709 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left, 2710 struct btrfs_dev_replace_item, cursor_left, 64); 2711 BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right, 2712 struct btrfs_dev_replace_item, cursor_right, 64); 2713 2714 /* helper function to cast into the data area of the leaf. */ 2715 #define btrfs_item_ptr(leaf, slot, type) \ 2716 ((type *)(BTRFS_LEAF_DATA_OFFSET + \ 2717 btrfs_item_offset(leaf, slot))) 2718 2719 #define btrfs_item_ptr_offset(leaf, slot) \ 2720 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \ 2721 btrfs_item_offset(leaf, slot))) 2722 2723 static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length) 2724 { 2725 return crc32c(crc, address, length); 2726 } 2727 2728 static inline void btrfs_crc32c_final(u32 crc, u8 *result) 2729 { 2730 put_unaligned_le32(~crc, result); 2731 } 2732 2733 static inline u64 btrfs_name_hash(const char *name, int len) 2734 { 2735 return crc32c((u32)~1, name, len); 2736 } 2737 2738 /* 2739 * Figure the key offset of an extended inode ref 2740 */ 2741 static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name, 2742 int len) 2743 { 2744 return (u64) crc32c(parent_objectid, name, len); 2745 } 2746 2747 static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping) 2748 { 2749 return mapping_gfp_constraint(mapping, ~__GFP_FS); 2750 } 2751 2752 /* extent-tree.c */ 2753 2754 enum btrfs_inline_ref_type { 2755 BTRFS_REF_TYPE_INVALID, 2756 BTRFS_REF_TYPE_BLOCK, 2757 BTRFS_REF_TYPE_DATA, 2758 BTRFS_REF_TYPE_ANY, 2759 }; 2760 2761 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, 2762 struct btrfs_extent_inline_ref *iref, 2763 enum btrfs_inline_ref_type is_data); 2764 u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset); 2765 2766 static inline u8 *btrfs_csum_ptr(const struct btrfs_fs_info *fs_info, u8 *csums, 2767 u64 offset) 2768 { 2769 u64 offset_in_sectors = offset >> fs_info->sectorsize_bits; 2770 2771 return csums + offset_in_sectors * fs_info->csum_size; 2772 } 2773 2774 /* 2775 * Take the number of bytes to be checksummed and figure out how many leaves 2776 * it would require to store the csums for that many bytes. 2777 */ 2778 static inline u64 btrfs_csum_bytes_to_leaves( 2779 const struct btrfs_fs_info *fs_info, u64 csum_bytes) 2780 { 2781 const u64 num_csums = csum_bytes >> fs_info->sectorsize_bits; 2782 2783 return DIV_ROUND_UP_ULL(num_csums, fs_info->csums_per_leaf); 2784 } 2785 2786 /* 2787 * Use this if we would be adding new items, as we could split nodes as we cow 2788 * down the tree. 2789 */ 2790 static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info, 2791 unsigned num_items) 2792 { 2793 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items; 2794 } 2795 2796 /* 2797 * Doing a truncate or a modification won't result in new nodes or leaves, just 2798 * what we need for COW. 2799 */ 2800 static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info, 2801 unsigned num_items) 2802 { 2803 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items; 2804 } 2805 2806 int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info, 2807 u64 start, u64 num_bytes); 2808 void btrfs_free_excluded_extents(struct btrfs_block_group *cache); 2809 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, 2810 unsigned long count); 2811 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info, 2812 struct btrfs_delayed_ref_root *delayed_refs, 2813 struct btrfs_delayed_ref_head *head); 2814 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len); 2815 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, 2816 struct btrfs_fs_info *fs_info, u64 bytenr, 2817 u64 offset, int metadata, u64 *refs, u64 *flags); 2818 int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num, 2819 int reserved); 2820 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans, 2821 u64 bytenr, u64 num_bytes); 2822 int btrfs_exclude_logged_extents(struct extent_buffer *eb); 2823 int btrfs_cross_ref_exist(struct btrfs_root *root, 2824 u64 objectid, u64 offset, u64 bytenr, bool strict, 2825 struct btrfs_path *path); 2826 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, 2827 struct btrfs_root *root, 2828 u64 parent, u64 root_objectid, 2829 const struct btrfs_disk_key *key, 2830 int level, u64 hint, 2831 u64 empty_size, 2832 enum btrfs_lock_nesting nest); 2833 void btrfs_free_tree_block(struct btrfs_trans_handle *trans, 2834 u64 root_id, 2835 struct extent_buffer *buf, 2836 u64 parent, int last_ref); 2837 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, 2838 struct btrfs_root *root, u64 owner, 2839 u64 offset, u64 ram_bytes, 2840 struct btrfs_key *ins); 2841 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, 2842 u64 root_objectid, u64 owner, u64 offset, 2843 struct btrfs_key *ins); 2844 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes, 2845 u64 min_alloc_size, u64 empty_size, u64 hint_byte, 2846 struct btrfs_key *ins, int is_data, int delalloc); 2847 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2848 struct extent_buffer *buf, int full_backref); 2849 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2850 struct extent_buffer *buf, int full_backref); 2851 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, 2852 struct extent_buffer *eb, u64 flags, int level); 2853 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref); 2854 2855 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, 2856 u64 start, u64 len, int delalloc); 2857 int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start, 2858 u64 len); 2859 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans); 2860 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, 2861 struct btrfs_ref *generic_ref); 2862 2863 void btrfs_clear_space_info_full(struct btrfs_fs_info *info); 2864 2865 /* 2866 * Different levels for to flush space when doing space reservations. 2867 * 2868 * The higher the level, the more methods we try to reclaim space. 2869 */ 2870 enum btrfs_reserve_flush_enum { 2871 /* If we are in the transaction, we can't flush anything.*/ 2872 BTRFS_RESERVE_NO_FLUSH, 2873 2874 /* 2875 * Flush space by: 2876 * - Running delayed inode items 2877 * - Allocating a new chunk 2878 */ 2879 BTRFS_RESERVE_FLUSH_LIMIT, 2880 2881 /* 2882 * Flush space by: 2883 * - Running delayed inode items 2884 * - Running delayed refs 2885 * - Running delalloc and waiting for ordered extents 2886 * - Allocating a new chunk 2887 */ 2888 BTRFS_RESERVE_FLUSH_EVICT, 2889 2890 /* 2891 * Flush space by above mentioned methods and by: 2892 * - Running delayed iputs 2893 * - Committing transaction 2894 * 2895 * Can be interrupted by a fatal signal. 2896 */ 2897 BTRFS_RESERVE_FLUSH_DATA, 2898 BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE, 2899 BTRFS_RESERVE_FLUSH_ALL, 2900 2901 /* 2902 * Pretty much the same as FLUSH_ALL, but can also steal space from 2903 * global rsv. 2904 * 2905 * Can be interrupted by a fatal signal. 2906 */ 2907 BTRFS_RESERVE_FLUSH_ALL_STEAL, 2908 }; 2909 2910 enum btrfs_flush_state { 2911 FLUSH_DELAYED_ITEMS_NR = 1, 2912 FLUSH_DELAYED_ITEMS = 2, 2913 FLUSH_DELAYED_REFS_NR = 3, 2914 FLUSH_DELAYED_REFS = 4, 2915 FLUSH_DELALLOC = 5, 2916 FLUSH_DELALLOC_WAIT = 6, 2917 FLUSH_DELALLOC_FULL = 7, 2918 ALLOC_CHUNK = 8, 2919 ALLOC_CHUNK_FORCE = 9, 2920 RUN_DELAYED_IPUTS = 10, 2921 COMMIT_TRANS = 11, 2922 }; 2923 2924 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, 2925 struct btrfs_block_rsv *rsv, 2926 int nitems, bool use_global_rsv); 2927 void btrfs_subvolume_release_metadata(struct btrfs_root *root, 2928 struct btrfs_block_rsv *rsv); 2929 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes); 2930 2931 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes, 2932 u64 disk_num_bytes, bool noflush); 2933 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo); 2934 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, 2935 u64 start, u64 end); 2936 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, 2937 u64 num_bytes, u64 *actual_bytes); 2938 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range); 2939 2940 int btrfs_init_space_info(struct btrfs_fs_info *fs_info); 2941 int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans, 2942 struct btrfs_fs_info *fs_info); 2943 int btrfs_start_write_no_snapshotting(struct btrfs_root *root); 2944 void btrfs_end_write_no_snapshotting(struct btrfs_root *root); 2945 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root); 2946 2947 /* ctree.c */ 2948 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 2949 int *slot); 2950 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2); 2951 int btrfs_previous_item(struct btrfs_root *root, 2952 struct btrfs_path *path, u64 min_objectid, 2953 int type); 2954 int btrfs_previous_extent_item(struct btrfs_root *root, 2955 struct btrfs_path *path, u64 min_objectid); 2956 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 2957 struct btrfs_path *path, 2958 const struct btrfs_key *new_key); 2959 struct extent_buffer *btrfs_root_node(struct btrfs_root *root); 2960 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 2961 struct btrfs_key *key, int lowest_level, 2962 u64 min_trans); 2963 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 2964 struct btrfs_path *path, 2965 u64 min_trans); 2966 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 2967 int slot); 2968 2969 int btrfs_cow_block(struct btrfs_trans_handle *trans, 2970 struct btrfs_root *root, struct extent_buffer *buf, 2971 struct extent_buffer *parent, int parent_slot, 2972 struct extent_buffer **cow_ret, 2973 enum btrfs_lock_nesting nest); 2974 int btrfs_copy_root(struct btrfs_trans_handle *trans, 2975 struct btrfs_root *root, 2976 struct extent_buffer *buf, 2977 struct extent_buffer **cow_ret, u64 new_root_objectid); 2978 int btrfs_block_can_be_shared(struct btrfs_root *root, 2979 struct extent_buffer *buf); 2980 void btrfs_extend_item(struct btrfs_path *path, u32 data_size); 2981 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end); 2982 int btrfs_split_item(struct btrfs_trans_handle *trans, 2983 struct btrfs_root *root, 2984 struct btrfs_path *path, 2985 const struct btrfs_key *new_key, 2986 unsigned long split_offset); 2987 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 2988 struct btrfs_root *root, 2989 struct btrfs_path *path, 2990 const struct btrfs_key *new_key); 2991 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2992 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key); 2993 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2994 const struct btrfs_key *key, struct btrfs_path *p, 2995 int ins_len, int cow); 2996 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2997 struct btrfs_path *p, u64 time_seq); 2998 int btrfs_search_slot_for_read(struct btrfs_root *root, 2999 const struct btrfs_key *key, 3000 struct btrfs_path *p, int find_higher, 3001 int return_any); 3002 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 3003 struct btrfs_root *root, struct extent_buffer *parent, 3004 int start_slot, u64 *last_ret, 3005 struct btrfs_key *progress); 3006 void btrfs_release_path(struct btrfs_path *p); 3007 struct btrfs_path *btrfs_alloc_path(void); 3008 void btrfs_free_path(struct btrfs_path *p); 3009 3010 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3011 struct btrfs_path *path, int slot, int nr); 3012 static inline int btrfs_del_item(struct btrfs_trans_handle *trans, 3013 struct btrfs_root *root, 3014 struct btrfs_path *path) 3015 { 3016 return btrfs_del_items(trans, root, path, path->slots[0], 1); 3017 } 3018 3019 /* 3020 * Describes a batch of items to insert in a btree. This is used by 3021 * btrfs_insert_empty_items(). 3022 */ 3023 struct btrfs_item_batch { 3024 /* 3025 * Pointer to an array containing the keys of the items to insert (in 3026 * sorted order). 3027 */ 3028 const struct btrfs_key *keys; 3029 /* Pointer to an array containing the data size for each item to insert. */ 3030 const u32 *data_sizes; 3031 /* 3032 * The sum of data sizes for all items. The caller can compute this while 3033 * setting up the data_sizes array, so it ends up being more efficient 3034 * than having btrfs_insert_empty_items() or setup_item_for_insert() 3035 * doing it, as it would avoid an extra loop over a potentially large 3036 * array, and in the case of setup_item_for_insert(), we would be doing 3037 * it while holding a write lock on a leaf and often on upper level nodes 3038 * too, unnecessarily increasing the size of a critical section. 3039 */ 3040 u32 total_data_size; 3041 /* Size of the keys and data_sizes arrays (number of items in the batch). */ 3042 int nr; 3043 }; 3044 3045 void btrfs_setup_item_for_insert(struct btrfs_root *root, 3046 struct btrfs_path *path, 3047 const struct btrfs_key *key, 3048 u32 data_size); 3049 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3050 const struct btrfs_key *key, void *data, u32 data_size); 3051 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3052 struct btrfs_root *root, 3053 struct btrfs_path *path, 3054 const struct btrfs_item_batch *batch); 3055 3056 static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans, 3057 struct btrfs_root *root, 3058 struct btrfs_path *path, 3059 const struct btrfs_key *key, 3060 u32 data_size) 3061 { 3062 struct btrfs_item_batch batch; 3063 3064 batch.keys = key; 3065 batch.data_sizes = &data_size; 3066 batch.total_data_size = data_size; 3067 batch.nr = 1; 3068 3069 return btrfs_insert_empty_items(trans, root, path, &batch); 3070 } 3071 3072 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path); 3073 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 3074 u64 time_seq); 3075 3076 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 3077 struct btrfs_path *path); 3078 3079 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 3080 struct btrfs_path *path); 3081 3082 /* 3083 * Search in @root for a given @key, and store the slot found in @found_key. 3084 * 3085 * @root: The root node of the tree. 3086 * @key: The key we are looking for. 3087 * @found_key: Will hold the found item. 3088 * @path: Holds the current slot/leaf. 3089 * @iter_ret: Contains the value returned from btrfs_search_slot or 3090 * btrfs_get_next_valid_item, whichever was executed last. 3091 * 3092 * The @iter_ret is an output variable that will contain the return value of 3093 * btrfs_search_slot, if it encountered an error, or the value returned from 3094 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid 3095 * slot was found, 1 if there were no more leaves, and <0 if there was an error. 3096 * 3097 * It's recommended to use a separate variable for iter_ret and then use it to 3098 * set the function return value so there's no confusion of the 0/1/errno 3099 * values stemming from btrfs_search_slot. 3100 */ 3101 #define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \ 3102 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \ 3103 (iter_ret) >= 0 && \ 3104 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \ 3105 (path)->slots[0]++ \ 3106 ) 3107 3108 static inline int btrfs_next_old_item(struct btrfs_root *root, 3109 struct btrfs_path *p, u64 time_seq) 3110 { 3111 ++p->slots[0]; 3112 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0])) 3113 return btrfs_next_old_leaf(root, p, time_seq); 3114 return 0; 3115 } 3116 3117 /* 3118 * Search the tree again to find a leaf with greater keys. 3119 * 3120 * Returns 0 if it found something or 1 if there are no greater leaves. 3121 * Returns < 0 on error. 3122 */ 3123 static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 3124 { 3125 return btrfs_next_old_leaf(root, path, 0); 3126 } 3127 3128 static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p) 3129 { 3130 return btrfs_next_old_item(root, p, 0); 3131 } 3132 int btrfs_leaf_free_space(struct extent_buffer *leaf); 3133 int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, 3134 int for_reloc); 3135 int btrfs_drop_subtree(struct btrfs_trans_handle *trans, 3136 struct btrfs_root *root, 3137 struct extent_buffer *node, 3138 struct extent_buffer *parent); 3139 static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info) 3140 { 3141 /* 3142 * Do it this way so we only ever do one test_bit in the normal case. 3143 */ 3144 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) { 3145 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags)) 3146 return 2; 3147 return 1; 3148 } 3149 return 0; 3150 } 3151 3152 /* 3153 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do 3154 * anything except sleeping. This function is used to check the status of 3155 * the fs. 3156 * We check for BTRFS_FS_STATE_RO to avoid races with a concurrent remount, 3157 * since setting and checking for SB_RDONLY in the superblock's flags is not 3158 * atomic. 3159 */ 3160 static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info) 3161 { 3162 return test_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state) || 3163 btrfs_fs_closing(fs_info); 3164 } 3165 3166 static inline void btrfs_set_sb_rdonly(struct super_block *sb) 3167 { 3168 sb->s_flags |= SB_RDONLY; 3169 set_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3170 } 3171 3172 static inline void btrfs_clear_sb_rdonly(struct super_block *sb) 3173 { 3174 sb->s_flags &= ~SB_RDONLY; 3175 clear_bit(BTRFS_FS_STATE_RO, &btrfs_sb(sb)->fs_state); 3176 } 3177 3178 /* root-item.c */ 3179 int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3180 u64 ref_id, u64 dirid, u64 sequence, const char *name, 3181 int name_len); 3182 int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id, 3183 u64 ref_id, u64 dirid, u64 *sequence, const char *name, 3184 int name_len); 3185 int btrfs_del_root(struct btrfs_trans_handle *trans, 3186 const struct btrfs_key *key); 3187 int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3188 const struct btrfs_key *key, 3189 struct btrfs_root_item *item); 3190 int __must_check btrfs_update_root(struct btrfs_trans_handle *trans, 3191 struct btrfs_root *root, 3192 struct btrfs_key *key, 3193 struct btrfs_root_item *item); 3194 int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key, 3195 struct btrfs_path *path, struct btrfs_root_item *root_item, 3196 struct btrfs_key *root_key); 3197 int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info); 3198 void btrfs_set_root_node(struct btrfs_root_item *item, 3199 struct extent_buffer *node); 3200 void btrfs_check_and_init_root_item(struct btrfs_root_item *item); 3201 void btrfs_update_root_times(struct btrfs_trans_handle *trans, 3202 struct btrfs_root *root); 3203 3204 /* uuid-tree.c */ 3205 int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3206 u64 subid); 3207 int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type, 3208 u64 subid); 3209 int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info); 3210 3211 /* dir-item.c */ 3212 int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir, 3213 const char *name, int name_len); 3214 int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name, 3215 int name_len, struct btrfs_inode *dir, 3216 struct btrfs_key *location, u8 type, u64 index); 3217 struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans, 3218 struct btrfs_root *root, 3219 struct btrfs_path *path, u64 dir, 3220 const char *name, int name_len, 3221 int mod); 3222 struct btrfs_dir_item * 3223 btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans, 3224 struct btrfs_root *root, 3225 struct btrfs_path *path, u64 dir, 3226 u64 index, const char *name, int name_len, 3227 int mod); 3228 struct btrfs_dir_item * 3229 btrfs_search_dir_index_item(struct btrfs_root *root, 3230 struct btrfs_path *path, u64 dirid, 3231 const char *name, int name_len); 3232 int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans, 3233 struct btrfs_root *root, 3234 struct btrfs_path *path, 3235 struct btrfs_dir_item *di); 3236 int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans, 3237 struct btrfs_root *root, 3238 struct btrfs_path *path, u64 objectid, 3239 const char *name, u16 name_len, 3240 const void *data, u16 data_len); 3241 struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans, 3242 struct btrfs_root *root, 3243 struct btrfs_path *path, u64 dir, 3244 const char *name, u16 name_len, 3245 int mod); 3246 struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info, 3247 struct btrfs_path *path, 3248 const char *name, 3249 int name_len); 3250 3251 /* orphan.c */ 3252 int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans, 3253 struct btrfs_root *root, u64 offset); 3254 int btrfs_del_orphan_item(struct btrfs_trans_handle *trans, 3255 struct btrfs_root *root, u64 offset); 3256 int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset); 3257 3258 /* file-item.c */ 3259 int btrfs_del_csums(struct btrfs_trans_handle *trans, 3260 struct btrfs_root *root, u64 bytenr, u64 len); 3261 blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u8 *dst); 3262 int btrfs_insert_file_extent(struct btrfs_trans_handle *trans, 3263 struct btrfs_root *root, 3264 u64 objectid, u64 pos, 3265 u64 disk_offset, u64 disk_num_bytes, 3266 u64 num_bytes, u64 offset, u64 ram_bytes, 3267 u8 compression, u8 encryption, u16 other_encoding); 3268 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans, 3269 struct btrfs_root *root, 3270 struct btrfs_path *path, u64 objectid, 3271 u64 bytenr, int mod); 3272 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans, 3273 struct btrfs_root *root, 3274 struct btrfs_ordered_sum *sums); 3275 blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio, 3276 u64 offset, bool one_ordered); 3277 int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end, 3278 struct list_head *list, int search_commit); 3279 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode, 3280 const struct btrfs_path *path, 3281 struct btrfs_file_extent_item *fi, 3282 const bool new_inline, 3283 struct extent_map *em); 3284 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start, 3285 u64 len); 3286 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start, 3287 u64 len); 3288 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size); 3289 u64 btrfs_file_extent_end(const struct btrfs_path *path); 3290 3291 /* inode.c */ 3292 void btrfs_submit_data_write_bio(struct inode *inode, struct bio *bio, int mirror_num); 3293 void btrfs_submit_data_read_bio(struct inode *inode, struct bio *bio, 3294 int mirror_num, enum btrfs_compression_type compress_type); 3295 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page, 3296 u32 pgoff, u8 *csum, const u8 * const csum_expected); 3297 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3298 u32 bio_offset, struct page *page, u32 pgoff); 3299 unsigned int btrfs_verify_data_csum(struct btrfs_bio *bbio, 3300 u32 bio_offset, struct page *page, 3301 u64 start, u64 end); 3302 int btrfs_check_data_csum(struct inode *inode, struct btrfs_bio *bbio, 3303 u32 bio_offset, struct page *page, u32 pgoff); 3304 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, 3305 u64 start, u64 len); 3306 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, 3307 u64 *orig_start, u64 *orig_block_len, 3308 u64 *ram_bytes, bool strict); 3309 3310 void __btrfs_del_delalloc_inode(struct btrfs_root *root, 3311 struct btrfs_inode *inode); 3312 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry); 3313 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index); 3314 int btrfs_unlink_inode(struct btrfs_trans_handle *trans, 3315 struct btrfs_inode *dir, struct btrfs_inode *inode, 3316 const char *name, int name_len); 3317 int btrfs_add_link(struct btrfs_trans_handle *trans, 3318 struct btrfs_inode *parent_inode, struct btrfs_inode *inode, 3319 const char *name, int name_len, int add_backref, u64 index); 3320 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry); 3321 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len, 3322 int front); 3323 3324 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context); 3325 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr, 3326 bool in_reclaim_context); 3327 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end, 3328 unsigned int extra_bits, 3329 struct extent_state **cached_state); 3330 struct btrfs_new_inode_args { 3331 /* Input */ 3332 struct inode *dir; 3333 struct dentry *dentry; 3334 struct inode *inode; 3335 bool orphan; 3336 bool subvol; 3337 3338 /* 3339 * Output from btrfs_new_inode_prepare(), input to 3340 * btrfs_create_new_inode(). 3341 */ 3342 struct posix_acl *default_acl; 3343 struct posix_acl *acl; 3344 }; 3345 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args, 3346 unsigned int *trans_num_items); 3347 int btrfs_create_new_inode(struct btrfs_trans_handle *trans, 3348 struct btrfs_new_inode_args *args); 3349 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args); 3350 struct inode *btrfs_new_subvol_inode(struct user_namespace *mnt_userns, 3351 struct inode *dir); 3352 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state, 3353 u32 bits); 3354 void btrfs_clear_delalloc_extent(struct inode *inode, 3355 struct extent_state *state, u32 bits); 3356 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new, 3357 struct extent_state *other); 3358 void btrfs_split_delalloc_extent(struct inode *inode, 3359 struct extent_state *orig, u64 split); 3360 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end); 3361 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf); 3362 void btrfs_evict_inode(struct inode *inode); 3363 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc); 3364 struct inode *btrfs_alloc_inode(struct super_block *sb); 3365 void btrfs_destroy_inode(struct inode *inode); 3366 void btrfs_free_inode(struct inode *inode); 3367 int btrfs_drop_inode(struct inode *inode); 3368 int __init btrfs_init_cachep(void); 3369 void __cold btrfs_destroy_cachep(void); 3370 struct inode *btrfs_iget_path(struct super_block *s, u64 ino, 3371 struct btrfs_root *root, struct btrfs_path *path); 3372 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root); 3373 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, 3374 struct page *page, size_t pg_offset, 3375 u64 start, u64 end); 3376 int btrfs_update_inode(struct btrfs_trans_handle *trans, 3377 struct btrfs_root *root, struct btrfs_inode *inode); 3378 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, 3379 struct btrfs_root *root, struct btrfs_inode *inode); 3380 int btrfs_orphan_add(struct btrfs_trans_handle *trans, 3381 struct btrfs_inode *inode); 3382 int btrfs_orphan_cleanup(struct btrfs_root *root); 3383 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size); 3384 void btrfs_add_delayed_iput(struct inode *inode); 3385 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info); 3386 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info); 3387 int btrfs_prealloc_file_range(struct inode *inode, int mode, 3388 u64 start, u64 num_bytes, u64 min_size, 3389 loff_t actual_len, u64 *alloc_hint); 3390 int btrfs_prealloc_file_range_trans(struct inode *inode, 3391 struct btrfs_trans_handle *trans, int mode, 3392 u64 start, u64 num_bytes, u64 min_size, 3393 loff_t actual_len, u64 *alloc_hint); 3394 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page, 3395 u64 start, u64 end, int *page_started, unsigned long *nr_written, 3396 struct writeback_control *wbc); 3397 int btrfs_writepage_cow_fixup(struct page *page); 3398 void btrfs_writepage_endio_finish_ordered(struct btrfs_inode *inode, 3399 struct page *page, u64 start, 3400 u64 end, bool uptodate); 3401 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info, 3402 int compress_type); 3403 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode, 3404 u64 file_offset, u64 disk_bytenr, 3405 u64 disk_io_size, 3406 struct page **pages); 3407 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter, 3408 struct btrfs_ioctl_encoded_io_args *encoded); 3409 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from, 3410 const struct btrfs_ioctl_encoded_io_args *encoded); 3411 3412 ssize_t btrfs_dio_rw(struct kiocb *iocb, struct iov_iter *iter, size_t done_before); 3413 3414 extern const struct dentry_operations btrfs_dentry_operations; 3415 3416 /* Inode locking type flags, by default the exclusive lock is taken */ 3417 #define BTRFS_ILOCK_SHARED (1U << 0) 3418 #define BTRFS_ILOCK_TRY (1U << 1) 3419 #define BTRFS_ILOCK_MMAP (1U << 2) 3420 3421 int btrfs_inode_lock(struct inode *inode, unsigned int ilock_flags); 3422 void btrfs_inode_unlock(struct inode *inode, unsigned int ilock_flags); 3423 void btrfs_update_inode_bytes(struct btrfs_inode *inode, 3424 const u64 add_bytes, 3425 const u64 del_bytes); 3426 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end); 3427 3428 /* ioctl.c */ 3429 long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3430 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 3431 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa); 3432 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 3433 struct dentry *dentry, struct fileattr *fa); 3434 int btrfs_ioctl_get_supported_features(void __user *arg); 3435 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode); 3436 int __pure btrfs_is_empty_uuid(u8 *uuid); 3437 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra, 3438 struct btrfs_ioctl_defrag_range_args *range, 3439 u64 newer_than, unsigned long max_to_defrag); 3440 void btrfs_get_block_group_info(struct list_head *groups_list, 3441 struct btrfs_ioctl_space_info *space); 3442 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3443 struct btrfs_ioctl_balance_args *bargs); 3444 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 3445 enum btrfs_exclusive_operation type); 3446 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 3447 enum btrfs_exclusive_operation type); 3448 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info); 3449 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info); 3450 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 3451 enum btrfs_exclusive_operation op); 3452 3453 3454 /* file.c */ 3455 int __init btrfs_auto_defrag_init(void); 3456 void __cold btrfs_auto_defrag_exit(void); 3457 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans, 3458 struct btrfs_inode *inode, u32 extent_thresh); 3459 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info); 3460 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info); 3461 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync); 3462 void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end, 3463 int skip_pinned); 3464 extern const struct file_operations btrfs_file_operations; 3465 int btrfs_drop_extents(struct btrfs_trans_handle *trans, 3466 struct btrfs_root *root, struct btrfs_inode *inode, 3467 struct btrfs_drop_extents_args *args); 3468 int btrfs_replace_file_extents(struct btrfs_inode *inode, 3469 struct btrfs_path *path, const u64 start, 3470 const u64 end, 3471 struct btrfs_replace_extent_info *extent_info, 3472 struct btrfs_trans_handle **trans_out); 3473 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans, 3474 struct btrfs_inode *inode, u64 start, u64 end); 3475 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from, 3476 const struct btrfs_ioctl_encoded_io_args *encoded); 3477 int btrfs_release_file(struct inode *inode, struct file *file); 3478 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages, 3479 size_t num_pages, loff_t pos, size_t write_bytes, 3480 struct extent_state **cached, bool noreserve); 3481 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end); 3482 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos, 3483 size_t *write_bytes); 3484 void btrfs_check_nocow_unlock(struct btrfs_inode *inode); 3485 3486 /* tree-defrag.c */ 3487 int btrfs_defrag_leaves(struct btrfs_trans_handle *trans, 3488 struct btrfs_root *root); 3489 3490 /* super.c */ 3491 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 3492 unsigned long new_flags); 3493 int btrfs_sync_fs(struct super_block *sb, int wait); 3494 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 3495 u64 subvol_objectid); 3496 3497 static inline __printf(2, 3) __cold 3498 void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 3499 { 3500 } 3501 3502 #ifdef CONFIG_PRINTK_INDEX 3503 3504 #define btrfs_printk(fs_info, fmt, args...) \ 3505 do { \ 3506 printk_index_subsys_emit("%sBTRFS %s (device %s): ", NULL, fmt); \ 3507 _btrfs_printk(fs_info, fmt, ##args); \ 3508 } while (0) 3509 3510 __printf(2, 3) 3511 __cold 3512 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3513 3514 #elif defined(CONFIG_PRINTK) 3515 3516 #define btrfs_printk(fs_info, fmt, args...) \ 3517 _btrfs_printk(fs_info, fmt, ##args) 3518 3519 __printf(2, 3) 3520 __cold 3521 void _btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...); 3522 3523 #else 3524 3525 #define btrfs_printk(fs_info, fmt, args...) \ 3526 btrfs_no_printk(fs_info, fmt, ##args) 3527 #endif 3528 3529 #define btrfs_emerg(fs_info, fmt, args...) \ 3530 btrfs_printk(fs_info, KERN_EMERG fmt, ##args) 3531 #define btrfs_alert(fs_info, fmt, args...) \ 3532 btrfs_printk(fs_info, KERN_ALERT fmt, ##args) 3533 #define btrfs_crit(fs_info, fmt, args...) \ 3534 btrfs_printk(fs_info, KERN_CRIT fmt, ##args) 3535 #define btrfs_err(fs_info, fmt, args...) \ 3536 btrfs_printk(fs_info, KERN_ERR fmt, ##args) 3537 #define btrfs_warn(fs_info, fmt, args...) \ 3538 btrfs_printk(fs_info, KERN_WARNING fmt, ##args) 3539 #define btrfs_notice(fs_info, fmt, args...) \ 3540 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args) 3541 #define btrfs_info(fs_info, fmt, args...) \ 3542 btrfs_printk(fs_info, KERN_INFO fmt, ##args) 3543 3544 /* 3545 * Wrappers that use printk_in_rcu 3546 */ 3547 #define btrfs_emerg_in_rcu(fs_info, fmt, args...) \ 3548 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3549 #define btrfs_alert_in_rcu(fs_info, fmt, args...) \ 3550 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3551 #define btrfs_crit_in_rcu(fs_info, fmt, args...) \ 3552 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3553 #define btrfs_err_in_rcu(fs_info, fmt, args...) \ 3554 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args) 3555 #define btrfs_warn_in_rcu(fs_info, fmt, args...) \ 3556 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3557 #define btrfs_notice_in_rcu(fs_info, fmt, args...) \ 3558 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3559 #define btrfs_info_in_rcu(fs_info, fmt, args...) \ 3560 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args) 3561 3562 /* 3563 * Wrappers that use a ratelimited printk_in_rcu 3564 */ 3565 #define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \ 3566 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args) 3567 #define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \ 3568 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args) 3569 #define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \ 3570 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args) 3571 #define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \ 3572 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args) 3573 #define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \ 3574 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args) 3575 #define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \ 3576 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args) 3577 #define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \ 3578 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args) 3579 3580 /* 3581 * Wrappers that use a ratelimited printk 3582 */ 3583 #define btrfs_emerg_rl(fs_info, fmt, args...) \ 3584 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args) 3585 #define btrfs_alert_rl(fs_info, fmt, args...) \ 3586 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args) 3587 #define btrfs_crit_rl(fs_info, fmt, args...) \ 3588 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args) 3589 #define btrfs_err_rl(fs_info, fmt, args...) \ 3590 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args) 3591 #define btrfs_warn_rl(fs_info, fmt, args...) \ 3592 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args) 3593 #define btrfs_notice_rl(fs_info, fmt, args...) \ 3594 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args) 3595 #define btrfs_info_rl(fs_info, fmt, args...) \ 3596 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args) 3597 3598 #if defined(CONFIG_DYNAMIC_DEBUG) 3599 #define btrfs_debug(fs_info, fmt, args...) \ 3600 _dynamic_func_call_no_desc(fmt, btrfs_printk, \ 3601 fs_info, KERN_DEBUG fmt, ##args) 3602 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3603 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \ 3604 fs_info, KERN_DEBUG fmt, ##args) 3605 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3606 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \ 3607 fs_info, KERN_DEBUG fmt, ##args) 3608 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3609 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \ 3610 fs_info, KERN_DEBUG fmt, ##args) 3611 #elif defined(DEBUG) 3612 #define btrfs_debug(fs_info, fmt, args...) \ 3613 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args) 3614 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3615 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3616 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3617 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3618 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3619 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args) 3620 #else 3621 #define btrfs_debug(fs_info, fmt, args...) \ 3622 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3623 #define btrfs_debug_in_rcu(fs_info, fmt, args...) \ 3624 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3625 #define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \ 3626 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args) 3627 #define btrfs_debug_rl(fs_info, fmt, args...) \ 3628 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args) 3629 #endif 3630 3631 #define btrfs_printk_in_rcu(fs_info, fmt, args...) \ 3632 do { \ 3633 rcu_read_lock(); \ 3634 btrfs_printk(fs_info, fmt, ##args); \ 3635 rcu_read_unlock(); \ 3636 } while (0) 3637 3638 #define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \ 3639 do { \ 3640 rcu_read_lock(); \ 3641 btrfs_no_printk(fs_info, fmt, ##args); \ 3642 rcu_read_unlock(); \ 3643 } while (0) 3644 3645 #define btrfs_printk_ratelimited(fs_info, fmt, args...) \ 3646 do { \ 3647 static DEFINE_RATELIMIT_STATE(_rs, \ 3648 DEFAULT_RATELIMIT_INTERVAL, \ 3649 DEFAULT_RATELIMIT_BURST); \ 3650 if (__ratelimit(&_rs)) \ 3651 btrfs_printk(fs_info, fmt, ##args); \ 3652 } while (0) 3653 3654 #define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \ 3655 do { \ 3656 rcu_read_lock(); \ 3657 btrfs_printk_ratelimited(fs_info, fmt, ##args); \ 3658 rcu_read_unlock(); \ 3659 } while (0) 3660 3661 #ifdef CONFIG_BTRFS_ASSERT 3662 __cold __noreturn 3663 static inline void assertfail(const char *expr, const char *file, int line) 3664 { 3665 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line); 3666 BUG(); 3667 } 3668 3669 #define ASSERT(expr) \ 3670 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__)) 3671 3672 #else 3673 static inline void assertfail(const char *expr, const char* file, int line) { } 3674 #define ASSERT(expr) (void)(expr) 3675 #endif 3676 3677 #if BITS_PER_LONG == 32 3678 #define BTRFS_32BIT_MAX_FILE_SIZE (((u64)ULONG_MAX + 1) << PAGE_SHIFT) 3679 /* 3680 * The warning threshold is 5/8th of the MAX_LFS_FILESIZE that limits the logical 3681 * addresses of extents. 3682 * 3683 * For 4K page size it's about 10T, for 64K it's 160T. 3684 */ 3685 #define BTRFS_32BIT_EARLY_WARN_THRESHOLD (BTRFS_32BIT_MAX_FILE_SIZE * 5 / 8) 3686 void btrfs_warn_32bit_limit(struct btrfs_fs_info *fs_info); 3687 void btrfs_err_32bit_limit(struct btrfs_fs_info *fs_info); 3688 #endif 3689 3690 /* 3691 * Get the correct offset inside the page of extent buffer. 3692 * 3693 * @eb: target extent buffer 3694 * @start: offset inside the extent buffer 3695 * 3696 * Will handle both sectorsize == PAGE_SIZE and sectorsize < PAGE_SIZE cases. 3697 */ 3698 static inline size_t get_eb_offset_in_page(const struct extent_buffer *eb, 3699 unsigned long offset) 3700 { 3701 /* 3702 * For sectorsize == PAGE_SIZE case, eb->start will always be aligned 3703 * to PAGE_SIZE, thus adding it won't cause any difference. 3704 * 3705 * For sectorsize < PAGE_SIZE, we must only read the data that belongs 3706 * to the eb, thus we have to take the eb->start into consideration. 3707 */ 3708 return offset_in_page(offset + eb->start); 3709 } 3710 3711 static inline unsigned long get_eb_page_index(unsigned long offset) 3712 { 3713 /* 3714 * For sectorsize == PAGE_SIZE case, plain >> PAGE_SHIFT is enough. 3715 * 3716 * For sectorsize < PAGE_SIZE case, we only support 64K PAGE_SIZE, 3717 * and have ensured that all tree blocks are contained in one page, 3718 * thus we always get index == 0. 3719 */ 3720 return offset >> PAGE_SHIFT; 3721 } 3722 3723 /* 3724 * Use that for functions that are conditionally exported for sanity tests but 3725 * otherwise static 3726 */ 3727 #ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 3728 #define EXPORT_FOR_TESTS static 3729 #else 3730 #define EXPORT_FOR_TESTS 3731 #endif 3732 3733 __cold 3734 static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info) 3735 { 3736 btrfs_err(fs_info, 3737 "Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel"); 3738 } 3739 3740 __printf(5, 6) 3741 __cold 3742 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 3743 unsigned int line, int errno, const char *fmt, ...); 3744 3745 const char * __attribute_const__ btrfs_decode_error(int errno); 3746 3747 __cold 3748 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 3749 const char *function, 3750 unsigned int line, int errno); 3751 3752 /* 3753 * Call btrfs_abort_transaction as early as possible when an error condition is 3754 * detected, that way the exact line number is reported. 3755 */ 3756 #define btrfs_abort_transaction(trans, errno) \ 3757 do { \ 3758 /* Report first abort since mount */ \ 3759 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \ 3760 &((trans)->fs_info->fs_state))) { \ 3761 if ((errno) != -EIO && (errno) != -EROFS) { \ 3762 WARN(1, KERN_DEBUG \ 3763 "BTRFS: Transaction aborted (error %d)\n", \ 3764 (errno)); \ 3765 } else { \ 3766 btrfs_debug((trans)->fs_info, \ 3767 "Transaction aborted (error %d)", \ 3768 (errno)); \ 3769 } \ 3770 } \ 3771 __btrfs_abort_transaction((trans), __func__, \ 3772 __LINE__, (errno)); \ 3773 } while (0) 3774 3775 #ifdef CONFIG_PRINTK_INDEX 3776 3777 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3778 do { \ 3779 printk_index_subsys_emit( \ 3780 "BTRFS: error (device %s%s) in %s:%d: errno=%d %s", \ 3781 KERN_CRIT, fmt); \ 3782 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3783 (errno), fmt, ##args); \ 3784 } while (0) 3785 3786 #else 3787 3788 #define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \ 3789 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \ 3790 (errno), fmt, ##args) 3791 3792 #endif 3793 3794 #define BTRFS_FS_ERROR(fs_info) (unlikely(test_bit(BTRFS_FS_STATE_ERROR, \ 3795 &(fs_info)->fs_state))) 3796 #define BTRFS_FS_LOG_CLEANUP_ERROR(fs_info) \ 3797 (unlikely(test_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR, \ 3798 &(fs_info)->fs_state))) 3799 3800 __printf(5, 6) 3801 __cold 3802 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 3803 unsigned int line, int errno, const char *fmt, ...); 3804 /* 3805 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic 3806 * will panic(). Otherwise we BUG() here. 3807 */ 3808 #define btrfs_panic(fs_info, errno, fmt, args...) \ 3809 do { \ 3810 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \ 3811 BUG(); \ 3812 } while (0) 3813 3814 3815 /* compatibility and incompatibility defines */ 3816 3817 #define btrfs_set_fs_incompat(__fs_info, opt) \ 3818 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3819 #opt) 3820 3821 static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info, 3822 u64 flag, const char* name) 3823 { 3824 struct btrfs_super_block *disk_super; 3825 u64 features; 3826 3827 disk_super = fs_info->super_copy; 3828 features = btrfs_super_incompat_flags(disk_super); 3829 if (!(features & flag)) { 3830 spin_lock(&fs_info->super_lock); 3831 features = btrfs_super_incompat_flags(disk_super); 3832 if (!(features & flag)) { 3833 features |= flag; 3834 btrfs_set_super_incompat_flags(disk_super, features); 3835 btrfs_info(fs_info, 3836 "setting incompat feature flag for %s (0x%llx)", 3837 name, flag); 3838 } 3839 spin_unlock(&fs_info->super_lock); 3840 } 3841 } 3842 3843 #define btrfs_clear_fs_incompat(__fs_info, opt) \ 3844 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \ 3845 #opt) 3846 3847 static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info, 3848 u64 flag, const char* name) 3849 { 3850 struct btrfs_super_block *disk_super; 3851 u64 features; 3852 3853 disk_super = fs_info->super_copy; 3854 features = btrfs_super_incompat_flags(disk_super); 3855 if (features & flag) { 3856 spin_lock(&fs_info->super_lock); 3857 features = btrfs_super_incompat_flags(disk_super); 3858 if (features & flag) { 3859 features &= ~flag; 3860 btrfs_set_super_incompat_flags(disk_super, features); 3861 btrfs_info(fs_info, 3862 "clearing incompat feature flag for %s (0x%llx)", 3863 name, flag); 3864 } 3865 spin_unlock(&fs_info->super_lock); 3866 } 3867 } 3868 3869 #define btrfs_fs_incompat(fs_info, opt) \ 3870 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt) 3871 3872 static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag) 3873 { 3874 struct btrfs_super_block *disk_super; 3875 disk_super = fs_info->super_copy; 3876 return !!(btrfs_super_incompat_flags(disk_super) & flag); 3877 } 3878 3879 #define btrfs_set_fs_compat_ro(__fs_info, opt) \ 3880 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3881 #opt) 3882 3883 static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info, 3884 u64 flag, const char *name) 3885 { 3886 struct btrfs_super_block *disk_super; 3887 u64 features; 3888 3889 disk_super = fs_info->super_copy; 3890 features = btrfs_super_compat_ro_flags(disk_super); 3891 if (!(features & flag)) { 3892 spin_lock(&fs_info->super_lock); 3893 features = btrfs_super_compat_ro_flags(disk_super); 3894 if (!(features & flag)) { 3895 features |= flag; 3896 btrfs_set_super_compat_ro_flags(disk_super, features); 3897 btrfs_info(fs_info, 3898 "setting compat-ro feature flag for %s (0x%llx)", 3899 name, flag); 3900 } 3901 spin_unlock(&fs_info->super_lock); 3902 } 3903 } 3904 3905 #define btrfs_clear_fs_compat_ro(__fs_info, opt) \ 3906 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \ 3907 #opt) 3908 3909 static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info, 3910 u64 flag, const char *name) 3911 { 3912 struct btrfs_super_block *disk_super; 3913 u64 features; 3914 3915 disk_super = fs_info->super_copy; 3916 features = btrfs_super_compat_ro_flags(disk_super); 3917 if (features & flag) { 3918 spin_lock(&fs_info->super_lock); 3919 features = btrfs_super_compat_ro_flags(disk_super); 3920 if (features & flag) { 3921 features &= ~flag; 3922 btrfs_set_super_compat_ro_flags(disk_super, features); 3923 btrfs_info(fs_info, 3924 "clearing compat-ro feature flag for %s (0x%llx)", 3925 name, flag); 3926 } 3927 spin_unlock(&fs_info->super_lock); 3928 } 3929 } 3930 3931 #define btrfs_fs_compat_ro(fs_info, opt) \ 3932 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt) 3933 3934 static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag) 3935 { 3936 struct btrfs_super_block *disk_super; 3937 disk_super = fs_info->super_copy; 3938 return !!(btrfs_super_compat_ro_flags(disk_super) & flag); 3939 } 3940 3941 /* acl.c */ 3942 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 3943 struct posix_acl *btrfs_get_acl(struct inode *inode, int type, bool rcu); 3944 int btrfs_set_acl(struct user_namespace *mnt_userns, struct inode *inode, 3945 struct posix_acl *acl, int type); 3946 int __btrfs_set_acl(struct btrfs_trans_handle *trans, struct inode *inode, 3947 struct posix_acl *acl, int type); 3948 #else 3949 #define btrfs_get_acl NULL 3950 #define btrfs_set_acl NULL 3951 static inline int __btrfs_set_acl(struct btrfs_trans_handle *trans, 3952 struct inode *inode, struct posix_acl *acl, 3953 int type) 3954 { 3955 return -EOPNOTSUPP; 3956 } 3957 #endif 3958 3959 /* relocation.c */ 3960 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start); 3961 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 3962 struct btrfs_root *root); 3963 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 3964 struct btrfs_root *root); 3965 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info); 3966 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len); 3967 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3968 struct btrfs_root *root, struct extent_buffer *buf, 3969 struct extent_buffer *cow); 3970 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3971 u64 *bytes_to_reserve); 3972 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3973 struct btrfs_pending_snapshot *pending); 3974 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info); 3975 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, 3976 u64 bytenr); 3977 int btrfs_should_ignore_reloc_root(struct btrfs_root *root); 3978 3979 /* scrub.c */ 3980 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 3981 u64 end, struct btrfs_scrub_progress *progress, 3982 int readonly, int is_dev_replace); 3983 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info); 3984 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info); 3985 int btrfs_scrub_cancel(struct btrfs_fs_info *info); 3986 int btrfs_scrub_cancel_dev(struct btrfs_device *dev); 3987 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 3988 struct btrfs_scrub_progress *progress); 3989 static inline void btrfs_init_full_stripe_locks_tree( 3990 struct btrfs_full_stripe_locks_tree *locks_root) 3991 { 3992 locks_root->root = RB_ROOT; 3993 mutex_init(&locks_root->lock); 3994 } 3995 3996 /* dev-replace.c */ 3997 void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info); 3998 void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info); 3999 void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount); 4000 4001 static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info) 4002 { 4003 btrfs_bio_counter_sub(fs_info, 1); 4004 } 4005 4006 static inline int is_fstree(u64 rootid) 4007 { 4008 if (rootid == BTRFS_FS_TREE_OBJECTID || 4009 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID && 4010 !btrfs_qgroup_level(rootid))) 4011 return 1; 4012 return 0; 4013 } 4014 4015 static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info) 4016 { 4017 return signal_pending(current); 4018 } 4019 4020 /* verity.c */ 4021 #ifdef CONFIG_FS_VERITY 4022 4023 extern const struct fsverity_operations btrfs_verityops; 4024 int btrfs_drop_verity_items(struct btrfs_inode *inode); 4025 4026 BTRFS_SETGET_FUNCS(verity_descriptor_encryption, struct btrfs_verity_descriptor_item, 4027 encryption, 8); 4028 BTRFS_SETGET_FUNCS(verity_descriptor_size, struct btrfs_verity_descriptor_item, 4029 size, 64); 4030 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_encryption, 4031 struct btrfs_verity_descriptor_item, encryption, 8); 4032 BTRFS_SETGET_STACK_FUNCS(stack_verity_descriptor_size, 4033 struct btrfs_verity_descriptor_item, size, 64); 4034 4035 #else 4036 4037 static inline int btrfs_drop_verity_items(struct btrfs_inode *inode) 4038 { 4039 return 0; 4040 } 4041 4042 #endif 4043 4044 /* Sanity test specific functions */ 4045 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4046 void btrfs_test_destroy_inode(struct inode *inode); 4047 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4048 { 4049 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); 4050 } 4051 #else 4052 static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info) 4053 { 4054 return 0; 4055 } 4056 #endif 4057 4058 static inline bool btrfs_is_zoned(const struct btrfs_fs_info *fs_info) 4059 { 4060 return fs_info->zone_size > 0; 4061 } 4062 4063 /* 4064 * Count how many fs_info->max_extent_size cover the @size 4065 */ 4066 static inline u32 count_max_extents(struct btrfs_fs_info *fs_info, u64 size) 4067 { 4068 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4069 if (!fs_info) 4070 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE); 4071 #endif 4072 4073 return div_u64(size + fs_info->max_extent_size - 1, fs_info->max_extent_size); 4074 } 4075 4076 static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root) 4077 { 4078 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID; 4079 } 4080 4081 /* 4082 * We use page status Private2 to indicate there is an ordered extent with 4083 * unfinished IO. 4084 * 4085 * Rename the Private2 accessors to Ordered, to improve readability. 4086 */ 4087 #define PageOrdered(page) PagePrivate2(page) 4088 #define SetPageOrdered(page) SetPagePrivate2(page) 4089 #define ClearPageOrdered(page) ClearPagePrivate2(page) 4090 #define folio_test_ordered(folio) folio_test_private_2(folio) 4091 #define folio_set_ordered(folio) folio_set_private_2(folio) 4092 #define folio_clear_ordered(folio) folio_clear_private_2(folio) 4093 4094 #endif 4095